1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTaskLoopDirectiveClass:
260     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
261     break;
262   case Stmt::OMPTaskLoopSimdDirectiveClass:
263     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
264     break;
265   }
266 }
267 
268 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
269   switch (S->getStmtClass()) {
270   default: return false;
271   case Stmt::NullStmtClass: break;
272   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
273   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
274   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
275   case Stmt::AttributedStmtClass:
276                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
277   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
278   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
279   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
280   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
281   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
282   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
283   }
284 
285   return true;
286 }
287 
288 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
289 /// this captures the expression result of the last sub-statement and returns it
290 /// (for use by the statement expression extension).
291 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
292                                           AggValueSlot AggSlot) {
293   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
294                              "LLVM IR generation of compound statement ('{}')");
295 
296   // Keep track of the current cleanup stack depth, including debug scopes.
297   LexicalScope Scope(*this, S.getSourceRange());
298 
299   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
300 }
301 
302 Address
303 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
304                                               bool GetLast,
305                                               AggValueSlot AggSlot) {
306 
307   for (CompoundStmt::const_body_iterator I = S.body_begin(),
308        E = S.body_end()-GetLast; I != E; ++I)
309     EmitStmt(*I);
310 
311   Address RetAlloca = Address::invalid();
312   if (GetLast) {
313     // We have to special case labels here.  They are statements, but when put
314     // at the end of a statement expression, they yield the value of their
315     // subexpression.  Handle this by walking through all labels we encounter,
316     // emitting them before we evaluate the subexpr.
317     const Stmt *LastStmt = S.body_back();
318     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
319       EmitLabel(LS->getDecl());
320       LastStmt = LS->getSubStmt();
321     }
322 
323     EnsureInsertPoint();
324 
325     QualType ExprTy = cast<Expr>(LastStmt)->getType();
326     if (hasAggregateEvaluationKind(ExprTy)) {
327       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
328     } else {
329       // We can't return an RValue here because there might be cleanups at
330       // the end of the StmtExpr.  Because of that, we have to emit the result
331       // here into a temporary alloca.
332       RetAlloca = CreateMemTemp(ExprTy);
333       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
334                        /*IsInit*/false);
335     }
336 
337   }
338 
339   return RetAlloca;
340 }
341 
342 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
343   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
344 
345   // If there is a cleanup stack, then we it isn't worth trying to
346   // simplify this block (we would need to remove it from the scope map
347   // and cleanup entry).
348   if (!EHStack.empty())
349     return;
350 
351   // Can only simplify direct branches.
352   if (!BI || !BI->isUnconditional())
353     return;
354 
355   // Can only simplify empty blocks.
356   if (BI->getIterator() != BB->begin())
357     return;
358 
359   BB->replaceAllUsesWith(BI->getSuccessor(0));
360   BI->eraseFromParent();
361   BB->eraseFromParent();
362 }
363 
364 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
365   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
366 
367   // Fall out of the current block (if necessary).
368   EmitBranch(BB);
369 
370   if (IsFinished && BB->use_empty()) {
371     delete BB;
372     return;
373   }
374 
375   // Place the block after the current block, if possible, or else at
376   // the end of the function.
377   if (CurBB && CurBB->getParent())
378     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
379   else
380     CurFn->getBasicBlockList().push_back(BB);
381   Builder.SetInsertPoint(BB);
382 }
383 
384 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
385   // Emit a branch from the current block to the target one if this
386   // was a real block.  If this was just a fall-through block after a
387   // terminator, don't emit it.
388   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
389 
390   if (!CurBB || CurBB->getTerminator()) {
391     // If there is no insert point or the previous block is already
392     // terminated, don't touch it.
393   } else {
394     // Otherwise, create a fall-through branch.
395     Builder.CreateBr(Target);
396   }
397 
398   Builder.ClearInsertionPoint();
399 }
400 
401 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
402   bool inserted = false;
403   for (llvm::User *u : block->users()) {
404     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
405       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
406                                              block);
407       inserted = true;
408       break;
409     }
410   }
411 
412   if (!inserted)
413     CurFn->getBasicBlockList().push_back(block);
414 
415   Builder.SetInsertPoint(block);
416 }
417 
418 CodeGenFunction::JumpDest
419 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
420   JumpDest &Dest = LabelMap[D];
421   if (Dest.isValid()) return Dest;
422 
423   // Create, but don't insert, the new block.
424   Dest = JumpDest(createBasicBlock(D->getName()),
425                   EHScopeStack::stable_iterator::invalid(),
426                   NextCleanupDestIndex++);
427   return Dest;
428 }
429 
430 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
431   // Add this label to the current lexical scope if we're within any
432   // normal cleanups.  Jumps "in" to this label --- when permitted by
433   // the language --- may need to be routed around such cleanups.
434   if (EHStack.hasNormalCleanups() && CurLexicalScope)
435     CurLexicalScope->addLabel(D);
436 
437   JumpDest &Dest = LabelMap[D];
438 
439   // If we didn't need a forward reference to this label, just go
440   // ahead and create a destination at the current scope.
441   if (!Dest.isValid()) {
442     Dest = getJumpDestInCurrentScope(D->getName());
443 
444   // Otherwise, we need to give this label a target depth and remove
445   // it from the branch-fixups list.
446   } else {
447     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
448     Dest.setScopeDepth(EHStack.stable_begin());
449     ResolveBranchFixups(Dest.getBlock());
450   }
451 
452   EmitBlock(Dest.getBlock());
453   incrementProfileCounter(D->getStmt());
454 }
455 
456 /// Change the cleanup scope of the labels in this lexical scope to
457 /// match the scope of the enclosing context.
458 void CodeGenFunction::LexicalScope::rescopeLabels() {
459   assert(!Labels.empty());
460   EHScopeStack::stable_iterator innermostScope
461     = CGF.EHStack.getInnermostNormalCleanup();
462 
463   // Change the scope depth of all the labels.
464   for (SmallVectorImpl<const LabelDecl*>::const_iterator
465          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
466     assert(CGF.LabelMap.count(*i));
467     JumpDest &dest = CGF.LabelMap.find(*i)->second;
468     assert(dest.getScopeDepth().isValid());
469     assert(innermostScope.encloses(dest.getScopeDepth()));
470     dest.setScopeDepth(innermostScope);
471   }
472 
473   // Reparent the labels if the new scope also has cleanups.
474   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
475     ParentScope->Labels.append(Labels.begin(), Labels.end());
476   }
477 }
478 
479 
480 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
481   EmitLabel(S.getDecl());
482   EmitStmt(S.getSubStmt());
483 }
484 
485 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
486   const Stmt *SubStmt = S.getSubStmt();
487   switch (SubStmt->getStmtClass()) {
488   case Stmt::DoStmtClass:
489     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
490     break;
491   case Stmt::ForStmtClass:
492     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
493     break;
494   case Stmt::WhileStmtClass:
495     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
496     break;
497   case Stmt::CXXForRangeStmtClass:
498     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
499     break;
500   default:
501     EmitStmt(SubStmt);
502   }
503 }
504 
505 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
506   // If this code is reachable then emit a stop point (if generating
507   // debug info). We have to do this ourselves because we are on the
508   // "simple" statement path.
509   if (HaveInsertPoint())
510     EmitStopPoint(&S);
511 
512   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
513 }
514 
515 
516 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
517   if (const LabelDecl *Target = S.getConstantTarget()) {
518     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
519     return;
520   }
521 
522   // Ensure that we have an i8* for our PHI node.
523   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
524                                          Int8PtrTy, "addr");
525   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
526 
527   // Get the basic block for the indirect goto.
528   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
529 
530   // The first instruction in the block has to be the PHI for the switch dest,
531   // add an entry for this branch.
