1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/InlineAsm.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Target/TargetData.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Statement Emission 30 //===----------------------------------------------------------------------===// 31 32 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 33 if (CGDebugInfo *DI = getDebugInfo()) { 34 SourceLocation Loc; 35 if (isa<DeclStmt>(S)) 36 Loc = S->getLocEnd(); 37 else 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 } 41 } 42 43 void CodeGenFunction::EmitStmt(const Stmt *S) { 44 assert(S && "Null statement?"); 45 46 // These statements have their own debug info handling. 47 if (EmitSimpleStmt(S)) 48 return; 49 50 // Check if we are generating unreachable code. 51 if (!HaveInsertPoint()) { 52 // If so, and the statement doesn't contain a label, then we do not need to 53 // generate actual code. This is safe because (1) the current point is 54 // unreachable, so we don't need to execute the code, and (2) we've already 55 // handled the statements which update internal data structures (like the 56 // local variable map) which could be used by subsequent statements. 57 if (!ContainsLabel(S)) { 58 // Verify that any decl statements were handled as simple, they may be in 59 // scope of subsequent reachable statements. 60 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 61 return; 62 } 63 64 // Otherwise, make a new block to hold the code. 65 EnsureInsertPoint(); 66 } 67 68 // Generate a stoppoint if we are emitting debug info. 69 EmitStopPoint(S); 70 71 switch (S->getStmtClass()) { 72 case Stmt::NoStmtClass: 73 case Stmt::CXXCatchStmtClass: 74 case Stmt::SEHExceptStmtClass: 75 case Stmt::SEHFinallyStmtClass: 76 case Stmt::MSDependentExistsStmtClass: 77 llvm_unreachable("invalid statement class to emit generically"); 78 case Stmt::NullStmtClass: 79 case Stmt::CompoundStmtClass: 80 case Stmt::DeclStmtClass: 81 case Stmt::LabelStmtClass: 82 case Stmt::GotoStmtClass: 83 case Stmt::BreakStmtClass: 84 case Stmt::ContinueStmtClass: 85 case Stmt::DefaultStmtClass: 86 case Stmt::CaseStmtClass: 87 llvm_unreachable("should have emitted these statements as simple"); 88 89 #define STMT(Type, Base) 90 #define ABSTRACT_STMT(Op) 91 #define EXPR(Type, Base) \ 92 case Stmt::Type##Class: 93 #include "clang/AST/StmtNodes.inc" 94 { 95 // Remember the block we came in on. 96 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 97 assert(incoming && "expression emission must have an insertion point"); 98 99 EmitIgnoredExpr(cast<Expr>(S)); 100 101 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 102 assert(outgoing && "expression emission cleared block!"); 103 104 // The expression emitters assume (reasonably!) that the insertion 105 // point is always set. To maintain that, the call-emission code 106 // for noreturn functions has to enter a new block with no 107 // predecessors. We want to kill that block and mark the current 108 // insertion point unreachable in the common case of a call like 109 // "exit();". Since expression emission doesn't otherwise create 110 // blocks with no predecessors, we can just test for that. 111 // However, we must be careful not to do this to our incoming 112 // block, because *statement* emission does sometimes create 113 // reachable blocks which will have no predecessors until later in 114 // the function. This occurs with, e.g., labels that are not 115 // reachable by fallthrough. 116 if (incoming != outgoing && outgoing->use_empty()) { 117 outgoing->eraseFromParent(); 118 Builder.ClearInsertionPoint(); 119 } 120 break; 121 } 122 123 case Stmt::IndirectGotoStmtClass: 124 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 125 126 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 127 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 128 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 129 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 130 131 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 132 133 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 134 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 135 136 case Stmt::ObjCAtTryStmtClass: 137 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 138 break; 139 case Stmt::ObjCAtCatchStmtClass: 140 llvm_unreachable( 141 "@catch statements should be handled by EmitObjCAtTryStmt"); 142 case Stmt::ObjCAtFinallyStmtClass: 143 llvm_unreachable( 144 "@finally statements should be handled by EmitObjCAtTryStmt"); 145 case Stmt::ObjCAtThrowStmtClass: 146 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 147 break; 148 case Stmt::ObjCAtSynchronizedStmtClass: 149 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 150 break; 151 case Stmt::ObjCForCollectionStmtClass: 152 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 153 break; 154 case Stmt::ObjCAutoreleasePoolStmtClass: 155 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 156 break; 157 158 case Stmt::CXXTryStmtClass: 159 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 160 break; 161 case Stmt::CXXForRangeStmtClass: 162 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 163 case Stmt::SEHTryStmtClass: 164 // FIXME Not yet implemented 165 break; 166 } 167 } 168 169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 170 switch (S->getStmtClass()) { 171 default: return false; 172 case Stmt::NullStmtClass: break; 173 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 174 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 175 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 176 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 177 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 178 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 179 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 180 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 181 } 182 183 return true; 184 } 185 186 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 187 /// this captures the expression result of the last sub-statement and returns it 188 /// (for use by the statement expression extension). 189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 190 AggValueSlot AggSlot) { 191 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 192 "LLVM IR generation of compound statement ('{}')"); 193 194 // Keep track of the current cleanup stack depth, including debug scopes. 195 LexicalScope Scope(*this, S.getSourceRange()); 196 197 for (CompoundStmt::const_body_iterator I = S.body_begin(), 198 E = S.body_end()-GetLast; I != E; ++I) 199 EmitStmt(*I); 200 201 RValue RV; 202 if (!GetLast) 203 RV = RValue::get(0); 204 else { 205 // We have to special case labels here. They are statements, but when put 206 // at the end of a statement expression, they yield the value of their 207 // subexpression. Handle this by walking through all labels we encounter, 208 // emitting them before we evaluate the subexpr. 209 const Stmt *LastStmt = S.body_back(); 210 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 211 EmitLabel(LS->getDecl()); 212 LastStmt = LS->getSubStmt(); 213 } 214 215 EnsureInsertPoint(); 216 217 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot); 218 } 219 220 return RV; 221 } 222 223 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 224 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 225 226 // If there is a cleanup stack, then we it isn't worth trying to 227 // simplify this block (we would need to remove it from the scope map 228 // and cleanup entry). 