1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Basic/PrettyStackTrace.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Intrinsics.h"
23 #include "llvm/Target/TargetData.h"
24 using namespace clang;
25 using namespace CodeGen;
26 
27 //===----------------------------------------------------------------------===//
28 //                              Statement Emission
29 //===----------------------------------------------------------------------===//
30 
31 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
32   if (CGDebugInfo *DI = getDebugInfo()) {
33     if (isa<DeclStmt>(S))
34       DI->setLocation(S->getLocEnd());
35     else
36       DI->setLocation(S->getLocStart());
37     DI->UpdateLineDirectiveRegion(Builder);
38     DI->EmitStopPoint(Builder);
39   }
40 }
41 
42 void CodeGenFunction::EmitStmt(const Stmt *S) {
43   assert(S && "Null statement?");
44 
45   // Check if we can handle this without bothering to generate an
46   // insert point or debug info.
47   if (EmitSimpleStmt(S))
48     return;
49 
50   // Check if we are generating unreachable code.
51   if (!HaveInsertPoint()) {
52     // If so, and the statement doesn't contain a label, then we do not need to
53     // generate actual code. This is safe because (1) the current point is
54     // unreachable, so we don't need to execute the code, and (2) we've already
55     // handled the statements which update internal data structures (like the
56     // local variable map) which could be used by subsequent statements.
57     if (!ContainsLabel(S)) {
58       // Verify that any decl statements were handled as simple, they may be in
59       // scope of subsequent reachable statements.
60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61       return;
62     }
63 
64     // Otherwise, make a new block to hold the code.
65     EnsureInsertPoint();
66   }
67 
68   // Generate a stoppoint if we are emitting debug info.
69   EmitStopPoint(S);
70 
71   switch (S->getStmtClass()) {
72   case Stmt::NoStmtClass:
73   case Stmt::CXXCatchStmtClass:
74   case Stmt::SwitchCaseClass:
75     llvm_unreachable("invalid statement class to emit generically");
76   case Stmt::NullStmtClass:
77   case Stmt::CompoundStmtClass:
78   case Stmt::DeclStmtClass:
79   case Stmt::LabelStmtClass:
80   case Stmt::GotoStmtClass:
81   case Stmt::BreakStmtClass:
82   case Stmt::ContinueStmtClass:
83   case Stmt::DefaultStmtClass:
84   case Stmt::CaseStmtClass:
85     llvm_unreachable("should have emitted these statements as simple");
86 
87 #define STMT(Type, Base)
88 #define ABSTRACT_STMT(Op)
89 #define EXPR(Type, Base) \
90   case Stmt::Type##Class:
91 #include "clang/AST/StmtNodes.inc"
92   {
93     // Remember the block we came in on.
94     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
95     assert(incoming && "expression emission must have an insertion point");
96 
97     EmitIgnoredExpr(cast<Expr>(S));
98 
99     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
100     assert(outgoing && "expression emission cleared block!");
101 
102     // The expression emitters assume (reasonably!) that the insertion
103     // point is always set.  To maintain that, the call-emission code
104     // for noreturn functions has to enter a new block with no
105     // predecessors.  We want to kill that block and mark the current
106     // insertion point unreachable in the common case of a call like
107     // "exit();".  Since expression emission doesn't otherwise create
108     // blocks with no predecessors, we can just test for that.
109     // However, we must be careful not to do this to our incoming
110     // block, because *statement* emission does sometimes create
111     // reachable blocks which will have no predecessors until later in
112     // the function.  This occurs with, e.g., labels that are not
113     // reachable by fallthrough.
114     if (incoming != outgoing && outgoing->use_empty()) {
115       outgoing->eraseFromParent();
116       Builder.ClearInsertionPoint();
117     }
118     break;
119   }
120 
121   case Stmt::IndirectGotoStmtClass:
122     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
123 
124   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
125   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
126   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
127   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
128 
129   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
130 
131   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
132   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
133 
134   case Stmt::ObjCAtTryStmtClass:
135     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
136     break;
137   case Stmt::ObjCAtCatchStmtClass:
138     assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
139     break;
140   case Stmt::ObjCAtFinallyStmtClass:
141     assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
142     break;
143   case Stmt::ObjCAtThrowStmtClass:
144     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
145     break;
146   case Stmt::ObjCAtSynchronizedStmtClass:
147     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
148     break;
149   case Stmt::ObjCForCollectionStmtClass:
150     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
151     break;
152 
153   case Stmt::CXXTryStmtClass:
154     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
155     break;
156   }
157 }
158 
159 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
160   switch (S->getStmtClass()) {
161   default: return false;
162   case Stmt::NullStmtClass: break;
163   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
164   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
165   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
166   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
167   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
168   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
169   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
170   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
171   }
172 
173   return true;
174 }
175 
176 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
177 /// this captures the expression result of the last sub-statement and returns it
178 /// (for use by the statement expression extension).
