1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Assumptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===----------------------------------------------------------------------===// 40 // Statement Emission 41 //===----------------------------------------------------------------------===// 42 43 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 44 if (CGDebugInfo *DI = getDebugInfo()) { 45 SourceLocation Loc; 46 Loc = S->getBeginLoc(); 47 DI->EmitLocation(Builder, Loc); 48 49 LastStopPoint = Loc; 50 } 51 } 52 53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 54 assert(S && "Null statement?"); 55 PGO.setCurrentStmt(S); 56 57 // These statements have their own debug info handling. 58 if (EmitSimpleStmt(S, Attrs)) 59 return; 60 61 // Check if we are generating unreachable code. 62 if (!HaveInsertPoint()) { 63 // If so, and the statement doesn't contain a label, then we do not need to 64 // generate actual code. This is safe because (1) the current point is 65 // unreachable, so we don't need to execute the code, and (2) we've already 66 // handled the statements which update internal data structures (like the 67 // local variable map) which could be used by subsequent statements. 68 if (!ContainsLabel(S)) { 69 // Verify that any decl statements were handled as simple, they may be in 70 // scope of subsequent reachable statements. 71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 72 return; 73 } 74 75 // Otherwise, make a new block to hold the code. 76 EnsureInsertPoint(); 77 } 78 79 // Generate a stoppoint if we are emitting debug info. 80 EmitStopPoint(S); 81 82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 83 // enabled. 84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 86 EmitSimpleOMPExecutableDirective(*D); 87 return; 88 } 89 } 90 91 switch (S->getStmtClass()) { 92 case Stmt::NoStmtClass: 93 case Stmt::CXXCatchStmtClass: 94 case Stmt::SEHExceptStmtClass: 95 case Stmt::SEHFinallyStmtClass: 96 case Stmt::MSDependentExistsStmtClass: 97 llvm_unreachable("invalid statement class to emit generically"); 98 case Stmt::NullStmtClass: 99 case Stmt::CompoundStmtClass: 100 case Stmt::DeclStmtClass: 101 case Stmt::LabelStmtClass: 102 case Stmt::AttributedStmtClass: 103 case Stmt::GotoStmtClass: 104 case Stmt::BreakStmtClass: 105 case Stmt::ContinueStmtClass: 106 case Stmt::DefaultStmtClass: 107 case Stmt::CaseStmtClass: 108 case Stmt::SEHLeaveStmtClass: 109 llvm_unreachable("should have emitted these statements as simple"); 110 111 #define STMT(Type, Base) 112 #define ABSTRACT_STMT(Op) 113 #define EXPR(Type, Base) \ 114 case Stmt::Type##Class: 115 #include "clang/AST/StmtNodes.inc" 116 { 117 // Remember the block we came in on. 118 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 119 assert(incoming && "expression emission must have an insertion point"); 120 121 EmitIgnoredExpr(cast<Expr>(S)); 122 123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 124 assert(outgoing && "expression emission cleared block!"); 125 126 // The expression emitters assume (reasonably!) that the insertion 127 // point is always set. To maintain that, the call-emission code 128 // for noreturn functions has to enter a new block with no 129 // predecessors. We want to kill that block and mark the current 130 // insertion point unreachable in the common case of a call like 131 // "exit();". Since expression emission doesn't otherwise create 132 // blocks with no predecessors, we can just test for that. 133 // However, we must be careful not to do this to our incoming 134 // block, because *statement* emission does sometimes create 135 // reachable blocks which will have no predecessors until later in 136 // the function. This occurs with, e.g., labels that are not 137 // reachable by fallthrough. 138 if (incoming != outgoing && outgoing->use_empty()) { 139 outgoing->eraseFromParent(); 140 Builder.ClearInsertionPoint(); 141 } 142 break; 143 } 144 145 case Stmt::IndirectGotoStmtClass: 146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 147 148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 152 153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 154 155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 156 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 158 case Stmt::CoroutineBodyStmtClass: 159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 160 break; 161 case Stmt::CoreturnStmtClass: 162 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 163 break; 164 case Stmt::CapturedStmtClass: { 165 const CapturedStmt *CS = cast<CapturedStmt>(S); 166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 167 } 168 break; 169 case Stmt::ObjCAtTryStmtClass: 170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 171 break; 172 case Stmt::ObjCAtCatchStmtClass: 173 llvm_unreachable( 174 "@catch statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtFinallyStmtClass: 176 llvm_unreachable( 177 "@finally statements should be handled by EmitObjCAtTryStmt"); 178 case Stmt::ObjCAtThrowStmtClass: 179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 180 break; 181 case Stmt::ObjCAtSynchronizedStmtClass: 182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 183 break; 184 case Stmt::ObjCForCollectionStmtClass: 185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 186 break; 187 case Stmt::ObjCAutoreleasePoolStmtClass: 188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 189 break; 190 191 case Stmt::CXXTryStmtClass: 192 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 193 break; 194 case Stmt::CXXForRangeStmtClass: 195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 196 break; 197 case Stmt::SEHTryStmtClass: 198 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 199 break; 200 case Stmt::OMPMetaDirectiveClass: 201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 202 break; 203 case Stmt::OMPCanonicalLoopClass: 204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 205 break; 206 case Stmt::OMPParallelDirectiveClass: 207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 208 break; 209 case Stmt::OMPSimdDirectiveClass: 210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 211 break; 212 case Stmt::OMPTileDirectiveClass: 213 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 214 break; 215 case Stmt::OMPUnrollDirectiveClass: 216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 217 break; 218 case Stmt::OMPForDirectiveClass: 219 EmitOMPForDirective(cast<OMPForDirective>(*S)); 220 break; 221 case Stmt::OMPForSimdDirectiveClass: 222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPSectionsDirectiveClass: 225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPSectionDirectiveClass: 228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 229 break; 230 case Stmt::OMPSingleDirectiveClass: 231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 232 break; 233 case Stmt::OMPMasterDirectiveClass: 234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 235 break; 236 case Stmt::OMPCriticalDirectiveClass: 237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 238 break; 239 case Stmt::OMPParallelForDirectiveClass: 240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 241 break; 242 case Stmt::OMPParallelForSimdDirectiveClass: 243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 244 break; 245 case Stmt::OMPParallelMasterDirectiveClass: 246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 247 break; 248 case Stmt::OMPParallelSectionsDirectiveClass: 249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 250 break; 251 case Stmt::OMPTaskDirectiveClass: 252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 253 break; 254 case Stmt::OMPTaskyieldDirectiveClass: 255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 256 break; 257 case Stmt::OMPBarrierDirectiveClass: 258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 259 break; 260 case Stmt::OMPTaskwaitDirectiveClass: 261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 262 break; 263 case Stmt::OMPTaskgroupDirectiveClass: 264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 265 break; 266 case Stmt::OMPFlushDirectiveClass: 267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 268 break; 269 case Stmt::OMPDepobjDirectiveClass: 270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 271 break; 272 case Stmt::OMPScanDirectiveClass: 273 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 274 break; 275 case Stmt::OMPOrderedDirectiveClass: 276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 277 break; 278 case Stmt::OMPAtomicDirectiveClass: 279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDirectiveClass: 282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 283 break; 284 case Stmt::OMPTeamsDirectiveClass: 285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 286 break; 287 case Stmt::OMPCancellationPointDirectiveClass: 288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 289 break; 290 case Stmt::OMPCancelDirectiveClass: 291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetDataDirectiveClass: 294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 295 break; 296 case Stmt::OMPTargetEnterDataDirectiveClass: 297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 298 break; 299 case Stmt::OMPTargetExitDataDirectiveClass: 300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelDirectiveClass: 303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForDirectiveClass: 306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 307 break; 308 case Stmt::OMPTaskLoopDirectiveClass: 309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 310 break; 311 case Stmt::OMPTaskLoopSimdDirectiveClass: 312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPMasterTaskLoopDirectiveClass: 315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 316 break; 317 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 318 EmitOMPMasterTaskLoopSimdDirective( 319 cast<OMPMasterTaskLoopSimdDirective>(*S)); 320 break; 321 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 322 EmitOMPParallelMasterTaskLoopDirective( 323 cast<OMPParallelMasterTaskLoopDirective>(*S)); 324 break; 325 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 326 EmitOMPParallelMasterTaskLoopSimdDirective( 327 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 328 break; 329 case Stmt::OMPDistributeDirectiveClass: 330 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 331 break; 332 case Stmt::OMPTargetUpdateDirectiveClass: 333 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 334 break; 335 case Stmt::OMPDistributeParallelForDirectiveClass: 336 EmitOMPDistributeParallelForDirective( 337 cast<OMPDistributeParallelForDirective>(*S)); 338 break; 339 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 340 EmitOMPDistributeParallelForSimdDirective( 341 cast<OMPDistributeParallelForSimdDirective>(*S)); 342 break; 343 case Stmt::OMPDistributeSimdDirectiveClass: 344 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTargetParallelForSimdDirectiveClass: 347 EmitOMPTargetParallelForSimdDirective( 348 cast<OMPTargetParallelForSimdDirective>(*S)); 349 break; 350 case Stmt::OMPTargetSimdDirectiveClass: 351 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTeamsDistributeDirectiveClass: 354 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 355 break; 356 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 357 EmitOMPTeamsDistributeSimdDirective( 358 cast<OMPTeamsDistributeSimdDirective>(*S)); 359 break; 360 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 361 EmitOMPTeamsDistributeParallelForSimdDirective( 362 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 363 break; 364 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 365 EmitOMPTeamsDistributeParallelForDirective( 366 cast<OMPTeamsDistributeParallelForDirective>(*S)); 367 break; 368 case Stmt::OMPTargetTeamsDirectiveClass: 369 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 370 break; 371 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 372 EmitOMPTargetTeamsDistributeDirective( 373 cast<OMPTargetTeamsDistributeDirective>(*S)); 374 break; 375 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 376 EmitOMPTargetTeamsDistributeParallelForDirective( 377 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 378 break; 379 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 380 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 381 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 382 break; 383 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 384 EmitOMPTargetTeamsDistributeSimdDirective( 385 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 386 break; 387 case Stmt::OMPInteropDirectiveClass: 388 llvm_unreachable("Interop directive not supported yet."); 389 break; 390 case Stmt::OMPDispatchDirectiveClass: 391 llvm_unreachable("Dispatch directive not supported yet."); 392 break; 393 case Stmt::OMPMaskedDirectiveClass: 394 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 395 break; 396 } 397 } 398 399 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 400 ArrayRef<const Attr *> Attrs) { 401 switch (S->getStmtClass()) { 402 default: 403 return false; 404 case Stmt::NullStmtClass: 405 break; 406 case Stmt::CompoundStmtClass: 407 EmitCompoundStmt(cast<CompoundStmt>(*S)); 408 break; 409 case Stmt::DeclStmtClass: 410 EmitDeclStmt(cast<DeclStmt>(*S)); 411 break; 412 case Stmt::LabelStmtClass: 413 EmitLabelStmt(cast<LabelStmt>(*S)); 414 break; 415 case Stmt::AttributedStmtClass: 416 EmitAttributedStmt(cast<AttributedStmt>(*S)); 417 break; 418 case Stmt::GotoStmtClass: 419 EmitGotoStmt(cast<GotoStmt>(*S)); 420 break; 421 case Stmt::BreakStmtClass: 422 EmitBreakStmt(cast<BreakStmt>(*S)); 423 break; 424 case Stmt::ContinueStmtClass: 425 EmitContinueStmt(cast<ContinueStmt>(*S)); 426 break; 427 case Stmt::DefaultStmtClass: 428 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 429 break; 430 case Stmt::CaseStmtClass: 431 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 432 break; 433 case Stmt::SEHLeaveStmtClass: 434 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 435 break; 436 } 437 return true; 438 } 439 440 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 441 /// this captures the expression result of the last sub-statement and returns it 442 /// (for use by the statement expression extension). 