229 if (!EHStack.empty()) 230 return; 231 232 // Can only simplify direct branches. 233 if (!BI || !BI->isUnconditional()) 234 return; 235 236 BB->replaceAllUsesWith(BI->getSuccessor(0)); 237 BI->eraseFromParent(); 238 BB->eraseFromParent(); 239 } 240 241 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 242 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 243 244 // Fall out of the current block (if necessary). 245 EmitBranch(BB); 246 247 if (IsFinished && BB->use_empty()) { 248 delete BB; 249 return; 250 } 251 252 // Place the block after the current block, if possible, or else at 253 // the end of the function. 254 if (CurBB && CurBB->getParent()) 255 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 256 else 257 CurFn->getBasicBlockList().push_back(BB); 258 Builder.SetInsertPoint(BB); 259 } 260 261 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 262 // Emit a branch from the current block to the target one if this 263 // was a real block. If this was just a fall-through block after a 264 // terminator, don't emit it. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (!CurBB || CurBB->getTerminator()) { 268 // If there is no insert point or the previous block is already 269 // terminated, don't touch it. 270 } else { 271 // Otherwise, create a fall-through branch. 272 Builder.CreateBr(Target); 273 } 274 275 Builder.ClearInsertionPoint(); 276 } 277 278 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 279 bool inserted = false; 280 for (llvm::BasicBlock::use_iterator 281 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 282 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 283 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 284 inserted = true; 285 break; 286 } 287 } 288 289 if (!inserted) 290 CurFn->getBasicBlockList().push_back(block); 291 292 Builder.SetInsertPoint(block); 293 } 294 295 CodeGenFunction::JumpDest 296 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 297 JumpDest &Dest = LabelMap[D]; 298 if (Dest.isValid()) return Dest; 299 300 // Create, but don't insert, the new block. 301 Dest = JumpDest(createBasicBlock(D->getName()), 302 EHScopeStack::stable_iterator::invalid(), 303 NextCleanupDestIndex++); 304 return Dest; 305 } 306 307 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 308 JumpDest &Dest = LabelMap[D]; 309 310 // If we didn't need a forward reference to this label, just go 311 // ahead and create a destination at the current scope. 312 if (!Dest.isValid()) { 313 Dest = getJumpDestInCurrentScope(D->getName()); 314 315 // Otherwise, we need to give this label a target depth and remove 316 // it from the branch-fixups list. 317 } else { 318 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 319 Dest = JumpDest(Dest.getBlock(), 320 EHStack.stable_begin(), 321 Dest.getDestIndex()); 322 323 ResolveBranchFixups(Dest.getBlock()); 324 } 325 326 EmitBlock(Dest.getBlock()); 327 } 328 329 330 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 331 EmitLabel(S.getDecl()); 332 EmitStmt(S.getSubStmt()); 333 } 334 335 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 336 // If this code is reachable then emit a stop point (if generating 337 // debug info). We have to do this ourselves because we are on the 338 // "simple" statement path. 339 if (HaveInsertPoint()) 340 EmitStopPoint(&S); 341 342 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 343 } 344 345 346 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 347 if (const LabelDecl *Target = S.getConstantTarget()) { 348 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 349 return; 350 } 351 352 // Ensure that we have an i8* for our PHI node. 353 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 354 Int8PtrTy, "addr"); 355 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 356 357 358 // Get the basic block for the indirect goto. 359 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 360 361 // The first instruction in the block has to be the PHI for the switch dest, 362 // add an entry for this branch. 363 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 364 365 EmitBranch(IndGotoBB); 366 } 367 368 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 369 // C99 6.8.4.1: The first substatement is executed if the expression compares 370 // unequal to 0. The condition must be a scalar type. 371 RunCleanupsScope ConditionScope(*this); 372 373 if (S.getConditionVariable()) 374 EmitAutoVarDecl(*S.getConditionVariable()); 375 376 // If the condition constant folds and can be elided, try to avoid emitting 377 // the condition and the dead arm of the if/else. 378 bool CondConstant; 379 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 380 // Figure out which block (then or else) is executed. 381 const Stmt *Executed = S.getThen(); 382 const Stmt *Skipped = S.getElse(); 383 if (!CondConstant) // Condition false? 384 std::swap(Executed, Skipped); 385 386 // If the skipped block has no labels in it, just emit the executed block. 387 // This avoids emitting dead code and simplifies the CFG substantially. 388 if (!ContainsLabel(Skipped)) { 389 if (Executed) { 390 RunCleanupsScope ExecutedScope(*this); 391 EmitStmt(Executed); 392 } 393 return; 394 } 395 } 396 397 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 398 // the conditional branch. 399 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 400 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 401 llvm::BasicBlock *ElseBlock = ContBlock; 402 if (S.getElse()) 403 ElseBlock = createBasicBlock("if.else"); 404 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 405 406 // Emit the 'then' code. 407 EmitBlock(ThenBlock); 408 { 409 RunCleanupsScope ThenScope(*this); 410 EmitStmt(S.getThen()); 411 } 412 EmitBranch(ContBlock); 413 414 // Emit the 'else' code if present. 415 if (const Stmt *Else = S.getElse()) { 416 // There is no need to emit line number for unconditional branch. 417 if (getDebugInfo()) 418 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 419 EmitBlock(ElseBlock); 420 { 421 RunCleanupsScope ElseScope(*this); 422 EmitStmt(Else); 423 } 424 // There is no need to emit line number for unconditional branch. 425 if (getDebugInfo()) 426 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 427 EmitBranch(ContBlock); 428 } 429 430 // Emit the continuation block for code after the if. 431 EmitBlock(ContBlock, true); 432 } 433 434 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 435 // Emit the header for the loop, which will also become 436 // the continue target. 437 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 438 EmitBlock(LoopHeader.getBlock()); 439 440 // Create an exit block for when the condition fails, which will 441 // also become the break target. 442 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 443 444 // Store the blocks to use for break and continue. 445 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 446 447 // C++ [stmt.while]p2: 448 // When the condition of a while statement is a declaration, the 449 // scope of the variable that is declared extends from its point 450 // of declaration (3.3.2) to the end of the while statement. 451 // [...] 