1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 case Stmt::CoreturnStmtClass: 146 CGM.ErrorUnsupported(S, "coroutine"); 147 break; 148 case Stmt::CapturedStmtClass: { 149 const CapturedStmt *CS = cast<CapturedStmt>(S); 150 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 151 } 152 break; 153 case Stmt::ObjCAtTryStmtClass: 154 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 155 break; 156 case Stmt::ObjCAtCatchStmtClass: 157 llvm_unreachable( 158 "@catch statements should be handled by EmitObjCAtTryStmt"); 159 case Stmt::ObjCAtFinallyStmtClass: 160 llvm_unreachable( 161 "@finally statements should be handled by EmitObjCAtTryStmt"); 162 case Stmt::ObjCAtThrowStmtClass: 163 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 164 break; 165 case Stmt::ObjCAtSynchronizedStmtClass: 166 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 167 break; 168 case Stmt::ObjCForCollectionStmtClass: 169 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 170 break; 171 case Stmt::ObjCAutoreleasePoolStmtClass: 172 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 173 break; 174 175 case Stmt::CXXTryStmtClass: 176 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 177 break; 178 case Stmt::CXXForRangeStmtClass: 179 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 180 break; 181 case Stmt::SEHTryStmtClass: 182 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 183 break; 184 case Stmt::OMPParallelDirectiveClass: 185 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 186 break; 187 case Stmt::OMPSimdDirectiveClass: 188 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 189 break; 190 case Stmt::OMPForDirectiveClass: 191 EmitOMPForDirective(cast<OMPForDirective>(*S)); 192 break; 193 case Stmt::OMPForSimdDirectiveClass: 194 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 195 break; 196 case Stmt::OMPSectionsDirectiveClass: 197 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 198 break; 199 case Stmt::OMPSectionDirectiveClass: 200 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 201 break; 202 case Stmt::OMPSingleDirectiveClass: 203 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 204 break; 205 case Stmt::OMPMasterDirectiveClass: 206 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 207 break; 208 case Stmt::OMPCriticalDirectiveClass: 209 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 210 break; 211 case Stmt::OMPParallelForDirectiveClass: 212 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 213 break; 214 case Stmt::OMPParallelForSimdDirectiveClass: 215 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPParallelSectionsDirectiveClass: 218 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPTaskDirectiveClass: 221 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 222 break; 223 case Stmt::OMPTaskyieldDirectiveClass: 224 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 225 break; 226 case Stmt::OMPBarrierDirectiveClass: 227 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 228 break; 229 case Stmt::OMPTaskwaitDirectiveClass: 230 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 231 break; 232 case Stmt::OMPTaskgroupDirectiveClass: 233 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 234 break; 235 case Stmt::OMPFlushDirectiveClass: 236 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 237 break; 238 case Stmt::OMPOrderedDirectiveClass: 239 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 240 break; 241 case Stmt::OMPAtomicDirectiveClass: 242 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 243 break; 244 case Stmt::OMPTargetDirectiveClass: 245 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 246 break; 247 case Stmt::OMPTeamsDirectiveClass: 248 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 249 break; 250 case Stmt::OMPCancellationPointDirectiveClass: 251 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 252 break; 253 case Stmt::OMPCancelDirectiveClass: 254 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 255 break; 256 case Stmt::OMPTargetDataDirectiveClass: 257 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 258 break; 259 case Stmt::OMPTargetEnterDataDirectiveClass: 260 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 261 break; 262 case Stmt::OMPTargetExitDataDirectiveClass: 263 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 264 break; 265 case Stmt::OMPTargetParallelDirectiveClass: 266 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 267 break; 268 case Stmt::OMPTargetParallelForDirectiveClass: 269 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 270 break; 271 case Stmt::OMPTaskLoopDirectiveClass: 272 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 273 break; 274 case Stmt::OMPTaskLoopSimdDirectiveClass: 275 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 276 break; 277 case Stmt::OMPDistributeDirectiveClass: 278 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 279 break; 280 } 281 } 282 283 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 284 switch (S->getStmtClass()) { 285 default: return false; 286 case Stmt::NullStmtClass: break; 287 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 288 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 289 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 290 case Stmt::AttributedStmtClass: 291 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 292 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 293 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 294 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 295 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 296 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 297 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 298 } 299 300 return true; 301 } 302 303 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 304 /// this captures the expression result of the last sub-statement and returns it 305 /// (for use by the statement expression extension). 306 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 307 AggValueSlot AggSlot) { 308 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 309 "LLVM IR generation of compound statement ('{}')"); 310 311 // Keep track of the current cleanup stack depth, including debug scopes. 312 LexicalScope Scope(*this, S.getSourceRange()); 313 314 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 315 } 316 317 Address 318 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 319 bool GetLast, 320 AggValueSlot AggSlot) { 321 322 for (CompoundStmt::const_body_iterator I = S.body_begin(), 323 E = S.body_end()-GetLast; I != E; ++I) 324 EmitStmt(*I); 325 326 Address RetAlloca = Address::invalid(); 327 if (GetLast) { 328 // We have to special case labels here. They are statements, but when put 329 // at the end of a statement expression, they yield the value of their 330 // subexpression. Handle this by walking through all labels we encounter, 331 // emitting them before we evaluate the subexpr. 332 const Stmt *LastStmt = S.body_back(); 333 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 334 EmitLabel(LS->getDecl()); 335 LastStmt = LS->getSubStmt(); 336 } 337 338 EnsureInsertPoint(); 339 340 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 341 if (hasAggregateEvaluationKind(ExprTy)) { 342 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 343 } else { 344 // We can't return an RValue here because there might be cleanups at 345 // the end of the StmtExpr. Because of that, we have to emit the result 346 // here into a temporary alloca. 347 RetAlloca = CreateMemTemp(ExprTy); 348 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 349 /*IsInit*/false); 350 } 351 352 } 353 354 return RetAlloca; 355 } 356 357 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 358 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 359 360 // If there is a cleanup stack, then we it isn't worth trying to 361 // simplify this block (we would need to remove it from the scope map 362 // and cleanup entry). 363 if (!EHStack.empty()) 364 return; 365 366 // Can only simplify direct branches. 367 if (!BI || !BI->isUnconditional()) 368 return; 369 370 // Can only simplify empty blocks. 371 if (BI->getIterator() != BB->begin()) 372 return; 373 374 BB->replaceAllUsesWith(BI->getSuccessor(0)); 375 BI->eraseFromParent(); 376 BB->eraseFromParent(); 377 } 378 379 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 380 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 381 382 // Fall out of the current block (if necessary). 383 EmitBranch(BB); 384 385 if (IsFinished && BB->use_empty()) { 386 delete BB; 387 return; 388 } 389 390 // Place the block after the current block, if possible, or else at 391 // the end of the function. 392 if (CurBB && CurBB->getParent()) 393 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 394 else 395 CurFn->getBasicBlockList().push_back(BB); 396 Builder.SetInsertPoint(BB); 397 } 398 399 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 400 // Emit a branch from the current block to the target one if this 401 // was a real block. If this was just a fall-through block after a 402 // terminator, don't emit it. 403 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 404 405 if (!CurBB || CurBB->getTerminator()) { 406 // If there is no insert point or the previous block is already 407 // terminated, don't touch it. 408 } else { 409 // Otherwise, create a fall-through branch. 