443 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 444 AggValueSlot AggSlot) { 445 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 446 "LLVM IR generation of compound statement ('{}')"); 447 448 // Keep track of the current cleanup stack depth, including debug scopes. 449 LexicalScope Scope(*this, S.getSourceRange()); 450 451 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 452 } 453 454 Address 455 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 456 bool GetLast, 457 AggValueSlot AggSlot) { 458 459 const Stmt *ExprResult = S.getStmtExprResult(); 460 assert((!GetLast || (GetLast && ExprResult)) && 461 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 462 463 Address RetAlloca = Address::invalid(); 464 465 for (auto *CurStmt : S.body()) { 466 if (GetLast && ExprResult == CurStmt) { 467 // We have to special case labels here. They are statements, but when put 468 // at the end of a statement expression, they yield the value of their 469 // subexpression. Handle this by walking through all labels we encounter, 470 // emitting them before we evaluate the subexpr. 471 // Similar issues arise for attributed statements. 472 while (!isa<Expr>(ExprResult)) { 473 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 474 EmitLabel(LS->getDecl()); 475 ExprResult = LS->getSubStmt(); 476 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 477 // FIXME: Update this if we ever have attributes that affect the 478 // semantics of an expression. 479 ExprResult = AS->getSubStmt(); 480 } else { 481 llvm_unreachable("unknown value statement"); 482 } 483 } 484 485 EnsureInsertPoint(); 486 487 const Expr *E = cast<Expr>(ExprResult); 488 QualType ExprTy = E->getType(); 489 if (hasAggregateEvaluationKind(ExprTy)) { 490 EmitAggExpr(E, AggSlot); 491 } else { 492 // We can't return an RValue here because there might be cleanups at 493 // the end of the StmtExpr. Because of that, we have to emit the result 494 // here into a temporary alloca. 495 RetAlloca = CreateMemTemp(ExprTy); 496 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 497 /*IsInit*/ false); 498 } 499 } else { 500 EmitStmt(CurStmt); 501 } 502 } 503 504 return RetAlloca; 505 } 506 507 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 508 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 509 510 // If there is a cleanup stack, then we it isn't worth trying to 511 // simplify this block (we would need to remove it from the scope map 512 // and cleanup entry). 513 if (!EHStack.empty()) 514 return; 515 516 // Can only simplify direct branches. 517 if (!BI || !BI->isUnconditional()) 518 return; 519 520 // Can only simplify empty blocks. 521 if (BI->getIterator() != BB->begin()) 522 return; 523 524 BB->replaceAllUsesWith(BI->getSuccessor(0)); 525 BI->eraseFromParent(); 526 BB->eraseFromParent(); 527 } 528 529 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 530 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 531 532 // Fall out of the current block (if necessary). 533 EmitBranch(BB); 534 535 if (IsFinished && BB->use_empty()) { 536 delete BB; 537 return; 538 } 539 540 // Place the block after the current block, if possible, or else at 541 // the end of the function. 542 if (CurBB && CurBB->getParent()) 543 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 544 else 545 CurFn->getBasicBlockList().push_back(BB); 546 Builder.SetInsertPoint(BB); 547 } 548 549 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 550 // Emit a branch from the current block to the target one if this 551 // was a real block. If this was just a fall-through block after a 552 // terminator, don't emit it. 553 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 554 555 if (!CurBB || CurBB->getTerminator()) { 556 // If there is no insert point or the previous block is already 557 // terminated, don't touch it. 558 } else { 559 // Otherwise, create a fall-through branch. 560 Builder.CreateBr(Target); 561 } 562 563 Builder.ClearInsertionPoint(); 564 } 565 566 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 567 bool inserted = false; 568 for (llvm::User *u : block->users()) { 569 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 570 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 571 block); 572 inserted = true; 573 break; 574 } 575 } 576 577 if (!inserted) 578 CurFn->getBasicBlockList().push_back(block); 579 580 Builder.SetInsertPoint(block); 581 } 582 583 CodeGenFunction::JumpDest 584 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 585 JumpDest &Dest = LabelMap[D]; 586 if (Dest.isValid()) return Dest; 587 588 // Create, but don't insert, the new block. 589 Dest = JumpDest(createBasicBlock(D->getName()), 590 EHScopeStack::stable_iterator::invalid(), 591 NextCleanupDestIndex++); 592 return Dest; 593 } 594 595 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 596 // Add this label to the current lexical scope if we're within any 597 // normal cleanups. Jumps "in" to this label --- when permitted by 598 // the language --- may need to be routed around such cleanups. 599 if (EHStack.hasNormalCleanups() && CurLexicalScope) 600 CurLexicalScope->addLabel(D); 601 602 JumpDest &Dest = LabelMap[D]; 603 604 // If we didn't need a forward reference to this label, just go 605 // ahead and create a destination at the current scope. 606 if (!Dest.isValid()) { 607 Dest = getJumpDestInCurrentScope(D->getName()); 608 609 // Otherwise, we need to give this label a target depth and remove 610 // it from the branch-fixups list. 611 } else { 612 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 613 Dest.setScopeDepth(EHStack.stable_begin()); 614 ResolveBranchFixups(Dest.getBlock()); 615 } 616 617 EmitBlock(Dest.getBlock()); 618 619 // Emit debug info for labels. 620 if (CGDebugInfo *DI = getDebugInfo()) { 621 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 622 DI->setLocation(D->getLocation()); 623 DI->EmitLabel(D, Builder); 624 } 625 } 626 627 incrementProfileCounter(D->getStmt()); 628 } 629 630 /// Change the cleanup scope of the labels in this lexical scope to 631 /// match the scope of the enclosing context. 632 void CodeGenFunction::LexicalScope::rescopeLabels() { 633 assert(!Labels.empty()); 634 EHScopeStack::stable_iterator innermostScope 635 = CGF.EHStack.getInnermostNormalCleanup(); 636 637 // Change the scope depth of all the labels. 638 for (SmallVectorImpl<const LabelDecl*>::const_iterator 639 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 640 assert(CGF.LabelMap.count(*i)); 641 JumpDest &dest = CGF.LabelMap.find(*i)->second; 642 assert(dest.getScopeDepth().isValid()); 643 assert(innermostScope.encloses(dest.getScopeDepth())); 644 dest.setScopeDepth(innermostScope); 645 } 646 647 // Reparent the labels if the new scope also has cleanups. 648 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 649 ParentScope->Labels.append(Labels.begin(), Labels.end()); 650 } 651 } 652 653 654 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 655 EmitLabel(S.getDecl()); 656 657 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 658 if (getLangOpts().EHAsynch && S.isSideEntry()) 659 EmitSehCppScopeBegin(); 660 661 EmitStmt(S.getSubStmt()); 662 } 663 664 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 665 bool nomerge = false; 666 const CallExpr *musttail = nullptr; 667 668 for (const auto *A : S.getAttrs()) { 669 if (A->getKind() == attr::NoMerge) { 670 nomerge = true; 671 } 672 if (A->getKind() == attr::MustTail) { 673 const Stmt *Sub = S.getSubStmt(); 674 const ReturnStmt *R = cast<ReturnStmt>(Sub); 675 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 676 } 677 } 678 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 679 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 680 EmitStmt(S.getSubStmt(), S.getAttrs()); 681 } 682 683 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 684 // If this code is reachable then emit a stop point (if generating 685 // debug info). We have to do this ourselves because we are on the 686 // "simple" statement path. 687 if (HaveInsertPoint()) 688 EmitStopPoint(&S); 689 690 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 691 } 692 693 694 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 695 if (const LabelDecl *Target = S.getConstantTarget()) { 696 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 697 return; 698 } 699 700 // Ensure that we have an i8* for our PHI node. 701 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 702 Int8PtrTy, "addr"); 703 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 704 705 // Get the basic block for the indirect goto. 706 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 707 708 // The first instruction in the block has to be the PHI for the switch dest, 709 // add an entry for this branch. 710 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 711 712 EmitBranch(IndGotoBB); 713 } 714 715 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 716 // The else branch of a consteval if statement is always the only branch that 717 // can be runtime evaluated. 718 if (S.isConsteval()) { 719 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); 720 if (Executed) { 721 RunCleanupsScope ExecutedScope(*this); 722 EmitStmt(Executed); 723 } 724 return; 725 } 726 727 // C99 6.8.4.1: The first substatement is executed if the expression compares 728 // unequal to 0. The condition must be a scalar type. 729 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 730 731 if (S.getInit()) 732 EmitStmt(S.getInit()); 733 734 if (S.getConditionVariable()) 735 EmitDecl(*S.getConditionVariable()); 736 737 // If the condition constant folds and can be elided, try to avoid emitting 738 // the condition and the dead arm of the if/else. 739 bool CondConstant; 740 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 741 S.isConstexpr())) { 742 // Figure out which block (then or else) is executed. 743 const Stmt *Executed = S.getThen(); 744 const Stmt *Skipped = S.getElse(); 745 if (!CondConstant) // Condition false? 746 std::swap(Executed, Skipped); 747 748 // If the skipped block has no labels in it, just emit the executed block. 749 // This avoids emitting dead code and simplifies the CFG substantially. 750 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 751 if (CondConstant) 752 incrementProfileCounter(&S); 753 if (Executed) { 754 RunCleanupsScope ExecutedScope(*this); 755 EmitStmt(Executed); 756 } 757 return; 758 } 759 } 760 761 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 762 // the conditional branch. 763 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 764 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 765 llvm::BasicBlock *ElseBlock = ContBlock; 766 if (S.getElse()) 767 ElseBlock = createBasicBlock("if.else"); 768 769 // Prefer the PGO based weights over the likelihood attribute. 770 // When the build isn't optimized the metadata isn't used, so don't generate 771 // it. 772 Stmt::Likelihood LH = Stmt::LH_None; 773 uint64_t Count = getProfileCount(S.getThen()); 774 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 775 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 776 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 777 778 // Emit the 'then' code. 779 EmitBlock(ThenBlock); 780 incrementProfileCounter(&S); 781 { 782 RunCleanupsScope ThenScope(*this); 783 EmitStmt(S.getThen()); 784 } 785 EmitBranch(ContBlock); 786 787 // Emit the 'else' code if present. 