1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/DiagnosticSema.h" 22 #include "clang/Basic/PrettyStackTrace.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/Support/SaveAndRestore.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===----------------------------------------------------------------------===// 37 // Statement Emission 38 //===----------------------------------------------------------------------===// 39 40 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 41 if (CGDebugInfo *DI = getDebugInfo()) { 42 SourceLocation Loc; 43 Loc = S->getBeginLoc(); 44 DI->EmitLocation(Builder, Loc); 45 46 LastStopPoint = Loc; 47 } 48 } 49 50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 51 assert(S && "Null statement?"); 52 PGO.setCurrentStmt(S); 53 54 // These statements have their own debug info handling. 55 if (EmitSimpleStmt(S, Attrs)) 56 return; 57 58 // Check if we are generating unreachable code. 59 if (!HaveInsertPoint()) { 60 // If so, and the statement doesn't contain a label, then we do not need to 61 // generate actual code. This is safe because (1) the current point is 62 // unreachable, so we don't need to execute the code, and (2) we've already 63 // handled the statements which update internal data structures (like the 64 // local variable map) which could be used by subsequent statements. 65 if (!ContainsLabel(S)) { 66 // Verify that any decl statements were handled as simple, they may be in 67 // scope of subsequent reachable statements. 68 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 69 return; 70 } 71 72 // Otherwise, make a new block to hold the code. 73 EnsureInsertPoint(); 74 } 75 76 // Generate a stoppoint if we are emitting debug info. 77 EmitStopPoint(S); 78 79 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 80 // enabled. 81 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 82 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 83 EmitSimpleOMPExecutableDirective(*D); 84 return; 85 } 86 } 87 88 switch (S->getStmtClass()) { 89 case Stmt::NoStmtClass: 90 case Stmt::CXXCatchStmtClass: 91 case Stmt::SEHExceptStmtClass: 92 case Stmt::SEHFinallyStmtClass: 93 case Stmt::MSDependentExistsStmtClass: 94 llvm_unreachable("invalid statement class to emit generically"); 95 case Stmt::NullStmtClass: 96 case Stmt::CompoundStmtClass: 97 case Stmt::DeclStmtClass: 98 case Stmt::LabelStmtClass: 99 case Stmt::AttributedStmtClass: 100 case Stmt::GotoStmtClass: 101 case Stmt::BreakStmtClass: 102 case Stmt::ContinueStmtClass: 103 case Stmt::DefaultStmtClass: 104 case Stmt::CaseStmtClass: 105 case Stmt::SEHLeaveStmtClass: 106 llvm_unreachable("should have emitted these statements as simple"); 107 108 #define STMT(Type, Base) 109 #define ABSTRACT_STMT(Op) 110 #define EXPR(Type, Base) \ 111 case Stmt::Type##Class: 112 #include "clang/AST/StmtNodes.inc" 113 { 114 // Remember the block we came in on. 115 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 116 assert(incoming && "expression emission must have an insertion point"); 117 118 EmitIgnoredExpr(cast<Expr>(S)); 119 120 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 121 assert(outgoing && "expression emission cleared block!"); 122 123 // The expression emitters assume (reasonably!) that the insertion 124 // point is always set. To maintain that, the call-emission code 125 // for noreturn functions has to enter a new block with no 126 // predecessors. We want to kill that block and mark the current 127 // insertion point unreachable in the common case of a call like 128 // "exit();". Since expression emission doesn't otherwise create 129 // blocks with no predecessors, we can just test for that. 130 // However, we must be careful not to do this to our incoming 131 // block, because *statement* emission does sometimes create 132 // reachable blocks which will have no predecessors until later in 133 // the function. This occurs with, e.g., labels that are not 134 // reachable by fallthrough. 135 if (incoming != outgoing && outgoing->use_empty()) { 136 outgoing->eraseFromParent(); 137 Builder.ClearInsertionPoint(); 138 } 139 break; 140 } 141 142 case Stmt::IndirectGotoStmtClass: 143 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 144 145 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 146 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 147 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 148 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 149 150 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 151 152 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 153 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 154 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 155 case Stmt::CoroutineBodyStmtClass: 156 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 157 break; 158 case Stmt::CoreturnStmtClass: 159 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 160 break; 161 case Stmt::CapturedStmtClass: { 162 const CapturedStmt *CS = cast<CapturedStmt>(S); 163 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 164 } 165 break; 166 case Stmt::ObjCAtTryStmtClass: 167 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 168 break; 169 case Stmt::ObjCAtCatchStmtClass: 170 llvm_unreachable( 171 "@catch statements should be handled by EmitObjCAtTryStmt"); 172 case Stmt::ObjCAtFinallyStmtClass: 173 llvm_unreachable( 174 "@finally statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtThrowStmtClass: 176 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 177 break; 178 case Stmt::ObjCAtSynchronizedStmtClass: 179 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 180 break; 181 case Stmt::ObjCForCollectionStmtClass: 182 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 183 break; 184 case Stmt::ObjCAutoreleasePoolStmtClass: 185 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 186 break; 187 188 case Stmt::CXXTryStmtClass: 189 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 190 break; 191 case Stmt::CXXForRangeStmtClass: 192 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 193 break; 194 case Stmt::SEHTryStmtClass: 195 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 196 break; 197 case Stmt::OMPParallelDirectiveClass: 198 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 199 break; 200 case Stmt::OMPSimdDirectiveClass: 201 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 202 break; 203 case Stmt::OMPTileDirectiveClass: 204 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 205 break; 206 case Stmt::OMPForDirectiveClass: 207 EmitOMPForDirective(cast<OMPForDirective>(*S)); 208 break; 209 case Stmt::OMPForSimdDirectiveClass: 210 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 211 break; 212 case Stmt::OMPSectionsDirectiveClass: 213 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 214 break; 215 case Stmt::OMPSectionDirectiveClass: 216 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 217 break; 218 case Stmt::OMPSingleDirectiveClass: 219 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 220 break; 221 case Stmt::OMPMasterDirectiveClass: 222 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 223 break; 224 case Stmt::OMPCriticalDirectiveClass: 225 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 226 break; 227 case Stmt::OMPParallelForDirectiveClass: 228 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 229 break; 230 case Stmt::OMPParallelForSimdDirectiveClass: 231 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 232 break; 233 case Stmt::OMPParallelMasterDirectiveClass: 234 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 235 break; 236 case Stmt::OMPParallelSectionsDirectiveClass: 237 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 238 break; 239 case Stmt::OMPTaskDirectiveClass: 240 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 241 break; 242 case Stmt::OMPTaskyieldDirectiveClass: 243 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 244 break; 245 case Stmt::OMPBarrierDirectiveClass: 246 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 247 break; 248 case Stmt::OMPTaskwaitDirectiveClass: 249 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 250 break; 251 case Stmt::OMPTaskgroupDirectiveClass: 252 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 253 break; 254 case Stmt::OMPFlushDirectiveClass: 255 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 256 break; 257 case Stmt::OMPDepobjDirectiveClass: 258 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 259 break; 260 case Stmt::OMPScanDirectiveClass: 261 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 262 break; 263 case Stmt::OMPOrderedDirectiveClass: 264 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 265 break; 266 case Stmt::OMPAtomicDirectiveClass: 267 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 268 break; 269 case Stmt::OMPTargetDirectiveClass: 270 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 271 break; 272 case Stmt::OMPTeamsDirectiveClass: 273 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 274 break; 275 case Stmt::OMPCancellationPointDirectiveClass: 276 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 277 break; 278 case Stmt::OMPCancelDirectiveClass: 279 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDataDirectiveClass: 282 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 283 break; 284 case Stmt::OMPTargetEnterDataDirectiveClass: 285 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 286 break; 287 case Stmt::OMPTargetExitDataDirectiveClass: 288 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 289 break; 290 case Stmt::OMPTargetParallelDirectiveClass: 291 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetParallelForDirectiveClass: 294 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 295 break; 296 case Stmt::OMPTaskLoopDirectiveClass: 297 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 298 break; 299 case Stmt::OMPTaskLoopSimdDirectiveClass: 300 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 301 break; 302 case Stmt::OMPMasterTaskLoopDirectiveClass: 303 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 304 break; 305 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 306 EmitOMPMasterTaskLoopSimdDirective( 307 cast<OMPMasterTaskLoopSimdDirective>(*S)); 308 break; 309 