1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/SemaDiagnostic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/Intrinsics.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getLocStart();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S) {
45   assert(S && "Null statement?");
46   PGO.setCurrentStmt(S);
47 
48   // These statements have their own debug info handling.
49   if (EmitSimpleStmt(S))
50     return;
51 
52   // Check if we are generating unreachable code.
53   if (!HaveInsertPoint()) {
54     // If so, and the statement doesn't contain a label, then we do not need to
55     // generate actual code. This is safe because (1) the current point is
56     // unreachable, so we don't need to execute the code, and (2) we've already
57     // handled the statements which update internal data structures (like the
58     // local variable map) which could be used by subsequent statements.
59     if (!ContainsLabel(S)) {
60       // Verify that any decl statements were handled as simple, they may be in
61       // scope of subsequent reachable statements.
62       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
63       return;
64     }
65 
66     // Otherwise, make a new block to hold the code.
67     EnsureInsertPoint();
68   }
69 
70   // Generate a stoppoint if we are emitting debug info.
71   EmitStopPoint(S);
72 
73   switch (S->getStmtClass()) {
74   case Stmt::NoStmtClass:
75   case Stmt::CXXCatchStmtClass:
76   case Stmt::SEHExceptStmtClass:
77   case Stmt::SEHFinallyStmtClass:
78   case Stmt::MSDependentExistsStmtClass:
79   case Stmt::OMPParallelDirectiveClass:
80   case Stmt::OMPSimdDirectiveClass:
81     llvm_unreachable("invalid statement class to emit generically");
82   case Stmt::NullStmtClass:
83   case Stmt::CompoundStmtClass:
84   case Stmt::DeclStmtClass:
85   case Stmt::LabelStmtClass:
86   case Stmt::AttributedStmtClass:
87   case Stmt::GotoStmtClass:
88   case Stmt::BreakStmtClass:
89   case Stmt::ContinueStmtClass:
90   case Stmt::DefaultStmtClass:
91   case Stmt::CaseStmtClass:
92     llvm_unreachable("should have emitted these statements as simple");
93 
94 #define STMT(Type, Base)
95 #define ABSTRACT_STMT(Op)
96 #define EXPR(Type, Base) \
97   case Stmt::Type##Class:
98 #include "clang/AST/StmtNodes.inc"
99   {
100     // Remember the block we came in on.
101     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
102     assert(incoming && "expression emission must have an insertion point");
103 
104     EmitIgnoredExpr(cast<Expr>(S));
105 
106     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
107     assert(outgoing && "expression emission cleared block!");
108 
109     // The expression emitters assume (reasonably!) that the insertion
110     // point is always set.  To maintain that, the call-emission code
111     // for noreturn functions has to enter a new block with no
112     // predecessors.  We want to kill that block and mark the current
113     // insertion point unreachable in the common case of a call like
114     // "exit();".  Since expression emission doesn't otherwise create
115     // blocks with no predecessors, we can just test for that.
116     // However, we must be careful not to do this to our incoming
117     // block, because *statement* emission does sometimes create
118     // reachable blocks which will have no predecessors until later in
119     // the function.  This occurs with, e.g., labels that are not
120     // reachable by fallthrough.
121     if (incoming != outgoing && outgoing->use_empty()) {
122       outgoing->eraseFromParent();
123       Builder.ClearInsertionPoint();
124     }
125     break;
126   }
127 
128   case Stmt::IndirectGotoStmtClass:
129     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
130 
131   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
132   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
133   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
134   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
135 
136   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
137 
138   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
139   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
140   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
141   case Stmt::CapturedStmtClass: {
142     const CapturedStmt *CS = cast<CapturedStmt>(S);
143     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
144     }
145     break;
146   case Stmt::ObjCAtTryStmtClass:
147     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
148     break;
149   case Stmt::ObjCAtCatchStmtClass:
150     llvm_unreachable(
151                     "@catch statements should be handled by EmitObjCAtTryStmt");
152   case Stmt::ObjCAtFinallyStmtClass:
153     llvm_unreachable(
154                   "@finally statements should be handled by EmitObjCAtTryStmt");
155   case Stmt::ObjCAtThrowStmtClass:
156     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
157     break;
158   case Stmt::ObjCAtSynchronizedStmtClass:
159     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
160     break;
161   case Stmt::ObjCForCollectionStmtClass:
162     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
163     break;
164   case Stmt::ObjCAutoreleasePoolStmtClass:
165     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
166     break;
167 
168   case Stmt::CXXTryStmtClass:
169     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
170     break;
171   case Stmt::CXXForRangeStmtClass:
172     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
173     break;
174   case Stmt::SEHTryStmtClass:
175     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
176     break;
177   }
178 }
179 
180 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
181   switch (S->getStmtClass()) {
182   default: return false;
183   case Stmt::NullStmtClass: break;
184   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
185   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
186   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
187   case Stmt::AttributedStmtClass:
188                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
189   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
190   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
191   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
192   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
193   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
194   }
195 
196   return true;
197 }
198 
199 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
200 /// this captures the expression result of the last sub-statement and returns it
201 /// (for use by the statement expression extension).
202 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
203                                                AggValueSlot AggSlot) {
204   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
205                              "LLVM IR generation of compound statement ('{}')");
206 
207   // Keep track of the current cleanup stack depth, including debug scopes.
208   LexicalScope Scope(*this, S.getSourceRange());
209 
210   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
211 }
212 
213 llvm::Value*
214 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
215                                               bool GetLast,
216                                               AggValueSlot AggSlot) {
217 
218   for (CompoundStmt::const_body_iterator I = S.body_begin(),
219        E = S.body_end()-GetLast; I != E; ++I)
220     EmitStmt(*I);
221 
222   llvm::Value *RetAlloca = 0;
223   if (GetLast) {
224     // We have to special case labels here.  They are statements, but when put
225     // at the end of a statement expression, they yield the value of their
226     // subexpression.  Handle this by walking through all labels we encounter,
227     // emitting them before we evaluate the subexpr.
228     const Stmt *LastStmt = S.body_back();
229     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
230       EmitLabel(LS->getDecl());
231       LastStmt = LS->getSubStmt();
232     }
233 
234     EnsureInsertPoint();
235 
236     QualType ExprTy = cast<Expr>(LastStmt)->getType();
237     if (hasAggregateEvaluationKind(ExprTy)) {
238       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
239     } else {
240       // We can't return an RValue here because there might be cleanups at
241       // the end of the StmtExpr.  Because of that, we have to emit the result
242       // here into a temporary alloca.
243       RetAlloca = CreateMemTemp(ExprTy);
244       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
245                        /*IsInit*/false);
246     }
247 
248   }
249 
250   return RetAlloca;
251 }
252 
253 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
254   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
255 
256   // If there is a cleanup stack, then we it isn't worth trying to
257   // simplify this block (we would need to remove it from the scope map
258   // and cleanup entry).
259   if (!EHStack.empty())
260     return;
261 
262   // Can only simplify direct branches.
263   if (!BI || !BI->isUnconditional())
264     return;
265 
266   // Can only simplify empty blocks.
267   if (BI != BB->begin())
268     return;
269 
270   BB->replaceAllUsesWith(BI->getSuccessor(0));
271   BI->eraseFromParent();
272   BB->eraseFromParent();
273 }
274 
275 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
276   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
277 
278   // Fall out of the current block (if necessary).
279   EmitBranch(BB);
280 
281   if (IsFinished && BB->use_empty()) {
282     delete BB;
283     return;
284   }
285 
286   // Place the block after the current block, if possible, or else at
287   // the end of the function.
288   if (CurBB && CurBB->getParent())
289     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
290   else
291     CurFn->getBasicBlockList().push_back(BB);
292   Builder.SetInsertPoint(BB);
293 }
294 
295 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
296   // Emit a branch from the current block to the target one if this
297   // was a real block.  If this was just a fall-through block after a
298   // terminator, don't emit it.