179 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
180                                          AggValueSlot AggSlot) {
181   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
182                              "LLVM IR generation of compound statement ('{}')");
183 
184   CGDebugInfo *DI = getDebugInfo();
185   if (DI) {
186     DI->setLocation(S.getLBracLoc());
187     DI->EmitRegionStart(Builder);
188   }
189 
190   // Keep track of the current cleanup stack depth.
191   RunCleanupsScope Scope(*this);
192 
193   for (CompoundStmt::const_body_iterator I = S.body_begin(),
194        E = S.body_end()-GetLast; I != E; ++I)
195     EmitStmt(*I);
196 
197   if (DI) {
198     DI->setLocation(S.getRBracLoc());
199     DI->EmitRegionEnd(Builder);
200   }
201 
202   RValue RV;
203   if (!GetLast)
204     RV = RValue::get(0);
205   else {
206     // We have to special case labels here.  They are statements, but when put
207     // at the end of a statement expression, they yield the value of their
208     // subexpression.  Handle this by walking through all labels we encounter,
209     // emitting them before we evaluate the subexpr.
210     const Stmt *LastStmt = S.body_back();
211     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
212       EmitLabel(*LS);
213       LastStmt = LS->getSubStmt();
214     }
215 
216     EnsureInsertPoint();
217 
218     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
219   }
220 
221   return RV;
222 }
223 
224 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
225   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
226 
227   // If there is a cleanup stack, then we it isn't worth trying to
228   // simplify this block (we would need to remove it from the scope map
229   // and cleanup entry).
230   if (!EHStack.empty())
231     return;
232 
233   // Can only simplify direct branches.
234   if (!BI || !BI->isUnconditional())
235     return;
236 
237   BB->replaceAllUsesWith(BI->getSuccessor(0));
238   BI->eraseFromParent();
239   BB->eraseFromParent();
240 }
241 
242 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
243   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
244 
245   // Fall out of the current block (if necessary).
246   EmitBranch(BB);
247 
248   if (IsFinished && BB->use_empty()) {
249     delete BB;
250     return;
251   }
252 
253   // Place the block after the current block, if possible, or else at
254   // the end of the function.
255   if (CurBB && CurBB->getParent())
256     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
257   else
258     CurFn->getBasicBlockList().push_back(BB);
259   Builder.SetInsertPoint(BB);
260 }
261 
262 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
263   // Emit a branch from the current block to the target one if this
264   // was a real block.  If this was just a fall-through block after a
265   // terminator, don't emit it.
266   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
267 
268   if (!CurBB || CurBB->getTerminator()) {
269     // If there is no insert point or the previous block is already
270     // terminated, don't touch it.
271   } else {
272     // Otherwise, create a fall-through branch.
273     Builder.CreateBr(Target);
274   }
275 
276   Builder.ClearInsertionPoint();
277 }
278 
279 CodeGenFunction::JumpDest
280 CodeGenFunction::getJumpDestForLabel(const LabelStmt *S) {
281   JumpDest &Dest = LabelMap[S];
282   if (Dest.isValid()) return Dest;
283 
284   // Create, but don't insert, the new block.
285   Dest = JumpDest(createBasicBlock(S->getName()),
286                   EHScopeStack::stable_iterator::invalid(),
287                   NextCleanupDestIndex++);
288   return Dest;
289 }
290 
291 void CodeGenFunction::EmitLabel(const LabelStmt &S) {
292   JumpDest &Dest = LabelMap[&S];
293 
294   // If we didn't need a forward reference to this label, just go
295   // ahead and create a destination at the current scope.
296   if (!Dest.isValid()) {
297     Dest = getJumpDestInCurrentScope(S.getName());
298 
299   // Otherwise, we need to give this label a target depth and remove
300   // it from the branch-fixups list.
301   } else {
302     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
303     Dest = JumpDest(Dest.getBlock(),
304                     EHStack.stable_begin(),
305                     Dest.getDestIndex());
306 
307     ResolveBranchFixups(Dest.getBlock());
308   }
309 
310   EmitBlock(Dest.getBlock());
311 }
312 
313 
314 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
315   EmitLabel(S);
316   EmitStmt(S.getSubStmt());
317 }
318 
319 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
320   // If this code is reachable then emit a stop point (if generating
321   // debug info). We have to do this ourselves because we are on the
322   // "simple" statement path.
323   if (HaveInsertPoint())
324     EmitStopPoint(&S);
325 
326   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
327 }
328 
329 
330 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
331   if (const LabelStmt *Target = S.getConstantTarget()) {
332     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
333     return;
334   }
335 
336   // Ensure that we have an i8* for our PHI node.
337   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
338                                          llvm::Type::getInt8PtrTy(VMContext),
339                                           "addr");
340   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
341 
342 
343   // Get the basic block for the indirect goto.
344   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
345 
346   // The first instruction in the block has to be the PHI for the switch dest,
347   // add an entry for this branch.
348   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
349 
350   EmitBranch(IndGotoBB);
351 }
352 
353 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
354   // C99 6.8.4.1: The first substatement is executed if the expression compares
355   // unequal to 0.  The condition must be a scalar type.