532   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
533 
534   EmitBranch(IndGotoBB);
535 }
536 
537 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
538   // C99 6.8.4.1: The first substatement is executed if the expression compares
539   // unequal to 0.  The condition must be a scalar type.
540   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
541 
542   if (S.getConditionVariable())
543     EmitAutoVarDecl(*S.getConditionVariable());
544 
545   // If the condition constant folds and can be elided, try to avoid emitting
546   // the condition and the dead arm of the if/else.
547   bool CondConstant;
548   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
549     // Figure out which block (then or else) is executed.
550     const Stmt *Executed = S.getThen();
551     const Stmt *Skipped  = S.getElse();
552     if (!CondConstant)  // Condition false?
553       std::swap(Executed, Skipped);
554 
555     // If the skipped block has no labels in it, just emit the executed block.
556     // This avoids emitting dead code and simplifies the CFG substantially.
557     if (!ContainsLabel(Skipped)) {
558       if (CondConstant)
559         incrementProfileCounter(&S);
560       if (Executed) {
561         RunCleanupsScope ExecutedScope(*this);
562         EmitStmt(Executed);
563       }
564       return;
565     }
566   }
567 
568   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
569   // the conditional branch.
570   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
571   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
572   llvm::BasicBlock *ElseBlock = ContBlock;
573   if (S.getElse())
574     ElseBlock = createBasicBlock("if.else");
575 
576   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
577                        getProfileCount(S.getThen()));
578 
579   // Emit the 'then' code.
580   EmitBlock(ThenBlock);
581   incrementProfileCounter(&S);
582   {
583     RunCleanupsScope ThenScope(*this);
584     EmitStmt(S.getThen());
585   }
586   EmitBranch(ContBlock);
587 
588   // Emit the 'else' code if present.
589   if (const Stmt *Else = S.getElse()) {
590     {
591       // There is no need to emit line number for an unconditional branch.
592       auto NL = ApplyDebugLocation::CreateEmpty(*this);
593       EmitBlock(ElseBlock);
594     }
595     {
596       RunCleanupsScope ElseScope(*this);
597       EmitStmt(Else);
598     }
599     {
600       // There is no need to emit line number for an unconditional branch.
601       auto NL = ApplyDebugLocation::CreateEmpty(*this);
602       EmitBranch(ContBlock);
603     }
604   }
605 
606   // Emit the continuation block for code after the if.
607   EmitBlock(ContBlock, true);
608 }
609 
610 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
611                                     ArrayRef<const Attr *> WhileAttrs) {
612   // Emit the header for the loop, which will also become
613   // the continue target.
614   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
615   EmitBlock(LoopHeader.getBlock());
616 
617   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
618 
619   // Create an exit block for when the condition fails, which will
620   // also become the break target.
621   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
622 
623   // Store the blocks to use for break and continue.
624   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
625 
626   // C++ [stmt.while]p2:
627   //   When the condition of a while statement is a declaration, the
628   //   scope of the variable that is declared extends from its point
629   //   of declaration (3.3.2) to the end of the while statement.
630   //   [...]
631   //   The object created in a condition is destroyed and created
632   //   with each iteration of the loop.
633   RunCleanupsScope ConditionScope(*this);
634 
635   if (S.getConditionVariable())
636     EmitAutoVarDecl(*S.getConditionVariable());
637 
638   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
639   // evaluation of the controlling expression takes place before each
640   // execution of the loop body.
641   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
642 
643   // while(1) is common, avoid extra exit blocks.  Be sure
644   // to correctly handle break/continue though.
645   bool EmitBoolCondBranch = true;
646   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
647     if (C->isOne())
648       EmitBoolCondBranch = false;
649 
650   // As long as the condition is true, go to the loop body.
651   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
652   if (EmitBoolCondBranch) {
653     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
654     if (ConditionScope.requiresCleanups())
655       ExitBlock = createBasicBlock("while.exit");
656     Builder.CreateCondBr(
657         BoolCondVal, LoopBody, ExitBlock,
658         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
659 
660     if (ExitBlock != LoopExit.getBlock()) {
661       EmitBlock(ExitBlock);
662       EmitBranchThroughCleanup(LoopExit);
663     }
664   }
665 
666   // Emit the loop body.  We have to emit this in a cleanup scope
667   // because it might be a singleton DeclStmt.
668   {
669     RunCleanupsScope BodyScope(*this);
670     EmitBlock(LoopBody);
671     incrementProfileCounter(&S);
672     EmitStmt(S.getBody());
673   }
674 
675   BreakContinueStack.pop_back();
676 
677   // Immediately force cleanup.
678   ConditionScope.ForceCleanup();
679 
680   EmitStopPoint(&S);
681   // Branch to the loop header again.
682   EmitBranch(LoopHeader.getBlock());
683 
684   LoopStack.pop();
685 
686   // Emit the exit block.
687   EmitBlock(LoopExit.getBlock(), true);
688 
689   // The LoopHeader typically is just a branch if we skipped emitting
690   // a branch, try to erase it.
691   if (!EmitBoolCondBranch)
692     SimplifyForwardingBlocks(LoopHeader.getBlock());
693 }
694 
695 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
696                                  ArrayRef<const Attr *> DoAttrs) {
697   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
698   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
699 
700   uint64_t ParentCount = getCurrentProfileCount();
701 
702   // Store the blocks to use for break and continue.
703   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
704 
705   // Emit the body of the loop.
706   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
707 
708   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
709 
710   EmitBlockWithFallThrough(LoopBody, &S);
711   {
712     RunCleanupsScope BodyScope(*this);
713     EmitStmt(S.getBody());
714   }
715 
716   EmitBlock(LoopCond.getBlock());
717 
718   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
719   // after each execution of the loop body."
720 
721   // Evaluate the conditional in the while header.
722   // C99 6.8.5p2/p4: The first substatement is executed if the expression
723   // compares unequal to 0.  The condition must be a scalar type.
724   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
725 
726   BreakContinueStack.pop_back();
727 
728   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
729   // to correctly handle break/continue though.
730   bool EmitBoolCondBranch = true;
731   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
732     if (C->isZero())
733       EmitBoolCondBranch = false;
734 
735   // As long as the condition is true, iterate the loop.
736   if (EmitBoolCondBranch) {
737     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
738     Builder.CreateCondBr(
739         BoolCondVal, LoopBody, LoopExit.getBlock(),
740         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
741   }
742 
743   LoopStack.pop();
744 
745   // Emit the exit block.
746   EmitBlock(LoopExit.getBlock());
747 
748   // The DoCond block typically is just a branch if we skipped
749   // emitting a branch, try to erase it.
750   if (!EmitBoolCondBranch)
751     SimplifyForwardingBlocks(LoopCond.getBlock());
752 }
753 
754 void CodeGenFunction::EmitForStmt(const ForStmt &S,
755                                   ArrayRef<const Attr *> ForAttrs) {
756   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
757 
758   LexicalScope ForScope(*this, S.getSourceRange());
759 
760   // Evaluate the first part before the loop.
761   if (S.getInit())
762     EmitStmt(S.getInit());
763 
764   // Start the loop with a block that tests the condition.
765   // If there's an increment, the continue scope will be overwritten
766   // later.
767   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
768   llvm::BasicBlock *CondBlock = Continue.getBlock();
769   EmitBlock(CondBlock);
770 
771   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
772 
773   // If the for loop doesn't have an increment we can just use the
774   // condition as the continue block.  Otherwise we'll need to create
775   // a block for it (in the current scope, i.e. in the scope of the
776   // condition), and that we will become our continue block.
777   if (S.getInc())
778     Continue = getJumpDestInCurrentScope("for.inc");
779 
780   // Store the blocks to use for break and continue.
