1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/DiagnosticSema.h"
22 #include "clang/Basic/PrettyStackTrace.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Statement Emission
38 //===----------------------------------------------------------------------===//
39 
40 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
41   if (CGDebugInfo *DI = getDebugInfo()) {
42     SourceLocation Loc;
43     Loc = S->getBeginLoc();
44     DI->EmitLocation(Builder, Loc);
45 
46     LastStopPoint = Loc;
47   }
48 }
49 
50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
51   assert(S && "Null statement?");
52   PGO.setCurrentStmt(S);
53 
54   // These statements have their own debug info handling.
55   if (EmitSimpleStmt(S, Attrs))
56     return;
57 
58   // Check if we are generating unreachable code.
59   if (!HaveInsertPoint()) {
60     // If so, and the statement doesn't contain a label, then we do not need to
61     // generate actual code. This is safe because (1) the current point is
62     // unreachable, so we don't need to execute the code, and (2) we've already
63     // handled the statements which update internal data structures (like the
64     // local variable map) which could be used by subsequent statements.
65     if (!ContainsLabel(S)) {
66       // Verify that any decl statements were handled as simple, they may be in
67       // scope of subsequent reachable statements.
68       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
69       return;
70     }
71 
72     // Otherwise, make a new block to hold the code.
73     EnsureInsertPoint();
74   }
75 
76   // Generate a stoppoint if we are emitting debug info.
77   EmitStopPoint(S);
78 
79   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
80   // enabled.
81   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
82     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
83       EmitSimpleOMPExecutableDirective(*D);
84       return;
85     }
86   }
87 
88   switch (S->getStmtClass()) {
89   case Stmt::NoStmtClass:
90   case Stmt::CXXCatchStmtClass:
91   case Stmt::SEHExceptStmtClass:
92   case Stmt::SEHFinallyStmtClass:
93   case Stmt::MSDependentExistsStmtClass:
94     llvm_unreachable("invalid statement class to emit generically");
95   case Stmt::NullStmtClass:
96   case Stmt::CompoundStmtClass:
97   case Stmt::DeclStmtClass:
98   case Stmt::LabelStmtClass:
99   case Stmt::AttributedStmtClass:
100   case Stmt::GotoStmtClass:
101   case Stmt::BreakStmtClass:
102   case Stmt::ContinueStmtClass:
103   case Stmt::DefaultStmtClass:
104   case Stmt::CaseStmtClass:
105   case Stmt::SEHLeaveStmtClass:
106     llvm_unreachable("should have emitted these statements as simple");
107 
108 #define STMT(Type, Base)
109 #define ABSTRACT_STMT(Op)
110 #define EXPR(Type, Base) \
111   case Stmt::Type##Class:
112 #include "clang/AST/StmtNodes.inc"
113   {
114     // Remember the block we came in on.
115     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
116     assert(incoming && "expression emission must have an insertion point");
117 
118     EmitIgnoredExpr(cast<Expr>(S));
119 
120     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
121     assert(outgoing && "expression emission cleared block!");
122 
123     // The expression emitters assume (reasonably!) that the insertion
124     // point is always set.  To maintain that, the call-emission code
125     // for noreturn functions has to enter a new block with no
126     // predecessors.  We want to kill that block and mark the current
127     // insertion point unreachable in the common case of a call like
128     // "exit();".  Since expression emission doesn't otherwise create
129     // blocks with no predecessors, we can just test for that.
130     // However, we must be careful not to do this to our incoming
131     // block, because *statement* emission does sometimes create
132     // reachable blocks which will have no predecessors until later in
133     // the function.  This occurs with, e.g., labels that are not
134     // reachable by fallthrough.
135     if (incoming != outgoing && outgoing->use_empty()) {
136       outgoing->eraseFromParent();
137       Builder.ClearInsertionPoint();
138     }
139     break;
140   }
141 
142   case Stmt::IndirectGotoStmtClass:
143     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
144 
145   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
146   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
147   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
148   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
149 
150   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
151 
152   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
153   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
154   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
155   case Stmt::CoroutineBodyStmtClass:
156     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
157     break;
158   case Stmt::CoreturnStmtClass:
159     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
160     break;
161   case Stmt::CapturedStmtClass: {
162     const CapturedStmt *CS = cast<CapturedStmt>(S);
163     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
164     }
165     break;
166   case Stmt::ObjCAtTryStmtClass:
167     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
168     break;
169   case Stmt::ObjCAtCatchStmtClass:
170     llvm_unreachable(
171                     "@catch statements should be handled by EmitObjCAtTryStmt");
172   case Stmt::ObjCAtFinallyStmtClass:
173     llvm_unreachable(
174                   "@finally statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtThrowStmtClass:
176     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
177     break;
178   case Stmt::ObjCAtSynchronizedStmtClass:
179     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
180     break;
181   case Stmt::ObjCForCollectionStmtClass:
182     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
183     break;
184   case Stmt::ObjCAutoreleasePoolStmtClass:
185     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
186     break;
187 
188   case Stmt::CXXTryStmtClass:
189     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
190     break;
191   case Stmt::CXXForRangeStmtClass:
192     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
193     break;
194   case Stmt::SEHTryStmtClass:
195     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
196     break;
197   case Stmt::OMPCanonicalLoopClass:
198     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
199     break;
200   case Stmt::OMPParallelDirectiveClass:
201     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
202     break;
203   case Stmt::OMPSimdDirectiveClass:
204     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
205     break;
206   case Stmt::OMPTileDirectiveClass:
207     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
208     break;
209   case Stmt::OMPForDirectiveClass:
210     EmitOMPForDirective(cast<OMPForDirective>(*S));
211     break;
212   case Stmt::OMPForSimdDirectiveClass:
213     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
214     break;
215   case Stmt::OMPSectionsDirectiveClass:
216     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
217     break;
218   case Stmt::OMPSectionDirectiveClass:
219     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
220     break;
221   case Stmt::OMPSingleDirectiveClass:
222     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
223     break;
224   case Stmt::OMPMasterDirectiveClass:
225     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
226     break;
227   case Stmt::OMPCriticalDirectiveClass:
228     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
229     break;
230   case Stmt::OMPParallelForDirectiveClass:
231     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
232     break;
233   case Stmt::OMPParallelForSimdDirectiveClass:
234     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
235     break;
236   case Stmt::OMPParallelMasterDirectiveClass:
237     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
238     break;
239   case Stmt::OMPParallelSectionsDirectiveClass:
240     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
241     break;
242   case Stmt::OMPTaskDirectiveClass:
243     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
244     break;
245   case Stmt::OMPTaskyieldDirectiveClass:
246     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
247     break;
248   case Stmt::OMPBarrierDirectiveClass:
249     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
250     break;
251   case Stmt::OMPTaskwaitDirectiveClass:
252     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
253     break;
254   case Stmt::OMPTaskgroupDirectiveClass:
255     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
256     break;
257   case Stmt::OMPFlushDirectiveClass:
258     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
259     break;
260   case Stmt::OMPDepobjDirectiveClass:
261     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
262     break;
263   case Stmt::OMPScanDirectiveClass:
264     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
265     break;
266   case Stmt::OMPOrderedDirectiveClass:
267     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
268     break;
269   case Stmt::OMPAtomicDirectiveClass:
270     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
271     break;
272   case Stmt::OMPTargetDirectiveClass:
273     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
274     break;
275   case Stmt::OMPTeamsDirectiveClass:
276     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
277     break;
278   case Stmt::OMPCancellationPointDirectiveClass:
279     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
280     break;
281   case Stmt::OMPCancelDirectiveClass:
282     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
283     break;
284   case Stmt::OMPTargetDataDirectiveClass:
285     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
286     break;
287   case Stmt::OMPTargetEnterDataDirectiveClass:
288     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
289     break;
290   case Stmt::OMPTargetExitDataDirectiveClass:
291     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
292     break;
293   case Stmt::OMPTargetParallelDirectiveClass:
294     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
295     break;
296   case Stmt::OMPTargetParallelForDirectiveClass:
297     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
298     break;
299   case Stmt::OMPTaskLoopDirectiveClass:
300     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
301     break;
302   case Stmt::OMPTaskLoopSimdDirectiveClass:
303     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
304     break;
305   case Stmt::OMPMasterTaskLoopDirectiveClass:
306     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
307     break;
308   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
309     EmitOMPMasterTaskLoopSimdDirective(
310         cast<OMPMasterTaskLoopSimdDirective>(*S));
311     break;
312   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
313     EmitOMPParallelMasterTaskLoopDirective(
314         cast<OMPParallelMasterTaskLoopDirective>(*S));
315     break;
316   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
317     EmitOMPParallelMasterTaskLoopSimdDirective(
318         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
319     break;
320   case Stmt::OMPDistributeDirectiveClass:
321     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
322     break;
323   case Stmt::OMPTargetUpdateDirectiveClass:
324     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
325     break;
326   case Stmt::OMPDistributeParallelForDirectiveClass:
327     EmitOMPDistributeParallelForDirective(
328         cast<OMPDistributeParallelForDirective>(*S));
329     break;
330   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
331     EmitOMPDistributeParallelForSimdDirective(
332         cast<OMPDistributeParallelForSimdDirective>(*S));
333     break;
334   case Stmt::OMPDistributeSimdDirectiveClass:
335     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
336     break;
337   case Stmt::OMPTargetParallelForSimdDirectiveClass:
338     EmitOMPTargetParallelForSimdDirective(
339         cast<OMPTargetParallelForSimdDirective>(*S));
340     break;
341   case Stmt::OMPTargetSimdDirectiveClass:
342     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
343     break;
344   case Stmt::OMPTeamsDistributeDirectiveClass:
345     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
346     break;
347   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
348     EmitOMPTeamsDistributeSimdDirective(
349         cast<OMPTeamsDistributeSimdDirective>(*S));
350     break;
351   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
352     EmitOMPTeamsDistributeParallelForSimdDirective(
353         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
354     break;
355   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
356     EmitOMPTeamsDistributeParallelForDirective(
357         cast<OMPTeamsDistributeParallelForDirective>(*S));
358     break;
359   case Stmt::OMPTargetTeamsDirectiveClass:
360     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
361     break;
362   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
363     EmitOMPTargetTeamsDistributeDirective(
364         cast<OMPTargetTeamsDistributeDirective>(*S));
365     break;
366   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
367     EmitOMPTargetTeamsDistributeParallelForDirective(
368         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
369     break;
370   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
371     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
372         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
373     break;
374   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
375     EmitOMPTargetTeamsDistributeSimdDirective(
376         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
377     break;
378   case Stmt::OMPInteropDirectiveClass:
379     llvm_unreachable("Interop directive not supported yet.");
380     break;
381   case Stmt::OMPDispatchDirectiveClass:
382     llvm_unreachable("Dispatch directive not supported yet.");
383     break;
384   }
385 }
386 
387 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
388                                      ArrayRef<const Attr *> Attrs) {
389   switch (S->getStmtClass()) {
390   default:
391     return false;
392   case Stmt::NullStmtClass:
393     break;
394   case Stmt::CompoundStmtClass:
395     EmitCompoundStmt(cast<CompoundStmt>(*S));
396     break;
397   case Stmt::DeclStmtClass:
398     EmitDeclStmt(cast<DeclStmt>(*S));
399     break;
400   case Stmt::LabelStmtClass:
401     EmitLabelStmt(cast<LabelStmt>(*S));
402     break;
403   case Stmt::AttributedStmtClass:
404     EmitAttributedStmt(cast<AttributedStmt>(*S));
405     break;
406   case Stmt::GotoStmtClass:
407     EmitGotoStmt(cast<GotoStmt>(*S));
408     break;
409   case Stmt::BreakStmtClass:
410     EmitBreakStmt(cast<BreakStmt>(*S));
411     break;
412   case Stmt::ContinueStmtClass:
413     EmitContinueStmt(cast<ContinueStmt>(*S));
414     break;
415   case Stmt::DefaultStmtClass:
416     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
417     break;
418   case Stmt::CaseStmtClass:
419     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
420     break;
421   case Stmt::SEHLeaveStmtClass:
422     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
423     break;
424   }
425   return true;
426 }
427 
428 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
429 /// this captures the expression result of the last sub-statement and returns it
430 /// (for use by the statement expression extension).