788 if (const Stmt *Else = S.getElse()) { 789 { 790 // There is no need to emit line number for an unconditional branch. 791 auto NL = ApplyDebugLocation::CreateEmpty(*this); 792 EmitBlock(ElseBlock); 793 } 794 { 795 RunCleanupsScope ElseScope(*this); 796 EmitStmt(Else); 797 } 798 { 799 // There is no need to emit line number for an unconditional branch. 800 auto NL = ApplyDebugLocation::CreateEmpty(*this); 801 EmitBranch(ContBlock); 802 } 803 } 804 805 // Emit the continuation block for code after the if. 806 EmitBlock(ContBlock, true); 807 } 808 809 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 810 ArrayRef<const Attr *> WhileAttrs) { 811 // Emit the header for the loop, which will also become 812 // the continue target. 813 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 814 EmitBlock(LoopHeader.getBlock()); 815 816 // Create an exit block for when the condition fails, which will 817 // also become the break target. 818 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 819 820 // Store the blocks to use for break and continue. 821 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 822 823 // C++ [stmt.while]p2: 824 // When the condition of a while statement is a declaration, the 825 // scope of the variable that is declared extends from its point 826 // of declaration (3.3.2) to the end of the while statement. 827 // [...] 828 // The object created in a condition is destroyed and created 829 // with each iteration of the loop. 830 RunCleanupsScope ConditionScope(*this); 831 832 if (S.getConditionVariable()) 833 EmitDecl(*S.getConditionVariable()); 834 835 // Evaluate the conditional in the while header. C99 6.8.5.1: The 836 // evaluation of the controlling expression takes place before each 837 // execution of the loop body. 838 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 839 840 // while(1) is common, avoid extra exit blocks. Be sure 841 // to correctly handle break/continue though. 842 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 843 bool CondIsConstInt = C != nullptr; 844 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 845 const SourceRange &R = S.getSourceRange(); 846 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 847 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 848 SourceLocToDebugLoc(R.getEnd()), 849 checkIfLoopMustProgress(CondIsConstInt)); 850 851 // As long as the condition is true, go to the loop body. 852 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 853 if (EmitBoolCondBranch) { 854 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 855 if (ConditionScope.requiresCleanups()) 856 ExitBlock = createBasicBlock("while.exit"); 857 llvm::MDNode *Weights = 858 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 859 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 860 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 861 BoolCondVal, Stmt::getLikelihood(S.getBody())); 862 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 863 864 if (ExitBlock != LoopExit.getBlock()) { 865 EmitBlock(ExitBlock); 866 EmitBranchThroughCleanup(LoopExit); 867 } 868 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 869 CGM.getDiags().Report(A->getLocation(), 870 diag::warn_attribute_has_no_effect_on_infinite_loop) 871 << A << A->getRange(); 872 CGM.getDiags().Report( 873 S.getWhileLoc(), 874 diag::note_attribute_has_no_effect_on_infinite_loop_here) 875 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 876 } 877 878 // Emit the loop body. We have to emit this in a cleanup scope 879 // because it might be a singleton DeclStmt. 880 { 881 RunCleanupsScope BodyScope(*this); 882 EmitBlock(LoopBody); 883 incrementProfileCounter(&S); 884 EmitStmt(S.getBody()); 885 } 886 887 BreakContinueStack.pop_back(); 888 889 // Immediately force cleanup. 890 ConditionScope.ForceCleanup(); 891 892 EmitStopPoint(&S); 893 // Branch to the loop header again. 894 EmitBranch(LoopHeader.getBlock()); 895 896 LoopStack.pop(); 897 898 // Emit the exit block. 899 EmitBlock(LoopExit.getBlock(), true); 900 901 // The LoopHeader typically is just a branch if we skipped emitting 902 // a branch, try to erase it. 903 if (!EmitBoolCondBranch) 904 SimplifyForwardingBlocks(LoopHeader.getBlock()); 905 } 906 907 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 908 ArrayRef<const Attr *> DoAttrs) { 909 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 910 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 911 912 uint64_t ParentCount = getCurrentProfileCount(); 913 914 // Store the blocks to use for break and continue. 915 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 916 917 // Emit the body of the loop. 918 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 919 920 EmitBlockWithFallThrough(LoopBody, &S); 921 { 922 RunCleanupsScope BodyScope(*this); 923 EmitStmt(S.getBody()); 924 } 925 926 EmitBlock(LoopCond.getBlock()); 927 928 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 929 // after each execution of the loop body." 930 931 // Evaluate the conditional in the while header. 932 // C99 6.8.5p2/p4: The first substatement is executed if the expression 933 // compares unequal to 0. The condition must be a scalar type. 934 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 935 936 BreakContinueStack.pop_back(); 937 938 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 939 // to correctly handle break/continue though. 940 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 941 bool CondIsConstInt = C; 942 bool EmitBoolCondBranch = !C || !C->isZero(); 943 944 const SourceRange &R = S.getSourceRange(); 945 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 946 SourceLocToDebugLoc(R.getBegin()), 947 SourceLocToDebugLoc(R.getEnd()), 948 checkIfLoopMustProgress(CondIsConstInt)); 949 950 // As long as the condition is true, iterate the loop. 951 if (EmitBoolCondBranch) { 952 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 953 Builder.CreateCondBr( 954 BoolCondVal, LoopBody, LoopExit.getBlock(), 955 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 956 } 957 958 LoopStack.pop(); 959 960 // Emit the exit block. 961 EmitBlock(LoopExit.getBlock()); 962 963 // The DoCond block typically is just a branch if we skipped 964 // emitting a branch, try to erase it. 965 if (!EmitBoolCondBranch) 966 SimplifyForwardingBlocks(LoopCond.getBlock()); 967 } 968 969 void CodeGenFunction::EmitForStmt(const ForStmt &S, 970 ArrayRef<const Attr *> ForAttrs) { 971 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 972 973 LexicalScope ForScope(*this, S.getSourceRange()); 974 975 // Evaluate the first part before the loop. 976 if (S.getInit()) 977 EmitStmt(S.getInit()); 978 979 // Start the loop with a block that tests the condition. 980 // If there's an increment, the continue scope will be overwritten 981 // later. 982 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 983 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 984 EmitBlock(CondBlock); 985 986 Expr::EvalResult Result; 987 bool CondIsConstInt = 988 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 989 990 const SourceRange &R = S.getSourceRange(); 991 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 992 SourceLocToDebugLoc(R.getBegin()), 993 SourceLocToDebugLoc(R.getEnd()), 994 checkIfLoopMustProgress(CondIsConstInt)); 995 996 // Create a cleanup scope for the condition variable cleanups. 997 LexicalScope ConditionScope(*this, S.getSourceRange()); 998 999 // If the for loop doesn't have an increment we can just use the condition as 1000 // the continue block. Otherwise, if there is no condition variable, we can 1001 // form the continue block now. If there is a condition variable, we can't 1002 // form the continue block until after we've emitted the condition, because 1003 // the condition is in scope in the increment, but Sema's jump diagnostics 1004 // ensure that there are no continues from the condition variable that jump 1005 // to the loop increment. 1006 JumpDest Continue; 1007 if (!S.getInc()) 1008 Continue = CondDest; 1009 else if (!S.getConditionVariable()) 1010 Continue = getJumpDestInCurrentScope("for.inc"); 1011 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1012 1013 if (S.getCond()) { 1014 // If the for statement has a condition scope, emit the local variable 1015 // declaration. 1016 if (S.getConditionVariable()) { 1017 EmitDecl(*S.getConditionVariable()); 1018 1019 // We have entered the condition variable's scope, so we're now able to 1020 // jump to the continue block. 1021 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1022 BreakContinueStack.back().ContinueBlock = Continue; 1023 } 1024 1025 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1026 // If there are any cleanups between here and the loop-exit scope, 1027 // create a block to stage a loop exit along. 1028 if (ForScope.requiresCleanups()) 1029 ExitBlock = createBasicBlock("for.cond.cleanup"); 1030 1031 // As long as the condition is true, iterate the loop. 1032 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1033 1034 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1035 // compares unequal to 0. The condition must be a scalar type. 1036 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1037 llvm::MDNode *Weights = 1038 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1039 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1040 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1041 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1042 1043 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1044 1045 if (ExitBlock != LoopExit.getBlock()) { 1046 EmitBlock(ExitBlock); 1047 EmitBranchThroughCleanup(LoopExit); 1048 } 1049 1050 EmitBlock(ForBody); 1051 } else { 1052 // Treat it as a non-zero constant. Don't even create a new block for the 1053 // body, just fall into it. 1054 } 1055 incrementProfileCounter(&S); 1056 1057 { 1058 // Create a separate cleanup scope for the body, in case it is not 1059 // a compound statement. 1060 RunCleanupsScope BodyScope(*this); 1061 EmitStmt(S.getBody()); 1062 } 1063 1064 // If there is an increment, emit it next. 1065 if (S.getInc()) { 1066 EmitBlock(Continue.getBlock()); 1067 EmitStmt(S.getInc()); 1068 } 1069 1070 BreakContinueStack.pop_back(); 1071 1072 ConditionScope.ForceCleanup(); 1073 1074 EmitStopPoint(&S); 1075 EmitBranch(CondBlock); 1076 1077 ForScope.ForceCleanup(); 1078 1079 LoopStack.pop(); 1080 1081 // Emit the fall-through block. 1082 EmitBlock(LoopExit.getBlock(), true); 1083 } 1084 1085 void 1086 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1087 ArrayRef<const Attr *> ForAttrs) { 1088 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1089 1090 LexicalScope ForScope(*this, S.getSourceRange()); 1091 1092 // Evaluate the first pieces before the loop. 1093 if (S.getInit()) 1094 EmitStmt(S.getInit()); 1095 EmitStmt(S.getRangeStmt()); 1096 EmitStmt(S.getBeginStmt()); 1097 EmitStmt(S.getEndStmt()); 1098 1099 // Start the loop with a block that tests the condition. 1100 // If there's an increment, the continue scope will be overwritten 1101 // later. 1102 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1103 EmitBlock(CondBlock); 1104 1105 const SourceRange &R = S.getSourceRange(); 1106 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1107 SourceLocToDebugLoc(R.getBegin()), 1108 SourceLocToDebugLoc(R.getEnd())); 1109 1110 // If there are any cleanups between here and the loop-exit scope, 1111 // create a block to stage a loop exit along. 1112 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1113 if (ForScope.requiresCleanups()) 1114 ExitBlock = createBasicBlock("for.cond.cleanup"); 1115 1116 // The loop body, consisting of the specified body and the loop variable. 1117 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1118 1119 // The body is executed if the expression, contextually converted 1120 // to bool, is true. 1121 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1122 llvm::MDNode *Weights = 1123 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1124 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1125 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1126 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1127 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1128 1129 if (ExitBlock != LoopExit.getBlock()) { 1130 EmitBlock(ExitBlock); 1131 EmitBranchThroughCleanup(LoopExit); 1132 } 1133 1134 EmitBlock(ForBody); 1135 incrementProfileCounter(&S); 1136 1137 // Create a block for the increment. In case of a 'continue', we jump there. 