1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/SemaDiagnostic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getLocStart();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S) {
45   assert(S && "Null statement?");
46   PGO.setCurrentStmt(S);
47 
48   // These statements have their own debug info handling.
49   if (EmitSimpleStmt(S))
50     return;
51 
52   // Check if we are generating unreachable code.
53   if (!HaveInsertPoint()) {
54     // If so, and the statement doesn't contain a label, then we do not need to
55     // generate actual code. This is safe because (1) the current point is
56     // unreachable, so we don't need to execute the code, and (2) we've already
57     // handled the statements which update internal data structures (like the
58     // local variable map) which could be used by subsequent statements.
59     if (!ContainsLabel(S)) {
60       // Verify that any decl statements were handled as simple, they may be in
61       // scope of subsequent reachable statements.
62       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
63       return;
64     }
65 
66     // Otherwise, make a new block to hold the code.
67     EnsureInsertPoint();
68   }
69 
70   // Generate a stoppoint if we are emitting debug info.
71   EmitStopPoint(S);
72 
73   switch (S->getStmtClass()) {
74   case Stmt::NoStmtClass:
75   case Stmt::CXXCatchStmtClass:
76   case Stmt::SEHExceptStmtClass:
77   case Stmt::SEHFinallyStmtClass:
78   case Stmt::MSDependentExistsStmtClass:
79     llvm_unreachable("invalid statement class to emit generically");
80   case Stmt::NullStmtClass:
81   case Stmt::CompoundStmtClass:
82   case Stmt::DeclStmtClass:
83   case Stmt::LabelStmtClass:
84   case Stmt::AttributedStmtClass:
85   case Stmt::GotoStmtClass:
86   case Stmt::BreakStmtClass:
87   case Stmt::ContinueStmtClass:
88   case Stmt::DefaultStmtClass:
89   case Stmt::CaseStmtClass:
90     llvm_unreachable("should have emitted these statements as simple");
91 
92 #define STMT(Type, Base)
93 #define ABSTRACT_STMT(Op)
94 #define EXPR(Type, Base) \
95   case Stmt::Type##Class:
96 #include "clang/AST/StmtNodes.inc"
97   {
98     // Remember the block we came in on.
99     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
100     assert(incoming && "expression emission must have an insertion point");
101 
102     EmitIgnoredExpr(cast<Expr>(S));
103 
104     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
105     assert(outgoing && "expression emission cleared block!");
106 
107     // The expression emitters assume (reasonably!) that the insertion
108     // point is always set.  To maintain that, the call-emission code
109     // for noreturn functions has to enter a new block with no
110     // predecessors.  We want to kill that block and mark the current
111     // insertion point unreachable in the common case of a call like
112     // "exit();".  Since expression emission doesn't otherwise create
113     // blocks with no predecessors, we can just test for that.
114     // However, we must be careful not to do this to our incoming
115     // block, because *statement* emission does sometimes create
116     // reachable blocks which will have no predecessors until later in
117     // the function.  This occurs with, e.g., labels that are not
118     // reachable by fallthrough.
119     if (incoming != outgoing && outgoing->use_empty()) {
120       outgoing->eraseFromParent();
121       Builder.ClearInsertionPoint();
122     }
123     break;
124   }
125 
126   case Stmt::IndirectGotoStmtClass:
127     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
128 
129   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
130   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
131   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
132   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
133 
134   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
135 
136   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
137   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
138   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
139   case Stmt::CapturedStmtClass: {
140     const CapturedStmt *CS = cast<CapturedStmt>(S);
141     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
142     }
143     break;
144   case Stmt::ObjCAtTryStmtClass:
145     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
146     break;
147   case Stmt::ObjCAtCatchStmtClass:
148     llvm_unreachable(
149                     "@catch statements should be handled by EmitObjCAtTryStmt");
150   case Stmt::ObjCAtFinallyStmtClass:
151     llvm_unreachable(
152                   "@finally statements should be handled by EmitObjCAtTryStmt");
153   case Stmt::ObjCAtThrowStmtClass:
154     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
155     break;
156   case Stmt::ObjCAtSynchronizedStmtClass:
157     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
158     break;
159   case Stmt::ObjCForCollectionStmtClass:
160     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
161     break;
162   case Stmt::ObjCAutoreleasePoolStmtClass:
163     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
164     break;
165 
166   case Stmt::CXXTryStmtClass:
167     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
168     break;
169   case Stmt::CXXForRangeStmtClass:
170     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
171     break;
172   case Stmt::SEHTryStmtClass:
173     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
174     break;
175   case Stmt::OMPParallelDirectiveClass:
176     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
177     break;
178   case Stmt::OMPSimdDirectiveClass:
179     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
180     break;
181   }
182 }
183 
184 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
185   switch (S->getStmtClass()) {
186   default: return false;
187   case Stmt::NullStmtClass: break;
188   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
189   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
190   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
191   case Stmt::AttributedStmtClass:
192                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
193   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
194   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
195   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
196   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
197   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
198   }
199 
200   return true;
201 }
202 
203 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
204 /// this captures the expression result of the last sub-statement and returns it
205 /// (for use by the statement expression extension).
206 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
207                                                AggValueSlot AggSlot) {
208   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
209                              "LLVM IR generation of compound statement ('{}')");
210 
211   // Keep track of the current cleanup stack depth, including debug scopes.
212   LexicalScope Scope(*this, S.getSourceRange());
213 
214   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
215 }
216 
217 llvm::Value*
218 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
219                                               bool GetLast,
220                                               AggValueSlot AggSlot) {
221 
222   for (CompoundStmt::const_body_iterator I = S.body_begin(),
223        E = S.body_end()-GetLast; I != E; ++I)
224     EmitStmt(*I);
225 
226   llvm::Value *RetAlloca = nullptr;
227   if (GetLast) {
228     // We have to special case labels here.  They are statements, but when put
229     // at the end of a statement expression, they yield the value of their
230     // subexpression.  Handle this by walking through all labels we encounter,
231     // emitting them before we evaluate the subexpr.
232     const Stmt *LastStmt = S.body_back();
233     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
234       EmitLabel(LS->getDecl());
235       LastStmt = LS->getSubStmt();
236     }
237 
238     EnsureInsertPoint();
239 
240     QualType ExprTy = cast<Expr>(LastStmt)->getType();
241     if (hasAggregateEvaluationKind(ExprTy)) {
242       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
243     } else {
244       // We can't return an RValue here because there might be cleanups at
245       // the end of the StmtExpr.  Because of that, we have to emit the result
246       // here into a temporary alloca.
247       RetAlloca = CreateMemTemp(ExprTy);
248       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
249                        /*IsInit*/false);
250     }
251 
252   }
253 
254   return RetAlloca;
255 }
256 
257 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
258   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
259 
260   // If there is a cleanup stack, then we it isn't worth trying to
261   // simplify this block (we would need to remove it from the scope map
262   // and cleanup entry).
263   if (!EHStack.empty())
264     return;
265 
266   // Can only simplify direct branches.
267   if (!BI || !BI->isUnconditional())
268     return;
269 
270   // Can only simplify empty blocks.
271   if (BI != BB->begin())
272     return;
273 
274   BB->replaceAllUsesWith(BI->getSuccessor(0));
275   BI->eraseFromParent();
276   BB->eraseFromParent();
277 }
278 
279 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
280   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
281 
282   // Fall out of the current block (if necessary).
283   EmitBranch(BB);
284 
285   if (IsFinished && BB->use_empty()) {
286     delete BB;
287     return;
288   }
289 
290   // Place the block after the current block, if possible, or else at
291   // the end of the function.
292   if (CurBB && CurBB->getParent())
293     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
294   else
295     CurFn->getBasicBlockList().push_back(BB);
296   Builder.SetInsertPoint(BB);
297 }
298 
299 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
300   // Emit a branch from the current block to the target one if this
301   // was a real block.  If this was just a fall-through block after a
302   // terminator, don't emit it.