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 310 EmitOMPParallelMasterTaskLoopDirective( 311 cast<OMPParallelMasterTaskLoopDirective>(*S)); 312 break; 313 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 314 EmitOMPParallelMasterTaskLoopSimdDirective( 315 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 316 break; 317 case Stmt::OMPDistributeDirectiveClass: 318 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 319 break; 320 case Stmt::OMPTargetUpdateDirectiveClass: 321 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 322 break; 323 case Stmt::OMPDistributeParallelForDirectiveClass: 324 EmitOMPDistributeParallelForDirective( 325 cast<OMPDistributeParallelForDirective>(*S)); 326 break; 327 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 328 EmitOMPDistributeParallelForSimdDirective( 329 cast<OMPDistributeParallelForSimdDirective>(*S)); 330 break; 331 case Stmt::OMPDistributeSimdDirectiveClass: 332 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 333 break; 334 case Stmt::OMPTargetParallelForSimdDirectiveClass: 335 EmitOMPTargetParallelForSimdDirective( 336 cast<OMPTargetParallelForSimdDirective>(*S)); 337 break; 338 case Stmt::OMPTargetSimdDirectiveClass: 339 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 340 break; 341 case Stmt::OMPTeamsDistributeDirectiveClass: 342 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 343 break; 344 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 345 EmitOMPTeamsDistributeSimdDirective( 346 cast<OMPTeamsDistributeSimdDirective>(*S)); 347 break; 348 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 349 EmitOMPTeamsDistributeParallelForSimdDirective( 350 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 351 break; 352 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 353 EmitOMPTeamsDistributeParallelForDirective( 354 cast<OMPTeamsDistributeParallelForDirective>(*S)); 355 break; 356 case Stmt::OMPTargetTeamsDirectiveClass: 357 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 358 break; 359 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 360 EmitOMPTargetTeamsDistributeDirective( 361 cast<OMPTargetTeamsDistributeDirective>(*S)); 362 break; 363 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 364 EmitOMPTargetTeamsDistributeParallelForDirective( 365 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 366 break; 367 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 368 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 369 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 370 break; 371 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 372 EmitOMPTargetTeamsDistributeSimdDirective( 373 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 374 break; 375 } 376 } 377 378 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 379 ArrayRef<const Attr *> Attrs) { 380 switch (S->getStmtClass()) { 381 default: 382 return false; 383 case Stmt::NullStmtClass: 384 break; 385 case Stmt::CompoundStmtClass: 386 EmitCompoundStmt(cast<CompoundStmt>(*S)); 387 break; 388 case Stmt::DeclStmtClass: 389 EmitDeclStmt(cast<DeclStmt>(*S)); 390 break; 391 case Stmt::LabelStmtClass: 392 EmitLabelStmt(cast<LabelStmt>(*S)); 393 break; 394 case Stmt::AttributedStmtClass: 395 EmitAttributedStmt(cast<AttributedStmt>(*S)); 396 break; 397 case Stmt::GotoStmtClass: 398 EmitGotoStmt(cast<GotoStmt>(*S)); 399 break; 400 case Stmt::BreakStmtClass: 401 EmitBreakStmt(cast<BreakStmt>(*S)); 402 break; 403 case Stmt::ContinueStmtClass: 404 EmitContinueStmt(cast<ContinueStmt>(*S)); 405 break; 406 case Stmt::DefaultStmtClass: 407 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 408 break; 409 case Stmt::CaseStmtClass: 410 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 411 break; 412 case Stmt::SEHLeaveStmtClass: 413 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 414 break; 415 } 416 return true; 417 } 418 419 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 420 /// this captures the expression result of the last sub-statement and returns it 421 /// (for use by the statement expression extension). 422 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 423 AggValueSlot AggSlot) { 424 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 425 "LLVM IR generation of compound statement ('{}')"); 426 427 // Keep track of the current cleanup stack depth, including debug scopes. 428 LexicalScope Scope(*this, S.getSourceRange()); 429 430 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 431 } 432 433 Address 434 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 435 bool GetLast, 436 AggValueSlot AggSlot) { 437 438 const Stmt *ExprResult = S.getStmtExprResult(); 439 assert((!GetLast || (GetLast && ExprResult)) && 440 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 441 442 Address RetAlloca = Address::invalid(); 443 444 for (auto *CurStmt : S.body()) { 445 if (GetLast && ExprResult == CurStmt) { 446 // We have to special case labels here. They are statements, but when put 447 // at the end of a statement expression, they yield the value of their 448 // subexpression. Handle this by walking through all labels we encounter, 449 // emitting them before we evaluate the subexpr. 450 // Similar issues arise for attributed statements. 451 while (!isa<Expr>(ExprResult)) { 452 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 453 EmitLabel(LS->getDecl()); 454 ExprResult = LS->getSubStmt(); 455 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 456 // FIXME: Update this if we ever have attributes that affect the 457 // semantics of an expression. 458 ExprResult = AS->getSubStmt(); 459 } else { 460 llvm_unreachable("unknown value statement"); 461 } 462 } 463 464 EnsureInsertPoint(); 465 466 const Expr *E = cast<Expr>(ExprResult); 467 QualType ExprTy = E->getType(); 468 if (hasAggregateEvaluationKind(ExprTy)) { 469 EmitAggExpr(E, AggSlot); 470 } else { 471 // We can't return an RValue here because there might be cleanups at 472 // the end of the StmtExpr. Because of that, we have to emit the result 473 // here into a temporary alloca. 474 RetAlloca = CreateMemTemp(ExprTy); 475 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 476 /*IsInit*/ false); 477 } 478 } else { 479 EmitStmt(CurStmt); 480 } 481 } 482 483 return RetAlloca; 484 } 485 486 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 487 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 488 489 // If there is a cleanup stack, then we it isn't worth trying to 490 // simplify this block (we would need to remove it from the scope map 491 // and cleanup entry). 492 if (!EHStack.empty()) 493 return; 494 495 // Can only simplify direct branches. 496 if (!BI || !BI->isUnconditional()) 497 return; 498 499 // Can only simplify empty blocks. 500 if (BI->getIterator() != BB->begin()) 501 return; 502 503 BB->replaceAllUsesWith(BI->getSuccessor(0)); 504 BI->eraseFromParent(); 505 BB->eraseFromParent(); 506 } 507 508 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 509 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 510 511 // Fall out of the current block (if necessary). 512 EmitBranch(BB); 513 514 if (IsFinished && BB->use_empty()) { 515 delete BB; 516 return; 517 } 518 519 // Place the block after the current block, if possible, or else at 520 // the end of the function. 521 if (CurBB && CurBB->getParent()) 522 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 523 else 524 CurFn->getBasicBlockList().push_back(BB); 525 Builder.SetInsertPoint(BB); 526 } 527 528 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 529 // Emit a branch from the current block to the target one if this 530 // was a real block. If this was just a fall-through block after a 531 // terminator, don't emit it. 532 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 533 534 if (!CurBB || CurBB->getTerminator()) { 535 // If there is no insert point or the previous block is already 536 // terminated, don't touch it. 537 } else { 538 // Otherwise, create a fall-through branch. 539 Builder.CreateBr(Target); 540 } 541 542 Builder.ClearInsertionPoint(); 543 } 544 545 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 546 bool inserted = false; 547 for (llvm::User *u : block->users()) { 548 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 549 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 550 block); 551 inserted = true; 552 break; 553 } 554 } 555 556 if (!inserted) 557 CurFn->getBasicBlockList().push_back(block); 558 559 Builder.SetInsertPoint(block); 560 } 561 562 CodeGenFunction::JumpDest 563 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 564 JumpDest &Dest = LabelMap[D]; 565 if (Dest.isValid()) return Dest; 566 567 // Create, but don't insert, the new block. 568 Dest = JumpDest(createBasicBlock(D->getName()), 569 EHScopeStack::stable_iterator::invalid(), 570 NextCleanupDestIndex++); 571 return Dest; 572 } 573 574 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 575 // Add this label to the current lexical scope if we're within any 576 // normal cleanups. Jumps "in" to this label --- when permitted by 577 // the language --- may need to be routed around such cleanups. 578 if (EHStack.hasNormalCleanups() && CurLexicalScope) 579 CurLexicalScope->addLabel(D); 580 581 JumpDest &Dest = LabelMap[D]; 582 583 // If we didn't need a forward reference to this label, just go 584 // ahead and create a destination at the current scope. 585 if (!Dest.isValid()) { 586 Dest = getJumpDestInCurrentScope(D->getName()); 587 588 // Otherwise, we need to give this label a target depth and remove 589 // it from the branch-fixups list. 590 } else { 591 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 592 Dest.setScopeDepth(EHStack.stable_begin()); 593 ResolveBranchFixups(Dest.getBlock()); 594 } 595 596 EmitBlock(Dest.getBlock()); 597 598 // Emit debug info for labels. 599 if (CGDebugInfo *DI = getDebugInfo()) { 600 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 601 DI->setLocation(D->getLocation()); 602 DI->EmitLabel(D, Builder); 603 } 604 } 605 606 incrementProfileCounter(D->getStmt()); 607 } 608 609 /// Change the cleanup scope of the labels in this lexical scope to 610 /// match the scope of the enclosing context. 