781   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
782 
783   // Create a cleanup scope for the condition variable cleanups.
784   LexicalScope ConditionScope(*this, S.getSourceRange());
785 
786   if (S.getCond()) {
787     // If the for statement has a condition scope, emit the local variable
788     // declaration.
789     if (S.getConditionVariable()) {
790       EmitAutoVarDecl(*S.getConditionVariable());
791     }
792 
793     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
794     // If there are any cleanups between here and the loop-exit scope,
795     // create a block to stage a loop exit along.
796     if (ForScope.requiresCleanups())
797       ExitBlock = createBasicBlock("for.cond.cleanup");
798 
799     // As long as the condition is true, iterate the loop.
800     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
801 
802     // C99 6.8.5p2/p4: The first substatement is executed if the expression
803     // compares unequal to 0.  The condition must be a scalar type.
804     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
805     Builder.CreateCondBr(
806         BoolCondVal, ForBody, ExitBlock,
807         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
808 
809     if (ExitBlock != LoopExit.getBlock()) {
810       EmitBlock(ExitBlock);
811       EmitBranchThroughCleanup(LoopExit);
812     }
813 
814     EmitBlock(ForBody);
815   } else {
816     // Treat it as a non-zero constant.  Don't even create a new block for the
817     // body, just fall into it.
818   }
819   incrementProfileCounter(&S);
820 
821   {
822     // Create a separate cleanup scope for the body, in case it is not
823     // a compound statement.
824     RunCleanupsScope BodyScope(*this);
825     EmitStmt(S.getBody());
826   }
827 
828   // If there is an increment, emit it next.
829   if (S.getInc()) {
830     EmitBlock(Continue.getBlock());
831     EmitStmt(S.getInc());
832   }
833 
834   BreakContinueStack.pop_back();
835 
836   ConditionScope.ForceCleanup();
837 
838   EmitStopPoint(&S);
839   EmitBranch(CondBlock);
840 
841   ForScope.ForceCleanup();
842 
843   LoopStack.pop();
844 
845   // Emit the fall-through block.
846   EmitBlock(LoopExit.getBlock(), true);
847 }
848 
849 void
850 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
851                                      ArrayRef<const Attr *> ForAttrs) {
852   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
853 
854   LexicalScope ForScope(*this, S.getSourceRange());
855 
856   // Evaluate the first pieces before the loop.
857   EmitStmt(S.getRangeStmt());
858   EmitStmt(S.getBeginEndStmt());
859 
860   // Start the loop with a block that tests the condition.
861   // If there's an increment, the continue scope will be overwritten
862   // later.
863   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
864   EmitBlock(CondBlock);
865 
866   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
867 
868   // If there are any cleanups between here and the loop-exit scope,
869   // create a block to stage a loop exit along.
870   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
871   if (ForScope.requiresCleanups())
872     ExitBlock = createBasicBlock("for.cond.cleanup");
873 
874   // The loop body, consisting of the specified body and the loop variable.
875   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
876 
877   // The body is executed if the expression, contextually converted
878   // to bool, is true.
879   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
880   Builder.CreateCondBr(
881       BoolCondVal, ForBody, ExitBlock,
882       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
883 
884   if (ExitBlock != LoopExit.getBlock()) {
885     EmitBlock(ExitBlock);
886     EmitBranchThroughCleanup(LoopExit);
887   }
888 
889   EmitBlock(ForBody);
890   incrementProfileCounter(&S);
891 
892   // Create a block for the increment. In case of a 'continue', we jump there.
893   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
894 
895   // Store the blocks to use for break and continue.
896   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
897 
898   {
899     // Create a separate cleanup scope for the loop variable and body.
900     LexicalScope BodyScope(*this, S.getSourceRange());
901     EmitStmt(S.getLoopVarStmt());
902     EmitStmt(S.getBody());
903   }
904 
905   EmitStopPoint(&S);
906   // If there is an increment, emit it next.
907   EmitBlock(Continue.getBlock());
908   EmitStmt(S.getInc());
909 
910   BreakContinueStack.pop_back();
911 
912   EmitBranch(CondBlock);
913 
914   ForScope.ForceCleanup();
915 
916   LoopStack.pop();
917 
918   // Emit the fall-through block.
919   EmitBlock(LoopExit.getBlock(), true);
920 }
921 
922 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
923   if (RV.isScalar()) {
924     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
925   } else if (RV.isAggregate()) {
926     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
927   } else {
928     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
929                        /*init*/ true);
930   }
931   EmitBranchThroughCleanup(ReturnBlock);
932 }
933 
934 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
935 /// if the function returns void, or may be missing one if the function returns
936 /// non-void.  Fun stuff :).
937 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
938   // Returning from an outlined SEH helper is UB, and we already warn on it.
939   if (IsOutlinedSEHHelper) {
940     Builder.CreateUnreachable();
941     Builder.ClearInsertionPoint();
942   }
943 
944   // Emit the result value, even if unused, to evalute the side effects.
945   const Expr *RV = S.getRetValue();
946 
947   // Treat block literals in a return expression as if they appeared
948   // in their own scope.  This permits a small, easily-implemented
949   // exception to our over-conservative rules about not jumping to
950   // statements following block literals with non-trivial cleanups.
951   RunCleanupsScope cleanupScope(*this);
952   if (const ExprWithCleanups *cleanups =
953         dyn_cast_or_null<ExprWithCleanups>(RV)) {
954     enterFullExpression(cleanups);
955     RV = cleanups->getSubExpr();
956   }
957 
958   // FIXME: Clean this up by using an LValue for ReturnTemp,
959   // EmitStoreThroughLValue, and EmitAnyExpr.
960   if (getLangOpts().ElideConstructors &&
961       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
962     // Apply the named return value optimization for this return statement,
963     // which means doing nothing: the appropriate result has already been
964     // constructed into the NRVO variable.
965 
966     // If there is an NRVO flag for this variable, set it to 1 into indicate
967     // that the cleanup code should not destroy the variable.
968     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
969       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
970   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
971     // Make sure not to return anything, but evaluate the expression
972     // for side effects.
973     if (RV)
974       EmitAnyExpr(RV);
975   } else if (!RV) {
976     // Do nothing (return value is left uninitialized)
977   } else if (FnRetTy->isReferenceType()) {
978     // If this function returns a reference, take the address of the expression
979     // rather than the value.
980     RValue Result = EmitReferenceBindingToExpr(RV);
981     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
982   } else {
983     switch (getEvaluationKind(RV->getType())) {
984     case TEK_Scalar:
985       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
986       break;
987     case TEK_Complex:
988       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
989                                 /*isInit*/ true);
990       break;
991     case TEK_Aggregate:
992       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
993                                             Qualifiers(),
994                                             AggValueSlot::IsDestructed,
995                                             AggValueSlot::DoesNotNeedGCBarriers,
996                                             AggValueSlot::IsNotAliased));
997       break;
998     }
999   }
1000 
1001   ++NumReturnExprs;
1002   if (!RV || RV->isEvaluatable(getContext()))
1003     ++NumSimpleReturnExprs;
1004 
1005   cleanupScope.ForceCleanup();
1006   EmitBranchThroughCleanup(ReturnBlock);
1007 }
1008 
1009 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1010   // As long as debug info is modeled with instructions, we have to ensure we
1011   // have a place to insert here and write the stop point here.
1012   if (HaveInsertPoint())
1013     EmitStopPoint(&S);
1014 
1015   for (const auto *I : S.decls())
1016     EmitDecl(*I);
1017 }
1018 
1019 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1020   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1021 
1022   // If this code is reachable then emit a stop point (if generating
1023   // debug info). We have to do this ourselves because we are on the
1024   // "simple" statement path.