431 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
432                                           AggValueSlot AggSlot) {
433   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
434                              "LLVM IR generation of compound statement ('{}')");
435 
436   // Keep track of the current cleanup stack depth, including debug scopes.
437   LexicalScope Scope(*this, S.getSourceRange());
438 
439   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
440 }
441 
442 Address
443 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
444                                               bool GetLast,
445                                               AggValueSlot AggSlot) {
446 
447   const Stmt *ExprResult = S.getStmtExprResult();
448   assert((!GetLast || (GetLast && ExprResult)) &&
449          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
450 
451   Address RetAlloca = Address::invalid();
452 
453   for (auto *CurStmt : S.body()) {
454     if (GetLast && ExprResult == CurStmt) {
455       // We have to special case labels here.  They are statements, but when put
456       // at the end of a statement expression, they yield the value of their
457       // subexpression.  Handle this by walking through all labels we encounter,
458       // emitting them before we evaluate the subexpr.
459       // Similar issues arise for attributed statements.
460       while (!isa<Expr>(ExprResult)) {
461         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
462           EmitLabel(LS->getDecl());
463           ExprResult = LS->getSubStmt();
464         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
465           // FIXME: Update this if we ever have attributes that affect the
466           // semantics of an expression.
467           ExprResult = AS->getSubStmt();
468         } else {
469           llvm_unreachable("unknown value statement");
470         }
471       }
472 
473       EnsureInsertPoint();
474 
475       const Expr *E = cast<Expr>(ExprResult);
476       QualType ExprTy = E->getType();
477       if (hasAggregateEvaluationKind(ExprTy)) {
478         EmitAggExpr(E, AggSlot);
479       } else {
480         // We can't return an RValue here because there might be cleanups at
481         // the end of the StmtExpr.  Because of that, we have to emit the result
482         // here into a temporary alloca.
483         RetAlloca = CreateMemTemp(ExprTy);
484         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
485                          /*IsInit*/ false);
486       }
487     } else {
488       EmitStmt(CurStmt);
489     }
490   }
491 
492   return RetAlloca;
493 }
494 
495 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
496   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
497 
498   // If there is a cleanup stack, then we it isn't worth trying to
499   // simplify this block (we would need to remove it from the scope map
500   // and cleanup entry).
501   if (!EHStack.empty())
502     return;
503 
504   // Can only simplify direct branches.
505   if (!BI || !BI->isUnconditional())
506     return;
507 
508   // Can only simplify empty blocks.
509   if (BI->getIterator() != BB->begin())
510     return;
511 
512   BB->replaceAllUsesWith(BI->getSuccessor(0));
513   BI->eraseFromParent();
514   BB->eraseFromParent();
515 }
516 
517 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
518   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
519 
520   // Fall out of the current block (if necessary).
521   EmitBranch(BB);
522 
523   if (IsFinished && BB->use_empty()) {
524     delete BB;
525     return;
526   }
527 
528   // Place the block after the current block, if possible, or else at
529   // the end of the function.
530   if (CurBB && CurBB->getParent())
531     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
532   else
533     CurFn->getBasicBlockList().push_back(BB);
534   Builder.SetInsertPoint(BB);
535 }
536 
537 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
538   // Emit a branch from the current block to the target one if this
539   // was a real block.  If this was just a fall-through block after a
540   // terminator, don't emit it.
541   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
542 
543   if (!CurBB || CurBB->getTerminator()) {
544     // If there is no insert point or the previous block is already
545     // terminated, don't touch it.
546   } else {
547     // Otherwise, create a fall-through branch.
548     Builder.CreateBr(Target);
549   }
550 
551   Builder.ClearInsertionPoint();
552 }
553 
554 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
555   bool inserted = false;
556   for (llvm::User *u : block->users()) {
557     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
558       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
559                                              block);
560       inserted = true;
561       break;
562     }
563   }
564 
565   if (!inserted)
566     CurFn->getBasicBlockList().push_back(block);
567 
568   Builder.SetInsertPoint(block);
569 }
570 
571 CodeGenFunction::JumpDest
572 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
573   JumpDest &Dest = LabelMap[D];
574   if (Dest.isValid()) return Dest;
575 
576   // Create, but don't insert, the new block.
577   Dest = JumpDest(createBasicBlock(D->getName()),
578                   EHScopeStack::stable_iterator::invalid(),
579                   NextCleanupDestIndex++);
580   return Dest;
581 }
582 
583 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
584   // Add this label to the current lexical scope if we're within any
585   // normal cleanups.  Jumps "in" to this label --- when permitted by
586   // the language --- may need to be routed around such cleanups.
587   if (EHStack.hasNormalCleanups() && CurLexicalScope)
588     CurLexicalScope->addLabel(D);
589 
590   JumpDest &Dest = LabelMap[D];
591 
592   // If we didn't need a forward reference to this label, just go
593   // ahead and create a destination at the current scope.
594   if (!Dest.isValid()) {
595     Dest = getJumpDestInCurrentScope(D->getName());
596 
597   // Otherwise, we need to give this label a target depth and remove
598   // it from the branch-fixups list.
599   } else {
600     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
601     Dest.setScopeDepth(EHStack.stable_begin());
602     ResolveBranchFixups(Dest.getBlock());
603   }
604 
605   EmitBlock(Dest.getBlock());
606 
607   // Emit debug info for labels.
608   if (CGDebugInfo *DI = getDebugInfo()) {
609     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
610       DI->setLocation(D->getLocation());
611       DI->EmitLabel(D, Builder);
612     }
613   }
614 
615   incrementProfileCounter(D->getStmt());
616 }
617 
618 /// Change the cleanup scope of the labels in this lexical scope to
619 /// match the scope of the enclosing context.
620 void CodeGenFunction::LexicalScope::rescopeLabels() {
621   assert(!Labels.empty());
622   EHScopeStack::stable_iterator innermostScope
623     = CGF.EHStack.getInnermostNormalCleanup();
624 
625   // Change the scope depth of all the labels.
626   for (SmallVectorImpl<const LabelDecl*>::const_iterator
627          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
628     assert(CGF.LabelMap.count(*i));
629     JumpDest &dest = CGF.LabelMap.find(*i)->second;
630     assert(dest.getScopeDepth().isValid());
631     assert(innermostScope.encloses(dest.getScopeDepth()));
632     dest.setScopeDepth(innermostScope);
633   }
634 
635   // Reparent the labels if the new scope also has cleanups.
636   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
637     ParentScope->Labels.append(Labels.begin(), Labels.end());
638   }
639 }
640 
641 
642 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
643   EmitLabel(S.getDecl());
644   EmitStmt(S.getSubStmt());
645 }
646 
647 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
648   bool nomerge = false;
649   for (const auto *A : S.getAttrs())
650     if (A->getKind() == attr::NoMerge) {
651       nomerge = true;
652       break;
653     }
654   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
655   EmitStmt(S.getSubStmt(), S.getAttrs());
656 }
657 
658 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
659   // If this code is reachable then emit a stop point (if generating
660   // debug info). We have to do this ourselves because we are on the
661   // "simple" statement path.
662   if (HaveInsertPoint())
663     EmitStopPoint(&S);
664 
665   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
666 }
667 
668 
669 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
670   if (const LabelDecl *Target = S.getConstantTarget()) {
671     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
672     return;
673   }
674 
675   // Ensure that we have an i8* for our PHI node.
676   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
677                                          Int8PtrTy, "addr");
678   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
679 
680   // Get the basic block for the indirect goto.
681   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
682 
683   // The first instruction in the block has to be the PHI for the switch dest,
684   // add an entry for this branch.
685   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
686 
687   EmitBranch(IndGotoBB);
688 }
689 
690 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
691   // C99 6.8.4.1: The first substatement is executed if the expression compares
692   // unequal to 0.  The condition must be a scalar type.
693   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
694 
695   if (S.getInit())
696     EmitStmt(S.getInit());
697 
698   if (S.getConditionVariable())
699     EmitDecl(*S.getConditionVariable());
700 
701   // If the condition constant folds and can be elided, try to avoid emitting
702   // the condition and the dead arm of the if/else.
703   bool CondConstant;
704   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
705                                    S.isConstexpr())) {
706     // Figure out which block (then or else) is executed.
707     const Stmt *Executed = S.getThen();
708     const Stmt *Skipped  = S.getElse();
709     if (!CondConstant)  // Condition false?
710       std::swap(Executed, Skipped);
711 
712     // If the skipped block has no labels in it, just emit the executed block.
713     // This avoids emitting dead code and simplifies the CFG substantially.
714     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
715       if (CondConstant)
716         incrementProfileCounter(&S);
717       if (Executed) {
718         RunCleanupsScope ExecutedScope(*this);
719         EmitStmt(Executed);
720       }
721       return;
722     }
723   }
724 
725   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
726   // the conditional branch.
727   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
728   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
729   llvm::BasicBlock *ElseBlock = ContBlock;
730   if (S.getElse())
731     ElseBlock = createBasicBlock("if.else");
732 
733   // Prefer the PGO based weights over the likelihood attribute.
734   // When the build isn't optimized the metadata isn't used, so don't generate
735   // it.
736   Stmt::Likelihood LH = Stmt::LH_None;
737   uint64_t Count = getProfileCount(S.getThen());
738   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
739     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
740   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
741 
742   // Emit the 'then' code.
743   EmitBlock(ThenBlock);
744   incrementProfileCounter(&S);
745   {
746     RunCleanupsScope ThenScope(*this);
747     EmitStmt(S.getThen());
748   }
749   EmitBranch(ContBlock);
750 
751   // Emit the 'else' code if present.
752   if (const Stmt *Else = S.getElse()) {
753     {
754       // There is no need to emit line number for an unconditional branch.
