1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                              Statement Emission
30 //===----------------------------------------------------------------------===//
31 
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33   if (CGDebugInfo *DI = getDebugInfo()) {
34     SourceLocation Loc;
35     if (isa<DeclStmt>(S))
36       Loc = S->getLocEnd();
37     else
38       Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40   }
41 }
42 
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44   assert(S && "Null statement?");
45 
46   // These statements have their own debug info handling.
47   if (EmitSimpleStmt(S))
48     return;
49 
50   // Check if we are generating unreachable code.
51   if (!HaveInsertPoint()) {
52     // If so, and the statement doesn't contain a label, then we do not need to
53     // generate actual code. This is safe because (1) the current point is
54     // unreachable, so we don't need to execute the code, and (2) we've already
55     // handled the statements which update internal data structures (like the
56     // local variable map) which could be used by subsequent statements.
57     if (!ContainsLabel(S)) {
58       // Verify that any decl statements were handled as simple, they may be in
59       // scope of subsequent reachable statements.
60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61       return;
62     }
63 
64     // Otherwise, make a new block to hold the code.
65     EnsureInsertPoint();
66   }
67 
68   // Generate a stoppoint if we are emitting debug info.
69   EmitStopPoint(S);
70 
71   switch (S->getStmtClass()) {
72   case Stmt::NoStmtClass:
73   case Stmt::CXXCatchStmtClass:
74   case Stmt::SEHExceptStmtClass:
75   case Stmt::SEHFinallyStmtClass:
76   case Stmt::MSDependentExistsStmtClass:
77     llvm_unreachable("invalid statement class to emit generically");
78   case Stmt::NullStmtClass:
79   case Stmt::CompoundStmtClass:
80   case Stmt::DeclStmtClass:
81   case Stmt::LabelStmtClass:
82   case Stmt::GotoStmtClass:
83   case Stmt::BreakStmtClass:
84   case Stmt::ContinueStmtClass:
85   case Stmt::DefaultStmtClass:
86   case Stmt::CaseStmtClass:
87     llvm_unreachable("should have emitted these statements as simple");
88 
89 #define STMT(Type, Base)
90 #define ABSTRACT_STMT(Op)
91 #define EXPR(Type, Base) \
92   case Stmt::Type##Class:
93 #include "clang/AST/StmtNodes.inc"
94   {
95     // Remember the block we came in on.
96     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97     assert(incoming && "expression emission must have an insertion point");
98 
99     EmitIgnoredExpr(cast<Expr>(S));
100 
101     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102     assert(outgoing && "expression emission cleared block!");
103 
104     // The expression emitters assume (reasonably!) that the insertion
105     // point is always set.  To maintain that, the call-emission code
106     // for noreturn functions has to enter a new block with no
107     // predecessors.  We want to kill that block and mark the current
108     // insertion point unreachable in the common case of a call like
109     // "exit();".  Since expression emission doesn't otherwise create
110     // blocks with no predecessors, we can just test for that.
111     // However, we must be careful not to do this to our incoming
112     // block, because *statement* emission does sometimes create
113     // reachable blocks which will have no predecessors until later in
114     // the function.  This occurs with, e.g., labels that are not
115     // reachable by fallthrough.
116     if (incoming != outgoing && outgoing->use_empty()) {
117       outgoing->eraseFromParent();
118       Builder.ClearInsertionPoint();
119     }
120     break;
121   }
122 
123   case Stmt::IndirectGotoStmtClass:
124     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125 
126   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130 
131   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132 
133   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135 
136   case Stmt::ObjCAtTryStmtClass:
137     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138     break;
139   case Stmt::ObjCAtCatchStmtClass:
140     llvm_unreachable(
141                     "@catch statements should be handled by EmitObjCAtTryStmt");
142   case Stmt::ObjCAtFinallyStmtClass:
143     llvm_unreachable(
144                   "@finally statements should be handled by EmitObjCAtTryStmt");
145   case Stmt::ObjCAtThrowStmtClass:
146     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147     break;
148   case Stmt::ObjCAtSynchronizedStmtClass:
149     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150     break;
151   case Stmt::ObjCForCollectionStmtClass:
152     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153     break;
154   case Stmt::ObjCAutoreleasePoolStmtClass:
155     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
156     break;
157 
158   case Stmt::CXXTryStmtClass:
159     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
160     break;
161   case Stmt::CXXForRangeStmtClass:
162     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
163   case Stmt::SEHTryStmtClass:
164     // FIXME Not yet implemented
165     break;
166   }
167 }
168 
169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
170   switch (S->getStmtClass()) {
171   default: return false;
172   case Stmt::NullStmtClass: break;
173   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
174   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
175   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
176   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
177   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
178   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
179   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
180   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
181   }
182 
183   return true;
184 }
185 
186 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
187 /// this captures the expression result of the last sub-statement and returns it
188 /// (for use by the statement expression extension).
189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
190                                          AggValueSlot AggSlot) {
191   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
192                              "LLVM IR generation of compound statement ('{}')");
193 
194   // Keep track of the current cleanup stack depth, including debug scopes.
195   LexicalScope Scope(*this, S.getSourceRange());
196 
197   for (CompoundStmt::const_body_iterator I = S.body_begin(),
198        E = S.body_end()-GetLast; I != E; ++I)
199     EmitStmt(*I);
200 
201   RValue RV;
202   if (!GetLast)
203     RV = RValue::get(0);
204   else {
205     // We have to special case labels here.  They are statements, but when put
206     // at the end of a statement expression, they yield the value of their
207     // subexpression.  Handle this by walking through all labels we encounter,
208     // emitting them before we evaluate the subexpr.
209     const Stmt *LastStmt = S.body_back();
210     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
211       EmitLabel(LS->getDecl());
212       LastStmt = LS->getSubStmt();
213     }
214 
215     EnsureInsertPoint();
216 
217     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
218   }
219 
220   return RV;
221 }
222 
223 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
224   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
225 
226   // If there is a cleanup stack, then we it isn't worth trying to
227   // simplify this block (we would need to remove it from the scope map
228   // and cleanup entry).
229   if (!EHStack.empty())
230     return;
231 
232   // Can only simplify direct branches.
233   if (!BI || !BI->isUnconditional())
234     return;
235 
236   BB->replaceAllUsesWith(BI->getSuccessor(0));
237   BI->eraseFromParent();
238   BB->eraseFromParent();
239 }
240 
241 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
242   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
243 
244   // Fall out of the current block (if necessary).