303   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
304 
305   if (!CurBB || CurBB->getTerminator()) {
306     // If there is no insert point or the previous block is already
307     // terminated, don't touch it.
308   } else {
309     // Otherwise, create a fall-through branch.
310     Builder.CreateBr(Target);
311   }
312 
313   Builder.ClearInsertionPoint();
314 }
315 
316 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
317   bool inserted = false;
318   for (llvm::User *u : block->users()) {
319     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
320       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
321       inserted = true;
322       break;
323     }
324   }
325 
326   if (!inserted)
327     CurFn->getBasicBlockList().push_back(block);
328 
329   Builder.SetInsertPoint(block);
330 }
331 
332 CodeGenFunction::JumpDest
333 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
334   JumpDest &Dest = LabelMap[D];
335   if (Dest.isValid()) return Dest;
336 
337   // Create, but don't insert, the new block.
338   Dest = JumpDest(createBasicBlock(D->getName()),
339                   EHScopeStack::stable_iterator::invalid(),
340                   NextCleanupDestIndex++);
341   return Dest;
342 }
343 
344 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
345   // Add this label to the current lexical scope if we're within any
346   // normal cleanups.  Jumps "in" to this label --- when permitted by
347   // the language --- may need to be routed around such cleanups.
348   if (EHStack.hasNormalCleanups() && CurLexicalScope)
349     CurLexicalScope->addLabel(D);
350 
351   JumpDest &Dest = LabelMap[D];
352 
353   // If we didn't need a forward reference to this label, just go
354   // ahead and create a destination at the current scope.
355   if (!Dest.isValid()) {
356     Dest = getJumpDestInCurrentScope(D->getName());
357 
358   // Otherwise, we need to give this label a target depth and remove
359   // it from the branch-fixups list.
360   } else {
361     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
362     Dest.setScopeDepth(EHStack.stable_begin());
363     ResolveBranchFixups(Dest.getBlock());
364   }
365 
366   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
367   EmitBlock(Dest.getBlock());
368   Cnt.beginRegion(Builder);
369 }
370 
371 /// Change the cleanup scope of the labels in this lexical scope to
372 /// match the scope of the enclosing context.
373 void CodeGenFunction::LexicalScope::rescopeLabels() {
374   assert(!Labels.empty());
375   EHScopeStack::stable_iterator innermostScope
376     = CGF.EHStack.getInnermostNormalCleanup();
377 
378   // Change the scope depth of all the labels.
379   for (SmallVectorImpl<const LabelDecl*>::const_iterator
380          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
381     assert(CGF.LabelMap.count(*i));
382     JumpDest &dest = CGF.LabelMap.find(*i)->second;
383     assert(dest.getScopeDepth().isValid());
384     assert(innermostScope.encloses(dest.getScopeDepth()));
385     dest.setScopeDepth(innermostScope);
386   }
387 
388   // Reparent the labels if the new scope also has cleanups.
389   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
390     ParentScope->Labels.append(Labels.begin(), Labels.end());
391   }
392 }
393 
394 
395 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
396   EmitLabel(S.getDecl());
397   EmitStmt(S.getSubStmt());
398 }
399 
400 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
401   EmitStmt(S.getSubStmt());
402 }
403 
404 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
405   // If this code is reachable then emit a stop point (if generating
406   // debug info). We have to do this ourselves because we are on the
407   // "simple" statement path.
408   if (HaveInsertPoint())
409     EmitStopPoint(&S);
410 
411   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
412 }
413 
414 
415 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
416   if (const LabelDecl *Target = S.getConstantTarget()) {
417     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
418     return;
419   }
420 
421   // Ensure that we have an i8* for our PHI node.
422   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
423                                          Int8PtrTy, "addr");
424   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
425 
426   // Get the basic block for the indirect goto.
427   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
428 
429   // The first instruction in the block has to be the PHI for the switch dest,
430   // add an entry for this branch.
431   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
432 
433   EmitBranch(IndGotoBB);
434 }
435 
436 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
437   // C99 6.8.4.1: The first substatement is executed if the expression compares
438   // unequal to 0.  The condition must be a scalar type.
439   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
440   RegionCounter Cnt = getPGORegionCounter(&S);
441 
442   if (S.getConditionVariable())
443     EmitAutoVarDecl(*S.getConditionVariable());
444 
445   // If the condition constant folds and can be elided, try to avoid emitting
446   // the condition and the dead arm of the if/else.
447   bool CondConstant;
448   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
449     // Figure out which block (then or else) is executed.
450     const Stmt *Executed = S.getThen();
451     const Stmt *Skipped  = S.getElse();
452     if (!CondConstant)  // Condition false?
453       std::swap(Executed, Skipped);
454 
455     // If the skipped block has no labels in it, just emit the executed block.
456     // This avoids emitting dead code and simplifies the CFG substantially.
457     if (!ContainsLabel(Skipped)) {
458       if (CondConstant)
459         Cnt.beginRegion(Builder);
460       if (Executed) {
461         RunCleanupsScope ExecutedScope(*this);
462         EmitStmt(Executed);
463       }
464       return;
465     }
466   }
467 
468   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
469   // the conditional branch.
470   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
471   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
472   llvm::BasicBlock *ElseBlock = ContBlock;
473   if (S.getElse())
474     ElseBlock = createBasicBlock("if.else");
475 
476   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
477 
478   // Emit the 'then' code.
479   EmitBlock(ThenBlock);
480   Cnt.beginRegion(Builder);
481   {
482     RunCleanupsScope ThenScope(*this);
483     EmitStmt(S.getThen());
484   }
485   EmitBranch(ContBlock);
486 
487   // Emit the 'else' code if present.
488   if (const Stmt *Else = S.getElse()) {
489     // There is no need to emit line number for unconditional branch.
490     if (getDebugInfo())
491       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
492     EmitBlock(ElseBlock);
493     {
494       RunCleanupsScope ElseScope(*this);
495       EmitStmt(Else);
496     }
497     // There is no need to emit line number for unconditional branch.
498     if (getDebugInfo())
499       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
500     EmitBranch(ContBlock);
501   }
502 
503   // Emit the continuation block for code after the if.
504   EmitBlock(ContBlock, true);
505 }
506 
507 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
508   RegionCounter Cnt = getPGORegionCounter(&S);
509 
510   // Emit the header for the loop, which will also become
511   // the continue target.
512   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
513   EmitBlock(LoopHeader.getBlock());
514 
515   LoopStack.push(LoopHeader.getBlock());
516 
517   // Create an exit block for when the condition fails, which will
518   // also become the break target.
519   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
520 
521   // Store the blocks to use for break and continue.
522   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
523 
524   // C++ [stmt.while]p2:
525   //   When the condition of a while statement is a declaration, the
526   //   scope of the variable that is declared extends from its point
527   //   of declaration (3.3.2) to the end of the while statement.
528   //   [...]
529   //   The object created in a condition is destroyed and created
530   //   with each iteration of the loop.
531   RunCleanupsScope ConditionScope(*this);
532 
533   if (S.getConditionVariable())
534     EmitAutoVarDecl(*S.getConditionVariable());
535 
536   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
537   // evaluation of the controlling expression takes place before each
538   // execution of the loop body.
539   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
540 
541   // while(1) is common, avoid extra exit blocks.  Be sure
542   // to correctly handle break/continue though.
543   bool EmitBoolCondBranch = true;
544   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
545     if (C->isOne())
546       EmitBoolCondBranch = false;
547 
548   // As long as the condition is true, go to the loop body.
549   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
550   if (EmitBoolCondBranch) {
551     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
552     if (ConditionScope.requiresCleanups())
553       ExitBlock = createBasicBlock("while.exit");
554     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
555                          PGO.createLoopWeights(S.getCond(), Cnt));
556 
557     if (ExitBlock != LoopExit.getBlock()) {
558       EmitBlock(ExitBlock);
559       EmitBranchThroughCleanup(LoopExit);
560     }
561   }
562 
563   // Emit the loop body.  We have to emit this in a cleanup scope
564   // because it might be a singleton DeclStmt.