1138 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1139 1140 // Store the blocks to use for break and continue. 1141 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1142 1143 { 1144 // Create a separate cleanup scope for the loop variable and body. 1145 LexicalScope BodyScope(*this, S.getSourceRange()); 1146 EmitStmt(S.getLoopVarStmt()); 1147 EmitStmt(S.getBody()); 1148 } 1149 1150 EmitStopPoint(&S); 1151 // If there is an increment, emit it next. 1152 EmitBlock(Continue.getBlock()); 1153 EmitStmt(S.getInc()); 1154 1155 BreakContinueStack.pop_back(); 1156 1157 EmitBranch(CondBlock); 1158 1159 ForScope.ForceCleanup(); 1160 1161 LoopStack.pop(); 1162 1163 // Emit the fall-through block. 1164 EmitBlock(LoopExit.getBlock(), true); 1165 } 1166 1167 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1168 if (RV.isScalar()) { 1169 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1170 } else if (RV.isAggregate()) { 1171 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1172 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1173 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1174 } else { 1175 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1176 /*init*/ true); 1177 } 1178 EmitBranchThroughCleanup(ReturnBlock); 1179 } 1180 1181 namespace { 1182 // RAII struct used to save and restore a return statment's result expression. 1183 struct SaveRetExprRAII { 1184 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1185 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1186 CGF.RetExpr = RetExpr; 1187 } 1188 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1189 const Expr *OldRetExpr; 1190 CodeGenFunction &CGF; 1191 }; 1192 } // namespace 1193 1194 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1195 /// codegen it as 'tail call ...; ret void;'. 1196 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1197 const CGFunctionInfo *CurFnInfo) { 1198 auto calleeQualType = CE->getCallee()->getType(); 1199 const FunctionType *calleeType = nullptr; 1200 if (calleeQualType->isFunctionPointerType() || 1201 calleeQualType->isFunctionReferenceType() || 1202 calleeQualType->isBlockPointerType() || 1203 calleeQualType->isMemberFunctionPointerType()) { 1204 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1205 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1206 calleeType = ty; 1207 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1208 if (auto methodDecl = CMCE->getMethodDecl()) { 1209 // getMethodDecl() doesn't handle member pointers at the moment. 1210 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1211 } else { 1212 return; 1213 } 1214 } else { 1215 return; 1216 } 1217 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1218 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1219 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1220 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1221 Builder.CreateRetVoid(); 1222 Builder.ClearInsertionPoint(); 1223 } 1224 } 1225 1226 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1227 /// if the function returns void, or may be missing one if the function returns 1228 /// non-void. Fun stuff :). 1229 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1230 if (requiresReturnValueCheck()) { 1231 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1232 auto *SLocPtr = 1233 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1234 llvm::GlobalVariable::PrivateLinkage, SLoc); 1235 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1236 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1237 assert(ReturnLocation.isValid() && "No valid return location"); 1238 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1239 ReturnLocation); 1240 } 1241 1242 // Returning from an outlined SEH helper is UB, and we already warn on it. 1243 if (IsOutlinedSEHHelper) { 1244 Builder.CreateUnreachable(); 1245 Builder.ClearInsertionPoint(); 1246 } 1247 1248 // Emit the result value, even if unused, to evaluate the side effects. 1249 const Expr *RV = S.getRetValue(); 1250 1251 // Record the result expression of the return statement. The recorded 1252 // expression is used to determine whether a block capture's lifetime should 1253 // end at the end of the full expression as opposed to the end of the scope 1254 // enclosing the block expression. 1255 // 1256 // This permits a small, easily-implemented exception to our over-conservative 1257 // rules about not jumping to statements following block literals with 1258 // non-trivial cleanups. 1259 SaveRetExprRAII SaveRetExpr(RV, *this); 1260 1261 RunCleanupsScope cleanupScope(*this); 1262 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1263 RV = EWC->getSubExpr(); 1264 // FIXME: Clean this up by using an LValue for ReturnTemp, 1265 // EmitStoreThroughLValue, and EmitAnyExpr. 1266 // Check if the NRVO candidate was not globalized in OpenMP mode. 1267 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1268 S.getNRVOCandidate()->isNRVOVariable() && 1269 (!getLangOpts().OpenMP || 1270 !CGM.getOpenMPRuntime() 1271 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1272 .isValid())) { 1273 // Apply the named return value optimization for this return statement, 1274 // which means doing nothing: the appropriate result has already been 1275 // constructed into the NRVO variable. 1276 1277 // If there is an NRVO flag for this variable, set it to 1 into indicate 1278 // that the cleanup code should not destroy the variable. 1279 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1280 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1281 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1282 // Make sure not to return anything, but evaluate the expression 1283 // for side effects. 1284 if (RV) { 1285 EmitAnyExpr(RV); 1286 if (auto *CE = dyn_cast<CallExpr>(RV)) 1287 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1288 } 1289 } else if (!RV) { 1290 // Do nothing (return value is left uninitialized) 1291 } else if (FnRetTy->isReferenceType()) { 1292 // If this function returns a reference, take the address of the expression 1293 // rather than the value. 1294 RValue Result = EmitReferenceBindingToExpr(RV); 1295 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1296 } else { 1297 switch (getEvaluationKind(RV->getType())) { 1298 case TEK_Scalar: 1299 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1300 break; 1301 case TEK_Complex: 1302 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1303 /*isInit*/ true); 1304 break; 1305 case TEK_Aggregate: 1306 EmitAggExpr(RV, AggValueSlot::forAddr( 1307 ReturnValue, Qualifiers(), 1308 AggValueSlot::IsDestructed, 1309 AggValueSlot::DoesNotNeedGCBarriers, 1310 AggValueSlot::IsNotAliased, 1311 getOverlapForReturnValue())); 1312 break; 1313 } 1314 } 1315 1316 ++NumReturnExprs; 1317 if (!RV || RV->isEvaluatable(getContext())) 1318 ++NumSimpleReturnExprs; 1319 1320 cleanupScope.ForceCleanup(); 1321 EmitBranchThroughCleanup(ReturnBlock); 1322 } 1323 1324 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1325 // As long as debug info is modeled with instructions, we have to ensure we 1326 // have a place to insert here and write the stop point here. 1327 if (HaveInsertPoint()) 1328 EmitStopPoint(&S); 1329 1330 for (const auto *I : S.decls()) 1331 EmitDecl(*I); 1332 } 1333 1334 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1335 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1336 1337 // If this code is reachable then emit a stop point (if generating 1338 // debug info). We have to do this ourselves because we are on the 1339 // "simple" statement path. 1340 if (HaveInsertPoint()) 1341 EmitStopPoint(&S); 1342 1343 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1344 } 1345 1346 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1347 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1348 1349 // If this code is reachable then emit a stop point (if generating 1350 // debug info). We have to do this ourselves because we are on the 1351 // "simple" statement path. 1352 if (HaveInsertPoint()) 1353 EmitStopPoint(&S); 1354 1355 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1356 } 1357 1358 /// EmitCaseStmtRange - If case statement range is not too big then 1359 /// add multiple cases to switch instruction, one for each value within 1360 /// the range. If range is too big then emit "if" condition check. 1361 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1362 ArrayRef<const Attr *> Attrs) { 1363 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1364 1365 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1366 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1367 1368 // Emit the code for this case. We do this first to make sure it is 1369 // properly chained from our predecessor before generating the 1370 // switch machinery to enter this block. 1371 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1372 EmitBlockWithFallThrough(CaseDest, &S); 1373 EmitStmt(S.getSubStmt()); 1374 1375 // If range is empty, do nothing. 1376 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1377 return; 1378 1379 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1380 llvm::APInt Range = RHS - LHS; 1381 // FIXME: parameters such as this should not be hardcoded. 1382 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1383 // Range is small enough to add multiple switch instruction cases. 1384 uint64_t Total = getProfileCount(&S); 1385 unsigned NCases = Range.getZExtValue() + 1; 1386 // We only have one region counter for the entire set of cases here, so we 1387 // need to divide the weights evenly between the generated cases, ensuring 1388 // that the total weight is preserved. E.g., a weight of 5 over three cases 1389 // will be distributed as weights of 2, 2, and 1. 1390 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1391 for (unsigned I = 0; I != NCases; ++I) { 1392 if (SwitchWeights) 1393 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1394 else if (SwitchLikelihood) 1395 SwitchLikelihood->push_back(LH); 1396 1397 if (Rem) 1398 Rem--; 1399 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1400 ++LHS; 1401 } 1402 return; 1403 } 1404 1405 // The range is too big. Emit "if" condition into a new block, 1406 // making sure to save and restore the current insertion point. 1407 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1408 1409 // Push this test onto the chain of range checks (which terminates 1410 // in the default basic block). The switch's default will be changed 1411 // to the top of this chain after switch emission is complete. 1412 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1413 CaseRangeBlock = createBasicBlock("sw.caserange"); 1414 1415 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1416 Builder.SetInsertPoint(CaseRangeBlock); 1417 1418 // Emit range check. 1419 llvm::Value *Diff = 1420 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1421 llvm::Value *Cond = 1422 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1423 1424 llvm::MDNode *Weights = nullptr; 1425 if (SwitchWeights) { 1426 uint64_t ThisCount = getProfileCount(&S); 1427 uint64_t DefaultCount = (*SwitchWeights)[0]; 1428 Weights = createProfileWeights(ThisCount, DefaultCount); 1429 1430 // Since we're chaining the switch default through each large case range, we 1431 // need to update the weight for the default, ie, the first case, to include 1432 // this case. 1433 (*SwitchWeights)[0] += ThisCount; 1434 } else if (SwitchLikelihood) 1435 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1436 1437 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1438 1439 // Restore the appropriate insertion point. 1440 if (RestoreBB) 1441 Builder.SetInsertPoint(RestoreBB); 1442 else 1443 Builder.ClearInsertionPoint(); 1444 } 1445 1446 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1447 ArrayRef<const Attr *> Attrs) { 1448 // If there is no enclosing switch instance that we're aware of, then this 1449 // case statement and its block can be elided. This situation only happens 1450 // when we've constant-folded the switch, are emitting the constant case, 1451 // and part of the constant case includes another case statement. For 1452 // instance: switch (4) { case 4: do { case 5: } while (1); } 1453 if (!SwitchInsn) { 1454 EmitStmt(S.getSubStmt()); 1455 return; 1456 } 1457 1458 // Handle case ranges. 1459 if (S.getRHS()) { 1460 EmitCaseStmtRange(S, Attrs); 1461 return; 1462 } 1463 1464 llvm::ConstantInt *CaseVal = 1465 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1466 if (SwitchLikelihood) 1467 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1468 1469 // If the body of the case is just a 'break', try to not emit an empty block. 1470 // If we're profiling or we're not optimizing, leave the block in for better 1471 // debug and coverage analysis. 