410 Builder.CreateBr(Target); 411 } 412 413 Builder.ClearInsertionPoint(); 414 } 415 416 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 417 bool inserted = false; 418 for (llvm::User *u : block->users()) { 419 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 420 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 421 block); 422 inserted = true; 423 break; 424 } 425 } 426 427 if (!inserted) 428 CurFn->getBasicBlockList().push_back(block); 429 430 Builder.SetInsertPoint(block); 431 } 432 433 CodeGenFunction::JumpDest 434 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 435 JumpDest &Dest = LabelMap[D]; 436 if (Dest.isValid()) return Dest; 437 438 // Create, but don't insert, the new block. 439 Dest = JumpDest(createBasicBlock(D->getName()), 440 EHScopeStack::stable_iterator::invalid(), 441 NextCleanupDestIndex++); 442 return Dest; 443 } 444 445 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 446 // Add this label to the current lexical scope if we're within any 447 // normal cleanups. Jumps "in" to this label --- when permitted by 448 // the language --- may need to be routed around such cleanups. 449 if (EHStack.hasNormalCleanups() && CurLexicalScope) 450 CurLexicalScope->addLabel(D); 451 452 JumpDest &Dest = LabelMap[D]; 453 454 // If we didn't need a forward reference to this label, just go 455 // ahead and create a destination at the current scope. 456 if (!Dest.isValid()) { 457 Dest = getJumpDestInCurrentScope(D->getName()); 458 459 // Otherwise, we need to give this label a target depth and remove 460 // it from the branch-fixups list. 461 } else { 462 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 463 Dest.setScopeDepth(EHStack.stable_begin()); 464 ResolveBranchFixups(Dest.getBlock()); 465 } 466 467 EmitBlock(Dest.getBlock()); 468 incrementProfileCounter(D->getStmt()); 469 } 470 471 /// Change the cleanup scope of the labels in this lexical scope to 472 /// match the scope of the enclosing context. 473 void CodeGenFunction::LexicalScope::rescopeLabels() { 474 assert(!Labels.empty()); 475 EHScopeStack::stable_iterator innermostScope 476 = CGF.EHStack.getInnermostNormalCleanup(); 477 478 // Change the scope depth of all the labels. 479 for (SmallVectorImpl<const LabelDecl*>::const_iterator 480 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 481 assert(CGF.LabelMap.count(*i)); 482 JumpDest &dest = CGF.LabelMap.find(*i)->second; 483 assert(dest.getScopeDepth().isValid()); 484 assert(innermostScope.encloses(dest.getScopeDepth())); 485 dest.setScopeDepth(innermostScope); 486 } 487 488 // Reparent the labels if the new scope also has cleanups. 489 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 490 ParentScope->Labels.append(Labels.begin(), Labels.end()); 491 } 492 } 493 494 495 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 496 EmitLabel(S.getDecl()); 497 EmitStmt(S.getSubStmt()); 498 } 499 500 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 501 const Stmt *SubStmt = S.getSubStmt(); 502 switch (SubStmt->getStmtClass()) { 503 case Stmt::DoStmtClass: 504 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 505 break; 506 case Stmt::ForStmtClass: 507 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 508 break; 509 case Stmt::WhileStmtClass: 510 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 511 break; 512 case Stmt::CXXForRangeStmtClass: 513 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 514 break; 515 default: 516 EmitStmt(SubStmt); 517 } 518 } 519 520 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 521 // If this code is reachable then emit a stop point (if generating 522 // debug info). We have to do this ourselves because we are on the 523 // "simple" statement path. 524 if (HaveInsertPoint()) 525 EmitStopPoint(&S); 526 527 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 528 } 529 530 531 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 532 if (const LabelDecl *Target = S.getConstantTarget()) { 533 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 534 return; 535 } 536 537 // Ensure that we have an i8* for our PHI node. 538 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 539 Int8PtrTy, "addr"); 540 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 541 542 // Get the basic block for the indirect goto. 543 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 544 545 // The first instruction in the block has to be the PHI for the switch dest, 546 // add an entry for this branch. 547 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 548 549 EmitBranch(IndGotoBB); 550 } 551 552 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 553 // C99 6.8.4.1: The first substatement is executed if the expression compares 554 // unequal to 0. The condition must be a scalar type. 555 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 556 557 if (S.getConditionVariable()) 558 EmitAutoVarDecl(*S.getConditionVariable()); 559 560 // If the condition constant folds and can be elided, try to avoid emitting 561 // the condition and the dead arm of the if/else. 562 bool CondConstant; 563 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 564 // Figure out which block (then or else) is executed. 565 const Stmt *Executed = S.getThen(); 566 const Stmt *Skipped = S.getElse(); 567 if (!CondConstant) // Condition false? 568 std::swap(Executed, Skipped); 569 570 // If the skipped block has no labels in it, just emit the executed block. 571 // This avoids emitting dead code and simplifies the CFG substantially. 572 if (!ContainsLabel(Skipped)) { 573 if (CondConstant) 574 incrementProfileCounter(&S); 575 if (Executed) { 576 RunCleanupsScope ExecutedScope(*this); 577 EmitStmt(Executed); 578 } 579 return; 580 } 581 } 582 583 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 584 // the conditional branch. 585 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 586 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 587 llvm::BasicBlock *ElseBlock = ContBlock; 588 if (S.getElse()) 589 ElseBlock = createBasicBlock("if.else"); 590 591 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 592 getProfileCount(S.getThen())); 593 594 // Emit the 'then' code. 595 EmitBlock(ThenBlock); 596 incrementProfileCounter(&S); 597 { 598 RunCleanupsScope ThenScope(*this); 599 EmitStmt(S.getThen()); 600 } 601 EmitBranch(ContBlock); 602 603 // Emit the 'else' code if present. 604 if (const Stmt *Else = S.getElse()) { 605 { 606 // There is no need to emit line number for an unconditional branch. 607 auto NL = ApplyDebugLocation::CreateEmpty(*this); 608 EmitBlock(ElseBlock); 609 } 610 { 611 RunCleanupsScope ElseScope(*this); 612 EmitStmt(Else); 613 } 614 { 615 // There is no need to emit line number for an unconditional branch. 616 auto NL = ApplyDebugLocation::CreateEmpty(*this); 617 EmitBranch(ContBlock); 618 } 619 } 620 621 // Emit the continuation block for code after the if. 622 EmitBlock(ContBlock, true); 623 } 624 625 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 626 ArrayRef<const Attr *> WhileAttrs) { 627 // Emit the header for the loop, which will also become 628 // the continue target. 629 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 630 EmitBlock(LoopHeader.getBlock()); 631 632 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 633 Builder.getCurrentDebugLocation()); 634 635 // Create an exit block for when the condition fails, which will 636 // also become the break target. 637 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 638 639 // Store the blocks to use for break and continue. 640 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 641 642 // C++ [stmt.while]p2: 643 // When the condition of a while statement is a declaration, the 644 // scope of the variable that is declared extends from its point 645 // of declaration (3.3.2) to the end of the while statement. 646 // [...] 647 // The object created in a condition is destroyed and created 648 // with each iteration of the loop. 649 RunCleanupsScope ConditionScope(*this); 650 651 if (S.getConditionVariable()) 652 EmitAutoVarDecl(*S.getConditionVariable()); 653 654 // Evaluate the conditional in the while header. C99 6.8.5.1: The 655 // evaluation of the controlling expression takes place before each 656 // execution of the loop body. 657 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 658 659 // while(1) is common, avoid extra exit blocks. Be sure 660 // to correctly handle break/continue though. 661 bool EmitBoolCondBranch = true; 662 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 663 if (C->isOne()) 664 EmitBoolCondBranch = false; 665 666 // As long as the condition is true, go to the loop body. 667 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 668 if (EmitBoolCondBranch) { 669 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 670 if (ConditionScope.requiresCleanups()) 671 ExitBlock = createBasicBlock("while.exit"); 672 Builder.CreateCondBr( 673 BoolCondVal, LoopBody, ExitBlock, 674 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 675 676 if (ExitBlock != LoopExit.getBlock()) { 677 EmitBlock(ExitBlock); 678 EmitBranchThroughCleanup(LoopExit); 679 } 680 } 681 682 // Emit the loop body. We have to emit this in a cleanup scope 683 // because it might be a singleton DeclStmt. 