565   {
566     RunCleanupsScope BodyScope(*this);
567     EmitBlock(LoopBody);
568     Cnt.beginRegion(Builder);
569     EmitStmt(S.getBody());
570   }
571 
572   BreakContinueStack.pop_back();
573 
574   // Immediately force cleanup.
575   ConditionScope.ForceCleanup();
576 
577   // Branch to the loop header again.
578   EmitBranch(LoopHeader.getBlock());
579 
580   LoopStack.pop();
581 
582   // Emit the exit block.
583   EmitBlock(LoopExit.getBlock(), true);
584 
585   // The LoopHeader typically is just a branch if we skipped emitting
586   // a branch, try to erase it.
587   if (!EmitBoolCondBranch)
588     SimplifyForwardingBlocks(LoopHeader.getBlock());
589 }
590 
591 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
592   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
593   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
594 
595   RegionCounter Cnt = getPGORegionCounter(&S);
596 
597   // Store the blocks to use for break and continue.
598   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
599 
600   // Emit the body of the loop.
601   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
602 
603   LoopStack.push(LoopBody);
604 
605   EmitBlockWithFallThrough(LoopBody, Cnt);
606   {
607     RunCleanupsScope BodyScope(*this);
608     EmitStmt(S.getBody());
609   }
610 
611   EmitBlock(LoopCond.getBlock());
612 
613   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
614   // after each execution of the loop body."
615 
616   // Evaluate the conditional in the while header.
617   // C99 6.8.5p2/p4: The first substatement is executed if the expression
618   // compares unequal to 0.  The condition must be a scalar type.
619   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
620 
621   BreakContinueStack.pop_back();
622 
623   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
624   // to correctly handle break/continue though.
625   bool EmitBoolCondBranch = true;
626   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
627     if (C->isZero())
628       EmitBoolCondBranch = false;
629 
630   // As long as the condition is true, iterate the loop.
631   if (EmitBoolCondBranch)
632     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
633                          PGO.createLoopWeights(S.getCond(), Cnt));
634 
635   LoopStack.pop();
636 
637   // Emit the exit block.
638   EmitBlock(LoopExit.getBlock());
639 
640   // The DoCond block typically is just a branch if we skipped
641   // emitting a branch, try to erase it.
642   if (!EmitBoolCondBranch)
643     SimplifyForwardingBlocks(LoopCond.getBlock());
644 }
645 
646 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
647   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
648 
649   RunCleanupsScope ForScope(*this);
650 
651   CGDebugInfo *DI = getDebugInfo();
652   if (DI)
653     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
654 
655   // Evaluate the first part before the loop.
656   if (S.getInit())
657     EmitStmt(S.getInit());
658 
659   RegionCounter Cnt = getPGORegionCounter(&S);
660 
661   // Start the loop with a block that tests the condition.
662   // If there's an increment, the continue scope will be overwritten
663   // later.
664   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
665   llvm::BasicBlock *CondBlock = Continue.getBlock();
666   EmitBlock(CondBlock);
667 
668   LoopStack.push(CondBlock);
669 
670   // If the for loop doesn't have an increment we can just use the
671   // condition as the continue block.  Otherwise we'll need to create
672   // a block for it (in the current scope, i.e. in the scope of the
673   // condition), and that we will become our continue block.
674   if (S.getInc())
675     Continue = getJumpDestInCurrentScope("for.inc");
676 
677   // Store the blocks to use for break and continue.
678   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
679 
680   // Create a cleanup scope for the condition variable cleanups.
681   RunCleanupsScope ConditionScope(*this);
682 
683   if (S.getCond()) {
684     // If the for statement has a condition scope, emit the local variable
685     // declaration.
686     if (S.getConditionVariable()) {
687       EmitAutoVarDecl(*S.getConditionVariable());
688     }
689 
690     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
691     // If there are any cleanups between here and the loop-exit scope,
692     // create a block to stage a loop exit along.
693     if (ForScope.requiresCleanups())
694       ExitBlock = createBasicBlock("for.cond.cleanup");
695 
696     // As long as the condition is true, iterate the loop.
697     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
698 
699     // C99 6.8.5p2/p4: The first substatement is executed if the expression
700     // compares unequal to 0.  The condition must be a scalar type.
701     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
702     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
703                          PGO.createLoopWeights(S.getCond(), Cnt));
704 
705     if (ExitBlock != LoopExit.getBlock()) {
706       EmitBlock(ExitBlock);
707       EmitBranchThroughCleanup(LoopExit);
708     }
709 
710     EmitBlock(ForBody);
711   } else {
712     // Treat it as a non-zero constant.  Don't even create a new block for the
713     // body, just fall into it.
714   }
715   Cnt.beginRegion(Builder);
716 
717   {
718     // Create a separate cleanup scope for the body, in case it is not
719     // a compound statement.
720     RunCleanupsScope BodyScope(*this);
721     EmitStmt(S.getBody());
722   }
723 
724   // If there is an increment, emit it next.
725   if (S.getInc()) {
726     EmitBlock(Continue.getBlock());
727     EmitStmt(S.getInc());
728   }
729 
730   BreakContinueStack.pop_back();
731 
732   ConditionScope.ForceCleanup();
733   EmitBranch(CondBlock);
734 
735   ForScope.ForceCleanup();
736 
737   if (DI)
738     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
739 
740   LoopStack.pop();
741 
742   // Emit the fall-through block.
743   EmitBlock(LoopExit.getBlock(), true);
744 }
745 
746 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
747   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
748 
749   RunCleanupsScope ForScope(*this);
750 
751   CGDebugInfo *DI = getDebugInfo();
752   if (DI)
753     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
754 
755   // Evaluate the first pieces before the loop.
756   EmitStmt(S.getRangeStmt());
757   EmitStmt(S.getBeginEndStmt());
758 
759   RegionCounter Cnt = getPGORegionCounter(&S);
760 
761   // Start the loop with a block that tests the condition.
762   // If there's an increment, the continue scope will be overwritten
763   // later.
764   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
765   EmitBlock(CondBlock);
766 
767   LoopStack.push(CondBlock);
768 
769   // If there are any cleanups between here and the loop-exit scope,
770   // create a block to stage a loop exit along.
771   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
772   if (ForScope.requiresCleanups())
773     ExitBlock = createBasicBlock("for.cond.cleanup");
774 
775   // The loop body, consisting of the specified body and the loop variable.
776   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
777 
778   // The body is executed if the expression, contextually converted
779   // to bool, is true.
780   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
781   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
782                        PGO.createLoopWeights(S.getCond(), Cnt));
783 
784   if (ExitBlock != LoopExit.getBlock()) {
785     EmitBlock(ExitBlock);
786     EmitBranchThroughCleanup(LoopExit);
787   }
788 
789   EmitBlock(ForBody);
790   Cnt.beginRegion(Builder);
791 
792   // Create a block for the increment. In case of a 'continue', we jump there.
793   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
794 
795   // Store the blocks to use for break and continue.
796   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
797 
798   {
799     // Create a separate cleanup scope for the loop variable and body.
800     RunCleanupsScope BodyScope(*this);
801     EmitStmt(S.getLoopVarStmt());
802     EmitStmt(S.getBody());
803   }
804 
805   // If there is an increment, emit it next.
806   EmitBlock(Continue.getBlock());
807   EmitStmt(S.getInc());
808 
809   BreakContinueStack.pop_back();
810 
811   EmitBranch(CondBlock);
812 
813   ForScope.ForceCleanup();
814 
815   if (DI)
816     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
817 
818   LoopStack.pop();
819 
820   // Emit the fall-through block.