245   EmitBranch(BB);
246 
247   if (IsFinished && BB->use_empty()) {
248     delete BB;
249     return;
250   }
251 
252   // Place the block after the current block, if possible, or else at
253   // the end of the function.
254   if (CurBB && CurBB->getParent())
255     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
256   else
257     CurFn->getBasicBlockList().push_back(BB);
258   Builder.SetInsertPoint(BB);
259 }
260 
261 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
262   // Emit a branch from the current block to the target one if this
263   // was a real block.  If this was just a fall-through block after a
264   // terminator, don't emit it.
265   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
266 
267   if (!CurBB || CurBB->getTerminator()) {
268     // If there is no insert point or the previous block is already
269     // terminated, don't touch it.
270   } else {
271     // Otherwise, create a fall-through branch.
272     Builder.CreateBr(Target);
273   }
274 
275   Builder.ClearInsertionPoint();
276 }
277 
278 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
279   bool inserted = false;
280   for (llvm::BasicBlock::use_iterator
281          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
282     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
283       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
284       inserted = true;
285       break;
286     }
287   }
288 
289   if (!inserted)
290     CurFn->getBasicBlockList().push_back(block);
291 
292   Builder.SetInsertPoint(block);
293 }
294 
295 CodeGenFunction::JumpDest
296 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
297   JumpDest &Dest = LabelMap[D];
298   if (Dest.isValid()) return Dest;
299 
300   // Create, but don't insert, the new block.
301   Dest = JumpDest(createBasicBlock(D->getName()),
302                   EHScopeStack::stable_iterator::invalid(),
303                   NextCleanupDestIndex++);
304   return Dest;
305 }
306 
307 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
308   JumpDest &Dest = LabelMap[D];
309 
310   // If we didn't need a forward reference to this label, just go
311   // ahead and create a destination at the current scope.
312   if (!Dest.isValid()) {
313     Dest = getJumpDestInCurrentScope(D->getName());
314 
315   // Otherwise, we need to give this label a target depth and remove
316   // it from the branch-fixups list.
317   } else {
318     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
319     Dest = JumpDest(Dest.getBlock(),
320                     EHStack.stable_begin(),
321                     Dest.getDestIndex());
322 
323     ResolveBranchFixups(Dest.getBlock());
324   }
325 
326   EmitBlock(Dest.getBlock());
327 }
328 
329 
330 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
331   EmitLabel(S.getDecl());
332   EmitStmt(S.getSubStmt());
333 }
334 
335 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
336   // If this code is reachable then emit a stop point (if generating
337   // debug info). We have to do this ourselves because we are on the
338   // "simple" statement path.
339   if (HaveInsertPoint())
340     EmitStopPoint(&S);
341 
342   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
343 }
344 
345 
346 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
347   if (const LabelDecl *Target = S.getConstantTarget()) {
348     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
349     return;
350   }
351 
352   // Ensure that we have an i8* for our PHI node.
353   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
354                                          Int8PtrTy, "addr");
355   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
356 
357 
358   // Get the basic block for the indirect goto.
359   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
360 
361   // The first instruction in the block has to be the PHI for the switch dest,
362   // add an entry for this branch.
363   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
364 
365   EmitBranch(IndGotoBB);
366 }
367 
368 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
369   // C99 6.8.4.1: The first substatement is executed if the expression compares
370   // unequal to 0.  The condition must be a scalar type.
371   RunCleanupsScope ConditionScope(*this);
372 
373   if (S.getConditionVariable())
374     EmitAutoVarDecl(*S.getConditionVariable());
375 
376   // If the condition constant folds and can be elided, try to avoid emitting
377   // the condition and the dead arm of the if/else.
378   bool CondConstant;
379   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
380     // Figure out which block (then or else) is executed.
381     const Stmt *Executed = S.getThen();
382     const Stmt *Skipped  = S.getElse();
383     if (!CondConstant)  // Condition false?
384       std::swap(Executed, Skipped);
385 
386     // If the skipped block has no labels in it, just emit the executed block.
387     // This avoids emitting dead code and simplifies the CFG substantially.
388     if (!ContainsLabel(Skipped)) {
389       if (Executed) {
390         RunCleanupsScope ExecutedScope(*this);
391         EmitStmt(Executed);
392       }
393       return;
394     }
395   }
396 
397   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
398   // the conditional branch.
399   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
400   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
401   llvm::BasicBlock *ElseBlock = ContBlock;
402   if (S.getElse())
403     ElseBlock = createBasicBlock("if.else");
404   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
405 
406   // Emit the 'then' code.
407   EmitBlock(ThenBlock);
408   {
409     RunCleanupsScope ThenScope(*this);
410     EmitStmt(S.getThen());
411   }
412   EmitBranch(ContBlock);
413 
414   // Emit the 'else' code if present.
415   if (const Stmt *Else = S.getElse()) {
416     // There is no need to emit line number for unconditional branch.
417     if (getDebugInfo())
418       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
419     EmitBlock(ElseBlock);
420     {
421       RunCleanupsScope ElseScope(*this);
422       EmitStmt(Else);
423     }
424     // There is no need to emit line number for unconditional branch.
425     if (getDebugInfo())
426       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
427     EmitBranch(ContBlock);
428   }
429 
430   // Emit the continuation block for code after the if.
431   EmitBlock(ContBlock, true);
432 }
433 
434 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
435   // Emit the header for the loop, which will also become
436   // the continue target.
437   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
438   EmitBlock(LoopHeader.getBlock());
439 
440   // Create an exit block for when the condition fails, which will
441   // also become the break target.
442   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
443 
444   // Store the blocks to use for break and continue.
445   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
446 
447   // C++ [stmt.while]p2:
448   //   When the condition of a while statement is a declaration, the
449   //   scope of the variable that is declared extends from its point
450   //   of declaration (3.3.2) to the end of the while statement.
451   //   [...]
452   //   The object created in a condition is destroyed and created
453   //   with each iteration of the loop.
454   RunCleanupsScope ConditionScope(*this);
455 
456   if (S.getConditionVariable())
457     EmitAutoVarDecl(*S.getConditionVariable());
458 
459   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
460   // evaluation of the controlling expression takes place before each
461   // execution of the loop body.
462   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
463 
464   // while(1) is common, avoid extra exit blocks.  Be sure
465   // to correctly handle break/continue though.
466   bool EmitBoolCondBranch = true;
467   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
468     if (C->isOne())
469       EmitBoolCondBranch = false;
470 
471   // As long as the condition is true, go to the loop body.