611 void CodeGenFunction::LexicalScope::rescopeLabels() { 612 assert(!Labels.empty()); 613 EHScopeStack::stable_iterator innermostScope 614 = CGF.EHStack.getInnermostNormalCleanup(); 615 616 // Change the scope depth of all the labels. 617 for (SmallVectorImpl<const LabelDecl*>::const_iterator 618 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 619 assert(CGF.LabelMap.count(*i)); 620 JumpDest &dest = CGF.LabelMap.find(*i)->second; 621 assert(dest.getScopeDepth().isValid()); 622 assert(innermostScope.encloses(dest.getScopeDepth())); 623 dest.setScopeDepth(innermostScope); 624 } 625 626 // Reparent the labels if the new scope also has cleanups. 627 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 628 ParentScope->Labels.append(Labels.begin(), Labels.end()); 629 } 630 } 631 632 633 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 634 EmitLabel(S.getDecl()); 635 EmitStmt(S.getSubStmt()); 636 } 637 638 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 639 bool nomerge = false; 640 for (const auto *A : S.getAttrs()) 641 if (A->getKind() == attr::NoMerge) { 642 nomerge = true; 643 break; 644 } 645 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 646 EmitStmt(S.getSubStmt(), S.getAttrs()); 647 } 648 649 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 650 // If this code is reachable then emit a stop point (if generating 651 // debug info). We have to do this ourselves because we are on the 652 // "simple" statement path. 653 if (HaveInsertPoint()) 654 EmitStopPoint(&S); 655 656 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 657 } 658 659 660 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 661 if (const LabelDecl *Target = S.getConstantTarget()) { 662 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 663 return; 664 } 665 666 // Ensure that we have an i8* for our PHI node. 667 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 668 Int8PtrTy, "addr"); 669 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 670 671 // Get the basic block for the indirect goto. 672 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 673 674 // The first instruction in the block has to be the PHI for the switch dest, 675 // add an entry for this branch. 676 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 677 678 EmitBranch(IndGotoBB); 679 } 680 681 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 682 // C99 6.8.4.1: The first substatement is executed if the expression compares 683 // unequal to 0. The condition must be a scalar type. 684 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 685 686 if (S.getInit()) 687 EmitStmt(S.getInit()); 688 689 if (S.getConditionVariable()) 690 EmitDecl(*S.getConditionVariable()); 691 692 // If the condition constant folds and can be elided, try to avoid emitting 693 // the condition and the dead arm of the if/else. 694 bool CondConstant; 695 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 696 S.isConstexpr())) { 697 // Figure out which block (then or else) is executed. 698 const Stmt *Executed = S.getThen(); 699 const Stmt *Skipped = S.getElse(); 700 if (!CondConstant) // Condition false? 701 std::swap(Executed, Skipped); 702 703 // If the skipped block has no labels in it, just emit the executed block. 704 // This avoids emitting dead code and simplifies the CFG substantially. 705 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 706 if (CondConstant) 707 incrementProfileCounter(&S); 708 if (Executed) { 709 RunCleanupsScope ExecutedScope(*this); 710 EmitStmt(Executed); 711 } 712 return; 713 } 714 } 715 716 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 717 // the conditional branch. 718 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 719 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 720 llvm::BasicBlock *ElseBlock = ContBlock; 721 if (S.getElse()) 722 ElseBlock = createBasicBlock("if.else"); 723 724 // Prefer the PGO based weights over the likelihood attribute. 725 // When the build isn't optimized the metadata isn't used, so don't generate 726 // it. 727 Stmt::Likelihood LH = Stmt::LH_None; 728 uint64_t Count = getProfileCount(S.getThen()); 729 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 730 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 731 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 732 733 // Emit the 'then' code. 734 EmitBlock(ThenBlock); 735 incrementProfileCounter(&S); 736 { 737 RunCleanupsScope ThenScope(*this); 738 EmitStmt(S.getThen()); 739 } 740 EmitBranch(ContBlock); 741 742 // Emit the 'else' code if present. 743 if (const Stmt *Else = S.getElse()) { 744 { 745 // There is no need to emit line number for an unconditional branch. 746 auto NL = ApplyDebugLocation::CreateEmpty(*this); 747 EmitBlock(ElseBlock); 748 } 749 { 750 RunCleanupsScope ElseScope(*this); 751 EmitStmt(Else); 752 } 753 { 754 // There is no need to emit line number for an unconditional branch. 755 auto NL = ApplyDebugLocation::CreateEmpty(*this); 756 EmitBranch(ContBlock); 757 } 758 } 759 760 // Emit the continuation block for code after the if. 761 EmitBlock(ContBlock, true); 762 } 763 764 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 765 ArrayRef<const Attr *> WhileAttrs) { 766 // Emit the header for the loop, which will also become 767 // the continue target. 768 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 769 EmitBlock(LoopHeader.getBlock()); 770 771 // Create an exit block for when the condition fails, which will 772 // also become the break target. 773 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 774 775 // Store the blocks to use for break and continue. 776 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 777 778 // C++ [stmt.while]p2: 779 // When the condition of a while statement is a declaration, the 780 // scope of the variable that is declared extends from its point 781 // of declaration (3.3.2) to the end of the while statement. 782 // [...] 783 // The object created in a condition is destroyed and created 784 // with each iteration of the loop. 785 RunCleanupsScope ConditionScope(*this); 786 787 if (S.getConditionVariable()) 788 EmitDecl(*S.getConditionVariable()); 789 790 // Evaluate the conditional in the while header. C99 6.8.5.1: The 791 // evaluation of the controlling expression takes place before each 792 // execution of the loop body. 793 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 794 795 // while(1) is common, avoid extra exit blocks. Be sure 796 // to correctly handle break/continue though. 797 bool EmitBoolCondBranch = true; 798 bool LoopMustProgress = false; 799 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 800 if (C->isOne()) { 801 EmitBoolCondBranch = false; 802 FnIsMustProgress = false; 803 } 804 } else if (LanguageRequiresProgress()) 805 LoopMustProgress = true; 806 807 const SourceRange &R = S.getSourceRange(); 808 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 809 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 810 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 811 812 // As long as the condition is true, go to the loop body. 813 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 814 if (EmitBoolCondBranch) { 815 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 816 if (ConditionScope.requiresCleanups()) 817 ExitBlock = createBasicBlock("while.exit"); 818 llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop( 819 S.getCond(), getProfileCount(S.getBody()), S.getBody()); 820 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 821 822 if (ExitBlock != LoopExit.getBlock()) { 823 EmitBlock(ExitBlock); 824 EmitBranchThroughCleanup(LoopExit); 825 } 826 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 827 CGM.getDiags().Report(A->getLocation(), 828 diag::warn_attribute_has_no_effect_on_infinite_loop) 829 << A << A->getRange(); 830 CGM.getDiags().Report( 831 S.getWhileLoc(), 832 diag::note_attribute_has_no_effect_on_infinite_loop_here) 833 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 834 } 835 836 // Emit the loop body. We have to emit this in a cleanup scope 837 // because it might be a singleton DeclStmt. 838 { 839 RunCleanupsScope BodyScope(*this); 840 EmitBlock(LoopBody); 841 incrementProfileCounter(&S); 842 EmitStmt(S.getBody()); 843 } 844 845 BreakContinueStack.pop_back(); 846 847 // Immediately force cleanup. 848 ConditionScope.ForceCleanup(); 849 850 EmitStopPoint(&S); 851 // Branch to the loop header again. 852 EmitBranch(LoopHeader.getBlock()); 853 854 LoopStack.pop(); 855 856 // Emit the exit block. 857 EmitBlock(LoopExit.getBlock(), true); 858 859 // The LoopHeader typically is just a branch if we skipped emitting 860 // a branch, try to erase it. 861 if (!EmitBoolCondBranch) 862 SimplifyForwardingBlocks(LoopHeader.getBlock()); 863 } 864 865 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 866 ArrayRef<const Attr *> DoAttrs) { 867 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 868 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 869 870 uint64_t ParentCount = getCurrentProfileCount(); 871 872 // Store the blocks to use for break and continue. 873 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 874 875 // Emit the body of the loop. 876 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 877 878 EmitBlockWithFallThrough(LoopBody, &S); 879 { 880 RunCleanupsScope BodyScope(*this); 881 EmitStmt(S.getBody()); 882 } 883 884 EmitBlock(LoopCond.getBlock()); 885 886 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 887 // after each execution of the loop body." 888 889 // Evaluate the conditional in the while header. 890 // C99 6.8.5p2/p4: The first substatement is executed if the expression 891 // compares unequal to 0. The condition must be a scalar type. 892 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 893 894 BreakContinueStack.pop_back(); 895 896 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 897 // to correctly handle break/continue though. 898 bool EmitBoolCondBranch = true; 899 bool LoopMustProgress = false; 900 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 901 if (C->isZero()) 902 EmitBoolCondBranch = false; 903 else if (C->isOne()) 904 FnIsMustProgress = false; 905 } else if (LanguageRequiresProgress()) 906 LoopMustProgress = true; 907 908 const SourceRange &R = S.getSourceRange(); 909 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 910 SourceLocToDebugLoc(R.getBegin()), 911 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 912 913 // As long as the condition is true, iterate the loop. 914 if (EmitBoolCondBranch) { 915 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 916 Builder.CreateCondBr( 917 BoolCondVal, LoopBody, LoopExit.getBlock(), 918 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 919 } 920 921 LoopStack.pop(); 922 923 // Emit the exit block. 