452 // The object created in a condition is destroyed and created 453 // with each iteration of the loop. 454 RunCleanupsScope ConditionScope(*this); 455 456 if (S.getConditionVariable()) 457 EmitAutoVarDecl(*S.getConditionVariable()); 458 459 // Evaluate the conditional in the while header. C99 6.8.5.1: The 460 // evaluation of the controlling expression takes place before each 461 // execution of the loop body. 462 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 463 464 // while(1) is common, avoid extra exit blocks. Be sure 465 // to correctly handle break/continue though. 466 bool EmitBoolCondBranch = true; 467 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 468 if (C->isOne()) 469 EmitBoolCondBranch = false; 470 471 // As long as the condition is true, go to the loop body. 472 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 473 if (EmitBoolCondBranch) { 474 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 475 if (ConditionScope.requiresCleanups()) 476 ExitBlock = createBasicBlock("while.exit"); 477 478 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 479 480 if (ExitBlock != LoopExit.getBlock()) { 481 EmitBlock(ExitBlock); 482 EmitBranchThroughCleanup(LoopExit); 483 } 484 } 485 486 // Emit the loop body. We have to emit this in a cleanup scope 487 // because it might be a singleton DeclStmt. 488 { 489 RunCleanupsScope BodyScope(*this); 490 EmitBlock(LoopBody); 491 EmitStmt(S.getBody()); 492 } 493 494 BreakContinueStack.pop_back(); 495 496 // Immediately force cleanup. 497 ConditionScope.ForceCleanup(); 498 499 // Branch to the loop header again. 500 EmitBranch(LoopHeader.getBlock()); 501 502 // Emit the exit block. 503 EmitBlock(LoopExit.getBlock(), true); 504 505 // The LoopHeader typically is just a branch if we skipped emitting 506 // a branch, try to erase it. 507 if (!EmitBoolCondBranch) 508 SimplifyForwardingBlocks(LoopHeader.getBlock()); 509 } 510 511 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 512 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 513 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 514 515 // Store the blocks to use for break and continue. 516 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 517 518 // Emit the body of the loop. 519 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 520 EmitBlock(LoopBody); 521 { 522 RunCleanupsScope BodyScope(*this); 523 EmitStmt(S.getBody()); 524 } 525 526 BreakContinueStack.pop_back(); 527 528 EmitBlock(LoopCond.getBlock()); 529 530 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 531 // after each execution of the loop body." 532 533 // Evaluate the conditional in the while header. 534 // C99 6.8.5p2/p4: The first substatement is executed if the expression 535 // compares unequal to 0. The condition must be a scalar type. 536 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 537 538 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 539 // to correctly handle break/continue though. 540 bool EmitBoolCondBranch = true; 541 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 542 if (C->isZero()) 543 EmitBoolCondBranch = false; 544 545 // As long as the condition is true, iterate the loop. 546 if (EmitBoolCondBranch) 547 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 548 549 // Emit the exit block. 550 EmitBlock(LoopExit.getBlock()); 551 552 // The DoCond block typically is just a branch if we skipped 553 // emitting a branch, try to erase it. 554 if (!EmitBoolCondBranch) 555 SimplifyForwardingBlocks(LoopCond.getBlock()); 556 } 557 558 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 559 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 560 561 RunCleanupsScope ForScope(*this); 562 563 CGDebugInfo *DI = getDebugInfo(); 564 if (DI) 565 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 566 567 // Evaluate the first part before the loop. 568 if (S.getInit()) 569 EmitStmt(S.getInit()); 570 571 // Start the loop with a block that tests the condition. 572 // If there's an increment, the continue scope will be overwritten 573 // later. 574 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 575 llvm::BasicBlock *CondBlock = Continue.getBlock(); 576 EmitBlock(CondBlock); 577 578 // Create a cleanup scope for the condition variable cleanups. 579 RunCleanupsScope ConditionScope(*this); 580 581 llvm::Value *BoolCondVal = 0; 582 if (S.getCond()) { 583 // If the for statement has a condition scope, emit the local variable 584 // declaration. 585 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 586 if (S.getConditionVariable()) { 587 EmitAutoVarDecl(*S.getConditionVariable()); 588 } 589 590 // If there are any cleanups between here and the loop-exit scope, 591 // create a block to stage a loop exit along. 592 if (ForScope.requiresCleanups()) 593 ExitBlock = createBasicBlock("for.cond.cleanup"); 594 595 // As long as the condition is true, iterate the loop. 596 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 597 598 // C99 6.8.5p2/p4: The first substatement is executed if the expression 599 // compares unequal to 0. The condition must be a scalar type. 600 BoolCondVal = EvaluateExprAsBool(S.getCond()); 601 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 602 603 if (ExitBlock != LoopExit.getBlock()) { 604 EmitBlock(ExitBlock); 605 EmitBranchThroughCleanup(LoopExit); 606 } 607 608 EmitBlock(ForBody); 609 } else { 610 // Treat it as a non-zero constant. Don't even create a new block for the 611 // body, just fall into it. 612 } 613 614 // If the for loop doesn't have an increment we can just use the 615 // condition as the continue block. Otherwise we'll need to create 616 // a block for it (in the current scope, i.e. in the scope of the 617 // condition), and that we will become our continue block. 618 if (S.getInc()) 619 Continue = getJumpDestInCurrentScope("for.inc"); 620 621 // Store the blocks to use for break and continue. 622 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 623 624 { 625 // Create a separate cleanup scope for the body, in case it is not 626 // a compound statement. 627 RunCleanupsScope BodyScope(*this); 628 EmitStmt(S.getBody()); 629 } 630 631 // If there is an increment, emit it next. 632 if (S.getInc()) { 633 EmitBlock(Continue.getBlock()); 634 EmitStmt(S.getInc()); 635 } 636 637 BreakContinueStack.pop_back(); 638 639 ConditionScope.ForceCleanup(); 640 EmitBranch(CondBlock); 641 642 ForScope.ForceCleanup(); 643 644 if (DI) 645 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 646 647 // Emit the fall-through block. 648 EmitBlock(LoopExit.getBlock(), true); 649 } 650 651 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 652 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 653 654 RunCleanupsScope ForScope(*this); 655 656 CGDebugInfo *DI = getDebugInfo(); 657 if (DI) 658 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 659 660 // Evaluate the first pieces before the loop. 661 EmitStmt(S.getRangeStmt()); 662 EmitStmt(S.getBeginEndStmt()); 663 664 // Start the loop with a block that tests the condition. 665 // If there's an increment, the continue scope will be overwritten 666 // later. 667 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 668 EmitBlock(CondBlock); 669 670 // If there are any cleanups between here and the loop-exit scope, 671 // create a block to stage a loop exit along. 672 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 673 if (ForScope.requiresCleanups()) 674 ExitBlock = createBasicBlock("for.cond.cleanup"); 675 676 // The loop body, consisting of the specified body and the loop variable. 