472   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
473   if (EmitBoolCondBranch) {
474     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
475     if (ConditionScope.requiresCleanups())
476       ExitBlock = createBasicBlock("while.exit");
477 
478     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
479 
480     if (ExitBlock != LoopExit.getBlock()) {
481       EmitBlock(ExitBlock);
482       EmitBranchThroughCleanup(LoopExit);
483     }
484   }
485 
486   // Emit the loop body.  We have to emit this in a cleanup scope
487   // because it might be a singleton DeclStmt.
488   {
489     RunCleanupsScope BodyScope(*this);
490     EmitBlock(LoopBody);
491     EmitStmt(S.getBody());
492   }
493 
494   BreakContinueStack.pop_back();
495 
496   // Immediately force cleanup.
497   ConditionScope.ForceCleanup();
498 
499   // Branch to the loop header again.
500   EmitBranch(LoopHeader.getBlock());
501 
502   // Emit the exit block.
503   EmitBlock(LoopExit.getBlock(), true);
504 
505   // The LoopHeader typically is just a branch if we skipped emitting
506   // a branch, try to erase it.
507   if (!EmitBoolCondBranch)
508     SimplifyForwardingBlocks(LoopHeader.getBlock());
509 }
510 
511 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
512   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
513   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
514 
515   // Store the blocks to use for break and continue.
516   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
517 
518   // Emit the body of the loop.
519   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
520   EmitBlock(LoopBody);
521   {
522     RunCleanupsScope BodyScope(*this);
523     EmitStmt(S.getBody());
524   }
525 
526   BreakContinueStack.pop_back();
527 
528   EmitBlock(LoopCond.getBlock());
529 
530   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
531   // after each execution of the loop body."
532 
533   // Evaluate the conditional in the while header.
534   // C99 6.8.5p2/p4: The first substatement is executed if the expression
535   // compares unequal to 0.  The condition must be a scalar type.
536   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
537 
538   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
539   // to correctly handle break/continue though.
540   bool EmitBoolCondBranch = true;
541   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
542     if (C->isZero())
543       EmitBoolCondBranch = false;
544 
545   // As long as the condition is true, iterate the loop.
546   if (EmitBoolCondBranch)
547     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
548 
549   // Emit the exit block.
550   EmitBlock(LoopExit.getBlock());
551 
552   // The DoCond block typically is just a branch if we skipped
553   // emitting a branch, try to erase it.
554   if (!EmitBoolCondBranch)
555     SimplifyForwardingBlocks(LoopCond.getBlock());
556 }
557 
558 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
559   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
560 
561   RunCleanupsScope ForScope(*this);
562 
563   CGDebugInfo *DI = getDebugInfo();
564   if (DI)
565     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
566 
567   // Evaluate the first part before the loop.
568   if (S.getInit())
569     EmitStmt(S.getInit());
570 
571   // Start the loop with a block that tests the condition.
572   // If there's an increment, the continue scope will be overwritten
573   // later.
574   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
575   llvm::BasicBlock *CondBlock = Continue.getBlock();
576   EmitBlock(CondBlock);
577 
578   // Create a cleanup scope for the condition variable cleanups.
579   RunCleanupsScope ConditionScope(*this);
580 
581   llvm::Value *BoolCondVal = 0;
582   if (S.getCond()) {
583     // If the for statement has a condition scope, emit the local variable
584     // declaration.
585     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
586     if (S.getConditionVariable()) {
587       EmitAutoVarDecl(*S.getConditionVariable());
588     }
589 
590     // If there are any cleanups between here and the loop-exit scope,
591     // create a block to stage a loop exit along.
592     if (ForScope.requiresCleanups())
593       ExitBlock = createBasicBlock("for.cond.cleanup");
594 
595     // As long as the condition is true, iterate the loop.
596     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
597 
598     // C99 6.8.5p2/p4: The first substatement is executed if the expression
599     // compares unequal to 0.  The condition must be a scalar type.
600     BoolCondVal = EvaluateExprAsBool(S.getCond());
601     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
602 
603     if (ExitBlock != LoopExit.getBlock()) {
604       EmitBlock(ExitBlock);
605       EmitBranchThroughCleanup(LoopExit);
606     }
607 
608     EmitBlock(ForBody);
609   } else {
610     // Treat it as a non-zero constant.  Don't even create a new block for the
611     // body, just fall into it.
612   }
613 
614   // If the for loop doesn't have an increment we can just use the
615   // condition as the continue block.  Otherwise we'll need to create
616   // a block for it (in the current scope, i.e. in the scope of the
617   // condition), and that we will become our continue block.
618   if (S.getInc())
619     Continue = getJumpDestInCurrentScope("for.inc");
620 
621   // Store the blocks to use for break and continue.
622   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
623 
624   {
625     // Create a separate cleanup scope for the body, in case it is not
626     // a compound statement.
627     RunCleanupsScope BodyScope(*this);
628     EmitStmt(S.getBody());
629   }
630 
631   // If there is an increment, emit it next.
632   if (S.getInc()) {
633     EmitBlock(Continue.getBlock());
634     EmitStmt(S.getInc());
635   }
636 
637   BreakContinueStack.pop_back();
638 
639   ConditionScope.ForceCleanup();
640   EmitBranch(CondBlock);
641 
642   ForScope.ForceCleanup();
643 
644   if (DI)
645     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
646 
647   // Emit the fall-through block.
648   EmitBlock(LoopExit.getBlock(), true);
649 }
650 
651 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
652   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
653 
654   RunCleanupsScope ForScope(*this);
655 
656   CGDebugInfo *DI = getDebugInfo();
657   if (DI)
658     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
659 
660   // Evaluate the first pieces before the loop.
661   EmitStmt(S.getRangeStmt());
662   EmitStmt(S.getBeginEndStmt());
663 
664   // Start the loop with a block that tests the condition.
665   // If there's an increment, the continue scope will be overwritten
666   // later.
667   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
668   EmitBlock(CondBlock);
669 
670   // If there are any cleanups between here and the loop-exit scope,
671   // create a block to stage a loop exit along.
672   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
673   if (ForScope.requiresCleanups())
674     ExitBlock = createBasicBlock("for.cond.cleanup");
675 
676   // The loop body, consisting of the specified body and the loop variable.
677   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
678 
679   // The body is executed if the expression, contextually converted
680   // to bool, is true.