1025   if (HaveInsertPoint())
1026     EmitStopPoint(&S);
1027 
1028   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1029 }
1030 
1031 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1032   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1033 
1034   // If this code is reachable then emit a stop point (if generating
1035   // debug info). We have to do this ourselves because we are on the
1036   // "simple" statement path.
1037   if (HaveInsertPoint())
1038     EmitStopPoint(&S);
1039 
1040   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1041 }
1042 
1043 /// EmitCaseStmtRange - If case statement range is not too big then
1044 /// add multiple cases to switch instruction, one for each value within
1045 /// the range. If range is too big then emit "if" condition check.
1046 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1047   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1048 
1049   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1050   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1051 
1052   // Emit the code for this case. We do this first to make sure it is
1053   // properly chained from our predecessor before generating the
1054   // switch machinery to enter this block.
1055   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1056   EmitBlockWithFallThrough(CaseDest, &S);
1057   EmitStmt(S.getSubStmt());
1058 
1059   // If range is empty, do nothing.
1060   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1061     return;
1062 
1063   llvm::APInt Range = RHS - LHS;
1064   // FIXME: parameters such as this should not be hardcoded.
1065   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1066     // Range is small enough to add multiple switch instruction cases.
1067     uint64_t Total = getProfileCount(&S);
1068     unsigned NCases = Range.getZExtValue() + 1;
1069     // We only have one region counter for the entire set of cases here, so we
1070     // need to divide the weights evenly between the generated cases, ensuring
1071     // that the total weight is preserved. E.g., a weight of 5 over three cases
1072     // will be distributed as weights of 2, 2, and 1.
1073     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1074     for (unsigned I = 0; I != NCases; ++I) {
1075       if (SwitchWeights)
1076         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1077       if (Rem)
1078         Rem--;
1079       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1080       LHS++;
1081     }
1082     return;
1083   }
1084 
1085   // The range is too big. Emit "if" condition into a new block,
1086   // making sure to save and restore the current insertion point.
1087   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1088 
1089   // Push this test onto the chain of range checks (which terminates
1090   // in the default basic block). The switch's default will be changed
1091   // to the top of this chain after switch emission is complete.
1092   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1093   CaseRangeBlock = createBasicBlock("sw.caserange");
1094 
1095   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1096   Builder.SetInsertPoint(CaseRangeBlock);
1097 
1098   // Emit range check.
1099   llvm::Value *Diff =
1100     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1101   llvm::Value *Cond =
1102     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1103 
1104   llvm::MDNode *Weights = nullptr;
1105   if (SwitchWeights) {
1106     uint64_t ThisCount = getProfileCount(&S);
1107     uint64_t DefaultCount = (*SwitchWeights)[0];
1108     Weights = createProfileWeights(ThisCount, DefaultCount);
1109 
1110     // Since we're chaining the switch default through each large case range, we
1111     // need to update the weight for the default, ie, the first case, to include
1112     // this case.
1113     (*SwitchWeights)[0] += ThisCount;
1114   }
1115   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1116 
1117   // Restore the appropriate insertion point.
1118   if (RestoreBB)
1119     Builder.SetInsertPoint(RestoreBB);
1120   else
1121     Builder.ClearInsertionPoint();
1122 }
1123 
1124 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1125   // If there is no enclosing switch instance that we're aware of, then this
1126   // case statement and its block can be elided.  This situation only happens
1127   // when we've constant-folded the switch, are emitting the constant case,
1128   // and part of the constant case includes another case statement.  For
1129   // instance: switch (4) { case 4: do { case 5: } while (1); }
1130   if (!SwitchInsn) {
1131     EmitStmt(S.getSubStmt());
1132     return;
1133   }
1134 
1135   // Handle case ranges.
1136   if (S.getRHS()) {
1137     EmitCaseStmtRange(S);
1138     return;
1139   }
1140 
1141   llvm::ConstantInt *CaseVal =
1142     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1143 
1144   // If the body of the case is just a 'break', try to not emit an empty block.
1145   // If we're profiling or we're not optimizing, leave the block in for better
1146   // debug and coverage analysis.
1147   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1148       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1149       isa<BreakStmt>(S.getSubStmt())) {
1150     JumpDest Block = BreakContinueStack.back().BreakBlock;
1151 
1152     // Only do this optimization if there are no cleanups that need emitting.
1153     if (isObviouslyBranchWithoutCleanups(Block)) {
1154       if (SwitchWeights)
1155         SwitchWeights->push_back(getProfileCount(&S));
1156       SwitchInsn->addCase(CaseVal, Block.getBlock());
1157 
1158       // If there was a fallthrough into this case, make sure to redirect it to
1159       // the end of the switch as well.
1160       if (Builder.GetInsertBlock()) {
1161         Builder.CreateBr(Block.getBlock());
1162         Builder.ClearInsertionPoint();
1163       }
1164       return;
1165     }
1166   }
1167 
1168   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1169   EmitBlockWithFallThrough(CaseDest, &S);
1170   if (SwitchWeights)
1171     SwitchWeights->push_back(getProfileCount(&S));
1172   SwitchInsn->addCase(CaseVal, CaseDest);
1173 
1174   // Recursively emitting the statement is acceptable, but is not wonderful for
1175   // code where we have many case statements nested together, i.e.:
1176   //  case 1:
1177   //    case 2:
1178   //      case 3: etc.
1179   // Handling this recursively will create a new block for each case statement
1180   // that falls through to the next case which is IR intensive.  It also causes
1181   // deep recursion which can run into stack depth limitations.  Handle
1182   // sequential non-range case statements specially.
1183   const CaseStmt *CurCase = &S;
1184   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1185 
1186   // Otherwise, iteratively add consecutive cases to this switch stmt.
1187   while (NextCase && NextCase->getRHS() == nullptr) {
1188     CurCase = NextCase;
1189     llvm::ConstantInt *CaseVal =
1190       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1191 
1192     if (SwitchWeights)
1193       SwitchWeights->push_back(getProfileCount(NextCase));
1194     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1195       CaseDest = createBasicBlock("sw.bb");
1196       EmitBlockWithFallThrough(CaseDest, &S);
1197     }
1198 
1199     SwitchInsn->addCase(CaseVal, CaseDest);
1200     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1201   }
1202 
1203   // Normal default recursion for non-cases.
1204   EmitStmt(CurCase->getSubStmt());
1205 }
1206 
1207 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1208   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1209   assert(DefaultBlock->empty() &&
1210          "EmitDefaultStmt: Default block already defined?");
1211 
1212   EmitBlockWithFallThrough(DefaultBlock, &S);
1213 
1214   EmitStmt(S.getSubStmt());
1215 }
1216 
1217 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1218 /// constant value that is being switched on, see if we can dead code eliminate
1219 /// the body of the switch to a simple series of statements to emit.  Basically,
1220 /// on a switch (5) we want to find these statements:
1221 ///    case 5:
1222 ///      printf(...);    <--
1223 ///      ++i;            <--
1224 ///      break;
1225 ///
1226 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1227 /// transformation (for example, one of the elided statements contains a label
1228 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1229 /// should include statements after it (e.g. the printf() line is a substmt of
1230 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1231 /// statement, then return CSFC_Success.
1232 ///
1233 /// If Case is non-null, then we are looking for the specified case, checking
1234 /// that nothing we jump over contains labels.  If Case is null, then we found
1235 /// the case and are looking for the break.
1236 ///
1237 /// If the recursive walk actually finds our Case, then we set FoundCase to
1238 /// true.
1239 ///
1240 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1241 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1242                                             const SwitchCase *Case,
1243                                             bool &FoundCase,
1244                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1245   // If this is a null statement, just succeed.