1472 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1473 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1474 isa<BreakStmt>(S.getSubStmt())) { 1475 JumpDest Block = BreakContinueStack.back().BreakBlock; 1476 1477 // Only do this optimization if there are no cleanups that need emitting. 1478 if (isObviouslyBranchWithoutCleanups(Block)) { 1479 if (SwitchWeights) 1480 SwitchWeights->push_back(getProfileCount(&S)); 1481 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1482 1483 // If there was a fallthrough into this case, make sure to redirect it to 1484 // the end of the switch as well. 1485 if (Builder.GetInsertBlock()) { 1486 Builder.CreateBr(Block.getBlock()); 1487 Builder.ClearInsertionPoint(); 1488 } 1489 return; 1490 } 1491 } 1492 1493 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1494 EmitBlockWithFallThrough(CaseDest, &S); 1495 if (SwitchWeights) 1496 SwitchWeights->push_back(getProfileCount(&S)); 1497 SwitchInsn->addCase(CaseVal, CaseDest); 1498 1499 // Recursively emitting the statement is acceptable, but is not wonderful for 1500 // code where we have many case statements nested together, i.e.: 1501 // case 1: 1502 // case 2: 1503 // case 3: etc. 1504 // Handling this recursively will create a new block for each case statement 1505 // that falls through to the next case which is IR intensive. It also causes 1506 // deep recursion which can run into stack depth limitations. Handle 1507 // sequential non-range case statements specially. 1508 // 1509 // TODO When the next case has a likelihood attribute the code returns to the 1510 // recursive algorithm. Maybe improve this case if it becomes common practice 1511 // to use a lot of attributes. 1512 const CaseStmt *CurCase = &S; 1513 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1514 1515 // Otherwise, iteratively add consecutive cases to this switch stmt. 1516 while (NextCase && NextCase->getRHS() == nullptr) { 1517 CurCase = NextCase; 1518 llvm::ConstantInt *CaseVal = 1519 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1520 1521 if (SwitchWeights) 1522 SwitchWeights->push_back(getProfileCount(NextCase)); 1523 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1524 CaseDest = createBasicBlock("sw.bb"); 1525 EmitBlockWithFallThrough(CaseDest, CurCase); 1526 } 1527 // Since this loop is only executed when the CaseStmt has no attributes 1528 // use a hard-coded value. 1529 if (SwitchLikelihood) 1530 SwitchLikelihood->push_back(Stmt::LH_None); 1531 1532 SwitchInsn->addCase(CaseVal, CaseDest); 1533 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1534 } 1535 1536 // Generate a stop point for debug info if the case statement is 1537 // followed by a default statement. A fallthrough case before a 1538 // default case gets its own branch target. 1539 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1540 EmitStopPoint(CurCase); 1541 1542 // Normal default recursion for non-cases. 1543 EmitStmt(CurCase->getSubStmt()); 1544 } 1545 1546 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1547 ArrayRef<const Attr *> Attrs) { 1548 // If there is no enclosing switch instance that we're aware of, then this 1549 // default statement can be elided. This situation only happens when we've 1550 // constant-folded the switch. 1551 if (!SwitchInsn) { 1552 EmitStmt(S.getSubStmt()); 1553 return; 1554 } 1555 1556 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1557 assert(DefaultBlock->empty() && 1558 "EmitDefaultStmt: Default block already defined?"); 1559 1560 if (SwitchLikelihood) 1561 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1562 1563 EmitBlockWithFallThrough(DefaultBlock, &S); 1564 1565 EmitStmt(S.getSubStmt()); 1566 } 1567 1568 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1569 /// constant value that is being switched on, see if we can dead code eliminate 1570 /// the body of the switch to a simple series of statements to emit. Basically, 1571 /// on a switch (5) we want to find these statements: 1572 /// case 5: 1573 /// printf(...); <-- 1574 /// ++i; <-- 1575 /// break; 1576 /// 1577 /// and add them to the ResultStmts vector. If it is unsafe to do this 1578 /// transformation (for example, one of the elided statements contains a label 1579 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1580 /// should include statements after it (e.g. the printf() line is a substmt of 1581 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1582 /// statement, then return CSFC_Success. 1583 /// 1584 /// If Case is non-null, then we are looking for the specified case, checking 1585 /// that nothing we jump over contains labels. If Case is null, then we found 1586 /// the case and are looking for the break. 1587 /// 1588 /// If the recursive walk actually finds our Case, then we set FoundCase to 1589 /// true. 1590 /// 1591 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1592 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1593 const SwitchCase *Case, 1594 bool &FoundCase, 1595 SmallVectorImpl<const Stmt*> &ResultStmts) { 1596 // If this is a null statement, just succeed. 1597 if (!S) 1598 return Case ? CSFC_Success : CSFC_FallThrough; 1599 1600 // If this is the switchcase (case 4: or default) that we're looking for, then 1601 // we're in business. Just add the substatement. 1602 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1603 if (S == Case) { 1604 FoundCase = true; 1605 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1606 ResultStmts); 1607 } 1608 1609 // Otherwise, this is some other case or default statement, just ignore it. 1610 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1611 ResultStmts); 1612 } 1613 1614 // If we are in the live part of the code and we found our break statement, 1615 // return a success! 1616 if (!Case && isa<BreakStmt>(S)) 1617 return CSFC_Success; 1618 1619 // If this is a switch statement, then it might contain the SwitchCase, the 1620 // break, or neither. 1621 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1622 // Handle this as two cases: we might be looking for the SwitchCase (if so 1623 // the skipped statements must be skippable) or we might already have it. 1624 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1625 bool StartedInLiveCode = FoundCase; 1626 unsigned StartSize = ResultStmts.size(); 1627 1628 // If we've not found the case yet, scan through looking for it. 1629 if (Case) { 1630 // Keep track of whether we see a skipped declaration. The code could be 1631 // using the declaration even if it is skipped, so we can't optimize out 1632 // the decl if the kept statements might refer to it. 1633 bool HadSkippedDecl = false; 1634 1635 // If we're looking for the case, just see if we can skip each of the 1636 // substatements. 1637 for (; Case && I != E; ++I) { 1638 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1639 1640 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1641 case CSFC_Failure: return CSFC_Failure; 1642 case CSFC_Success: 1643 // A successful result means that either 1) that the statement doesn't 1644 // have the case and is skippable, or 2) does contain the case value 1645 // and also contains the break to exit the switch. In the later case, 1646 // we just verify the rest of the statements are elidable. 1647 if (FoundCase) { 1648 // If we found the case and skipped declarations, we can't do the 1649 // optimization. 1650 if (HadSkippedDecl) 1651 return CSFC_Failure; 1652 1653 for (++I; I != E; ++I) 1654 if (CodeGenFunction::ContainsLabel(*I, true)) 1655 return CSFC_Failure; 1656 return CSFC_Success; 1657 } 1658 break; 1659 case CSFC_FallThrough: 1660 // If we have a fallthrough condition, then we must have found the 1661 // case started to include statements. Consider the rest of the 1662 // statements in the compound statement as candidates for inclusion. 1663 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1664 // We recursively found Case, so we're not looking for it anymore. 1665 Case = nullptr; 1666 1667 // If we found the case and skipped declarations, we can't do the 1668 // optimization. 1669 if (HadSkippedDecl) 1670 return CSFC_Failure; 1671 break; 1672 } 1673 } 1674 1675 if (!FoundCase) 1676 return CSFC_Success; 1677 1678 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1679 } 1680 1681 // If we have statements in our range, then we know that the statements are 1682 // live and need to be added to the set of statements we're tracking. 1683 bool AnyDecls = false; 1684 for (; I != E; ++I) { 1685 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1686 1687 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1688 case CSFC_Failure: return CSFC_Failure; 1689 case CSFC_FallThrough: 1690 // A fallthrough result means that the statement was simple and just 1691 // included in ResultStmt, keep adding them afterwards. 1692 break; 1693 case CSFC_Success: 1694 // A successful result means that we found the break statement and 1695 // stopped statement inclusion. We just ensure that any leftover stmts 1696 // are skippable and return success ourselves. 1697 for (++I; I != E; ++I) 1698 if (CodeGenFunction::ContainsLabel(*I, true)) 1699 return CSFC_Failure; 1700 return CSFC_Success; 1701 } 1702 } 1703 1704 // If we're about to fall out of a scope without hitting a 'break;', we 1705 // can't perform the optimization if there were any decls in that scope 1706 // (we'd lose their end-of-lifetime). 1707 if (AnyDecls) { 1708 // If the entire compound statement was live, there's one more thing we 1709 // can try before giving up: emit the whole thing as a single statement. 1710 // We can do that unless the statement contains a 'break;'. 1711 // FIXME: Such a break must be at the end of a construct within this one. 1712 // We could emit this by just ignoring the BreakStmts entirely. 1713 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1714 ResultStmts.resize(StartSize); 1715 ResultStmts.push_back(S); 1716 } else { 1717 return CSFC_Failure; 1718 } 1719 } 1720 1721 return CSFC_FallThrough; 1722 } 1723 1724 // Okay, this is some other statement that we don't handle explicitly, like a 1725 // for statement or increment etc. If we are skipping over this statement, 1726 // just verify it doesn't have labels, which would make it invalid to elide. 1727 if (Case) { 1728 if (CodeGenFunction::ContainsLabel(S, true)) 1729 return CSFC_Failure; 1730 return CSFC_Success; 1731 } 1732 1733 // Otherwise, we want to include this statement. Everything is cool with that 1734 // so long as it doesn't contain a break out of the switch we're in. 1735 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1736 1737 // Otherwise, everything is great. Include the statement and tell the caller 1738 // that we fall through and include the next statement as well. 1739 ResultStmts.push_back(S); 1740 return CSFC_FallThrough; 1741 } 1742 1743 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1744 /// then invoke CollectStatementsForCase to find the list of statements to emit 1745 /// for a switch on constant. See the comment above CollectStatementsForCase 1746 /// for more details. 1747 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1748 const llvm::APSInt &ConstantCondValue, 1749 SmallVectorImpl<const Stmt*> &ResultStmts, 1750 ASTContext &C, 1751 const SwitchCase *&ResultCase) { 1752 // First step, find the switch case that is being branched to. We can do this 1753 // efficiently by scanning the SwitchCase list. 1754 const SwitchCase *Case = S.getSwitchCaseList(); 1755 const DefaultStmt *DefaultCase = nullptr; 1756 1757 for (; Case; Case = Case->getNextSwitchCase()) { 1758 // It's either a default or case. Just remember the default statement in 1759 // case we're not jumping to any numbered cases. 1760 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1761 DefaultCase = DS; 1762 continue; 1763 } 1764 1765 // Check to see if this case is the one we're looking for. 1766 const CaseStmt *CS = cast<CaseStmt>(Case); 1767 // Don't handle case ranges yet. 1768 if (CS->getRHS()) return false; 1769 1770 // If we found our case, remember it as 'case'. 1771 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1772 break; 1773 } 1774 1775 // If we didn't find a matching case, we use a default if it exists, or we 1776 // elide the whole switch body! 1777 if (!Case) { 1778 // It is safe to elide the body of the switch if it doesn't contain labels 1779 // etc. If it is safe, return successfully with an empty ResultStmts list. 1780 if (!DefaultCase) 1781 return !CodeGenFunction::ContainsLabel(&S); 1782 Case = DefaultCase; 1783 } 1784 1785 // Ok, we know which case is being jumped to, try to collect all the 1786 // statements that follow it. This can fail for a variety of reasons. Also, 1787 // check to see that the recursive walk actually found our case statement. 