821   EmitBlock(LoopExit.getBlock(), true);
822 }
823 
824 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
825   if (RV.isScalar()) {
826     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
827   } else if (RV.isAggregate()) {
828     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
829   } else {
830     EmitStoreOfComplex(RV.getComplexVal(),
831                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
832                        /*init*/ true);
833   }
834   EmitBranchThroughCleanup(ReturnBlock);
835 }
836 
837 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
838 /// if the function returns void, or may be missing one if the function returns
839 /// non-void.  Fun stuff :).
840 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
841   // Emit the result value, even if unused, to evalute the side effects.
842   const Expr *RV = S.getRetValue();
843 
844   // Treat block literals in a return expression as if they appeared
845   // in their own scope.  This permits a small, easily-implemented
846   // exception to our over-conservative rules about not jumping to
847   // statements following block literals with non-trivial cleanups.
848   RunCleanupsScope cleanupScope(*this);
849   if (const ExprWithCleanups *cleanups =
850         dyn_cast_or_null<ExprWithCleanups>(RV)) {
851     enterFullExpression(cleanups);
852     RV = cleanups->getSubExpr();
853   }
854 
855   // FIXME: Clean this up by using an LValue for ReturnTemp,
856   // EmitStoreThroughLValue, and EmitAnyExpr.
857   if (getLangOpts().ElideConstructors &&
858       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
859     // Apply the named return value optimization for this return statement,
860     // which means doing nothing: the appropriate result has already been
861     // constructed into the NRVO variable.
862 
863     // If there is an NRVO flag for this variable, set it to 1 into indicate
864     // that the cleanup code should not destroy the variable.
865     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
866       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
867   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
868     // Make sure not to return anything, but evaluate the expression
869     // for side effects.
870     if (RV)
871       EmitAnyExpr(RV);
872   } else if (!RV) {
873     // Do nothing (return value is left uninitialized)
874   } else if (FnRetTy->isReferenceType()) {
875     // If this function returns a reference, take the address of the expression
876     // rather than the value.
877     RValue Result = EmitReferenceBindingToExpr(RV);
878     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
879   } else {
880     switch (getEvaluationKind(RV->getType())) {
881     case TEK_Scalar:
882       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
883       break;
884     case TEK_Complex:
885       EmitComplexExprIntoLValue(RV,
886                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
887                                 /*isInit*/ true);
888       break;
889     case TEK_Aggregate: {
890       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
891       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
892                                             Qualifiers(),
893                                             AggValueSlot::IsDestructed,
894                                             AggValueSlot::DoesNotNeedGCBarriers,
895                                             AggValueSlot::IsNotAliased));
896       break;
897     }
898     }
899   }
900 
901   ++NumReturnExprs;
902   if (!RV || RV->isEvaluatable(getContext()))
903     ++NumSimpleReturnExprs;
904 
905   cleanupScope.ForceCleanup();
906   EmitBranchThroughCleanup(ReturnBlock);
907 }
908 
909 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
910   // As long as debug info is modeled with instructions, we have to ensure we
911   // have a place to insert here and write the stop point here.
912   if (HaveInsertPoint())
913     EmitStopPoint(&S);
914 
915   for (const auto *I : S.decls())
916     EmitDecl(*I);
917 }
918 
919 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
920   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
921 
922   // If this code is reachable then emit a stop point (if generating
923   // debug info). We have to do this ourselves because we are on the
924   // "simple" statement path.
925   if (HaveInsertPoint())
926     EmitStopPoint(&S);
927 
928   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
929 }
930 
931 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
932   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
933 
934   // If this code is reachable then emit a stop point (if generating
935   // debug info). We have to do this ourselves because we are on the
936   // "simple" statement path.
937   if (HaveInsertPoint())
938     EmitStopPoint(&S);
939 
940   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
941 }
942 
943 /// EmitCaseStmtRange - If case statement range is not too big then
944 /// add multiple cases to switch instruction, one for each value within
945 /// the range. If range is too big then emit "if" condition check.
946 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
947   assert(S.getRHS() && "Expected RHS value in CaseStmt");
948 
949   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
950   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
951 
952   RegionCounter CaseCnt = getPGORegionCounter(&S);
953 
954   // Emit the code for this case. We do this first to make sure it is
955   // properly chained from our predecessor before generating the
956   // switch machinery to enter this block.
957   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
958   EmitBlockWithFallThrough(CaseDest, CaseCnt);
959   EmitStmt(S.getSubStmt());
960 
961   // If range is empty, do nothing.
962   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
963     return;
964 
965   llvm::APInt Range = RHS - LHS;
966   // FIXME: parameters such as this should not be hardcoded.
967   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
968     // Range is small enough to add multiple switch instruction cases.
969     uint64_t Total = CaseCnt.getCount();
970     unsigned NCases = Range.getZExtValue() + 1;
971     // We only have one region counter for the entire set of cases here, so we
972     // need to divide the weights evenly between the generated cases, ensuring
973     // that the total weight is preserved. E.g., a weight of 5 over three cases
974     // will be distributed as weights of 2, 2, and 1.
975     uint64_t Weight = Total / NCases, Rem = Total % NCases;
976     for (unsigned I = 0; I != NCases; ++I) {
977       if (SwitchWeights)
978         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
979       if (Rem)
980         Rem--;
981       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
982       LHS++;
983     }
984     return;
985   }
986 
987   // The range is too big. Emit "if" condition into a new block,
988   // making sure to save and restore the current insertion point.
989   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
990 
991   // Push this test onto the chain of range checks (which terminates
992   // in the default basic block). The switch's default will be changed
993   // to the top of this chain after switch emission is complete.
994   llvm::BasicBlock *FalseDest = CaseRangeBlock;
995   CaseRangeBlock = createBasicBlock("sw.caserange");
996 
997   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
998   Builder.SetInsertPoint(CaseRangeBlock);
999 
1000   // Emit range check.
1001   llvm::Value *Diff =
1002     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1003   llvm::Value *Cond =
1004     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1005 
1006   llvm::MDNode *Weights = nullptr;
1007   if (SwitchWeights) {
1008     uint64_t ThisCount = CaseCnt.getCount();
1009     uint64_t DefaultCount = (*SwitchWeights)[0];
1010     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1011 
1012     // Since we're chaining the switch default through each large case range, we
1013     // need to update the weight for the default, ie, the first case, to include
1014     // this case.
1015     (*SwitchWeights)[0] += ThisCount;
1016   }
1017   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1018 
1019   // Restore the appropriate insertion point.
1020   if (RestoreBB)
1021     Builder.SetInsertPoint(RestoreBB);
1022   else
1023     Builder.ClearInsertionPoint();
1024 }
1025 
1026 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1027   // If there is no enclosing switch instance that we're aware of, then this
1028   // case statement and its block can be elided.  This situation only happens
1029   // when we've constant-folded the switch, are emitting the constant case,
1030   // and part of the constant case includes another case statement.  For
1031   // instance: switch (4) { case 4: do { case 5: } while (1); }
1032   if (!SwitchInsn) {
1033     EmitStmt(S.getSubStmt());
1034     return;
1035   }
1036 
1037   // Handle case ranges.
1038   if (S.getRHS()) {
1039     EmitCaseStmtRange(S);
1040     return;
1041   }
1042 
1043   RegionCounter CaseCnt = getPGORegionCounter(&S);
1044   llvm::ConstantInt *CaseVal =
1045     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1046 
1047   // If the body of the case is just a 'break', try to not emit an empty block.
1048   // If we're profiling or we're not optimizing, leave the block in for better
1049   // debug and coverage analysis.
1050   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1051       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1052       isa<BreakStmt>(S.getSubStmt())) {
1053     JumpDest Block = BreakContinueStack.back().BreakBlock;
1054 
1055     // Only do this optimization if there are no cleanups that need emitting.