1246   if (!S)
1247     return Case ? CSFC_Success : CSFC_FallThrough;
1248 
1249   // If this is the switchcase (case 4: or default) that we're looking for, then
1250   // we're in business.  Just add the substatement.
1251   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1252     if (S == Case) {
1253       FoundCase = true;
1254       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1255                                       ResultStmts);
1256     }
1257 
1258     // Otherwise, this is some other case or default statement, just ignore it.
1259     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1260                                     ResultStmts);
1261   }
1262 
1263   // If we are in the live part of the code and we found our break statement,
1264   // return a success!
1265   if (!Case && isa<BreakStmt>(S))
1266     return CSFC_Success;
1267 
1268   // If this is a switch statement, then it might contain the SwitchCase, the
1269   // break, or neither.
1270   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1271     // Handle this as two cases: we might be looking for the SwitchCase (if so
1272     // the skipped statements must be skippable) or we might already have it.
1273     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1274     if (Case) {
1275       // Keep track of whether we see a skipped declaration.  The code could be
1276       // using the declaration even if it is skipped, so we can't optimize out
1277       // the decl if the kept statements might refer to it.
1278       bool HadSkippedDecl = false;
1279 
1280       // If we're looking for the case, just see if we can skip each of the
1281       // substatements.
1282       for (; Case && I != E; ++I) {
1283         HadSkippedDecl |= isa<DeclStmt>(*I);
1284 
1285         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1286         case CSFC_Failure: return CSFC_Failure;
1287         case CSFC_Success:
1288           // A successful result means that either 1) that the statement doesn't
1289           // have the case and is skippable, or 2) does contain the case value
1290           // and also contains the break to exit the switch.  In the later case,
1291           // we just verify the rest of the statements are elidable.
1292           if (FoundCase) {
1293             // If we found the case and skipped declarations, we can't do the
1294             // optimization.
1295             if (HadSkippedDecl)
1296               return CSFC_Failure;
1297 
1298             for (++I; I != E; ++I)
1299               if (CodeGenFunction::ContainsLabel(*I, true))
1300                 return CSFC_Failure;
1301             return CSFC_Success;
1302           }
1303           break;
1304         case CSFC_FallThrough:
1305           // If we have a fallthrough condition, then we must have found the
1306           // case started to include statements.  Consider the rest of the
1307           // statements in the compound statement as candidates for inclusion.
1308           assert(FoundCase && "Didn't find case but returned fallthrough?");
1309           // We recursively found Case, so we're not looking for it anymore.
1310           Case = nullptr;
1311 
1312           // If we found the case and skipped declarations, we can't do the
1313           // optimization.
1314           if (HadSkippedDecl)
1315             return CSFC_Failure;
1316           break;
1317         }
1318       }
1319     }
1320 
1321     // If we have statements in our range, then we know that the statements are
1322     // live and need to be added to the set of statements we're tracking.
1323     for (; I != E; ++I) {
1324       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1325       case CSFC_Failure: return CSFC_Failure;
1326       case CSFC_FallThrough:
1327         // A fallthrough result means that the statement was simple and just
1328         // included in ResultStmt, keep adding them afterwards.
1329         break;
1330       case CSFC_Success:
1331         // A successful result means that we found the break statement and
1332         // stopped statement inclusion.  We just ensure that any leftover stmts
1333         // are skippable and return success ourselves.
1334         for (++I; I != E; ++I)
1335           if (CodeGenFunction::ContainsLabel(*I, true))
1336             return CSFC_Failure;
1337         return CSFC_Success;
1338       }
1339     }
1340 
1341     return Case ? CSFC_Success : CSFC_FallThrough;
1342   }
1343 
1344   // Okay, this is some other statement that we don't handle explicitly, like a
1345   // for statement or increment etc.  If we are skipping over this statement,
1346   // just verify it doesn't have labels, which would make it invalid to elide.
1347   if (Case) {
1348     if (CodeGenFunction::ContainsLabel(S, true))
1349       return CSFC_Failure;
1350     return CSFC_Success;
1351   }
1352 
1353   // Otherwise, we want to include this statement.  Everything is cool with that
1354   // so long as it doesn't contain a break out of the switch we're in.
1355   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1356 
1357   // Otherwise, everything is great.  Include the statement and tell the caller
1358   // that we fall through and include the next statement as well.
1359   ResultStmts.push_back(S);
1360   return CSFC_FallThrough;
1361 }
1362 
1363 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1364 /// then invoke CollectStatementsForCase to find the list of statements to emit
1365 /// for a switch on constant.  See the comment above CollectStatementsForCase
1366 /// for more details.
1367 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1368                                        const llvm::APSInt &ConstantCondValue,
1369                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1370                                        ASTContext &C,
1371                                        const SwitchCase *&ResultCase) {
1372   // First step, find the switch case that is being branched to.  We can do this
1373   // efficiently by scanning the SwitchCase list.
1374   const SwitchCase *Case = S.getSwitchCaseList();
1375   const DefaultStmt *DefaultCase = nullptr;
1376 
1377   for (; Case; Case = Case->getNextSwitchCase()) {
1378     // It's either a default or case.  Just remember the default statement in
1379     // case we're not jumping to any numbered cases.
1380     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1381       DefaultCase = DS;
1382       continue;
1383     }
1384 
1385     // Check to see if this case is the one we're looking for.
1386     const CaseStmt *CS = cast<CaseStmt>(Case);
1387     // Don't handle case ranges yet.
1388     if (CS->getRHS()) return false;
1389 
1390     // If we found our case, remember it as 'case'.
1391     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1392       break;
1393   }
1394 
1395   // If we didn't find a matching case, we use a default if it exists, or we
1396   // elide the whole switch body!
1397   if (!Case) {
1398     // It is safe to elide the body of the switch if it doesn't contain labels
1399     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1400     if (!DefaultCase)
1401       return !CodeGenFunction::ContainsLabel(&S);
1402     Case = DefaultCase;
1403   }
1404 
1405   // Ok, we know which case is being jumped to, try to collect all the
1406   // statements that follow it.  This can fail for a variety of reasons.  Also,
1407   // check to see that the recursive walk actually found our case statement.
1408   // Insane cases like this can fail to find it in the recursive walk since we
1409   // don't handle every stmt kind:
1410   // switch (4) {
1411   //   while (1) {
1412   //     case 4: ...
1413   bool FoundCase = false;
1414   ResultCase = Case;
1415   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1416                                   ResultStmts) != CSFC_Failure &&
1417          FoundCase;
1418 }
1419 
1420 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1421   // Handle nested switch statements.
1422   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1423   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1424   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1425 
1426   // See if we can constant fold the condition of the switch and therefore only
1427   // emit the live case statement (if any) of the switch.
1428   llvm::APSInt ConstantCondValue;
1429   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1430     SmallVector<const Stmt*, 4> CaseStmts;
1431     const SwitchCase *Case = nullptr;
1432     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1433                                    getContext(), Case)) {
1434       if (Case)
1435         incrementProfileCounter(Case);
1436       RunCleanupsScope ExecutedScope(*this);
1437 
1438       // Emit the condition variable if needed inside the entire cleanup scope
1439       // used by this special case for constant folded switches.
1440       if (S.getConditionVariable())
1441         EmitAutoVarDecl(*S.getConditionVariable());
1442 
1443       // At this point, we are no longer "within" a switch instance, so
1444       // we can temporarily enforce this to ensure that any embedded case
1445       // statements are not emitted.
1446       SwitchInsn = nullptr;
1447 
1448       // Okay, we can dead code eliminate everything except this case.  Emit the
1449       // specified series of statements and we're good.