755       auto NL = ApplyDebugLocation::CreateEmpty(*this);
756       EmitBlock(ElseBlock);
757     }
758     {
759       RunCleanupsScope ElseScope(*this);
760       EmitStmt(Else);
761     }
762     {
763       // There is no need to emit line number for an unconditional branch.
764       auto NL = ApplyDebugLocation::CreateEmpty(*this);
765       EmitBranch(ContBlock);
766     }
767   }
768 
769   // Emit the continuation block for code after the if.
770   EmitBlock(ContBlock, true);
771 }
772 
773 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
774                                     ArrayRef<const Attr *> WhileAttrs) {
775   // Emit the header for the loop, which will also become
776   // the continue target.
777   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
778   EmitBlock(LoopHeader.getBlock());
779 
780   // Create an exit block for when the condition fails, which will
781   // also become the break target.
782   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
783 
784   // Store the blocks to use for break and continue.
785   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
786 
787   // C++ [stmt.while]p2:
788   //   When the condition of a while statement is a declaration, the
789   //   scope of the variable that is declared extends from its point
790   //   of declaration (3.3.2) to the end of the while statement.
791   //   [...]
792   //   The object created in a condition is destroyed and created
793   //   with each iteration of the loop.
794   RunCleanupsScope ConditionScope(*this);
795 
796   if (S.getConditionVariable())
797     EmitDecl(*S.getConditionVariable());
798 
799   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
800   // evaluation of the controlling expression takes place before each
801   // execution of the loop body.
802   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
803 
804   // while(1) is common, avoid extra exit blocks.  Be sure
805   // to correctly handle break/continue though.
806   bool EmitBoolCondBranch = true;
807   bool LoopMustProgress = false;
808   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
809     if (C->isOne()) {
810       EmitBoolCondBranch = false;
811       FnIsMustProgress = false;
812     }
813   } else if (LanguageRequiresProgress())
814     LoopMustProgress = true;
815 
816   const SourceRange &R = S.getSourceRange();
817   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
818                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
819                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
820 
821   // As long as the condition is true, go to the loop body.
822   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
823   if (EmitBoolCondBranch) {
824     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
825     if (ConditionScope.requiresCleanups())
826       ExitBlock = createBasicBlock("while.exit");
827     llvm::MDNode *Weights =
828         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
829     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
830       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
831           BoolCondVal, Stmt::getLikelihood(S.getBody()));
832     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
833 
834     if (ExitBlock != LoopExit.getBlock()) {
835       EmitBlock(ExitBlock);
836       EmitBranchThroughCleanup(LoopExit);
837     }
838   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
839     CGM.getDiags().Report(A->getLocation(),
840                           diag::warn_attribute_has_no_effect_on_infinite_loop)
841         << A << A->getRange();
842     CGM.getDiags().Report(
843         S.getWhileLoc(),
844         diag::note_attribute_has_no_effect_on_infinite_loop_here)
845         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
846   }
847 
848   // Emit the loop body.  We have to emit this in a cleanup scope
849   // because it might be a singleton DeclStmt.
850   {
851     RunCleanupsScope BodyScope(*this);
852     EmitBlock(LoopBody);
853     incrementProfileCounter(&S);
854     EmitStmt(S.getBody());
855   }
856 
857   BreakContinueStack.pop_back();
858 
859   // Immediately force cleanup.
860   ConditionScope.ForceCleanup();
861 
862   EmitStopPoint(&S);
863   // Branch to the loop header again.
864   EmitBranch(LoopHeader.getBlock());
865 
866   LoopStack.pop();
867 
868   // Emit the exit block.
869   EmitBlock(LoopExit.getBlock(), true);
870 
871   // The LoopHeader typically is just a branch if we skipped emitting
872   // a branch, try to erase it.
873   if (!EmitBoolCondBranch)
874     SimplifyForwardingBlocks(LoopHeader.getBlock());
875 }
876 
877 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
878                                  ArrayRef<const Attr *> DoAttrs) {
879   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
880   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
881 
882   uint64_t ParentCount = getCurrentProfileCount();
883 
884   // Store the blocks to use for break and continue.
885   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
886 
887   // Emit the body of the loop.
888   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
889 
890   EmitBlockWithFallThrough(LoopBody, &S);
891   {
892     RunCleanupsScope BodyScope(*this);
893     EmitStmt(S.getBody());
894   }
895 
896   EmitBlock(LoopCond.getBlock());
897 
898   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
899   // after each execution of the loop body."
900 
901   // Evaluate the conditional in the while header.
902   // C99 6.8.5p2/p4: The first substatement is executed if the expression
903   // compares unequal to 0.  The condition must be a scalar type.
904   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
905 
906   BreakContinueStack.pop_back();
907 
908   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
909   // to correctly handle break/continue though.
910   bool EmitBoolCondBranch = true;
911   bool LoopMustProgress = false;
912   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
913     if (C->isZero())
914       EmitBoolCondBranch = false;
915     else if (C->isOne())
916       FnIsMustProgress = false;
917   } else if (LanguageRequiresProgress())
918     LoopMustProgress = true;
919 
920   const SourceRange &R = S.getSourceRange();
921   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
922                  SourceLocToDebugLoc(R.getBegin()),
923                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
924 
925   // As long as the condition is true, iterate the loop.
926   if (EmitBoolCondBranch) {
927     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
928     Builder.CreateCondBr(
929         BoolCondVal, LoopBody, LoopExit.getBlock(),
930         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
931   }
932 
933   LoopStack.pop();
934 
935   // Emit the exit block.
936   EmitBlock(LoopExit.getBlock());
937 
938   // The DoCond block typically is just a branch if we skipped
939   // emitting a branch, try to erase it.
940   if (!EmitBoolCondBranch)
941     SimplifyForwardingBlocks(LoopCond.getBlock());
942 }
943 
944 void CodeGenFunction::EmitForStmt(const ForStmt &S,
945                                   ArrayRef<const Attr *> ForAttrs) {
946   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
947 
948   LexicalScope ForScope(*this, S.getSourceRange());
949 
950   // Evaluate the first part before the loop.
951   if (S.getInit())
952     EmitStmt(S.getInit());
953 
954   // Start the loop with a block that tests the condition.
955   // If there's an increment, the continue scope will be overwritten
956   // later.
957   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
958   llvm::BasicBlock *CondBlock = CondDest.getBlock();
959   EmitBlock(CondBlock);
960 
961   bool LoopMustProgress = false;
962   Expr::EvalResult Result;
963   if (LanguageRequiresProgress()) {
964     if (!S.getCond()) {
965       FnIsMustProgress = false;
966     } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) {
967       LoopMustProgress = true;
968     }
969   }
970 
971   const SourceRange &R = S.getSourceRange();
972   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
973                  SourceLocToDebugLoc(R.getBegin()),
974                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
975 
976   // Create a cleanup scope for the condition variable cleanups.
977   LexicalScope ConditionScope(*this, S.getSourceRange());
978 
979   // If the for loop doesn't have an increment we can just use the condition as
980   // the continue block. Otherwise, if there is no condition variable, we can
981   // form the continue block now. If there is a condition variable, we can't
982   // form the continue block until after we've emitted the condition, because
983   // the condition is in scope in the increment, but Sema's jump diagnostics
984   // ensure that there are no continues from the condition variable that jump
985   // to the loop increment.
986   JumpDest Continue;
987   if (!S.getInc())
988     Continue = CondDest;
989   else if (!S.getConditionVariable())
990     Continue = getJumpDestInCurrentScope("for.inc");
991   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
992 
993   if (S.getCond()) {
994     // If the for statement has a condition scope, emit the local variable
995     // declaration.
996     if (S.getConditionVariable()) {
997       EmitDecl(*S.getConditionVariable());
998 
999       // We have entered the condition variable's scope, so we're now able to
1000       // jump to the continue block.
1001       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1002       BreakContinueStack.back().ContinueBlock = Continue;
1003     }
1004 
1005     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1006     // If there are any cleanups between here and the loop-exit scope,
1007     // create a block to stage a loop exit along.
1008     if (ForScope.requiresCleanups())
1009       ExitBlock = createBasicBlock("for.cond.cleanup");
1010 
1011     // As long as the condition is true, iterate the loop.
1012     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1013 
1014     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1015     // compares unequal to 0.  The condition must be a scalar type.
1016     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1017     llvm::MDNode *Weights =
1018         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1019     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1020       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1021           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1022 
1023     if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
1024       if (C->isOne())
1025         FnIsMustProgress = false;
1026 
1027     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1028 
1029     if (ExitBlock != LoopExit.getBlock()) {
1030       EmitBlock(ExitBlock);
1031       EmitBranchThroughCleanup(LoopExit);
1032     }
1033 
1034     EmitBlock(ForBody);
1035   } else {
1036     // Treat it as a non-zero constant.  Don't even create a new block for the
1037     // body, just fall into it.
1038   }
1039   incrementProfileCounter(&S);
1040 
1041   {
1042     // Create a separate cleanup scope for the body, in case it is not
1043     // a compound statement.
1044     RunCleanupsScope BodyScope(*this);
1045     EmitStmt(S.getBody());
1046   }
1047 
1048   // If there is an increment, emit it next.
1049   if (S.getInc()) {
1050     EmitBlock(Continue.getBlock());
1051     EmitStmt(S.getInc());
1052   }
1053 
1054   BreakContinueStack.pop_back();
1055 
1056   ConditionScope.ForceCleanup();
1057 
1058   EmitStopPoint(&S);
1059   EmitBranch(CondBlock);
1060 
1061   ForScope.ForceCleanup();
1062 
1063   LoopStack.pop();
1064 
1065   // Emit the fall-through block.
1066   EmitBlock(LoopExit.getBlock(), true);
1067 }
1068 
1069 void
1070 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1071                                      ArrayRef<const Attr *> ForAttrs) {
1072   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1073 
1074   LexicalScope ForScope(*this, S.getSourceRange());
1075 
1076   // Evaluate the first pieces before the loop.
1077   if (S.getInit())
1078     EmitStmt(S.getInit());
1079   EmitStmt(S.getRangeStmt());
1080   EmitStmt(S.getBeginStmt());
1081   EmitStmt(S.getEndStmt());
1082 
1083   // Start the loop with a block that tests the condition.
1084   // If there's an increment, the continue scope will be overwritten
1085   // later.
1086   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1087   EmitBlock(CondBlock);
1088 
1089   const SourceRange &R = S.getSourceRange();
1090   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1091                  SourceLocToDebugLoc(R.getBegin()),
1092                  SourceLocToDebugLoc(R.getEnd()));
1093 
1094   // If there are any cleanups between here and the loop-exit scope,
1095   // create a block to stage a loop exit along.
1096   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1097   if (ForScope.requiresCleanups())
1098     ExitBlock = createBasicBlock("for.cond.cleanup");
1099 
1100   // The loop body, consisting of the specified body and the loop variable.