924 EmitBlock(LoopExit.getBlock()); 925 926 // The DoCond block typically is just a branch if we skipped 927 // emitting a branch, try to erase it. 928 if (!EmitBoolCondBranch) 929 SimplifyForwardingBlocks(LoopCond.getBlock()); 930 } 931 932 void CodeGenFunction::EmitForStmt(const ForStmt &S, 933 ArrayRef<const Attr *> ForAttrs) { 934 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 935 936 LexicalScope ForScope(*this, S.getSourceRange()); 937 938 // Evaluate the first part before the loop. 939 if (S.getInit()) 940 EmitStmt(S.getInit()); 941 942 // Start the loop with a block that tests the condition. 943 // If there's an increment, the continue scope will be overwritten 944 // later. 945 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 946 llvm::BasicBlock *CondBlock = Continue.getBlock(); 947 EmitBlock(CondBlock); 948 949 bool LoopMustProgress = false; 950 Expr::EvalResult Result; 951 if (LanguageRequiresProgress()) { 952 if (!S.getCond()) { 953 FnIsMustProgress = false; 954 } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) { 955 LoopMustProgress = true; 956 } 957 } 958 959 const SourceRange &R = S.getSourceRange(); 960 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 961 SourceLocToDebugLoc(R.getBegin()), 962 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 963 964 // If the for loop doesn't have an increment we can just use the 965 // condition as the continue block. Otherwise we'll need to create 966 // a block for it (in the current scope, i.e. in the scope of the 967 // condition), and that we will become our continue block. 968 if (S.getInc()) 969 Continue = getJumpDestInCurrentScope("for.inc"); 970 971 // Store the blocks to use for break and continue. 972 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 973 974 // Create a cleanup scope for the condition variable cleanups. 975 LexicalScope ConditionScope(*this, S.getSourceRange()); 976 977 if (S.getCond()) { 978 // If the for statement has a condition scope, emit the local variable 979 // declaration. 980 if (S.getConditionVariable()) { 981 EmitDecl(*S.getConditionVariable()); 982 } 983 984 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 985 // If there are any cleanups between here and the loop-exit scope, 986 // create a block to stage a loop exit along. 987 if (ForScope.requiresCleanups()) 988 ExitBlock = createBasicBlock("for.cond.cleanup"); 989 990 // As long as the condition is true, iterate the loop. 991 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 992 993 // C99 6.8.5p2/p4: The first substatement is executed if the expression 994 // compares unequal to 0. The condition must be a scalar type. 995 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 996 llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop( 997 S.getCond(), getProfileCount(S.getBody()), S.getBody()); 998 999 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 1000 if (C->isOne()) 1001 FnIsMustProgress = false; 1002 1003 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1004 1005 if (ExitBlock != LoopExit.getBlock()) { 1006 EmitBlock(ExitBlock); 1007 EmitBranchThroughCleanup(LoopExit); 1008 } 1009 1010 EmitBlock(ForBody); 1011 } else { 1012 // Treat it as a non-zero constant. Don't even create a new block for the 1013 // body, just fall into it. 1014 } 1015 incrementProfileCounter(&S); 1016 1017 { 1018 // Create a separate cleanup scope for the body, in case it is not 1019 // a compound statement. 1020 RunCleanupsScope BodyScope(*this); 1021 EmitStmt(S.getBody()); 1022 } 1023 1024 // If there is an increment, emit it next. 1025 if (S.getInc()) { 1026 EmitBlock(Continue.getBlock()); 1027 EmitStmt(S.getInc()); 1028 } 1029 1030 BreakContinueStack.pop_back(); 1031 1032 ConditionScope.ForceCleanup(); 1033 1034 EmitStopPoint(&S); 1035 EmitBranch(CondBlock); 1036 1037 ForScope.ForceCleanup(); 1038 1039 LoopStack.pop(); 1040 1041 // Emit the fall-through block. 1042 EmitBlock(LoopExit.getBlock(), true); 1043 } 1044 1045 void 1046 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1047 ArrayRef<const Attr *> ForAttrs) { 1048 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1049 1050 LexicalScope ForScope(*this, S.getSourceRange()); 1051 1052 // Evaluate the first pieces before the loop. 1053 if (S.getInit()) 1054 EmitStmt(S.getInit()); 1055 EmitStmt(S.getRangeStmt()); 1056 EmitStmt(S.getBeginStmt()); 1057 EmitStmt(S.getEndStmt()); 1058 1059 // Start the loop with a block that tests the condition. 1060 // If there's an increment, the continue scope will be overwritten 1061 // later. 1062 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1063 EmitBlock(CondBlock); 1064 1065 const SourceRange &R = S.getSourceRange(); 1066 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1067 SourceLocToDebugLoc(R.getBegin()), 1068 SourceLocToDebugLoc(R.getEnd())); 1069 1070 // If there are any cleanups between here and the loop-exit scope, 1071 // create a block to stage a loop exit along. 1072 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1073 if (ForScope.requiresCleanups()) 1074 ExitBlock = createBasicBlock("for.cond.cleanup"); 1075 1076 // The loop body, consisting of the specified body and the loop variable. 1077 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1078 1079 // The body is executed if the expression, contextually converted 1080 // to bool, is true. 1081 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1082 llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop( 1083 S.getCond(), getProfileCount(S.getBody()), S.getBody()); 1084 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1085 1086 if (ExitBlock != LoopExit.getBlock()) { 1087 EmitBlock(ExitBlock); 1088 EmitBranchThroughCleanup(LoopExit); 1089 } 1090 1091 EmitBlock(ForBody); 1092 incrementProfileCounter(&S); 1093 1094 // Create a block for the increment. In case of a 'continue', we jump there. 1095 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1096 1097 // Store the blocks to use for break and continue. 1098 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1099 1100 { 1101 // Create a separate cleanup scope for the loop variable and body. 1102 LexicalScope BodyScope(*this, S.getSourceRange()); 1103 EmitStmt(S.getLoopVarStmt()); 1104 EmitStmt(S.getBody()); 1105 } 1106 1107 EmitStopPoint(&S); 1108 // If there is an increment, emit it next. 1109 EmitBlock(Continue.getBlock()); 1110 EmitStmt(S.getInc()); 1111 1112 BreakContinueStack.pop_back(); 1113 1114 EmitBranch(CondBlock); 1115 1116 ForScope.ForceCleanup(); 1117 1118 LoopStack.pop(); 1119 1120 // Emit the fall-through block. 1121 EmitBlock(LoopExit.getBlock(), true); 1122 } 1123 1124 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1125 if (RV.isScalar()) { 1126 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1127 } else if (RV.isAggregate()) { 1128 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1129 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1130 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1131 } else { 1132 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1133 /*init*/ true); 1134 } 1135 EmitBranchThroughCleanup(ReturnBlock); 1136 } 1137 1138 namespace { 1139 // RAII struct used to save and restore a return statment's result expression. 1140 struct SaveRetExprRAII { 1141 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1142 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1143 CGF.RetExpr = RetExpr; 1144 } 1145 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1146 const Expr *OldRetExpr; 1147 CodeGenFunction &CGF; 1148 }; 1149 } // namespace 1150 1151 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1152 /// if the function returns void, or may be missing one if the function returns 1153 /// non-void. Fun stuff :). 1154 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1155 if (requiresReturnValueCheck()) { 1156 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1157 auto *SLocPtr = 1158 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1159 llvm::GlobalVariable::PrivateLinkage, SLoc); 1160 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1161 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1162 assert(ReturnLocation.isValid() && "No valid return location"); 1163 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1164 ReturnLocation); 1165 } 1166 1167 // Returning from an outlined SEH helper is UB, and we already warn on it. 1168 if (IsOutlinedSEHHelper) { 1169 Builder.CreateUnreachable(); 1170 Builder.ClearInsertionPoint(); 1171 } 1172 1173 // Emit the result value, even if unused, to evaluate the side effects. 1174 const Expr *RV = S.getRetValue(); 1175 1176 // Record the result expression of the return statement. The recorded 1177 // expression is used to determine whether a block capture's lifetime should 1178 // end at the end of the full expression as opposed to the end of the scope 1179 // enclosing the block expression. 1180 // 1181 // This permits a small, easily-implemented exception to our over-conservative 1182 // rules about not jumping to statements following block literals with 1183 // non-trivial cleanups. 1184 SaveRetExprRAII SaveRetExpr(RV, *this); 1185 1186 RunCleanupsScope cleanupScope(*this); 1187 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1188 RV = EWC->getSubExpr(); 1189 // FIXME: Clean this up by using an LValue for ReturnTemp, 1190 // EmitStoreThroughLValue, and EmitAnyExpr. 1191 // Check if the NRVO candidate was not globalized in OpenMP mode. 1192 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1193 S.getNRVOCandidate()->isNRVOVariable() && 1194 (!getLangOpts().OpenMP || 1195 !CGM.getOpenMPRuntime() 1196 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1197 .isValid())) { 1198 // Apply the named return value optimization for this return statement, 1199 // which means doing nothing: the appropriate result has already been 1200 // constructed into the NRVO variable. 