681   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
682   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
683 
684   if (ExitBlock != LoopExit.getBlock()) {
685     EmitBlock(ExitBlock);
686     EmitBranchThroughCleanup(LoopExit);
687   }
688 
689   EmitBlock(ForBody);
690 
691   // Create a block for the increment. In case of a 'continue', we jump there.
692   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
693 
694   // Store the blocks to use for break and continue.
695   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
696 
697   {
698     // Create a separate cleanup scope for the loop variable and body.
699     RunCleanupsScope BodyScope(*this);
700     EmitStmt(S.getLoopVarStmt());
701     EmitStmt(S.getBody());
702   }
703 
704   // If there is an increment, emit it next.
705   EmitBlock(Continue.getBlock());
706   EmitStmt(S.getInc());
707 
708   BreakContinueStack.pop_back();
709 
710   EmitBranch(CondBlock);
711 
712   ForScope.ForceCleanup();
713 
714   if (DI)
715     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
716 
717   // Emit the fall-through block.
718   EmitBlock(LoopExit.getBlock(), true);
719 }
720 
721 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
722   if (RV.isScalar()) {
723     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
724   } else if (RV.isAggregate()) {
725     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty,
726                       /*volatile*/ false, 0, /*destIsCompleteObject*/ true);
727   } else {
728     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
729   }
730   EmitBranchThroughCleanup(ReturnBlock);
731 }
732 
733 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
734 /// if the function returns void, or may be missing one if the function returns
735 /// non-void.  Fun stuff :).
736 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
737   // Emit the result value, even if unused, to evalute the side effects.
738   const Expr *RV = S.getRetValue();
739 
740   // FIXME: Clean this up by using an LValue for ReturnTemp,
741   // EmitStoreThroughLValue, and EmitAnyExpr.
742   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
743       !Target.useGlobalsForAutomaticVariables()) {
744     // Apply the named return value optimization for this return statement,
745     // which means doing nothing: the appropriate result has already been
746     // constructed into the NRVO variable.
747 
748     // If there is an NRVO flag for this variable, set it to 1 into indicate
749     // that the cleanup code should not destroy the variable.
750     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
751       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
752   } else if (!ReturnValue) {
753     // Make sure not to return anything, but evaluate the expression
754     // for side effects.
755     if (RV)
756       EmitAnyExpr(RV);
757   } else if (RV == 0) {
758     // Do nothing (return value is left uninitialized)
759   } else if (FnRetTy->isReferenceType()) {
760     // If this function returns a reference, take the address of the expression
761     // rather than the value.
762     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
763     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
764   } else if (!hasAggregateLLVMType(RV->getType())) {
765     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
766   } else if (RV->getType()->isAnyComplexType()) {
767     EmitComplexExprIntoAddr(RV, ReturnValue, false);
768   } else {
769     CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
770     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
771                                           AggValueSlot::IsDestructed,
772                                           AggValueSlot::DoesNotNeedGCBarriers,
773                                           AggValueSlot::IsNotAliased,
774                                           AggValueSlot::IsCompleteObject));
775   }
776 
777   EmitBranchThroughCleanup(ReturnBlock);
778 }
779 
780 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
781   // As long as debug info is modeled with instructions, we have to ensure we
782   // have a place to insert here and write the stop point here.
783   if (getDebugInfo() && HaveInsertPoint())
784     EmitStopPoint(&S);
785 
786   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
787        I != E; ++I)
788     EmitDecl(**I);
789 }
790 
791 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
792   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
793 
794   // If this code is reachable then emit a stop point (if generating
795   // debug info). We have to do this ourselves because we are on the
796   // "simple" statement path.
797   if (HaveInsertPoint())
798     EmitStopPoint(&S);
799 
800   JumpDest Block = BreakContinueStack.back().BreakBlock;
801   EmitBranchThroughCleanup(Block);
802 }
803 
804 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
805   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
806 
807   // If this code is reachable then emit a stop point (if generating
808   // debug info). We have to do this ourselves because we are on the
809   // "simple" statement path.
810   if (HaveInsertPoint())
811     EmitStopPoint(&S);
812 
813   JumpDest Block = BreakContinueStack.back().ContinueBlock;
814   EmitBranchThroughCleanup(Block);
815 }
816 
817 /// EmitCaseStmtRange - If case statement range is not too big then
818 /// add multiple cases to switch instruction, one for each value within
819 /// the range. If range is too big then emit "if" condition check.
820 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
821   assert(S.getRHS() && "Expected RHS value in CaseStmt");
822 
823   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
824   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
825 
826   // Emit the code for this case. We do this first to make sure it is
827   // properly chained from our predecessor before generating the
828   // switch machinery to enter this block.
829   EmitBlock(createBasicBlock("sw.bb"));
830   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
831   EmitStmt(S.getSubStmt());
832 
833   // If range is empty, do nothing.
834   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
835     return;
836 
837   llvm::APInt Range = RHS - LHS;
838   // FIXME: parameters such as this should not be hardcoded.
839   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
840     // Range is small enough to add multiple switch instruction cases.
841     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
842       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
843       LHS++;
844     }
845     return;
846   }
847 
848   // The range is too big. Emit "if" condition into a new block,
849   // making sure to save and restore the current insertion point.
850   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
851 
852   // Push this test onto the chain of range checks (which terminates
853   // in the default basic block). The switch's default will be changed
854   // to the top of this chain after switch emission is complete.
855   llvm::BasicBlock *FalseDest = CaseRangeBlock;
856   CaseRangeBlock = createBasicBlock("sw.caserange");
857 
858   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
859   Builder.SetInsertPoint(CaseRangeBlock);
860 
861   // Emit range check.
862   llvm::Value *Diff =
863     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
864   llvm::Value *Cond =
865     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
866   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
867 
868   // Restore the appropriate insertion point.
869   if (RestoreBB)
870     Builder.SetInsertPoint(RestoreBB);
871   else
872     Builder.ClearInsertionPoint();
873 }
874 
875 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
876   // If there is no enclosing switch instance that we're aware of, then this
877   // case statement and its block can be elided.  This situation only happens
878   // when we've constant-folded the switch, are emitting the constant case,
879   // and part of the constant case includes another case statement.  For
880   // instance: switch (4) { case 4: do { case 5: } while (1); }
881   if (!SwitchInsn) {
882     EmitStmt(S.getSubStmt());
883     return;
884   }
885 
886   // Handle case ranges.
887   if (S.getRHS()) {
888     EmitCaseStmtRange(S);
889     return;
890   }
891 
892   llvm::ConstantInt *CaseVal =
893     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
894 
895   // If the body of the case is just a 'break', and if there was no fallthrough,
896   // try to not emit an empty block.