299   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
300 
301   if (!CurBB || CurBB->getTerminator()) {
302     // If there is no insert point or the previous block is already
303     // terminated, don't touch it.
304   } else {
305     // Otherwise, create a fall-through branch.
306     Builder.CreateBr(Target);
307   }
308 
309   Builder.ClearInsertionPoint();
310 }
311 
312 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
313   bool inserted = false;
314   for (llvm::User *u : block->users()) {
315     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
316       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
317       inserted = true;
318       break;
319     }
320   }
321 
322   if (!inserted)
323     CurFn->getBasicBlockList().push_back(block);
324 
325   Builder.SetInsertPoint(block);
326 }
327 
328 CodeGenFunction::JumpDest
329 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
330   JumpDest &Dest = LabelMap[D];
331   if (Dest.isValid()) return Dest;
332 
333   // Create, but don't insert, the new block.
334   Dest = JumpDest(createBasicBlock(D->getName()),
335                   EHScopeStack::stable_iterator::invalid(),
336                   NextCleanupDestIndex++);
337   return Dest;
338 }
339 
340 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
341   // Add this label to the current lexical scope if we're within any
342   // normal cleanups.  Jumps "in" to this label --- when permitted by
343   // the language --- may need to be routed around such cleanups.
344   if (EHStack.hasNormalCleanups() && CurLexicalScope)
345     CurLexicalScope->addLabel(D);
346 
347   JumpDest &Dest = LabelMap[D];
348 
349   // If we didn't need a forward reference to this label, just go
350   // ahead and create a destination at the current scope.
351   if (!Dest.isValid()) {
352     Dest = getJumpDestInCurrentScope(D->getName());
353 
354   // Otherwise, we need to give this label a target depth and remove
355   // it from the branch-fixups list.
356   } else {
357     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
358     Dest.setScopeDepth(EHStack.stable_begin());
359     ResolveBranchFixups(Dest.getBlock());
360   }
361 
362   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
363   EmitBlock(Dest.getBlock());
364   Cnt.beginRegion(Builder);
365 }
366 
367 /// Change the cleanup scope of the labels in this lexical scope to
368 /// match the scope of the enclosing context.
369 void CodeGenFunction::LexicalScope::rescopeLabels() {
370   assert(!Labels.empty());
371   EHScopeStack::stable_iterator innermostScope
372     = CGF.EHStack.getInnermostNormalCleanup();
373 
374   // Change the scope depth of all the labels.
375   for (SmallVectorImpl<const LabelDecl*>::const_iterator
376          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
377     assert(CGF.LabelMap.count(*i));
378     JumpDest &dest = CGF.LabelMap.find(*i)->second;
379     assert(dest.getScopeDepth().isValid());
380     assert(innermostScope.encloses(dest.getScopeDepth()));
381     dest.setScopeDepth(innermostScope);
382   }
383 
384   // Reparent the labels if the new scope also has cleanups.
385   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
386     ParentScope->Labels.append(Labels.begin(), Labels.end());
387   }
388 }
389 
390 
391 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
392   EmitLabel(S.getDecl());
393   EmitStmt(S.getSubStmt());
394 }
395 
396 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
397   EmitStmt(S.getSubStmt());
398 }
399 
400 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
401   // If this code is reachable then emit a stop point (if generating
402   // debug info). We have to do this ourselves because we are on the
403   // "simple" statement path.
404   if (HaveInsertPoint())
405     EmitStopPoint(&S);
406 
407   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
408 }
409 
410 
411 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
412   if (const LabelDecl *Target = S.getConstantTarget()) {
413     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
414     return;
415   }
416 
417   // Ensure that we have an i8* for our PHI node.
418   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
419                                          Int8PtrTy, "addr");
420   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
421 
422   // Get the basic block for the indirect goto.
423   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
424 
425   // The first instruction in the block has to be the PHI for the switch dest,
426   // add an entry for this branch.
427   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
428 
429   EmitBranch(IndGotoBB);
430 }
431 
432 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
433   // C99 6.8.4.1: The first substatement is executed if the expression compares
434   // unequal to 0.  The condition must be a scalar type.
435   LexicalScope ConditionScope(*this, S.getSourceRange());
436   RegionCounter Cnt = getPGORegionCounter(&S);
437 
438   if (S.getConditionVariable())
439     EmitAutoVarDecl(*S.getConditionVariable());
440 
441   // If the condition constant folds and can be elided, try to avoid emitting
442   // the condition and the dead arm of the if/else.
443   bool CondConstant;
444   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
445     // Figure out which block (then or else) is executed.
446     const Stmt *Executed = S.getThen();
447     const Stmt *Skipped  = S.getElse();
448     if (!CondConstant)  // Condition false?
449       std::swap(Executed, Skipped);
450 
451     // If the skipped block has no labels in it, just emit the executed block.
452     // This avoids emitting dead code and simplifies the CFG substantially.
453     if (!ContainsLabel(Skipped)) {
454       if (CondConstant)
455         Cnt.beginRegion(Builder);
456       if (Executed) {
457         RunCleanupsScope ExecutedScope(*this);
458         EmitStmt(Executed);
459       }
460       return;
461     }
462   }
463 
464   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
465   // the conditional branch.
466   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
467   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
468   llvm::BasicBlock *ElseBlock = ContBlock;
469   if (S.getElse())
470     ElseBlock = createBasicBlock("if.else");
471 
472   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
473 
474   // Emit the 'then' code.
475   EmitBlock(ThenBlock);
476   Cnt.beginRegion(Builder);
477   {
478     RunCleanupsScope ThenScope(*this);
479     EmitStmt(S.getThen());
480   }
481   EmitBranch(ContBlock);
482 
483   // Emit the 'else' code if present.
484   if (const Stmt *Else = S.getElse()) {
485     // There is no need to emit line number for unconditional branch.
486     if (getDebugInfo())
487       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
488     EmitBlock(ElseBlock);
489     {
490       RunCleanupsScope ElseScope(*this);
491       EmitStmt(Else);
492     }
493     // There is no need to emit line number for unconditional branch.
494     if (getDebugInfo())
495       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
496     EmitBranch(ContBlock);
497   }
498 
499   // Emit the continuation block for code after the if.
500   EmitBlock(ContBlock, true);
501 }
502 
503 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
504   RegionCounter Cnt = getPGORegionCounter(&S);
505 
506   // Emit the header for the loop, which will also become
507   // the continue target.
508   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
509   EmitBlock(LoopHeader.getBlock());
510 
511   // Create an exit block for when the condition fails, which will
512   // also become the break target.
513   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
514 
515   // Store the blocks to use for break and continue.
516   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
517 
518   // C++ [stmt.while]p2:
519   //   When the condition of a while statement is a declaration, the
520   //   scope of the variable that is declared extends from its point
521   //   of declaration (3.3.2) to the end of the while statement.
522   //   [...]
523   //   The object created in a condition is destroyed and created
524   //   with each iteration of the loop.
525   RunCleanupsScope ConditionScope(*this);
526 
527   if (S.getConditionVariable())
528     EmitAutoVarDecl(*S.getConditionVariable());
529 
530   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
531   // evaluation of the controlling expression takes place before each
532   // execution of the loop body.
533   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
534 
535   // while(1) is common, avoid extra exit blocks.  Be sure
536   // to correctly handle break/continue though.
537   bool EmitBoolCondBranch = true;
538   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
539     if (C->isOne())
540       EmitBoolCondBranch = false;
541 
542   // As long as the condition is true, go to the loop body.