1201 1202 // If there is an NRVO flag for this variable, set it to 1 into indicate 1203 // that the cleanup code should not destroy the variable. 1204 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1205 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1206 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1207 // Make sure not to return anything, but evaluate the expression 1208 // for side effects. 1209 if (RV) 1210 EmitAnyExpr(RV); 1211 } else if (!RV) { 1212 // Do nothing (return value is left uninitialized) 1213 } else if (FnRetTy->isReferenceType()) { 1214 // If this function returns a reference, take the address of the expression 1215 // rather than the value. 1216 RValue Result = EmitReferenceBindingToExpr(RV); 1217 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1218 } else { 1219 switch (getEvaluationKind(RV->getType())) { 1220 case TEK_Scalar: 1221 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1222 break; 1223 case TEK_Complex: 1224 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1225 /*isInit*/ true); 1226 break; 1227 case TEK_Aggregate: 1228 EmitAggExpr(RV, AggValueSlot::forAddr( 1229 ReturnValue, Qualifiers(), 1230 AggValueSlot::IsDestructed, 1231 AggValueSlot::DoesNotNeedGCBarriers, 1232 AggValueSlot::IsNotAliased, 1233 getOverlapForReturnValue())); 1234 break; 1235 } 1236 } 1237 1238 ++NumReturnExprs; 1239 if (!RV || RV->isEvaluatable(getContext())) 1240 ++NumSimpleReturnExprs; 1241 1242 cleanupScope.ForceCleanup(); 1243 EmitBranchThroughCleanup(ReturnBlock); 1244 } 1245 1246 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1247 // As long as debug info is modeled with instructions, we have to ensure we 1248 // have a place to insert here and write the stop point here. 1249 if (HaveInsertPoint()) 1250 EmitStopPoint(&S); 1251 1252 for (const auto *I : S.decls()) 1253 EmitDecl(*I); 1254 } 1255 1256 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1257 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1258 1259 // If this code is reachable then emit a stop point (if generating 1260 // debug info). We have to do this ourselves because we are on the 1261 // "simple" statement path. 1262 if (HaveInsertPoint()) 1263 EmitStopPoint(&S); 1264 1265 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1266 } 1267 1268 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1269 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1270 1271 // If this code is reachable then emit a stop point (if generating 1272 // debug info). We have to do this ourselves because we are on the 1273 // "simple" statement path. 1274 if (HaveInsertPoint()) 1275 EmitStopPoint(&S); 1276 1277 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1278 } 1279 1280 /// EmitCaseStmtRange - If case statement range is not too big then 1281 /// add multiple cases to switch instruction, one for each value within 1282 /// the range. If range is too big then emit "if" condition check. 1283 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1284 ArrayRef<const Attr *> Attrs) { 1285 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1286 1287 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1288 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1289 1290 // Emit the code for this case. We do this first to make sure it is 1291 // properly chained from our predecessor before generating the 1292 // switch machinery to enter this block. 1293 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1294 EmitBlockWithFallThrough(CaseDest, &S); 1295 EmitStmt(S.getSubStmt()); 1296 1297 // If range is empty, do nothing. 1298 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1299 return; 1300 1301 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1302 llvm::APInt Range = RHS - LHS; 1303 // FIXME: parameters such as this should not be hardcoded. 1304 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1305 // Range is small enough to add multiple switch instruction cases. 1306 uint64_t Total = getProfileCount(&S); 1307 unsigned NCases = Range.getZExtValue() + 1; 1308 // We only have one region counter for the entire set of cases here, so we 1309 // need to divide the weights evenly between the generated cases, ensuring 1310 // that the total weight is preserved. E.g., a weight of 5 over three cases 1311 // will be distributed as weights of 2, 2, and 1. 1312 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1313 for (unsigned I = 0; I != NCases; ++I) { 1314 if (SwitchWeights) 1315 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1316 else if (SwitchLikelihood) 1317 SwitchLikelihood->push_back(LH); 1318 1319 if (Rem) 1320 Rem--; 1321 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1322 ++LHS; 1323 } 1324 return; 1325 } 1326 1327 // The range is too big. Emit "if" condition into a new block, 1328 // making sure to save and restore the current insertion point. 1329 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1330 1331 // Push this test onto the chain of range checks (which terminates 1332 // in the default basic block). The switch's default will be changed 1333 // to the top of this chain after switch emission is complete. 1334 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1335 CaseRangeBlock = createBasicBlock("sw.caserange"); 1336 1337 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1338 Builder.SetInsertPoint(CaseRangeBlock); 1339 1340 // Emit range check. 1341 llvm::Value *Diff = 1342 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1343 llvm::Value *Cond = 1344 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1345 1346 llvm::MDNode *Weights = nullptr; 1347 if (SwitchWeights) { 1348 uint64_t ThisCount = getProfileCount(&S); 1349 uint64_t DefaultCount = (*SwitchWeights)[0]; 1350 Weights = createProfileWeights(ThisCount, DefaultCount); 1351 1352 // Since we're chaining the switch default through each large case range, we 1353 // need to update the weight for the default, ie, the first case, to include 1354 // this case. 1355 (*SwitchWeights)[0] += ThisCount; 1356 } else if (SwitchLikelihood) 1357 Weights = createBranchWeights(LH); 1358 1359 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1360 1361 // Restore the appropriate insertion point. 1362 if (RestoreBB) 1363 Builder.SetInsertPoint(RestoreBB); 1364 else 1365 Builder.ClearInsertionPoint(); 1366 } 1367 1368 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1369 ArrayRef<const Attr *> Attrs) { 1370 // If there is no enclosing switch instance that we're aware of, then this 1371 // case statement and its block can be elided. This situation only happens 1372 // when we've constant-folded the switch, are emitting the constant case, 1373 // and part of the constant case includes another case statement. For 1374 // instance: switch (4) { case 4: do { case 5: } while (1); } 1375 if (!SwitchInsn) { 1376 EmitStmt(S.getSubStmt()); 1377 return; 1378 } 1379 1380 // Handle case ranges. 1381 if (S.getRHS()) { 1382 EmitCaseStmtRange(S, Attrs); 1383 return; 1384 } 1385 1386 llvm::ConstantInt *CaseVal = 1387 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1388 if (SwitchLikelihood) 1389 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1390 1391 // If the body of the case is just a 'break', try to not emit an empty block. 1392 // If we're profiling or we're not optimizing, leave the block in for better 1393 // debug and coverage analysis. 1394 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1395 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1396 isa<BreakStmt>(S.getSubStmt())) { 1397 JumpDest Block = BreakContinueStack.back().BreakBlock; 1398 1399 // Only do this optimization if there are no cleanups that need emitting. 1400 if (isObviouslyBranchWithoutCleanups(Block)) { 1401 if (SwitchWeights) 1402 SwitchWeights->push_back(getProfileCount(&S)); 1403 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1404 1405 // If there was a fallthrough into this case, make sure to redirect it to 1406 // the end of the switch as well. 1407 if (Builder.GetInsertBlock()) { 1408 Builder.CreateBr(Block.getBlock()); 1409 Builder.ClearInsertionPoint(); 1410 } 1411 return; 1412 } 1413 } 1414 1415 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1416 EmitBlockWithFallThrough(CaseDest, &S); 1417 if (SwitchWeights) 1418 SwitchWeights->push_back(getProfileCount(&S)); 1419 SwitchInsn->addCase(CaseVal, CaseDest); 1420 1421 // Recursively emitting the statement is acceptable, but is not wonderful for 1422 // code where we have many case statements nested together, i.e.: 1423 // case 1: 1424 // case 2: 1425 // case 3: etc. 1426 // Handling this recursively will create a new block for each case statement 1427 // that falls through to the next case which is IR intensive. It also causes 1428 // deep recursion which can run into stack depth limitations. Handle 1429 // sequential non-range case statements specially. 1430 // 1431 // TODO When the next case has a likelihood attribute the code returns to the 1432 // recursive algorithm. Maybe improve this case if it becomes common practice 1433 // to use a lot of attributes. 1434 const CaseStmt *CurCase = &S; 1435 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1436 1437 // Otherwise, iteratively add consecutive cases to this switch stmt. 1438 while (NextCase && NextCase->getRHS() == nullptr) { 1439 CurCase = NextCase; 1440 llvm::ConstantInt *CaseVal = 1441 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1442 1443 if (SwitchWeights) 1444 SwitchWeights->push_back(getProfileCount(NextCase)); 1445 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1446 CaseDest = createBasicBlock("sw.bb"); 1447 EmitBlockWithFallThrough(CaseDest, CurCase); 1448 } 1449 // Since this loop is only executed when the CaseStmt has no attributes 1450 // use a hard-coded value. 1451 if (SwitchLikelihood) 1452 SwitchLikelihood->push_back(Stmt::LH_None); 1453 1454 SwitchInsn->addCase(CaseVal, CaseDest); 1455 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1456 } 1457 1458 // Normal default recursion for non-cases. 1459 EmitStmt(CurCase->getSubStmt()); 1460 } 1461 1462 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1463 ArrayRef<const Attr *> Attrs) { 1464 // If there is no enclosing switch instance that we're aware of, then this 1465 // default statement can be elided. This situation only happens when we've 1466 // constant-folded the switch. 