356   RunCleanupsScope ConditionScope(*this);
357 
358   if (S.getConditionVariable())
359     EmitAutoVarDecl(*S.getConditionVariable());
360 
361   // If the condition constant folds and can be elided, try to avoid emitting
362   // the condition and the dead arm of the if/else.
363   if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
364     // Figure out which block (then or else) is executed.
365     const Stmt *Executed = S.getThen(), *Skipped  = S.getElse();
366     if (Cond == -1)  // Condition false?
367       std::swap(Executed, Skipped);
368 
369     // If the skipped block has no labels in it, just emit the executed block.
370     // This avoids emitting dead code and simplifies the CFG substantially.
371     if (!ContainsLabel(Skipped)) {
372       if (Executed) {
373         RunCleanupsScope ExecutedScope(*this);
374         EmitStmt(Executed);
375       }
376       return;
377     }
378   }
379 
380   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
381   // the conditional branch.
382   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
383   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
384   llvm::BasicBlock *ElseBlock = ContBlock;
385   if (S.getElse())
386     ElseBlock = createBasicBlock("if.else");
387   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
388 
389   // Emit the 'then' code.
390   EmitBlock(ThenBlock);
391   {
392     RunCleanupsScope ThenScope(*this);
393     EmitStmt(S.getThen());
394   }
395   EmitBranch(ContBlock);
396 
397   // Emit the 'else' code if present.
398   if (const Stmt *Else = S.getElse()) {
399     EmitBlock(ElseBlock);
400     {
401       RunCleanupsScope ElseScope(*this);
402       EmitStmt(Else);
403     }
404     EmitBranch(ContBlock);
405   }
406 
407   // Emit the continuation block for code after the if.
408   EmitBlock(ContBlock, true);
409 }
410 
411 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
412   // Emit the header for the loop, which will also become
413   // the continue target.
414   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
415   EmitBlock(LoopHeader.getBlock());
416 
417   // Create an exit block for when the condition fails, which will
418   // also become the break target.
419   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
420 
421   // Store the blocks to use for break and continue.
422   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
423 
424   // C++ [stmt.while]p2:
425   //   When the condition of a while statement is a declaration, the
426   //   scope of the variable that is declared extends from its point
427   //   of declaration (3.3.2) to the end of the while statement.
428   //   [...]
429   //   The object created in a condition is destroyed and created
430   //   with each iteration of the loop.
431   RunCleanupsScope ConditionScope(*this);
432 
433   if (S.getConditionVariable())
434     EmitAutoVarDecl(*S.getConditionVariable());
435 
436   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
437   // evaluation of the controlling expression takes place before each
438   // execution of the loop body.
439   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
440 
441   // while(1) is common, avoid extra exit blocks.  Be sure
442   // to correctly handle break/continue though.
443   bool EmitBoolCondBranch = true;
444   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
445     if (C->isOne())
446       EmitBoolCondBranch = false;
447 
448   // As long as the condition is true, go to the loop body.
449   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
450   if (EmitBoolCondBranch) {
451     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
452     if (ConditionScope.requiresCleanups())
453       ExitBlock = createBasicBlock("while.exit");
454 
455     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
456 
457     if (ExitBlock != LoopExit.getBlock()) {
458       EmitBlock(ExitBlock);
459       EmitBranchThroughCleanup(LoopExit);
460     }
461   }
462 
463   // Emit the loop body.  We have to emit this in a cleanup scope
464   // because it might be a singleton DeclStmt.
465   {
466     RunCleanupsScope BodyScope(*this);
467     EmitBlock(LoopBody);
468     EmitStmt(S.getBody());
469   }
470 
471   BreakContinueStack.pop_back();
472 
473   // Immediately force cleanup.
474   ConditionScope.ForceCleanup();
475 
476   // Branch to the loop header again.
477   EmitBranch(LoopHeader.getBlock());
478 
479   // Emit the exit block.
480   EmitBlock(LoopExit.getBlock(), true);
481 
482   // The LoopHeader typically is just a branch if we skipped emitting
483   // a branch, try to erase it.
484   if (!EmitBoolCondBranch)
485     SimplifyForwardingBlocks(LoopHeader.getBlock());
486 }
487 
488 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
489   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
490   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
491 
492   // Store the blocks to use for break and continue.
493   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
494 
495   // Emit the body of the loop.
496   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
497   EmitBlock(LoopBody);
498   {
499     RunCleanupsScope BodyScope(*this);
500     EmitStmt(S.getBody());
501   }
502 
503   BreakContinueStack.pop_back();
504 
505   EmitBlock(LoopCond.getBlock());
506 
507   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
508   // after each execution of the loop body."
509 
510   // Evaluate the conditional in the while header.
511   // C99 6.8.5p2/p4: The first substatement is executed if the expression
512   // compares unequal to 0.  The condition must be a scalar type.
513   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
514 
515   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
516   // to correctly handle break/continue though.
517   bool EmitBoolCondBranch = true;
518   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
519     if (C->isZero())
520       EmitBoolCondBranch = false;
521 
522   // As long as the condition is true, iterate the loop.