684 { 685 RunCleanupsScope BodyScope(*this); 686 EmitBlock(LoopBody); 687 incrementProfileCounter(&S); 688 EmitStmt(S.getBody()); 689 } 690 691 BreakContinueStack.pop_back(); 692 693 // Immediately force cleanup. 694 ConditionScope.ForceCleanup(); 695 696 EmitStopPoint(&S); 697 // Branch to the loop header again. 698 EmitBranch(LoopHeader.getBlock()); 699 700 LoopStack.pop(); 701 702 // Emit the exit block. 703 EmitBlock(LoopExit.getBlock(), true); 704 705 // The LoopHeader typically is just a branch if we skipped emitting 706 // a branch, try to erase it. 707 if (!EmitBoolCondBranch) 708 SimplifyForwardingBlocks(LoopHeader.getBlock()); 709 } 710 711 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 712 ArrayRef<const Attr *> DoAttrs) { 713 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 714 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 715 716 uint64_t ParentCount = getCurrentProfileCount(); 717 718 // Store the blocks to use for break and continue. 719 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 720 721 // Emit the body of the loop. 722 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 723 724 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 725 Builder.getCurrentDebugLocation()); 726 727 EmitBlockWithFallThrough(LoopBody, &S); 728 { 729 RunCleanupsScope BodyScope(*this); 730 EmitStmt(S.getBody()); 731 } 732 733 EmitBlock(LoopCond.getBlock()); 734 735 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 736 // after each execution of the loop body." 737 738 // Evaluate the conditional in the while header. 739 // C99 6.8.5p2/p4: The first substatement is executed if the expression 740 // compares unequal to 0. The condition must be a scalar type. 741 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 742 743 BreakContinueStack.pop_back(); 744 745 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 746 // to correctly handle break/continue though. 747 bool EmitBoolCondBranch = true; 748 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 749 if (C->isZero()) 750 EmitBoolCondBranch = false; 751 752 // As long as the condition is true, iterate the loop. 753 if (EmitBoolCondBranch) { 754 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 755 Builder.CreateCondBr( 756 BoolCondVal, LoopBody, LoopExit.getBlock(), 757 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 758 } 759 760 LoopStack.pop(); 761 762 // Emit the exit block. 763 EmitBlock(LoopExit.getBlock()); 764 765 // The DoCond block typically is just a branch if we skipped 766 // emitting a branch, try to erase it. 767 if (!EmitBoolCondBranch) 768 SimplifyForwardingBlocks(LoopCond.getBlock()); 769 } 770 771 void CodeGenFunction::EmitForStmt(const ForStmt &S, 772 ArrayRef<const Attr *> ForAttrs) { 773 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 774 775 LexicalScope ForScope(*this, S.getSourceRange()); 776 777 llvm::DebugLoc DL = Builder.getCurrentDebugLocation(); 778 779 // Evaluate the first part before the loop. 780 if (S.getInit()) 781 EmitStmt(S.getInit()); 782 783 // Start the loop with a block that tests the condition. 784 // If there's an increment, the continue scope will be overwritten 785 // later. 786 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 787 llvm::BasicBlock *CondBlock = Continue.getBlock(); 788 EmitBlock(CondBlock); 789 790 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL); 791 792 // If the for loop doesn't have an increment we can just use the 793 // condition as the continue block. Otherwise we'll need to create 794 // a block for it (in the current scope, i.e. in the scope of the 795 // condition), and that we will become our continue block. 796 if (S.getInc()) 797 Continue = getJumpDestInCurrentScope("for.inc"); 798 799 // Store the blocks to use for break and continue. 800 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 801 802 // Create a cleanup scope for the condition variable cleanups. 803 LexicalScope ConditionScope(*this, S.getSourceRange()); 804 805 if (S.getCond()) { 806 // If the for statement has a condition scope, emit the local variable 807 // declaration. 808 if (S.getConditionVariable()) { 809 EmitAutoVarDecl(*S.getConditionVariable()); 810 } 811 812 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 813 // If there are any cleanups between here and the loop-exit scope, 814 // create a block to stage a loop exit along. 815 if (ForScope.requiresCleanups()) 816 ExitBlock = createBasicBlock("for.cond.cleanup"); 817 818 // As long as the condition is true, iterate the loop. 819 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 820 821 // C99 6.8.5p2/p4: The first substatement is executed if the expression 822 // compares unequal to 0. The condition must be a scalar type. 823 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 824 Builder.CreateCondBr( 825 BoolCondVal, ForBody, ExitBlock, 826 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 827 828 if (ExitBlock != LoopExit.getBlock()) { 829 EmitBlock(ExitBlock); 830 EmitBranchThroughCleanup(LoopExit); 831 } 832 833 EmitBlock(ForBody); 834 } else { 835 // Treat it as a non-zero constant. Don't even create a new block for the 836 // body, just fall into it. 837 } 838 incrementProfileCounter(&S); 839 840 { 841 // Create a separate cleanup scope for the body, in case it is not 842 // a compound statement. 843 RunCleanupsScope BodyScope(*this); 844 EmitStmt(S.getBody()); 845 } 846 847 // If there is an increment, emit it next. 848 if (S.getInc()) { 849 EmitBlock(Continue.getBlock()); 850 EmitStmt(S.getInc()); 851 } 852 853 BreakContinueStack.pop_back(); 854 855 ConditionScope.ForceCleanup(); 856 857 EmitStopPoint(&S); 858 EmitBranch(CondBlock); 859 860 ForScope.ForceCleanup(); 861 862 LoopStack.pop(); 863 864 // Emit the fall-through block. 865 EmitBlock(LoopExit.getBlock(), true); 866 } 867 868 void 869 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 870 ArrayRef<const Attr *> ForAttrs) { 871 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 872 873 LexicalScope ForScope(*this, S.getSourceRange()); 874 875 llvm::DebugLoc DL = Builder.getCurrentDebugLocation(); 876 877 // Evaluate the first pieces before the loop. 878 EmitStmt(S.getRangeStmt()); 879 EmitStmt(S.getBeginStmt()); 880 EmitStmt(S.getEndStmt()); 881 882 // Start the loop with a block that tests the condition. 883 // If there's an increment, the continue scope will be overwritten 884 // later. 885 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 886 EmitBlock(CondBlock); 887 888 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL); 889 890 // If there are any cleanups between here and the loop-exit scope, 891 // create a block to stage a loop exit along. 892 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 893 if (ForScope.requiresCleanups()) 894 ExitBlock = createBasicBlock("for.cond.cleanup"); 895 896 // The loop body, consisting of the specified body and the loop variable. 897 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 898 899 // The body is executed if the expression, contextually converted 900 // to bool, is true. 901 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 902 Builder.CreateCondBr( 903 BoolCondVal, ForBody, ExitBlock, 904 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 905 906 if (ExitBlock != LoopExit.getBlock()) { 907 EmitBlock(ExitBlock); 908 EmitBranchThroughCleanup(LoopExit); 909 } 910 911 EmitBlock(ForBody); 912 incrementProfileCounter(&S); 913 914 // Create a block for the increment. In case of a 'continue', we jump there. 915 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 916 917 // Store the blocks to use for break and continue. 918 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 919 920 { 921 // Create a separate cleanup scope for the loop variable and body. 922 LexicalScope BodyScope(*this, S.getSourceRange()); 923 EmitStmt(S.getLoopVarStmt()); 924 EmitStmt(S.getBody()); 925 } 926 927 EmitStopPoint(&S); 928 // If there is an increment, emit it next. 929 EmitBlock(Continue.getBlock()); 930 EmitStmt(S.getInc()); 931 932 BreakContinueStack.pop_back(); 933 934 EmitBranch(CondBlock); 935 936 ForScope.ForceCleanup(); 937 938 LoopStack.pop(); 939 940 // Emit the fall-through block. 941 EmitBlock(LoopExit.getBlock(), true); 942 } 943 944 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 945 if (RV.isScalar()) { 946 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 947 } else if (RV.isAggregate()) { 948 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 949 } else { 950 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 951 /*init*/ true); 952 } 953 EmitBranchThroughCleanup(ReturnBlock); 954 } 955 956 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 957 /// if the function returns void, or may be missing one if the function returns 958 /// non-void. Fun stuff :). 959 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 960 // Returning from an outlined SEH helper is UB, and we already warn on it. 961 if (IsOutlinedSEHHelper) { 962 Builder.CreateUnreachable(); 963 Builder.ClearInsertionPoint(); 964 } 965 966 // Emit the result value, even if unused, to evalute the side effects. 967 const Expr *RV = S.getRetValue(); 968 969 // Treat block literals in a return expression as if they appeared 970 // in their own scope. This permits a small, easily-implemented 971 // exception to our over-conservative rules about not jumping to 972 // statements following block literals with non-trivial cleanups. 