1467 if (!SwitchInsn) { 1468 EmitStmt(S.getSubStmt()); 1469 return; 1470 } 1471 1472 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1473 assert(DefaultBlock->empty() && 1474 "EmitDefaultStmt: Default block already defined?"); 1475 1476 if (SwitchLikelihood) 1477 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1478 1479 EmitBlockWithFallThrough(DefaultBlock, &S); 1480 1481 EmitStmt(S.getSubStmt()); 1482 } 1483 1484 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1485 /// constant value that is being switched on, see if we can dead code eliminate 1486 /// the body of the switch to a simple series of statements to emit. Basically, 1487 /// on a switch (5) we want to find these statements: 1488 /// case 5: 1489 /// printf(...); <-- 1490 /// ++i; <-- 1491 /// break; 1492 /// 1493 /// and add them to the ResultStmts vector. If it is unsafe to do this 1494 /// transformation (for example, one of the elided statements contains a label 1495 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1496 /// should include statements after it (e.g. the printf() line is a substmt of 1497 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1498 /// statement, then return CSFC_Success. 1499 /// 1500 /// If Case is non-null, then we are looking for the specified case, checking 1501 /// that nothing we jump over contains labels. If Case is null, then we found 1502 /// the case and are looking for the break. 1503 /// 1504 /// If the recursive walk actually finds our Case, then we set FoundCase to 1505 /// true. 1506 /// 1507 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1508 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1509 const SwitchCase *Case, 1510 bool &FoundCase, 1511 SmallVectorImpl<const Stmt*> &ResultStmts) { 1512 // If this is a null statement, just succeed. 1513 if (!S) 1514 return Case ? CSFC_Success : CSFC_FallThrough; 1515 1516 // If this is the switchcase (case 4: or default) that we're looking for, then 1517 // we're in business. Just add the substatement. 1518 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1519 if (S == Case) { 1520 FoundCase = true; 1521 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1522 ResultStmts); 1523 } 1524 1525 // Otherwise, this is some other case or default statement, just ignore it. 1526 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1527 ResultStmts); 1528 } 1529 1530 // If we are in the live part of the code and we found our break statement, 1531 // return a success! 1532 if (!Case && isa<BreakStmt>(S)) 1533 return CSFC_Success; 1534 1535 // If this is a switch statement, then it might contain the SwitchCase, the 1536 // break, or neither. 1537 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1538 // Handle this as two cases: we might be looking for the SwitchCase (if so 1539 // the skipped statements must be skippable) or we might already have it. 1540 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1541 bool StartedInLiveCode = FoundCase; 1542 unsigned StartSize = ResultStmts.size(); 1543 1544 // If we've not found the case yet, scan through looking for it. 1545 if (Case) { 1546 // Keep track of whether we see a skipped declaration. The code could be 1547 // using the declaration even if it is skipped, so we can't optimize out 1548 // the decl if the kept statements might refer to it. 1549 bool HadSkippedDecl = false; 1550 1551 // If we're looking for the case, just see if we can skip each of the 1552 // substatements. 1553 for (; Case && I != E; ++I) { 1554 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1555 1556 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1557 case CSFC_Failure: return CSFC_Failure; 1558 case CSFC_Success: 1559 // A successful result means that either 1) that the statement doesn't 1560 // have the case and is skippable, or 2) does contain the case value 1561 // and also contains the break to exit the switch. In the later case, 1562 // we just verify the rest of the statements are elidable. 1563 if (FoundCase) { 1564 // If we found the case and skipped declarations, we can't do the 1565 // optimization. 1566 if (HadSkippedDecl) 1567 return CSFC_Failure; 1568 1569 for (++I; I != E; ++I) 1570 if (CodeGenFunction::ContainsLabel(*I, true)) 1571 return CSFC_Failure; 1572 return CSFC_Success; 1573 } 1574 break; 1575 case CSFC_FallThrough: 1576 // If we have a fallthrough condition, then we must have found the 1577 // case started to include statements. Consider the rest of the 1578 // statements in the compound statement as candidates for inclusion. 1579 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1580 // We recursively found Case, so we're not looking for it anymore. 1581 Case = nullptr; 1582 1583 // If we found the case and skipped declarations, we can't do the 1584 // optimization. 1585 if (HadSkippedDecl) 1586 return CSFC_Failure; 1587 break; 1588 } 1589 } 1590 1591 if (!FoundCase) 1592 return CSFC_Success; 1593 1594 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1595 } 1596 1597 // If we have statements in our range, then we know that the statements are 1598 // live and need to be added to the set of statements we're tracking. 1599 bool AnyDecls = false; 1600 for (; I != E; ++I) { 1601 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1602 1603 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1604 case CSFC_Failure: return CSFC_Failure; 1605 case CSFC_FallThrough: 1606 // A fallthrough result means that the statement was simple and just 1607 // included in ResultStmt, keep adding them afterwards. 1608 break; 1609 case CSFC_Success: 1610 // A successful result means that we found the break statement and 1611 // stopped statement inclusion. We just ensure that any leftover stmts 1612 // are skippable and return success ourselves. 1613 for (++I; I != E; ++I) 1614 if (CodeGenFunction::ContainsLabel(*I, true)) 1615 return CSFC_Failure; 1616 return CSFC_Success; 1617 } 1618 } 1619 1620 // If we're about to fall out of a scope without hitting a 'break;', we 1621 // can't perform the optimization if there were any decls in that scope 1622 // (we'd lose their end-of-lifetime). 1623 if (AnyDecls) { 1624 // If the entire compound statement was live, there's one more thing we 1625 // can try before giving up: emit the whole thing as a single statement. 1626 // We can do that unless the statement contains a 'break;'. 1627 // FIXME: Such a break must be at the end of a construct within this one. 1628 // We could emit this by just ignoring the BreakStmts entirely. 1629 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1630 ResultStmts.resize(StartSize); 1631 ResultStmts.push_back(S); 1632 } else { 1633 return CSFC_Failure; 1634 } 1635 } 1636 1637 return CSFC_FallThrough; 1638 } 1639 1640 // Okay, this is some other statement that we don't handle explicitly, like a 1641 // for statement or increment etc. If we are skipping over this statement, 1642 // just verify it doesn't have labels, which would make it invalid to elide. 1643 if (Case) { 1644 if (CodeGenFunction::ContainsLabel(S, true)) 1645 return CSFC_Failure; 1646 return CSFC_Success; 1647 } 1648 1649 // Otherwise, we want to include this statement. Everything is cool with that 1650 // so long as it doesn't contain a break out of the switch we're in. 1651 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1652 1653 // Otherwise, everything is great. Include the statement and tell the caller 1654 // that we fall through and include the next statement as well. 1655 ResultStmts.push_back(S); 1656 return CSFC_FallThrough; 1657 } 1658 1659 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1660 /// then invoke CollectStatementsForCase to find the list of statements to emit 1661 /// for a switch on constant. See the comment above CollectStatementsForCase 1662 /// for more details. 1663 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1664 const llvm::APSInt &ConstantCondValue, 1665 SmallVectorImpl<const Stmt*> &ResultStmts, 1666 ASTContext &C, 1667 const SwitchCase *&ResultCase) { 1668 // First step, find the switch case that is being branched to. We can do this 1669 // efficiently by scanning the SwitchCase list. 1670 const SwitchCase *Case = S.getSwitchCaseList(); 1671 const DefaultStmt *DefaultCase = nullptr; 1672 1673 for (; Case; Case = Case->getNextSwitchCase()) { 1674 // It's either a default or case. Just remember the default statement in 1675 // case we're not jumping to any numbered cases. 1676 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1677 DefaultCase = DS; 1678 continue; 1679 } 1680 1681 // Check to see if this case is the one we're looking for. 1682 const CaseStmt *CS = cast<CaseStmt>(Case); 1683 // Don't handle case ranges yet. 1684 if (CS->getRHS()) return false; 1685 1686 // If we found our case, remember it as 'case'. 1687 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1688 break; 1689 } 1690 1691 // If we didn't find a matching case, we use a default if it exists, or we 1692 // elide the whole switch body! 1693 if (!Case) { 1694 // It is safe to elide the body of the switch if it doesn't contain labels 1695 // etc. If it is safe, return successfully with an empty ResultStmts list. 1696 if (!DefaultCase) 1697 return !CodeGenFunction::ContainsLabel(&S); 1698 Case = DefaultCase; 1699 } 1700 1701 // Ok, we know which case is being jumped to, try to collect all the 1702 // statements that follow it. This can fail for a variety of reasons. Also, 1703 // check to see that the recursive walk actually found our case statement. 1704 // Insane cases like this can fail to find it in the recursive walk since we 1705 // don't handle every stmt kind: 1706 // switch (4) { 1707 // while (1) { 1708 // case 4: ... 