1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Assumptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===----------------------------------------------------------------------===// 40 // Statement Emission 41 //===----------------------------------------------------------------------===// 42 43 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 44 if (CGDebugInfo *DI = getDebugInfo()) { 45 SourceLocation Loc; 46 Loc = S->getBeginLoc(); 47 DI->EmitLocation(Builder, Loc); 48 49 LastStopPoint = Loc; 50 } 51 } 52 53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 54 assert(S && "Null statement?"); 55 PGO.setCurrentStmt(S); 56 57 // These statements have their own debug info handling. 58 if (EmitSimpleStmt(S, Attrs)) 59 return; 60 61 // Check if we are generating unreachable code. 62 if (!HaveInsertPoint()) { 63 // If so, and the statement doesn't contain a label, then we do not need to 64 // generate actual code. This is safe because (1) the current point is 65 // unreachable, so we don't need to execute the code, and (2) we've already 66 // handled the statements which update internal data structures (like the 67 // local variable map) which could be used by subsequent statements. 68 if (!ContainsLabel(S)) { 69 // Verify that any decl statements were handled as simple, they may be in 70 // scope of subsequent reachable statements. 71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 72 return; 73 } 74 75 // Otherwise, make a new block to hold the code. 76 EnsureInsertPoint(); 77 } 78 79 // Generate a stoppoint if we are emitting debug info. 80 EmitStopPoint(S); 81 82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 83 // enabled. 84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 86 EmitSimpleOMPExecutableDirective(*D); 87 return; 88 } 89 } 90 91 switch (S->getStmtClass()) { 92 case Stmt::NoStmtClass: 93 case Stmt::CXXCatchStmtClass: 94 case Stmt::SEHExceptStmtClass: 95 case Stmt::SEHFinallyStmtClass: 96 case Stmt::MSDependentExistsStmtClass: 97 llvm_unreachable("invalid statement class to emit generically"); 98 case Stmt::NullStmtClass: 99 case Stmt::CompoundStmtClass: 100 case Stmt::DeclStmtClass: 101 case Stmt::LabelStmtClass: 102 case Stmt::AttributedStmtClass: 103 case Stmt::GotoStmtClass: 104 case Stmt::BreakStmtClass: 105 case Stmt::ContinueStmtClass: 106 case Stmt::DefaultStmtClass: 107 case Stmt::CaseStmtClass: 108 case Stmt::SEHLeaveStmtClass: 109 llvm_unreachable("should have emitted these statements as simple"); 110 111 #define STMT(Type, Base) 112 #define ABSTRACT_STMT(Op) 113 #define EXPR(Type, Base) \ 114 case Stmt::Type##Class: 115 #include "clang/AST/StmtNodes.inc" 116 { 117 // Remember the block we came in on. 118 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 119 assert(incoming && "expression emission must have an insertion point"); 120 121 EmitIgnoredExpr(cast<Expr>(S)); 122 123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 124 assert(outgoing && "expression emission cleared block!"); 125 126 // The expression emitters assume (reasonably!) that the insertion 127 // point is always set. To maintain that, the call-emission code 128 // for noreturn functions has to enter a new block with no 129 // predecessors. We want to kill that block and mark the current 130 // insertion point unreachable in the common case of a call like 131 // "exit();". Since expression emission doesn't otherwise create 132 // blocks with no predecessors, we can just test for that. 133 // However, we must be careful not to do this to our incoming 134 // block, because *statement* emission does sometimes create 135 // reachable blocks which will have no predecessors until later in 136 // the function. This occurs with, e.g., labels that are not 137 // reachable by fallthrough. 138 if (incoming != outgoing && outgoing->use_empty()) { 139 outgoing->eraseFromParent(); 140 Builder.ClearInsertionPoint(); 141 } 142 break; 143 } 144 145 case Stmt::IndirectGotoStmtClass: 146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 147 148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 152 153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 154 155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 156 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 158 case Stmt::CoroutineBodyStmtClass: 159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 160 break; 161 case Stmt::CoreturnStmtClass: 162 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 163 break; 164 case Stmt::CapturedStmtClass: { 165 const CapturedStmt *CS = cast<CapturedStmt>(S); 166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 167 } 168 break; 169 case Stmt::ObjCAtTryStmtClass: 170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 171 break; 172 case Stmt::ObjCAtCatchStmtClass: 173 llvm_unreachable( 174 "@catch statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtFinallyStmtClass: 176 llvm_unreachable( 177 "@finally statements should be handled by EmitObjCAtTryStmt"); 178 case Stmt::ObjCAtThrowStmtClass: 179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 180 break; 181 case Stmt::ObjCAtSynchronizedStmtClass: 182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 183 break; 184 case Stmt::ObjCForCollectionStmtClass: 185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 186 break; 187 case Stmt::ObjCAutoreleasePoolStmtClass: 188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 189 break; 190 191 case Stmt::CXXTryStmtClass: 192 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 193 break; 194 case Stmt::CXXForRangeStmtClass: 195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 196 break; 197 case Stmt::SEHTryStmtClass: 198 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 199 break; 200 case Stmt::OMPMetaDirectiveClass: 201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 202 break; 203 case Stmt::OMPCanonicalLoopClass: 204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 205 break; 206 case Stmt::OMPParallelDirectiveClass: 207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 208 break; 209 case Stmt::OMPSimdDirectiveClass: 210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 211 break; 212 case Stmt::OMPTileDirectiveClass: 213 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 214 break; 215 case Stmt::OMPUnrollDirectiveClass: 216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 217 break; 218 case Stmt::OMPForDirectiveClass: 219 EmitOMPForDirective(cast<OMPForDirective>(*S)); 220 break; 221 case Stmt::OMPForSimdDirectiveClass: 222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPSectionsDirectiveClass: 225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPSectionDirectiveClass: 228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 229 break; 230 case Stmt::OMPSingleDirectiveClass: 231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 232 break; 233 case Stmt::OMPMasterDirectiveClass: 234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 235 break; 236 case Stmt::OMPCriticalDirectiveClass: 237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 238 break; 239 case Stmt::OMPParallelForDirectiveClass: 240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 241 break; 242 case Stmt::OMPParallelForSimdDirectiveClass: 243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 244 break; 245 case Stmt::OMPParallelMasterDirectiveClass: 246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 247 break; 248 case Stmt::OMPParallelSectionsDirectiveClass: 249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 250 break; 251 case Stmt::OMPTaskDirectiveClass: 252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 253 break; 254 case Stmt::OMPTaskyieldDirectiveClass: 255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 256 break; 257 case Stmt::OMPBarrierDirectiveClass: 258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 259 break; 260 case Stmt::OMPTaskwaitDirectiveClass: 261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 262 break; 263 case Stmt::OMPTaskgroupDirectiveClass: 264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 265 break; 266 case Stmt::OMPFlushDirectiveClass: 267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 268 break; 269 case Stmt::OMPDepobjDirectiveClass: 270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 271 break; 272 case Stmt::OMPScanDirectiveClass: 273 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 274 break; 275 case Stmt::OMPOrderedDirectiveClass: 276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 277 break; 278 case Stmt::OMPAtomicDirectiveClass: 279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDirectiveClass: 282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 283 break; 284 case Stmt::OMPTeamsDirectiveClass: 285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 286 break; 287 case Stmt::OMPCancellationPointDirectiveClass: 288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 289 break; 290 case Stmt::OMPCancelDirectiveClass: 291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetDataDirectiveClass: 294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 295 break; 296 case Stmt::OMPTargetEnterDataDirectiveClass: 297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 298 break; 299 case Stmt::OMPTargetExitDataDirectiveClass: 300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelDirectiveClass: 303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForDirectiveClass: 306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 307 break; 308 case Stmt::OMPTaskLoopDirectiveClass: 309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 310 break; 311 case Stmt::OMPTaskLoopSimdDirectiveClass: 312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPMasterTaskLoopDirectiveClass: 315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 316 break; 317 case Stmt::OMPMaskedTaskLoopDirectiveClass: 318 llvm_unreachable("masked taskloop directive not supported yet."); 319 break; 320 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 321 EmitOMPMasterTaskLoopSimdDirective( 322 cast<OMPMasterTaskLoopSimdDirective>(*S)); 323 break; 324 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 325 EmitOMPParallelMasterTaskLoopDirective( 326 cast<OMPParallelMasterTaskLoopDirective>(*S)); 327 break; 328 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 329 EmitOMPParallelMasterTaskLoopSimdDirective( 330 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 331 break; 332 case Stmt::OMPDistributeDirectiveClass: 333 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 334 break; 335 case Stmt::OMPTargetUpdateDirectiveClass: 336 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 337 break; 338 case Stmt::OMPDistributeParallelForDirectiveClass: 339 EmitOMPDistributeParallelForDirective( 340 cast<OMPDistributeParallelForDirective>(*S)); 341 break; 342 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 343 EmitOMPDistributeParallelForSimdDirective( 344 cast<OMPDistributeParallelForSimdDirective>(*S)); 345 break; 346 case Stmt::OMPDistributeSimdDirectiveClass: 347 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 348 break; 349 case Stmt::OMPTargetParallelForSimdDirectiveClass: 350 EmitOMPTargetParallelForSimdDirective( 351 cast<OMPTargetParallelForSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTargetSimdDirectiveClass: 354 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 355 break; 356 case Stmt::OMPTeamsDistributeDirectiveClass: 357 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 358 break; 359 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 360 EmitOMPTeamsDistributeSimdDirective( 361 cast<OMPTeamsDistributeSimdDirective>(*S)); 362 break; 363 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 364 EmitOMPTeamsDistributeParallelForSimdDirective( 365 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 366 break; 367 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 368 EmitOMPTeamsDistributeParallelForDirective( 369 cast<OMPTeamsDistributeParallelForDirective>(*S)); 370 break; 371 case Stmt::OMPTargetTeamsDirectiveClass: 372 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 373 break; 374 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 375 EmitOMPTargetTeamsDistributeDirective( 376 cast<OMPTargetTeamsDistributeDirective>(*S)); 377 break; 378 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 379 EmitOMPTargetTeamsDistributeParallelForDirective( 380 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 381 break; 382 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 383 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 384 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 385 break; 386 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 387 EmitOMPTargetTeamsDistributeSimdDirective( 388 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 389 break; 390 case Stmt::OMPInteropDirectiveClass: 391 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S)); 392 break; 393 case Stmt::OMPDispatchDirectiveClass: 394 