523   if (EmitBoolCondBranch)
524     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
525 
526   // Emit the exit block.
527   EmitBlock(LoopExit.getBlock());
528 
529   // The DoCond block typically is just a branch if we skipped
530   // emitting a branch, try to erase it.
531   if (!EmitBoolCondBranch)
532     SimplifyForwardingBlocks(LoopCond.getBlock());
533 }
534 
535 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
536   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
537 
538   RunCleanupsScope ForScope(*this);
539 
540   CGDebugInfo *DI = getDebugInfo();
541   if (DI) {
542     DI->setLocation(S.getSourceRange().getBegin());
543     DI->EmitRegionStart(Builder);
544   }
545 
546   // Evaluate the first part before the loop.
547   if (S.getInit())
548     EmitStmt(S.getInit());
549 
550   // Start the loop with a block that tests the condition.
551   // If there's an increment, the continue scope will be overwritten
552   // later.
553   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
554   llvm::BasicBlock *CondBlock = Continue.getBlock();
555   EmitBlock(CondBlock);
556 
557   // Create a cleanup scope for the condition variable cleanups.
558   RunCleanupsScope ConditionScope(*this);
559 
560   llvm::Value *BoolCondVal = 0;
561   if (S.getCond()) {
562     // If the for statement has a condition scope, emit the local variable
563     // declaration.
564     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
565     if (S.getConditionVariable()) {
566       EmitAutoVarDecl(*S.getConditionVariable());
567     }
568 
569     // If there are any cleanups between here and the loop-exit scope,
570     // create a block to stage a loop exit along.
571     if (ForScope.requiresCleanups())
572       ExitBlock = createBasicBlock("for.cond.cleanup");
573 
574     // As long as the condition is true, iterate the loop.
575     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
576 
577     // C99 6.8.5p2/p4: The first substatement is executed if the expression
578     // compares unequal to 0.  The condition must be a scalar type.
579     BoolCondVal = EvaluateExprAsBool(S.getCond());
580     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
581 
582     if (ExitBlock != LoopExit.getBlock()) {
583       EmitBlock(ExitBlock);
584       EmitBranchThroughCleanup(LoopExit);
585     }
586 
587     EmitBlock(ForBody);
588   } else {
589     // Treat it as a non-zero constant.  Don't even create a new block for the
590     // body, just fall into it.
591   }
592 
593   // If the for loop doesn't have an increment we can just use the
594   // condition as the continue block.  Otherwise we'll need to create
595   // a block for it (in the current scope, i.e. in the scope of the
596   // condition), and that we will become our continue block.
597   if (S.getInc())
598     Continue = getJumpDestInCurrentScope("for.inc");
599 
600   // Store the blocks to use for break and continue.
601   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
602 
603   {
604     // Create a separate cleanup scope for the body, in case it is not
605     // a compound statement.
606     RunCleanupsScope BodyScope(*this);
607     EmitStmt(S.getBody());
608   }
609 
610   // If there is an increment, emit it next.
611   if (S.getInc()) {
612     EmitBlock(Continue.getBlock());
613     EmitStmt(S.getInc());
614   }
615 
616   BreakContinueStack.pop_back();
617 
618   ConditionScope.ForceCleanup();
619   EmitBranch(CondBlock);
620 
621   ForScope.ForceCleanup();
622 
623   if (DI) {
624     DI->setLocation(S.getSourceRange().getEnd());
625     DI->EmitRegionEnd(Builder);
626   }
627 
628   // Emit the fall-through block.
629   EmitBlock(LoopExit.getBlock(), true);
630 }
631 
632 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
633   if (RV.isScalar()) {
634     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
635   } else if (RV.isAggregate()) {
636     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
637   } else {
638     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
639   }
640   EmitBranchThroughCleanup(ReturnBlock);
641 }
642 
643 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
644 /// if the function returns void, or may be missing one if the function returns
645 /// non-void.  Fun stuff :).
646 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
647   // Emit the result value, even if unused, to evalute the side effects.
648   const Expr *RV = S.getRetValue();
649 
650   // FIXME: Clean this up by using an LValue for ReturnTemp,
651   // EmitStoreThroughLValue, and EmitAnyExpr.
652   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
653       !Target.useGlobalsForAutomaticVariables()) {
654     // Apply the named return value optimization for this return statement,
655     // which means doing nothing: the appropriate result has already been
656     // constructed into the NRVO variable.
657 
658     // If there is an NRVO flag for this variable, set it to 1 into indicate
659     // that the cleanup code should not destroy the variable.
660     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) {
661       const llvm::Type *BoolTy = llvm::Type::getInt1Ty(VMContext);
662       llvm::Value *One = llvm::ConstantInt::get(BoolTy, 1);
663       Builder.CreateStore(One, NRVOFlag);
664     }
665   } else if (!ReturnValue) {
666     // Make sure not to return anything, but evaluate the expression
667     // for side effects.