973 RunCleanupsScope cleanupScope(*this); 974 if (const ExprWithCleanups *cleanups = 975 dyn_cast_or_null<ExprWithCleanups>(RV)) { 976 enterFullExpression(cleanups); 977 RV = cleanups->getSubExpr(); 978 } 979 980 // FIXME: Clean this up by using an LValue for ReturnTemp, 981 // EmitStoreThroughLValue, and EmitAnyExpr. 982 if (getLangOpts().ElideConstructors && 983 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 984 // Apply the named return value optimization for this return statement, 985 // which means doing nothing: the appropriate result has already been 986 // constructed into the NRVO variable. 987 988 // If there is an NRVO flag for this variable, set it to 1 into indicate 989 // that the cleanup code should not destroy the variable. 990 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 991 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 992 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 993 // Make sure not to return anything, but evaluate the expression 994 // for side effects. 995 if (RV) 996 EmitAnyExpr(RV); 997 } else if (!RV) { 998 // Do nothing (return value is left uninitialized) 999 } else if (FnRetTy->isReferenceType()) { 1000 // If this function returns a reference, take the address of the expression 1001 // rather than the value. 1002 RValue Result = EmitReferenceBindingToExpr(RV); 1003 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1004 } else { 1005 switch (getEvaluationKind(RV->getType())) { 1006 case TEK_Scalar: 1007 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1008 break; 1009 case TEK_Complex: 1010 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1011 /*isInit*/ true); 1012 break; 1013 case TEK_Aggregate: 1014 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1015 Qualifiers(), 1016 AggValueSlot::IsDestructed, 1017 AggValueSlot::DoesNotNeedGCBarriers, 1018 AggValueSlot::IsNotAliased)); 1019 break; 1020 } 1021 } 1022 1023 ++NumReturnExprs; 1024 if (!RV || RV->isEvaluatable(getContext())) 1025 ++NumSimpleReturnExprs; 1026 1027 cleanupScope.ForceCleanup(); 1028 EmitBranchThroughCleanup(ReturnBlock); 1029 } 1030 1031 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1032 // As long as debug info is modeled with instructions, we have to ensure we 1033 // have a place to insert here and write the stop point here. 1034 if (HaveInsertPoint()) 1035 EmitStopPoint(&S); 1036 1037 for (const auto *I : S.decls()) 1038 EmitDecl(*I); 1039 } 1040 1041 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1042 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1043 1044 // If this code is reachable then emit a stop point (if generating 1045 // debug info). We have to do this ourselves because we are on the 1046 // "simple" statement path. 1047 if (HaveInsertPoint()) 1048 EmitStopPoint(&S); 1049 1050 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1051 } 1052 1053 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1054 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1055 1056 // If this code is reachable then emit a stop point (if generating 1057 // debug info). We have to do this ourselves because we are on the 1058 // "simple" statement path. 1059 if (HaveInsertPoint()) 1060 EmitStopPoint(&S); 1061 1062 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1063 } 1064 1065 /// EmitCaseStmtRange - If case statement range is not too big then 1066 /// add multiple cases to switch instruction, one for each value within 1067 /// the range. If range is too big then emit "if" condition check. 1068 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1069 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1070 1071 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1072 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1073 1074 // Emit the code for this case. We do this first to make sure it is 1075 // properly chained from our predecessor before generating the 1076 // switch machinery to enter this block. 1077 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1078 EmitBlockWithFallThrough(CaseDest, &S); 1079 EmitStmt(S.getSubStmt()); 1080 1081 // If range is empty, do nothing. 1082 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1083 return; 1084 1085 llvm::APInt Range = RHS - LHS; 1086 // FIXME: parameters such as this should not be hardcoded. 1087 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1088 // Range is small enough to add multiple switch instruction cases. 1089 uint64_t Total = getProfileCount(&S); 1090 unsigned NCases = Range.getZExtValue() + 1; 1091 // We only have one region counter for the entire set of cases here, so we 1092 // need to divide the weights evenly between the generated cases, ensuring 1093 // that the total weight is preserved. E.g., a weight of 5 over three cases 1094 // will be distributed as weights of 2, 2, and 1. 1095 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1096 for (unsigned I = 0; I != NCases; ++I) { 1097 if (SwitchWeights) 1098 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1099 if (Rem) 1100 Rem--; 1101 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1102 LHS++; 1103 } 1104 return; 1105 } 1106 1107 // The range is too big. Emit "if" condition into a new block, 1108 // making sure to save and restore the current insertion point. 1109 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1110 1111 // Push this test onto the chain of range checks (which terminates 1112 // in the default basic block). The switch's default will be changed 1113 // to the top of this chain after switch emission is complete. 1114 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1115 CaseRangeBlock = createBasicBlock("sw.caserange"); 1116 1117 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1118 Builder.SetInsertPoint(CaseRangeBlock); 1119 1120 // Emit range check. 1121 llvm::Value *Diff = 1122 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1123 llvm::Value *Cond = 1124 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1125 1126 llvm::MDNode *Weights = nullptr; 1127 if (SwitchWeights) { 1128 uint64_t ThisCount = getProfileCount(&S); 1129 uint64_t DefaultCount = (*SwitchWeights)[0]; 1130 Weights = createProfileWeights(ThisCount, DefaultCount); 1131 1132 // Since we're chaining the switch default through each large case range, we 1133 // need to update the weight for the default, ie, the first case, to include 1134 // this case. 1135 (*SwitchWeights)[0] += ThisCount; 1136 } 1137 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1138 1139 // Restore the appropriate insertion point. 1140 if (RestoreBB) 1141 Builder.SetInsertPoint(RestoreBB); 1142 else 1143 Builder.ClearInsertionPoint(); 1144 } 1145 1146 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1147 // If there is no enclosing switch instance that we're aware of, then this 1148 // case statement and its block can be elided. This situation only happens 1149 // when we've constant-folded the switch, are emitting the constant case, 1150 // and part of the constant case includes another case statement. For 1151 // instance: switch (4) { case 4: do { case 5: } while (1); } 1152 if (!SwitchInsn) { 1153 EmitStmt(S.getSubStmt()); 1154 return; 1155 } 1156 1157 // Handle case ranges. 1158 if (S.getRHS()) { 1159 EmitCaseStmtRange(S); 1160 return; 1161 } 1162 1163 llvm::ConstantInt *CaseVal = 1164 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1165 1166 // If the body of the case is just a 'break', try to not emit an empty block. 1167 // If we're profiling or we're not optimizing, leave the block in for better 1168 // debug and coverage analysis. 1169 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1170 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1171 isa<BreakStmt>(S.getSubStmt())) { 1172 JumpDest Block = BreakContinueStack.back().BreakBlock; 1173 1174 // Only do this optimization if there are no cleanups that need emitting. 1175 if (isObviouslyBranchWithoutCleanups(Block)) { 1176 if (SwitchWeights) 1177 SwitchWeights->push_back(getProfileCount(&S)); 1178 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1179 1180 // If there was a fallthrough into this case, make sure to redirect it to 1181 // the end of the switch as well. 1182 if (Builder.GetInsertBlock()) { 1183 Builder.CreateBr(Block.getBlock()); 1184 Builder.ClearInsertionPoint(); 1185 } 1186 return; 1187 } 1188 } 1189 1190 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1191 EmitBlockWithFallThrough(CaseDest, &S); 1192 if (SwitchWeights) 1193 SwitchWeights->push_back(getProfileCount(&S)); 1194 SwitchInsn->addCase(CaseVal, CaseDest); 1195 1196 // Recursively emitting the statement is acceptable, but is not wonderful for 1197 // code where we have many case statements nested together, i.e.: 1198 // case 1: 1199 // case 2: 1200 // case 3: etc. 1201 // Handling this recursively will create a new block for each case statement 1202 // that falls through to the next case which is IR intensive. It also causes 1203 // deep recursion which can run into stack depth limitations. Handle 1204 // sequential non-range case statements specially. 