llvm_unreachable("Dispatch directive not supported yet."); 395 break; 396 case Stmt::OMPMaskedDirectiveClass: 397 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 398 break; 399 case Stmt::OMPGenericLoopDirectiveClass: 400 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S)); 401 break; 402 case Stmt::OMPTeamsGenericLoopDirectiveClass: 403 llvm_unreachable("teams loop directive not supported yet."); 404 break; 405 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 406 llvm_unreachable("target teams loop directive not supported yet."); 407 break; 408 case Stmt::OMPParallelGenericLoopDirectiveClass: 409 llvm_unreachable("parallel loop directive not supported yet."); 410 break; 411 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 412 llvm_unreachable("target parallel loop directive not supported yet."); 413 break; 414 case Stmt::OMPParallelMaskedDirectiveClass: 415 llvm_unreachable("parallel masked directive not supported yet."); 416 break; 417 } 418 } 419 420 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 421 ArrayRef<const Attr *> Attrs) { 422 switch (S->getStmtClass()) { 423 default: 424 return false; 425 case Stmt::NullStmtClass: 426 break; 427 case Stmt::CompoundStmtClass: 428 EmitCompoundStmt(cast<CompoundStmt>(*S)); 429 break; 430 case Stmt::DeclStmtClass: 431 EmitDeclStmt(cast<DeclStmt>(*S)); 432 break; 433 case Stmt::LabelStmtClass: 434 EmitLabelStmt(cast<LabelStmt>(*S)); 435 break; 436 case Stmt::AttributedStmtClass: 437 EmitAttributedStmt(cast<AttributedStmt>(*S)); 438 break; 439 case Stmt::GotoStmtClass: 440 EmitGotoStmt(cast<GotoStmt>(*S)); 441 break; 442 case Stmt::BreakStmtClass: 443 EmitBreakStmt(cast<BreakStmt>(*S)); 444 break; 445 case Stmt::ContinueStmtClass: 446 EmitContinueStmt(cast<ContinueStmt>(*S)); 447 break; 448 case Stmt::DefaultStmtClass: 449 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 450 break; 451 case Stmt::CaseStmtClass: 452 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 453 break; 454 case Stmt::SEHLeaveStmtClass: 455 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 456 break; 457 } 458 return true; 459 } 460 461 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 462 /// this captures the expression result of the last sub-statement and returns it 463 /// (for use by the statement expression extension). 464 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 465 AggValueSlot AggSlot) { 466 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 467 "LLVM IR generation of compound statement ('{}')"); 468 469 // Keep track of the current cleanup stack depth, including debug scopes. 470 LexicalScope Scope(*this, S.getSourceRange()); 471 472 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 473 } 474 475 Address 476 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 477 bool GetLast, 478 AggValueSlot AggSlot) { 479 480 const Stmt *ExprResult = S.getStmtExprResult(); 481 assert((!GetLast || (GetLast && ExprResult)) && 482 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 483 484 Address RetAlloca = Address::invalid(); 485 486 for (auto *CurStmt : S.body()) { 487 if (GetLast && ExprResult == CurStmt) { 488 // We have to special case labels here. They are statements, but when put 489 // at the end of a statement expression, they yield the value of their 490 // subexpression. Handle this by walking through all labels we encounter, 491 // emitting them before we evaluate the subexpr. 492 // Similar issues arise for attributed statements. 493 while (!isa<Expr>(ExprResult)) { 494 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 495 EmitLabel(LS->getDecl()); 496 ExprResult = LS->getSubStmt(); 497 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 498 // FIXME: Update this if we ever have attributes that affect the 499 // semantics of an expression. 500 ExprResult = AS->getSubStmt(); 501 } else { 502 llvm_unreachable("unknown value statement"); 503 } 504 } 505 506 EnsureInsertPoint(); 507 508 const Expr *E = cast<Expr>(ExprResult); 509 QualType ExprTy = E->getType(); 510 if (hasAggregateEvaluationKind(ExprTy)) { 511 EmitAggExpr(E, AggSlot); 512 } else { 513 // We can't return an RValue here because there might be cleanups at 514 // the end of the StmtExpr. Because of that, we have to emit the result 515 // here into a temporary alloca. 516 RetAlloca = CreateMemTemp(ExprTy); 517 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 518 /*IsInit*/ false); 519 } 520 } else { 521 EmitStmt(CurStmt); 522 } 523 } 524 525 return RetAlloca; 526 } 527 528 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 529 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 530 531 // If there is a cleanup stack, then we it isn't worth trying to 532 // simplify this block (we would need to remove it from the scope map 533 // and cleanup entry). 534 if (!EHStack.empty()) 535 return; 536 537 // Can only simplify direct branches. 538 if (!BI || !BI->isUnconditional()) 539 return; 540 541 // Can only simplify empty blocks. 542 if (BI->getIterator() != BB->begin()) 543 return; 544 545 BB->replaceAllUsesWith(BI->getSuccessor(0)); 546 BI->eraseFromParent(); 547 BB->eraseFromParent(); 548 } 549 550 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 551 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 552 553 // Fall out of the current block (if necessary). 554 EmitBranch(BB); 555 556 if (IsFinished && BB->use_empty()) { 557 delete BB; 558 return; 559 } 560 561 // Place the block after the current block, if possible, or else at 562 // the end of the function. 563 if (CurBB && CurBB->getParent()) 564 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 565 else 566 CurFn->getBasicBlockList().push_back(BB); 567 Builder.SetInsertPoint(BB); 568 } 569 570 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 571 // Emit a branch from the current block to the target one if this 572 // was a real block. If this was just a fall-through block after a 573 // terminator, don't emit it. 574 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 575 576 if (!CurBB || CurBB->getTerminator()) { 577 // If there is no insert point or the previous block is already 578 // terminated, don't touch it. 579 } else { 580 // Otherwise, create a fall-through branch. 581 Builder.CreateBr(Target); 582 } 583 584 Builder.ClearInsertionPoint(); 585 } 586 587 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 588 bool inserted = false; 589 for (llvm::User *u : block->users()) { 590 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 591 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 592 block); 593 inserted = true; 594 break; 595 } 596 } 597 598 if (!inserted) 599 CurFn->getBasicBlockList().push_back(block); 600 601 Builder.SetInsertPoint(block); 602 } 603 604 CodeGenFunction::JumpDest 605 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 606 JumpDest &Dest = LabelMap[D]; 607 if (Dest.isValid()) return Dest; 608 609 // Create, but don't insert, the new block. 610 Dest = JumpDest(createBasicBlock(D->getName()), 611 EHScopeStack::stable_iterator::invalid(), 612 NextCleanupDestIndex++); 613 return Dest; 614 } 615 616 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 617 // Add this label to the current lexical scope if we're within any 618 // normal cleanups. Jumps "in" to this label --- when permitted by 619 // the language --- may need to be routed around such cleanups. 620 if (EHStack.hasNormalCleanups() && CurLexicalScope) 621 CurLexicalScope->addLabel(D); 622 623 JumpDest &Dest = LabelMap[D]; 624 625 // If we didn't need a forward reference to this label, just go 626 // ahead and create a destination at the current scope. 627 if (!Dest.isValid()) { 628 Dest = getJumpDestInCurrentScope(D->getName()); 629 630 // Otherwise, we need to give this label a target depth and remove 631 // it from the branch-fixups list. 632 } else { 633 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 634 Dest.setScopeDepth(EHStack.stable_begin()); 635 ResolveBranchFixups(Dest.getBlock()); 636 } 637 638 EmitBlock(Dest.getBlock()); 639 640 // Emit debug info for labels. 641 if (CGDebugInfo *DI = getDebugInfo()) { 642 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 643 DI->setLocation(D->getLocation()); 644 DI->EmitLabel(D, Builder); 645 } 646 } 647 648 incrementProfileCounter(D->getStmt()); 649 } 650 651 /// Change the cleanup scope of the labels in this lexical scope to 652 /// match the scope of the enclosing context. 653 void CodeGenFunction::LexicalScope::rescopeLabels() { 654 assert(!Labels.empty()); 655 EHScopeStack::stable_iterator innermostScope 656 = CGF.EHStack.getInnermostNormalCleanup(); 657 658 // Change the scope depth of all the labels. 659 for (SmallVectorImpl<const LabelDecl*>::const_iterator 660 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 661 assert(CGF.LabelMap.count(*i)); 662 JumpDest &dest = CGF.LabelMap.find(*i)->second; 663 assert(dest.getScopeDepth().isValid()); 664 assert(innermostScope.encloses(dest.getScopeDepth())); 665 dest.setScopeDepth(innermostScope); 666 } 667 668 // Reparent the labels if the new scope also has cleanups. 669 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 670 ParentScope->Labels.append(Labels.begin(), Labels.end()); 671 } 672 } 673 674 675 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 676 EmitLabel(S.getDecl()); 677 678 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 679 if (getLangOpts().EHAsynch && S.isSideEntry()) 680 EmitSehCppScopeBegin(); 681 682 EmitStmt(S.getSubStmt()); 683 } 684 685 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 686 bool nomerge = false; 687 bool noinline = false; 688 bool alwaysinline = false; 689 const CallExpr *musttail = nullptr; 690 691 for (const auto *A : S.getAttrs()) { 692 switch (A->getKind()) { 693 default: 694 break; 695 case attr::NoMerge: 696 nomerge = true; 697 break; 698 case attr::NoInline: 699 noinline = true; 700 break; 701 case attr::AlwaysInline: 702 alwaysinline = true; 703 break; 704 case attr::MustTail: 705 const Stmt *Sub = S.getSubStmt(); 706 const ReturnStmt *R = cast<ReturnStmt>(Sub); 707 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 708 break; 709 } 710 } 711 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 712 SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline); 713 SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt, 714 alwaysinline); 715 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 716 EmitStmt(S.getSubStmt(), S.getAttrs()); 717 } 718 719 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 720 // If this code is reachable then emit a stop point (if generating 721 // debug info). We have to do this ourselves because we are on the 722 // "simple" statement path. 723 if (HaveInsertPoint()) 724 EmitStopPoint(&S); 725 726 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 727 } 728 729 730 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 731 if (const LabelDecl *Target = S.getConstantTarget()) { 732 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 733 return; 734 } 735 736 // Ensure that we have an i8* for our PHI node. 737 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 738 Int8PtrTy, "addr"); 739 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 740 741 // Get the basic block for the indirect goto. 742 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 743 744 // The first instruction in the block has to be the PHI for the switch dest, 745 // add an entry for this branch. 746 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 747 748 EmitBranch(IndGotoBB); 749 } 750 751 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 752 // The else branch of a consteval if statement is always the only branch that 753 // can be runtime evaluated. 754 if (S.isConsteval()) { 755 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); 756 if (Executed) { 757 RunCleanupsScope ExecutedScope(*this); 758 EmitStmt(Executed); 759 } 760 return; 761 } 762 763 // C99 6.8.4.1: The first substatement is executed if the expression compares 764 // unequal to 0. The condition must be a scalar type. 765 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 766 767 if (S.getInit()) 768 EmitStmt(S.getInit()); 769 770 if (S.getConditionVariable()) 771 EmitDecl(*S.getConditionVariable()); 772 773 // If the condition constant folds and can be elided, try to avoid emitting 774 // the condition and the dead arm of the if/else. 775 bool CondConstant; 776 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 777 S.isConstexpr())) { 778 // Figure out which block (then or else) is executed. 779 const Stmt *Executed = S.getThen(); 780 const Stmt *Skipped = S.getElse(); 781 if (!CondConstant) // Condition false? 782 std::swap(Executed, Skipped); 783 784 // If the skipped block has no labels in it, just emit the executed block. 785 // This avoids emitting dead code and simplifies the CFG substantially. 