1709 bool FoundCase = false; 1710 ResultCase = Case; 1711 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1712 ResultStmts) != CSFC_Failure && 1713 FoundCase; 1714 } 1715 1716 static Optional<SmallVector<uint64_t, 16>> 1717 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1718 // Are there enough branches to weight them? 1719 if (Likelihoods.size() <= 1) 1720 return None; 1721 1722 uint64_t NumUnlikely = 0; 1723 uint64_t NumNone = 0; 1724 uint64_t NumLikely = 0; 1725 for (const auto LH : Likelihoods) { 1726 switch (LH) { 1727 case Stmt::LH_Unlikely: 1728 ++NumUnlikely; 1729 break; 1730 case Stmt::LH_None: 1731 ++NumNone; 1732 break; 1733 case Stmt::LH_Likely: 1734 ++NumLikely; 1735 break; 1736 } 1737 } 1738 1739 // Is there a likelihood attribute used? 1740 if (NumUnlikely == 0 && NumLikely == 0) 1741 return None; 1742 1743 // When multiple cases share the same code they can be combined during 1744 // optimization. In that case the weights of the branch will be the sum of 1745 // the individual weights. Make sure the combined sum of all neutral cases 1746 // doesn't exceed the value of a single likely attribute. 1747 // The additions both avoid divisions by 0 and make sure the weights of None 1748 // don't exceed the weight of Likely. 1749 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1750 const uint64_t None = Likely / (NumNone + 1); 1751 const uint64_t Unlikely = 0; 1752 1753 SmallVector<uint64_t, 16> Result; 1754 Result.reserve(Likelihoods.size()); 1755 for (const auto LH : Likelihoods) { 1756 switch (LH) { 1757 case Stmt::LH_Unlikely: 1758 Result.push_back(Unlikely); 1759 break; 1760 case Stmt::LH_None: 1761 Result.push_back(None); 1762 break; 1763 case Stmt::LH_Likely: 1764 Result.push_back(Likely); 1765 break; 1766 } 1767 } 1768 1769 return Result; 1770 } 1771 1772 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1773 // Handle nested switch statements. 1774 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1775 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1776 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1777 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1778 1779 // See if we can constant fold the condition of the switch and therefore only 1780 // emit the live case statement (if any) of the switch. 1781 llvm::APSInt ConstantCondValue; 1782 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1783 SmallVector<const Stmt*, 4> CaseStmts; 1784 const SwitchCase *Case = nullptr; 1785 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1786 getContext(), Case)) { 1787 if (Case) 1788 incrementProfileCounter(Case); 1789 RunCleanupsScope ExecutedScope(*this); 1790 1791 if (S.getInit()) 1792 EmitStmt(S.getInit()); 1793 1794 // Emit the condition variable if needed inside the entire cleanup scope 1795 // used by this special case for constant folded switches. 1796 if (S.getConditionVariable()) 1797 EmitDecl(*S.getConditionVariable()); 1798 1799 // At this point, we are no longer "within" a switch instance, so 1800 // we can temporarily enforce this to ensure that any embedded case 1801 // statements are not emitted. 1802 SwitchInsn = nullptr; 1803 1804 // Okay, we can dead code eliminate everything except this case. Emit the 1805 // specified series of statements and we're good. 1806 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1807 EmitStmt(CaseStmts[i]); 1808 incrementProfileCounter(&S); 1809 1810 // Now we want to restore the saved switch instance so that nested 1811 // switches continue to function properly 1812 SwitchInsn = SavedSwitchInsn; 1813 1814 return; 1815 } 1816 } 1817 1818 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1819 1820 RunCleanupsScope ConditionScope(*this); 1821 1822 if (S.getInit()) 1823 EmitStmt(S.getInit()); 1824 1825 if (S.getConditionVariable()) 1826 EmitDecl(*S.getConditionVariable()); 1827 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1828 1829 // Create basic block to hold stuff that comes after switch 1830 // statement. We also need to create a default block now so that 1831 // explicit case ranges tests can have a place to jump to on 1832 // failure. 1833 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1834 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1835 if (PGO.haveRegionCounts()) { 1836 // Walk the SwitchCase list to find how many there are. 1837 uint64_t DefaultCount = 0; 1838 unsigned NumCases = 0; 1839 for (const SwitchCase *Case = S.getSwitchCaseList(); 1840 Case; 1841 Case = Case->getNextSwitchCase()) { 1842 if (isa<DefaultStmt>(Case)) 1843 DefaultCount = getProfileCount(Case); 1844 NumCases += 1; 1845 } 1846 SwitchWeights = new SmallVector<uint64_t, 16>(); 1847 SwitchWeights->reserve(NumCases); 1848 // The default needs to be first. We store the edge count, so we already 1849 // know the right weight. 1850 SwitchWeights->push_back(DefaultCount); 1851 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1852 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1853 // Initialize the default case. 1854 SwitchLikelihood->push_back(Stmt::LH_None); 1855 } 1856 1857 CaseRangeBlock = DefaultBlock; 1858 1859 // Clear the insertion point to indicate we are in unreachable code. 1860 Builder.ClearInsertionPoint(); 1861 1862 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1863 // then reuse last ContinueBlock. 1864 JumpDest OuterContinue; 1865 if (!BreakContinueStack.empty()) 1866 OuterContinue = BreakContinueStack.back().ContinueBlock; 1867 1868 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1869 1870 // Emit switch body. 1871 EmitStmt(S.getBody()); 1872 1873 BreakContinueStack.pop_back(); 1874 1875 // Update the default block in case explicit case range tests have 1876 // been chained on top. 1877 SwitchInsn->setDefaultDest(CaseRangeBlock); 1878 1879 // If a default was never emitted: 1880 if (!DefaultBlock->getParent()) { 1881 // If we have cleanups, emit the default block so that there's a 1882 // place to jump through the cleanups from. 1883 if (ConditionScope.requiresCleanups()) { 1884 EmitBlock(DefaultBlock); 1885 1886 // Otherwise, just forward the default block to the switch end. 1887 } else { 1888 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1889 delete DefaultBlock; 1890 } 1891 } 1892 1893 ConditionScope.ForceCleanup(); 1894 1895 // Emit continuation. 1896 EmitBlock(SwitchExit.getBlock(), true); 1897 incrementProfileCounter(&S); 1898 1899 // If the switch has a condition wrapped by __builtin_unpredictable, 1900 // create metadata that specifies that the switch is unpredictable. 1901 // Don't bother if not optimizing because that metadata would not be used. 1902 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1903 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1904 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1905 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1906 llvm::MDBuilder MDHelper(getLLVMContext()); 1907 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1908 MDHelper.createUnpredictable()); 1909 } 1910 } 1911 1912 if (SwitchWeights) { 1913 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1914 "switch weights do not match switch cases"); 1915 // If there's only one jump destination there's no sense weighting it. 1916 if (SwitchWeights->size() > 1) 1917 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1918 createProfileWeights(*SwitchWeights)); 1919 delete SwitchWeights; 1920 } else if (SwitchLikelihood) { 1921 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1922 "switch likelihoods do not match switch cases"); 1923 Optional<SmallVector<uint64_t, 16>> LHW = 1924 getLikelihoodWeights(*SwitchLikelihood); 1925 if (LHW) { 1926 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1927 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1928 createProfileWeights(*LHW)); 1929 } 1930 delete SwitchLikelihood; 1931 } 1932 SwitchInsn = SavedSwitchInsn; 1933 SwitchWeights = SavedSwitchWeights; 1934 SwitchLikelihood = SavedSwitchLikelihood; 1935 CaseRangeBlock = SavedCRBlock; 1936 } 1937 1938 static std::string 1939 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1940 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1941 std::string Result; 1942 1943 while (*Constraint) { 1944 switch (*Constraint) { 1945 default: 1946 Result += Target.convertConstraint(Constraint); 1947 break; 1948 // Ignore these 1949 case '*': 1950 case '?': 1951 case '!': 1952 case '=': // Will see this and the following in mult-alt constraints. 1953 case '+': 1954 break; 1955 case '#': // Ignore the rest of the constraint alternative. 1956 while (Constraint[1] && Constraint[1] != ',') 1957 Constraint++; 1958 break; 1959 case '&': 1960 case '%': 1961 Result += *Constraint; 1962 while (Constraint[1] && Constraint[1] == *Constraint) 1963 Constraint++; 1964 break; 1965 case ',': 1966 Result += "|"; 1967 break; 1968 case 'g': 1969 Result += "imr"; 1970 break; 1971 case '[': { 1972 assert(OutCons && 1973 "Must pass output names to constraints with a symbolic name"); 1974 unsigned Index; 1975 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1976 assert(result && "Could not resolve symbolic name"); (void)result; 1977 Result += llvm::utostr(Index); 1978 break; 1979 } 1980 } 1981 1982 Constraint++; 1983 } 1984 1985 return Result; 1986 } 1987 1988 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1989 /// as using a particular register add that as a constraint that will be used 1990 /// in this asm stmt. 1991 static std::string 1992 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1993 const TargetInfo &Target, CodeGenModule &CGM, 1994 const AsmStmt &Stmt, const bool EarlyClobber, 1995 std::string *GCCReg = nullptr) { 1996 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1997 if (!AsmDeclRef) 1998 return Constraint; 1999 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2000 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2001 if (!Variable) 2002 return Constraint; 2003 if (Variable->getStorageClass() != SC_Register) 2004 return Constraint; 2005 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2006 if (!Attr) 2007 return Constraint; 2008 StringRef Register = Attr->getLabel(); 2009 assert(Target.isValidGCCRegisterName(Register)); 2010 // We're using validateOutputConstraint here because we only care if 2011 // this is a register constraint. 