543   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
544   if (EmitBoolCondBranch) {
545     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
546     if (ConditionScope.requiresCleanups())
547       ExitBlock = createBasicBlock("while.exit");
548     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
549                          PGO.createLoopWeights(S.getCond(), Cnt));
550 
551     if (ExitBlock != LoopExit.getBlock()) {
552       EmitBlock(ExitBlock);
553       EmitBranchThroughCleanup(LoopExit);
554     }
555   }
556 
557   // Emit the loop body.  We have to emit this in a cleanup scope
558   // because it might be a singleton DeclStmt.
559   {
560     RunCleanupsScope BodyScope(*this);
561     EmitBlock(LoopBody);
562     Cnt.beginRegion(Builder);
563     EmitStmt(S.getBody());
564   }
565 
566   BreakContinueStack.pop_back();
567 
568   // Immediately force cleanup.
569   ConditionScope.ForceCleanup();
570 
571   // Branch to the loop header again.
572   EmitBranch(LoopHeader.getBlock());
573 
574   // Emit the exit block.
575   EmitBlock(LoopExit.getBlock(), true);
576 
577   // The LoopHeader typically is just a branch if we skipped emitting
578   // a branch, try to erase it.
579   if (!EmitBoolCondBranch)
580     SimplifyForwardingBlocks(LoopHeader.getBlock());
581 }
582 
583 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
584   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
585   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
586 
587   RegionCounter Cnt = getPGORegionCounter(&S);
588 
589   // Store the blocks to use for break and continue.
590   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
591 
592   // Emit the body of the loop.
593   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
594   EmitBlockWithFallThrough(LoopBody, Cnt);
595   {
596     RunCleanupsScope BodyScope(*this);
597     EmitStmt(S.getBody());
598   }
599 
600   EmitBlock(LoopCond.getBlock());
601 
602   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
603   // after each execution of the loop body."
604 
605   // Evaluate the conditional in the while header.
606   // C99 6.8.5p2/p4: The first substatement is executed if the expression
607   // compares unequal to 0.  The condition must be a scalar type.
608   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
609 
610   BreakContinueStack.pop_back();
611 
612   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
613   // to correctly handle break/continue though.
614   bool EmitBoolCondBranch = true;
615   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
616     if (C->isZero())
617       EmitBoolCondBranch = false;
618 
619   // As long as the condition is true, iterate the loop.
620   if (EmitBoolCondBranch)
621     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
622                          PGO.createLoopWeights(S.getCond(), Cnt));
623 
624   // Emit the exit block.
625   EmitBlock(LoopExit.getBlock());
626 
627   // The DoCond block typically is just a branch if we skipped
628   // emitting a branch, try to erase it.
629   if (!EmitBoolCondBranch)
630     SimplifyForwardingBlocks(LoopCond.getBlock());
631 }
632 
633 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
634   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
635 
636   RunCleanupsScope ForScope(*this);
637 
638   CGDebugInfo *DI = getDebugInfo();
639   if (DI)
640     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
641 
642   // Evaluate the first part before the loop.
643   if (S.getInit())
644     EmitStmt(S.getInit());
645 
646   RegionCounter Cnt = getPGORegionCounter(&S);
647 
648   // Start the loop with a block that tests the condition.
649   // If there's an increment, the continue scope will be overwritten
650   // later.
651   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
652   llvm::BasicBlock *CondBlock = Continue.getBlock();
653   EmitBlock(CondBlock);
654 
655   // If the for loop doesn't have an increment we can just use the
656   // condition as the continue block.  Otherwise we'll need to create
657   // a block for it (in the current scope, i.e. in the scope of the
658   // condition), and that we will become our continue block.
659   if (S.getInc())
660     Continue = getJumpDestInCurrentScope("for.inc");
661 
662   // Store the blocks to use for break and continue.
663   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
664 
665   // Create a cleanup scope for the condition variable cleanups.
666   RunCleanupsScope ConditionScope(*this);
667 
668   if (S.getCond()) {
669     // If the for statement has a condition scope, emit the local variable
670     // declaration.
671     if (S.getConditionVariable()) {
672       EmitAutoVarDecl(*S.getConditionVariable());
673     }
674 
675     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
676     // If there are any cleanups between here and the loop-exit scope,
677     // create a block to stage a loop exit along.
678     if (ForScope.requiresCleanups())
679       ExitBlock = createBasicBlock("for.cond.cleanup");
680 
681     // As long as the condition is true, iterate the loop.
682     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
683 
684     // C99 6.8.5p2/p4: The first substatement is executed if the expression
685     // compares unequal to 0.  The condition must be a scalar type.
686     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
687     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
688                          PGO.createLoopWeights(S.getCond(), Cnt));
689 
690     if (ExitBlock != LoopExit.getBlock()) {
691       EmitBlock(ExitBlock);
692       EmitBranchThroughCleanup(LoopExit);
693     }
694 
695     EmitBlock(ForBody);
696   } else {
697     // Treat it as a non-zero constant.  Don't even create a new block for the
698     // body, just fall into it.
699   }
700   Cnt.beginRegion(Builder);
701 
702   {
703     // Create a separate cleanup scope for the body, in case it is not
704     // a compound statement.
705     RunCleanupsScope BodyScope(*this);
706     EmitStmt(S.getBody());
707   }
708 
709   // If there is an increment, emit it next.
710   if (S.getInc()) {
711     EmitBlock(Continue.getBlock());
712     EmitStmt(S.getInc());
713   }
714 
715   BreakContinueStack.pop_back();
716 
717   ConditionScope.ForceCleanup();
718   EmitBranch(CondBlock);
719 
720   ForScope.ForceCleanup();
721 
722   if (DI)
723     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
724 
725   // Emit the fall-through block.
726   EmitBlock(LoopExit.getBlock(), true);
727 }
728 
729 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
730   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
731 
732   RunCleanupsScope ForScope(*this);
733 
734   CGDebugInfo *DI = getDebugInfo();
735   if (DI)
736     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
737 
738   // Evaluate the first pieces before the loop.
739   EmitStmt(S.getRangeStmt());
740   EmitStmt(S.getBeginEndStmt());
741 
742   RegionCounter Cnt = getPGORegionCounter(&S);
743 
744   // Start the loop with a block that tests the condition.
745   // If there's an increment, the continue scope will be overwritten
746   // later.
747   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
748   EmitBlock(CondBlock);
749 
750   // If there are any cleanups between here and the loop-exit scope,
751   // create a block to stage a loop exit along.
752   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
753   if (ForScope.requiresCleanups())
754     ExitBlock = createBasicBlock("for.cond.cleanup");
755 
756   // The loop body, consisting of the specified body and the loop variable.
757   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
758 
759   // The body is executed if the expression, contextually converted
760   // to bool, is true.
761   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
762   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
763                        PGO.createLoopWeights(S.getCond(), Cnt));
764 
765   if (ExitBlock != LoopExit.getBlock()) {
766     EmitBlock(ExitBlock);
767     EmitBranchThroughCleanup(LoopExit);
768   }
769 
770   EmitBlock(ForBody);
771   Cnt.beginRegion(Builder);
772 
773   // Create a block for the increment. In case of a 'continue', we jump there.
774   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
775 
776   // Store the blocks to use for break and continue.
777   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
778 
779   {
780     // Create a separate cleanup scope for the loop variable and body.
781     RunCleanupsScope BodyScope(*this);
782     EmitStmt(S.getLoopVarStmt());
783     EmitStmt(S.getBody());
784   }
785 
786   // If there is an increment, emit it next.
787   EmitBlock(Continue.getBlock());
788   EmitStmt(S.getInc());
789 
790   BreakContinueStack.pop_back();
791 
792   EmitBranch(CondBlock);
793 
794   ForScope.ForceCleanup();
795 
796   if (DI)
797     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
798 
799   // Emit the fall-through block.