786 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 787 if (CondConstant) 788 incrementProfileCounter(&S); 789 if (Executed) { 790 RunCleanupsScope ExecutedScope(*this); 791 EmitStmt(Executed); 792 } 793 return; 794 } 795 } 796 797 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 798 // the conditional branch. 799 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 800 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 801 llvm::BasicBlock *ElseBlock = ContBlock; 802 if (S.getElse()) 803 ElseBlock = createBasicBlock("if.else"); 804 805 // Prefer the PGO based weights over the likelihood attribute. 806 // When the build isn't optimized the metadata isn't used, so don't generate 807 // it. 808 Stmt::Likelihood LH = Stmt::LH_None; 809 uint64_t Count = getProfileCount(S.getThen()); 810 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 811 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 812 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 813 814 // Emit the 'then' code. 815 EmitBlock(ThenBlock); 816 incrementProfileCounter(&S); 817 { 818 RunCleanupsScope ThenScope(*this); 819 EmitStmt(S.getThen()); 820 } 821 EmitBranch(ContBlock); 822 823 // Emit the 'else' code if present. 824 if (const Stmt *Else = S.getElse()) { 825 { 826 // There is no need to emit line number for an unconditional branch. 827 auto NL = ApplyDebugLocation::CreateEmpty(*this); 828 EmitBlock(ElseBlock); 829 } 830 { 831 RunCleanupsScope ElseScope(*this); 832 EmitStmt(Else); 833 } 834 { 835 // There is no need to emit line number for an unconditional branch. 836 auto NL = ApplyDebugLocation::CreateEmpty(*this); 837 EmitBranch(ContBlock); 838 } 839 } 840 841 // Emit the continuation block for code after the if. 842 EmitBlock(ContBlock, true); 843 } 844 845 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 846 ArrayRef<const Attr *> WhileAttrs) { 847 // Emit the header for the loop, which will also become 848 // the continue target. 849 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 850 EmitBlock(LoopHeader.getBlock()); 851 852 // Create an exit block for when the condition fails, which will 853 // also become the break target. 854 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 855 856 // Store the blocks to use for break and continue. 857 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 858 859 // C++ [stmt.while]p2: 860 // When the condition of a while statement is a declaration, the 861 // scope of the variable that is declared extends from its point 862 // of declaration (3.3.2) to the end of the while statement. 863 // [...] 864 // The object created in a condition is destroyed and created 865 // with each iteration of the loop. 866 RunCleanupsScope ConditionScope(*this); 867 868 if (S.getConditionVariable()) 869 EmitDecl(*S.getConditionVariable()); 870 871 // Evaluate the conditional in the while header. C99 6.8.5.1: The 872 // evaluation of the controlling expression takes place before each 873 // execution of the loop body. 874 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 875 876 // while(1) is common, avoid extra exit blocks. Be sure 877 // to correctly handle break/continue though. 878 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 879 bool CondIsConstInt = C != nullptr; 880 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 881 const SourceRange &R = S.getSourceRange(); 882 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 883 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 884 SourceLocToDebugLoc(R.getEnd()), 885 checkIfLoopMustProgress(CondIsConstInt)); 886 887 // As long as the condition is true, go to the loop body. 888 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 889 if (EmitBoolCondBranch) { 890 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 891 if (ConditionScope.requiresCleanups()) 892 ExitBlock = createBasicBlock("while.exit"); 893 llvm::MDNode *Weights = 894 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 895 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 896 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 897 BoolCondVal, Stmt::getLikelihood(S.getBody())); 898 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 899 900 if (ExitBlock != LoopExit.getBlock()) { 901 EmitBlock(ExitBlock); 902 EmitBranchThroughCleanup(LoopExit); 903 } 904 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 905 CGM.getDiags().Report(A->getLocation(), 906 diag::warn_attribute_has_no_effect_on_infinite_loop) 907 << A << A->getRange(); 908 CGM.getDiags().Report( 909 S.getWhileLoc(), 910 diag::note_attribute_has_no_effect_on_infinite_loop_here) 911 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 912 } 913 914 // Emit the loop body. We have to emit this in a cleanup scope 915 // because it might be a singleton DeclStmt. 916 { 917 RunCleanupsScope BodyScope(*this); 918 EmitBlock(LoopBody); 919 incrementProfileCounter(&S); 920 EmitStmt(S.getBody()); 921 } 922 923 BreakContinueStack.pop_back(); 924 925 // Immediately force cleanup. 926 ConditionScope.ForceCleanup(); 927 928 EmitStopPoint(&S); 929 // Branch to the loop header again. 930 EmitBranch(LoopHeader.getBlock()); 931 932 LoopStack.pop(); 933 934 // Emit the exit block. 935 EmitBlock(LoopExit.getBlock(), true); 936 937 // The LoopHeader typically is just a branch if we skipped emitting 938 // a branch, try to erase it. 939 if (!EmitBoolCondBranch) 940 SimplifyForwardingBlocks(LoopHeader.getBlock()); 941 } 942 943 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 944 ArrayRef<const Attr *> DoAttrs) { 945 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 946 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 947 948 uint64_t ParentCount = getCurrentProfileCount(); 949 950 // Store the blocks to use for break and continue. 951 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 952 953 // Emit the body of the loop. 954 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 955 956 EmitBlockWithFallThrough(LoopBody, &S); 957 { 958 RunCleanupsScope BodyScope(*this); 959 EmitStmt(S.getBody()); 960 } 961 962 EmitBlock(LoopCond.getBlock()); 963 964 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 965 // after each execution of the loop body." 966 967 // Evaluate the conditional in the while header. 968 // C99 6.8.5p2/p4: The first substatement is executed if the expression 969 // compares unequal to 0. The condition must be a scalar type. 970 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 971 972 BreakContinueStack.pop_back(); 973 974 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 975 // to correctly handle break/continue though. 976 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 977 bool CondIsConstInt = C; 978 bool EmitBoolCondBranch = !C || !C->isZero(); 979 980 const SourceRange &R = S.getSourceRange(); 981 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 982 SourceLocToDebugLoc(R.getBegin()), 983 SourceLocToDebugLoc(R.getEnd()), 984 checkIfLoopMustProgress(CondIsConstInt)); 985 986 // As long as the condition is true, iterate the loop. 987 if (EmitBoolCondBranch) { 988 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 989 Builder.CreateCondBr( 990 BoolCondVal, LoopBody, LoopExit.getBlock(), 991 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 992 } 993 994 LoopStack.pop(); 995 996 // Emit the exit block. 997 EmitBlock(LoopExit.getBlock()); 998 999 // The DoCond block typically is just a branch if we skipped 1000 // emitting a branch, try to erase it. 1001 if (!EmitBoolCondBranch) 1002 SimplifyForwardingBlocks(LoopCond.getBlock()); 1003 } 1004 1005 void CodeGenFunction::EmitForStmt(const ForStmt &S, 1006 ArrayRef<const Attr *> ForAttrs) { 1007 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1008 1009 LexicalScope ForScope(*this, S.getSourceRange()); 1010 1011 // Evaluate the first part before the loop. 1012 if (S.getInit()) 1013 EmitStmt(S.getInit()); 1014 1015 // Start the loop with a block that tests the condition. 1016 // If there's an increment, the continue scope will be overwritten 1017 // later. 1018 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 1019 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 1020 EmitBlock(CondBlock); 1021 1022 Expr::EvalResult Result; 1023 bool CondIsConstInt = 1024 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 1025 1026 const SourceRange &R = S.getSourceRange(); 1027 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1028 SourceLocToDebugLoc(R.getBegin()), 1029 SourceLocToDebugLoc(R.getEnd()), 1030 checkIfLoopMustProgress(CondIsConstInt)); 1031 1032 // Create a cleanup scope for the condition variable cleanups. 1033 LexicalScope ConditionScope(*this, S.getSourceRange()); 1034 1035 // If the for loop doesn't have an increment we can just use the condition as 1036 // the continue block. Otherwise, if there is no condition variable, we can 1037 // form the continue block now. If there is a condition variable, we can't 1038 // form the continue block until after we've emitted the condition, because 1039 // the condition is in scope in the increment, but Sema's jump diagnostics 1040 // ensure that there are no continues from the condition variable that jump 1041 // to the loop increment. 1042 JumpDest Continue; 1043 if (!S.getInc()) 1044 Continue = CondDest; 1045 else if (!S.getConditionVariable()) 1046 Continue = getJumpDestInCurrentScope("for.inc"); 1047 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1048 1049 if (S.getCond()) { 1050 // If the for statement has a condition scope, emit the local variable 1051 // declaration. 1052 if (S.getConditionVariable()) { 1053 EmitDecl(*S.getConditionVariable()); 1054 1055 // We have entered the condition variable's scope, so we're now able to 1056 // jump to the continue block. 1057 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1058 BreakContinueStack.back().ContinueBlock = Continue; 1059 } 1060 1061 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1062 // If there are any cleanups between here and the loop-exit scope, 1063 // create a block to stage a loop exit along. 1064 if (ForScope.requiresCleanups()) 1065 ExitBlock = createBasicBlock("for.cond.cleanup"); 1066 1067 // As long as the condition is true, iterate the loop. 1068 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1069 1070 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1071 // compares unequal to 0. The condition must be a scalar type. 1072 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1073 llvm::MDNode *Weights = 1074 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1075 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1076 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1077 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1078 1079 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1080 1081 if (ExitBlock != LoopExit.getBlock()) { 1082 EmitBlock(ExitBlock); 1083 EmitBranchThroughCleanup(LoopExit); 1084 } 1085 1086 EmitBlock(ForBody); 1087 } else { 1088 // Treat it as a non-zero constant. Don't even create a new block for the 1089 // body, just fall into it. 1090 } 1091 incrementProfileCounter(&S); 1092 1093 { 1094 // Create a separate cleanup scope for the body, in case it is not 1095 // a compound statement. 1096 RunCleanupsScope BodyScope(*this); 1097 EmitStmt(S.getBody()); 1098 } 1099 1100 // If there is an increment, emit it next. 1101 if (S.getInc()) { 1102 EmitBlock(Continue.getBlock()); 1103 EmitStmt(S.getInc()); 1104 } 1105 1106 BreakContinueStack.pop_back(); 1107 1108 ConditionScope.ForceCleanup(); 1109 1110 EmitStopPoint(&S); 1111 EmitBranch(CondBlock); 1112 1113 ForScope.ForceCleanup(); 1114 1115 LoopStack.pop(); 1116 1117 // Emit the fall-through block. 1118 EmitBlock(LoopExit.getBlock(), true); 1119 } 1120 1121 void 1122 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1123 ArrayRef<const Attr *> ForAttrs) { 1124 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1125 1126 LexicalScope ForScope(*this, S.getSourceRange()); 1127 1128 // Evaluate the first pieces before the loop. 1129 if (S.getInit()) 1130 EmitStmt(S.getInit()); 1131 EmitStmt(S.getRangeStmt()); 1132 EmitStmt(S.getBeginStmt()); 1133 EmitStmt(S.getEndStmt()); 1134 1135 // Start the loop with a block that tests the condition. 1136 // If there's an increment, the continue scope will be overwritten 1137 // later. 1138 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1139 EmitBlock(CondBlock); 1140 1141 const SourceRange &R = S.getSourceRange(); 1142 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1143 SourceLocToDebugLoc(R.getBegin()), 1144 SourceLocToDebugLoc(R.getEnd())); 1145 1146 // If there are any cleanups between here and the loop-exit scope, 1147 // create a block to stage a loop exit along. 1148 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1149 if (ForScope.requiresCleanups()) 1150 ExitBlock = createBasicBlock("for.cond.cleanup"); 1151 1152 // The loop body, consisting of the specified body and the loop variable. 