668     if (RV)
669       EmitAnyExpr(RV);
670   } else if (RV == 0) {
671     // Do nothing (return value is left uninitialized)
672   } else if (FnRetTy->isReferenceType()) {
673     // If this function returns a reference, take the address of the expression
674     // rather than the value.
675     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
676     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
677   } else if (!hasAggregateLLVMType(RV->getType())) {
678     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
679   } else if (RV->getType()->isAnyComplexType()) {
680     EmitComplexExprIntoAddr(RV, ReturnValue, false);
681   } else {
682     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, false, true));
683   }
684 
685   EmitBranchThroughCleanup(ReturnBlock);
686 }
687 
688 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
689   // As long as debug info is modeled with instructions, we have to ensure we
690   // have a place to insert here and write the stop point here.
691   if (getDebugInfo()) {
692     EnsureInsertPoint();
693     EmitStopPoint(&S);
694   }
695 
696   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
697        I != E; ++I)
698     EmitDecl(**I);
699 }
700 
701 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
702   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
703 
704   // If this code is reachable then emit a stop point (if generating
705   // debug info). We have to do this ourselves because we are on the
706   // "simple" statement path.
707   if (HaveInsertPoint())
708     EmitStopPoint(&S);
709 
710   JumpDest Block = BreakContinueStack.back().BreakBlock;
711   EmitBranchThroughCleanup(Block);
712 }
713 
714 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
715   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
716 
717   // If this code is reachable then emit a stop point (if generating
718   // debug info). We have to do this ourselves because we are on the
719   // "simple" statement path.
720   if (HaveInsertPoint())
721     EmitStopPoint(&S);
722 
723   JumpDest Block = BreakContinueStack.back().ContinueBlock;
724   EmitBranchThroughCleanup(Block);
725 }
726 
727 /// EmitCaseStmtRange - If case statement range is not too big then
728 /// add multiple cases to switch instruction, one for each value within
729 /// the range. If range is too big then emit "if" condition check.
730 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
731   assert(S.getRHS() && "Expected RHS value in CaseStmt");
732 
733   llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
734   llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
735 
736   // Emit the code for this case. We do this first to make sure it is
737   // properly chained from our predecessor before generating the
738   // switch machinery to enter this block.
739   EmitBlock(createBasicBlock("sw.bb"));
740   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
741   EmitStmt(S.getSubStmt());
742 
743   // If range is empty, do nothing.
744   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
745     return;
746 
747   llvm::APInt Range = RHS - LHS;
748   // FIXME: parameters such as this should not be hardcoded.
749   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
750     // Range is small enough to add multiple switch instruction cases.
751     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
752       SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
753       LHS++;
754     }
755     return;
756   }
757 
758   // The range is too big. Emit "if" condition into a new block,
759   // making sure to save and restore the current insertion point.
760   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
761 
762   // Push this test onto the chain of range checks (which terminates
763   // in the default basic block). The switch's default will be changed
764   // to the top of this chain after switch emission is complete.
765   llvm::BasicBlock *FalseDest = CaseRangeBlock;
766   CaseRangeBlock = createBasicBlock("sw.caserange");
767 
768   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
769   Builder.SetInsertPoint(CaseRangeBlock);
770 
771   // Emit range check.
772   llvm::Value *Diff =
773     Builder.CreateSub(SwitchInsn->getCondition(),
774                       llvm::ConstantInt::get(VMContext, LHS),  "tmp");
775   llvm::Value *Cond =
776     Builder.CreateICmpULE(Diff,
777                           llvm::ConstantInt::get(VMContext, Range), "tmp");
778   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
779 
780   // Restore the appropriate insertion point.
781   if (RestoreBB)
782     Builder.SetInsertPoint(RestoreBB);
783   else
784     Builder.ClearInsertionPoint();
785 }
786 
787 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
788   if (S.getRHS()) {
789     EmitCaseStmtRange(S);
790     return;
791   }
792 
793   EmitBlock(createBasicBlock("sw.bb"));
794   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
795   llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
796   SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
797 
798   // Recursively emitting the statement is acceptable, but is not wonderful for
799   // code where we have many case statements nested together, i.e.:
800   //  case 1:
801   //    case 2:
802   //      case 3: etc.
803   // Handling this recursively will create a new block for each case statement
804   // that falls through to the next case which is IR intensive.  It also causes
805   // deep recursion which can run into stack depth limitations.  Handle
806   // sequential non-range case statements specially.
807   const CaseStmt *CurCase = &S;
808   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
809 
810   // Otherwise, iteratively add consequtive cases to this switch stmt.
811   while (NextCase && NextCase->getRHS() == 0) {
812     CurCase = NextCase;
813     CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
814     SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
815 
816     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
817   }
818 
819   // Normal default recursion for non-cases.
820   EmitStmt(CurCase->getSubStmt());
821 }
822 
823 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
824   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
825   assert(DefaultBlock->empty() &&
826          "EmitDefaultStmt: Default block already defined?");
827   EmitBlock(DefaultBlock);
828   EmitStmt(S.getSubStmt());
829 }
830 
831 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
832   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
833 
834   RunCleanupsScope ConditionScope(*this);
835 
836   if (S.getConditionVariable())
837     EmitAutoVarDecl(*S.getConditionVariable());
838 
839   llvm::Value *CondV = EmitScalarExpr(S.getCond());
840 
841   // Handle nested switch statements.