800   EmitBlock(LoopExit.getBlock(), true);
801 }
802 
803 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
804   if (RV.isScalar()) {
805     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
806   } else if (RV.isAggregate()) {
807     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
808   } else {
809     EmitStoreOfComplex(RV.getComplexVal(),
810                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
811                        /*init*/ true);
812   }
813   EmitBranchThroughCleanup(ReturnBlock);
814 }
815 
816 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
817 /// if the function returns void, or may be missing one if the function returns
818 /// non-void.  Fun stuff :).
819 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
820   // Emit the result value, even if unused, to evalute the side effects.
821   const Expr *RV = S.getRetValue();
822 
823   // Treat block literals in a return expression as if they appeared
824   // in their own scope.  This permits a small, easily-implemented
825   // exception to our over-conservative rules about not jumping to
826   // statements following block literals with non-trivial cleanups.
827   RunCleanupsScope cleanupScope(*this);
828   if (const ExprWithCleanups *cleanups =
829         dyn_cast_or_null<ExprWithCleanups>(RV)) {
830     enterFullExpression(cleanups);
831     RV = cleanups->getSubExpr();
832   }
833 
834   // FIXME: Clean this up by using an LValue for ReturnTemp,
835   // EmitStoreThroughLValue, and EmitAnyExpr.
836   if (getLangOpts().ElideConstructors &&
837       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
838     // Apply the named return value optimization for this return statement,
839     // which means doing nothing: the appropriate result has already been
840     // constructed into the NRVO variable.
841 
842     // If there is an NRVO flag for this variable, set it to 1 into indicate
843     // that the cleanup code should not destroy the variable.
844     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
845       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
846   } else if (!ReturnValue) {
847     // Make sure not to return anything, but evaluate the expression
848     // for side effects.
849     if (RV)
850       EmitAnyExpr(RV);
851   } else if (RV == 0) {
852     // Do nothing (return value is left uninitialized)
853   } else if (FnRetTy->isReferenceType()) {
854     // If this function returns a reference, take the address of the expression
855     // rather than the value.
856     RValue Result = EmitReferenceBindingToExpr(RV);
857     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
858   } else {
859     switch (getEvaluationKind(RV->getType())) {
860     case TEK_Scalar:
861       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
862       break;
863     case TEK_Complex:
864       EmitComplexExprIntoLValue(RV,
865                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
866                                 /*isInit*/ true);
867       break;
868     case TEK_Aggregate: {
869       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
870       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
871                                             Qualifiers(),
872                                             AggValueSlot::IsDestructed,
873                                             AggValueSlot::DoesNotNeedGCBarriers,
874                                             AggValueSlot::IsNotAliased));
875       break;
876     }
877     }
878   }
879 
880   ++NumReturnExprs;
881   if (RV == 0 || RV->isEvaluatable(getContext()))
882     ++NumSimpleReturnExprs;
883 
884   cleanupScope.ForceCleanup();
885   EmitBranchThroughCleanup(ReturnBlock);
886 }
887 
888 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
889   // As long as debug info is modeled with instructions, we have to ensure we
890   // have a place to insert here and write the stop point here.
891   if (HaveInsertPoint())
892     EmitStopPoint(&S);
893 
894   for (const auto *I : S.decls())
895     EmitDecl(*I);
896 }
897 
898 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
899   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
900 
901   // If this code is reachable then emit a stop point (if generating
902   // debug info). We have to do this ourselves because we are on the
903   // "simple" statement path.
904   if (HaveInsertPoint())
905     EmitStopPoint(&S);
906 
907   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
908 }
909 
910 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
911   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
912 
913   // If this code is reachable then emit a stop point (if generating
914   // debug info). We have to do this ourselves because we are on the
915   // "simple" statement path.
916   if (HaveInsertPoint())
917     EmitStopPoint(&S);
918 
919   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
920 }
921 
922 /// EmitCaseStmtRange - If case statement range is not too big then
923 /// add multiple cases to switch instruction, one for each value within
924 /// the range. If range is too big then emit "if" condition check.
925 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
926   assert(S.getRHS() && "Expected RHS value in CaseStmt");
927 
928   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
929   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
930 
931   RegionCounter CaseCnt = getPGORegionCounter(&S);
932 
933   // Emit the code for this case. We do this first to make sure it is
934   // properly chained from our predecessor before generating the
935   // switch machinery to enter this block.
936   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
937   EmitBlockWithFallThrough(CaseDest, CaseCnt);
938   EmitStmt(S.getSubStmt());
939 
940   // If range is empty, do nothing.
941   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
942     return;
943 
944   llvm::APInt Range = RHS - LHS;
945   // FIXME: parameters such as this should not be hardcoded.
946   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
947     // Range is small enough to add multiple switch instruction cases.
948     uint64_t Total = CaseCnt.getCount();
949     unsigned NCases = Range.getZExtValue() + 1;
950     // We only have one region counter for the entire set of cases here, so we
951     // need to divide the weights evenly between the generated cases, ensuring
952     // that the total weight is preserved. E.g., a weight of 5 over three cases
953     // will be distributed as weights of 2, 2, and 1.
954     uint64_t Weight = Total / NCases, Rem = Total % NCases;
955     for (unsigned I = 0; I != NCases; ++I) {
956       if (SwitchWeights)
957         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
958       if (Rem)
959         Rem--;
960       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
961       LHS++;
962     }
963     return;
964   }
965 
966   // The range is too big. Emit "if" condition into a new block,
967   // making sure to save and restore the current insertion point.
968   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
969 
970   // Push this test onto the chain of range checks (which terminates
971   // in the default basic block). The switch's default will be changed
972   // to the top of this chain after switch emission is complete.
973   llvm::BasicBlock *FalseDest = CaseRangeBlock;
974   CaseRangeBlock = createBasicBlock("sw.caserange");
975 
976   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
977   Builder.SetInsertPoint(CaseRangeBlock);
978 
979   // Emit range check.
980   llvm::Value *Diff =
981     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
982   llvm::Value *Cond =
983     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
984 
985   llvm::MDNode *Weights = 0;
986   if (SwitchWeights) {
987     uint64_t ThisCount = CaseCnt.getCount();
988     uint64_t DefaultCount = (*SwitchWeights)[0];
989     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
990 
991     // Since we're chaining the switch default through each large case range, we
992     // need to update the weight for the default, ie, the first case, to include
993     // this case.
994     (*SwitchWeights)[0] += ThisCount;
995   }
996   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
997 
998   // Restore the appropriate insertion point.
999   if (RestoreBB)
1000     Builder.SetInsertPoint(RestoreBB);
1001   else
1002     Builder.ClearInsertionPoint();
1003 }
1004 
1005 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1006   // If there is no enclosing switch instance that we're aware of, then this
1007   // case statement and its block can be elided.  This situation only happens
1008   // when we've constant-folded the switch, are emitting the constant case,
1009   // and part of the constant case includes another case statement.  For
1010   // instance: switch (4) { case 4: do { case 5: } while (1); }
1011   if (!SwitchInsn) {
1012     EmitStmt(S.getSubStmt());
1013     return;
1014   }
1015 
1016   // Handle case ranges.
1017   if (S.getRHS()) {
1018     EmitCaseStmtRange(S);
1019     return;
1020   }
1021 
1022   RegionCounter CaseCnt = getPGORegionCounter(&S);
1023   llvm::ConstantInt *CaseVal =
1024     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1025 
1026   // If the body of the case is just a 'break', try to not emit an empty block.
1027   // If we're profiling or we're not optimizing, leave the block in for better
1028   // debug and coverage analysis.
1029   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1030       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1031       isa<BreakStmt>(S.getSubStmt())) {
1032     JumpDest Block = BreakContinueStack.back().BreakBlock;
1033 
1034     // Only do this optimization if there are no cleanups that need emitting.