1788 // Insane cases like this can fail to find it in the recursive walk since we 1789 // don't handle every stmt kind: 1790 // switch (4) { 1791 // while (1) { 1792 // case 4: ... 1793 bool FoundCase = false; 1794 ResultCase = Case; 1795 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1796 ResultStmts) != CSFC_Failure && 1797 FoundCase; 1798 } 1799 1800 static Optional<SmallVector<uint64_t, 16>> 1801 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1802 // Are there enough branches to weight them? 1803 if (Likelihoods.size() <= 1) 1804 return None; 1805 1806 uint64_t NumUnlikely = 0; 1807 uint64_t NumNone = 0; 1808 uint64_t NumLikely = 0; 1809 for (const auto LH : Likelihoods) { 1810 switch (LH) { 1811 case Stmt::LH_Unlikely: 1812 ++NumUnlikely; 1813 break; 1814 case Stmt::LH_None: 1815 ++NumNone; 1816 break; 1817 case Stmt::LH_Likely: 1818 ++NumLikely; 1819 break; 1820 } 1821 } 1822 1823 // Is there a likelihood attribute used? 1824 if (NumUnlikely == 0 && NumLikely == 0) 1825 return None; 1826 1827 // When multiple cases share the same code they can be combined during 1828 // optimization. In that case the weights of the branch will be the sum of 1829 // the individual weights. Make sure the combined sum of all neutral cases 1830 // doesn't exceed the value of a single likely attribute. 1831 // The additions both avoid divisions by 0 and make sure the weights of None 1832 // don't exceed the weight of Likely. 1833 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1834 const uint64_t None = Likely / (NumNone + 1); 1835 const uint64_t Unlikely = 0; 1836 1837 SmallVector<uint64_t, 16> Result; 1838 Result.reserve(Likelihoods.size()); 1839 for (const auto LH : Likelihoods) { 1840 switch (LH) { 1841 case Stmt::LH_Unlikely: 1842 Result.push_back(Unlikely); 1843 break; 1844 case Stmt::LH_None: 1845 Result.push_back(None); 1846 break; 1847 case Stmt::LH_Likely: 1848 Result.push_back(Likely); 1849 break; 1850 } 1851 } 1852 1853 return Result; 1854 } 1855 1856 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1857 // Handle nested switch statements. 1858 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1859 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1860 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1861 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1862 1863 // See if we can constant fold the condition of the switch and therefore only 1864 // emit the live case statement (if any) of the switch. 1865 llvm::APSInt ConstantCondValue; 1866 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1867 SmallVector<const Stmt*, 4> CaseStmts; 1868 const SwitchCase *Case = nullptr; 1869 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1870 getContext(), Case)) { 1871 if (Case) 1872 incrementProfileCounter(Case); 1873 RunCleanupsScope ExecutedScope(*this); 1874 1875 if (S.getInit()) 1876 EmitStmt(S.getInit()); 1877 1878 // Emit the condition variable if needed inside the entire cleanup scope 1879 // used by this special case for constant folded switches. 1880 if (S.getConditionVariable()) 1881 EmitDecl(*S.getConditionVariable()); 1882 1883 // At this point, we are no longer "within" a switch instance, so 1884 // we can temporarily enforce this to ensure that any embedded case 1885 // statements are not emitted. 1886 SwitchInsn = nullptr; 1887 1888 // Okay, we can dead code eliminate everything except this case. Emit the 1889 // specified series of statements and we're good. 1890 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1891 EmitStmt(CaseStmts[i]); 1892 incrementProfileCounter(&S); 1893 1894 // Now we want to restore the saved switch instance so that nested 1895 // switches continue to function properly 1896 SwitchInsn = SavedSwitchInsn; 1897 1898 return; 1899 } 1900 } 1901 1902 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1903 1904 RunCleanupsScope ConditionScope(*this); 1905 1906 if (S.getInit()) 1907 EmitStmt(S.getInit()); 1908 1909 if (S.getConditionVariable()) 1910 EmitDecl(*S.getConditionVariable()); 1911 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1912 1913 // Create basic block to hold stuff that comes after switch 1914 // statement. We also need to create a default block now so that 1915 // explicit case ranges tests can have a place to jump to on 1916 // failure. 1917 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1918 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1919 if (PGO.haveRegionCounts()) { 1920 // Walk the SwitchCase list to find how many there are. 1921 uint64_t DefaultCount = 0; 1922 unsigned NumCases = 0; 1923 for (const SwitchCase *Case = S.getSwitchCaseList(); 1924 Case; 1925 Case = Case->getNextSwitchCase()) { 1926 if (isa<DefaultStmt>(Case)) 1927 DefaultCount = getProfileCount(Case); 1928 NumCases += 1; 1929 } 1930 SwitchWeights = new SmallVector<uint64_t, 16>(); 1931 SwitchWeights->reserve(NumCases); 1932 // The default needs to be first. We store the edge count, so we already 1933 // know the right weight. 1934 SwitchWeights->push_back(DefaultCount); 1935 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1936 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1937 // Initialize the default case. 1938 SwitchLikelihood->push_back(Stmt::LH_None); 1939 } 1940 1941 CaseRangeBlock = DefaultBlock; 1942 1943 // Clear the insertion point to indicate we are in unreachable code. 1944 Builder.ClearInsertionPoint(); 1945 1946 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1947 // then reuse last ContinueBlock. 1948 JumpDest OuterContinue; 1949 if (!BreakContinueStack.empty()) 1950 OuterContinue = BreakContinueStack.back().ContinueBlock; 1951 1952 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1953 1954 // Emit switch body. 1955 EmitStmt(S.getBody()); 1956 1957 BreakContinueStack.pop_back(); 1958 1959 // Update the default block in case explicit case range tests have 1960 // been chained on top. 1961 SwitchInsn->setDefaultDest(CaseRangeBlock); 1962 1963 // If a default was never emitted: 1964 if (!DefaultBlock->getParent()) { 1965 // If we have cleanups, emit the default block so that there's a 1966 // place to jump through the cleanups from. 1967 if (ConditionScope.requiresCleanups()) { 1968 EmitBlock(DefaultBlock); 1969 1970 // Otherwise, just forward the default block to the switch end. 1971 } else { 1972 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1973 delete DefaultBlock; 1974 } 1975 } 1976 1977 ConditionScope.ForceCleanup(); 1978 1979 // Emit continuation. 1980 EmitBlock(SwitchExit.getBlock(), true); 1981 incrementProfileCounter(&S); 1982 1983 // If the switch has a condition wrapped by __builtin_unpredictable, 1984 // create metadata that specifies that the switch is unpredictable. 1985 // Don't bother if not optimizing because that metadata would not be used. 1986 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1987 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1988 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1989 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1990 llvm::MDBuilder MDHelper(getLLVMContext()); 1991 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1992 MDHelper.createUnpredictable()); 1993 } 1994 } 1995 1996 if (SwitchWeights) { 1997 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1998 "switch weights do not match switch cases"); 1999 // If there's only one jump destination there's no sense weighting it. 2000 if (SwitchWeights->size() > 1) 2001 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2002 createProfileWeights(*SwitchWeights)); 2003 delete SwitchWeights; 2004 } else if (SwitchLikelihood) { 2005 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 2006 "switch likelihoods do not match switch cases"); 2007 Optional<SmallVector<uint64_t, 16>> LHW = 2008 getLikelihoodWeights(*SwitchLikelihood); 2009 if (LHW) { 2010 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2011 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2012 createProfileWeights(*LHW)); 2013 } 2014 delete SwitchLikelihood; 2015 } 2016 SwitchInsn = SavedSwitchInsn; 2017 SwitchWeights = SavedSwitchWeights; 2018 SwitchLikelihood = SavedSwitchLikelihood; 2019 CaseRangeBlock = SavedCRBlock; 2020 } 2021 2022 static std::string 2023 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2024 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2025 std::string Result; 2026 2027 while (*Constraint) { 2028 switch (*Constraint) { 2029 default: 2030 Result += Target.convertConstraint(Constraint); 2031 break; 2032 // Ignore these 2033 case '*': 2034 case '?': 2035 case '!': 2036 case '=': // Will see this and the following in mult-alt constraints. 2037 case '+': 2038 break; 2039 case '#': // Ignore the rest of the constraint alternative. 2040 while (Constraint[1] && Constraint[1] != ',') 2041 Constraint++; 2042 break; 2043 case '&': 2044 case '%': 2045 Result += *Constraint; 2046 while (Constraint[1] && Constraint[1] == *Constraint) 2047 Constraint++; 2048 break; 2049 case ',': 2050 Result += "|"; 2051 break; 2052 case 'g': 2053 Result += "imr"; 2054 break; 2055 case '[': { 2056 assert(OutCons && 2057 "Must pass output names to constraints with a symbolic name"); 2058 unsigned Index; 2059 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2060 assert(result && "Could not resolve symbolic name"); (void)result; 2061 Result += llvm::utostr(Index); 2062 break; 2063 } 2064 } 2065 2066 Constraint++; 2067 } 2068 2069 return Result; 2070 } 2071 2072 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2073 /// as using a particular register add that as a constraint that will be used 2074 /// in this asm stmt. 2075 static std::string 2076 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2077 const TargetInfo &Target, CodeGenModule &CGM, 2078 const AsmStmt &Stmt, const bool EarlyClobber, 2079 std::string *GCCReg = nullptr) { 2080 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2081 if (!AsmDeclRef) 2082 return Constraint; 2083 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2084 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2085 if (!Variable) 2086 return Constraint; 2087 if (Variable->getStorageClass() != SC_Register) 2088 return Constraint; 2089 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2090 if (!Attr) 2091 return Constraint; 2092 StringRef Register = Attr->getLabel(); 2093 assert(Target.isValidGCCRegisterName(Register)); 2094 // We're using validateOutputConstraint here because we only care if 2095 // this is a register constraint. 2096 TargetInfo::ConstraintInfo Info(Constraint, ""); 2097 if (Target.validateOutputConstraint(Info) && 2098 !Info.allowsRegister()) { 2099 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2100 return Constraint; 2101 } 2102 // Canonicalize the register here before returning it. 2103 Register = Target.getNormalizedGCCRegisterName(Register); 2104 if (GCCReg != nullptr) 2105 *GCCReg = Register.str(); 2106 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2107 } 2108 2109 llvm::Value* 2110 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2111 LValue InputValue, QualType InputType, 2112 std::string &ConstraintStr, 2113 SourceLocation Loc) { 2114 llvm::Value *Arg; 2115 if (Info.allowsRegister() || !Info.allowsMemory()) { 2116 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2117 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2118 } else { 2119 llvm::Type *Ty = ConvertType(InputType); 2120 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2121 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2122 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2123 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2124 Ty = llvm::PointerType::getUnqual(Ty); 2125 2126 Arg = Builder.CreateLoad( 2127 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2128 } else { 2129 Arg = InputValue.getPointer(*this); 2130 ConstraintStr += '*'; 2131 } 2132 } 2133 } else { 2134 Arg = InputValue.getPointer(*this); 2135 ConstraintStr += '*'; 2136 } 2137 2138 return Arg; 2139 } 2140 2141 llvm::Value* CodeGenFunction::EmitAsmInput( 2142 const TargetInfo::ConstraintInfo &Info, 2143 const Expr *InputExpr, 2144 std::string &ConstraintStr) { 2145 // If this can't be a register or memory, i.e., has to be a constant 2146 // (immediate or symbolic), try to emit it as such. 2147 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2148 if (Info.requiresImmediateConstant()) { 2149 Expr::EvalResult EVResult; 2150 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2151 2152 llvm::APSInt IntResult; 2153 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2154 getContext())) 2155 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2156 } 2157 2158 Expr::EvalResult Result; 2159 if (InputExpr->EvaluateAsInt(Result, getContext())) 2160 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2161 } 2162 2163 if (Info.allowsRegister() || !Info.allowsMemory()) 2164 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2165 return EmitScalarExpr(InputExpr); 2166 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2167 return EmitScalarExpr(InputExpr); 2168 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2169 LValue Dest = EmitLValue(InputExpr); 2170 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2171 InputExpr->getExprLoc()); 2172 } 2173 2174 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2175 /// asm call instruction. The !srcloc MDNode contains a list of constant 2176 /// integers which are the source locations of the start of each line in the 2177 /// asm. 2178 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2179 CodeGenFunction &CGF) { 2180 SmallVector<llvm::Metadata *, 8> Locs; 2181 // Add the location of the first line to the MDNode. 