1056     if (isObviouslyBranchWithoutCleanups(Block)) {
1057       if (SwitchWeights)
1058         SwitchWeights->push_back(CaseCnt.getCount());
1059       SwitchInsn->addCase(CaseVal, Block.getBlock());
1060 
1061       // If there was a fallthrough into this case, make sure to redirect it to
1062       // the end of the switch as well.
1063       if (Builder.GetInsertBlock()) {
1064         Builder.CreateBr(Block.getBlock());
1065         Builder.ClearInsertionPoint();
1066       }
1067       return;
1068     }
1069   }
1070 
1071   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1072   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1073   if (SwitchWeights)
1074     SwitchWeights->push_back(CaseCnt.getCount());
1075   SwitchInsn->addCase(CaseVal, CaseDest);
1076 
1077   // Recursively emitting the statement is acceptable, but is not wonderful for
1078   // code where we have many case statements nested together, i.e.:
1079   //  case 1:
1080   //    case 2:
1081   //      case 3: etc.
1082   // Handling this recursively will create a new block for each case statement
1083   // that falls through to the next case which is IR intensive.  It also causes
1084   // deep recursion which can run into stack depth limitations.  Handle
1085   // sequential non-range case statements specially.
1086   const CaseStmt *CurCase = &S;
1087   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1088 
1089   // Otherwise, iteratively add consecutive cases to this switch stmt.
1090   while (NextCase && NextCase->getRHS() == nullptr) {
1091     CurCase = NextCase;
1092     llvm::ConstantInt *CaseVal =
1093       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1094 
1095     CaseCnt = getPGORegionCounter(NextCase);
1096     if (SwitchWeights)
1097       SwitchWeights->push_back(CaseCnt.getCount());
1098     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1099       CaseDest = createBasicBlock("sw.bb");
1100       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1101     }
1102 
1103     SwitchInsn->addCase(CaseVal, CaseDest);
1104     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1105   }
1106 
1107   // Normal default recursion for non-cases.
1108   EmitStmt(CurCase->getSubStmt());
1109 }
1110 
1111 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1112   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1113   assert(DefaultBlock->empty() &&
1114          "EmitDefaultStmt: Default block already defined?");
1115 
1116   RegionCounter Cnt = getPGORegionCounter(&S);
1117   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1118 
1119   EmitStmt(S.getSubStmt());
1120 }
1121 
1122 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1123 /// constant value that is being switched on, see if we can dead code eliminate
1124 /// the body of the switch to a simple series of statements to emit.  Basically,
1125 /// on a switch (5) we want to find these statements:
1126 ///    case 5:
1127 ///      printf(...);    <--
1128 ///      ++i;            <--
1129 ///      break;
1130 ///
1131 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1132 /// transformation (for example, one of the elided statements contains a label
1133 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1134 /// should include statements after it (e.g. the printf() line is a substmt of
1135 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1136 /// statement, then return CSFC_Success.
1137 ///
1138 /// If Case is non-null, then we are looking for the specified case, checking
1139 /// that nothing we jump over contains labels.  If Case is null, then we found
1140 /// the case and are looking for the break.
1141 ///
1142 /// If the recursive walk actually finds our Case, then we set FoundCase to
1143 /// true.
1144 ///
1145 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1146 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1147                                             const SwitchCase *Case,
1148                                             bool &FoundCase,
1149                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1150   // If this is a null statement, just succeed.
1151   if (!S)
1152     return Case ? CSFC_Success : CSFC_FallThrough;
1153 
1154   // If this is the switchcase (case 4: or default) that we're looking for, then
1155   // we're in business.  Just add the substatement.
1156   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1157     if (S == Case) {
1158       FoundCase = true;
1159       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1160                                       ResultStmts);
1161     }
1162 
1163     // Otherwise, this is some other case or default statement, just ignore it.
1164     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1165                                     ResultStmts);
1166   }
1167 
1168   // If we are in the live part of the code and we found our break statement,
1169   // return a success!
1170   if (!Case && isa<BreakStmt>(S))
1171     return CSFC_Success;
1172 
1173   // If this is a switch statement, then it might contain the SwitchCase, the
1174   // break, or neither.
1175   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1176     // Handle this as two cases: we might be looking for the SwitchCase (if so
1177     // the skipped statements must be skippable) or we might already have it.
1178     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1179     if (Case) {
1180       // Keep track of whether we see a skipped declaration.  The code could be
1181       // using the declaration even if it is skipped, so we can't optimize out
1182       // the decl if the kept statements might refer to it.
1183       bool HadSkippedDecl = false;
1184 
1185       // If we're looking for the case, just see if we can skip each of the
1186       // substatements.
1187       for (; Case && I != E; ++I) {
1188         HadSkippedDecl |= isa<DeclStmt>(*I);
1189 
1190         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1191         case CSFC_Failure: return CSFC_Failure;
1192         case CSFC_Success:
1193           // A successful result means that either 1) that the statement doesn't
1194           // have the case and is skippable, or 2) does contain the case value
1195           // and also contains the break to exit the switch.  In the later case,
1196           // we just verify the rest of the statements are elidable.
1197           if (FoundCase) {
1198             // If we found the case and skipped declarations, we can't do the
1199             // optimization.
1200             if (HadSkippedDecl)
1201               return CSFC_Failure;
1202 
1203             for (++I; I != E; ++I)
1204               if (CodeGenFunction::ContainsLabel(*I, true))
1205                 return CSFC_Failure;
1206             return CSFC_Success;
1207           }
1208           break;
1209         case CSFC_FallThrough:
1210           // If we have a fallthrough condition, then we must have found the
1211           // case started to include statements.  Consider the rest of the
1212           // statements in the compound statement as candidates for inclusion.
1213           assert(FoundCase && "Didn't find case but returned fallthrough?");
1214           // We recursively found Case, so we're not looking for it anymore.
1215           Case = nullptr;
1216 
1217           // If we found the case and skipped declarations, we can't do the
1218           // optimization.
1219           if (HadSkippedDecl)
1220             return CSFC_Failure;
1221           break;
1222         }
1223       }
1224     }
1225 
1226     // If we have statements in our range, then we know that the statements are
1227     // live and need to be added to the set of statements we're tracking.
1228     for (; I != E; ++I) {
1229       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1230       case CSFC_Failure: return CSFC_Failure;
1231       case CSFC_FallThrough:
1232         // A fallthrough result means that the statement was simple and just
1233         // included in ResultStmt, keep adding them afterwards.
1234         break;
1235       case CSFC_Success:
1236         // A successful result means that we found the break statement and
1237         // stopped statement inclusion.  We just ensure that any leftover stmts
1238         // are skippable and return success ourselves.
1239         for (++I; I != E; ++I)
1240           if (CodeGenFunction::ContainsLabel(*I, true))
1241             return CSFC_Failure;
1242         return CSFC_Success;
1243       }
1244     }
1245 
1246     return Case ? CSFC_Success : CSFC_FallThrough;
1247   }
1248 
1249   // Okay, this is some other statement that we don't handle explicitly, like a
1250   // for statement or increment etc.  If we are skipping over this statement,
1251   // just verify it doesn't have labels, which would make it invalid to elide.
1252   if (Case) {
1253     if (CodeGenFunction::ContainsLabel(S, true))
1254       return CSFC_Failure;
1255     return CSFC_Success;
1256   }
1257 
1258   // Otherwise, we want to include this statement.  Everything is cool with that
1259   // so long as it doesn't contain a break out of the switch we're in.
1260   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1261 
1262   // Otherwise, everything is great.  Include the statement and tell the caller
1263   // that we fall through and include the next statement as well.
1264   ResultStmts.push_back(S);
1265   return CSFC_FallThrough;
1266 }
1267 
1268 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1269 /// then invoke CollectStatementsForCase to find the list of statements to emit
1270 /// for a switch on constant.  See the comment above CollectStatementsForCase
1271 /// for more details.