1153 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1154 1155 // The body is executed if the expression, contextually converted 1156 // to bool, is true. 1157 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1158 llvm::MDNode *Weights = 1159 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1160 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1161 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1162 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1163 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1164 1165 if (ExitBlock != LoopExit.getBlock()) { 1166 EmitBlock(ExitBlock); 1167 EmitBranchThroughCleanup(LoopExit); 1168 } 1169 1170 EmitBlock(ForBody); 1171 incrementProfileCounter(&S); 1172 1173 // Create a block for the increment. In case of a 'continue', we jump there. 1174 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1175 1176 // Store the blocks to use for break and continue. 1177 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1178 1179 { 1180 // Create a separate cleanup scope for the loop variable and body. 1181 LexicalScope BodyScope(*this, S.getSourceRange()); 1182 EmitStmt(S.getLoopVarStmt()); 1183 EmitStmt(S.getBody()); 1184 } 1185 1186 EmitStopPoint(&S); 1187 // If there is an increment, emit it next. 1188 EmitBlock(Continue.getBlock()); 1189 EmitStmt(S.getInc()); 1190 1191 BreakContinueStack.pop_back(); 1192 1193 EmitBranch(CondBlock); 1194 1195 ForScope.ForceCleanup(); 1196 1197 LoopStack.pop(); 1198 1199 // Emit the fall-through block. 1200 EmitBlock(LoopExit.getBlock(), true); 1201 } 1202 1203 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1204 if (RV.isScalar()) { 1205 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1206 } else if (RV.isAggregate()) { 1207 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1208 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1209 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1210 } else { 1211 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1212 /*init*/ true); 1213 } 1214 EmitBranchThroughCleanup(ReturnBlock); 1215 } 1216 1217 namespace { 1218 // RAII struct used to save and restore a return statment's result expression. 1219 struct SaveRetExprRAII { 1220 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1221 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1222 CGF.RetExpr = RetExpr; 1223 } 1224 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1225 const Expr *OldRetExpr; 1226 CodeGenFunction &CGF; 1227 }; 1228 } // namespace 1229 1230 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1231 /// codegen it as 'tail call ...; ret void;'. 1232 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1233 const CGFunctionInfo *CurFnInfo) { 1234 auto calleeQualType = CE->getCallee()->getType(); 1235 const FunctionType *calleeType = nullptr; 1236 if (calleeQualType->isFunctionPointerType() || 1237 calleeQualType->isFunctionReferenceType() || 1238 calleeQualType->isBlockPointerType() || 1239 calleeQualType->isMemberFunctionPointerType()) { 1240 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1241 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1242 calleeType = ty; 1243 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1244 if (auto methodDecl = CMCE->getMethodDecl()) { 1245 // getMethodDecl() doesn't handle member pointers at the moment. 1246 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1247 } else { 1248 return; 1249 } 1250 } else { 1251 return; 1252 } 1253 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1254 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1255 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1256 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1257 Builder.CreateRetVoid(); 1258 Builder.ClearInsertionPoint(); 1259 } 1260 } 1261 1262 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1263 /// if the function returns void, or may be missing one if the function returns 1264 /// non-void. Fun stuff :). 1265 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1266 if (requiresReturnValueCheck()) { 1267 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1268 auto *SLocPtr = 1269 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1270 llvm::GlobalVariable::PrivateLinkage, SLoc); 1271 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1272 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1273 assert(ReturnLocation.isValid() && "No valid return location"); 1274 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1275 ReturnLocation); 1276 } 1277 1278 // Returning from an outlined SEH helper is UB, and we already warn on it. 1279 if (IsOutlinedSEHHelper) { 1280 Builder.CreateUnreachable(); 1281 Builder.ClearInsertionPoint(); 1282 } 1283 1284 // Emit the result value, even if unused, to evaluate the side effects. 1285 const Expr *RV = S.getRetValue(); 1286 1287 // Record the result expression of the return statement. The recorded 1288 // expression is used to determine whether a block capture's lifetime should 1289 // end at the end of the full expression as opposed to the end of the scope 1290 // enclosing the block expression. 1291 // 1292 // This permits a small, easily-implemented exception to our over-conservative 1293 // rules about not jumping to statements following block literals with 1294 // non-trivial cleanups. 1295 SaveRetExprRAII SaveRetExpr(RV, *this); 1296 1297 RunCleanupsScope cleanupScope(*this); 1298 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1299 RV = EWC->getSubExpr(); 1300 // FIXME: Clean this up by using an LValue for ReturnTemp, 1301 // EmitStoreThroughLValue, and EmitAnyExpr. 1302 // Check if the NRVO candidate was not globalized in OpenMP mode. 1303 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1304 S.getNRVOCandidate()->isNRVOVariable() && 1305 (!getLangOpts().OpenMP || 1306 !CGM.getOpenMPRuntime() 1307 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1308 .isValid())) { 1309 // Apply the named return value optimization for this return statement, 1310 // which means doing nothing: the appropriate result has already been 1311 // constructed into the NRVO variable. 1312 1313 // If there is an NRVO flag for this variable, set it to 1 into indicate 1314 // that the cleanup code should not destroy the variable. 1315 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1316 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1317 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1318 // Make sure not to return anything, but evaluate the expression 1319 // for side effects. 1320 if (RV) { 1321 EmitAnyExpr(RV); 1322 if (auto *CE = dyn_cast<CallExpr>(RV)) 1323 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1324 } 1325 } else if (!RV) { 1326 // Do nothing (return value is left uninitialized) 1327 } else if (FnRetTy->isReferenceType()) { 1328 // If this function returns a reference, take the address of the expression 1329 // rather than the value. 1330 RValue Result = EmitReferenceBindingToExpr(RV); 1331 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1332 } else { 1333 switch (getEvaluationKind(RV->getType())) { 1334 case TEK_Scalar: 1335 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1336 break; 1337 case TEK_Complex: 1338 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1339 /*isInit*/ true); 1340 break; 1341 case TEK_Aggregate: 1342 EmitAggExpr(RV, AggValueSlot::forAddr( 1343 ReturnValue, Qualifiers(), 1344 AggValueSlot::IsDestructed, 1345 AggValueSlot::DoesNotNeedGCBarriers, 1346 AggValueSlot::IsNotAliased, 1347 getOverlapForReturnValue())); 1348 break; 1349 } 1350 } 1351 1352 ++NumReturnExprs; 1353 if (!RV || RV->isEvaluatable(getContext())) 1354 ++NumSimpleReturnExprs; 1355 1356 cleanupScope.ForceCleanup(); 1357 EmitBranchThroughCleanup(ReturnBlock); 1358 } 1359 1360 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1361 // As long as debug info is modeled with instructions, we have to ensure we 1362 // have a place to insert here and write the stop point here. 1363 if (HaveInsertPoint()) 1364 EmitStopPoint(&S); 1365 1366 for (const auto *I : S.decls()) 1367 EmitDecl(*I); 1368 } 1369 1370 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1371 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1372 1373 // If this code is reachable then emit a stop point (if generating 1374 // debug info). We have to do this ourselves because we are on the 1375 // "simple" statement path. 1376 if (HaveInsertPoint()) 1377 EmitStopPoint(&S); 1378 1379 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1380 } 1381 1382 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1383 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1384 1385 // If this code is reachable then emit a stop point (if generating 1386 // debug info). We have to do this ourselves because we are on the 1387 // "simple" statement path. 1388 if (HaveInsertPoint()) 1389 EmitStopPoint(&S); 1390 1391 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1392 } 1393 1394 /// EmitCaseStmtRange - If case statement range is not too big then 1395 /// add multiple cases to switch instruction, one for each value within 1396 /// the range. If range is too big then emit "if" condition check. 1397 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1398 ArrayRef<const Attr *> Attrs) { 1399 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1400 1401 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1402 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1403 1404 // Emit the code for this case. We do this first to make sure it is 1405 // properly chained from our predecessor before generating the 1406 // switch machinery to enter this block. 1407 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1408 EmitBlockWithFallThrough(CaseDest, &S); 1409 EmitStmt(S.getSubStmt()); 1410 1411 // If range is empty, do nothing. 1412 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1413 return; 1414 1415 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1416 llvm::APInt Range = RHS - LHS; 1417 // FIXME: parameters such as this should not be hardcoded. 1418 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1419 // Range is small enough to add multiple switch instruction cases. 1420 uint64_t Total = getProfileCount(&S); 1421 unsigned NCases = Range.getZExtValue() + 1; 1422 // We only have one region counter for the entire set of cases here, so we 1423 // need to divide the weights evenly between the generated cases, ensuring 1424 // that the total weight is preserved. E.g., a weight of 5 over three cases 1425 // will be distributed as weights of 2, 2, and 1. 1426 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1427 for (unsigned I = 0; I != NCases; ++I) { 1428 if (SwitchWeights) 1429 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1430 else if (SwitchLikelihood) 1431 SwitchLikelihood->push_back(LH); 1432 1433 if (Rem) 1434 Rem--; 1435 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1436 ++LHS; 1437 } 1438 return; 1439 } 1440 1441 // The range is too big. Emit "if" condition into a new block, 1442 // making sure to save and restore the current insertion point. 1443 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1444 1445 // Push this test onto the chain of range checks (which terminates 1446 // in the default basic block). The switch's default will be changed 1447 // to the top of this chain after switch emission is complete. 1448 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1449 CaseRangeBlock = createBasicBlock("sw.caserange"); 1450 1451 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1452 Builder.SetInsertPoint(CaseRangeBlock); 1453 1454 // Emit range check. 1455 llvm::Value *Diff = 1456 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1457 llvm::Value *Cond = 1458 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1459 1460 llvm::MDNode *Weights = nullptr; 1461 if (SwitchWeights) { 1462 uint64_t ThisCount = getProfileCount(&S); 1463 uint64_t DefaultCount = (*SwitchWeights)[0]; 1464 Weights = createProfileWeights(ThisCount, DefaultCount); 1465 1466 // Since we're chaining the switch default through each large case range, we 1467 // need to update the weight for the default, ie, the first case, to include 1468 // this case. 1469 (*SwitchWeights)[0] += ThisCount; 1470 } else if (SwitchLikelihood) 1471 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1472 1473 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1474 1475 // Restore the appropriate insertion point. 1476 if (RestoreBB) 1477 Builder.SetInsertPoint(RestoreBB); 1478 else 1479 Builder.ClearInsertionPoint(); 1480 } 1481 1482 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1483 ArrayRef<const Attr *> Attrs) { 1484 // If there is no enclosing switch instance that we're aware of, then this 1485 // case statement and its block can be elided. This situation only happens 1486 // when we've constant-folded the switch, are emitting the constant case, 1487 // and part of the constant case includes another case statement. For 1488 // instance: switch (4) { case 4: do { case 5: } while (1); } 1489 if (!SwitchInsn) { 1490 EmitStmt(S.getSubStmt()); 1491 return; 1492 } 1493 1494 // Handle case ranges. 