1205 const CaseStmt *CurCase = &S; 1206 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1207 1208 // Otherwise, iteratively add consecutive cases to this switch stmt. 1209 while (NextCase && NextCase->getRHS() == nullptr) { 1210 CurCase = NextCase; 1211 llvm::ConstantInt *CaseVal = 1212 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1213 1214 if (SwitchWeights) 1215 SwitchWeights->push_back(getProfileCount(NextCase)); 1216 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1217 CaseDest = createBasicBlock("sw.bb"); 1218 EmitBlockWithFallThrough(CaseDest, &S); 1219 } 1220 1221 SwitchInsn->addCase(CaseVal, CaseDest); 1222 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1223 } 1224 1225 // Normal default recursion for non-cases. 1226 EmitStmt(CurCase->getSubStmt()); 1227 } 1228 1229 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1230 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1231 assert(DefaultBlock->empty() && 1232 "EmitDefaultStmt: Default block already defined?"); 1233 1234 EmitBlockWithFallThrough(DefaultBlock, &S); 1235 1236 EmitStmt(S.getSubStmt()); 1237 } 1238 1239 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1240 /// constant value that is being switched on, see if we can dead code eliminate 1241 /// the body of the switch to a simple series of statements to emit. Basically, 1242 /// on a switch (5) we want to find these statements: 1243 /// case 5: 1244 /// printf(...); <-- 1245 /// ++i; <-- 1246 /// break; 1247 /// 1248 /// and add them to the ResultStmts vector. If it is unsafe to do this 1249 /// transformation (for example, one of the elided statements contains a label 1250 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1251 /// should include statements after it (e.g. the printf() line is a substmt of 1252 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1253 /// statement, then return CSFC_Success. 1254 /// 1255 /// If Case is non-null, then we are looking for the specified case, checking 1256 /// that nothing we jump over contains labels. If Case is null, then we found 1257 /// the case and are looking for the break. 1258 /// 1259 /// If the recursive walk actually finds our Case, then we set FoundCase to 1260 /// true. 1261 /// 1262 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1263 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1264 const SwitchCase *Case, 1265 bool &FoundCase, 1266 SmallVectorImpl<const Stmt*> &ResultStmts) { 1267 // If this is a null statement, just succeed. 1268 if (!S) 1269 return Case ? CSFC_Success : CSFC_FallThrough; 1270 1271 // If this is the switchcase (case 4: or default) that we're looking for, then 1272 // we're in business. Just add the substatement. 1273 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1274 if (S == Case) { 1275 FoundCase = true; 1276 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1277 ResultStmts); 1278 } 1279 1280 // Otherwise, this is some other case or default statement, just ignore it. 1281 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1282 ResultStmts); 1283 } 1284 1285 // If we are in the live part of the code and we found our break statement, 1286 // return a success! 1287 if (!Case && isa<BreakStmt>(S)) 1288 return CSFC_Success; 1289 1290 // If this is a switch statement, then it might contain the SwitchCase, the 1291 // break, or neither. 1292 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1293 // Handle this as two cases: we might be looking for the SwitchCase (if so 1294 // the skipped statements must be skippable) or we might already have it. 1295 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1296 if (Case) { 1297 // Keep track of whether we see a skipped declaration. The code could be 1298 // using the declaration even if it is skipped, so we can't optimize out 1299 // the decl if the kept statements might refer to it. 1300 bool HadSkippedDecl = false; 1301 1302 // If we're looking for the case, just see if we can skip each of the 1303 // substatements. 1304 for (; Case && I != E; ++I) { 1305 HadSkippedDecl |= isa<DeclStmt>(*I); 1306 1307 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1308 case CSFC_Failure: return CSFC_Failure; 1309 case CSFC_Success: 1310 // A successful result means that either 1) that the statement doesn't 1311 // have the case and is skippable, or 2) does contain the case value 1312 // and also contains the break to exit the switch. In the later case, 1313 // we just verify the rest of the statements are elidable. 1314 if (FoundCase) { 1315 // If we found the case and skipped declarations, we can't do the 1316 // optimization. 1317 if (HadSkippedDecl) 1318 return CSFC_Failure; 1319 1320 for (++I; I != E; ++I) 1321 if (CodeGenFunction::ContainsLabel(*I, true)) 1322 return CSFC_Failure; 1323 return CSFC_Success; 1324 } 1325 break; 1326 case CSFC_FallThrough: 1327 // If we have a fallthrough condition, then we must have found the 1328 // case started to include statements. Consider the rest of the 1329 // statements in the compound statement as candidates for inclusion. 1330 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1331 // We recursively found Case, so we're not looking for it anymore. 1332 Case = nullptr; 1333 1334 // If we found the case and skipped declarations, we can't do the 1335 // optimization. 1336 if (HadSkippedDecl) 1337 return CSFC_Failure; 1338 break; 1339 } 1340 } 1341 } 1342 1343 // If we have statements in our range, then we know that the statements are 1344 // live and need to be added to the set of statements we're tracking. 1345 for (; I != E; ++I) { 1346 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1347 case CSFC_Failure: return CSFC_Failure; 1348 case CSFC_FallThrough: 1349 // A fallthrough result means that the statement was simple and just 1350 // included in ResultStmt, keep adding them afterwards. 1351 break; 1352 case CSFC_Success: 1353 // A successful result means that we found the break statement and 1354 // stopped statement inclusion. We just ensure that any leftover stmts 1355 // are skippable and return success ourselves. 1356 for (++I; I != E; ++I) 1357 if (CodeGenFunction::ContainsLabel(*I, true)) 1358 return CSFC_Failure; 1359 return CSFC_Success; 1360 } 1361 } 1362 1363 return Case ? CSFC_Success : CSFC_FallThrough; 1364 } 1365 1366 // Okay, this is some other statement that we don't handle explicitly, like a 1367 // for statement or increment etc. If we are skipping over this statement, 1368 // just verify it doesn't have labels, which would make it invalid to elide. 1369 if (Case) { 1370 if (CodeGenFunction::ContainsLabel(S, true)) 1371 return CSFC_Failure; 1372 return CSFC_Success; 1373 } 1374 1375 // Otherwise, we want to include this statement. Everything is cool with that 1376 // so long as it doesn't contain a break out of the switch we're in. 1377 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1378 1379 // Otherwise, everything is great. Include the statement and tell the caller 1380 // that we fall through and include the next statement as well. 1381 ResultStmts.push_back(S); 1382 return CSFC_FallThrough; 1383 } 1384 1385 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1386 /// then invoke CollectStatementsForCase to find the list of statements to emit 1387 /// for a switch on constant. See the comment above CollectStatementsForCase 1388 /// for more details. 1389 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1390 const llvm::APSInt &ConstantCondValue, 1391 SmallVectorImpl<const Stmt*> &ResultStmts, 1392 ASTContext &C, 1393 const SwitchCase *&ResultCase) { 1394 // First step, find the switch case that is being branched to. We can do this 1395 // efficiently by scanning the SwitchCase list. 1396 const SwitchCase *Case = S.getSwitchCaseList(); 1397 const DefaultStmt *DefaultCase = nullptr; 1398 1399 for (; Case; Case = Case->getNextSwitchCase()) { 1400 // It's either a default or case. Just remember the default statement in 1401 // case we're not jumping to any numbered cases. 1402 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1403 DefaultCase = DS; 1404 continue; 1405 } 1406 1407 // Check to see if this case is the one we're looking for. 1408 const CaseStmt *CS = cast<CaseStmt>(Case); 1409 // Don't handle case ranges yet. 1410 if (CS->getRHS()) return false; 1411 1412 // If we found our case, remember it as 'case'. 1413 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1414 break; 1415 } 1416 1417 // If we didn't find a matching case, we use a default if it exists, or we 1418 // elide the whole switch body! 1419 if (!Case) { 1420 // It is safe to elide the body of the switch if it doesn't contain labels 1421 // etc. If it is safe, return successfully with an empty ResultStmts list. 1422 if (!DefaultCase) 1423 return !CodeGenFunction::ContainsLabel(&S); 1424 Case = DefaultCase; 1425 } 1426 1427 // Ok, we know which case is being jumped to, try to collect all the 1428 // statements that follow it. This can fail for a variety of reasons. Also, 1429 // check to see that the recursive walk actually found our case statement. 1430 // Insane cases like this can fail to find it in the recursive walk since we 1431 // don't handle every stmt kind: 1432 // switch (4) { 1433 // while (1) { 1434 // case 4: ... 1435 bool FoundCase = false; 1436 ResultCase = Case; 1437 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1438 ResultStmts) != CSFC_Failure && 1439 FoundCase; 1440 } 1441 1442 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1443 // Handle nested switch statements. 