1101   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1102 
1103   // The body is executed if the expression, contextually converted
1104   // to bool, is true.
1105   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1106   llvm::MDNode *Weights =
1107       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1108   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1109     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1110         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1111   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1112 
1113   if (ExitBlock != LoopExit.getBlock()) {
1114     EmitBlock(ExitBlock);
1115     EmitBranchThroughCleanup(LoopExit);
1116   }
1117 
1118   EmitBlock(ForBody);
1119   incrementProfileCounter(&S);
1120 
1121   // Create a block for the increment. In case of a 'continue', we jump there.
1122   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1123 
1124   // Store the blocks to use for break and continue.
1125   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1126 
1127   {
1128     // Create a separate cleanup scope for the loop variable and body.
1129     LexicalScope BodyScope(*this, S.getSourceRange());
1130     EmitStmt(S.getLoopVarStmt());
1131     EmitStmt(S.getBody());
1132   }
1133 
1134   EmitStopPoint(&S);
1135   // If there is an increment, emit it next.
1136   EmitBlock(Continue.getBlock());
1137   EmitStmt(S.getInc());
1138 
1139   BreakContinueStack.pop_back();
1140 
1141   EmitBranch(CondBlock);
1142 
1143   ForScope.ForceCleanup();
1144 
1145   LoopStack.pop();
1146 
1147   // Emit the fall-through block.
1148   EmitBlock(LoopExit.getBlock(), true);
1149 }
1150 
1151 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1152   if (RV.isScalar()) {
1153     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1154   } else if (RV.isAggregate()) {
1155     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1156     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1157     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1158   } else {
1159     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1160                        /*init*/ true);
1161   }
1162   EmitBranchThroughCleanup(ReturnBlock);
1163 }
1164 
1165 namespace {
1166 // RAII struct used to save and restore a return statment's result expression.
1167 struct SaveRetExprRAII {
1168   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1169       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1170     CGF.RetExpr = RetExpr;
1171   }
1172   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1173   const Expr *OldRetExpr;
1174   CodeGenFunction &CGF;
1175 };
1176 } // namespace
1177 
1178 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1179 /// if the function returns void, or may be missing one if the function returns
1180 /// non-void.  Fun stuff :).
1181 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1182   if (requiresReturnValueCheck()) {
1183     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1184     auto *SLocPtr =
1185         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1186                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1187     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1188     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1189     assert(ReturnLocation.isValid() && "No valid return location");
1190     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1191                         ReturnLocation);
1192   }
1193 
1194   // Returning from an outlined SEH helper is UB, and we already warn on it.
1195   if (IsOutlinedSEHHelper) {
1196     Builder.CreateUnreachable();
1197     Builder.ClearInsertionPoint();
1198   }
1199 
1200   // Emit the result value, even if unused, to evaluate the side effects.
1201   const Expr *RV = S.getRetValue();
1202 
1203   // Record the result expression of the return statement. The recorded
1204   // expression is used to determine whether a block capture's lifetime should
1205   // end at the end of the full expression as opposed to the end of the scope
1206   // enclosing the block expression.
1207   //
1208   // This permits a small, easily-implemented exception to our over-conservative
1209   // rules about not jumping to statements following block literals with
1210   // non-trivial cleanups.
1211   SaveRetExprRAII SaveRetExpr(RV, *this);
1212 
1213   RunCleanupsScope cleanupScope(*this);
1214   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1215     RV = EWC->getSubExpr();
1216   // FIXME: Clean this up by using an LValue for ReturnTemp,
1217   // EmitStoreThroughLValue, and EmitAnyExpr.
1218   // Check if the NRVO candidate was not globalized in OpenMP mode.
1219   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1220       S.getNRVOCandidate()->isNRVOVariable() &&
1221       (!getLangOpts().OpenMP ||
1222        !CGM.getOpenMPRuntime()
1223             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1224             .isValid())) {
1225     // Apply the named return value optimization for this return statement,
1226     // which means doing nothing: the appropriate result has already been
1227     // constructed into the NRVO variable.
1228 
1229     // If there is an NRVO flag for this variable, set it to 1 into indicate
1230     // that the cleanup code should not destroy the variable.
1231     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1232       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1233   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1234     // Make sure not to return anything, but evaluate the expression
1235     // for side effects.
1236     if (RV)
1237       EmitAnyExpr(RV);
1238   } else if (!RV) {
1239     // Do nothing (return value is left uninitialized)
1240   } else if (FnRetTy->isReferenceType()) {
1241     // If this function returns a reference, take the address of the expression
1242     // rather than the value.
1243     RValue Result = EmitReferenceBindingToExpr(RV);
1244     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1245   } else {
1246     switch (getEvaluationKind(RV->getType())) {
1247     case TEK_Scalar:
1248       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1249       break;
1250     case TEK_Complex:
1251       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1252                                 /*isInit*/ true);
1253       break;
1254     case TEK_Aggregate:
1255       EmitAggExpr(RV, AggValueSlot::forAddr(
1256                           ReturnValue, Qualifiers(),
1257                           AggValueSlot::IsDestructed,
1258                           AggValueSlot::DoesNotNeedGCBarriers,
1259                           AggValueSlot::IsNotAliased,
1260                           getOverlapForReturnValue()));
1261       break;
1262     }
1263   }
1264 
1265   ++NumReturnExprs;
1266   if (!RV || RV->isEvaluatable(getContext()))
1267     ++NumSimpleReturnExprs;
1268 
1269   cleanupScope.ForceCleanup();
1270   EmitBranchThroughCleanup(ReturnBlock);
1271 }
1272 
1273 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1274   // As long as debug info is modeled with instructions, we have to ensure we
1275   // have a place to insert here and write the stop point here.
1276   if (HaveInsertPoint())
1277     EmitStopPoint(&S);
1278 
1279   for (const auto *I : S.decls())
1280     EmitDecl(*I);
1281 }
1282 
1283 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1284   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1285 
1286   // If this code is reachable then emit a stop point (if generating
1287   // debug info). We have to do this ourselves because we are on the
1288   // "simple" statement path.
1289   if (HaveInsertPoint())
1290     EmitStopPoint(&S);
1291 
1292   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1293 }
1294 
1295 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1296   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1297 
1298   // If this code is reachable then emit a stop point (if generating
1299   // debug info). We have to do this ourselves because we are on the
1300   // "simple" statement path.
1301   if (HaveInsertPoint())
1302     EmitStopPoint(&S);
1303 
1304   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1305 }
1306 
1307 /// EmitCaseStmtRange - If case statement range is not too big then
1308 /// add multiple cases to switch instruction, one for each value within
1309 /// the range. If range is too big then emit "if" condition check.
1310 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1311                                         ArrayRef<const Attr *> Attrs) {
1312   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1313 
1314   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1315   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1316 
1317   // Emit the code for this case. We do this first to make sure it is
1318   // properly chained from our predecessor before generating the
1319   // switch machinery to enter this block.
1320   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1321   EmitBlockWithFallThrough(CaseDest, &S);
1322   EmitStmt(S.getSubStmt());
1323 
1324   // If range is empty, do nothing.
1325   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1326     return;
1327 
1328   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1329   llvm::APInt Range = RHS - LHS;
1330   // FIXME: parameters such as this should not be hardcoded.
1331   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1332     // Range is small enough to add multiple switch instruction cases.
1333     uint64_t Total = getProfileCount(&S);
1334     unsigned NCases = Range.getZExtValue() + 1;
1335     // We only have one region counter for the entire set of cases here, so we
1336     // need to divide the weights evenly between the generated cases, ensuring
1337     // that the total weight is preserved. E.g., a weight of 5 over three cases
1338     // will be distributed as weights of 2, 2, and 1.
1339     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1340     for (unsigned I = 0; I != NCases; ++I) {
1341       if (SwitchWeights)
1342         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1343       else if (SwitchLikelihood)
1344         SwitchLikelihood->push_back(LH);
1345 
1346       if (Rem)
1347         Rem--;
1348       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1349       ++LHS;
1350     }
1351     return;
1352   }
1353 
1354   // The range is too big. Emit "if" condition into a new block,
1355   // making sure to save and restore the current insertion point.
1356   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1357 
1358   // Push this test onto the chain of range checks (which terminates
1359   // in the default basic block). The switch's default will be changed
1360   // to the top of this chain after switch emission is complete.
1361   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1362   CaseRangeBlock = createBasicBlock("sw.caserange");
1363 
1364   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1365   Builder.SetInsertPoint(CaseRangeBlock);
1366 
1367   // Emit range check.
1368   llvm::Value *Diff =
1369     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1370   llvm::Value *Cond =
1371     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1372 
1373   llvm::MDNode *Weights = nullptr;
1374   if (SwitchWeights) {
1375     uint64_t ThisCount = getProfileCount(&S);
1376     uint64_t DefaultCount = (*SwitchWeights)[0];
1377     Weights = createProfileWeights(ThisCount, DefaultCount);
1378 
1379     // Since we're chaining the switch default through each large case range, we
1380     // need to update the weight for the default, ie, the first case, to include
1381     // this case.
1382     (*SwitchWeights)[0] += ThisCount;
1383   } else if (SwitchLikelihood)
1384     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1385 
1386   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1387 
1388   // Restore the appropriate insertion point.
1389   if (RestoreBB)
1390     Builder.SetInsertPoint(RestoreBB);
1391   else
1392     Builder.ClearInsertionPoint();
1393 }
1394 
1395 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1396                                    ArrayRef<const Attr *> Attrs) {
1397   // If there is no enclosing switch instance that we're aware of, then this
1398   // case statement and its block can be elided.  This situation only happens
1399   // when we've constant-folded the switch, are emitting the constant case,
1400   // and part of the constant case includes another case statement.  For
1401   // instance: switch (4) { case 4: do { case 5: } while (1); }
1402   if (!SwitchInsn) {
1403     EmitStmt(S.getSubStmt());
1404     return;
1405   }
1406 
1407   // Handle case ranges.
1408   if (S.getRHS()) {
1409     EmitCaseStmtRange(S, Attrs);
1410     return;
1411   }
1412 
1413   llvm::ConstantInt *CaseVal =
1414     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1415   if (SwitchLikelihood)
1416     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1417 
1418   // If the body of the case is just a 'break', try to not emit an empty block.
1419   // If we're profiling or we're not optimizing, leave the block in for better
1420   // debug and coverage analysis.
1421   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1422       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1423       isa<BreakStmt>(S.getSubStmt())) {
1424     JumpDest Block = BreakContinueStack.back().BreakBlock;
1425 
1426     // Only do this optimization if there are no cleanups that need emitting.
1427     if (isObviouslyBranchWithoutCleanups(Block)) {
1428       if (SwitchWeights)
1429         SwitchWeights->push_back(getProfileCount(&S));
1430       SwitchInsn->addCase(CaseVal, Block.getBlock());
1431 
1432       // If there was a fallthrough into this case, make sure to redirect it to
1433       // the end of the switch as well.