1495 if (S.getRHS()) { 1496 EmitCaseStmtRange(S, Attrs); 1497 return; 1498 } 1499 1500 llvm::ConstantInt *CaseVal = 1501 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1502 if (SwitchLikelihood) 1503 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1504 1505 // If the body of the case is just a 'break', try to not emit an empty block. 1506 // If we're profiling or we're not optimizing, leave the block in for better 1507 // debug and coverage analysis. 1508 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1509 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1510 isa<BreakStmt>(S.getSubStmt())) { 1511 JumpDest Block = BreakContinueStack.back().BreakBlock; 1512 1513 // Only do this optimization if there are no cleanups that need emitting. 1514 if (isObviouslyBranchWithoutCleanups(Block)) { 1515 if (SwitchWeights) 1516 SwitchWeights->push_back(getProfileCount(&S)); 1517 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1518 1519 // If there was a fallthrough into this case, make sure to redirect it to 1520 // the end of the switch as well. 1521 if (Builder.GetInsertBlock()) { 1522 Builder.CreateBr(Block.getBlock()); 1523 Builder.ClearInsertionPoint(); 1524 } 1525 return; 1526 } 1527 } 1528 1529 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1530 EmitBlockWithFallThrough(CaseDest, &S); 1531 if (SwitchWeights) 1532 SwitchWeights->push_back(getProfileCount(&S)); 1533 SwitchInsn->addCase(CaseVal, CaseDest); 1534 1535 // Recursively emitting the statement is acceptable, but is not wonderful for 1536 // code where we have many case statements nested together, i.e.: 1537 // case 1: 1538 // case 2: 1539 // case 3: etc. 1540 // Handling this recursively will create a new block for each case statement 1541 // that falls through to the next case which is IR intensive. It also causes 1542 // deep recursion which can run into stack depth limitations. Handle 1543 // sequential non-range case statements specially. 1544 // 1545 // TODO When the next case has a likelihood attribute the code returns to the 1546 // recursive algorithm. Maybe improve this case if it becomes common practice 1547 // to use a lot of attributes. 1548 const CaseStmt *CurCase = &S; 1549 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1550 1551 // Otherwise, iteratively add consecutive cases to this switch stmt. 1552 while (NextCase && NextCase->getRHS() == nullptr) { 1553 CurCase = NextCase; 1554 llvm::ConstantInt *CaseVal = 1555 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1556 1557 if (SwitchWeights) 1558 SwitchWeights->push_back(getProfileCount(NextCase)); 1559 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1560 CaseDest = createBasicBlock("sw.bb"); 1561 EmitBlockWithFallThrough(CaseDest, CurCase); 1562 } 1563 // Since this loop is only executed when the CaseStmt has no attributes 1564 // use a hard-coded value. 1565 if (SwitchLikelihood) 1566 SwitchLikelihood->push_back(Stmt::LH_None); 1567 1568 SwitchInsn->addCase(CaseVal, CaseDest); 1569 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1570 } 1571 1572 // Generate a stop point for debug info if the case statement is 1573 // followed by a default statement. A fallthrough case before a 1574 // default case gets its own branch target. 1575 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1576 EmitStopPoint(CurCase); 1577 1578 // Normal default recursion for non-cases. 1579 EmitStmt(CurCase->getSubStmt()); 1580 } 1581 1582 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1583 ArrayRef<const Attr *> Attrs) { 1584 // If there is no enclosing switch instance that we're aware of, then this 1585 // default statement can be elided. This situation only happens when we've 1586 // constant-folded the switch. 1587 if (!SwitchInsn) { 1588 EmitStmt(S.getSubStmt()); 1589 return; 1590 } 1591 1592 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1593 assert(DefaultBlock->empty() && 1594 "EmitDefaultStmt: Default block already defined?"); 1595 1596 if (SwitchLikelihood) 1597 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1598 1599 EmitBlockWithFallThrough(DefaultBlock, &S); 1600 1601 EmitStmt(S.getSubStmt()); 1602 } 1603 1604 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1605 /// constant value that is being switched on, see if we can dead code eliminate 1606 /// the body of the switch to a simple series of statements to emit. Basically, 1607 /// on a switch (5) we want to find these statements: 1608 /// case 5: 1609 /// printf(...); <-- 1610 /// ++i; <-- 1611 /// break; 1612 /// 1613 /// and add them to the ResultStmts vector. If it is unsafe to do this 1614 /// transformation (for example, one of the elided statements contains a label 1615 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1616 /// should include statements after it (e.g. the printf() line is a substmt of 1617 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1618 /// statement, then return CSFC_Success. 1619 /// 1620 /// If Case is non-null, then we are looking for the specified case, checking 1621 /// that nothing we jump over contains labels. If Case is null, then we found 1622 /// the case and are looking for the break. 1623 /// 1624 /// If the recursive walk actually finds our Case, then we set FoundCase to 1625 /// true. 1626 /// 1627 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1628 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1629 const SwitchCase *Case, 1630 bool &FoundCase, 1631 SmallVectorImpl<const Stmt*> &ResultStmts) { 1632 // If this is a null statement, just succeed. 1633 if (!S) 1634 return Case ? CSFC_Success : CSFC_FallThrough; 1635 1636 // If this is the switchcase (case 4: or default) that we're looking for, then 1637 // we're in business. Just add the substatement. 1638 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1639 if (S == Case) { 1640 FoundCase = true; 1641 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1642 ResultStmts); 1643 } 1644 1645 // Otherwise, this is some other case or default statement, just ignore it. 1646 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1647 ResultStmts); 1648 } 1649 1650 // If we are in the live part of the code and we found our break statement, 1651 // return a success! 1652 if (!Case && isa<BreakStmt>(S)) 1653 return CSFC_Success; 1654 1655 // If this is a switch statement, then it might contain the SwitchCase, the 1656 // break, or neither. 1657 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1658 // Handle this as two cases: we might be looking for the SwitchCase (if so 1659 // the skipped statements must be skippable) or we might already have it. 1660 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1661 bool StartedInLiveCode = FoundCase; 1662 unsigned StartSize = ResultStmts.size(); 1663 1664 // If we've not found the case yet, scan through looking for it. 1665 if (Case) { 1666 // Keep track of whether we see a skipped declaration. The code could be 1667 // using the declaration even if it is skipped, so we can't optimize out 1668 // the decl if the kept statements might refer to it. 1669 bool HadSkippedDecl = false; 1670 1671 // If we're looking for the case, just see if we can skip each of the 1672 // substatements. 1673 for (; Case && I != E; ++I) { 1674 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1675 1676 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1677 case CSFC_Failure: return CSFC_Failure; 1678 case CSFC_Success: 1679 // A successful result means that either 1) that the statement doesn't 1680 // have the case and is skippable, or 2) does contain the case value 1681 // and also contains the break to exit the switch. In the later case, 1682 // we just verify the rest of the statements are elidable. 1683 if (FoundCase) { 1684 // If we found the case and skipped declarations, we can't do the 1685 // optimization. 1686 if (HadSkippedDecl) 1687 return CSFC_Failure; 1688 1689 for (++I; I != E; ++I) 1690 if (CodeGenFunction::ContainsLabel(*I, true)) 1691 return CSFC_Failure; 1692 return CSFC_Success; 1693 } 1694 break; 1695 case CSFC_FallThrough: 1696 // If we have a fallthrough condition, then we must have found the 1697 // case started to include statements. Consider the rest of the 1698 // statements in the compound statement as candidates for inclusion. 1699 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1700 // We recursively found Case, so we're not looking for it anymore. 1701 Case = nullptr; 1702 1703 // If we found the case and skipped declarations, we can't do the 1704 // optimization. 1705 if (HadSkippedDecl) 1706 return CSFC_Failure; 1707 break; 1708 } 1709 } 1710 1711 if (!FoundCase) 1712 return CSFC_Success; 1713 1714 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1715 } 1716 1717 // If we have statements in our range, then we know that the statements are 1718 // live and need to be added to the set of statements we're tracking. 1719 bool AnyDecls = false; 1720 for (; I != E; ++I) { 1721 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1722 1723 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1724 case CSFC_Failure: return CSFC_Failure; 1725 case CSFC_FallThrough: 1726 // A fallthrough result means that the statement was simple and just 1727 // included in ResultStmt, keep adding them afterwards. 1728 break; 1729 case CSFC_Success: 1730 // A successful result means that we found the break statement and 1731 // stopped statement inclusion. We just ensure that any leftover stmts 1732 // are skippable and return success ourselves. 1733 for (++I; I != E; ++I) 1734 if (CodeGenFunction::ContainsLabel(*I, true)) 1735 return CSFC_Failure; 1736 return CSFC_Success; 1737 } 1738 } 1739 1740 // If we're about to fall out of a scope without hitting a 'break;', we 1741 // can't perform the optimization if there were any decls in that scope 1742 // (we'd lose their end-of-lifetime). 1743 if (AnyDecls) { 1744 // If the entire compound statement was live, there's one more thing we 1745 // can try before giving up: emit the whole thing as a single statement. 1746 // We can do that unless the statement contains a 'break;'. 1747 // FIXME: Such a break must be at the end of a construct within this one. 1748 // We could emit this by just ignoring the BreakStmts entirely. 1749 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1750 ResultStmts.resize(StartSize); 1751 ResultStmts.push_back(S); 1752 } else { 1753 return CSFC_Failure; 1754 } 1755 } 1756 1757 return CSFC_FallThrough; 1758 } 1759 1760 // Okay, this is some other statement that we don't handle explicitly, like a 1761 // for statement or increment etc. If we are skipping over this statement, 1762 // just verify it doesn't have labels, which would make it invalid to elide. 1763 if (Case) { 1764 if (CodeGenFunction::ContainsLabel(S, true)) 1765 return CSFC_Failure; 1766 return CSFC_Success; 1767 } 1768 1769 // Otherwise, we want to include this statement. Everything is cool with that 1770 // so long as it doesn't contain a break out of the switch we're in. 1771 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1772 1773 // Otherwise, everything is great. Include the statement and tell the caller 1774 // that we fall through and include the next statement as well. 1775 ResultStmts.push_back(S); 1776 return CSFC_FallThrough; 1777 } 1778 1779 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1780 /// then invoke CollectStatementsForCase to find the list of statements to emit 1781 /// for a switch on constant. See the comment above CollectStatementsForCase 1782 /// for more details. 1783 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1784 const llvm::APSInt &ConstantCondValue, 1785 SmallVectorImpl<const Stmt*> &ResultStmts, 1786 ASTContext &C, 1787 const SwitchCase *&ResultCase) { 1788 // First step, find the switch case that is being branched to. We can do this 1789 // efficiently by scanning the SwitchCase list. 1790 const SwitchCase *Case = S.getSwitchCaseList(); 1791 const DefaultStmt *DefaultCase = nullptr; 1792 1793 for (; Case; Case = Case->getNextSwitchCase()) { 1794 // It's either a default or case. Just remember the default statement in 1795 // case we're not jumping to any numbered cases. 1796 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1797 DefaultCase = DS; 1798 continue; 1799 } 1800 1801 // Check to see if this case is the one we're looking for. 1802 const CaseStmt *CS = cast<CaseStmt>(Case); 1803 // Don't handle case ranges yet. 1804 if (CS->getRHS()) return false; 1805 1806 // If we found our case, remember it as 'case'. 1807 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1808 break; 1809 } 1810 1811 // If we didn't find a matching case, we use a default if it exists, or we 1812 // elide the whole switch body! 1813 if (!Case) { 1814 // It is safe to elide the body of the switch if it doesn't contain labels 1815 // etc. If it is safe, return successfully with an empty ResultStmts list. 1816 if (!DefaultCase) 1817 return !CodeGenFunction::ContainsLabel(&S); 1818 Case = DefaultCase; 1819 } 1820 1821 // Ok, we know which case is being jumped to, try to collect all the 1822 // statements that follow it. This can fail for a variety of reasons. Also, 1823 // check to see that the recursive walk actually found our case statement. 