1444 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1445 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1446 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1447 1448 // See if we can constant fold the condition of the switch and therefore only 1449 // emit the live case statement (if any) of the switch. 1450 llvm::APSInt ConstantCondValue; 1451 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1452 SmallVector<const Stmt*, 4> CaseStmts; 1453 const SwitchCase *Case = nullptr; 1454 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1455 getContext(), Case)) { 1456 if (Case) 1457 incrementProfileCounter(Case); 1458 RunCleanupsScope ExecutedScope(*this); 1459 1460 // Emit the condition variable if needed inside the entire cleanup scope 1461 // used by this special case for constant folded switches. 1462 if (S.getConditionVariable()) 1463 EmitAutoVarDecl(*S.getConditionVariable()); 1464 1465 // At this point, we are no longer "within" a switch instance, so 1466 // we can temporarily enforce this to ensure that any embedded case 1467 // statements are not emitted. 1468 SwitchInsn = nullptr; 1469 1470 // Okay, we can dead code eliminate everything except this case. Emit the 1471 // specified series of statements and we're good. 1472 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1473 EmitStmt(CaseStmts[i]); 1474 incrementProfileCounter(&S); 1475 1476 // Now we want to restore the saved switch instance so that nested 1477 // switches continue to function properly 1478 SwitchInsn = SavedSwitchInsn; 1479 1480 return; 1481 } 1482 } 1483 1484 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1485 1486 RunCleanupsScope ConditionScope(*this); 1487 if (S.getConditionVariable()) 1488 EmitAutoVarDecl(*S.getConditionVariable()); 1489 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1490 1491 // Create basic block to hold stuff that comes after switch 1492 // statement. We also need to create a default block now so that 1493 // explicit case ranges tests can have a place to jump to on 1494 // failure. 1495 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1496 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1497 if (PGO.haveRegionCounts()) { 1498 // Walk the SwitchCase list to find how many there are. 1499 uint64_t DefaultCount = 0; 1500 unsigned NumCases = 0; 1501 for (const SwitchCase *Case = S.getSwitchCaseList(); 1502 Case; 1503 Case = Case->getNextSwitchCase()) { 1504 if (isa<DefaultStmt>(Case)) 1505 DefaultCount = getProfileCount(Case); 1506 NumCases += 1; 1507 } 1508 SwitchWeights = new SmallVector<uint64_t, 16>(); 1509 SwitchWeights->reserve(NumCases); 1510 // The default needs to be first. We store the edge count, so we already 1511 // know the right weight. 1512 SwitchWeights->push_back(DefaultCount); 1513 } 1514 CaseRangeBlock = DefaultBlock; 1515 1516 // Clear the insertion point to indicate we are in unreachable code. 1517 Builder.ClearInsertionPoint(); 1518 1519 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1520 // then reuse last ContinueBlock. 1521 JumpDest OuterContinue; 1522 if (!BreakContinueStack.empty()) 1523 OuterContinue = BreakContinueStack.back().ContinueBlock; 1524 1525 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1526 1527 // Emit switch body. 1528 EmitStmt(S.getBody()); 1529 1530 BreakContinueStack.pop_back(); 1531 1532 // Update the default block in case explicit case range tests have 1533 // been chained on top. 1534 SwitchInsn->setDefaultDest(CaseRangeBlock); 1535 1536 // If a default was never emitted: 1537 if (!DefaultBlock->getParent()) { 1538 // If we have cleanups, emit the default block so that there's a 1539 // place to jump through the cleanups from. 1540 if (ConditionScope.requiresCleanups()) { 1541 EmitBlock(DefaultBlock); 1542 1543 // Otherwise, just forward the default block to the switch end. 1544 } else { 1545 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1546 delete DefaultBlock; 1547 } 1548 } 1549 1550 ConditionScope.ForceCleanup(); 1551 1552 // Emit continuation. 1553 EmitBlock(SwitchExit.getBlock(), true); 1554 incrementProfileCounter(&S); 1555 1556 // If the switch has a condition wrapped by __builtin_unpredictable, 1557 // create metadata that specifies that the switch is unpredictable. 1558 // Don't bother if not optimizing because that metadata would not be used. 1559 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1560 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1561 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1562 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1563 llvm::MDBuilder MDHelper(getLLVMContext()); 1564 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1565 MDHelper.createUnpredictable()); 1566 } 1567 } 1568 1569 if (SwitchWeights) { 1570 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1571 "switch weights do not match switch cases"); 1572 // If there's only one jump destination there's no sense weighting it. 1573 if (SwitchWeights->size() > 1) 1574 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1575 createProfileWeights(*SwitchWeights)); 1576 delete SwitchWeights; 1577 } 1578 SwitchInsn = SavedSwitchInsn; 1579 SwitchWeights = SavedSwitchWeights; 1580 CaseRangeBlock = SavedCRBlock; 1581 } 1582 1583 static std::string 1584 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1585 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1586 std::string Result; 1587 1588 while (*Constraint) { 1589 switch (*Constraint) { 1590 default: 1591 Result += Target.convertConstraint(Constraint); 1592 break; 1593 // Ignore these 1594 case '*': 1595 case '?': 1596 case '!': 1597 case '=': // Will see this and the following in mult-alt constraints. 1598 case '+': 1599 break; 1600 case '#': // Ignore the rest of the constraint alternative. 1601 while (Constraint[1] && Constraint[1] != ',') 1602 Constraint++; 1603 break; 1604 case '&': 1605 case '%': 1606 Result += *Constraint; 1607 while (Constraint[1] && Constraint[1] == *Constraint) 1608 Constraint++; 1609 break; 1610 case ',': 1611 Result += "|"; 1612 break; 1613 case 'g': 1614 Result += "imr"; 1615 break; 1616 case '[': { 1617 assert(OutCons && 1618 "Must pass output names to constraints with a symbolic name"); 1619 unsigned Index; 1620 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1621 assert(result && "Could not resolve symbolic name"); (void)result; 1622 Result += llvm::utostr(Index); 1623 break; 1624 } 1625 } 1626 1627 Constraint++; 1628 } 1629 1630 return Result; 1631 } 1632 1633 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1634 /// as using a particular register add that as a constraint that will be used 1635 /// in this asm stmt. 1636 static std::string 1637 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1638 const TargetInfo &Target, CodeGenModule &CGM, 1639 const AsmStmt &Stmt, const bool EarlyClobber) { 1640 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1641 if (!AsmDeclRef) 1642 return Constraint; 1643 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1644 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1645 if (!Variable) 1646 return Constraint; 1647 if (Variable->getStorageClass() != SC_Register) 1648 return Constraint; 1649 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1650 if (!Attr) 1651 return Constraint; 1652 StringRef Register = Attr->getLabel(); 1653 assert(Target.isValidGCCRegisterName(Register)); 1654 // We're using validateOutputConstraint here because we only care if 1655 // this is a register constraint. 1656 TargetInfo::ConstraintInfo Info(Constraint, ""); 1657 if (Target.validateOutputConstraint(Info) && 1658 !Info.allowsRegister()) { 1659 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1660 return Constraint; 1661 } 1662 // Canonicalize the register here before returning it. 1663 Register = Target.getNormalizedGCCRegisterName(Register); 1664 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1665 } 1666 1667 llvm::Value* 1668 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1669 LValue InputValue, QualType InputType, 1670 std::string &ConstraintStr, 1671 SourceLocation Loc) { 1672 llvm::Value *Arg; 1673 if (Info.allowsRegister() || !Info.allowsMemory()) { 1674 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1675 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1676 } else { 1677 llvm::Type *Ty = ConvertType(InputType); 1678 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1679 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1680 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1681 Ty = llvm::PointerType::getUnqual(Ty); 1682 1683 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1684 Ty)); 1685 } else { 1686 Arg = InputValue.getPointer(); 1687 ConstraintStr += '*'; 1688 } 1689 } 1690 } else { 1691 Arg = InputValue.getPointer(); 1692 ConstraintStr += '*'; 1693 } 1694 1695 return Arg; 1696 } 1697 1698 llvm::Value* CodeGenFunction::EmitAsmInput( 1699 const TargetInfo::ConstraintInfo &Info, 1700 const Expr *InputExpr, 1701 std::string &ConstraintStr) { 1702 // If this can't be a register or memory, i.e., has to be a constant 1703 // (immediate or symbolic), try to emit it as such. 1704 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1705 llvm::APSInt Result; 1706 if (InputExpr->EvaluateAsInt(Result, getContext())) 1707 return llvm::ConstantInt::get(getLLVMContext(), Result); 1708 assert(!Info.requiresImmediateConstant() && 1709 "Required-immediate inlineasm arg isn't constant?"); 1710 } 1711 1712 if (Info.allowsRegister() || !Info.allowsMemory()) 1713 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1714 return EmitScalarExpr(InputExpr); 1715 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1716 return EmitScalarExpr(InputExpr); 1717 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1718 LValue Dest = EmitLValue(InputExpr); 1719 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1720 InputExpr->getExprLoc()); 1721 } 1722 1723 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1724 /// asm call instruction. The !srcloc MDNode contains a list of constant 1725 /// integers which are the source locations of the start of each line in the 1726 /// asm. 1727 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1728 CodeGenFunction &CGF) { 1729 SmallVector<llvm::Metadata *, 8> Locs; 1730 // Add the location of the first line to the MDNode. 