2182 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2183 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2184 StringRef StrVal = Str->getString(); 2185 if (!StrVal.empty()) { 2186 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2187 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2188 unsigned StartToken = 0; 2189 unsigned ByteOffset = 0; 2190 2191 // Add the location of the start of each subsequent line of the asm to the 2192 // MDNode. 2193 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2194 if (StrVal[i] != '\n') continue; 2195 SourceLocation LineLoc = Str->getLocationOfByte( 2196 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2197 Locs.push_back(llvm::ConstantAsMetadata::get( 2198 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2199 } 2200 } 2201 2202 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2203 } 2204 2205 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2206 bool HasUnwindClobber, bool ReadOnly, 2207 bool ReadNone, bool NoMerge, const AsmStmt &S, 2208 const std::vector<llvm::Type *> &ResultRegTypes, 2209 CodeGenFunction &CGF, 2210 std::vector<llvm::Value *> &RegResults) { 2211 if (!HasUnwindClobber) 2212 Result.addFnAttr(llvm::Attribute::NoUnwind); 2213 2214 if (NoMerge) 2215 Result.addFnAttr(llvm::Attribute::NoMerge); 2216 // Attach readnone and readonly attributes. 2217 if (!HasSideEffect) { 2218 if (ReadNone) 2219 Result.addFnAttr(llvm::Attribute::ReadNone); 2220 else if (ReadOnly) 2221 Result.addFnAttr(llvm::Attribute::ReadOnly); 2222 } 2223 2224 // Attach OpenMP assumption attributes from the caller, if they exist. 2225 if (CGF.CGM.getLangOpts().OpenMP) { 2226 SmallVector<StringRef, 4> Attrs; 2227 2228 for (const AssumptionAttr *AA : 2229 CGF.CurFuncDecl->specific_attrs<AssumptionAttr>()) 2230 AA->getAssumption().split(Attrs, ","); 2231 2232 if (!Attrs.empty()) 2233 Result.addFnAttr( 2234 llvm::Attribute::get(CGF.getLLVMContext(), llvm::AssumptionAttrKey, 2235 llvm::join(Attrs.begin(), Attrs.end(), ","))); 2236 } 2237 2238 // Slap the source location of the inline asm into a !srcloc metadata on the 2239 // call. 2240 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2241 Result.setMetadata("srcloc", 2242 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2243 else { 2244 // At least put the line number on MS inline asm blobs. 2245 llvm::Constant *Loc = 2246 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2247 Result.setMetadata("srcloc", 2248 llvm::MDNode::get(CGF.getLLVMContext(), 2249 llvm::ConstantAsMetadata::get(Loc))); 2250 } 2251 2252 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2253 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2254 // convergent (meaning, they may call an intrinsically convergent op, such 2255 // as bar.sync, and so can't have certain optimizations applied around 2256 // them). 2257 Result.addFnAttr(llvm::Attribute::Convergent); 2258 // Extract all of the register value results from the asm. 2259 if (ResultRegTypes.size() == 1) { 2260 RegResults.push_back(&Result); 2261 } else { 2262 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2263 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2264 RegResults.push_back(Tmp); 2265 } 2266 } 2267 } 2268 2269 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2270 // Assemble the final asm string. 2271 std::string AsmString = S.generateAsmString(getContext()); 2272 2273 // Get all the output and input constraints together. 2274 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2275 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2276 2277 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2278 StringRef Name; 2279 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2280 Name = GAS->getOutputName(i); 2281 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2282 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2283 assert(IsValid && "Failed to parse output constraint"); 2284 OutputConstraintInfos.push_back(Info); 2285 } 2286 2287 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2288 StringRef Name; 2289 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2290 Name = GAS->getInputName(i); 2291 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2292 bool IsValid = 2293 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2294 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2295 InputConstraintInfos.push_back(Info); 2296 } 2297 2298 std::string Constraints; 2299 2300 std::vector<LValue> ResultRegDests; 2301 std::vector<QualType> ResultRegQualTys; 2302 std::vector<llvm::Type *> ResultRegTypes; 2303 std::vector<llvm::Type *> ResultTruncRegTypes; 2304 std::vector<llvm::Type *> ArgTypes; 2305 std::vector<llvm::Value*> Args; 2306 llvm::BitVector ResultTypeRequiresCast; 2307 2308 // Keep track of inout constraints. 2309 std::string InOutConstraints; 2310 std::vector<llvm::Value*> InOutArgs; 2311 std::vector<llvm::Type*> InOutArgTypes; 2312 2313 // Keep track of out constraints for tied input operand. 2314 std::vector<std::string> OutputConstraints; 2315 2316 // Keep track of defined physregs. 2317 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2318 2319 // An inline asm can be marked readonly if it meets the following conditions: 2320 // - it doesn't have any sideeffects 2321 // - it doesn't clobber memory 2322 // - it doesn't return a value by-reference 2323 // It can be marked readnone if it doesn't have any input memory constraints 2324 // in addition to meeting the conditions listed above. 2325 bool ReadOnly = true, ReadNone = true; 2326 2327 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2328 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2329 2330 // Simplify the output constraint. 2331 std::string OutputConstraint(S.getOutputConstraint(i)); 2332 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2333 getTarget(), &OutputConstraintInfos); 2334 2335 const Expr *OutExpr = S.getOutputExpr(i); 2336 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2337 2338 std::string GCCReg; 2339 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2340 getTarget(), CGM, S, 2341 Info.earlyClobber(), 2342 &GCCReg); 2343 // Give an error on multiple outputs to same physreg. 2344 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2345 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2346 2347 OutputConstraints.push_back(OutputConstraint); 2348 LValue Dest = EmitLValue(OutExpr); 2349 if (!Constraints.empty()) 2350 Constraints += ','; 2351 2352 // If this is a register output, then make the inline asm return it 2353 // by-value. If this is a memory result, return the value by-reference. 2354 QualType QTy = OutExpr->getType(); 2355 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2356 hasAggregateEvaluationKind(QTy); 2357 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2358 2359 Constraints += "=" + OutputConstraint; 2360 ResultRegQualTys.push_back(QTy); 2361 ResultRegDests.push_back(Dest); 2362 2363 llvm::Type *Ty = ConvertTypeForMem(QTy); 2364 const bool RequiresCast = Info.allowsRegister() && 2365 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2366 Ty->isAggregateType()); 2367 2368 ResultTruncRegTypes.push_back(Ty); 2369 ResultTypeRequiresCast.push_back(RequiresCast); 2370 2371 if (RequiresCast) { 2372 unsigned Size = getContext().getTypeSize(QTy); 2373 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2374 } 2375 ResultRegTypes.push_back(Ty); 2376 // If this output is tied to an input, and if the input is larger, then 2377 // we need to set the actual result type of the inline asm node to be the 2378 // same as the input type. 2379 if (Info.hasMatchingInput()) { 2380 unsigned InputNo; 2381 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2382 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2383 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2384 break; 2385 } 2386 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2387 2388 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2389 QualType OutputType = OutExpr->getType(); 2390 2391 uint64_t InputSize = getContext().getTypeSize(InputTy); 2392 if (getContext().getTypeSize(OutputType) < InputSize) { 2393 // Form the asm to return the value as a larger integer or fp type. 2394 ResultRegTypes.back() = ConvertType(InputTy); 2395 } 2396 } 2397 if (llvm::Type* AdjTy = 2398 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2399 ResultRegTypes.back())) 2400 ResultRegTypes.back() = AdjTy; 2401 else { 2402 CGM.getDiags().Report(S.getAsmLoc(), 2403 diag::err_asm_invalid_type_in_input) 2404 << OutExpr->getType() << OutputConstraint; 2405 } 2406 2407 // Update largest vector width for any vector types. 2408 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2409 LargestVectorWidth = 2410 std::max((uint64_t)LargestVectorWidth, 2411 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2412 } else { 2413 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2414 llvm::Value *DestPtr = Dest.getPointer(*this); 2415 // Matrix types in memory are represented by arrays, but accessed through 2416 // vector pointers, with the alignment specified on the access operation. 2417 // For inline assembly, update pointer arguments to use vector pointers. 2418 // Otherwise there will be a mis-match if the matrix is also an 2419 // input-argument which is represented as vector. 2420 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2421 DestAddrTy = llvm::PointerType::get( 2422 ConvertType(OutExpr->getType()), 2423 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2424 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2425 } 2426 ArgTypes.push_back(DestAddrTy); 2427 Args.push_back(DestPtr); 2428 Constraints += "=*"; 2429 Constraints += OutputConstraint; 2430 ReadOnly = ReadNone = false; 2431 } 2432 2433 if (Info.isReadWrite()) { 2434 InOutConstraints += ','; 2435 2436 const Expr *InputExpr = S.getOutputExpr(i); 2437 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2438 InOutConstraints, 2439 InputExpr->getExprLoc()); 2440 2441 if (llvm::Type* AdjTy = 2442 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2443 Arg->getType())) 2444 Arg = Builder.CreateBitCast(Arg, AdjTy); 2445 2446 // Update largest vector width for any vector types. 2447 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2448 LargestVectorWidth = 2449 std::max((uint64_t)LargestVectorWidth, 2450 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2451 // Only tie earlyclobber physregs. 2452 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2453 InOutConstraints += llvm::utostr(i); 2454 else 2455 InOutConstraints += OutputConstraint; 2456 2457 InOutArgTypes.push_back(Arg->getType()); 2458 InOutArgs.push_back(Arg); 2459 } 2460 } 2461 2462 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2463 // to the return value slot. Only do this when returning in registers. 2464 if (isa<MSAsmStmt>(&S)) { 2465 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2466 if (RetAI.isDirect() || RetAI.isExtend()) { 2467 // Make a fake lvalue for the return value slot. 2468 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2469 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2470 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2471 ResultRegDests, AsmString, S.getNumOutputs()); 2472 SawAsmBlock = true; 2473 } 2474 } 2475 2476 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2477 const Expr *InputExpr = S.getInputExpr(i); 2478 2479 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2480 2481 if (Info.allowsMemory()) 2482 ReadNone = false; 2483 2484 if (!Constraints.empty()) 2485 Constraints += ','; 2486 2487 // Simplify the input constraint. 