1824 // Insane cases like this can fail to find it in the recursive walk since we 1825 // don't handle every stmt kind: 1826 // switch (4) { 1827 // while (1) { 1828 // case 4: ... 1829 bool FoundCase = false; 1830 ResultCase = Case; 1831 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1832 ResultStmts) != CSFC_Failure && 1833 FoundCase; 1834 } 1835 1836 static Optional<SmallVector<uint64_t, 16>> 1837 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1838 // Are there enough branches to weight them? 1839 if (Likelihoods.size() <= 1) 1840 return None; 1841 1842 uint64_t NumUnlikely = 0; 1843 uint64_t NumNone = 0; 1844 uint64_t NumLikely = 0; 1845 for (const auto LH : Likelihoods) { 1846 switch (LH) { 1847 case Stmt::LH_Unlikely: 1848 ++NumUnlikely; 1849 break; 1850 case Stmt::LH_None: 1851 ++NumNone; 1852 break; 1853 case Stmt::LH_Likely: 1854 ++NumLikely; 1855 break; 1856 } 1857 } 1858 1859 // Is there a likelihood attribute used? 1860 if (NumUnlikely == 0 && NumLikely == 0) 1861 return None; 1862 1863 // When multiple cases share the same code they can be combined during 1864 // optimization. In that case the weights of the branch will be the sum of 1865 // the individual weights. Make sure the combined sum of all neutral cases 1866 // doesn't exceed the value of a single likely attribute. 1867 // The additions both avoid divisions by 0 and make sure the weights of None 1868 // don't exceed the weight of Likely. 1869 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1870 const uint64_t None = Likely / (NumNone + 1); 1871 const uint64_t Unlikely = 0; 1872 1873 SmallVector<uint64_t, 16> Result; 1874 Result.reserve(Likelihoods.size()); 1875 for (const auto LH : Likelihoods) { 1876 switch (LH) { 1877 case Stmt::LH_Unlikely: 1878 Result.push_back(Unlikely); 1879 break; 1880 case Stmt::LH_None: 1881 Result.push_back(None); 1882 break; 1883 case Stmt::LH_Likely: 1884 Result.push_back(Likely); 1885 break; 1886 } 1887 } 1888 1889 return Result; 1890 } 1891 1892 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1893 // Handle nested switch statements. 1894 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1895 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1896 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1897 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1898 1899 // See if we can constant fold the condition of the switch and therefore only 1900 // emit the live case statement (if any) of the switch. 1901 llvm::APSInt ConstantCondValue; 1902 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1903 SmallVector<const Stmt*, 4> CaseStmts; 1904 const SwitchCase *Case = nullptr; 1905 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1906 getContext(), Case)) { 1907 if (Case) 1908 incrementProfileCounter(Case); 1909 RunCleanupsScope ExecutedScope(*this); 1910 1911 if (S.getInit()) 1912 EmitStmt(S.getInit()); 1913 1914 // Emit the condition variable if needed inside the entire cleanup scope 1915 // used by this special case for constant folded switches. 1916 if (S.getConditionVariable()) 1917 EmitDecl(*S.getConditionVariable()); 1918 1919 // At this point, we are no longer "within" a switch instance, so 1920 // we can temporarily enforce this to ensure that any embedded case 1921 // statements are not emitted. 1922 SwitchInsn = nullptr; 1923 1924 // Okay, we can dead code eliminate everything except this case. Emit the 1925 // specified series of statements and we're good. 1926 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1927 EmitStmt(CaseStmts[i]); 1928 incrementProfileCounter(&S); 1929 1930 // Now we want to restore the saved switch instance so that nested 1931 // switches continue to function properly 1932 SwitchInsn = SavedSwitchInsn; 1933 1934 return; 1935 } 1936 } 1937 1938 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1939 1940 RunCleanupsScope ConditionScope(*this); 1941 1942 if (S.getInit()) 1943 EmitStmt(S.getInit()); 1944 1945 if (S.getConditionVariable()) 1946 EmitDecl(*S.getConditionVariable()); 1947 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1948 1949 // Create basic block to hold stuff that comes after switch 1950 // statement. We also need to create a default block now so that 1951 // explicit case ranges tests can have a place to jump to on 1952 // failure. 1953 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1954 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1955 if (PGO.haveRegionCounts()) { 1956 // Walk the SwitchCase list to find how many there are. 1957 uint64_t DefaultCount = 0; 1958 unsigned NumCases = 0; 1959 for (const SwitchCase *Case = S.getSwitchCaseList(); 1960 Case; 1961 Case = Case->getNextSwitchCase()) { 1962 if (isa<DefaultStmt>(Case)) 1963 DefaultCount = getProfileCount(Case); 1964 NumCases += 1; 1965 } 1966 SwitchWeights = new SmallVector<uint64_t, 16>(); 1967 SwitchWeights->reserve(NumCases); 1968 // The default needs to be first. We store the edge count, so we already 1969 // know the right weight. 1970 SwitchWeights->push_back(DefaultCount); 1971 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1972 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1973 // Initialize the default case. 1974 SwitchLikelihood->push_back(Stmt::LH_None); 1975 } 1976 1977 CaseRangeBlock = DefaultBlock; 1978 1979 // Clear the insertion point to indicate we are in unreachable code. 1980 Builder.ClearInsertionPoint(); 1981 1982 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1983 // then reuse last ContinueBlock. 1984 JumpDest OuterContinue; 1985 if (!BreakContinueStack.empty()) 1986 OuterContinue = BreakContinueStack.back().ContinueBlock; 1987 1988 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1989 1990 // Emit switch body. 1991 EmitStmt(S.getBody()); 1992 1993 BreakContinueStack.pop_back(); 1994 1995 // Update the default block in case explicit case range tests have 1996 // been chained on top. 1997 SwitchInsn->setDefaultDest(CaseRangeBlock); 1998 1999 // If a default was never emitted: 2000 if (!DefaultBlock->getParent()) { 2001 // If we have cleanups, emit the default block so that there's a 2002 // place to jump through the cleanups from. 2003 if (ConditionScope.requiresCleanups()) { 2004 EmitBlock(DefaultBlock); 2005 2006 // Otherwise, just forward the default block to the switch end. 2007 } else { 2008 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 2009 delete DefaultBlock; 2010 } 2011 } 2012 2013 ConditionScope.ForceCleanup(); 2014 2015 // Emit continuation. 2016 EmitBlock(SwitchExit.getBlock(), true); 2017 incrementProfileCounter(&S); 2018 2019 // If the switch has a condition wrapped by __builtin_unpredictable, 2020 // create metadata that specifies that the switch is unpredictable. 2021 // Don't bother if not optimizing because that metadata would not be used. 2022 auto *Call = dyn_cast<CallExpr>(S.getCond()); 2023 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2024 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2025 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2026 llvm::MDBuilder MDHelper(getLLVMContext()); 2027 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 2028 MDHelper.createUnpredictable()); 2029 } 2030 } 2031 2032 if (SwitchWeights) { 2033 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 2034 "switch weights do not match switch cases"); 2035 // If there's only one jump destination there's no sense weighting it. 2036 if (SwitchWeights->size() > 1) 2037 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2038 createProfileWeights(*SwitchWeights)); 2039 delete SwitchWeights; 2040 } else if (SwitchLikelihood) { 2041 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 2042 "switch likelihoods do not match switch cases"); 2043 Optional<SmallVector<uint64_t, 16>> LHW = 2044 getLikelihoodWeights(*SwitchLikelihood); 2045 if (LHW) { 2046 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2047 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2048 createProfileWeights(*LHW)); 2049 } 2050 delete SwitchLikelihood; 2051 } 2052 SwitchInsn = SavedSwitchInsn; 2053 SwitchWeights = SavedSwitchWeights; 2054 SwitchLikelihood = SavedSwitchLikelihood; 2055 CaseRangeBlock = SavedCRBlock; 2056 } 2057 2058 static std::string 2059 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2060 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2061 std::string Result; 2062 2063 while (*Constraint) { 2064 switch (*Constraint) { 2065 default: 2066 Result += Target.convertConstraint(Constraint); 2067 break; 2068 // Ignore these 2069 case '*': 2070 case '?': 2071 case '!': 2072 case '=': // Will see this and the following in mult-alt constraints. 2073 case '+': 2074 break; 2075 case '#': // Ignore the rest of the constraint alternative. 2076 while (Constraint[1] && Constraint[1] != ',') 2077 Constraint++; 2078 break; 2079 case '&': 2080 case '%': 2081 Result += *Constraint; 2082 while (Constraint[1] && Constraint[1] == *Constraint) 2083 Constraint++; 2084 break; 2085 case ',': 2086 Result += "|"; 2087 break; 2088 case 'g': 2089 Result += "imr"; 2090 break; 2091 case '[': { 2092 assert(OutCons && 2093 "Must pass output names to constraints with a symbolic name"); 2094 unsigned Index; 2095 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2096 assert(result && "Could not resolve symbolic name"); (void)result; 2097 Result += llvm::utostr(Index); 2098 break; 2099 } 2100 } 2101 2102 Constraint++; 2103 } 2104 2105 return Result; 2106 } 2107 2108 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2109 /// as using a particular register add that as a constraint that will be used 2110 /// in this asm stmt. 2111 static std::string 2112 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2113 const TargetInfo &Target, CodeGenModule &CGM, 2114 const AsmStmt &Stmt, const bool EarlyClobber, 2115 std::string *GCCReg = nullptr) { 2116 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2117 if (!AsmDeclRef) 2118 return Constraint; 2119 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2120 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2121 if (!Variable) 2122 return Constraint; 2123 if (Variable->getStorageClass() != SC_Register) 2124 return Constraint; 2125 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2126 if (!Attr) 2127 return Constraint; 2128 StringRef Register = Attr->getLabel(); 2129 assert(Target.isValidGCCRegisterName(Register)); 2130 // We're using validateOutputConstraint here because we only care if 2131 // this is a register constraint. 2132 TargetInfo::ConstraintInfo Info(Constraint, ""); 2133 if (Target.validateOutputConstraint(Info) && 2134 !Info.allowsRegister()) { 2135 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2136 return Constraint; 2137 } 2138 // Canonicalize the register here before returning it. 2139 Register = Target.getNormalizedGCCRegisterName(Register); 2140 if (GCCReg != nullptr) 2141 *GCCReg = Register.str(); 2142 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2143 } 2144 2145 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue( 2146 const TargetInfo::ConstraintInfo &Info, LValue InputValue, 2147 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) { 2148 if (Info.allowsRegister() || !Info.allowsMemory()) { 2149 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) 2150 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr}; 2151 2152 llvm::Type *Ty = ConvertType(InputType); 2153 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2154 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2155 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2156 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2157 2158 return {Builder.CreateLoad(Builder.CreateElementBitCast( 2159 InputValue.getAddress(*this), Ty)), 2160 nullptr}; 2161 } 2162 } 2163 2164 Address Addr = InputValue.getAddress(*this); 2165 ConstraintStr += '*'; 2166 return {Addr.getPointer(), Addr.getElementType()}; 2167 } 2168 2169 std::pair<llvm::Value *, llvm::Type *> 2170 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2171 const Expr *InputExpr, 2172 std::string &ConstraintStr) { 2173 // If this can't be a register or memory, i.e., has to be a constant 2174 // (immediate or symbolic), try to emit it as such. 2175 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2176 if (Info.requiresImmediateConstant()) { 2177 Expr::EvalResult EVResult; 2178 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2179 2180 llvm::APSInt IntResult; 2181 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2182 getContext())) 2183 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr}; 2184 } 2185 2186 Expr::EvalResult Result; 2187 if (InputExpr->EvaluateAsInt(Result, getContext())) 2188 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()), 2189 nullptr}; 2190 } 2191 2192 if (Info.allowsRegister() || !Info.allowsMemory()) 2193 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2194 return {EmitScalarExpr(InputExpr), nullptr}; 2195 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2196 return {EmitScalarExpr(InputExpr), nullptr}; 2197 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2198 LValue Dest = EmitLValue(InputExpr); 2199 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2200 InputExpr->getExprLoc()); 2201 } 2202 2203 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2204 /// asm call instruction. The !srcloc MDNode contains a list of constant 2205 /// integers which are the source locations of the start of each line in the 2206 /// asm. 2207 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2208 CodeGenFunction &CGF) { 2209 SmallVector<llvm::Metadata *, 8> Locs; 2210 // Add the location of the first line to the MDNode. 