842   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
843   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
844 
845   // Create basic block to hold stuff that comes after switch
846   // statement. We also need to create a default block now so that
847   // explicit case ranges tests can have a place to jump to on
848   // failure.
849   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
850   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
851   CaseRangeBlock = DefaultBlock;
852 
853   // Clear the insertion point to indicate we are in unreachable code.
854   Builder.ClearInsertionPoint();
855 
856   // All break statements jump to NextBlock. If BreakContinueStack is non empty
857   // then reuse last ContinueBlock.
858   JumpDest OuterContinue;
859   if (!BreakContinueStack.empty())
860     OuterContinue = BreakContinueStack.back().ContinueBlock;
861 
862   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
863 
864   // Emit switch body.
865   EmitStmt(S.getBody());
866 
867   BreakContinueStack.pop_back();
868 
869   // Update the default block in case explicit case range tests have
870   // been chained on top.
871   SwitchInsn->setSuccessor(0, CaseRangeBlock);
872 
873   // If a default was never emitted:
874   if (!DefaultBlock->getParent()) {
875     // If we have cleanups, emit the default block so that there's a
876     // place to jump through the cleanups from.
877     if (ConditionScope.requiresCleanups()) {
878       EmitBlock(DefaultBlock);
879 
880     // Otherwise, just forward the default block to the switch end.
881     } else {
882       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
883       delete DefaultBlock;
884     }
885   }
886 
887   ConditionScope.ForceCleanup();
888 
889   // Emit continuation.
890   EmitBlock(SwitchExit.getBlock(), true);
891 
892   SwitchInsn = SavedSwitchInsn;
893   CaseRangeBlock = SavedCRBlock;
894 }
895 
896 static std::string
897 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
898                  llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
899   std::string Result;
900 
901   while (*Constraint) {
902     switch (*Constraint) {
903     default:
904       Result += Target.convertConstraint(*Constraint);
905       break;
906     // Ignore these
907     case '*':
908     case '?':
909     case '!':
910     case '=': // Will see this and the following in mult-alt constraints.
911     case '+':
912       break;
913     case ',':
914       Result += "|";
915       break;
916     case 'g':
917       Result += "imr";
918       break;
919     case '[': {
920       assert(OutCons &&
921              "Must pass output names to constraints with a symbolic name");
922       unsigned Index;
923       bool result = Target.resolveSymbolicName(Constraint,
924                                                &(*OutCons)[0],
925                                                OutCons->size(), Index);
926       assert(result && "Could not resolve symbolic name"); (void)result;
927       Result += llvm::utostr(Index);
928       break;
929     }
930     }
931 
932     Constraint++;
933   }
934 
935   return Result;
936 }
937 
938 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
939 /// as using a particular register add that as a constraint that will be used
940 /// in this asm stmt.
941 static std::string
942 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
943                        const TargetInfo &Target, CodeGenModule &CGM,
944                        const AsmStmt &Stmt) {
945   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
946   if (!AsmDeclRef)
947     return Constraint;
948   const ValueDecl &Value = *AsmDeclRef->getDecl();
949   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
950   if (!Variable)
951     return Constraint;
952   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
953   if (!Attr)
954     return Constraint;
955   llvm::StringRef Register = Attr->getLabel();
956   assert(Target.isValidGCCRegisterName(Register));
957   // FIXME: We should check which registers are compatible with "r" or "x".
958   if (Constraint != "r" && Constraint != "x") {
959     CGM.ErrorUnsupported(&Stmt, "__asm__");
960     return Constraint;
961   }
962   return "{" + Register.str() + "}";
963 }
964 
965 llvm::Value*
966 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
967                                     const TargetInfo::ConstraintInfo &Info,
968                                     LValue InputValue, QualType InputType,
969                                     std::string &ConstraintStr) {
970   llvm::Value *Arg;
971   if (Info.allowsRegister() || !Info.allowsMemory()) {
972     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
973       Arg = EmitLoadOfLValue(InputValue, InputType).getScalarVal();
974     } else {
975       const llvm::Type *Ty = ConvertType(InputType);
976       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
977       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
978         Ty = llvm::IntegerType::get(VMContext, Size);
979         Ty = llvm::PointerType::getUnqual(Ty);
980 
981         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
982                                                        Ty));
983       } else {
984         Arg = InputValue.getAddress();
985         ConstraintStr += '*';
986       }
987     }
988   } else {
989     Arg = InputValue.getAddress();
990     ConstraintStr += '*';
991   }
992 
993   return Arg;
994 }
995 
996 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
997                                          const TargetInfo::ConstraintInfo &Info,
998                                            const Expr *InputExpr,
999                                            std::string &ConstraintStr) {
1000   if (Info.allowsRegister() || !Info.allowsMemory())
1001     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1002       return EmitScalarExpr(InputExpr);
1003 
1004   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1005   LValue Dest = EmitLValue(InputExpr);
1006   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1007 }
1008 
1009 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1010 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1011 /// integers which are the source locations of the start of each line in the
1012 /// asm.