1272 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1273                                        const llvm::APSInt &ConstantCondValue,
1274                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1275                                        ASTContext &C,
1276                                        const SwitchCase *&ResultCase) {
1277   // First step, find the switch case that is being branched to.  We can do this
1278   // efficiently by scanning the SwitchCase list.
1279   const SwitchCase *Case = S.getSwitchCaseList();
1280   const DefaultStmt *DefaultCase = nullptr;
1281 
1282   for (; Case; Case = Case->getNextSwitchCase()) {
1283     // It's either a default or case.  Just remember the default statement in
1284     // case we're not jumping to any numbered cases.
1285     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1286       DefaultCase = DS;
1287       continue;
1288     }
1289 
1290     // Check to see if this case is the one we're looking for.
1291     const CaseStmt *CS = cast<CaseStmt>(Case);
1292     // Don't handle case ranges yet.
1293     if (CS->getRHS()) return false;
1294 
1295     // If we found our case, remember it as 'case'.
1296     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1297       break;
1298   }
1299 
1300   // If we didn't find a matching case, we use a default if it exists, or we
1301   // elide the whole switch body!
1302   if (!Case) {
1303     // It is safe to elide the body of the switch if it doesn't contain labels
1304     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1305     if (!DefaultCase)
1306       return !CodeGenFunction::ContainsLabel(&S);
1307     Case = DefaultCase;
1308   }
1309 
1310   // Ok, we know which case is being jumped to, try to collect all the
1311   // statements that follow it.  This can fail for a variety of reasons.  Also,
1312   // check to see that the recursive walk actually found our case statement.
1313   // Insane cases like this can fail to find it in the recursive walk since we
1314   // don't handle every stmt kind:
1315   // switch (4) {
1316   //   while (1) {
1317   //     case 4: ...
1318   bool FoundCase = false;
1319   ResultCase = Case;
1320   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1321                                   ResultStmts) != CSFC_Failure &&
1322          FoundCase;
1323 }
1324 
1325 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1326   // Handle nested switch statements.
1327   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1328   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1329   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1330 
1331   // See if we can constant fold the condition of the switch and therefore only
1332   // emit the live case statement (if any) of the switch.
1333   llvm::APSInt ConstantCondValue;
1334   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1335     SmallVector<const Stmt*, 4> CaseStmts;
1336     const SwitchCase *Case = nullptr;
1337     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1338                                    getContext(), Case)) {
1339       if (Case) {
1340         RegionCounter CaseCnt = getPGORegionCounter(Case);
1341         CaseCnt.beginRegion(Builder);
1342       }
1343       RunCleanupsScope ExecutedScope(*this);
1344 
1345       // Emit the condition variable if needed inside the entire cleanup scope
1346       // used by this special case for constant folded switches.
1347       if (S.getConditionVariable())
1348         EmitAutoVarDecl(*S.getConditionVariable());
1349 
1350       // At this point, we are no longer "within" a switch instance, so
1351       // we can temporarily enforce this to ensure that any embedded case
1352       // statements are not emitted.
1353       SwitchInsn = nullptr;
1354 
1355       // Okay, we can dead code eliminate everything except this case.  Emit the
1356       // specified series of statements and we're good.
1357       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1358         EmitStmt(CaseStmts[i]);
1359       RegionCounter ExitCnt = getPGORegionCounter(&S);
1360       ExitCnt.beginRegion(Builder);
1361 
1362       // Now we want to restore the saved switch instance so that nested
1363       // switches continue to function properly
1364       SwitchInsn = SavedSwitchInsn;
1365 
1366       return;
1367     }
1368   }
1369 
1370   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1371 
1372   RunCleanupsScope ConditionScope(*this);
1373   if (S.getConditionVariable())
1374     EmitAutoVarDecl(*S.getConditionVariable());
1375   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1376 
1377   // Create basic block to hold stuff that comes after switch
1378   // statement. We also need to create a default block now so that
1379   // explicit case ranges tests can have a place to jump to on
1380   // failure.
1381   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1382   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1383   if (PGO.haveRegionCounts()) {
1384     // Walk the SwitchCase list to find how many there are.
1385     uint64_t DefaultCount = 0;
1386     unsigned NumCases = 0;
1387     for (const SwitchCase *Case = S.getSwitchCaseList();
1388          Case;
1389          Case = Case->getNextSwitchCase()) {
1390       if (isa<DefaultStmt>(Case))
1391         DefaultCount = getPGORegionCounter(Case).getCount();
1392       NumCases += 1;
1393     }
1394     SwitchWeights = new SmallVector<uint64_t, 16>();
1395     SwitchWeights->reserve(NumCases);
1396     // The default needs to be first. We store the edge count, so we already
1397     // know the right weight.
1398     SwitchWeights->push_back(DefaultCount);
1399   }
1400   CaseRangeBlock = DefaultBlock;
1401 
1402   // Clear the insertion point to indicate we are in unreachable code.
1403   Builder.ClearInsertionPoint();
1404 
1405   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1406   // then reuse last ContinueBlock.
1407   JumpDest OuterContinue;
1408   if (!BreakContinueStack.empty())
1409     OuterContinue = BreakContinueStack.back().ContinueBlock;
1410 
1411   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1412 
1413   // Emit switch body.
1414   EmitStmt(S.getBody());
1415 
1416   BreakContinueStack.pop_back();
1417 
1418   // Update the default block in case explicit case range tests have
1419   // been chained on top.
1420   SwitchInsn->setDefaultDest(CaseRangeBlock);
1421 
1422   // If a default was never emitted:
1423   if (!DefaultBlock->getParent()) {
1424     // If we have cleanups, emit the default block so that there's a
1425     // place to jump through the cleanups from.
1426     if (ConditionScope.requiresCleanups()) {
1427       EmitBlock(DefaultBlock);
1428 
1429     // Otherwise, just forward the default block to the switch end.
1430     } else {
1431       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1432       delete DefaultBlock;
1433     }
1434   }
1435 
1436   ConditionScope.ForceCleanup();
1437 
1438   // Emit continuation.
1439   EmitBlock(SwitchExit.getBlock(), true);
1440   RegionCounter ExitCnt = getPGORegionCounter(&S);
1441   ExitCnt.beginRegion(Builder);
1442 
1443   if (SwitchWeights) {
1444     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1445            "switch weights do not match switch cases");
1446     // If there's only one jump destination there's no sense weighting it.
1447     if (SwitchWeights->size() > 1)
1448       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1449                               PGO.createBranchWeights(*SwitchWeights));
1450     delete SwitchWeights;
1451   }
1452   SwitchInsn = SavedSwitchInsn;
1453   SwitchWeights = SavedSwitchWeights;
1454   CaseRangeBlock = SavedCRBlock;
1455 }
1456 
1457 static std::string
1458 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1459                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1460   std::string Result;
1461 
1462   while (*Constraint) {
1463     switch (*Constraint) {
1464     default:
1465       Result += Target.convertConstraint(Constraint);
1466       break;
1467     // Ignore these
1468     case '*':
1469     case '?':
1470     case '!':
1471     case '=': // Will see this and the following in mult-alt constraints.
1472     case '+':
1473       break;
1474     case '#': // Ignore the rest of the constraint alternative.
1475       while (Constraint[1] && Constraint[1] != ',')
1476         Constraint++;
1477       break;
1478     case ',':
1479       Result += "|";
1480       break;
1481     case 'g':
1482       Result += "imr";
1483       break;
1484     case '[': {
1485       assert(OutCons &&
1486              "Must pass output names to constraints with a symbolic name");
1487       unsigned Index;
1488       bool result = Target.resolveSymbolicName(Constraint,
1489                                                &(*OutCons)[0],
1490                                                OutCons->size(), Index);
1491       assert(result && "Could not resolve symbolic name"); (void)result;
1492       Result += llvm::utostr(Index);
1493       break;
1494     }
1495     }
1496 
1497     Constraint++;
1498   }
1499 
1500   return Result;
1501 }
1502 
1503 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1504 /// as using a particular register add that as a constraint that will be used
1505 /// in this asm stmt.