2488 std::string InputConstraint(S.getInputConstraint(i)); 2489 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2490 &OutputConstraintInfos); 2491 2492 InputConstraint = AddVariableConstraints( 2493 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2494 getTarget(), CGM, S, false /* No EarlyClobber */); 2495 2496 std::string ReplaceConstraint (InputConstraint); 2497 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2498 2499 // If this input argument is tied to a larger output result, extend the 2500 // input to be the same size as the output. The LLVM backend wants to see 2501 // the input and output of a matching constraint be the same size. Note 2502 // that GCC does not define what the top bits are here. We use zext because 2503 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2504 if (Info.hasTiedOperand()) { 2505 unsigned Output = Info.getTiedOperand(); 2506 QualType OutputType = S.getOutputExpr(Output)->getType(); 2507 QualType InputTy = InputExpr->getType(); 2508 2509 if (getContext().getTypeSize(OutputType) > 2510 getContext().getTypeSize(InputTy)) { 2511 // Use ptrtoint as appropriate so that we can do our extension. 2512 if (isa<llvm::PointerType>(Arg->getType())) 2513 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2514 llvm::Type *OutputTy = ConvertType(OutputType); 2515 if (isa<llvm::IntegerType>(OutputTy)) 2516 Arg = Builder.CreateZExt(Arg, OutputTy); 2517 else if (isa<llvm::PointerType>(OutputTy)) 2518 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2519 else { 2520 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2521 Arg = Builder.CreateFPExt(Arg, OutputTy); 2522 } 2523 } 2524 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2525 ReplaceConstraint = OutputConstraints[Output]; 2526 } 2527 if (llvm::Type* AdjTy = 2528 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2529 Arg->getType())) 2530 Arg = Builder.CreateBitCast(Arg, AdjTy); 2531 else 2532 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2533 << InputExpr->getType() << InputConstraint; 2534 2535 // Update largest vector width for any vector types. 2536 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2537 LargestVectorWidth = 2538 std::max((uint64_t)LargestVectorWidth, 2539 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2540 2541 ArgTypes.push_back(Arg->getType()); 2542 Args.push_back(Arg); 2543 Constraints += InputConstraint; 2544 } 2545 2546 // Labels 2547 SmallVector<llvm::BasicBlock *, 16> Transfer; 2548 llvm::BasicBlock *Fallthrough = nullptr; 2549 bool IsGCCAsmGoto = false; 2550 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2551 IsGCCAsmGoto = GS->isAsmGoto(); 2552 if (IsGCCAsmGoto) { 2553 for (const auto *E : GS->labels()) { 2554 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2555 Transfer.push_back(Dest.getBlock()); 2556 llvm::BlockAddress *BA = 2557 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2558 Args.push_back(BA); 2559 ArgTypes.push_back(BA->getType()); 2560 if (!Constraints.empty()) 2561 Constraints += ','; 2562 Constraints += 'X'; 2563 } 2564 Fallthrough = createBasicBlock("asm.fallthrough"); 2565 } 2566 } 2567 2568 // Append the "input" part of inout constraints last. 2569 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2570 ArgTypes.push_back(InOutArgTypes[i]); 2571 Args.push_back(InOutArgs[i]); 2572 } 2573 Constraints += InOutConstraints; 2574 2575 bool HasUnwindClobber = false; 2576 2577 // Clobbers 2578 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2579 StringRef Clobber = S.getClobber(i); 2580 2581 if (Clobber == "memory") 2582 ReadOnly = ReadNone = false; 2583 else if (Clobber == "unwind") { 2584 HasUnwindClobber = true; 2585 continue; 2586 } else if (Clobber != "cc") { 2587 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2588 if (CGM.getCodeGenOpts().StackClashProtector && 2589 getTarget().isSPRegName(Clobber)) { 2590 CGM.getDiags().Report(S.getAsmLoc(), 2591 diag::warn_stack_clash_protection_inline_asm); 2592 } 2593 } 2594 2595 if (isa<MSAsmStmt>(&S)) { 2596 if (Clobber == "eax" || Clobber == "edx") { 2597 if (Constraints.find("=&A") != std::string::npos) 2598 continue; 2599 std::string::size_type position1 = 2600 Constraints.find("={" + Clobber.str() + "}"); 2601 if (position1 != std::string::npos) { 2602 Constraints.insert(position1 + 1, "&"); 2603 continue; 2604 } 2605 std::string::size_type position2 = Constraints.find("=A"); 2606 if (position2 != std::string::npos) { 2607 Constraints.insert(position2 + 1, "&"); 2608 continue; 2609 } 2610 } 2611 } 2612 if (!Constraints.empty()) 2613 Constraints += ','; 2614 2615 Constraints += "~{"; 2616 Constraints += Clobber; 2617 Constraints += '}'; 2618 } 2619 2620 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2621 "unwind clobber can't be used with asm goto"); 2622 2623 // Add machine specific clobbers 2624 std::string MachineClobbers = getTarget().getClobbers(); 2625 if (!MachineClobbers.empty()) { 2626 if (!Constraints.empty()) 2627 Constraints += ','; 2628 Constraints += MachineClobbers; 2629 } 2630 2631 llvm::Type *ResultType; 2632 if (ResultRegTypes.empty()) 2633 ResultType = VoidTy; 2634 else if (ResultRegTypes.size() == 1) 2635 ResultType = ResultRegTypes[0]; 2636 else 2637 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2638 2639 llvm::FunctionType *FTy = 2640 llvm::FunctionType::get(ResultType, ArgTypes, false); 2641 2642 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2643 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2644 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2645 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2646 FTy, AsmString, Constraints, HasSideEffect, 2647 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2648 std::vector<llvm::Value*> RegResults; 2649 if (IsGCCAsmGoto) { 2650 llvm::CallBrInst *Result = 2651 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2652 EmitBlock(Fallthrough); 2653 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2654 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2655 ResultRegTypes, *this, RegResults); 2656 } else if (HasUnwindClobber) { 2657 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2658 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2659 InNoMergeAttributedStmt, S, ResultRegTypes, *this, 2660 RegResults); 2661 } else { 2662 llvm::CallInst *Result = 2663 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2664 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2665 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2666 ResultRegTypes, *this, RegResults); 2667 } 2668 2669 assert(RegResults.size() == ResultRegTypes.size()); 2670 assert(RegResults.size() == ResultTruncRegTypes.size()); 2671 assert(RegResults.size() == ResultRegDests.size()); 2672 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2673 // in which case its size may grow. 2674 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2675 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2676 llvm::Value *Tmp = RegResults[i]; 2677 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2678 2679 // If the result type of the LLVM IR asm doesn't match the result type of 2680 // the expression, do the conversion. 2681 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2682 2683 // Truncate the integer result to the right size, note that TruncTy can be 2684 // a pointer. 2685 if (TruncTy->isFloatingPointTy()) 2686 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2687 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2688 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2689 Tmp = Builder.CreateTrunc(Tmp, 2690 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2691 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2692 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2693 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2694 Tmp = Builder.CreatePtrToInt(Tmp, 2695 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2696 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2697 } else if (TruncTy->isIntegerTy()) { 2698 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2699 } else if (TruncTy->isVectorTy()) { 2700 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2701 } 2702 } 2703 2704 LValue Dest = ResultRegDests[i]; 2705 // ResultTypeRequiresCast elements correspond to the first 2706 // ResultTypeRequiresCast.size() elements of RegResults. 2707 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2708 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2709 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2710 ResultRegTypes[i]->getPointerTo()); 2711 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2712 Builder.CreateStore(Tmp, A); 2713 continue; 2714 } 2715 2716 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2717 if (Ty.isNull()) { 2718 const Expr *OutExpr = S.getOutputExpr(i); 2719 CGM.Error( 2720 OutExpr->getExprLoc(), 2721 "impossible constraint in asm: can't store value into a register"); 2722 return; 2723 } 2724 Dest = MakeAddrLValue(A, Ty); 2725 } 2726 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2727 } 2728 } 2729 2730 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2731 const RecordDecl *RD = S.getCapturedRecordDecl(); 2732 QualType RecordTy = getContext().getRecordType(RD); 2733 2734 // Initialize the captured struct. 2735 LValue SlotLV = 2736 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2737 2738 RecordDecl::field_iterator CurField = RD->field_begin(); 2739 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2740 E = S.capture_init_end(); 2741 I != E; ++I, ++CurField) { 2742 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2743 if (CurField->hasCapturedVLAType()) { 2744 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2745 } else { 2746 EmitInitializerForField(*CurField, LV, *I); 2747 } 2748 } 2749 2750 return SlotLV; 2751 } 2752 2753 /// Generate an outlined function for the body of a CapturedStmt, store any 2754 /// captured variables into the captured struct, and call the outlined function. 2755 llvm::Function * 2756 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2757 LValue CapStruct = InitCapturedStruct(S); 2758 2759 // Emit the CapturedDecl 2760 CodeGenFunction CGF(CGM, true); 2761 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2762 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2763 delete CGF.CapturedStmtInfo; 2764 2765 // Emit call to the helper function. 2766 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2767 2768 return F; 2769 } 2770 2771 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2772 LValue CapStruct = InitCapturedStruct(S); 2773 return CapStruct.getAddress(*this); 2774 } 2775 2776 /// Creates the outlined function for a CapturedStmt. 2777 llvm::Function * 2778 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2779 assert(CapturedStmtInfo && 2780 "CapturedStmtInfo should be set when generating the captured function"); 2781 const CapturedDecl *CD = S.getCapturedDecl(); 2782 const RecordDecl *RD = S.getCapturedRecordDecl(); 2783 SourceLocation Loc = S.getBeginLoc(); 2784 assert(CD->hasBody() && "missing CapturedDecl body"); 2785 2786 // Build the argument list. 2787 ASTContext &Ctx = CGM.getContext(); 2788 FunctionArgList Args; 2789 Args.append(CD->param_begin(), CD->param_end()); 2790 2791 // Create the function declaration. 2792 const CGFunctionInfo &FuncInfo = 2793 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2794 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2795 2796 llvm::Function *F = 2797 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2798 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2799 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2800 if (CD->isNothrow()) 2801 F->addFnAttr(llvm::Attribute::NoUnwind); 2802 2803 // Generate the function. 2804 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2805 CD->getBody()->getBeginLoc()); 2806 // Set the context parameter in CapturedStmtInfo. 2807 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2808 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2809 2810 // Initialize variable-length arrays. 2811 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2812 Ctx.getTagDeclType(RD)); 2813 for (auto *FD : RD->fields()) { 2814 if (FD->hasCapturedVLAType()) { 2815 auto *ExprArg = 2816 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2817 .getScalarVal(); 2818 auto VAT = FD->getCapturedVLAType(); 2819 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2820 } 2821 } 2822 2823 // If 'this' is captured, load it into CXXThisValue. 2824 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2825 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2826 LValue ThisLValue = EmitLValueForField(Base, FD); 2827 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2828 } 2829 2830 PGO.assignRegionCounters(GlobalDecl(CD), F); 2831 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2832 FinishFunction(CD->getBodyRBrace()); 2833 2834 return F; 2835 } 2836