1434       if (Builder.GetInsertBlock()) {
1435         Builder.CreateBr(Block.getBlock());
1436         Builder.ClearInsertionPoint();
1437       }
1438       return;
1439     }
1440   }
1441 
1442   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1443   EmitBlockWithFallThrough(CaseDest, &S);
1444   if (SwitchWeights)
1445     SwitchWeights->push_back(getProfileCount(&S));
1446   SwitchInsn->addCase(CaseVal, CaseDest);
1447 
1448   // Recursively emitting the statement is acceptable, but is not wonderful for
1449   // code where we have many case statements nested together, i.e.:
1450   //  case 1:
1451   //    case 2:
1452   //      case 3: etc.
1453   // Handling this recursively will create a new block for each case statement
1454   // that falls through to the next case which is IR intensive.  It also causes
1455   // deep recursion which can run into stack depth limitations.  Handle
1456   // sequential non-range case statements specially.
1457   //
1458   // TODO When the next case has a likelihood attribute the code returns to the
1459   // recursive algorithm. Maybe improve this case if it becomes common practice
1460   // to use a lot of attributes.
1461   const CaseStmt *CurCase = &S;
1462   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1463 
1464   // Otherwise, iteratively add consecutive cases to this switch stmt.
1465   while (NextCase && NextCase->getRHS() == nullptr) {
1466     CurCase = NextCase;
1467     llvm::ConstantInt *CaseVal =
1468       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1469 
1470     if (SwitchWeights)
1471       SwitchWeights->push_back(getProfileCount(NextCase));
1472     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1473       CaseDest = createBasicBlock("sw.bb");
1474       EmitBlockWithFallThrough(CaseDest, CurCase);
1475     }
1476     // Since this loop is only executed when the CaseStmt has no attributes
1477     // use a hard-coded value.
1478     if (SwitchLikelihood)
1479       SwitchLikelihood->push_back(Stmt::LH_None);
1480 
1481     SwitchInsn->addCase(CaseVal, CaseDest);
1482     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1483   }
1484 
1485   // Normal default recursion for non-cases.
1486   EmitStmt(CurCase->getSubStmt());
1487 }
1488 
1489 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1490                                       ArrayRef<const Attr *> Attrs) {
1491   // If there is no enclosing switch instance that we're aware of, then this
1492   // default statement can be elided. This situation only happens when we've
1493   // constant-folded the switch.
1494   if (!SwitchInsn) {
1495     EmitStmt(S.getSubStmt());
1496     return;
1497   }
1498 
1499   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1500   assert(DefaultBlock->empty() &&
1501          "EmitDefaultStmt: Default block already defined?");
1502 
1503   if (SwitchLikelihood)
1504     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1505 
1506   EmitBlockWithFallThrough(DefaultBlock, &S);
1507 
1508   EmitStmt(S.getSubStmt());
1509 }
1510 
1511 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1512 /// constant value that is being switched on, see if we can dead code eliminate
1513 /// the body of the switch to a simple series of statements to emit.  Basically,
1514 /// on a switch (5) we want to find these statements:
1515 ///    case 5:
1516 ///      printf(...);    <--
1517 ///      ++i;            <--
1518 ///      break;
1519 ///
1520 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1521 /// transformation (for example, one of the elided statements contains a label
1522 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1523 /// should include statements after it (e.g. the printf() line is a substmt of
1524 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1525 /// statement, then return CSFC_Success.
1526 ///
1527 /// If Case is non-null, then we are looking for the specified case, checking
1528 /// that nothing we jump over contains labels.  If Case is null, then we found
1529 /// the case and are looking for the break.
1530 ///
1531 /// If the recursive walk actually finds our Case, then we set FoundCase to
1532 /// true.
1533 ///
1534 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1535 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1536                                             const SwitchCase *Case,
1537                                             bool &FoundCase,
1538                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1539   // If this is a null statement, just succeed.
1540   if (!S)
1541     return Case ? CSFC_Success : CSFC_FallThrough;
1542 
1543   // If this is the switchcase (case 4: or default) that we're looking for, then
1544   // we're in business.  Just add the substatement.
1545   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1546     if (S == Case) {
1547       FoundCase = true;
1548       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1549                                       ResultStmts);
1550     }
1551 
1552     // Otherwise, this is some other case or default statement, just ignore it.
1553     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1554                                     ResultStmts);
1555   }
1556 
1557   // If we are in the live part of the code and we found our break statement,
1558   // return a success!
1559   if (!Case && isa<BreakStmt>(S))
1560     return CSFC_Success;
1561 
1562   // If this is a switch statement, then it might contain the SwitchCase, the
1563   // break, or neither.
1564   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1565     // Handle this as two cases: we might be looking for the SwitchCase (if so
1566     // the skipped statements must be skippable) or we might already have it.
1567     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1568     bool StartedInLiveCode = FoundCase;
1569     unsigned StartSize = ResultStmts.size();
1570 
1571     // If we've not found the case yet, scan through looking for it.
1572     if (Case) {
1573       // Keep track of whether we see a skipped declaration.  The code could be
1574       // using the declaration even if it is skipped, so we can't optimize out
1575       // the decl if the kept statements might refer to it.
1576       bool HadSkippedDecl = false;
1577 
1578       // If we're looking for the case, just see if we can skip each of the
1579       // substatements.
1580       for (; Case && I != E; ++I) {
1581         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1582 
1583         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1584         case CSFC_Failure: return CSFC_Failure;
1585         case CSFC_Success:
1586           // A successful result means that either 1) that the statement doesn't
1587           // have the case and is skippable, or 2) does contain the case value
1588           // and also contains the break to exit the switch.  In the later case,
1589           // we just verify the rest of the statements are elidable.
1590           if (FoundCase) {
1591             // If we found the case and skipped declarations, we can't do the
1592             // optimization.
1593             if (HadSkippedDecl)
1594               return CSFC_Failure;
1595 
1596             for (++I; I != E; ++I)
1597               if (CodeGenFunction::ContainsLabel(*I, true))
1598                 return CSFC_Failure;
1599             return CSFC_Success;
1600           }
1601           break;
1602         case CSFC_FallThrough:
1603           // If we have a fallthrough condition, then we must have found the
1604           // case started to include statements.  Consider the rest of the
1605           // statements in the compound statement as candidates for inclusion.
1606           assert(FoundCase && "Didn't find case but returned fallthrough?");
1607           // We recursively found Case, so we're not looking for it anymore.
1608           Case = nullptr;
1609 
1610           // If we found the case and skipped declarations, we can't do the
1611           // optimization.
1612           if (HadSkippedDecl)
1613             return CSFC_Failure;
1614           break;
1615         }
1616       }
1617 
1618       if (!FoundCase)
1619         return CSFC_Success;
1620 
1621       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1622     }
1623 
1624     // If we have statements in our range, then we know that the statements are
1625     // live and need to be added to the set of statements we're tracking.
1626     bool AnyDecls = false;
1627     for (; I != E; ++I) {
1628       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1629 
1630       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1631       case CSFC_Failure: return CSFC_Failure;
1632       case CSFC_FallThrough:
1633         // A fallthrough result means that the statement was simple and just
1634         // included in ResultStmt, keep adding them afterwards.
1635         break;
1636       case CSFC_Success:
1637         // A successful result means that we found the break statement and
1638         // stopped statement inclusion.  We just ensure that any leftover stmts
1639         // are skippable and return success ourselves.
1640         for (++I; I != E; ++I)
1641           if (CodeGenFunction::ContainsLabel(*I, true))
1642             return CSFC_Failure;
1643         return CSFC_Success;
1644       }
1645     }
1646 
1647     // If we're about to fall out of a scope without hitting a 'break;', we
1648     // can't perform the optimization if there were any decls in that scope
1649     // (we'd lose their end-of-lifetime).
1650     if (AnyDecls) {
1651       // If the entire compound statement was live, there's one more thing we
1652       // can try before giving up: emit the whole thing as a single statement.
1653       // We can do that unless the statement contains a 'break;'.
1654       // FIXME: Such a break must be at the end of a construct within this one.
1655       // We could emit this by just ignoring the BreakStmts entirely.
1656       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1657         ResultStmts.resize(StartSize);
1658         ResultStmts.push_back(S);
1659       } else {
1660         return CSFC_Failure;
1661       }
1662     }
1663 
1664     return CSFC_FallThrough;
1665   }
1666 
1667   // Okay, this is some other statement that we don't handle explicitly, like a
1668   // for statement or increment etc.  If we are skipping over this statement,
1669   // just verify it doesn't have labels, which would make it invalid to elide.
1670   if (Case) {
1671     if (CodeGenFunction::ContainsLabel(S, true))
1672       return CSFC_Failure;
1673     return CSFC_Success;
1674   }
1675 
1676   // Otherwise, we want to include this statement.  Everything is cool with that
1677   // so long as it doesn't contain a break out of the switch we're in.
1678   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1679 
1680   // Otherwise, everything is great.  Include the statement and tell the caller
1681   // that we fall through and include the next statement as well.
1682   ResultStmts.push_back(S);
1683   return CSFC_FallThrough;
1684 }
1685 
1686 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1687 /// then invoke CollectStatementsForCase to find the list of statements to emit
1688 /// for a switch on constant.  See the comment above CollectStatementsForCase
1689 /// for more details.
1690 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1691                                        const llvm::APSInt &ConstantCondValue,
1692                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1693                                        ASTContext &C,
1694                                        const SwitchCase *&ResultCase) {
1695   // First step, find the switch case that is being branched to.  We can do this
1696   // efficiently by scanning the SwitchCase list.
1697   const SwitchCase *Case = S.getSwitchCaseList();
1698   const DefaultStmt *DefaultCase = nullptr;
1699 
1700   for (; Case; Case = Case->getNextSwitchCase()) {
1701     // It's either a default or case.  Just remember the default statement in
1702     // case we're not jumping to any numbered cases.
1703     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1704       DefaultCase = DS;
1705       continue;
1706     }
1707 
1708     // Check to see if this case is the one we're looking for.
1709     const CaseStmt *CS = cast<CaseStmt>(Case);
1710     // Don't handle case ranges yet.
1711     if (CS->getRHS()) return false;
1712 
1713     // If we found our case, remember it as 'case'.
1714     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1715       break;
1716   }
1717 
1718   // If we didn't find a matching case, we use a default if it exists, or we
1719   // elide the whole switch body!
1720   if (!Case) {
1721     // It is safe to elide the body of the switch if it doesn't contain labels
1722     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1723     if (!DefaultCase)
1724       return !CodeGenFunction::ContainsLabel(&S);
1725     Case = DefaultCase;
1726   }
1727 
1728   // Ok, we know which case is being jumped to, try to collect all the
1729   // statements that follow it.  This can fail for a variety of reasons.  Also,
1730   // check to see that the recursive walk actually found our case statement.
1731   // Insane cases like this can fail to find it in the recursive walk since we
1732   // don't handle every stmt kind:
1733   // switch (4) {
1734   //   while (1) {
1735   //     case 4: ...