1013 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1014                                       CodeGenFunction &CGF) {
1015   llvm::SmallVector<llvm::Value *, 8> Locs;
1016   // Add the location of the first line to the MDNode.
1017   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1018                                         Str->getLocStart().getRawEncoding()));
1019   llvm::StringRef StrVal = Str->getString();
1020   if (!StrVal.empty()) {
1021     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1022     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1023 
1024     // Add the location of the start of each subsequent line of the asm to the
1025     // MDNode.
1026     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1027       if (StrVal[i] != '\n') continue;
1028       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1029                                                       CGF.Target);
1030       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1031                                             LineLoc.getRawEncoding()));
1032     }
1033   }
1034 
1035   return llvm::MDNode::get(CGF.getLLVMContext(), Locs.data(), Locs.size());
1036 }
1037 
1038 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1039   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1040   // has already done this, so it is guaranteed to be successful.
1041   llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1042   unsigned DiagOffs;
1043   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1044 
1045   // Assemble the pieces into the final asm string.
1046   std::string AsmString;
1047   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1048     if (Pieces[i].isString())
1049       AsmString += Pieces[i].getString();
1050     else if (Pieces[i].getModifier() == '\0')
1051       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1052     else
1053       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1054                    Pieces[i].getModifier() + '}';
1055   }
1056 
1057   // Get all the output and input constraints together.
1058   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1059   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1060 
1061   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1062     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1063                                     S.getOutputName(i));
1064     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1065     assert(IsValid && "Failed to parse output constraint");
1066     OutputConstraintInfos.push_back(Info);
1067   }
1068 
1069   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1070     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1071                                     S.getInputName(i));
1072     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1073                                                   S.getNumOutputs(), Info);
1074     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1075     InputConstraintInfos.push_back(Info);
1076   }
1077 
1078   std::string Constraints;
1079 
1080   std::vector<LValue> ResultRegDests;
1081   std::vector<QualType> ResultRegQualTys;
1082   std::vector<const llvm::Type *> ResultRegTypes;
1083   std::vector<const llvm::Type *> ResultTruncRegTypes;
1084   std::vector<const llvm::Type*> ArgTypes;
1085   std::vector<llvm::Value*> Args;
1086 
1087   // Keep track of inout constraints.
1088   std::string InOutConstraints;
1089   std::vector<llvm::Value*> InOutArgs;
1090   std::vector<const llvm::Type*> InOutArgTypes;
1091 
1092   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1093     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1094 
1095     // Simplify the output constraint.
1096     std::string OutputConstraint(S.getOutputConstraint(i));
1097     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1098 
1099     const Expr *OutExpr = S.getOutputExpr(i);
1100     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1101 
1102     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, Target,
1103                                              CGM, S);
1104 
1105     LValue Dest = EmitLValue(OutExpr);
1106     if (!Constraints.empty())
1107       Constraints += ',';
1108 
1109     // If this is a register output, then make the inline asm return it
1110     // by-value.  If this is a memory result, return the value by-reference.
1111     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1112       Constraints += "=" + OutputConstraint;
1113       ResultRegQualTys.push_back(OutExpr->getType());
1114       ResultRegDests.push_back(Dest);
1115       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1116       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1117 
1118       // If this output is tied to an input, and if the input is larger, then
1119       // we need to set the actual result type of the inline asm node to be the
1120       // same as the input type.
1121       if (Info.hasMatchingInput()) {
1122         unsigned InputNo;
1123         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1124           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1125           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1126             break;
1127         }
1128         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1129 
1130         QualType InputTy = S.getInputExpr(InputNo)->getType();
1131         QualType OutputType = OutExpr->getType();
1132 
1133         uint64_t InputSize = getContext().getTypeSize(InputTy);
1134         if (getContext().getTypeSize(OutputType) < InputSize) {
1135           // Form the asm to return the value as a larger integer or fp type.
1136           ResultRegTypes.back() = ConvertType(InputTy);
1137         }
1138       }
1139       if (const llvm::Type* AdjTy =
1140             Target.adjustInlineAsmType(OutputConstraint, ResultRegTypes.back(),
1141                                        VMContext))
1142         ResultRegTypes.back() = AdjTy;
1143     } else {
1144       ArgTypes.push_back(Dest.getAddress()->getType());
1145       Args.push_back(Dest.getAddress());
1146       Constraints += "=*";
1147       Constraints += OutputConstraint;
1148     }
1149 
1150     if (Info.isReadWrite()) {
1151       InOutConstraints += ',';
1152 
1153       const Expr *InputExpr = S.getOutputExpr(i);
1154       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1155                                             InOutConstraints);
1156 
1157       if (Info.allowsRegister())
1158         InOutConstraints += llvm::utostr(i);
1159       else
1160         InOutConstraints += OutputConstraint;
1161 
1162       InOutArgTypes.push_back(Arg->getType());
1163       InOutArgs.push_back(Arg);
1164     }
1165   }
1166 
1167   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1168 
1169   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1170     const Expr *InputExpr = S.getInputExpr(i);
1171 
1172     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1173 
1174     if (!Constraints.empty())
1175       Constraints += ',';
1176 
1177     // Simplify the input constraint.