1506 static std::string
1507 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1508                        const TargetInfo &Target, CodeGenModule &CGM,
1509                        const AsmStmt &Stmt) {
1510   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1511   if (!AsmDeclRef)
1512     return Constraint;
1513   const ValueDecl &Value = *AsmDeclRef->getDecl();
1514   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1515   if (!Variable)
1516     return Constraint;
1517   if (Variable->getStorageClass() != SC_Register)
1518     return Constraint;
1519   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1520   if (!Attr)
1521     return Constraint;
1522   StringRef Register = Attr->getLabel();
1523   assert(Target.isValidGCCRegisterName(Register));
1524   // We're using validateOutputConstraint here because we only care if
1525   // this is a register constraint.
1526   TargetInfo::ConstraintInfo Info(Constraint, "");
1527   if (Target.validateOutputConstraint(Info) &&
1528       !Info.allowsRegister()) {
1529     CGM.ErrorUnsupported(&Stmt, "__asm__");
1530     return Constraint;
1531   }
1532   // Canonicalize the register here before returning it.
1533   Register = Target.getNormalizedGCCRegisterName(Register);
1534   return "{" + Register.str() + "}";
1535 }
1536 
1537 llvm::Value*
1538 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1539                                     LValue InputValue, QualType InputType,
1540                                     std::string &ConstraintStr,
1541                                     SourceLocation Loc) {
1542   llvm::Value *Arg;
1543   if (Info.allowsRegister() || !Info.allowsMemory()) {
1544     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1545       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1546     } else {
1547       llvm::Type *Ty = ConvertType(InputType);
1548       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1549       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1550         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1551         Ty = llvm::PointerType::getUnqual(Ty);
1552 
1553         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1554                                                        Ty));
1555       } else {
1556         Arg = InputValue.getAddress();
1557         ConstraintStr += '*';
1558       }
1559     }
1560   } else {
1561     Arg = InputValue.getAddress();
1562     ConstraintStr += '*';
1563   }
1564 
1565   return Arg;
1566 }
1567 
1568 llvm::Value* CodeGenFunction::EmitAsmInput(
1569                                          const TargetInfo::ConstraintInfo &Info,
1570                                            const Expr *InputExpr,
1571                                            std::string &ConstraintStr) {
1572   if (Info.allowsRegister() || !Info.allowsMemory())
1573     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1574       return EmitScalarExpr(InputExpr);
1575 
1576   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1577   LValue Dest = EmitLValue(InputExpr);
1578   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1579                             InputExpr->getExprLoc());
1580 }
1581 
1582 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1583 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1584 /// integers which are the source locations of the start of each line in the
1585 /// asm.
1586 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1587                                       CodeGenFunction &CGF) {
1588   SmallVector<llvm::Value *, 8> Locs;
1589   // Add the location of the first line to the MDNode.
1590   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1591                                         Str->getLocStart().getRawEncoding()));
1592   StringRef StrVal = Str->getString();
1593   if (!StrVal.empty()) {
1594     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1595     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1596 
1597     // Add the location of the start of each subsequent line of the asm to the
1598     // MDNode.
1599     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1600       if (StrVal[i] != '\n') continue;
1601       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1602                                                       CGF.getTarget());
1603       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1604                                             LineLoc.getRawEncoding()));
1605     }
1606   }
1607 
1608   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1609 }
1610 
1611 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1612   // Assemble the final asm string.
1613   std::string AsmString = S.generateAsmString(getContext());
1614 
1615   // Get all the output and input constraints together.
1616   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1617   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1618 
1619   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1620     StringRef Name;
1621     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1622       Name = GAS->getOutputName(i);
1623     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1624     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1625     assert(IsValid && "Failed to parse output constraint");
1626     OutputConstraintInfos.push_back(Info);
1627   }
1628 
1629   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1630     StringRef Name;
1631     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1632       Name = GAS->getInputName(i);
1633     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1634     bool IsValid =
1635       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1636                                           S.getNumOutputs(), Info);
1637     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1638     InputConstraintInfos.push_back(Info);
1639   }
1640 
1641   std::string Constraints;
1642 
1643   std::vector<LValue> ResultRegDests;
1644   std::vector<QualType> ResultRegQualTys;
1645   std::vector<llvm::Type *> ResultRegTypes;
1646   std::vector<llvm::Type *> ResultTruncRegTypes;
1647   std::vector<llvm::Type *> ArgTypes;
1648   std::vector<llvm::Value*> Args;
1649 
1650   // Keep track of inout constraints.
1651   std::string InOutConstraints;
1652   std::vector<llvm::Value*> InOutArgs;
1653   std::vector<llvm::Type*> InOutArgTypes;
1654 
1655   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1656     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1657 
1658     // Simplify the output constraint.
1659     std::string OutputConstraint(S.getOutputConstraint(i));
1660     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1661                                           getTarget());
1662 
1663     const Expr *OutExpr = S.getOutputExpr(i);
1664     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1665 
1666     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1667                                               getTarget(), CGM, S);
1668 
1669     LValue Dest = EmitLValue(OutExpr);
1670     if (!Constraints.empty())
1671       Constraints += ',';
1672 
1673     // If this is a register output, then make the inline asm return it
1674     // by-value.  If this is a memory result, return the value by-reference.
1675     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1676       Constraints += "=" + OutputConstraint;
1677       ResultRegQualTys.push_back(OutExpr->getType());
1678       ResultRegDests.push_back(Dest);
1679       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1680       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1681 
1682       // If this output is tied to an input, and if the input is larger, then
1683       // we need to set the actual result type of the inline asm node to be the
1684       // same as the input type.
1685       if (Info.hasMatchingInput()) {
1686         unsigned InputNo;
1687         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1688           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1689           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1690             break;
1691         }
1692         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1693 
1694         QualType InputTy = S.getInputExpr(InputNo)->getType();
1695         QualType OutputType = OutExpr->getType();
1696 
1697         uint64_t InputSize = getContext().getTypeSize(InputTy);
1698         if (getContext().getTypeSize(OutputType) < InputSize) {
1699           // Form the asm to return the value as a larger integer or fp type.
1700           ResultRegTypes.back() = ConvertType(InputTy);
1701         }
1702       }
1703       if (llvm::Type* AdjTy =
1704             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1705                                                  ResultRegTypes.back()))
1706         ResultRegTypes.back() = AdjTy;
1707       else {
1708         CGM.getDiags().Report(S.getAsmLoc(),
1709                               diag::err_asm_invalid_type_in_input)
1710             << OutExpr->getType() << OutputConstraint;
1711       }
1712     } else {
1713       ArgTypes.push_back(Dest.getAddress()->getType());
1714       Args.push_back(Dest.getAddress());
1715       Constraints += "=*";
1716       Constraints += OutputConstraint;
1717     }
1718 
1719     if (Info.isReadWrite()) {
1720       InOutConstraints += ',';
1721 
1722       const Expr *InputExpr = S.getOutputExpr(i);
1723       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1724                                             InOutConstraints,
1725                                             InputExpr->getExprLoc());
1726 
1727       if (llvm::Type* AdjTy =
1728           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1729                                                Arg->getType()))
1730         Arg = Builder.CreateBitCast(Arg, AdjTy);
1731 
1732       if (Info.allowsRegister())
1733         InOutConstraints += llvm::utostr(i);
1734       else
1735         InOutConstraints += OutputConstraint;
1736 
1737       InOutArgTypes.push_back(Arg->getType());
1738       InOutArgs.push_back(Arg);
1739     }
1740   }
1741 
1742   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1743 
1744   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1745     const Expr *InputExpr = S.getInputExpr(i);
1746 
1747     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1748 
1749     if (!Constraints.empty())
1750       Constraints += ',';
1751 
1752     // Simplify the input constraint.