1035     if (isObviouslyBranchWithoutCleanups(Block)) {
1036       if (SwitchWeights)
1037         SwitchWeights->push_back(CaseCnt.getCount());
1038       SwitchInsn->addCase(CaseVal, Block.getBlock());
1039 
1040       // If there was a fallthrough into this case, make sure to redirect it to
1041       // the end of the switch as well.
1042       if (Builder.GetInsertBlock()) {
1043         Builder.CreateBr(Block.getBlock());
1044         Builder.ClearInsertionPoint();
1045       }
1046       return;
1047     }
1048   }
1049 
1050   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1051   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1052   if (SwitchWeights)
1053     SwitchWeights->push_back(CaseCnt.getCount());
1054   SwitchInsn->addCase(CaseVal, CaseDest);
1055 
1056   // Recursively emitting the statement is acceptable, but is not wonderful for
1057   // code where we have many case statements nested together, i.e.:
1058   //  case 1:
1059   //    case 2:
1060   //      case 3: etc.
1061   // Handling this recursively will create a new block for each case statement
1062   // that falls through to the next case which is IR intensive.  It also causes
1063   // deep recursion which can run into stack depth limitations.  Handle
1064   // sequential non-range case statements specially.
1065   const CaseStmt *CurCase = &S;
1066   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1067 
1068   // Otherwise, iteratively add consecutive cases to this switch stmt.
1069   while (NextCase && NextCase->getRHS() == 0) {
1070     CurCase = NextCase;
1071     llvm::ConstantInt *CaseVal =
1072       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1073 
1074     CaseCnt = getPGORegionCounter(NextCase);
1075     if (SwitchWeights)
1076       SwitchWeights->push_back(CaseCnt.getCount());
1077     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1078       CaseDest = createBasicBlock("sw.bb");
1079       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1080     }
1081 
1082     SwitchInsn->addCase(CaseVal, CaseDest);
1083     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1084   }
1085 
1086   // Normal default recursion for non-cases.
1087   EmitStmt(CurCase->getSubStmt());
1088 }
1089 
1090 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1091   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1092   assert(DefaultBlock->empty() &&
1093          "EmitDefaultStmt: Default block already defined?");
1094 
1095   RegionCounter Cnt = getPGORegionCounter(&S);
1096   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1097 
1098   EmitStmt(S.getSubStmt());
1099 }
1100 
1101 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1102 /// constant value that is being switched on, see if we can dead code eliminate
1103 /// the body of the switch to a simple series of statements to emit.  Basically,
1104 /// on a switch (5) we want to find these statements:
1105 ///    case 5:
1106 ///      printf(...);    <--
1107 ///      ++i;            <--
1108 ///      break;
1109 ///
1110 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1111 /// transformation (for example, one of the elided statements contains a label
1112 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1113 /// should include statements after it (e.g. the printf() line is a substmt of
1114 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1115 /// statement, then return CSFC_Success.
1116 ///
1117 /// If Case is non-null, then we are looking for the specified case, checking
1118 /// that nothing we jump over contains labels.  If Case is null, then we found
1119 /// the case and are looking for the break.
1120 ///
1121 /// If the recursive walk actually finds our Case, then we set FoundCase to
1122 /// true.
1123 ///
1124 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1125 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1126                                             const SwitchCase *Case,
1127                                             bool &FoundCase,
1128                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1129   // If this is a null statement, just succeed.
1130   if (S == 0)
1131     return Case ? CSFC_Success : CSFC_FallThrough;
1132 
1133   // If this is the switchcase (case 4: or default) that we're looking for, then
1134   // we're in business.  Just add the substatement.
1135   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1136     if (S == Case) {
1137       FoundCase = true;
1138       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1139                                       ResultStmts);
1140     }
1141 
1142     // Otherwise, this is some other case or default statement, just ignore it.
1143     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1144                                     ResultStmts);
1145   }
1146 
1147   // If we are in the live part of the code and we found our break statement,
1148   // return a success!
1149   if (Case == 0 && isa<BreakStmt>(S))
1150     return CSFC_Success;
1151 
1152   // If this is a switch statement, then it might contain the SwitchCase, the
1153   // break, or neither.
1154   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1155     // Handle this as two cases: we might be looking for the SwitchCase (if so
1156     // the skipped statements must be skippable) or we might already have it.
1157     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1158     if (Case) {
1159       // Keep track of whether we see a skipped declaration.  The code could be
1160       // using the declaration even if it is skipped, so we can't optimize out
1161       // the decl if the kept statements might refer to it.
1162       bool HadSkippedDecl = false;
1163 
1164       // If we're looking for the case, just see if we can skip each of the
1165       // substatements.
1166       for (; Case && I != E; ++I) {
1167         HadSkippedDecl |= isa<DeclStmt>(*I);
1168 
1169         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1170         case CSFC_Failure: return CSFC_Failure;
1171         case CSFC_Success:
1172           // A successful result means that either 1) that the statement doesn't
1173           // have the case and is skippable, or 2) does contain the case value
1174           // and also contains the break to exit the switch.  In the later case,
1175           // we just verify the rest of the statements are elidable.
1176           if (FoundCase) {
1177             // If we found the case and skipped declarations, we can't do the
1178             // optimization.
1179             if (HadSkippedDecl)
1180               return CSFC_Failure;
1181 
1182             for (++I; I != E; ++I)
1183               if (CodeGenFunction::ContainsLabel(*I, true))
1184                 return CSFC_Failure;
1185             return CSFC_Success;
1186           }
1187           break;
1188         case CSFC_FallThrough:
1189           // If we have a fallthrough condition, then we must have found the
1190           // case started to include statements.  Consider the rest of the
1191           // statements in the compound statement as candidates for inclusion.
1192           assert(FoundCase && "Didn't find case but returned fallthrough?");
1193           // We recursively found Case, so we're not looking for it anymore.
1194           Case = 0;
1195 
1196           // If we found the case and skipped declarations, we can't do the
1197           // optimization.
1198           if (HadSkippedDecl)
1199             return CSFC_Failure;
1200           break;
1201         }
1202       }
1203     }
1204 
1205     // If we have statements in our range, then we know that the statements are
1206     // live and need to be added to the set of statements we're tracking.
1207     for (; I != E; ++I) {
1208       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1209       case CSFC_Failure: return CSFC_Failure;
1210       case CSFC_FallThrough:
1211         // A fallthrough result means that the statement was simple and just
1212         // included in ResultStmt, keep adding them afterwards.
1213         break;
1214       case CSFC_Success:
1215         // A successful result means that we found the break statement and
1216         // stopped statement inclusion.  We just ensure that any leftover stmts
1217         // are skippable and return success ourselves.
1218         for (++I; I != E; ++I)
1219           if (CodeGenFunction::ContainsLabel(*I, true))
1220             return CSFC_Failure;
1221         return CSFC_Success;
1222       }
1223     }
1224 
1225     return Case ? CSFC_Success : CSFC_FallThrough;
1226   }
1227 
1228   // Okay, this is some other statement that we don't handle explicitly, like a
1229   // for statement or increment etc.  If we are skipping over this statement,
1230   // just verify it doesn't have labels, which would make it invalid to elide.
1231   if (Case) {
1232     if (CodeGenFunction::ContainsLabel(S, true))
1233       return CSFC_Failure;
1234     return CSFC_Success;
1235   }
1236 
1237   // Otherwise, we want to include this statement.  Everything is cool with that
1238   // so long as it doesn't contain a break out of the switch we're in.
1239   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1240 
1241   // Otherwise, everything is great.  Include the statement and tell the caller
1242   // that we fall through and include the next statement as well.