897   if (isa<BreakStmt>(S.getSubStmt())) {
898     JumpDest Block = BreakContinueStack.back().BreakBlock;
899 
900     // Only do this optimization if there are no cleanups that need emitting.
901     if (isObviouslyBranchWithoutCleanups(Block)) {
902       SwitchInsn->addCase(CaseVal, Block.getBlock());
903 
904       // If there was a fallthrough into this case, make sure to redirect it to
905       // the end of the switch as well.
906       if (Builder.GetInsertBlock()) {
907         Builder.CreateBr(Block.getBlock());
908         Builder.ClearInsertionPoint();
909       }
910       return;
911     }
912   }
913 
914   EmitBlock(createBasicBlock("sw.bb"));
915   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
916   SwitchInsn->addCase(CaseVal, CaseDest);
917 
918   // Recursively emitting the statement is acceptable, but is not wonderful for
919   // code where we have many case statements nested together, i.e.:
920   //  case 1:
921   //    case 2:
922   //      case 3: etc.
923   // Handling this recursively will create a new block for each case statement
924   // that falls through to the next case which is IR intensive.  It also causes
925   // deep recursion which can run into stack depth limitations.  Handle
926   // sequential non-range case statements specially.
927   const CaseStmt *CurCase = &S;
928   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
929 
930   // Otherwise, iteratively add consecutive cases to this switch stmt.
931   while (NextCase && NextCase->getRHS() == 0) {
932     CurCase = NextCase;
933     llvm::ConstantInt *CaseVal =
934       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
935     SwitchInsn->addCase(CaseVal, CaseDest);
936     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
937   }
938 
939   // Normal default recursion for non-cases.
940   EmitStmt(CurCase->getSubStmt());
941 }
942 
943 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
944   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
945   assert(DefaultBlock->empty() &&
946          "EmitDefaultStmt: Default block already defined?");
947   EmitBlock(DefaultBlock);
948   EmitStmt(S.getSubStmt());
949 }
950 
951 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
952 /// constant value that is being switched on, see if we can dead code eliminate
953 /// the body of the switch to a simple series of statements to emit.  Basically,
954 /// on a switch (5) we want to find these statements:
955 ///    case 5:
956 ///      printf(...);    <--
957 ///      ++i;            <--
958 ///      break;
959 ///
960 /// and add them to the ResultStmts vector.  If it is unsafe to do this
961 /// transformation (for example, one of the elided statements contains a label
962 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
963 /// should include statements after it (e.g. the printf() line is a substmt of
964 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
965 /// statement, then return CSFC_Success.
966 ///
967 /// If Case is non-null, then we are looking for the specified case, checking
968 /// that nothing we jump over contains labels.  If Case is null, then we found
969 /// the case and are looking for the break.
970 ///
971 /// If the recursive walk actually finds our Case, then we set FoundCase to
972 /// true.
973 ///
974 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
975 static CSFC_Result CollectStatementsForCase(const Stmt *S,
976                                             const SwitchCase *Case,
977                                             bool &FoundCase,
978                               SmallVectorImpl<const Stmt*> &ResultStmts) {
979   // If this is a null statement, just succeed.
980   if (S == 0)
981     return Case ? CSFC_Success : CSFC_FallThrough;
982 
983   // If this is the switchcase (case 4: or default) that we're looking for, then
984   // we're in business.  Just add the substatement.
985   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
986     if (S == Case) {
987       FoundCase = true;
988       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
989                                       ResultStmts);
990     }
991 
992     // Otherwise, this is some other case or default statement, just ignore it.
993     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
994                                     ResultStmts);
995   }
996 
997   // If we are in the live part of the code and we found our break statement,
998   // return a success!
999   if (Case == 0 && isa<BreakStmt>(S))
1000     return CSFC_Success;
1001 
1002   // If this is a switch statement, then it might contain the SwitchCase, the
1003   // break, or neither.
1004   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1005     // Handle this as two cases: we might be looking for the SwitchCase (if so
1006     // the skipped statements must be skippable) or we might already have it.
1007     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1008     if (Case) {
1009       // Keep track of whether we see a skipped declaration.  The code could be
1010       // using the declaration even if it is skipped, so we can't optimize out
1011       // the decl if the kept statements might refer to it.
1012       bool HadSkippedDecl = false;
1013 
1014       // If we're looking for the case, just see if we can skip each of the
1015       // substatements.
1016       for (; Case && I != E; ++I) {
1017         HadSkippedDecl |= isa<DeclStmt>(*I);
1018 
1019         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1020         case CSFC_Failure: return CSFC_Failure;
1021         case CSFC_Success:
1022           // A successful result means that either 1) that the statement doesn't
1023           // have the case and is skippable, or 2) does contain the case value
1024           // and also contains the break to exit the switch.  In the later case,
1025           // we just verify the rest of the statements are elidable.
1026           if (FoundCase) {
1027             // If we found the case and skipped declarations, we can't do the
1028             // optimization.
1029             if (HadSkippedDecl)
1030               return CSFC_Failure;
1031 
1032             for (++I; I != E; ++I)
1033               if (CodeGenFunction::ContainsLabel(*I, true))
1034                 return CSFC_Failure;
1035             return CSFC_Success;
1036           }
1037           break;
1038         case CSFC_FallThrough:
1039           // If we have a fallthrough condition, then we must have found the
1040           // case started to include statements.  Consider the rest of the
1041           // statements in the compound statement as candidates for inclusion.
1042           assert(FoundCase && "Didn't find case but returned fallthrough?");
1043           // We recursively found Case, so we're not looking for it anymore.
1044           Case = 0;
1045 
1046           // If we found the case and skipped declarations, we can't do the
1047           // optimization.
1048           if (HadSkippedDecl)
1049             return CSFC_Failure;
1050           break;
1051         }
1052       }
1053     }
1054 
1055     // If we have statements in our range, then we know that the statements are
1056     // live and need to be added to the set of statements we're tracking.
1057     for (; I != E; ++I) {
1058       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1059       case CSFC_Failure: return CSFC_Failure;
1060       case CSFC_FallThrough:
1061         // A fallthrough result means that the statement was simple and just
1062         // included in ResultStmt, keep adding them afterwards.
1063         break;
1064       case CSFC_Success:
1065         // A successful result means that we found the break statement and
1066         // stopped statement inclusion.  We just ensure that any leftover stmts
1067         // are skippable and return success ourselves.