677 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 678 679 // The body is executed if the expression, contextually converted 680 // to bool, is true. 681 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 682 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 683 684 if (ExitBlock != LoopExit.getBlock()) { 685 EmitBlock(ExitBlock); 686 EmitBranchThroughCleanup(LoopExit); 687 } 688 689 EmitBlock(ForBody); 690 691 // Create a block for the increment. In case of a 'continue', we jump there. 692 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 693 694 // Store the blocks to use for break and continue. 695 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 696 697 { 698 // Create a separate cleanup scope for the loop variable and body. 699 RunCleanupsScope BodyScope(*this); 700 EmitStmt(S.getLoopVarStmt()); 701 EmitStmt(S.getBody()); 702 } 703 704 // If there is an increment, emit it next. 705 EmitBlock(Continue.getBlock()); 706 EmitStmt(S.getInc()); 707 708 BreakContinueStack.pop_back(); 709 710 EmitBranch(CondBlock); 711 712 ForScope.ForceCleanup(); 713 714 if (DI) 715 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 716 717 // Emit the fall-through block. 718 EmitBlock(LoopExit.getBlock(), true); 719 } 720 721 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 722 if (RV.isScalar()) { 723 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 724 } else if (RV.isAggregate()) { 725 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty, 726 /*volatile*/ false, 0, /*destIsCompleteObject*/ true); 727 } else { 728 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); 729 } 730 EmitBranchThroughCleanup(ReturnBlock); 731 } 732 733 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 734 /// if the function returns void, or may be missing one if the function returns 735 /// non-void. Fun stuff :). 736 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 737 // Emit the result value, even if unused, to evalute the side effects. 738 const Expr *RV = S.getRetValue(); 739 740 // FIXME: Clean this up by using an LValue for ReturnTemp, 741 // EmitStoreThroughLValue, and EmitAnyExpr. 742 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() && 743 !Target.useGlobalsForAutomaticVariables()) { 744 // Apply the named return value optimization for this return statement, 745 // which means doing nothing: the appropriate result has already been 746 // constructed into the NRVO variable. 747 748 // If there is an NRVO flag for this variable, set it to 1 into indicate 749 // that the cleanup code should not destroy the variable. 750 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 751 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 752 } else if (!ReturnValue) { 753 // Make sure not to return anything, but evaluate the expression 754 // for side effects. 755 if (RV) 756 EmitAnyExpr(RV); 757 } else if (RV == 0) { 758 // Do nothing (return value is left uninitialized) 759 } else if (FnRetTy->isReferenceType()) { 760 // If this function returns a reference, take the address of the expression 761 // rather than the value. 762 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0); 763 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 764 } else if (!hasAggregateLLVMType(RV->getType())) { 765 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 766 } else if (RV->getType()->isAnyComplexType()) { 767 EmitComplexExprIntoAddr(RV, ReturnValue, false); 768 } else { 769 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 770 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(), 771 AggValueSlot::IsDestructed, 772 AggValueSlot::DoesNotNeedGCBarriers, 773 AggValueSlot::IsNotAliased, 774 AggValueSlot::IsCompleteObject)); 775 } 776 777 EmitBranchThroughCleanup(ReturnBlock); 778 } 779 780 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 781 // As long as debug info is modeled with instructions, we have to ensure we 782 // have a place to insert here and write the stop point here. 783 if (getDebugInfo() && HaveInsertPoint()) 784 EmitStopPoint(&S); 785 786 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 787 I != E; ++I) 788 EmitDecl(**I); 789 } 790 791 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 792 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 793 794 // If this code is reachable then emit a stop point (if generating 795 // debug info). We have to do this ourselves because we are on the 796 // "simple" statement path. 797 if (HaveInsertPoint()) 798 EmitStopPoint(&S); 799 800 JumpDest Block = BreakContinueStack.back().BreakBlock; 801 EmitBranchThroughCleanup(Block); 802 } 803 804 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 805 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 806 807 // If this code is reachable then emit a stop point (if generating 808 // debug info). We have to do this ourselves because we are on the 809 // "simple" statement path. 810 if (HaveInsertPoint()) 811 EmitStopPoint(&S); 812 813 JumpDest Block = BreakContinueStack.back().ContinueBlock; 814 EmitBranchThroughCleanup(Block); 815 } 816 817 /// EmitCaseStmtRange - If case statement range is not too big then 818 /// add multiple cases to switch instruction, one for each value within 819 /// the range. If range is too big then emit "if" condition check. 820 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 821 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 822 823 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 824 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 825 826 // Emit the code for this case. We do this first to make sure it is 827 // properly chained from our predecessor before generating the 828 // switch machinery to enter this block. 829 EmitBlock(createBasicBlock("sw.bb")); 830 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 831 EmitStmt(S.getSubStmt()); 832 833 // If range is empty, do nothing. 834 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 835 return; 836 837 llvm::APInt Range = RHS - LHS; 838 // FIXME: parameters such as this should not be hardcoded. 839 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 840 // Range is small enough to add multiple switch instruction cases. 841 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 842 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 843 LHS++; 844 } 845 return; 846 } 847 848 // The range is too big. Emit "if" condition into a new block, 849 // making sure to save and restore the current insertion point. 850 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 851 852 // Push this test onto the chain of range checks (which terminates 853 // in the default basic block). The switch's default will be changed 854 // to the top of this chain after switch emission is complete. 855 llvm::BasicBlock *FalseDest = CaseRangeBlock; 856 CaseRangeBlock = createBasicBlock("sw.caserange"); 857 858 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 859 Builder.SetInsertPoint(CaseRangeBlock); 860 861 // Emit range check. 862 llvm::Value *Diff = 863 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 864 llvm::Value *Cond = 865 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 866 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 867 868 // Restore the appropriate insertion point. 