1243   ResultStmts.push_back(S);
1244   return CSFC_FallThrough;
1245 }
1246 
1247 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1248 /// then invoke CollectStatementsForCase to find the list of statements to emit
1249 /// for a switch on constant.  See the comment above CollectStatementsForCase
1250 /// for more details.
1251 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1252                                        const llvm::APSInt &ConstantCondValue,
1253                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1254                                        ASTContext &C,
1255                                        const SwitchCase *&ResultCase) {
1256   // First step, find the switch case that is being branched to.  We can do this
1257   // efficiently by scanning the SwitchCase list.
1258   const SwitchCase *Case = S.getSwitchCaseList();
1259   const DefaultStmt *DefaultCase = 0;
1260 
1261   for (; Case; Case = Case->getNextSwitchCase()) {
1262     // It's either a default or case.  Just remember the default statement in
1263     // case we're not jumping to any numbered cases.
1264     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1265       DefaultCase = DS;
1266       continue;
1267     }
1268 
1269     // Check to see if this case is the one we're looking for.
1270     const CaseStmt *CS = cast<CaseStmt>(Case);
1271     // Don't handle case ranges yet.
1272     if (CS->getRHS()) return false;
1273 
1274     // If we found our case, remember it as 'case'.
1275     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1276       break;
1277   }
1278 
1279   // If we didn't find a matching case, we use a default if it exists, or we
1280   // elide the whole switch body!
1281   if (Case == 0) {
1282     // It is safe to elide the body of the switch if it doesn't contain labels
1283     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1284     if (DefaultCase == 0)
1285       return !CodeGenFunction::ContainsLabel(&S);
1286     Case = DefaultCase;
1287   }
1288 
1289   // Ok, we know which case is being jumped to, try to collect all the
1290   // statements that follow it.  This can fail for a variety of reasons.  Also,
1291   // check to see that the recursive walk actually found our case statement.
1292   // Insane cases like this can fail to find it in the recursive walk since we
1293   // don't handle every stmt kind:
1294   // switch (4) {
1295   //   while (1) {
1296   //     case 4: ...
1297   bool FoundCase = false;
1298   ResultCase = Case;
1299   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1300                                   ResultStmts) != CSFC_Failure &&
1301          FoundCase;
1302 }
1303 
1304 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1305   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1306 
1307   RunCleanupsScope ConditionScope(*this);
1308 
1309   if (S.getConditionVariable())
1310     EmitAutoVarDecl(*S.getConditionVariable());
1311 
1312   // Handle nested switch statements.
1313   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1314   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1315   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1316 
1317   // See if we can constant fold the condition of the switch and therefore only
1318   // emit the live case statement (if any) of the switch.
1319   llvm::APSInt ConstantCondValue;
1320   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1321     SmallVector<const Stmt*, 4> CaseStmts;
1322     const SwitchCase *Case = 0;
1323     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1324                                    getContext(), Case)) {
1325       if (Case) {
1326         RegionCounter CaseCnt = getPGORegionCounter(Case);
1327         CaseCnt.beginRegion(Builder);
1328       }
1329       RunCleanupsScope ExecutedScope(*this);
1330 
1331       // At this point, we are no longer "within" a switch instance, so
1332       // we can temporarily enforce this to ensure that any embedded case
1333       // statements are not emitted.
1334       SwitchInsn = 0;
1335 
1336       // Okay, we can dead code eliminate everything except this case.  Emit the
1337       // specified series of statements and we're good.
1338       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1339         EmitStmt(CaseStmts[i]);
1340       RegionCounter ExitCnt = getPGORegionCounter(&S);
1341       ExitCnt.beginRegion(Builder);
1342 
1343       // Now we want to restore the saved switch instance so that nested
1344       // switches continue to function properly
1345       SwitchInsn = SavedSwitchInsn;
1346 
1347       return;
1348     }
1349   }
1350 
1351   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1352 
1353   // Create basic block to hold stuff that comes after switch
1354   // statement. We also need to create a default block now so that
1355   // explicit case ranges tests can have a place to jump to on
1356   // failure.
1357   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1358   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1359   if (PGO.haveRegionCounts()) {
1360     // Walk the SwitchCase list to find how many there are.
1361     uint64_t DefaultCount = 0;
1362     unsigned NumCases = 0;
1363     for (const SwitchCase *Case = S.getSwitchCaseList();
1364          Case;
1365          Case = Case->getNextSwitchCase()) {
1366       if (isa<DefaultStmt>(Case))
1367         DefaultCount = getPGORegionCounter(Case).getCount();
1368       NumCases += 1;
1369     }
1370     SwitchWeights = new SmallVector<uint64_t, 16>();
1371     SwitchWeights->reserve(NumCases);
1372     // The default needs to be first. We store the edge count, so we already
1373     // know the right weight.
1374     SwitchWeights->push_back(DefaultCount);
1375   }
1376   CaseRangeBlock = DefaultBlock;
1377 
1378   // Clear the insertion point to indicate we are in unreachable code.
1379   Builder.ClearInsertionPoint();
1380 
1381   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1382   // then reuse last ContinueBlock.
1383   JumpDest OuterContinue;
1384   if (!BreakContinueStack.empty())
1385     OuterContinue = BreakContinueStack.back().ContinueBlock;
1386 
1387   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1388 
1389   // Emit switch body.
1390   EmitStmt(S.getBody());
1391 
1392   BreakContinueStack.pop_back();
1393 
1394   // Update the default block in case explicit case range tests have
1395   // been chained on top.
1396   SwitchInsn->setDefaultDest(CaseRangeBlock);
1397 
1398   // If a default was never emitted:
1399   if (!DefaultBlock->getParent()) {
1400     // If we have cleanups, emit the default block so that there's a
1401     // place to jump through the cleanups from.
1402     if (ConditionScope.requiresCleanups()) {
1403       EmitBlock(DefaultBlock);
1404 
1405     // Otherwise, just forward the default block to the switch end.
1406     } else {
1407       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1408       delete DefaultBlock;
1409     }
1410   }
1411 
1412   ConditionScope.ForceCleanup();
1413 
1414   // Emit continuation.
1415   EmitBlock(SwitchExit.getBlock(), true);
1416   RegionCounter ExitCnt = getPGORegionCounter(&S);
1417   ExitCnt.beginRegion(Builder);
1418 
1419   if (SwitchWeights) {
1420     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1421            "switch weights do not match switch cases");
1422     // If there's only one jump destination there's no sense weighting it.
1423     if (SwitchWeights->size() > 1)
1424       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1425                               PGO.createBranchWeights(*SwitchWeights));
1426     delete SwitchWeights;
1427   }
1428   SwitchInsn = SavedSwitchInsn;
1429   SwitchWeights = SavedSwitchWeights;
1430   CaseRangeBlock = SavedCRBlock;
1431 }
1432 
1433 static std::string
1434 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1435                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1436   std::string Result;
1437 
1438   while (*Constraint) {
1439     switch (*Constraint) {
1440     default:
1441       Result += Target.convertConstraint(Constraint);
1442       break;
1443     // Ignore these
1444     case '*':
1445     case '?':
1446     case '!':
1447     case '=': // Will see this and the following in mult-alt constraints.
1448     case '+':
1449       break;
1450     case '#': // Ignore the rest of the constraint alternative.
1451       while (Constraint[1] && Constraint[1] != ',')
1452         Constraint++;
1453       break;
1454     case ',':
1455       Result += "|";
1456       break;
1457     case 'g':
1458       Result += "imr";
1459       break;
1460     case '[': {
1461       assert(OutCons &&
1462              "Must pass output names to constraints with a symbolic name");
1463       unsigned Index;
1464       bool result = Target.resolveSymbolicName(Constraint,
1465                                                &(*OutCons)[0],
1466                                                OutCons->size(), Index);
1467       assert(result && "Could not resolve symbolic name"); (void)result;
1468       Result += llvm::utostr(Index);
1469       break;
1470     }
1471     }
1472 
1473     Constraint++;
1474   }
1475 
1476   return Result;
1477 }
1478 
1479 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1480 /// as using a particular register add that as a constraint that will be used
1481 /// in this asm stmt.