1731 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1732 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1733 StringRef StrVal = Str->getString(); 1734 if (!StrVal.empty()) { 1735 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1736 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1737 unsigned StartToken = 0; 1738 unsigned ByteOffset = 0; 1739 1740 // Add the location of the start of each subsequent line of the asm to the 1741 // MDNode. 1742 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1743 if (StrVal[i] != '\n') continue; 1744 SourceLocation LineLoc = Str->getLocationOfByte( 1745 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1746 Locs.push_back(llvm::ConstantAsMetadata::get( 1747 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1748 } 1749 } 1750 1751 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1752 } 1753 1754 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1755 // Assemble the final asm string. 1756 std::string AsmString = S.generateAsmString(getContext()); 1757 1758 // Get all the output and input constraints together. 1759 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1760 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1761 1762 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1763 StringRef Name; 1764 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1765 Name = GAS->getOutputName(i); 1766 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1767 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1768 assert(IsValid && "Failed to parse output constraint"); 1769 OutputConstraintInfos.push_back(Info); 1770 } 1771 1772 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1773 StringRef Name; 1774 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1775 Name = GAS->getInputName(i); 1776 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1777 bool IsValid = 1778 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1779 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1780 InputConstraintInfos.push_back(Info); 1781 } 1782 1783 std::string Constraints; 1784 1785 std::vector<LValue> ResultRegDests; 1786 std::vector<QualType> ResultRegQualTys; 1787 std::vector<llvm::Type *> ResultRegTypes; 1788 std::vector<llvm::Type *> ResultTruncRegTypes; 1789 std::vector<llvm::Type *> ArgTypes; 1790 std::vector<llvm::Value*> Args; 1791 1792 // Keep track of inout constraints. 1793 std::string InOutConstraints; 1794 std::vector<llvm::Value*> InOutArgs; 1795 std::vector<llvm::Type*> InOutArgTypes; 1796 1797 // An inline asm can be marked readonly if it meets the following conditions: 1798 // - it doesn't have any sideeffects 1799 // - it doesn't clobber memory 1800 // - it doesn't return a value by-reference 1801 // It can be marked readnone if it doesn't have any input memory constraints 1802 // in addition to meeting the conditions listed above. 1803 bool ReadOnly = true, ReadNone = true; 1804 1805 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1806 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1807 1808 // Simplify the output constraint. 1809 std::string OutputConstraint(S.getOutputConstraint(i)); 1810 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1811 getTarget()); 1812 1813 const Expr *OutExpr = S.getOutputExpr(i); 1814 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1815 1816 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1817 getTarget(), CGM, S, 1818 Info.earlyClobber()); 1819 1820 LValue Dest = EmitLValue(OutExpr); 1821 if (!Constraints.empty()) 1822 Constraints += ','; 1823 1824 // If this is a register output, then make the inline asm return it 1825 // by-value. If this is a memory result, return the value by-reference. 1826 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1827 Constraints += "=" + OutputConstraint; 1828 ResultRegQualTys.push_back(OutExpr->getType()); 1829 ResultRegDests.push_back(Dest); 1830 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1831 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1832 1833 // If this output is tied to an input, and if the input is larger, then 1834 // we need to set the actual result type of the inline asm node to be the 1835 // same as the input type. 1836 if (Info.hasMatchingInput()) { 1837 unsigned InputNo; 1838 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1839 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1840 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1841 break; 1842 } 1843 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1844 1845 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1846 QualType OutputType = OutExpr->getType(); 1847 1848 uint64_t InputSize = getContext().getTypeSize(InputTy); 1849 if (getContext().getTypeSize(OutputType) < InputSize) { 1850 // Form the asm to return the value as a larger integer or fp type. 1851 ResultRegTypes.back() = ConvertType(InputTy); 1852 } 1853 } 1854 if (llvm::Type* AdjTy = 1855 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1856 ResultRegTypes.back())) 1857 ResultRegTypes.back() = AdjTy; 1858 else { 1859 CGM.getDiags().Report(S.getAsmLoc(), 1860 diag::err_asm_invalid_type_in_input) 1861 << OutExpr->getType() << OutputConstraint; 1862 } 1863 } else { 1864 ArgTypes.push_back(Dest.getAddress().getType()); 1865 Args.push_back(Dest.getPointer()); 1866 Constraints += "=*"; 1867 Constraints += OutputConstraint; 1868 ReadOnly = ReadNone = false; 1869 } 1870 1871 if (Info.isReadWrite()) { 1872 InOutConstraints += ','; 1873 1874 const Expr *InputExpr = S.getOutputExpr(i); 1875 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1876 InOutConstraints, 1877 InputExpr->getExprLoc()); 1878 1879 if (llvm::Type* AdjTy = 1880 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1881 Arg->getType())) 1882 Arg = Builder.CreateBitCast(Arg, AdjTy); 1883 1884 if (Info.allowsRegister()) 1885 InOutConstraints += llvm::utostr(i); 1886 else 1887 InOutConstraints += OutputConstraint; 1888 1889 InOutArgTypes.push_back(Arg->getType()); 1890 InOutArgs.push_back(Arg); 1891 } 1892 } 1893 1894 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1895 // to the return value slot. Only do this when returning in registers. 1896 if (isa<MSAsmStmt>(&S)) { 1897 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1898 if (RetAI.isDirect() || RetAI.isExtend()) { 1899 // Make a fake lvalue for the return value slot. 1900 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1901 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1902 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1903 ResultRegDests, AsmString, S.getNumOutputs()); 1904 SawAsmBlock = true; 1905 } 1906 } 1907 1908 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1909 const Expr *InputExpr = S.getInputExpr(i); 1910 1911 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1912 1913 if (Info.allowsMemory()) 1914 ReadNone = false; 1915 1916 if (!Constraints.empty()) 1917 Constraints += ','; 1918 1919 // Simplify the input constraint. 1920 std::string InputConstraint(S.getInputConstraint(i)); 1921 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1922 &OutputConstraintInfos); 1923 1924 InputConstraint = AddVariableConstraints( 1925 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 1926 getTarget(), CGM, S, false /* No EarlyClobber */); 1927 1928 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1929 1930 // If this input argument is tied to a larger output result, extend the 1931 // input to be the same size as the output. The LLVM backend wants to see 1932 // the input and output of a matching constraint be the same size. Note 1933 // that GCC does not define what the top bits are here. We use zext because 1934 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1935 if (Info.hasTiedOperand()) { 1936 unsigned Output = Info.getTiedOperand(); 1937 QualType OutputType = S.getOutputExpr(Output)->getType(); 1938 QualType InputTy = InputExpr->getType(); 1939 1940 if (getContext().getTypeSize(OutputType) > 1941 getContext().getTypeSize(InputTy)) { 1942 // Use ptrtoint as appropriate so that we can do our extension. 