1068         for (++I; I != E; ++I)
1069           if (CodeGenFunction::ContainsLabel(*I, true))
1070             return CSFC_Failure;
1071         return CSFC_Success;
1072       }
1073     }
1074 
1075     return Case ? CSFC_Success : CSFC_FallThrough;
1076   }
1077 
1078   // Okay, this is some other statement that we don't handle explicitly, like a
1079   // for statement or increment etc.  If we are skipping over this statement,
1080   // just verify it doesn't have labels, which would make it invalid to elide.
1081   if (Case) {
1082     if (CodeGenFunction::ContainsLabel(S, true))
1083       return CSFC_Failure;
1084     return CSFC_Success;
1085   }
1086 
1087   // Otherwise, we want to include this statement.  Everything is cool with that
1088   // so long as it doesn't contain a break out of the switch we're in.
1089   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1090 
1091   // Otherwise, everything is great.  Include the statement and tell the caller
1092   // that we fall through and include the next statement as well.
1093   ResultStmts.push_back(S);
1094   return CSFC_FallThrough;
1095 }
1096 
1097 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1098 /// then invoke CollectStatementsForCase to find the list of statements to emit
1099 /// for a switch on constant.  See the comment above CollectStatementsForCase
1100 /// for more details.
1101 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1102                                        const llvm::APInt &ConstantCondValue,
1103                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1104                                        ASTContext &C) {
1105   // First step, find the switch case that is being branched to.  We can do this
1106   // efficiently by scanning the SwitchCase list.
1107   const SwitchCase *Case = S.getSwitchCaseList();
1108   const DefaultStmt *DefaultCase = 0;
1109 
1110   for (; Case; Case = Case->getNextSwitchCase()) {
1111     // It's either a default or case.  Just remember the default statement in
1112     // case we're not jumping to any numbered cases.
1113     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1114       DefaultCase = DS;
1115       continue;
1116     }
1117 
1118     // Check to see if this case is the one we're looking for.
1119     const CaseStmt *CS = cast<CaseStmt>(Case);
1120     // Don't handle case ranges yet.
1121     if (CS->getRHS()) return false;
1122 
1123     // If we found our case, remember it as 'case'.
1124     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1125       break;
1126   }
1127 
1128   // If we didn't find a matching case, we use a default if it exists, or we
1129   // elide the whole switch body!
1130   if (Case == 0) {
1131     // It is safe to elide the body of the switch if it doesn't contain labels
1132     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1133     if (DefaultCase == 0)
1134       return !CodeGenFunction::ContainsLabel(&S);
1135     Case = DefaultCase;
1136   }
1137 
1138   // Ok, we know which case is being jumped to, try to collect all the
1139   // statements that follow it.  This can fail for a variety of reasons.  Also,
1140   // check to see that the recursive walk actually found our case statement.
1141   // Insane cases like this can fail to find it in the recursive walk since we
1142   // don't handle every stmt kind:
1143   // switch (4) {
1144   //   while (1) {
1145   //     case 4: ...
1146   bool FoundCase = false;
1147   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1148                                   ResultStmts) != CSFC_Failure &&
1149          FoundCase;
1150 }
1151 
1152 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1153   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1154 
1155   RunCleanupsScope ConditionScope(*this);
1156 
1157   if (S.getConditionVariable())
1158     EmitAutoVarDecl(*S.getConditionVariable());
1159 
1160   // Handle nested switch statements.
1161   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1162   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1163 
1164   // See if we can constant fold the condition of the switch and therefore only
1165   // emit the live case statement (if any) of the switch.
1166   llvm::APInt ConstantCondValue;
1167   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1168     SmallVector<const Stmt*, 4> CaseStmts;
1169     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1170                                    getContext())) {
1171       RunCleanupsScope ExecutedScope(*this);
1172 
1173       // At this point, we are no longer "within" a switch instance, so
1174       // we can temporarily enforce this to ensure that any embedded case
1175       // statements are not emitted.
1176       SwitchInsn = 0;
1177 
1178       // Okay, we can dead code eliminate everything except this case.  Emit the
1179       // specified series of statements and we're good.
1180       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1181         EmitStmt(CaseStmts[i]);
1182 
1183       // Now we want to restore the saved switch instance so that nested switches
1184       // continue to function properly
1185       SwitchInsn = SavedSwitchInsn;
1186 
1187       return;
1188     }
1189   }
1190 
1191   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1192 
1193   // Create basic block to hold stuff that comes after switch
1194   // statement. We also need to create a default block now so that
1195   // explicit case ranges tests can have a place to jump to on
1196   // failure.
1197   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1198   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1199   CaseRangeBlock = DefaultBlock;
1200 
1201   // Clear the insertion point to indicate we are in unreachable code.
1202   Builder.ClearInsertionPoint();
1203 
1204   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1205   // then reuse last ContinueBlock.
1206   JumpDest OuterContinue;
1207   if (!BreakContinueStack.empty())
1208     OuterContinue = BreakContinueStack.back().ContinueBlock;
1209 
1210   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1211 
1212   // Emit switch body.
1213   EmitStmt(S.getBody());
1214 
1215   BreakContinueStack.pop_back();
1216 
1217   // Update the default block in case explicit case range tests have
1218   // been chained on top.
1219   SwitchInsn->setDefaultDest(CaseRangeBlock);
1220 
1221   // If a default was never emitted:
1222   if (!DefaultBlock->getParent()) {
1223     // If we have cleanups, emit the default block so that there's a
1224     // place to jump through the cleanups from.
1225     if (ConditionScope.requiresCleanups()) {
1226       EmitBlock(DefaultBlock);
1227 
1228     // Otherwise, just forward the default block to the switch end.
1229     } else {
1230       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1231       delete DefaultBlock;
1232     }
1233   }
1234 
1235   ConditionScope.ForceCleanup();
1236 
1237   // Emit continuation.
1238   EmitBlock(SwitchExit.getBlock(), true);
1239 
1240   SwitchInsn = SavedSwitchInsn;
1241   CaseRangeBlock = SavedCRBlock;
1242 }
1243 
1244 static std::string
1245 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1246                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1247   std::string Result;
1248 
1249   while (*Constraint) {
1250     switch (*Constraint) {
1251     default:
1252       Result += Target.convertConstraint(Constraint);
1253       break;
1254     // Ignore these
1255     case '*':
1256     case '?':
1257     case '!':
1258     case '=': // Will see this and the following in mult-alt constraints.