2211 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2212 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2213 StringRef StrVal = Str->getString(); 2214 if (!StrVal.empty()) { 2215 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2216 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2217 unsigned StartToken = 0; 2218 unsigned ByteOffset = 0; 2219 2220 // Add the location of the start of each subsequent line of the asm to the 2221 // MDNode. 2222 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2223 if (StrVal[i] != '\n') continue; 2224 SourceLocation LineLoc = Str->getLocationOfByte( 2225 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2226 Locs.push_back(llvm::ConstantAsMetadata::get( 2227 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2228 } 2229 } 2230 2231 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2232 } 2233 2234 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2235 bool HasUnwindClobber, bool ReadOnly, 2236 bool ReadNone, bool NoMerge, const AsmStmt &S, 2237 const std::vector<llvm::Type *> &ResultRegTypes, 2238 const std::vector<llvm::Type *> &ArgElemTypes, 2239 CodeGenFunction &CGF, 2240 std::vector<llvm::Value *> &RegResults) { 2241 if (!HasUnwindClobber) 2242 Result.addFnAttr(llvm::Attribute::NoUnwind); 2243 2244 if (NoMerge) 2245 Result.addFnAttr(llvm::Attribute::NoMerge); 2246 // Attach readnone and readonly attributes. 2247 if (!HasSideEffect) { 2248 if (ReadNone) 2249 Result.addFnAttr(llvm::Attribute::ReadNone); 2250 else if (ReadOnly) 2251 Result.addFnAttr(llvm::Attribute::ReadOnly); 2252 } 2253 2254 // Add elementtype attribute for indirect constraints. 2255 for (auto Pair : llvm::enumerate(ArgElemTypes)) { 2256 if (Pair.value()) { 2257 auto Attr = llvm::Attribute::get( 2258 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value()); 2259 Result.addParamAttr(Pair.index(), Attr); 2260 } 2261 } 2262 2263 // Slap the source location of the inline asm into a !srcloc metadata on the 2264 // call. 2265 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2266 Result.setMetadata("srcloc", 2267 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2268 else { 2269 // At least put the line number on MS inline asm blobs. 2270 llvm::Constant *Loc = 2271 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2272 Result.setMetadata("srcloc", 2273 llvm::MDNode::get(CGF.getLLVMContext(), 2274 llvm::ConstantAsMetadata::get(Loc))); 2275 } 2276 2277 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2278 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2279 // convergent (meaning, they may call an intrinsically convergent op, such 2280 // as bar.sync, and so can't have certain optimizations applied around 2281 // them). 2282 Result.addFnAttr(llvm::Attribute::Convergent); 2283 // Extract all of the register value results from the asm. 2284 if (ResultRegTypes.size() == 1) { 2285 RegResults.push_back(&Result); 2286 } else { 2287 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2288 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2289 RegResults.push_back(Tmp); 2290 } 2291 } 2292 } 2293 2294 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2295 // Pop all cleanup blocks at the end of the asm statement. 2296 CodeGenFunction::RunCleanupsScope Cleanups(*this); 2297 2298 // Assemble the final asm string. 2299 std::string AsmString = S.generateAsmString(getContext()); 2300 2301 // Get all the output and input constraints together. 2302 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2303 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2304 2305 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2306 StringRef Name; 2307 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2308 Name = GAS->getOutputName(i); 2309 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2310 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2311 assert(IsValid && "Failed to parse output constraint"); 2312 OutputConstraintInfos.push_back(Info); 2313 } 2314 2315 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2316 StringRef Name; 2317 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2318 Name = GAS->getInputName(i); 2319 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2320 bool IsValid = 2321 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2322 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2323 InputConstraintInfos.push_back(Info); 2324 } 2325 2326 std::string Constraints; 2327 2328 std::vector<LValue> ResultRegDests; 2329 std::vector<QualType> ResultRegQualTys; 2330 std::vector<llvm::Type *> ResultRegTypes; 2331 std::vector<llvm::Type *> ResultTruncRegTypes; 2332 std::vector<llvm::Type *> ArgTypes; 2333 std::vector<llvm::Type *> ArgElemTypes; 2334 std::vector<llvm::Value*> Args; 2335 llvm::BitVector ResultTypeRequiresCast; 2336 2337 // Keep track of inout constraints. 2338 std::string InOutConstraints; 2339 std::vector<llvm::Value*> InOutArgs; 2340 std::vector<llvm::Type*> InOutArgTypes; 2341 std::vector<llvm::Type*> InOutArgElemTypes; 2342 2343 // Keep track of out constraints for tied input operand. 2344 std::vector<std::string> OutputConstraints; 2345 2346 // Keep track of defined physregs. 2347 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2348 2349 // An inline asm can be marked readonly if it meets the following conditions: 2350 // - it doesn't have any sideeffects 2351 // - it doesn't clobber memory 2352 // - it doesn't return a value by-reference 2353 // It can be marked readnone if it doesn't have any input memory constraints 2354 // in addition to meeting the conditions listed above. 2355 bool ReadOnly = true, ReadNone = true; 2356 2357 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2358 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2359 2360 // Simplify the output constraint. 2361 std::string OutputConstraint(S.getOutputConstraint(i)); 2362 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2363 getTarget(), &OutputConstraintInfos); 2364 2365 const Expr *OutExpr = S.getOutputExpr(i); 2366 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2367 2368 std::string GCCReg; 2369 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2370 getTarget(), CGM, S, 2371 Info.earlyClobber(), 2372 &GCCReg); 2373 // Give an error on multiple outputs to same physreg. 2374 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2375 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2376 2377 OutputConstraints.push_back(OutputConstraint); 2378 LValue Dest = EmitLValue(OutExpr); 2379 if (!Constraints.empty()) 2380 Constraints += ','; 2381 2382 // If this is a register output, then make the inline asm return it 2383 // by-value. If this is a memory result, return the value by-reference. 2384 QualType QTy = OutExpr->getType(); 2385 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2386 hasAggregateEvaluationKind(QTy); 2387 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2388 2389 Constraints += "=" + OutputConstraint; 2390 ResultRegQualTys.push_back(QTy); 2391 ResultRegDests.push_back(Dest); 2392 2393 llvm::Type *Ty = ConvertTypeForMem(QTy); 2394 const bool RequiresCast = Info.allowsRegister() && 2395 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2396 Ty->isAggregateType()); 2397 2398 ResultTruncRegTypes.push_back(Ty); 2399 ResultTypeRequiresCast.push_back(RequiresCast); 2400 2401 if (RequiresCast) { 2402 unsigned Size = getContext().getTypeSize(QTy); 2403 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2404 } 2405 ResultRegTypes.push_back(Ty); 2406 // If this output is tied to an input, and if the input is larger, then 2407 // we need to set the actual result type of the inline asm node to be the 2408 // same as the input type. 2409 if (Info.hasMatchingInput()) { 2410 unsigned InputNo; 2411 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2412 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2413 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2414 break; 2415 } 2416 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2417 2418 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2419 QualType OutputType = OutExpr->getType(); 2420 2421 uint64_t InputSize = getContext().getTypeSize(InputTy); 2422 if (getContext().getTypeSize(OutputType) < InputSize) { 2423 // Form the asm to return the value as a larger integer or fp type. 2424 ResultRegTypes.back() = ConvertType(InputTy); 2425 } 2426 } 2427 if (llvm::Type* AdjTy = 2428 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2429 ResultRegTypes.back())) 2430 ResultRegTypes.back() = AdjTy; 2431 else { 2432 CGM.getDiags().Report(S.getAsmLoc(), 2433 diag::err_asm_invalid_type_in_input) 2434 << OutExpr->getType() << OutputConstraint; 2435 } 2436 2437 // Update largest vector width for any vector types. 2438 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2439 LargestVectorWidth = 2440 std::max((uint64_t)LargestVectorWidth, 2441 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2442 } else { 2443 Address DestAddr = Dest.getAddress(*this); 2444 // Matrix types in memory are represented by arrays, but accessed through 2445 // vector pointers, with the alignment specified on the access operation. 2446 // For inline assembly, update pointer arguments to use vector pointers. 2447 // Otherwise there will be a mis-match if the matrix is also an 2448 // input-argument which is represented as vector. 2449 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) 2450 DestAddr = Builder.CreateElementBitCast( 2451 DestAddr, ConvertType(OutExpr->getType())); 2452 2453 ArgTypes.push_back(DestAddr.getType()); 2454 ArgElemTypes.push_back(DestAddr.getElementType()); 2455 Args.push_back(DestAddr.getPointer()); 2456 Constraints += "=*"; 2457 Constraints += OutputConstraint; 2458 ReadOnly = ReadNone = false; 2459 } 2460 2461 if (Info.isReadWrite()) { 2462 InOutConstraints += ','; 2463 2464 const Expr *InputExpr = S.getOutputExpr(i); 2465 llvm::Value *Arg; 2466 llvm::Type *ArgElemType; 2467 std::tie(Arg, ArgElemType) = EmitAsmInputLValue( 2468 Info, Dest, InputExpr->getType(), InOutConstraints, 2469 InputExpr->getExprLoc()); 2470 2471 if (llvm::Type* AdjTy = 2472 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2473 Arg->getType())) 2474 Arg = Builder.CreateBitCast(Arg, AdjTy); 2475 2476 // Update largest vector width for any vector types. 2477 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2478 LargestVectorWidth = 2479 std::max((uint64_t)LargestVectorWidth, 2480 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2481 // Only tie earlyclobber physregs. 2482 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2483 InOutConstraints += llvm::utostr(i); 2484 else 2485 InOutConstraints += OutputConstraint; 2486 2487 InOutArgTypes.push_back(Arg->getType()); 2488 InOutArgElemTypes.push_back(ArgElemType); 2489 InOutArgs.push_back(Arg); 2490 } 2491 } 2492 2493 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2494 // to the return value slot. Only do this when returning in registers. 2495 if (isa<MSAsmStmt>(&S)) { 2496 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2497 if (RetAI.isDirect() || RetAI.isExtend()) { 2498 // Make a fake lvalue for the return value slot. 2499 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy); 2500 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2501 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2502 ResultRegDests, AsmString, S.getNumOutputs()); 2503 SawAsmBlock = true; 2504 } 2505 } 2506 2507 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2508 const Expr *InputExpr = S.getInputExpr(i); 2509 2510 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2511 2512 if (Info.allowsMemory()) 2513 ReadNone = false; 2514 2515 if (!Constraints.empty()) 2516 Constraints += ','; 2517 2518 // Simplify the input constraint. 