869 if (RestoreBB) 870 Builder.SetInsertPoint(RestoreBB); 871 else 872 Builder.ClearInsertionPoint(); 873 } 874 875 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 876 // If there is no enclosing switch instance that we're aware of, then this 877 // case statement and its block can be elided. This situation only happens 878 // when we've constant-folded the switch, are emitting the constant case, 879 // and part of the constant case includes another case statement. For 880 // instance: switch (4) { case 4: do { case 5: } while (1); } 881 if (!SwitchInsn) { 882 EmitStmt(S.getSubStmt()); 883 return; 884 } 885 886 // Handle case ranges. 887 if (S.getRHS()) { 888 EmitCaseStmtRange(S); 889 return; 890 } 891 892 llvm::ConstantInt *CaseVal = 893 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 894 895 // If the body of the case is just a 'break', and if there was no fallthrough, 896 // try to not emit an empty block. 897 if (isa<BreakStmt>(S.getSubStmt())) { 898 JumpDest Block = BreakContinueStack.back().BreakBlock; 899 900 // Only do this optimization if there are no cleanups that need emitting. 901 if (isObviouslyBranchWithoutCleanups(Block)) { 902 SwitchInsn->addCase(CaseVal, Block.getBlock()); 903 904 // If there was a fallthrough into this case, make sure to redirect it to 905 // the end of the switch as well. 906 if (Builder.GetInsertBlock()) { 907 Builder.CreateBr(Block.getBlock()); 908 Builder.ClearInsertionPoint(); 909 } 910 return; 911 } 912 } 913 914 EmitBlock(createBasicBlock("sw.bb")); 915 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 916 SwitchInsn->addCase(CaseVal, CaseDest); 917 918 // Recursively emitting the statement is acceptable, but is not wonderful for 919 // code where we have many case statements nested together, i.e.: 920 // case 1: 921 // case 2: 922 // case 3: etc. 923 // Handling this recursively will create a new block for each case statement 924 // that falls through to the next case which is IR intensive. It also causes 925 // deep recursion which can run into stack depth limitations. Handle 926 // sequential non-range case statements specially. 927 const CaseStmt *CurCase = &S; 928 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 929 930 // Otherwise, iteratively add consecutive cases to this switch stmt. 931 while (NextCase && NextCase->getRHS() == 0) { 932 CurCase = NextCase; 933 llvm::ConstantInt *CaseVal = 934 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 935 SwitchInsn->addCase(CaseVal, CaseDest); 936 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 937 } 938 939 // Normal default recursion for non-cases. 940 EmitStmt(CurCase->getSubStmt()); 941 } 942 943 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 944 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 945 assert(DefaultBlock->empty() && 946 "EmitDefaultStmt: Default block already defined?"); 947 EmitBlock(DefaultBlock); 948 EmitStmt(S.getSubStmt()); 949 } 950 951 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 952 /// constant value that is being switched on, see if we can dead code eliminate 953 /// the body of the switch to a simple series of statements to emit. Basically, 954 /// on a switch (5) we want to find these statements: 955 /// case 5: 956 /// printf(...); <-- 957 /// ++i; <-- 958 /// break; 959 /// 960 /// and add them to the ResultStmts vector. If it is unsafe to do this 961 /// transformation (for example, one of the elided statements contains a label 962 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 963 /// should include statements after it (e.g. the printf() line is a substmt of 964 /// the case) then return CSFC_FallThrough. If we handled it and found a break 965 /// statement, then return CSFC_Success. 966 /// 967 /// If Case is non-null, then we are looking for the specified case, checking 968 /// that nothing we jump over contains labels. If Case is null, then we found 969 /// the case and are looking for the break. 970 /// 971 /// If the recursive walk actually finds our Case, then we set FoundCase to 972 /// true. 973 /// 974 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 975 static CSFC_Result CollectStatementsForCase(const Stmt *S, 976 const SwitchCase *Case, 977 bool &FoundCase, 978 SmallVectorImpl<const Stmt*> &ResultStmts) { 979 // If this is a null statement, just succeed. 980 if (S == 0) 981 return Case ? CSFC_Success : CSFC_FallThrough; 982 983 // If this is the switchcase (case 4: or default) that we're looking for, then 984 // we're in business. Just add the substatement. 985 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 986 if (S == Case) { 987 FoundCase = true; 988 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 989 ResultStmts); 990 } 991 992 // Otherwise, this is some other case or default statement, just ignore it. 993 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 994 ResultStmts); 995 } 996 997 // If we are in the live part of the code and we found our break statement, 998 // return a success! 999 if (Case == 0 && isa<BreakStmt>(S)) 1000 return CSFC_Success; 1001 1002 // If this is a switch statement, then it might contain the SwitchCase, the 1003 // break, or neither. 1004 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1005 // Handle this as two cases: we might be looking for the SwitchCase (if so 1006 // the skipped statements must be skippable) or we might already have it. 1007 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1008 if (Case) { 1009 // Keep track of whether we see a skipped declaration. The code could be 1010 // using the declaration even if it is skipped, so we can't optimize out 1011 // the decl if the kept statements might refer to it. 1012 bool HadSkippedDecl = false; 1013 1014 // If we're looking for the case, just see if we can skip each of the 1015 // substatements. 1016 for (; Case && I != E; ++I) { 1017 HadSkippedDecl |= isa<DeclStmt>(*I); 1018 1019 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1020 case CSFC_Failure: return CSFC_Failure; 1021 case CSFC_Success: 1022 // A successful result means that either 1) that the statement doesn't 1023 // have the case and is skippable, or 2) does contain the case value 1024 // and also contains the break to exit the switch. In the later case, 1025 // we just verify the rest of the statements are elidable. 1026 if (FoundCase) { 1027 // If we found the case and skipped declarations, we can't do the 1028 // optimization. 1029 if (HadSkippedDecl) 1030 return CSFC_Failure; 1031 1032 for (++I; I != E; ++I) 1033 if (CodeGenFunction::ContainsLabel(*I, true)) 1034 return CSFC_Failure; 1035 return CSFC_Success; 1036 } 1037 break; 1038 case CSFC_FallThrough: 1039 // If we have a fallthrough condition, then we must have found the 1040 // case started to include statements. Consider the rest of the 1041 // statements in the compound statement as candidates for inclusion. 1042 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1043 // We recursively found Case, so we're not looking for it anymore. 1044 Case = 0; 1045 1046 // If we found the case and skipped declarations, we can't do the 1047 // optimization. 1048 if (HadSkippedDecl) 1049 return CSFC_Failure; 1050 break; 1051 } 1052 } 1053 } 1054 1055 // If we have statements in our range, then we know that the statements are 1056 // live and need to be added to the set of statements we're tracking. 1057 for (; I != E; ++I) { 1058 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1059 case CSFC_Failure: return CSFC_Failure; 1060 case CSFC_FallThrough: 1061 // A fallthrough result means that the statement was simple and just 1062 // included in ResultStmt, keep adding them afterwards. 