1943 if (isa<llvm::PointerType>(Arg->getType())) 1944 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1945 llvm::Type *OutputTy = ConvertType(OutputType); 1946 if (isa<llvm::IntegerType>(OutputTy)) 1947 Arg = Builder.CreateZExt(Arg, OutputTy); 1948 else if (isa<llvm::PointerType>(OutputTy)) 1949 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1950 else { 1951 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1952 Arg = Builder.CreateFPExt(Arg, OutputTy); 1953 } 1954 } 1955 } 1956 if (llvm::Type* AdjTy = 1957 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1958 Arg->getType())) 1959 Arg = Builder.CreateBitCast(Arg, AdjTy); 1960 else 1961 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1962 << InputExpr->getType() << InputConstraint; 1963 1964 ArgTypes.push_back(Arg->getType()); 1965 Args.push_back(Arg); 1966 Constraints += InputConstraint; 1967 } 1968 1969 // Append the "input" part of inout constraints last. 1970 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1971 ArgTypes.push_back(InOutArgTypes[i]); 1972 Args.push_back(InOutArgs[i]); 1973 } 1974 Constraints += InOutConstraints; 1975 1976 // Clobbers 1977 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1978 StringRef Clobber = S.getClobber(i); 1979 1980 if (Clobber == "memory") 1981 ReadOnly = ReadNone = false; 1982 else if (Clobber != "cc") 1983 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1984 1985 if (!Constraints.empty()) 1986 Constraints += ','; 1987 1988 Constraints += "~{"; 1989 Constraints += Clobber; 1990 Constraints += '}'; 1991 } 1992 1993 // Add machine specific clobbers 1994 std::string MachineClobbers = getTarget().getClobbers(); 1995 if (!MachineClobbers.empty()) { 1996 if (!Constraints.empty()) 1997 Constraints += ','; 1998 Constraints += MachineClobbers; 1999 } 2000 2001 llvm::Type *ResultType; 2002 if (ResultRegTypes.empty()) 2003 ResultType = VoidTy; 2004 else if (ResultRegTypes.size() == 1) 2005 ResultType = ResultRegTypes[0]; 2006 else 2007 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2008 2009 llvm::FunctionType *FTy = 2010 llvm::FunctionType::get(ResultType, ArgTypes, false); 2011 2012 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2013 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2014 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2015 llvm::InlineAsm *IA = 2016 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2017 /* IsAlignStack */ false, AsmDialect); 2018 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2019 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2020 llvm::Attribute::NoUnwind); 2021 2022 if (isa<MSAsmStmt>(&S)) { 2023 // If the assembly contains any labels, mark the call noduplicate to prevent 2024 // defining the same ASM label twice (PR23715). This is pretty hacky, but it 2025 // works. 2026 if (AsmString.find("__MSASMLABEL_") != std::string::npos) 2027 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2028 llvm::Attribute::NoDuplicate); 2029 } 2030 2031 // Attach readnone and readonly attributes. 2032 if (!HasSideEffect) { 2033 if (ReadNone) 2034 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2035 llvm::Attribute::ReadNone); 2036 else if (ReadOnly) 2037 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2038 llvm::Attribute::ReadOnly); 2039 } 2040 2041 // Slap the source location of the inline asm into a !srcloc metadata on the 2042 // call. 2043 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2044 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2045 *this)); 2046 } else { 2047 // At least put the line number on MS inline asm blobs. 2048 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2049 Result->setMetadata("srcloc", 2050 llvm::MDNode::get(getLLVMContext(), 2051 llvm::ConstantAsMetadata::get(Loc))); 2052 } 2053 2054 // Extract all of the register value results from the asm. 2055 std::vector<llvm::Value*> RegResults; 2056 if (ResultRegTypes.size() == 1) { 2057 RegResults.push_back(Result); 2058 } else { 2059 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2060 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2061 RegResults.push_back(Tmp); 2062 } 2063 } 2064 2065 assert(RegResults.size() == ResultRegTypes.size()); 2066 assert(RegResults.size() == ResultTruncRegTypes.size()); 2067 assert(RegResults.size() == ResultRegDests.size()); 2068 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2069 llvm::Value *Tmp = RegResults[i]; 2070 2071 // If the result type of the LLVM IR asm doesn't match the result type of 2072 // the expression, do the conversion. 2073 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2074 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2075 2076 // Truncate the integer result to the right size, note that TruncTy can be 2077 // a pointer. 2078 if (TruncTy->isFloatingPointTy()) 2079 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2080 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2081 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2082 Tmp = Builder.CreateTrunc(Tmp, 2083 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2084 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2085 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2086 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2087 Tmp = Builder.CreatePtrToInt(Tmp, 2088 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2089 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2090 } else if (TruncTy->isIntegerTy()) { 2091 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2092 } else if (TruncTy->isVectorTy()) { 2093 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2094 } 2095 } 2096 2097 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2098 } 2099 } 2100 2101 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2102 const RecordDecl *RD = S.getCapturedRecordDecl(); 2103 QualType RecordTy = getContext().getRecordType(RD); 2104 2105 // Initialize the captured struct. 2106 LValue SlotLV = 2107 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2108 2109 RecordDecl::field_iterator CurField = RD->field_begin(); 2110 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2111 E = S.capture_init_end(); 2112 I != E; ++I, ++CurField) { 2113 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2114 if (CurField->hasCapturedVLAType()) { 2115 auto VAT = CurField->getCapturedVLAType(); 2116 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2117 } else { 2118 EmitInitializerForField(*CurField, LV, *I, None); 2119 } 2120 } 2121 2122 return SlotLV; 2123 } 2124 2125 /// Generate an outlined function for the body of a CapturedStmt, store any 2126 /// captured variables into the captured struct, and call the outlined function. 2127 llvm::Function * 2128 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2129 LValue CapStruct = InitCapturedStruct(S); 2130 2131 // Emit the CapturedDecl 2132 CodeGenFunction CGF(CGM, true); 2133 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2134 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2135 delete CGF.CapturedStmtInfo; 2136 2137 // Emit call to the helper function. 2138 EmitCallOrInvoke(F, CapStruct.getPointer()); 2139 2140 return F; 2141 } 2142 2143 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2144 LValue CapStruct = InitCapturedStruct(S); 2145 return CapStruct.getAddress(); 2146 } 2147 2148 /// Creates the outlined function for a CapturedStmt. 2149 llvm::Function * 2150 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2151 assert(CapturedStmtInfo && 2152 "CapturedStmtInfo should be set when generating the captured function"); 2153 const CapturedDecl *CD = S.getCapturedDecl(); 2154 const RecordDecl *RD = S.getCapturedRecordDecl(); 2155 SourceLocation Loc = S.getLocStart(); 2156 assert(CD->hasBody() && "missing CapturedDecl body"); 2157 2158 // Build the argument list. 2159 ASTContext &Ctx = CGM.getContext(); 2160 FunctionArgList Args; 2161 Args.append(CD->param_begin(), CD->param_end()); 2162 2163 // Create the function declaration. 2164 FunctionType::ExtInfo ExtInfo; 2165 const CGFunctionInfo &FuncInfo = 2166 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2167 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2168 2169 llvm::Function *F = 2170 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2171 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2172 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2173 if (CD->isNothrow()) 2174 F->addFnAttr(llvm::Attribute::NoUnwind); 2175 2176 // Generate the function. 2177 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2178 CD->getLocation(), 2179 CD->getBody()->getLocStart()); 2180 // Set the context parameter in CapturedStmtInfo. 2181 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2182 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2183 2184 // Initialize variable-length arrays. 2185 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2186 Ctx.getTagDeclType(RD)); 2187 for (auto *FD : RD->fields()) { 2188 if (FD->hasCapturedVLAType()) { 2189 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2190 S.getLocStart()).getScalarVal(); 2191 auto VAT = FD->getCapturedVLAType(); 2192 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2193 } 2194 } 2195 2196 // If 'this' is captured, load it into CXXThisValue. 2197 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2198 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2199 LValue ThisLValue = EmitLValueForField(Base, FD); 2200 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2201 } 2202 2203 PGO.assignRegionCounters(GlobalDecl(CD), F); 2204 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2205 FinishFunction(CD->getBodyRBrace()); 2206 2207 return F; 2208 } 2209