1450       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1451         EmitStmt(CaseStmts[i]);
1452       incrementProfileCounter(&S);
1453 
1454       // Now we want to restore the saved switch instance so that nested
1455       // switches continue to function properly
1456       SwitchInsn = SavedSwitchInsn;
1457 
1458       return;
1459     }
1460   }
1461 
1462   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1463 
1464   RunCleanupsScope ConditionScope(*this);
1465   if (S.getConditionVariable())
1466     EmitAutoVarDecl(*S.getConditionVariable());
1467   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1468 
1469   // Create basic block to hold stuff that comes after switch
1470   // statement. We also need to create a default block now so that
1471   // explicit case ranges tests can have a place to jump to on
1472   // failure.
1473   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1474   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1475   if (PGO.haveRegionCounts()) {
1476     // Walk the SwitchCase list to find how many there are.
1477     uint64_t DefaultCount = 0;
1478     unsigned NumCases = 0;
1479     for (const SwitchCase *Case = S.getSwitchCaseList();
1480          Case;
1481          Case = Case->getNextSwitchCase()) {
1482       if (isa<DefaultStmt>(Case))
1483         DefaultCount = getProfileCount(Case);
1484       NumCases += 1;
1485     }
1486     SwitchWeights = new SmallVector<uint64_t, 16>();
1487     SwitchWeights->reserve(NumCases);
1488     // The default needs to be first. We store the edge count, so we already
1489     // know the right weight.
1490     SwitchWeights->push_back(DefaultCount);
1491   }
1492   CaseRangeBlock = DefaultBlock;
1493 
1494   // Clear the insertion point to indicate we are in unreachable code.
1495   Builder.ClearInsertionPoint();
1496 
1497   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1498   // then reuse last ContinueBlock.
1499   JumpDest OuterContinue;
1500   if (!BreakContinueStack.empty())
1501     OuterContinue = BreakContinueStack.back().ContinueBlock;
1502 
1503   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1504 
1505   // Emit switch body.
1506   EmitStmt(S.getBody());
1507 
1508   BreakContinueStack.pop_back();
1509 
1510   // Update the default block in case explicit case range tests have
1511   // been chained on top.
1512   SwitchInsn->setDefaultDest(CaseRangeBlock);
1513 
1514   // If a default was never emitted:
1515   if (!DefaultBlock->getParent()) {
1516     // If we have cleanups, emit the default block so that there's a
1517     // place to jump through the cleanups from.
1518     if (ConditionScope.requiresCleanups()) {
1519       EmitBlock(DefaultBlock);
1520 
1521     // Otherwise, just forward the default block to the switch end.
1522     } else {
1523       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1524       delete DefaultBlock;
1525     }
1526   }
1527 
1528   ConditionScope.ForceCleanup();
1529 
1530   // Emit continuation.
1531   EmitBlock(SwitchExit.getBlock(), true);
1532   incrementProfileCounter(&S);
1533 
1534   // If the switch has a condition wrapped by __builtin_unpredictable,
1535   // create metadata that specifies that the switch is unpredictable.
1536   // Don't bother if not optimizing because that metadata would not be used.
1537   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1538     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
1539       const Decl *TargetDecl = Call->getCalleeDecl();
1540       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1541         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1542           llvm::MDBuilder MDHelper(getLLVMContext());
1543           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1544                                   MDHelper.createUnpredictable());
1545         }
1546       }
1547     }
1548   }
1549 
1550   if (SwitchWeights) {
1551     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1552            "switch weights do not match switch cases");
1553     // If there's only one jump destination there's no sense weighting it.
1554     if (SwitchWeights->size() > 1)
1555       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1556                               createProfileWeights(*SwitchWeights));
1557     delete SwitchWeights;
1558   }
1559   SwitchInsn = SavedSwitchInsn;
1560   SwitchWeights = SavedSwitchWeights;
1561   CaseRangeBlock = SavedCRBlock;
1562 }
1563 
1564 static std::string
1565 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1566                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1567   std::string Result;
1568 
1569   while (*Constraint) {
1570     switch (*Constraint) {
1571     default:
1572       Result += Target.convertConstraint(Constraint);
1573       break;
1574     // Ignore these
1575     case '*':
1576     case '?':
1577     case '!':
1578     case '=': // Will see this and the following in mult-alt constraints.
1579     case '+':
1580       break;
1581     case '#': // Ignore the rest of the constraint alternative.
1582       while (Constraint[1] && Constraint[1] != ',')
1583         Constraint++;
1584       break;
1585     case '&':
1586     case '%':
1587       Result += *Constraint;
1588       while (Constraint[1] && Constraint[1] == *Constraint)
1589         Constraint++;
1590       break;
1591     case ',':
1592       Result += "|";
1593       break;
1594     case 'g':
1595       Result += "imr";
1596       break;
1597     case '[': {
1598       assert(OutCons &&
1599              "Must pass output names to constraints with a symbolic name");
1600       unsigned Index;
1601       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1602       assert(result && "Could not resolve symbolic name"); (void)result;
1603       Result += llvm::utostr(Index);
1604       break;
1605     }
1606     }
1607 
1608     Constraint++;
1609   }
1610 
1611   return Result;
1612 }
1613 
1614 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1615 /// as using a particular register add that as a constraint that will be used
1616 /// in this asm stmt.
1617 static std::string
1618 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1619                        const TargetInfo &Target, CodeGenModule &CGM,
1620                        const AsmStmt &Stmt, const bool EarlyClobber) {
1621   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1622   if (!AsmDeclRef)
1623     return Constraint;
1624   const ValueDecl &Value = *AsmDeclRef->getDecl();
1625   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1626   if (!Variable)
1627     return Constraint;
1628   if (Variable->getStorageClass() != SC_Register)
1629     return Constraint;
1630   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1631   if (!Attr)
1632     return Constraint;
1633   StringRef Register = Attr->getLabel();
1634   assert(Target.isValidGCCRegisterName(Register));
1635   // We're using validateOutputConstraint here because we only care if
1636   // this is a register constraint.
1637   TargetInfo::ConstraintInfo Info(Constraint, "");
1638   if (Target.validateOutputConstraint(Info) &&
1639       !Info.allowsRegister()) {
1640     CGM.ErrorUnsupported(&Stmt, "__asm__");
1641     return Constraint;
1642   }
1643   // Canonicalize the register here before returning it.
1644   Register = Target.getNormalizedGCCRegisterName(Register);
1645   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1646 }
1647 
1648 llvm::Value*
1649 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1650                                     LValue InputValue, QualType InputType,
1651                                     std::string &ConstraintStr,
1652                                     SourceLocation Loc) {
1653   llvm::Value *Arg;
1654   if (Info.allowsRegister() || !Info.allowsMemory()) {
1655     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1656       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1657     } else {
1658       llvm::Type *Ty = ConvertType(InputType);
1659       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1660       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1661         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1662         Ty = llvm::PointerType::getUnqual(Ty);
1663 
1664         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1665                                                        Ty));
1666       } else {
1667         Arg = InputValue.getPointer();
1668         ConstraintStr += '*';
1669       }
1670     }
1671   } else {
1672     Arg = InputValue.getPointer();
1673     ConstraintStr += '*';
1674   }
1675 
1676   return Arg;
1677 }
1678 
1679 llvm::Value* CodeGenFunction::EmitAsmInput(
1680                                          const TargetInfo::ConstraintInfo &Info,
1681                                            const Expr *InputExpr,
1682                                            std::string &ConstraintStr) {
1683   // If this can't be a register or memory, i.e., has to be a constant
1684   // (immediate or symbolic), try to emit it as such.