1063 break; 1064 case CSFC_Success: 1065 // A successful result means that we found the break statement and 1066 // stopped statement inclusion. We just ensure that any leftover stmts 1067 // are skippable and return success ourselves. 1068 for (++I; I != E; ++I) 1069 if (CodeGenFunction::ContainsLabel(*I, true)) 1070 return CSFC_Failure; 1071 return CSFC_Success; 1072 } 1073 } 1074 1075 return Case ? CSFC_Success : CSFC_FallThrough; 1076 } 1077 1078 // Okay, this is some other statement that we don't handle explicitly, like a 1079 // for statement or increment etc. If we are skipping over this statement, 1080 // just verify it doesn't have labels, which would make it invalid to elide. 1081 if (Case) { 1082 if (CodeGenFunction::ContainsLabel(S, true)) 1083 return CSFC_Failure; 1084 return CSFC_Success; 1085 } 1086 1087 // Otherwise, we want to include this statement. Everything is cool with that 1088 // so long as it doesn't contain a break out of the switch we're in. 1089 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1090 1091 // Otherwise, everything is great. Include the statement and tell the caller 1092 // that we fall through and include the next statement as well. 1093 ResultStmts.push_back(S); 1094 return CSFC_FallThrough; 1095 } 1096 1097 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1098 /// then invoke CollectStatementsForCase to find the list of statements to emit 1099 /// for a switch on constant. See the comment above CollectStatementsForCase 1100 /// for more details. 1101 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1102 const llvm::APInt &ConstantCondValue, 1103 SmallVectorImpl<const Stmt*> &ResultStmts, 1104 ASTContext &C) { 1105 // First step, find the switch case that is being branched to. We can do this 1106 // efficiently by scanning the SwitchCase list. 1107 const SwitchCase *Case = S.getSwitchCaseList(); 1108 const DefaultStmt *DefaultCase = 0; 1109 1110 for (; Case; Case = Case->getNextSwitchCase()) { 1111 // It's either a default or case. Just remember the default statement in 1112 // case we're not jumping to any numbered cases. 1113 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1114 DefaultCase = DS; 1115 continue; 1116 } 1117 1118 // Check to see if this case is the one we're looking for. 1119 const CaseStmt *CS = cast<CaseStmt>(Case); 1120 // Don't handle case ranges yet. 1121 if (CS->getRHS()) return false; 1122 1123 // If we found our case, remember it as 'case'. 1124 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1125 break; 1126 } 1127 1128 // If we didn't find a matching case, we use a default if it exists, or we 1129 // elide the whole switch body! 1130 if (Case == 0) { 1131 // It is safe to elide the body of the switch if it doesn't contain labels 1132 // etc. If it is safe, return successfully with an empty ResultStmts list. 1133 if (DefaultCase == 0) 1134 return !CodeGenFunction::ContainsLabel(&S); 1135 Case = DefaultCase; 1136 } 1137 1138 // Ok, we know which case is being jumped to, try to collect all the 1139 // statements that follow it. This can fail for a variety of reasons. Also, 1140 // check to see that the recursive walk actually found our case statement. 1141 // Insane cases like this can fail to find it in the recursive walk since we 1142 // don't handle every stmt kind: 1143 // switch (4) { 1144 // while (1) { 1145 // case 4: ... 1146 bool FoundCase = false; 1147 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1148 ResultStmts) != CSFC_Failure && 1149 FoundCase; 1150 } 1151 1152 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1153 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1154 1155 RunCleanupsScope ConditionScope(*this); 1156 1157 if (S.getConditionVariable()) 1158 EmitAutoVarDecl(*S.getConditionVariable()); 1159 1160 // Handle nested switch statements. 1161 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1162 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1163 1164 // See if we can constant fold the condition of the switch and therefore only 1165 // emit the live case statement (if any) of the switch. 1166 llvm::APInt ConstantCondValue; 1167 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1168 SmallVector<const Stmt*, 4> CaseStmts; 1169 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1170 getContext())) { 1171 RunCleanupsScope ExecutedScope(*this); 1172 1173 // At this point, we are no longer "within" a switch instance, so 1174 // we can temporarily enforce this to ensure that any embedded case 1175 // statements are not emitted. 1176 SwitchInsn = 0; 1177 1178 // Okay, we can dead code eliminate everything except this case. Emit the 1179 // specified series of statements and we're good. 1180 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1181 EmitStmt(CaseStmts[i]); 1182 1183 // Now we want to restore the saved switch instance so that nested switches 1184 // continue to function properly 1185 SwitchInsn = SavedSwitchInsn; 1186 1187 return; 1188 } 1189 } 1190 1191 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1192 1193 // Create basic block to hold stuff that comes after switch 1194 // statement. We also need to create a default block now so that 1195 // explicit case ranges tests can have a place to jump to on 1196 // failure. 1197 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1198 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1199 CaseRangeBlock = DefaultBlock; 1200 1201 // Clear the insertion point to indicate we are in unreachable code. 1202 Builder.ClearInsertionPoint(); 1203 1204 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1205 // then reuse last ContinueBlock. 1206 JumpDest OuterContinue; 1207 if (!BreakContinueStack.empty()) 1208 OuterContinue = BreakContinueStack.back().ContinueBlock; 1209 1210 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1211 1212 // Emit switch body. 1213 EmitStmt(S.getBody()); 1214 1215 BreakContinueStack.pop_back(); 1216 1217 // Update the default block in case explicit case range tests have 1218 // been chained on top. 1219 SwitchInsn->setDefaultDest(CaseRangeBlock); 1220 1221 // If a default was never emitted: 1222 if (!DefaultBlock->getParent()) { 1223 // If we have cleanups, emit the default block so that there's a 1224 // place to jump through the cleanups from. 1225 if (ConditionScope.requiresCleanups()) { 1226 EmitBlock(DefaultBlock); 1227 1228 // Otherwise, just forward the default block to the switch end. 1229 } else { 1230 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1231 delete DefaultBlock; 1232 } 1233 } 1234 1235 ConditionScope.ForceCleanup(); 1236 1237 // Emit continuation. 1238 EmitBlock(SwitchExit.getBlock(), true); 1239 1240 SwitchInsn = SavedSwitchInsn; 1241 CaseRangeBlock = SavedCRBlock; 1242 } 1243 1244 static std::string 1245 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1246 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1247 std::string Result; 1248 1249 while (*Constraint) { 1250 switch (*Constraint) { 1251 default: 1252 Result += Target.convertConstraint(Constraint); 1253 break; 1254 // Ignore these 1255 case '*': 1256 case '?': 1257 case '!': 1258 case '=': // Will see this and the following in mult-alt constraints. 