1482 static std::string
1483 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1484                        const TargetInfo &Target, CodeGenModule &CGM,
1485                        const AsmStmt &Stmt) {
1486   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1487   if (!AsmDeclRef)
1488     return Constraint;
1489   const ValueDecl &Value = *AsmDeclRef->getDecl();
1490   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1491   if (!Variable)
1492     return Constraint;
1493   if (Variable->getStorageClass() != SC_Register)
1494     return Constraint;
1495   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1496   if (!Attr)
1497     return Constraint;
1498   StringRef Register = Attr->getLabel();
1499   assert(Target.isValidGCCRegisterName(Register));
1500   // We're using validateOutputConstraint here because we only care if
1501   // this is a register constraint.
1502   TargetInfo::ConstraintInfo Info(Constraint, "");
1503   if (Target.validateOutputConstraint(Info) &&
1504       !Info.allowsRegister()) {
1505     CGM.ErrorUnsupported(&Stmt, "__asm__");
1506     return Constraint;
1507   }
1508   // Canonicalize the register here before returning it.
1509   Register = Target.getNormalizedGCCRegisterName(Register);
1510   return "{" + Register.str() + "}";
1511 }
1512 
1513 llvm::Value*
1514 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1515                                     LValue InputValue, QualType InputType,
1516                                     std::string &ConstraintStr,
1517                                     SourceLocation Loc) {
1518   llvm::Value *Arg;
1519   if (Info.allowsRegister() || !Info.allowsMemory()) {
1520     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1521       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1522     } else {
1523       llvm::Type *Ty = ConvertType(InputType);
1524       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1525       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1526         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1527         Ty = llvm::PointerType::getUnqual(Ty);
1528 
1529         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1530                                                        Ty));
1531       } else {
1532         Arg = InputValue.getAddress();
1533         ConstraintStr += '*';
1534       }
1535     }
1536   } else {
1537     Arg = InputValue.getAddress();
1538     ConstraintStr += '*';
1539   }
1540 
1541   return Arg;
1542 }
1543 
1544 llvm::Value* CodeGenFunction::EmitAsmInput(
1545                                          const TargetInfo::ConstraintInfo &Info,
1546                                            const Expr *InputExpr,
1547                                            std::string &ConstraintStr) {
1548   if (Info.allowsRegister() || !Info.allowsMemory())
1549     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1550       return EmitScalarExpr(InputExpr);
1551 
1552   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1553   LValue Dest = EmitLValue(InputExpr);
1554   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1555                             InputExpr->getExprLoc());
1556 }
1557 
1558 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1559 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1560 /// integers which are the source locations of the start of each line in the
1561 /// asm.
1562 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1563                                       CodeGenFunction &CGF) {
1564   SmallVector<llvm::Value *, 8> Locs;
1565   // Add the location of the first line to the MDNode.
1566   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1567                                         Str->getLocStart().getRawEncoding()));
1568   StringRef StrVal = Str->getString();
1569   if (!StrVal.empty()) {
1570     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1571     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1572 
1573     // Add the location of the start of each subsequent line of the asm to the
1574     // MDNode.
1575     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1576       if (StrVal[i] != '\n') continue;
1577       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1578                                                       CGF.getTarget());
1579       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1580                                             LineLoc.getRawEncoding()));
1581     }
1582   }
1583 
1584   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1585 }
1586 
1587 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1588   // Assemble the final asm string.
1589   std::string AsmString = S.generateAsmString(getContext());
1590 
1591   // Get all the output and input constraints together.
1592   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1593   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1594 
1595   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1596     StringRef Name;
1597     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1598       Name = GAS->getOutputName(i);
1599     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1600     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1601     assert(IsValid && "Failed to parse output constraint");
1602     OutputConstraintInfos.push_back(Info);
1603   }
1604 
1605   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1606     StringRef Name;
1607     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1608       Name = GAS->getInputName(i);
1609     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1610     bool IsValid =
1611       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1612                                           S.getNumOutputs(), Info);
1613     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1614     InputConstraintInfos.push_back(Info);
1615   }
1616 
1617   std::string Constraints;
1618 
1619   std::vector<LValue> ResultRegDests;
1620   std::vector<QualType> ResultRegQualTys;
1621   std::vector<llvm::Type *> ResultRegTypes;
1622   std::vector<llvm::Type *> ResultTruncRegTypes;
1623   std::vector<llvm::Type *> ArgTypes;
1624   std::vector<llvm::Value*> Args;
1625 
1626   // Keep track of inout constraints.
1627   std::string InOutConstraints;
1628   std::vector<llvm::Value*> InOutArgs;
1629   std::vector<llvm::Type*> InOutArgTypes;
1630 
1631   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1632     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1633 
1634     // Simplify the output constraint.
1635     std::string OutputConstraint(S.getOutputConstraint(i));
1636     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1637                                           getTarget());
1638 
1639     const Expr *OutExpr = S.getOutputExpr(i);
1640     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1641 
1642     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1643                                               getTarget(), CGM, S);
1644 
1645     LValue Dest = EmitLValue(OutExpr);
1646     if (!Constraints.empty())
1647       Constraints += ',';
1648 
1649     // If this is a register output, then make the inline asm return it
1650     // by-value.  If this is a memory result, return the value by-reference.
1651     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1652       Constraints += "=" + OutputConstraint;
1653       ResultRegQualTys.push_back(OutExpr->getType());
1654       ResultRegDests.push_back(Dest);
1655       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1656       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1657 
1658       // If this output is tied to an input, and if the input is larger, then
1659       // we need to set the actual result type of the inline asm node to be the
1660       // same as the input type.
1661       if (Info.hasMatchingInput()) {
1662         unsigned InputNo;
1663         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1664           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1665           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1666             break;
1667         }
1668         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1669 
1670         QualType InputTy = S.getInputExpr(InputNo)->getType();
1671         QualType OutputType = OutExpr->getType();
1672 
1673         uint64_t InputSize = getContext().getTypeSize(InputTy);
1674         if (getContext().getTypeSize(OutputType) < InputSize) {
1675           // Form the asm to return the value as a larger integer or fp type.
1676           ResultRegTypes.back() = ConvertType(InputTy);
1677         }
1678       }
1679       if (llvm::Type* AdjTy =
1680             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1681                                                  ResultRegTypes.back()))
1682         ResultRegTypes.back() = AdjTy;
1683       else {
1684         CGM.getDiags().Report(S.getAsmLoc(),
1685                               diag::err_asm_invalid_type_in_input)
1686             << OutExpr->getType() << OutputConstraint;
1687       }
1688     } else {
1689       ArgTypes.push_back(Dest.getAddress()->getType());
1690       Args.push_back(Dest.getAddress());
1691       Constraints += "=*";
1692       Constraints += OutputConstraint;
1693     }
1694 
1695     if (Info.isReadWrite()) {
1696       InOutConstraints += ',';
1697 
1698       const Expr *InputExpr = S.getOutputExpr(i);
1699       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1700                                             InOutConstraints,
1701                                             InputExpr->getExprLoc());
1702 
1703       if (llvm::Type* AdjTy =
1704           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1705                                                Arg->getType()))
1706         Arg = Builder.CreateBitCast(Arg, AdjTy);
1707 
1708       if (Info.allowsRegister())
1709         InOutConstraints += llvm::utostr(i);
1710       else
1711         InOutConstraints += OutputConstraint;
1712 
1713       InOutArgTypes.push_back(Arg->getType());
1714       InOutArgs.push_back(Arg);
1715     }
1716   }
1717 
1718   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1719 
1720   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1721     const Expr *InputExpr = S.getInputExpr(i);
1722 
1723     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1724 
1725     if (!Constraints.empty())
1726       Constraints += ',';
1727 
1728     // Simplify the input constraint.