1753     std::string InputConstraint(S.getInputConstraint(i));
1754     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1755                                          &OutputConstraintInfos);
1756 
1757     InputConstraint =
1758       AddVariableConstraints(InputConstraint,
1759                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1760                             getTarget(), CGM, S);
1761 
1762     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1763 
1764     // If this input argument is tied to a larger output result, extend the
1765     // input to be the same size as the output.  The LLVM backend wants to see
1766     // the input and output of a matching constraint be the same size.  Note
1767     // that GCC does not define what the top bits are here.  We use zext because
1768     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1769     if (Info.hasTiedOperand()) {
1770       unsigned Output = Info.getTiedOperand();
1771       QualType OutputType = S.getOutputExpr(Output)->getType();
1772       QualType InputTy = InputExpr->getType();
1773 
1774       if (getContext().getTypeSize(OutputType) >
1775           getContext().getTypeSize(InputTy)) {
1776         // Use ptrtoint as appropriate so that we can do our extension.
1777         if (isa<llvm::PointerType>(Arg->getType()))
1778           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1779         llvm::Type *OutputTy = ConvertType(OutputType);
1780         if (isa<llvm::IntegerType>(OutputTy))
1781           Arg = Builder.CreateZExt(Arg, OutputTy);
1782         else if (isa<llvm::PointerType>(OutputTy))
1783           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1784         else {
1785           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1786           Arg = Builder.CreateFPExt(Arg, OutputTy);
1787         }
1788       }
1789     }
1790     if (llvm::Type* AdjTy =
1791               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1792                                                    Arg->getType()))
1793       Arg = Builder.CreateBitCast(Arg, AdjTy);
1794     else
1795       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1796           << InputExpr->getType() << InputConstraint;
1797 
1798     ArgTypes.push_back(Arg->getType());
1799     Args.push_back(Arg);
1800     Constraints += InputConstraint;
1801   }
1802 
1803   // Append the "input" part of inout constraints last.
1804   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1805     ArgTypes.push_back(InOutArgTypes[i]);
1806     Args.push_back(InOutArgs[i]);
1807   }
1808   Constraints += InOutConstraints;
1809 
1810   // Clobbers
1811   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1812     StringRef Clobber = S.getClobber(i);
1813 
1814     if (Clobber != "memory" && Clobber != "cc")
1815     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1816 
1817     if (i != 0 || NumConstraints != 0)
1818       Constraints += ',';
1819 
1820     Constraints += "~{";
1821     Constraints += Clobber;
1822     Constraints += '}';
1823   }
1824 
1825   // Add machine specific clobbers
1826   std::string MachineClobbers = getTarget().getClobbers();
1827   if (!MachineClobbers.empty()) {
1828     if (!Constraints.empty())
1829       Constraints += ',';
1830     Constraints += MachineClobbers;
1831   }
1832 
1833   llvm::Type *ResultType;
1834   if (ResultRegTypes.empty())
1835     ResultType = VoidTy;
1836   else if (ResultRegTypes.size() == 1)
1837     ResultType = ResultRegTypes[0];
1838   else
1839     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1840 
1841   llvm::FunctionType *FTy =
1842     llvm::FunctionType::get(ResultType, ArgTypes, false);
1843 
1844   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1845   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1846     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1847   llvm::InlineAsm *IA =
1848     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1849                          /* IsAlignStack */ false, AsmDialect);
1850   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1851   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1852                        llvm::Attribute::NoUnwind);
1853 
1854   // Slap the source location of the inline asm into a !srcloc metadata on the
1855   // call.  FIXME: Handle metadata for MS-style inline asms.
1856   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1857     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1858                                                    *this));
1859 
1860   // Extract all of the register value results from the asm.
1861   std::vector<llvm::Value*> RegResults;
1862   if (ResultRegTypes.size() == 1) {
1863     RegResults.push_back(Result);
1864   } else {
1865     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1866       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1867       RegResults.push_back(Tmp);
1868     }
1869   }
1870 
1871   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1872     llvm::Value *Tmp = RegResults[i];
1873 
1874     // If the result type of the LLVM IR asm doesn't match the result type of
1875     // the expression, do the conversion.
1876     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1877       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1878 
1879       // Truncate the integer result to the right size, note that TruncTy can be
1880       // a pointer.
1881       if (TruncTy->isFloatingPointTy())
1882         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1883       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1884         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1885         Tmp = Builder.CreateTrunc(Tmp,
1886                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1887         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1888       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1889         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1890         Tmp = Builder.CreatePtrToInt(Tmp,
1891                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1892         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1893       } else if (TruncTy->isIntegerTy()) {
1894         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1895       } else if (TruncTy->isVectorTy()) {
1896         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1897       }
1898     }
1899 
1900     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1901   }
1902 }
1903 
1904 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1905   const RecordDecl *RD = S.getCapturedRecordDecl();
1906   QualType RecordTy = CGF.getContext().getRecordType(RD);
1907 
1908   // Initialize the captured struct.
1909   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1910                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1911 
1912   RecordDecl::field_iterator CurField = RD->field_begin();
1913   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1914                                            E = S.capture_init_end();
1915        I != E; ++I, ++CurField) {
1916     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1917     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1918   }
1919 
1920   return SlotLV;
1921 }
1922 
1923 /// Generate an outlined function for the body of a CapturedStmt, store any
1924 /// captured variables into the captured struct, and call the outlined function.
1925 llvm::Function *
1926 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1927   const CapturedDecl *CD = S.getCapturedDecl();
1928   const RecordDecl *RD = S.getCapturedRecordDecl();
1929   assert(CD->hasBody() && "missing CapturedDecl body");
1930 
1931   LValue CapStruct = InitCapturedStruct(*this, S);
1932 
1933   // Emit the CapturedDecl
1934   CodeGenFunction CGF(CGM, true);
1935   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1936   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
1937   delete CGF.CapturedStmtInfo;
1938 
1939   // Emit call to the helper function.
1940   EmitCallOrInvoke(F, CapStruct.getAddress());
1941 
1942   return F;
1943 }
1944 
1945 llvm::Value *
1946 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
1947   LValue CapStruct = InitCapturedStruct(*this, S);
1948   return CapStruct.getAddress();
1949 }
1950 
1951 /// Creates the outlined function for a CapturedStmt.
1952 llvm::Function *
1953 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1954                                               const RecordDecl *RD,
1955                                               SourceLocation Loc) {
1956   assert(CapturedStmtInfo &&
1957     "CapturedStmtInfo should be set when generating the captured function");
1958 
1959   // Build the argument list.
1960   ASTContext &Ctx = CGM.getContext();
1961   FunctionArgList Args;
1962   Args.append(CD->param_begin(), CD->param_end());
1963 
1964   // Create the function declaration.
1965   FunctionType::ExtInfo ExtInfo;
1966   const CGFunctionInfo &FuncInfo =
1967       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1968                                                     /*IsVariadic=*/false);
1969   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1970 
1971   llvm::Function *F =
1972     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1973                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
1974   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1975 
1976   // Generate the function.
1977   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
1978                 CD->getLocation(),
1979                 CD->getBody()->getLocStart());
1980 
1981   // Set the context parameter in CapturedStmtInfo.
1982   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1983   assert(DeclPtr && "missing context parameter for CapturedStmt");
1984   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1985 
1986   // If 'this' is captured, load it into CXXThisValue.
1987   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1988     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1989     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1990                                            Ctx.getTagDeclType(RD));
1991     LValue ThisLValue = EmitLValueForField(LV, FD);
1992     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
1993   }
1994 
1995   PGO.assignRegionCounters(CD, F);
1996   CapturedStmtInfo->EmitBody(*this, CD->getBody());
1997   FinishFunction(CD->getBodyRBrace());
1998   PGO.emitInstrumentationData();
1999   PGO.destroyRegionCounters();
2000 
2001   return F;
2002 }
2003