1259 case '+': 1260 break; 1261 case ',': 1262 Result += "|"; 1263 break; 1264 case 'g': 1265 Result += "imr"; 1266 break; 1267 case '[': { 1268 assert(OutCons && 1269 "Must pass output names to constraints with a symbolic name"); 1270 unsigned Index; 1271 bool result = Target.resolveSymbolicName(Constraint, 1272 &(*OutCons)[0], 1273 OutCons->size(), Index); 1274 assert(result && "Could not resolve symbolic name"); (void)result; 1275 Result += llvm::utostr(Index); 1276 break; 1277 } 1278 } 1279 1280 Constraint++; 1281 } 1282 1283 return Result; 1284 } 1285 1286 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1287 /// as using a particular register add that as a constraint that will be used 1288 /// in this asm stmt. 1289 static std::string 1290 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1291 const TargetInfo &Target, CodeGenModule &CGM, 1292 const AsmStmt &Stmt) { 1293 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1294 if (!AsmDeclRef) 1295 return Constraint; 1296 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1297 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1298 if (!Variable) 1299 return Constraint; 1300 if (Variable->getStorageClass() != SC_Register) 1301 return Constraint; 1302 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1303 if (!Attr) 1304 return Constraint; 1305 StringRef Register = Attr->getLabel(); 1306 assert(Target.isValidGCCRegisterName(Register)); 1307 // We're using validateOutputConstraint here because we only care if 1308 // this is a register constraint. 1309 TargetInfo::ConstraintInfo Info(Constraint, ""); 1310 if (Target.validateOutputConstraint(Info) && 1311 !Info.allowsRegister()) { 1312 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1313 return Constraint; 1314 } 1315 // Canonicalize the register here before returning it. 1316 Register = Target.getNormalizedGCCRegisterName(Register); 1317 return "{" + Register.str() + "}"; 1318 } 1319 1320 llvm::Value* 1321 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S, 1322 const TargetInfo::ConstraintInfo &Info, 1323 LValue InputValue, QualType InputType, 1324 std::string &ConstraintStr) { 1325 llvm::Value *Arg; 1326 if (Info.allowsRegister() || !Info.allowsMemory()) { 1327 if (!CodeGenFunction::hasAggregateLLVMType(InputType)) { 1328 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1329 } else { 1330 llvm::Type *Ty = ConvertType(InputType); 1331 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); 1332 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1333 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1334 Ty = llvm::PointerType::getUnqual(Ty); 1335 1336 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1337 Ty)); 1338 } else { 1339 Arg = InputValue.getAddress(); 1340 ConstraintStr += '*'; 1341 } 1342 } 1343 } else { 1344 Arg = InputValue.getAddress(); 1345 ConstraintStr += '*'; 1346 } 1347 1348 return Arg; 1349 } 1350 1351 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, 1352 const TargetInfo::ConstraintInfo &Info, 1353 const Expr *InputExpr, 1354 std::string &ConstraintStr) { 1355 if (Info.allowsRegister() || !Info.allowsMemory()) 1356 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) 1357 return EmitScalarExpr(InputExpr); 1358 1359 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1360 LValue Dest = EmitLValue(InputExpr); 1361 return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr); 1362 } 1363 1364 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1365 /// asm call instruction. The !srcloc MDNode contains a list of constant 1366 /// integers which are the source locations of the start of each line in the 1367 /// asm. 1368 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1369 CodeGenFunction &CGF) { 1370 SmallVector<llvm::Value *, 8> Locs; 1371 // Add the location of the first line to the MDNode. 1372 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1373 Str->getLocStart().getRawEncoding())); 1374 StringRef StrVal = Str->getString(); 1375 if (!StrVal.empty()) { 1376 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1377 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1378 1379 // Add the location of the start of each subsequent line of the asm to the 1380 // MDNode. 1381 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1382 if (StrVal[i] != '\n') continue; 1383 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1384 CGF.Target); 1385 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1386 LineLoc.getRawEncoding())); 1387 } 1388 } 1389 1390 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1391 } 1392 1393 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1394 // Analyze the asm string to decompose it into its pieces. We know that Sema 1395 // has already done this, so it is guaranteed to be successful. 1396 SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; 1397 unsigned DiagOffs; 1398 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); 1399 1400 // Assemble the pieces into the final asm string. 1401 std::string AsmString; 1402 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 1403 if (Pieces[i].isString()) 1404 AsmString += Pieces[i].getString(); 1405 else if (Pieces[i].getModifier() == '\0') 1406 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); 1407 else 1408 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + 1409 Pieces[i].getModifier() + '}'; 1410 } 1411 1412 // Get all the output and input constraints together. 1413 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1414 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1415 1416 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1417 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), 1418 S.getOutputName(i)); 1419 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid; 1420 assert(IsValid && "Failed to parse output constraint"); 1421 OutputConstraintInfos.push_back(Info); 1422 } 1423 1424 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1425 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), 1426 S.getInputName(i)); 1427 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(), 1428 S.getNumOutputs(), Info); 1429 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1430 InputConstraintInfos.push_back(Info); 1431 } 1432 1433 std::string Constraints; 1434 1435 std::vector<LValue> ResultRegDests; 1436 std::vector<QualType> ResultRegQualTys; 1437 std::vector<llvm::Type *> ResultRegTypes; 1438 std::vector<llvm::Type *> ResultTruncRegTypes; 1439 std::vector<llvm::Type*> ArgTypes; 1440 std::vector<llvm::Value*> Args; 1441 1442 // Keep track of inout constraints. 1443 std::string InOutConstraints; 1444 std::vector<llvm::Value*> InOutArgs; 1445 std::vector<llvm::Type*> InOutArgTypes; 1446 1447 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1448 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1449 1450 // Simplify the output constraint. 1451 std::string OutputConstraint(S.getOutputConstraint(i)); 1452 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); 1453 1454 const Expr *OutExpr = S.getOutputExpr(i); 1455 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1456 1457 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1458 Target, CGM, S); 1459 1460 LValue Dest = EmitLValue(OutExpr); 1461 if (!Constraints.empty()) 1462 Constraints += ','; 1463 1464 // If this is a register output, then make the inline asm return it 1465 // by-value. If this is a memory result, return the value by-reference. 