1736   bool FoundCase = false;
1737   ResultCase = Case;
1738   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1739                                   ResultStmts) != CSFC_Failure &&
1740          FoundCase;
1741 }
1742 
1743 static Optional<SmallVector<uint64_t, 16>>
1744 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1745   // Are there enough branches to weight them?
1746   if (Likelihoods.size() <= 1)
1747     return None;
1748 
1749   uint64_t NumUnlikely = 0;
1750   uint64_t NumNone = 0;
1751   uint64_t NumLikely = 0;
1752   for (const auto LH : Likelihoods) {
1753     switch (LH) {
1754     case Stmt::LH_Unlikely:
1755       ++NumUnlikely;
1756       break;
1757     case Stmt::LH_None:
1758       ++NumNone;
1759       break;
1760     case Stmt::LH_Likely:
1761       ++NumLikely;
1762       break;
1763     }
1764   }
1765 
1766   // Is there a likelihood attribute used?
1767   if (NumUnlikely == 0 && NumLikely == 0)
1768     return None;
1769 
1770   // When multiple cases share the same code they can be combined during
1771   // optimization. In that case the weights of the branch will be the sum of
1772   // the individual weights. Make sure the combined sum of all neutral cases
1773   // doesn't exceed the value of a single likely attribute.
1774   // The additions both avoid divisions by 0 and make sure the weights of None
1775   // don't exceed the weight of Likely.
1776   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1777   const uint64_t None = Likely / (NumNone + 1);
1778   const uint64_t Unlikely = 0;
1779 
1780   SmallVector<uint64_t, 16> Result;
1781   Result.reserve(Likelihoods.size());
1782   for (const auto LH : Likelihoods) {
1783     switch (LH) {
1784     case Stmt::LH_Unlikely:
1785       Result.push_back(Unlikely);
1786       break;
1787     case Stmt::LH_None:
1788       Result.push_back(None);
1789       break;
1790     case Stmt::LH_Likely:
1791       Result.push_back(Likely);
1792       break;
1793     }
1794   }
1795 
1796   return Result;
1797 }
1798 
1799 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1800   // Handle nested switch statements.
1801   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1802   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1803   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1804   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1805 
1806   // See if we can constant fold the condition of the switch and therefore only
1807   // emit the live case statement (if any) of the switch.
1808   llvm::APSInt ConstantCondValue;
1809   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1810     SmallVector<const Stmt*, 4> CaseStmts;
1811     const SwitchCase *Case = nullptr;
1812     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1813                                    getContext(), Case)) {
1814       if (Case)
1815         incrementProfileCounter(Case);
1816       RunCleanupsScope ExecutedScope(*this);
1817 
1818       if (S.getInit())
1819         EmitStmt(S.getInit());
1820 
1821       // Emit the condition variable if needed inside the entire cleanup scope
1822       // used by this special case for constant folded switches.
1823       if (S.getConditionVariable())
1824         EmitDecl(*S.getConditionVariable());
1825 
1826       // At this point, we are no longer "within" a switch instance, so
1827       // we can temporarily enforce this to ensure that any embedded case
1828       // statements are not emitted.
1829       SwitchInsn = nullptr;
1830 
1831       // Okay, we can dead code eliminate everything except this case.  Emit the
1832       // specified series of statements and we're good.
1833       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1834         EmitStmt(CaseStmts[i]);
1835       incrementProfileCounter(&S);
1836 
1837       // Now we want to restore the saved switch instance so that nested
1838       // switches continue to function properly
1839       SwitchInsn = SavedSwitchInsn;
1840 
1841       return;
1842     }
1843   }
1844 
1845   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1846 
1847   RunCleanupsScope ConditionScope(*this);
1848 
1849   if (S.getInit())
1850     EmitStmt(S.getInit());
1851 
1852   if (S.getConditionVariable())
1853     EmitDecl(*S.getConditionVariable());
1854   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1855 
1856   // Create basic block to hold stuff that comes after switch
1857   // statement. We also need to create a default block now so that
1858   // explicit case ranges tests can have a place to jump to on
1859   // failure.
1860   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1861   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1862   if (PGO.haveRegionCounts()) {
1863     // Walk the SwitchCase list to find how many there are.
1864     uint64_t DefaultCount = 0;
1865     unsigned NumCases = 0;
1866     for (const SwitchCase *Case = S.getSwitchCaseList();
1867          Case;
1868          Case = Case->getNextSwitchCase()) {
1869       if (isa<DefaultStmt>(Case))
1870         DefaultCount = getProfileCount(Case);
1871       NumCases += 1;
1872     }
1873     SwitchWeights = new SmallVector<uint64_t, 16>();
1874     SwitchWeights->reserve(NumCases);
1875     // The default needs to be first. We store the edge count, so we already
1876     // know the right weight.
1877     SwitchWeights->push_back(DefaultCount);
1878   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1879     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1880     // Initialize the default case.
1881     SwitchLikelihood->push_back(Stmt::LH_None);
1882   }
1883 
1884   CaseRangeBlock = DefaultBlock;
1885 
1886   // Clear the insertion point to indicate we are in unreachable code.
1887   Builder.ClearInsertionPoint();
1888 
1889   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1890   // then reuse last ContinueBlock.
1891   JumpDest OuterContinue;
1892   if (!BreakContinueStack.empty())
1893     OuterContinue = BreakContinueStack.back().ContinueBlock;
1894 
1895   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1896 
1897   // Emit switch body.
1898   EmitStmt(S.getBody());
1899 
1900   BreakContinueStack.pop_back();
1901 
1902   // Update the default block in case explicit case range tests have
1903   // been chained on top.
1904   SwitchInsn->setDefaultDest(CaseRangeBlock);
1905 
1906   // If a default was never emitted:
1907   if (!DefaultBlock->getParent()) {
1908     // If we have cleanups, emit the default block so that there's a
1909     // place to jump through the cleanups from.
1910     if (ConditionScope.requiresCleanups()) {
1911       EmitBlock(DefaultBlock);
1912 
1913     // Otherwise, just forward the default block to the switch end.
1914     } else {
1915       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1916       delete DefaultBlock;
1917     }
1918   }
1919 
1920   ConditionScope.ForceCleanup();
1921 
1922   // Emit continuation.
1923   EmitBlock(SwitchExit.getBlock(), true);
1924   incrementProfileCounter(&S);
1925 
1926   // If the switch has a condition wrapped by __builtin_unpredictable,
1927   // create metadata that specifies that the switch is unpredictable.
1928   // Don't bother if not optimizing because that metadata would not be used.
1929   auto *Call = dyn_cast<CallExpr>(S.getCond());
1930   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1931     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1932     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1933       llvm::MDBuilder MDHelper(getLLVMContext());
1934       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1935                               MDHelper.createUnpredictable());
1936     }
1937   }
1938 
1939   if (SwitchWeights) {
1940     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1941            "switch weights do not match switch cases");
1942     // If there's only one jump destination there's no sense weighting it.
1943     if (SwitchWeights->size() > 1)
1944       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1945                               createProfileWeights(*SwitchWeights));
1946     delete SwitchWeights;
1947   } else if (SwitchLikelihood) {
1948     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1949            "switch likelihoods do not match switch cases");
1950     Optional<SmallVector<uint64_t, 16>> LHW =
1951         getLikelihoodWeights(*SwitchLikelihood);
1952     if (LHW) {
1953       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
1954       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1955                               createProfileWeights(*LHW));
1956     }
1957     delete SwitchLikelihood;
1958   }
1959   SwitchInsn = SavedSwitchInsn;
1960   SwitchWeights = SavedSwitchWeights;
1961   SwitchLikelihood = SavedSwitchLikelihood;
1962   CaseRangeBlock = SavedCRBlock;
1963 }
1964 
1965 static std::string
1966 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1967                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1968   std::string Result;
1969 
1970   while (*Constraint) {
1971     switch (*Constraint) {
1972     default:
1973       Result += Target.convertConstraint(Constraint);
1974       break;
1975     // Ignore these
1976     case '*':
1977     case '?':
1978     case '!':
1979     case '=': // Will see this and the following in mult-alt constraints.
1980     case '+':
1981       break;
1982     case '#': // Ignore the rest of the constraint alternative.
1983       while (Constraint[1] && Constraint[1] != ',')
1984         Constraint++;
1985       break;
1986     case '&':
1987     case '%':
1988       Result += *Constraint;
1989       while (Constraint[1] && Constraint[1] == *Constraint)
1990         Constraint++;
1991       break;
1992     case ',':
1993       Result += "|";
1994       break;
1995     case 'g':
1996       Result += "imr";
1997       break;
1998     case '[': {
1999       assert(OutCons &&
2000              "Must pass output names to constraints with a symbolic name");
2001       unsigned Index;
2002       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2003       assert(result && "Could not resolve symbolic name"); (void)result;
2004       Result += llvm::utostr(Index);
2005       break;
2006     }
2007     }
2008 
2009     Constraint++;
2010   }
2011 
2012   return Result;
2013 }
2014 
2015 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2016 /// as using a particular register add that as a constraint that will be used
2017 /// in this asm stmt.
2018 static std::string
2019 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2020                        const TargetInfo &Target, CodeGenModule &CGM,
2021                        const AsmStmt &Stmt, const bool EarlyClobber,
2022                        std::string *GCCReg = nullptr) {
2023   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2024   if (!AsmDeclRef)
2025     return Constraint;
2026   const ValueDecl &Value = *AsmDeclRef->getDecl();
2027   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2028   if (!Variable)
2029     return Constraint;
2030   if (Variable->getStorageClass() != SC_Register)
2031     return Constraint;
2032   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2033   if (!Attr)
2034     return Constraint;
2035   StringRef Register = Attr->getLabel();
2036   assert(Target.isValidGCCRegisterName(Register));
2037   // We're using validateOutputConstraint here because we only care if
2038   // this is a register constraint.
2039   TargetInfo::ConstraintInfo Info(Constraint, "");
2040   if (Target.validateOutputConstraint(Info) &&
2041       !Info.allowsRegister()) {
2042     CGM.ErrorUnsupported(&Stmt, "__asm__");
2043     return Constraint;
2044   }
2045   // Canonicalize the register here before returning it.
2046   Register = Target.getNormalizedGCCRegisterName(Register);
2047   if (GCCReg != nullptr)
2048     *GCCReg = Register.str();
2049   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2050 }
2051 
2052 llvm::Value*
2053 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2054                                     LValue InputValue, QualType InputType,
2055                                     std::string &ConstraintStr,
2056                                     SourceLocation Loc) {
2057   llvm::Value *Arg;
2058   if (Info.allowsRegister() || !Info.allowsMemory()) {
2059     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
2060       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
2061     } else {
2062       llvm::Type *Ty = ConvertType(InputType);
2063       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2064       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
2065         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2066         Ty = llvm::PointerType::getUnqual(Ty);
2067 
2068         Arg = Builder.CreateLoad(
2069             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2070       } else {
2071         Arg = InputValue.getPointer(*this);
2072         ConstraintStr += '*';
2073       }
2074     }
2075   } else {
2076     Arg = InputValue.getPointer(*this);
2077     ConstraintStr += '*';
2078   }
2079 
2080   return Arg;
2081 }
2082 
2083 llvm::Value* CodeGenFunction::EmitAsmInput(
2084                                          const TargetInfo::ConstraintInfo &Info,
2085                                            const Expr *InputExpr,
2086                                            std::string &ConstraintStr) {
2087   // If this can't be a register or memory, i.e., has to be a constant
2088   // (immediate or symbolic), try to emit it as such.