1685   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1686     llvm::APSInt Result;
1687     if (InputExpr->EvaluateAsInt(Result, getContext()))
1688       return llvm::ConstantInt::get(getLLVMContext(), Result);
1689     assert(!Info.requiresImmediateConstant() &&
1690            "Required-immediate inlineasm arg isn't constant?");
1691   }
1692 
1693   if (Info.allowsRegister() || !Info.allowsMemory())
1694     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1695       return EmitScalarExpr(InputExpr);
1696 
1697   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1698   LValue Dest = EmitLValue(InputExpr);
1699   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1700                             InputExpr->getExprLoc());
1701 }
1702 
1703 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1704 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1705 /// integers which are the source locations of the start of each line in the
1706 /// asm.
1707 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1708                                       CodeGenFunction &CGF) {
1709   SmallVector<llvm::Metadata *, 8> Locs;
1710   // Add the location of the first line to the MDNode.
1711   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1712       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1713   StringRef StrVal = Str->getString();
1714   if (!StrVal.empty()) {
1715     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1716     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1717 
1718     // Add the location of the start of each subsequent line of the asm to the
1719     // MDNode.
1720     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1721       if (StrVal[i] != '\n') continue;
1722       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1723                                                       CGF.getTarget());
1724       Locs.push_back(llvm::ConstantAsMetadata::get(
1725           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1726     }
1727   }
1728 
1729   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1730 }
1731 
1732 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1733   // Assemble the final asm string.
1734   std::string AsmString = S.generateAsmString(getContext());
1735 
1736   // Get all the output and input constraints together.
1737   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1738   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1739 
1740   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1741     StringRef Name;
1742     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1743       Name = GAS->getOutputName(i);
1744     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1745     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1746     assert(IsValid && "Failed to parse output constraint");
1747     OutputConstraintInfos.push_back(Info);
1748   }
1749 
1750   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1751     StringRef Name;
1752     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1753       Name = GAS->getInputName(i);
1754     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1755     bool IsValid =
1756       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1757     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1758     InputConstraintInfos.push_back(Info);
1759   }
1760 
1761   std::string Constraints;
1762 
1763   std::vector<LValue> ResultRegDests;
1764   std::vector<QualType> ResultRegQualTys;
1765   std::vector<llvm::Type *> ResultRegTypes;
1766   std::vector<llvm::Type *> ResultTruncRegTypes;
1767   std::vector<llvm::Type *> ArgTypes;
1768   std::vector<llvm::Value*> Args;
1769 
1770   // Keep track of inout constraints.
1771   std::string InOutConstraints;
1772   std::vector<llvm::Value*> InOutArgs;
1773   std::vector<llvm::Type*> InOutArgTypes;
1774 
1775   // An inline asm can be marked readonly if it meets the following conditions:
1776   //  - it doesn't have any sideeffects
1777   //  - it doesn't clobber memory
1778   //  - it doesn't return a value by-reference
1779   // It can be marked readnone if it doesn't have any input memory constraints
1780   // in addition to meeting the conditions listed above.
1781   bool ReadOnly = true, ReadNone = true;
1782 
1783   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1784     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1785 
1786     // Simplify the output constraint.
1787     std::string OutputConstraint(S.getOutputConstraint(i));
1788     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1789                                           getTarget());
1790 
1791     const Expr *OutExpr = S.getOutputExpr(i);
1792     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1793 
1794     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1795                                               getTarget(), CGM, S,
1796                                               Info.earlyClobber());
1797 
1798     LValue Dest = EmitLValue(OutExpr);
1799     if (!Constraints.empty())
1800       Constraints += ',';
1801 
1802     // If this is a register output, then make the inline asm return it
1803     // by-value.  If this is a memory result, return the value by-reference.
1804     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1805       Constraints += "=" + OutputConstraint;
1806       ResultRegQualTys.push_back(OutExpr->getType());
1807       ResultRegDests.push_back(Dest);
1808       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1809       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1810 
1811       // If this output is tied to an input, and if the input is larger, then
1812       // we need to set the actual result type of the inline asm node to be the
1813       // same as the input type.
1814       if (Info.hasMatchingInput()) {
1815         unsigned InputNo;
1816         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1817           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1818           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1819             break;
1820         }
1821         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1822 
1823         QualType InputTy = S.getInputExpr(InputNo)->getType();
1824         QualType OutputType = OutExpr->getType();
1825 
1826         uint64_t InputSize = getContext().getTypeSize(InputTy);
1827         if (getContext().getTypeSize(OutputType) < InputSize) {
1828           // Form the asm to return the value as a larger integer or fp type.
1829           ResultRegTypes.back() = ConvertType(InputTy);
1830         }
1831       }
1832       if (llvm::Type* AdjTy =
1833             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1834                                                  ResultRegTypes.back()))
1835         ResultRegTypes.back() = AdjTy;
1836       else {
1837         CGM.getDiags().Report(S.getAsmLoc(),
1838                               diag::err_asm_invalid_type_in_input)
1839             << OutExpr->getType() << OutputConstraint;
1840       }
1841     } else {
1842       ArgTypes.push_back(Dest.getAddress().getType());
1843       Args.push_back(Dest.getPointer());
1844       Constraints += "=*";
1845       Constraints += OutputConstraint;
1846       ReadOnly = ReadNone = false;
1847     }
1848 
1849     if (Info.isReadWrite()) {
1850       InOutConstraints += ',';
1851 
1852       const Expr *InputExpr = S.getOutputExpr(i);
1853       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1854                                             InOutConstraints,
1855                                             InputExpr->getExprLoc());
1856 
1857       if (llvm::Type* AdjTy =
1858           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1859                                                Arg->getType()))
1860         Arg = Builder.CreateBitCast(Arg, AdjTy);
1861 
1862       if (Info.allowsRegister())
1863         InOutConstraints += llvm::utostr(i);
1864       else
1865         InOutConstraints += OutputConstraint;
1866 
1867       InOutArgTypes.push_back(Arg->getType());
1868       InOutArgs.push_back(Arg);
1869     }
1870   }
1871 
1872   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1873   // to the return value slot. Only do this when returning in registers.
1874   if (isa<MSAsmStmt>(&S)) {
1875     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1876     if (RetAI.isDirect() || RetAI.isExtend()) {
1877       // Make a fake lvalue for the return value slot.
1878       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1879       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1880           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1881           ResultRegDests, AsmString, S.getNumOutputs());
1882       SawAsmBlock = true;
1883     }
1884   }
1885 
1886   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1887     const Expr *InputExpr = S.getInputExpr(i);
1888 
1889     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1890 
1891     if (Info.allowsMemory())
1892       ReadNone = false;
1893 
1894     if (!Constraints.empty())
1895       Constraints += ',';
1896 
1897     // Simplify the input constraint.
1898     std::string InputConstraint(S.getInputConstraint(i));
1899     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1900                                          &OutputConstraintInfos);
1901 
1902     InputConstraint = AddVariableConstraints(
1903         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1904         getTarget(), CGM, S, false /* No EarlyClobber */);
1905 
1906     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1907 
1908     // If this input argument is tied to a larger output result, extend the
1909     // input to be the same size as the output.  The LLVM backend wants to see
1910     // the input and output of a matching constraint be the same size.  Note
1911     // that GCC does not define what the top bits are here.  We use zext because
1912     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1913     if (Info.hasTiedOperand()) {
1914       unsigned Output = Info.getTiedOperand();
1915       QualType OutputType = S.getOutputExpr(Output)->getType();
1916       QualType InputTy = InputExpr->getType();
1917 
1918       if (getContext().getTypeSize(OutputType) >
1919           getContext().getTypeSize(InputTy)) {
1920         // Use ptrtoint as appropriate so that we can do our extension.