2519 std::string InputConstraint(S.getInputConstraint(i)); 2520 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2521 &OutputConstraintInfos); 2522 2523 InputConstraint = AddVariableConstraints( 2524 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2525 getTarget(), CGM, S, false /* No EarlyClobber */); 2526 2527 std::string ReplaceConstraint (InputConstraint); 2528 llvm::Value *Arg; 2529 llvm::Type *ArgElemType; 2530 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints); 2531 2532 // If this input argument is tied to a larger output result, extend the 2533 // input to be the same size as the output. The LLVM backend wants to see 2534 // the input and output of a matching constraint be the same size. Note 2535 // that GCC does not define what the top bits are here. We use zext because 2536 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2537 if (Info.hasTiedOperand()) { 2538 unsigned Output = Info.getTiedOperand(); 2539 QualType OutputType = S.getOutputExpr(Output)->getType(); 2540 QualType InputTy = InputExpr->getType(); 2541 2542 if (getContext().getTypeSize(OutputType) > 2543 getContext().getTypeSize(InputTy)) { 2544 // Use ptrtoint as appropriate so that we can do our extension. 2545 if (isa<llvm::PointerType>(Arg->getType())) 2546 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2547 llvm::Type *OutputTy = ConvertType(OutputType); 2548 if (isa<llvm::IntegerType>(OutputTy)) 2549 Arg = Builder.CreateZExt(Arg, OutputTy); 2550 else if (isa<llvm::PointerType>(OutputTy)) 2551 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2552 else if (OutputTy->isFloatingPointTy()) 2553 Arg = Builder.CreateFPExt(Arg, OutputTy); 2554 } 2555 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2556 ReplaceConstraint = OutputConstraints[Output]; 2557 } 2558 if (llvm::Type* AdjTy = 2559 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2560 Arg->getType())) 2561 Arg = Builder.CreateBitCast(Arg, AdjTy); 2562 else 2563 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2564 << InputExpr->getType() << InputConstraint; 2565 2566 // Update largest vector width for any vector types. 2567 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2568 LargestVectorWidth = 2569 std::max((uint64_t)LargestVectorWidth, 2570 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2571 2572 ArgTypes.push_back(Arg->getType()); 2573 ArgElemTypes.push_back(ArgElemType); 2574 Args.push_back(Arg); 2575 Constraints += InputConstraint; 2576 } 2577 2578 // Append the "input" part of inout constraints. 2579 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2580 ArgTypes.push_back(InOutArgTypes[i]); 2581 ArgElemTypes.push_back(InOutArgElemTypes[i]); 2582 Args.push_back(InOutArgs[i]); 2583 } 2584 Constraints += InOutConstraints; 2585 2586 // Labels 2587 SmallVector<llvm::BasicBlock *, 16> Transfer; 2588 llvm::BasicBlock *Fallthrough = nullptr; 2589 bool IsGCCAsmGoto = false; 2590 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2591 IsGCCAsmGoto = GS->isAsmGoto(); 2592 if (IsGCCAsmGoto) { 2593 for (const auto *E : GS->labels()) { 2594 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2595 Transfer.push_back(Dest.getBlock()); 2596 llvm::BlockAddress *BA = 2597 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2598 Args.push_back(BA); 2599 ArgTypes.push_back(BA->getType()); 2600 ArgElemTypes.push_back(nullptr); 2601 if (!Constraints.empty()) 2602 Constraints += ','; 2603 Constraints += 'i'; 2604 } 2605 Fallthrough = createBasicBlock("asm.fallthrough"); 2606 } 2607 } 2608 2609 bool HasUnwindClobber = false; 2610 2611 // Clobbers 2612 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2613 StringRef Clobber = S.getClobber(i); 2614 2615 if (Clobber == "memory") 2616 ReadOnly = ReadNone = false; 2617 else if (Clobber == "unwind") { 2618 HasUnwindClobber = true; 2619 continue; 2620 } else if (Clobber != "cc") { 2621 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2622 if (CGM.getCodeGenOpts().StackClashProtector && 2623 getTarget().isSPRegName(Clobber)) { 2624 CGM.getDiags().Report(S.getAsmLoc(), 2625 diag::warn_stack_clash_protection_inline_asm); 2626 } 2627 } 2628 2629 if (isa<MSAsmStmt>(&S)) { 2630 if (Clobber == "eax" || Clobber == "edx") { 2631 if (Constraints.find("=&A") != std::string::npos) 2632 continue; 2633 std::string::size_type position1 = 2634 Constraints.find("={" + Clobber.str() + "}"); 2635 if (position1 != std::string::npos) { 2636 Constraints.insert(position1 + 1, "&"); 2637 continue; 2638 } 2639 std::string::size_type position2 = Constraints.find("=A"); 2640 if (position2 != std::string::npos) { 2641 Constraints.insert(position2 + 1, "&"); 2642 continue; 2643 } 2644 } 2645 } 2646 if (!Constraints.empty()) 2647 Constraints += ','; 2648 2649 Constraints += "~{"; 2650 Constraints += Clobber; 2651 Constraints += '}'; 2652 } 2653 2654 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2655 "unwind clobber can't be used with asm goto"); 2656 2657 // Add machine specific clobbers 2658 std::string MachineClobbers = getTarget().getClobbers(); 2659 if (!MachineClobbers.empty()) { 2660 if (!Constraints.empty()) 2661 Constraints += ','; 2662 Constraints += MachineClobbers; 2663 } 2664 2665 llvm::Type *ResultType; 2666 if (ResultRegTypes.empty()) 2667 ResultType = VoidTy; 2668 else if (ResultRegTypes.size() == 1) 2669 ResultType = ResultRegTypes[0]; 2670 else 2671 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2672 2673 llvm::FunctionType *FTy = 2674 llvm::FunctionType::get(ResultType, ArgTypes, false); 2675 2676 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2677 2678 llvm::InlineAsm::AsmDialect GnuAsmDialect = 2679 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT 2680 ? llvm::InlineAsm::AD_ATT 2681 : llvm::InlineAsm::AD_Intel; 2682 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2683 llvm::InlineAsm::AD_Intel : GnuAsmDialect; 2684 2685 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2686 FTy, AsmString, Constraints, HasSideEffect, 2687 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2688 std::vector<llvm::Value*> RegResults; 2689 if (IsGCCAsmGoto) { 2690 llvm::CallBrInst *Result = 2691 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2692 EmitBlock(Fallthrough); 2693 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2694 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2695 ResultRegTypes, ArgElemTypes, *this, RegResults); 2696 } else if (HasUnwindClobber) { 2697 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2698 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2699 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes, 2700 *this, RegResults); 2701 } else { 2702 llvm::CallInst *Result = 2703 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2704 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2705 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2706 ResultRegTypes, ArgElemTypes, *this, RegResults); 2707 } 2708 2709 assert(RegResults.size() == ResultRegTypes.size()); 2710 assert(RegResults.size() == ResultTruncRegTypes.size()); 2711 assert(RegResults.size() == ResultRegDests.size()); 2712 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2713 // in which case its size may grow. 2714 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2715 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2716 llvm::Value *Tmp = RegResults[i]; 2717 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2718 2719 // If the result type of the LLVM IR asm doesn't match the result type of 2720 // the expression, do the conversion. 2721 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2722 2723 // Truncate the integer result to the right size, note that TruncTy can be 2724 // a pointer. 2725 if (TruncTy->isFloatingPointTy()) 2726 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2727 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2728 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2729 Tmp = Builder.CreateTrunc(Tmp, 2730 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2731 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2732 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2733 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2734 Tmp = Builder.CreatePtrToInt(Tmp, 2735 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2736 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2737 } else if (TruncTy->isIntegerTy()) { 2738 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2739 } else if (TruncTy->isVectorTy()) { 2740 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2741 } 2742 } 2743 2744 LValue Dest = ResultRegDests[i]; 2745 // ResultTypeRequiresCast elements correspond to the first 2746 // ResultTypeRequiresCast.size() elements of RegResults. 2747 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2748 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2749 Address A = Builder.CreateElementBitCast(Dest.getAddress(*this), 2750 ResultRegTypes[i]); 2751 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2752 Builder.CreateStore(Tmp, A); 2753 continue; 2754 } 2755 2756 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2757 if (Ty.isNull()) { 2758 const Expr *OutExpr = S.getOutputExpr(i); 2759 CGM.getDiags().Report(OutExpr->getExprLoc(), 2760 diag::err_store_value_to_reg); 2761 return; 2762 } 2763 Dest = MakeAddrLValue(A, Ty); 2764 } 2765 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2766 } 2767 } 2768 2769 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2770 const RecordDecl *RD = S.getCapturedRecordDecl(); 2771 QualType RecordTy = getContext().getRecordType(RD); 2772 2773 // Initialize the captured struct. 2774 LValue SlotLV = 2775 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2776 2777 RecordDecl::field_iterator CurField = RD->field_begin(); 2778 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2779 E = S.capture_init_end(); 2780 I != E; ++I, ++CurField) { 2781 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2782 if (CurField->hasCapturedVLAType()) { 2783 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2784 } else { 2785 EmitInitializerForField(*CurField, LV, *I); 2786 } 2787 } 2788 2789 return SlotLV; 2790 } 2791 2792 /// Generate an outlined function for the body of a CapturedStmt, store any 2793 /// captured variables into the captured struct, and call the outlined function. 2794 llvm::Function * 2795 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2796 LValue CapStruct = InitCapturedStruct(S); 2797 2798 // Emit the CapturedDecl 2799 CodeGenFunction CGF(CGM, true); 2800 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2801 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2802 delete CGF.CapturedStmtInfo; 2803 2804 // Emit call to the helper function. 2805 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2806 2807 return F; 2808 } 2809 2810 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2811 LValue CapStruct = InitCapturedStruct(S); 2812 return CapStruct.getAddress(*this); 2813 } 2814 2815 /// Creates the outlined function for a CapturedStmt. 2816 llvm::Function * 2817 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2818 assert(CapturedStmtInfo && 2819 "CapturedStmtInfo should be set when generating the captured function"); 2820 const CapturedDecl *CD = S.getCapturedDecl(); 2821 const RecordDecl *RD = S.getCapturedRecordDecl(); 2822 SourceLocation Loc = S.getBeginLoc(); 2823 assert(CD->hasBody() && "missing CapturedDecl body"); 2824 2825 // Build the argument list. 2826 ASTContext &Ctx = CGM.getContext(); 2827 FunctionArgList Args; 2828 Args.append(CD->param_begin(), CD->param_end()); 2829 2830 // Create the function declaration. 2831 const CGFunctionInfo &FuncInfo = 2832 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2833 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2834 2835 llvm::Function *F = 2836 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2837 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2838 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2839 if (CD->isNothrow()) 2840 F->addFnAttr(llvm::Attribute::NoUnwind); 2841 2842 // Generate the function. 2843 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2844 CD->getBody()->getBeginLoc()); 2845 // Set the context parameter in CapturedStmtInfo. 2846 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2847 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2848 2849 // Initialize variable-length arrays. 2850 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2851 Ctx.getTagDeclType(RD)); 2852 for (auto *FD : RD->fields()) { 2853 if (FD->hasCapturedVLAType()) { 2854 auto *ExprArg = 2855 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2856 .getScalarVal(); 2857 auto VAT = FD->getCapturedVLAType(); 2858 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2859 } 2860 } 2861 2862 // If 'this' is captured, load it into CXXThisValue. 2863 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2864 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2865 LValue ThisLValue = EmitLValueForField(Base, FD); 2866 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2867 } 2868 2869 PGO.assignRegionCounters(GlobalDecl(CD), F); 2870 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2871 FinishFunction(CD->getBodyRBrace()); 2872 2873 return F; 2874 } 2875