2089   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2090     if (Info.requiresImmediateConstant()) {
2091       Expr::EvalResult EVResult;
2092       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2093 
2094       llvm::APSInt IntResult;
2095       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2096                                           getContext()))
2097         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2098     }
2099 
2100     Expr::EvalResult Result;
2101     if (InputExpr->EvaluateAsInt(Result, getContext()))
2102       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2103   }
2104 
2105   if (Info.allowsRegister() || !Info.allowsMemory())
2106     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2107       return EmitScalarExpr(InputExpr);
2108   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2109     return EmitScalarExpr(InputExpr);
2110   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2111   LValue Dest = EmitLValue(InputExpr);
2112   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2113                             InputExpr->getExprLoc());
2114 }
2115 
2116 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2117 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2118 /// integers which are the source locations of the start of each line in the
2119 /// asm.
2120 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2121                                       CodeGenFunction &CGF) {
2122   SmallVector<llvm::Metadata *, 8> Locs;
2123   // Add the location of the first line to the MDNode.
2124   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2125       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
2126   StringRef StrVal = Str->getString();
2127   if (!StrVal.empty()) {
2128     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2129     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2130     unsigned StartToken = 0;
2131     unsigned ByteOffset = 0;
2132 
2133     // Add the location of the start of each subsequent line of the asm to the
2134     // MDNode.
2135     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2136       if (StrVal[i] != '\n') continue;
2137       SourceLocation LineLoc = Str->getLocationOfByte(
2138           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2139       Locs.push_back(llvm::ConstantAsMetadata::get(
2140           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
2141     }
2142   }
2143 
2144   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2145 }
2146 
2147 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2148                               bool ReadOnly, bool ReadNone, bool NoMerge,
2149                               const AsmStmt &S,
2150                               const std::vector<llvm::Type *> &ResultRegTypes,
2151                               CodeGenFunction &CGF,
2152                               std::vector<llvm::Value *> &RegResults) {
2153   Result.addAttribute(llvm::AttributeList::FunctionIndex,
2154                       llvm::Attribute::NoUnwind);
2155   if (NoMerge)
2156     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2157                         llvm::Attribute::NoMerge);
2158   // Attach readnone and readonly attributes.
2159   if (!HasSideEffect) {
2160     if (ReadNone)
2161       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2162                           llvm::Attribute::ReadNone);
2163     else if (ReadOnly)
2164       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2165                           llvm::Attribute::ReadOnly);
2166   }
2167 
2168   // Slap the source location of the inline asm into a !srcloc metadata on the
2169   // call.
2170   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2171     Result.setMetadata("srcloc",
2172                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2173   else {
2174     // At least put the line number on MS inline asm blobs.
2175     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2176                                         S.getAsmLoc().getRawEncoding());
2177     Result.setMetadata("srcloc",
2178                        llvm::MDNode::get(CGF.getLLVMContext(),
2179                                          llvm::ConstantAsMetadata::get(Loc)));
2180   }
2181 
2182   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2183     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2184     // convergent (meaning, they may call an intrinsically convergent op, such
2185     // as bar.sync, and so can't have certain optimizations applied around
2186     // them).
2187     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2188                         llvm::Attribute::Convergent);
2189   // Extract all of the register value results from the asm.
2190   if (ResultRegTypes.size() == 1) {
2191     RegResults.push_back(&Result);
2192   } else {
2193     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2194       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2195       RegResults.push_back(Tmp);
2196     }
2197   }
2198 }
2199 
2200 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2201   // Assemble the final asm string.
2202   std::string AsmString = S.generateAsmString(getContext());
2203 
2204   // Get all the output and input constraints together.
2205   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2206   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2207 
2208   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2209     StringRef Name;
2210     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2211       Name = GAS->getOutputName(i);
2212     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2213     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2214     assert(IsValid && "Failed to parse output constraint");
2215     OutputConstraintInfos.push_back(Info);
2216   }
2217 
2218   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2219     StringRef Name;
2220     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2221       Name = GAS->getInputName(i);
2222     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2223     bool IsValid =
2224       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2225     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2226     InputConstraintInfos.push_back(Info);
2227   }
2228 
2229   std::string Constraints;
2230 
2231   std::vector<LValue> ResultRegDests;
2232   std::vector<QualType> ResultRegQualTys;
2233   std::vector<llvm::Type *> ResultRegTypes;
2234   std::vector<llvm::Type *> ResultTruncRegTypes;
2235   std::vector<llvm::Type *> ArgTypes;
2236   std::vector<llvm::Value*> Args;
2237   llvm::BitVector ResultTypeRequiresCast;
2238 
2239   // Keep track of inout constraints.
2240   std::string InOutConstraints;
2241   std::vector<llvm::Value*> InOutArgs;
2242   std::vector<llvm::Type*> InOutArgTypes;
2243 
2244   // Keep track of out constraints for tied input operand.
2245   std::vector<std::string> OutputConstraints;
2246 
2247   // Keep track of defined physregs.
2248   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2249 
2250   // An inline asm can be marked readonly if it meets the following conditions:
2251   //  - it doesn't have any sideeffects
2252   //  - it doesn't clobber memory
2253   //  - it doesn't return a value by-reference
2254   // It can be marked readnone if it doesn't have any input memory constraints
2255   // in addition to meeting the conditions listed above.
2256   bool ReadOnly = true, ReadNone = true;
2257 
2258   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2259     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2260 
2261     // Simplify the output constraint.
2262     std::string OutputConstraint(S.getOutputConstraint(i));
2263     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2264                                           getTarget(), &OutputConstraintInfos);
2265 
2266     const Expr *OutExpr = S.getOutputExpr(i);
2267     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2268 
2269     std::string GCCReg;
2270     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2271                                               getTarget(), CGM, S,
2272                                               Info.earlyClobber(),
2273                                               &GCCReg);
2274     // Give an error on multiple outputs to same physreg.
2275     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2276       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2277 
2278     OutputConstraints.push_back(OutputConstraint);
2279     LValue Dest = EmitLValue(OutExpr);
2280     if (!Constraints.empty())
2281       Constraints += ',';
2282 
2283     // If this is a register output, then make the inline asm return it
2284     // by-value.  If this is a memory result, return the value by-reference.
2285     bool isScalarizableAggregate =
2286         hasAggregateEvaluationKind(OutExpr->getType());
2287     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2288                                  isScalarizableAggregate)) {
2289       Constraints += "=" + OutputConstraint;
2290       ResultRegQualTys.push_back(OutExpr->getType());
2291       ResultRegDests.push_back(Dest);
2292       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2293       if (Info.allowsRegister() && isScalarizableAggregate) {
2294         ResultTypeRequiresCast.push_back(true);
2295         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2296         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2297         ResultRegTypes.push_back(ConvTy);
2298       } else {
2299         ResultTypeRequiresCast.push_back(false);
2300         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2301       }
2302       // If this output is tied to an input, and if the input is larger, then
2303       // we need to set the actual result type of the inline asm node to be the
2304       // same as the input type.
2305       if (Info.hasMatchingInput()) {
2306         unsigned InputNo;
2307         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2308           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2309           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2310             break;
2311         }
2312         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2313 
2314         QualType InputTy = S.getInputExpr(InputNo)->getType();
2315         QualType OutputType = OutExpr->getType();
2316 
2317         uint64_t InputSize = getContext().getTypeSize(InputTy);
2318         if (getContext().getTypeSize(OutputType) < InputSize) {
2319           // Form the asm to return the value as a larger integer or fp type.
2320           ResultRegTypes.back() = ConvertType(InputTy);
2321         }
2322       }
2323       if (llvm::Type* AdjTy =
2324             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2325                                                  ResultRegTypes.back()))
2326         ResultRegTypes.back() = AdjTy;
2327       else {
2328         CGM.getDiags().Report(S.getAsmLoc(),
2329                               diag::err_asm_invalid_type_in_input)
2330             << OutExpr->getType() << OutputConstraint;
2331       }
2332 
2333       // Update largest vector width for any vector types.
2334       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2335         LargestVectorWidth =
2336             std::max((uint64_t)LargestVectorWidth,
2337                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2338     } else {
2339       llvm::Type *DestAddrTy = Dest.getAddress(*this).getType();
2340       llvm::Value *DestPtr = Dest.getPointer(*this);
2341       // Matrix types in memory are represented by arrays, but accessed through
2342       // vector pointers, with the alignment specified on the access operation.
2343       // For inline assembly, update pointer arguments to use vector pointers.
2344       // Otherwise there will be a mis-match if the matrix is also an
2345       // input-argument which is represented as vector.
2346       if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) {
2347         DestAddrTy = llvm::PointerType::get(
2348             ConvertType(OutExpr->getType()),
2349             cast<llvm::PointerType>(DestAddrTy)->getAddressSpace());
2350         DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy);
2351       }
2352       ArgTypes.push_back(DestAddrTy);
2353       Args.push_back(DestPtr);
2354       Constraints += "=*";
2355       Constraints += OutputConstraint;
2356       ReadOnly = ReadNone = false;
2357     }
2358 
2359     if (Info.isReadWrite()) {
2360       InOutConstraints += ',';
2361 
2362       const Expr *InputExpr = S.getOutputExpr(i);
2363       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2364                                             InOutConstraints,
2365                                             InputExpr->getExprLoc());
2366 
2367       if (llvm::Type* AdjTy =
2368           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2369                                                Arg->getType()))
2370         Arg = Builder.CreateBitCast(Arg, AdjTy);
2371 
2372       // Update largest vector width for any vector types.
2373       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2374         LargestVectorWidth =
2375             std::max((uint64_t)LargestVectorWidth,
2376                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2377       // Only tie earlyclobber physregs.
2378       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2379         InOutConstraints += llvm::utostr(i);
2380       else
2381         InOutConstraints += OutputConstraint;
2382 
2383       InOutArgTypes.push_back(Arg->getType());
2384       InOutArgs.push_back(Arg);
2385     }
2386   }
2387 
2388   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2389   // to the return value slot. Only do this when returning in registers.
2390   if (isa<MSAsmStmt>(&S)) {
2391     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2392     if (RetAI.isDirect() || RetAI.isExtend()) {
2393       // Make a fake lvalue for the return value slot.