1259     case '+':
1260       break;
1261     case ',':
1262       Result += "|";
1263       break;
1264     case 'g':
1265       Result += "imr";
1266       break;
1267     case '[': {
1268       assert(OutCons &&
1269              "Must pass output names to constraints with a symbolic name");
1270       unsigned Index;
1271       bool result = Target.resolveSymbolicName(Constraint,
1272                                                &(*OutCons)[0],
1273                                                OutCons->size(), Index);
1274       assert(result && "Could not resolve symbolic name"); (void)result;
1275       Result += llvm::utostr(Index);
1276       break;
1277     }
1278     }
1279 
1280     Constraint++;
1281   }
1282 
1283   return Result;
1284 }
1285 
1286 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1287 /// as using a particular register add that as a constraint that will be used
1288 /// in this asm stmt.
1289 static std::string
1290 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1291                        const TargetInfo &Target, CodeGenModule &CGM,
1292                        const AsmStmt &Stmt) {
1293   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1294   if (!AsmDeclRef)
1295     return Constraint;
1296   const ValueDecl &Value = *AsmDeclRef->getDecl();
1297   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1298   if (!Variable)
1299     return Constraint;
1300   if (Variable->getStorageClass() != SC_Register)
1301     return Constraint;
1302   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1303   if (!Attr)
1304     return Constraint;
1305   StringRef Register = Attr->getLabel();
1306   assert(Target.isValidGCCRegisterName(Register));
1307   // We're using validateOutputConstraint here because we only care if
1308   // this is a register constraint.
1309   TargetInfo::ConstraintInfo Info(Constraint, "");
1310   if (Target.validateOutputConstraint(Info) &&
1311       !Info.allowsRegister()) {
1312     CGM.ErrorUnsupported(&Stmt, "__asm__");
1313     return Constraint;
1314   }
1315   // Canonicalize the register here before returning it.
1316   Register = Target.getNormalizedGCCRegisterName(Register);
1317   return "{" + Register.str() + "}";
1318 }
1319 
1320 llvm::Value*
1321 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1322                                     const TargetInfo::ConstraintInfo &Info,
1323                                     LValue InputValue, QualType InputType,
1324                                     std::string &ConstraintStr) {
1325   llvm::Value *Arg;
1326   if (Info.allowsRegister() || !Info.allowsMemory()) {
1327     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1328       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1329     } else {
1330       llvm::Type *Ty = ConvertType(InputType);
1331       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1332       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1333         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1334         Ty = llvm::PointerType::getUnqual(Ty);
1335 
1336         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1337                                                        Ty));
1338       } else {
1339         Arg = InputValue.getAddress();
1340         ConstraintStr += '*';
1341       }
1342     }
1343   } else {
1344     Arg = InputValue.getAddress();
1345     ConstraintStr += '*';
1346   }
1347 
1348   return Arg;
1349 }
1350 
1351 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1352                                          const TargetInfo::ConstraintInfo &Info,
1353                                            const Expr *InputExpr,
1354                                            std::string &ConstraintStr) {
1355   if (Info.allowsRegister() || !Info.allowsMemory())
1356     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1357       return EmitScalarExpr(InputExpr);
1358 
1359   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1360   LValue Dest = EmitLValue(InputExpr);
1361   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1362 }
1363 
1364 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1365 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1366 /// integers which are the source locations of the start of each line in the
1367 /// asm.
1368 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1369                                       CodeGenFunction &CGF) {
1370   SmallVector<llvm::Value *, 8> Locs;
1371   // Add the location of the first line to the MDNode.
1372   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1373                                         Str->getLocStart().getRawEncoding()));
1374   StringRef StrVal = Str->getString();
1375   if (!StrVal.empty()) {
1376     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1377     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1378 
1379     // Add the location of the start of each subsequent line of the asm to the
1380     // MDNode.
1381     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1382       if (StrVal[i] != '\n') continue;
1383       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1384                                                       CGF.Target);
1385       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1386                                             LineLoc.getRawEncoding()));
1387     }
1388   }
1389 
1390   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1391 }
1392 
1393 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1394   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1395   // has already done this, so it is guaranteed to be successful.
1396   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1397   unsigned DiagOffs;
1398   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1399 
1400   // Assemble the pieces into the final asm string.
1401   std::string AsmString;
1402   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1403     if (Pieces[i].isString())
1404       AsmString += Pieces[i].getString();
1405     else if (Pieces[i].getModifier() == '\0')
1406       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1407     else
1408       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1409                    Pieces[i].getModifier() + '}';
1410   }
1411 
1412   // Get all the output and input constraints together.
1413   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1414   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1415 
1416   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1417     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1418                                     S.getOutputName(i));
1419     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1420     assert(IsValid && "Failed to parse output constraint");
1421     OutputConstraintInfos.push_back(Info);
1422   }
1423 
1424   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1425     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1426                                     S.getInputName(i));
1427     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1428                                                   S.getNumOutputs(), Info);
1429     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1430     InputConstraintInfos.push_back(Info);
1431   }
1432 
1433   std::string Constraints;
1434 
1435   std::vector<LValue> ResultRegDests;
1436   std::vector<QualType> ResultRegQualTys;
1437   std::vector<llvm::Type *> ResultRegTypes;
1438   std::vector<llvm::Type *> ResultTruncRegTypes;
1439   std::vector<llvm::Type*> ArgTypes;
1440   std::vector<llvm::Value*> Args;
1441 
1442   // Keep track of inout constraints.
1443   std::string InOutConstraints;
1444   std::vector<llvm::Value*> InOutArgs;
1445   std::vector<llvm::Type*> InOutArgTypes;
1446 
1447   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1448     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1449 
1450     // Simplify the output constraint.
1451     std::string OutputConstraint(S.getOutputConstraint(i));
1452     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1453 
1454     const Expr *OutExpr = S.getOutputExpr(i);
1455     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1456 
1457     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1458                                               Target, CGM, S);
1459 
1460     LValue Dest = EmitLValue(OutExpr);
1461     if (!Constraints.empty())
1462       Constraints += ',';
1463 
1464     // If this is a register output, then make the inline asm return it
1465     // by-value.  If this is a memory result, return the value by-reference.
1466     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1467       Constraints += "=" + OutputConstraint;
1468       ResultRegQualTys.push_back(OutExpr->getType());
1469       ResultRegDests.push_back(Dest);
1470       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1471       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1472 
1473       // If this output is tied to an input, and if the input is larger, then
1474       // we need to set the actual result type of the inline asm node to be the
1475       // same as the input type.