1178     std::string InputConstraint(S.getInputConstraint(i));
1179     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1180                                          &OutputConstraintInfos);
1181 
1182     InputConstraint =
1183       AddVariableConstraints(InputConstraint,
1184                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1185                             Target, CGM, S);
1186 
1187     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1188 
1189     // If this input argument is tied to a larger output result, extend the
1190     // input to be the same size as the output.  The LLVM backend wants to see
1191     // the input and output of a matching constraint be the same size.  Note
1192     // that GCC does not define what the top bits are here.  We use zext because
1193     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1194     if (Info.hasTiedOperand()) {
1195       unsigned Output = Info.getTiedOperand();
1196       QualType OutputType = S.getOutputExpr(Output)->getType();
1197       QualType InputTy = InputExpr->getType();
1198 
1199       if (getContext().getTypeSize(OutputType) >
1200           getContext().getTypeSize(InputTy)) {
1201         // Use ptrtoint as appropriate so that we can do our extension.
1202         if (isa<llvm::PointerType>(Arg->getType()))
1203           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1204         const llvm::Type *OutputTy = ConvertType(OutputType);
1205         if (isa<llvm::IntegerType>(OutputTy))
1206           Arg = Builder.CreateZExt(Arg, OutputTy);
1207         else
1208           Arg = Builder.CreateFPExt(Arg, OutputTy);
1209       }
1210     }
1211     if (const llvm::Type* AdjTy =
1212               Target.adjustInlineAsmType(InputConstraint, Arg->getType(),
1213                                          VMContext))
1214       Arg = Builder.CreateBitCast(Arg, AdjTy);
1215 
1216     ArgTypes.push_back(Arg->getType());
1217     Args.push_back(Arg);
1218     Constraints += InputConstraint;
1219   }
1220 
1221   // Append the "input" part of inout constraints last.
1222   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1223     ArgTypes.push_back(InOutArgTypes[i]);
1224     Args.push_back(InOutArgs[i]);
1225   }
1226   Constraints += InOutConstraints;
1227 
1228   // Clobbers
1229   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1230     llvm::StringRef Clobber = S.getClobber(i)->getString();
1231 
1232     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1233 
1234     if (i != 0 || NumConstraints != 0)
1235       Constraints += ',';
1236 
1237     Constraints += "~{";
1238     Constraints += Clobber;
1239     Constraints += '}';
1240   }
1241 
1242   // Add machine specific clobbers
1243   std::string MachineClobbers = Target.getClobbers();
1244   if (!MachineClobbers.empty()) {
1245     if (!Constraints.empty())
1246       Constraints += ',';
1247     Constraints += MachineClobbers;
1248   }
1249 
1250   const llvm::Type *ResultType;
1251   if (ResultRegTypes.empty())
1252     ResultType = llvm::Type::getVoidTy(VMContext);
1253   else if (ResultRegTypes.size() == 1)
1254     ResultType = ResultRegTypes[0];
1255   else
1256     ResultType = llvm::StructType::get(VMContext, ResultRegTypes);
1257 
1258   const llvm::FunctionType *FTy =
1259     llvm::FunctionType::get(ResultType, ArgTypes, false);
1260 
1261   llvm::InlineAsm *IA =
1262     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1263                          S.isVolatile() || S.getNumOutputs() == 0);
1264   llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1265   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1266 
1267   // Slap the source location of the inline asm into a !srcloc metadata on the
1268   // call.
1269   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1270 
1271   // Extract all of the register value results from the asm.
1272   std::vector<llvm::Value*> RegResults;
1273   if (ResultRegTypes.size() == 1) {
1274     RegResults.push_back(Result);
1275   } else {
1276     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1277       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1278       RegResults.push_back(Tmp);
1279     }
1280   }
1281 
1282   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1283     llvm::Value *Tmp = RegResults[i];
1284 
1285     // If the result type of the LLVM IR asm doesn't match the result type of
1286     // the expression, do the conversion.
1287     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1288       const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1289 
1290       // Truncate the integer result to the right size, note that TruncTy can be
1291       // a pointer.
1292       if (TruncTy->isFloatingPointTy())
1293         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1294       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1295         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1296         Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext,
1297                                                             (unsigned)ResSize));
1298         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1299       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1300         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1301         Tmp = Builder.CreatePtrToInt(Tmp, llvm::IntegerType::get(VMContext,
1302                                                             (unsigned)TmpSize));
1303         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1304       } else if (TruncTy->isIntegerTy()) {
1305         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1306       } else if (TruncTy->isVectorTy()) {
1307         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1308       }
1309     }
1310 
1311     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1312                            ResultRegQualTys[i]);
1313   }
1314 }
1315