2394       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2395       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2396           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2397           ResultRegDests, AsmString, S.getNumOutputs());
2398       SawAsmBlock = true;
2399     }
2400   }
2401 
2402   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2403     const Expr *InputExpr = S.getInputExpr(i);
2404 
2405     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2406 
2407     if (Info.allowsMemory())
2408       ReadNone = false;
2409 
2410     if (!Constraints.empty())
2411       Constraints += ',';
2412 
2413     // Simplify the input constraint.
2414     std::string InputConstraint(S.getInputConstraint(i));
2415     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2416                                          &OutputConstraintInfos);
2417 
2418     InputConstraint = AddVariableConstraints(
2419         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2420         getTarget(), CGM, S, false /* No EarlyClobber */);
2421 
2422     std::string ReplaceConstraint (InputConstraint);
2423     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2424 
2425     // If this input argument is tied to a larger output result, extend the
2426     // input to be the same size as the output.  The LLVM backend wants to see
2427     // the input and output of a matching constraint be the same size.  Note
2428     // that GCC does not define what the top bits are here.  We use zext because
2429     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2430     if (Info.hasTiedOperand()) {
2431       unsigned Output = Info.getTiedOperand();
2432       QualType OutputType = S.getOutputExpr(Output)->getType();
2433       QualType InputTy = InputExpr->getType();
2434 
2435       if (getContext().getTypeSize(OutputType) >
2436           getContext().getTypeSize(InputTy)) {
2437         // Use ptrtoint as appropriate so that we can do our extension.
2438         if (isa<llvm::PointerType>(Arg->getType()))
2439           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2440         llvm::Type *OutputTy = ConvertType(OutputType);
2441         if (isa<llvm::IntegerType>(OutputTy))
2442           Arg = Builder.CreateZExt(Arg, OutputTy);
2443         else if (isa<llvm::PointerType>(OutputTy))
2444           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2445         else {
2446           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2447           Arg = Builder.CreateFPExt(Arg, OutputTy);
2448         }
2449       }
2450       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2451       ReplaceConstraint = OutputConstraints[Output];
2452     }
2453     if (llvm::Type* AdjTy =
2454           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2455                                                    Arg->getType()))
2456       Arg = Builder.CreateBitCast(Arg, AdjTy);
2457     else
2458       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2459           << InputExpr->getType() << InputConstraint;
2460 
2461     // Update largest vector width for any vector types.
2462     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2463       LargestVectorWidth =
2464           std::max((uint64_t)LargestVectorWidth,
2465                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2466 
2467     ArgTypes.push_back(Arg->getType());
2468     Args.push_back(Arg);
2469     Constraints += InputConstraint;
2470   }
2471 
2472   // Labels
2473   SmallVector<llvm::BasicBlock *, 16> Transfer;
2474   llvm::BasicBlock *Fallthrough = nullptr;
2475   bool IsGCCAsmGoto = false;
2476   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2477     IsGCCAsmGoto = GS->isAsmGoto();
2478     if (IsGCCAsmGoto) {
2479       for (const auto *E : GS->labels()) {
2480         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2481         Transfer.push_back(Dest.getBlock());
2482         llvm::BlockAddress *BA =
2483             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2484         Args.push_back(BA);
2485         ArgTypes.push_back(BA->getType());
2486         if (!Constraints.empty())
2487           Constraints += ',';
2488         Constraints += 'X';
2489       }
2490       Fallthrough = createBasicBlock("asm.fallthrough");
2491     }
2492   }
2493 
2494   // Append the "input" part of inout constraints last.
2495   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2496     ArgTypes.push_back(InOutArgTypes[i]);
2497     Args.push_back(InOutArgs[i]);
2498   }
2499   Constraints += InOutConstraints;
2500 
2501   // Clobbers
2502   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2503     StringRef Clobber = S.getClobber(i);
2504 
2505     if (Clobber == "memory")
2506       ReadOnly = ReadNone = false;
2507     else if (Clobber != "cc") {
2508       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2509       if (CGM.getCodeGenOpts().StackClashProtector &&
2510           getTarget().isSPRegName(Clobber)) {
2511         CGM.getDiags().Report(S.getAsmLoc(),
2512                               diag::warn_stack_clash_protection_inline_asm);
2513       }
2514     }
2515 
2516     if (isa<MSAsmStmt>(&S)) {
2517       if (Clobber == "eax" || Clobber == "edx") {
2518         if (Constraints.find("=&A") != std::string::npos)
2519           continue;
2520         std::string::size_type position1 =
2521             Constraints.find("={" + Clobber.str() + "}");
2522         if (position1 != std::string::npos) {
2523           Constraints.insert(position1 + 1, "&");
2524           continue;
2525         }
2526         std::string::size_type position2 = Constraints.find("=A");
2527         if (position2 != std::string::npos) {
2528           Constraints.insert(position2 + 1, "&");
2529           continue;
2530         }
2531       }
2532     }
2533     if (!Constraints.empty())
2534       Constraints += ',';
2535 
2536     Constraints += "~{";
2537     Constraints += Clobber;
2538     Constraints += '}';
2539   }
2540 
2541   // Add machine specific clobbers
2542   std::string MachineClobbers = getTarget().getClobbers();
2543   if (!MachineClobbers.empty()) {
2544     if (!Constraints.empty())
2545       Constraints += ',';
2546     Constraints += MachineClobbers;
2547   }
2548 
2549   llvm::Type *ResultType;
2550   if (ResultRegTypes.empty())
2551     ResultType = VoidTy;
2552   else if (ResultRegTypes.size() == 1)
2553     ResultType = ResultRegTypes[0];
2554   else
2555     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2556 
2557   llvm::FunctionType *FTy =
2558     llvm::FunctionType::get(ResultType, ArgTypes, false);
2559 
2560   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2561   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2562     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2563   llvm::InlineAsm *IA =
2564     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2565                          /* IsAlignStack */ false, AsmDialect);
2566   std::vector<llvm::Value*> RegResults;
2567   if (IsGCCAsmGoto) {
2568     llvm::CallBrInst *Result =
2569         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2570     EmitBlock(Fallthrough);
2571     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2572                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2573                       *this, RegResults);
2574   } else {
2575     llvm::CallInst *Result =
2576         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2577     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2578                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2579                       *this, RegResults);
2580   }
2581 
2582   assert(RegResults.size() == ResultRegTypes.size());
2583   assert(RegResults.size() == ResultTruncRegTypes.size());
2584   assert(RegResults.size() == ResultRegDests.size());
2585   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2586   // in which case its size may grow.
2587   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2588   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2589     llvm::Value *Tmp = RegResults[i];
2590 
2591     // If the result type of the LLVM IR asm doesn't match the result type of
2592     // the expression, do the conversion.
2593     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2594       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2595 
2596       // Truncate the integer result to the right size, note that TruncTy can be
2597       // a pointer.
2598       if (TruncTy->isFloatingPointTy())
2599         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2600       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2601         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2602         Tmp = Builder.CreateTrunc(Tmp,
2603                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2604         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2605       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2606         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2607         Tmp = Builder.CreatePtrToInt(Tmp,
2608                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2609         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2610       } else if (TruncTy->isIntegerTy()) {
2611         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2612       } else if (TruncTy->isVectorTy()) {
2613         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2614       }
2615     }
2616 
2617     LValue Dest = ResultRegDests[i];
2618     // ResultTypeRequiresCast elements correspond to the first
2619     // ResultTypeRequiresCast.size() elements of RegResults.
2620     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2621       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2622       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2623                                         ResultRegTypes[i]->getPointerTo());
2624       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2625       if (Ty.isNull()) {
2626         const Expr *OutExpr = S.getOutputExpr(i);
2627         CGM.Error(
2628             OutExpr->getExprLoc(),
2629             "impossible constraint in asm: can't store value into a register");
2630         return;
2631       }
2632       Dest = MakeAddrLValue(A, Ty);
2633     }
2634     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2635   }
2636 }
2637 
2638 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2639   const RecordDecl *RD = S.getCapturedRecordDecl();
2640   QualType RecordTy = getContext().getRecordType(RD);
2641 
2642   // Initialize the captured struct.
2643   LValue SlotLV =
2644     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2645 
2646   RecordDecl::field_iterator CurField = RD->field_begin();
2647   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2648                                                  E = S.capture_init_end();
2649        I != E; ++I, ++CurField) {
2650     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2651     if (CurField->hasCapturedVLAType()) {
2652       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2653     } else {
2654       EmitInitializerForField(*CurField, LV, *I);
2655     }
2656   }
2657 
2658   return SlotLV;
2659 }
2660 
2661 /// Generate an outlined function for the body of a CapturedStmt, store any
2662 /// captured variables into the captured struct, and call the outlined function.
2663 llvm::Function *
2664 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2665   LValue CapStruct = InitCapturedStruct(S);
2666 
2667   // Emit the CapturedDecl
2668   CodeGenFunction CGF(CGM, true);
2669   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2670   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2671   delete CGF.CapturedStmtInfo;
2672 
2673   // Emit call to the helper function.
2674   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2675 
2676   return F;
2677 }
2678 
2679 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2680   LValue CapStruct = InitCapturedStruct(S);
2681   return CapStruct.getAddress(*this);
2682 }
2683 
2684 /// Creates the outlined function for a CapturedStmt.
2685 llvm::Function *
2686 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2687   assert(CapturedStmtInfo &&
2688     "CapturedStmtInfo should be set when generating the captured function");
2689   const CapturedDecl *CD = S.getCapturedDecl();
2690   const RecordDecl *RD = S.getCapturedRecordDecl();
2691   SourceLocation Loc = S.getBeginLoc();
2692   assert(CD->hasBody() && "missing CapturedDecl body");
2693 
2694   // Build the argument list.
2695   ASTContext &Ctx = CGM.getContext();
2696   FunctionArgList Args;
2697   Args.append(CD->param_begin(), CD->param_end());
2698 
2699   // Create the function declaration.
2700   const CGFunctionInfo &FuncInfo =
2701     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2702   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2703 
2704   llvm::Function *F =
2705     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2706                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2707   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2708   if (CD->isNothrow())
2709     F->addFnAttr(llvm::Attribute::NoUnwind);
2710 
2711   // Generate the function.
2712   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2713                 CD->getBody()->getBeginLoc());
2714   // Set the context parameter in CapturedStmtInfo.
2715   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2716   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2717 
2718   // Initialize variable-length arrays.
2719   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2720                                            Ctx.getTagDeclType(RD));
2721   for (auto *FD : RD->fields()) {
2722     if (FD->hasCapturedVLAType()) {
2723       auto *ExprArg =
2724           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2725               .getScalarVal();
2726       auto VAT = FD->getCapturedVLAType();
2727       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2728     }
2729   }
2730 
2731   // If 'this' is captured, load it into CXXThisValue.
2732   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2733     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2734     LValue ThisLValue = EmitLValueForField(Base, FD);
2735     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2736   }
2737 
2738   PGO.assignRegionCounters(GlobalDecl(CD), F);
2739   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2740   FinishFunction(CD->getBodyRBrace());
2741 
2742   return F;
2743 }
2744