1476       if (Info.hasMatchingInput()) {
1477         unsigned InputNo;
1478         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1479           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1480           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1481             break;
1482         }
1483         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1484 
1485         QualType InputTy = S.getInputExpr(InputNo)->getType();
1486         QualType OutputType = OutExpr->getType();
1487 
1488         uint64_t InputSize = getContext().getTypeSize(InputTy);
1489         if (getContext().getTypeSize(OutputType) < InputSize) {
1490           // Form the asm to return the value as a larger integer or fp type.
1491           ResultRegTypes.back() = ConvertType(InputTy);
1492         }
1493       }
1494       if (llvm::Type* AdjTy =
1495             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1496                                                  ResultRegTypes.back()))
1497         ResultRegTypes.back() = AdjTy;
1498     } else {
1499       ArgTypes.push_back(Dest.getAddress()->getType());
1500       Args.push_back(Dest.getAddress());
1501       Constraints += "=*";
1502       Constraints += OutputConstraint;
1503     }
1504 
1505     if (Info.isReadWrite()) {
1506       InOutConstraints += ',';
1507 
1508       const Expr *InputExpr = S.getOutputExpr(i);
1509       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1510                                             InOutConstraints);
1511 
1512       if (llvm::Type* AdjTy =
1513             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1514                                                  Arg->getType()))
1515         Arg = Builder.CreateBitCast(Arg, AdjTy);
1516 
1517       if (Info.allowsRegister())
1518         InOutConstraints += llvm::utostr(i);
1519       else
1520         InOutConstraints += OutputConstraint;
1521 
1522       InOutArgTypes.push_back(Arg->getType());
1523       InOutArgs.push_back(Arg);
1524     }
1525   }
1526 
1527   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1528 
1529   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1530     const Expr *InputExpr = S.getInputExpr(i);
1531 
1532     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1533 
1534     if (!Constraints.empty())
1535       Constraints += ',';
1536 
1537     // Simplify the input constraint.
1538     std::string InputConstraint(S.getInputConstraint(i));
1539     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1540                                          &OutputConstraintInfos);
1541 
1542     InputConstraint =
1543       AddVariableConstraints(InputConstraint,
1544                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1545                             Target, CGM, S);
1546 
1547     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1548 
1549     // If this input argument is tied to a larger output result, extend the
1550     // input to be the same size as the output.  The LLVM backend wants to see
1551     // the input and output of a matching constraint be the same size.  Note
1552     // that GCC does not define what the top bits are here.  We use zext because
1553     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1554     if (Info.hasTiedOperand()) {
1555       unsigned Output = Info.getTiedOperand();
1556       QualType OutputType = S.getOutputExpr(Output)->getType();
1557       QualType InputTy = InputExpr->getType();
1558 
1559       if (getContext().getTypeSize(OutputType) >
1560           getContext().getTypeSize(InputTy)) {
1561         // Use ptrtoint as appropriate so that we can do our extension.
1562         if (isa<llvm::PointerType>(Arg->getType()))
1563           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1564         llvm::Type *OutputTy = ConvertType(OutputType);
1565         if (isa<llvm::IntegerType>(OutputTy))
1566           Arg = Builder.CreateZExt(Arg, OutputTy);
1567         else if (isa<llvm::PointerType>(OutputTy))
1568           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1569         else {
1570           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1571           Arg = Builder.CreateFPExt(Arg, OutputTy);
1572         }
1573       }
1574     }
1575     if (llvm::Type* AdjTy =
1576               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1577                                                    Arg->getType()))
1578       Arg = Builder.CreateBitCast(Arg, AdjTy);
1579 
1580     ArgTypes.push_back(Arg->getType());
1581     Args.push_back(Arg);
1582     Constraints += InputConstraint;
1583   }
1584 
1585   // Append the "input" part of inout constraints last.
1586   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1587     ArgTypes.push_back(InOutArgTypes[i]);
1588     Args.push_back(InOutArgs[i]);
1589   }
1590   Constraints += InOutConstraints;
1591 
1592   // Clobbers
1593   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1594     StringRef Clobber = S.getClobber(i)->getString();
1595 
1596     if (Clobber != "memory" && Clobber != "cc")
1597     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1598 
1599     if (i != 0 || NumConstraints != 0)
1600       Constraints += ',';
1601 
1602     Constraints += "~{";
1603     Constraints += Clobber;
1604     Constraints += '}';
1605   }
1606 
1607   // Add machine specific clobbers
1608   std::string MachineClobbers = Target.getClobbers();
1609   if (!MachineClobbers.empty()) {
1610     if (!Constraints.empty())
1611       Constraints += ',';
1612     Constraints += MachineClobbers;
1613   }
1614 
1615   llvm::Type *ResultType;
1616   if (ResultRegTypes.empty())
1617     ResultType = VoidTy;
1618   else if (ResultRegTypes.size() == 1)
1619     ResultType = ResultRegTypes[0];
1620   else
1621     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1622 
1623   llvm::FunctionType *FTy =
1624     llvm::FunctionType::get(ResultType, ArgTypes, false);
1625 
1626   llvm::InlineAsm *IA =
1627     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1628                          S.isVolatile() || S.getNumOutputs() == 0);
1629   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1630   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1631 
1632   // Slap the source location of the inline asm into a !srcloc metadata on the
1633   // call.
1634   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1635 
1636   // Extract all of the register value results from the asm.
1637   std::vector<llvm::Value*> RegResults;
1638   if (ResultRegTypes.size() == 1) {
1639     RegResults.push_back(Result);
1640   } else {
1641     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1642       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1643       RegResults.push_back(Tmp);
1644     }
1645   }
1646 
1647   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1648     llvm::Value *Tmp = RegResults[i];
1649 
1650     // If the result type of the LLVM IR asm doesn't match the result type of
1651     // the expression, do the conversion.
1652     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1653       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1654 
1655       // Truncate the integer result to the right size, note that TruncTy can be
1656       // a pointer.
1657       if (TruncTy->isFloatingPointTy())
1658         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1659       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1660         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1661         Tmp = Builder.CreateTrunc(Tmp,
1662                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1663         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1664       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1665         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1666         Tmp = Builder.CreatePtrToInt(Tmp,
1667                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1668         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1669       } else if (TruncTy->isIntegerTy()) {
1670         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1671       } else if (TruncTy->isVectorTy()) {
1672         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1673       }
1674     }
1675 
1676     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1677   }
1678 }
1679