1921         if (isa<llvm::PointerType>(Arg->getType()))
1922           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1923         llvm::Type *OutputTy = ConvertType(OutputType);
1924         if (isa<llvm::IntegerType>(OutputTy))
1925           Arg = Builder.CreateZExt(Arg, OutputTy);
1926         else if (isa<llvm::PointerType>(OutputTy))
1927           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1928         else {
1929           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1930           Arg = Builder.CreateFPExt(Arg, OutputTy);
1931         }
1932       }
1933     }
1934     if (llvm::Type* AdjTy =
1935               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1936                                                    Arg->getType()))
1937       Arg = Builder.CreateBitCast(Arg, AdjTy);
1938     else
1939       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1940           << InputExpr->getType() << InputConstraint;
1941 
1942     ArgTypes.push_back(Arg->getType());
1943     Args.push_back(Arg);
1944     Constraints += InputConstraint;
1945   }
1946 
1947   // Append the "input" part of inout constraints last.
1948   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1949     ArgTypes.push_back(InOutArgTypes[i]);
1950     Args.push_back(InOutArgs[i]);
1951   }
1952   Constraints += InOutConstraints;
1953 
1954   // Clobbers
1955   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1956     StringRef Clobber = S.getClobber(i);
1957 
1958     if (Clobber == "memory")
1959       ReadOnly = ReadNone = false;
1960     else if (Clobber != "cc")
1961       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1962 
1963     if (!Constraints.empty())
1964       Constraints += ',';
1965 
1966     Constraints += "~{";
1967     Constraints += Clobber;
1968     Constraints += '}';
1969   }
1970 
1971   // Add machine specific clobbers
1972   std::string MachineClobbers = getTarget().getClobbers();
1973   if (!MachineClobbers.empty()) {
1974     if (!Constraints.empty())
1975       Constraints += ',';
1976     Constraints += MachineClobbers;
1977   }
1978 
1979   llvm::Type *ResultType;
1980   if (ResultRegTypes.empty())
1981     ResultType = VoidTy;
1982   else if (ResultRegTypes.size() == 1)
1983     ResultType = ResultRegTypes[0];
1984   else
1985     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1986 
1987   llvm::FunctionType *FTy =
1988     llvm::FunctionType::get(ResultType, ArgTypes, false);
1989 
1990   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1991   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1992     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1993   llvm::InlineAsm *IA =
1994     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1995                          /* IsAlignStack */ false, AsmDialect);
1996   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1997   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1998                        llvm::Attribute::NoUnwind);
1999 
2000   // Attach readnone and readonly attributes.
2001   if (!HasSideEffect) {
2002     if (ReadNone)
2003       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2004                            llvm::Attribute::ReadNone);
2005     else if (ReadOnly)
2006       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2007                            llvm::Attribute::ReadOnly);
2008   }
2009 
2010   // Slap the source location of the inline asm into a !srcloc metadata on the
2011   // call.
2012   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2013     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2014                                                    *this));
2015   } else {
2016     // At least put the line number on MS inline asm blobs.
2017     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2018     Result->setMetadata("srcloc",
2019                         llvm::MDNode::get(getLLVMContext(),
2020                                           llvm::ConstantAsMetadata::get(Loc)));
2021   }
2022 
2023   // Extract all of the register value results from the asm.
2024   std::vector<llvm::Value*> RegResults;
2025   if (ResultRegTypes.size() == 1) {
2026     RegResults.push_back(Result);
2027   } else {
2028     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2029       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2030       RegResults.push_back(Tmp);
2031     }
2032   }
2033 
2034   assert(RegResults.size() == ResultRegTypes.size());
2035   assert(RegResults.size() == ResultTruncRegTypes.size());
2036   assert(RegResults.size() == ResultRegDests.size());
2037   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2038     llvm::Value *Tmp = RegResults[i];
2039 
2040     // If the result type of the LLVM IR asm doesn't match the result type of
2041     // the expression, do the conversion.
2042     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2043       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2044 
2045       // Truncate the integer result to the right size, note that TruncTy can be
2046       // a pointer.
2047       if (TruncTy->isFloatingPointTy())
2048         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2049       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2050         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2051         Tmp = Builder.CreateTrunc(Tmp,
2052                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2053         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2054       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2055         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2056         Tmp = Builder.CreatePtrToInt(Tmp,
2057                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2058         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2059       } else if (TruncTy->isIntegerTy()) {
2060         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2061       } else if (TruncTy->isVectorTy()) {
2062         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2063       }
2064     }
2065 
2066     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2067   }
2068 }
2069 
2070 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2071   const RecordDecl *RD = S.getCapturedRecordDecl();
2072   QualType RecordTy = getContext().getRecordType(RD);
2073 
2074   // Initialize the captured struct.
2075   LValue SlotLV =
2076     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2077 
2078   RecordDecl::field_iterator CurField = RD->field_begin();
2079   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2080                                                  E = S.capture_init_end();
2081        I != E; ++I, ++CurField) {
2082     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2083     if (CurField->hasCapturedVLAType()) {
2084       auto VAT = CurField->getCapturedVLAType();
2085       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2086     } else {
2087       EmitInitializerForField(*CurField, LV, *I, None);
2088     }
2089   }
2090 
2091   return SlotLV;
2092 }
2093 
2094 /// Generate an outlined function for the body of a CapturedStmt, store any
2095 /// captured variables into the captured struct, and call the outlined function.
2096 llvm::Function *
2097 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2098   LValue CapStruct = InitCapturedStruct(S);
2099 
2100   // Emit the CapturedDecl
2101   CodeGenFunction CGF(CGM, true);
2102   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2103   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2104   delete CGF.CapturedStmtInfo;
2105 
2106   // Emit call to the helper function.
2107   EmitCallOrInvoke(F, CapStruct.getPointer());
2108 
2109   return F;
2110 }
2111 
2112 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2113   LValue CapStruct = InitCapturedStruct(S);
2114   return CapStruct.getAddress();
2115 }
2116 
2117 /// Creates the outlined function for a CapturedStmt.
2118 llvm::Function *
2119 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2120   assert(CapturedStmtInfo &&
2121     "CapturedStmtInfo should be set when generating the captured function");
2122   const CapturedDecl *CD = S.getCapturedDecl();
2123   const RecordDecl *RD = S.getCapturedRecordDecl();
2124   SourceLocation Loc = S.getLocStart();
2125   assert(CD->hasBody() && "missing CapturedDecl body");
2126 
2127   // Build the argument list.
2128   ASTContext &Ctx = CGM.getContext();
2129   FunctionArgList Args;
2130   Args.append(CD->param_begin(), CD->param_end());
2131 
2132   // Create the function declaration.
2133   FunctionType::ExtInfo ExtInfo;
2134   const CGFunctionInfo &FuncInfo =
2135       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2136                                                     /*IsVariadic=*/false);
2137   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2138 
2139   llvm::Function *F =
2140     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2141                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2142   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2143   if (CD->isNothrow())
2144     F->addFnAttr(llvm::Attribute::NoUnwind);
2145 
2146   // Generate the function.
2147   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2148                 CD->getLocation(),
2149                 CD->getBody()->getLocStart());
2150   // Set the context parameter in CapturedStmtInfo.
2151   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2152   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2153 
2154   // Initialize variable-length arrays.
2155   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2156                                            Ctx.getTagDeclType(RD));
2157   for (auto *FD : RD->fields()) {
2158     if (FD->hasCapturedVLAType()) {
2159       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2160                                        S.getLocStart()).getScalarVal();
2161       auto VAT = FD->getCapturedVLAType();
2162       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2163     }
2164   }
2165 
2166   // If 'this' is captured, load it into CXXThisValue.
2167   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2168     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2169     LValue ThisLValue = EmitLValueForField(Base, FD);
2170     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2171   }
2172 
2173   PGO.assignRegionCounters(GlobalDecl(CD), F);
2174   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2175   FinishFunction(CD->getBodyRBrace());
2176 
2177   return F;
2178 }
2179