1729     std::string InputConstraint(S.getInputConstraint(i));
1730     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1731                                          &OutputConstraintInfos);
1732 
1733     InputConstraint =
1734       AddVariableConstraints(InputConstraint,
1735                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1736                             getTarget(), CGM, S);
1737 
1738     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1739 
1740     // If this input argument is tied to a larger output result, extend the
1741     // input to be the same size as the output.  The LLVM backend wants to see
1742     // the input and output of a matching constraint be the same size.  Note
1743     // that GCC does not define what the top bits are here.  We use zext because
1744     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1745     if (Info.hasTiedOperand()) {
1746       unsigned Output = Info.getTiedOperand();
1747       QualType OutputType = S.getOutputExpr(Output)->getType();
1748       QualType InputTy = InputExpr->getType();
1749 
1750       if (getContext().getTypeSize(OutputType) >
1751           getContext().getTypeSize(InputTy)) {
1752         // Use ptrtoint as appropriate so that we can do our extension.
1753         if (isa<llvm::PointerType>(Arg->getType()))
1754           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1755         llvm::Type *OutputTy = ConvertType(OutputType);
1756         if (isa<llvm::IntegerType>(OutputTy))
1757           Arg = Builder.CreateZExt(Arg, OutputTy);
1758         else if (isa<llvm::PointerType>(OutputTy))
1759           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1760         else {
1761           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1762           Arg = Builder.CreateFPExt(Arg, OutputTy);
1763         }
1764       }
1765     }
1766     if (llvm::Type* AdjTy =
1767               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1768                                                    Arg->getType()))
1769       Arg = Builder.CreateBitCast(Arg, AdjTy);
1770     else
1771       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1772           << InputExpr->getType() << InputConstraint;
1773 
1774     ArgTypes.push_back(Arg->getType());
1775     Args.push_back(Arg);
1776     Constraints += InputConstraint;
1777   }
1778 
1779   // Append the "input" part of inout constraints last.
1780   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1781     ArgTypes.push_back(InOutArgTypes[i]);
1782     Args.push_back(InOutArgs[i]);
1783   }
1784   Constraints += InOutConstraints;
1785 
1786   // Clobbers
1787   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1788     StringRef Clobber = S.getClobber(i);
1789 
1790     if (Clobber != "memory" && Clobber != "cc")
1791     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1792 
1793     if (i != 0 || NumConstraints != 0)
1794       Constraints += ',';
1795 
1796     Constraints += "~{";
1797     Constraints += Clobber;
1798     Constraints += '}';
1799   }
1800 
1801   // Add machine specific clobbers
1802   std::string MachineClobbers = getTarget().getClobbers();
1803   if (!MachineClobbers.empty()) {
1804     if (!Constraints.empty())
1805       Constraints += ',';
1806     Constraints += MachineClobbers;
1807   }
1808 
1809   llvm::Type *ResultType;
1810   if (ResultRegTypes.empty())
1811     ResultType = VoidTy;
1812   else if (ResultRegTypes.size() == 1)
1813     ResultType = ResultRegTypes[0];
1814   else
1815     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1816 
1817   llvm::FunctionType *FTy =
1818     llvm::FunctionType::get(ResultType, ArgTypes, false);
1819 
1820   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1821   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1822     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1823   llvm::InlineAsm *IA =
1824     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1825                          /* IsAlignStack */ false, AsmDialect);
1826   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1827   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1828                        llvm::Attribute::NoUnwind);
1829 
1830   // Slap the source location of the inline asm into a !srcloc metadata on the
1831   // call.  FIXME: Handle metadata for MS-style inline asms.
1832   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1833     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1834                                                    *this));
1835 
1836   // Extract all of the register value results from the asm.
1837   std::vector<llvm::Value*> RegResults;
1838   if (ResultRegTypes.size() == 1) {
1839     RegResults.push_back(Result);
1840   } else {
1841     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1842       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1843       RegResults.push_back(Tmp);
1844     }
1845   }
1846 
1847   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1848     llvm::Value *Tmp = RegResults[i];
1849 
1850     // If the result type of the LLVM IR asm doesn't match the result type of
1851     // the expression, do the conversion.
1852     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1853       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1854 
1855       // Truncate the integer result to the right size, note that TruncTy can be
1856       // a pointer.
1857       if (TruncTy->isFloatingPointTy())
1858         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1859       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1860         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1861         Tmp = Builder.CreateTrunc(Tmp,
1862                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1863         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1864       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1865         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1866         Tmp = Builder.CreatePtrToInt(Tmp,
1867                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1868         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1869       } else if (TruncTy->isIntegerTy()) {
1870         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1871       } else if (TruncTy->isVectorTy()) {
1872         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1873       }
1874     }
1875 
1876     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1877   }
1878 }
1879 
1880 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1881   const RecordDecl *RD = S.getCapturedRecordDecl();
1882   QualType RecordTy = CGF.getContext().getRecordType(RD);
1883 
1884   // Initialize the captured struct.
1885   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1886                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1887 
1888   RecordDecl::field_iterator CurField = RD->field_begin();
1889   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1890                                            E = S.capture_init_end();
1891        I != E; ++I, ++CurField) {
1892     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1893     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1894   }
1895 
1896   return SlotLV;
1897 }
1898 
1899 /// Generate an outlined function for the body of a CapturedStmt, store any
1900 /// captured variables into the captured struct, and call the outlined function.
1901 llvm::Function *
1902 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1903   const CapturedDecl *CD = S.getCapturedDecl();
1904   const RecordDecl *RD = S.getCapturedRecordDecl();
1905   assert(CD->hasBody() && "missing CapturedDecl body");
1906 
1907   LValue CapStruct = InitCapturedStruct(*this, S);
1908 
1909   // Emit the CapturedDecl
1910   CodeGenFunction CGF(CGM, true);
1911   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1912   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
1913   delete CGF.CapturedStmtInfo;
1914 
1915   // Emit call to the helper function.
1916   EmitCallOrInvoke(F, CapStruct.getAddress());
1917 
1918   return F;
1919 }
1920 
1921 /// Creates the outlined function for a CapturedStmt.
1922 llvm::Function *
1923 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1924                                               const RecordDecl *RD,
1925                                               SourceLocation Loc) {
1926   assert(CapturedStmtInfo &&
1927     "CapturedStmtInfo should be set when generating the captured function");
1928 
1929   // Build the argument list.
1930   ASTContext &Ctx = CGM.getContext();
1931   FunctionArgList Args;
1932   Args.append(CD->param_begin(), CD->param_end());
1933 
1934   // Create the function declaration.
1935   FunctionType::ExtInfo ExtInfo;
1936   const CGFunctionInfo &FuncInfo =
1937       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1938                                                     /*IsVariadic=*/false);
1939   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1940 
1941   llvm::Function *F =
1942     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1943                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
1944   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1945 
1946   // Generate the function.
1947   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
1948 
1949   // Set the context parameter in CapturedStmtInfo.
1950   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1951   assert(DeclPtr && "missing context parameter for CapturedStmt");
1952   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1953 
1954   // If 'this' is captured, load it into CXXThisValue.
1955   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1956     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1957     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1958                                            Ctx.getTagDeclType(RD));
1959     LValue ThisLValue = EmitLValueForField(LV, FD);
1960     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
1961   }
1962 
1963   CapturedStmtInfo->EmitBody(*this, CD->getBody());
1964   FinishFunction(CD->getBodyRBrace());
1965 
1966   return F;
1967 }
1968