1466 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { 1467 Constraints += "=" + OutputConstraint; 1468 ResultRegQualTys.push_back(OutExpr->getType()); 1469 ResultRegDests.push_back(Dest); 1470 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1471 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1472 1473 // If this output is tied to an input, and if the input is larger, then 1474 // we need to set the actual result type of the inline asm node to be the 1475 // same as the input type. 1476 if (Info.hasMatchingInput()) { 1477 unsigned InputNo; 1478 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1479 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1480 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1481 break; 1482 } 1483 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1484 1485 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1486 QualType OutputType = OutExpr->getType(); 1487 1488 uint64_t InputSize = getContext().getTypeSize(InputTy); 1489 if (getContext().getTypeSize(OutputType) < InputSize) { 1490 // Form the asm to return the value as a larger integer or fp type. 1491 ResultRegTypes.back() = ConvertType(InputTy); 1492 } 1493 } 1494 if (llvm::Type* AdjTy = 1495 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1496 ResultRegTypes.back())) 1497 ResultRegTypes.back() = AdjTy; 1498 } else { 1499 ArgTypes.push_back(Dest.getAddress()->getType()); 1500 Args.push_back(Dest.getAddress()); 1501 Constraints += "=*"; 1502 Constraints += OutputConstraint; 1503 } 1504 1505 if (Info.isReadWrite()) { 1506 InOutConstraints += ','; 1507 1508 const Expr *InputExpr = S.getOutputExpr(i); 1509 llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), 1510 InOutConstraints); 1511 1512 if (llvm::Type* AdjTy = 1513 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1514 Arg->getType())) 1515 Arg = Builder.CreateBitCast(Arg, AdjTy); 1516 1517 if (Info.allowsRegister()) 1518 InOutConstraints += llvm::utostr(i); 1519 else 1520 InOutConstraints += OutputConstraint; 1521 1522 InOutArgTypes.push_back(Arg->getType()); 1523 InOutArgs.push_back(Arg); 1524 } 1525 } 1526 1527 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1528 1529 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1530 const Expr *InputExpr = S.getInputExpr(i); 1531 1532 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1533 1534 if (!Constraints.empty()) 1535 Constraints += ','; 1536 1537 // Simplify the input constraint. 1538 std::string InputConstraint(S.getInputConstraint(i)); 1539 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, 1540 &OutputConstraintInfos); 1541 1542 InputConstraint = 1543 AddVariableConstraints(InputConstraint, 1544 *InputExpr->IgnoreParenNoopCasts(getContext()), 1545 Target, CGM, S); 1546 1547 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); 1548 1549 // If this input argument is tied to a larger output result, extend the 1550 // input to be the same size as the output. The LLVM backend wants to see 1551 // the input and output of a matching constraint be the same size. Note 1552 // that GCC does not define what the top bits are here. We use zext because 1553 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1554 if (Info.hasTiedOperand()) { 1555 unsigned Output = Info.getTiedOperand(); 1556 QualType OutputType = S.getOutputExpr(Output)->getType(); 1557 QualType InputTy = InputExpr->getType(); 1558 1559 if (getContext().getTypeSize(OutputType) > 1560 getContext().getTypeSize(InputTy)) { 1561 // Use ptrtoint as appropriate so that we can do our extension. 1562 if (isa<llvm::PointerType>(Arg->getType())) 1563 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1564 llvm::Type *OutputTy = ConvertType(OutputType); 1565 if (isa<llvm::IntegerType>(OutputTy)) 1566 Arg = Builder.CreateZExt(Arg, OutputTy); 1567 else if (isa<llvm::PointerType>(OutputTy)) 1568 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1569 else { 1570 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1571 Arg = Builder.CreateFPExt(Arg, OutputTy); 1572 } 1573 } 1574 } 1575 if (llvm::Type* AdjTy = 1576 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1577 Arg->getType())) 1578 Arg = Builder.CreateBitCast(Arg, AdjTy); 1579 1580 ArgTypes.push_back(Arg->getType()); 1581 Args.push_back(Arg); 1582 Constraints += InputConstraint; 1583 } 1584 1585 // Append the "input" part of inout constraints last. 1586 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1587 ArgTypes.push_back(InOutArgTypes[i]); 1588 Args.push_back(InOutArgs[i]); 1589 } 1590 Constraints += InOutConstraints; 1591 1592 // Clobbers 1593 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1594 StringRef Clobber = S.getClobber(i)->getString(); 1595 1596 if (Clobber != "memory" && Clobber != "cc") 1597 Clobber = Target.getNormalizedGCCRegisterName(Clobber); 1598 1599 if (i != 0 || NumConstraints != 0) 1600 Constraints += ','; 1601 1602 Constraints += "~{"; 1603 Constraints += Clobber; 1604 Constraints += '}'; 1605 } 1606 1607 // Add machine specific clobbers 1608 std::string MachineClobbers = Target.getClobbers(); 1609 if (!MachineClobbers.empty()) { 1610 if (!Constraints.empty()) 1611 Constraints += ','; 1612 Constraints += MachineClobbers; 1613 } 1614 1615 llvm::Type *ResultType; 1616 if (ResultRegTypes.empty()) 1617 ResultType = VoidTy; 1618 else if (ResultRegTypes.size() == 1) 1619 ResultType = ResultRegTypes[0]; 1620 else 1621 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1622 1623 llvm::FunctionType *FTy = 1624 llvm::FunctionType::get(ResultType, ArgTypes, false); 1625 1626 llvm::InlineAsm *IA = 1627 llvm::InlineAsm::get(FTy, AsmString, Constraints, 1628 S.isVolatile() || S.getNumOutputs() == 0); 1629 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1630 Result->addAttribute(~0, llvm::Attribute::NoUnwind); 1631 1632 // Slap the source location of the inline asm into a !srcloc metadata on the 1633 // call. 1634 Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this)); 1635 1636 // Extract all of the register value results from the asm. 1637 std::vector<llvm::Value*> RegResults; 1638 if (ResultRegTypes.size() == 1) { 1639 RegResults.push_back(Result); 1640 } else { 1641 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1642 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1643 RegResults.push_back(Tmp); 1644 } 1645 } 1646 1647 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1648 llvm::Value *Tmp = RegResults[i]; 1649 1650 // If the result type of the LLVM IR asm doesn't match the result type of 1651 // the expression, do the conversion. 1652 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1653 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1654 1655 // Truncate the integer result to the right size, note that TruncTy can be 1656 // a pointer. 1657 if (TruncTy->isFloatingPointTy()) 1658 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1659 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1660 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); 1661 Tmp = Builder.CreateTrunc(Tmp, 1662 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1663 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1664 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1665 uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType()); 1666 Tmp = Builder.CreatePtrToInt(Tmp, 1667 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1668 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1669 } else if (TruncTy->isIntegerTy()) { 1670 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1671 } else if (TruncTy->isVectorTy()) { 1672 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1673 } 1674 } 1675 1676 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1677 } 1678 } 1679