2012 TargetInfo::ConstraintInfo Info(Constraint, ""); 2013 if (Target.validateOutputConstraint(Info) && 2014 !Info.allowsRegister()) { 2015 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2016 return Constraint; 2017 } 2018 // Canonicalize the register here before returning it. 2019 Register = Target.getNormalizedGCCRegisterName(Register); 2020 if (GCCReg != nullptr) 2021 *GCCReg = Register.str(); 2022 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2023 } 2024 2025 llvm::Value* 2026 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2027 LValue InputValue, QualType InputType, 2028 std::string &ConstraintStr, 2029 SourceLocation Loc) { 2030 llvm::Value *Arg; 2031 if (Info.allowsRegister() || !Info.allowsMemory()) { 2032 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2033 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2034 } else { 2035 llvm::Type *Ty = ConvertType(InputType); 2036 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2037 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 2038 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2039 Ty = llvm::PointerType::getUnqual(Ty); 2040 2041 Arg = Builder.CreateLoad( 2042 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2043 } else { 2044 Arg = InputValue.getPointer(*this); 2045 ConstraintStr += '*'; 2046 } 2047 } 2048 } else { 2049 Arg = InputValue.getPointer(*this); 2050 ConstraintStr += '*'; 2051 } 2052 2053 return Arg; 2054 } 2055 2056 llvm::Value* CodeGenFunction::EmitAsmInput( 2057 const TargetInfo::ConstraintInfo &Info, 2058 const Expr *InputExpr, 2059 std::string &ConstraintStr) { 2060 // If this can't be a register or memory, i.e., has to be a constant 2061 // (immediate or symbolic), try to emit it as such. 2062 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2063 if (Info.requiresImmediateConstant()) { 2064 Expr::EvalResult EVResult; 2065 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2066 2067 llvm::APSInt IntResult; 2068 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2069 getContext())) 2070 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2071 } 2072 2073 Expr::EvalResult Result; 2074 if (InputExpr->EvaluateAsInt(Result, getContext())) 2075 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2076 } 2077 2078 if (Info.allowsRegister() || !Info.allowsMemory()) 2079 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2080 return EmitScalarExpr(InputExpr); 2081 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2082 return EmitScalarExpr(InputExpr); 2083 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2084 LValue Dest = EmitLValue(InputExpr); 2085 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2086 InputExpr->getExprLoc()); 2087 } 2088 2089 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2090 /// asm call instruction. The !srcloc MDNode contains a list of constant 2091 /// integers which are the source locations of the start of each line in the 2092 /// asm. 2093 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2094 CodeGenFunction &CGF) { 2095 SmallVector<llvm::Metadata *, 8> Locs; 2096 // Add the location of the first line to the MDNode. 2097 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2098 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 2099 StringRef StrVal = Str->getString(); 2100 if (!StrVal.empty()) { 2101 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2102 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2103 unsigned StartToken = 0; 2104 unsigned ByteOffset = 0; 2105 2106 // Add the location of the start of each subsequent line of the asm to the 2107 // MDNode. 2108 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2109 if (StrVal[i] != '\n') continue; 2110 SourceLocation LineLoc = Str->getLocationOfByte( 2111 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2112 Locs.push_back(llvm::ConstantAsMetadata::get( 2113 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 2114 } 2115 } 2116 2117 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2118 } 2119 2120 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2121 bool ReadOnly, bool ReadNone, bool NoMerge, 2122 const AsmStmt &S, 2123 const std::vector<llvm::Type *> &ResultRegTypes, 2124 CodeGenFunction &CGF, 2125 std::vector<llvm::Value *> &RegResults) { 2126 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2127 llvm::Attribute::NoUnwind); 2128 if (NoMerge) 2129 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2130 llvm::Attribute::NoMerge); 2131 // Attach readnone and readonly attributes. 2132 if (!HasSideEffect) { 2133 if (ReadNone) 2134 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2135 llvm::Attribute::ReadNone); 2136 else if (ReadOnly) 2137 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2138 llvm::Attribute::ReadOnly); 2139 } 2140 2141 // Slap the source location of the inline asm into a !srcloc metadata on the 2142 // call. 2143 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2144 Result.setMetadata("srcloc", 2145 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2146 else { 2147 // At least put the line number on MS inline asm blobs. 2148 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 2149 S.getAsmLoc().getRawEncoding()); 2150 Result.setMetadata("srcloc", 2151 llvm::MDNode::get(CGF.getLLVMContext(), 2152 llvm::ConstantAsMetadata::get(Loc))); 2153 } 2154 2155 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2156 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2157 // convergent (meaning, they may call an intrinsically convergent op, such 2158 // as bar.sync, and so can't have certain optimizations applied around 2159 // them). 2160 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2161 llvm::Attribute::Convergent); 2162 // Extract all of the register value results from the asm. 2163 if (ResultRegTypes.size() == 1) { 2164 RegResults.push_back(&Result); 2165 } else { 2166 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2167 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2168 RegResults.push_back(Tmp); 2169 } 2170 } 2171 } 2172 2173 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2174 // Assemble the final asm string. 2175 std::string AsmString = S.generateAsmString(getContext()); 2176 2177 // Get all the output and input constraints together. 2178 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2179 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2180 2181 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2182 StringRef Name; 2183 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2184 Name = GAS->getOutputName(i); 2185 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2186 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2187 assert(IsValid && "Failed to parse output constraint"); 2188 OutputConstraintInfos.push_back(Info); 2189 } 2190 2191 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2192 StringRef Name; 2193 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2194 Name = GAS->getInputName(i); 2195 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2196 bool IsValid = 2197 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2198 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2199 InputConstraintInfos.push_back(Info); 2200 } 2201 2202 std::string Constraints; 2203 2204 std::vector<LValue> ResultRegDests; 2205 std::vector<QualType> ResultRegQualTys; 2206 std::vector<llvm::Type *> ResultRegTypes; 2207 std::vector<llvm::Type *> ResultTruncRegTypes; 2208 std::vector<llvm::Type *> ArgTypes; 2209 std::vector<llvm::Value*> Args; 2210 llvm::BitVector ResultTypeRequiresCast; 2211 2212 // Keep track of inout constraints. 2213 std::string InOutConstraints; 2214 std::vector<llvm::Value*> InOutArgs; 2215 std::vector<llvm::Type*> InOutArgTypes; 2216 2217 // Keep track of out constraints for tied input operand. 2218 std::vector<std::string> OutputConstraints; 2219 2220 // Keep track of defined physregs. 2221 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2222 2223 // An inline asm can be marked readonly if it meets the following conditions: 2224 // - it doesn't have any sideeffects 2225 // - it doesn't clobber memory 2226 // - it doesn't return a value by-reference 2227 // It can be marked readnone if it doesn't have any input memory constraints 2228 // in addition to meeting the conditions listed above. 2229 bool ReadOnly = true, ReadNone = true; 2230 2231 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2232 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2233 2234 // Simplify the output constraint. 2235 std::string OutputConstraint(S.getOutputConstraint(i)); 2236 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2237 getTarget(), &OutputConstraintInfos); 2238 2239 const Expr *OutExpr = S.getOutputExpr(i); 2240 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2241 2242 std::string GCCReg; 2243 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2244 getTarget(), CGM, S, 2245 Info.earlyClobber(), 2246 &GCCReg); 2247 // Give an error on multiple outputs to same physreg. 2248 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2249 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2250 2251 OutputConstraints.push_back(OutputConstraint); 2252 LValue Dest = EmitLValue(OutExpr); 2253 if (!Constraints.empty()) 2254 Constraints += ','; 2255 2256 // If this is a register output, then make the inline asm return it 2257 // by-value. If this is a memory result, return the value by-reference. 2258 bool isScalarizableAggregate = 2259 hasAggregateEvaluationKind(OutExpr->getType()); 2260 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2261 isScalarizableAggregate)) { 2262 Constraints += "=" + OutputConstraint; 2263 ResultRegQualTys.push_back(OutExpr->getType()); 2264 ResultRegDests.push_back(Dest); 2265 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2266 if (Info.allowsRegister() && isScalarizableAggregate) { 2267 ResultTypeRequiresCast.push_back(true); 2268 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2269 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2270 ResultRegTypes.push_back(ConvTy); 2271 } else { 2272 ResultTypeRequiresCast.push_back(false); 2273 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2274 } 2275 // If this output is tied to an input, and if the input is larger, then 2276 // we need to set the actual result type of the inline asm node to be the 2277 // same as the input type. 2278 if (Info.hasMatchingInput()) { 2279 unsigned InputNo; 2280 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2281 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2282 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2283 break; 2284 } 2285 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2286 2287 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2288 QualType OutputType = OutExpr->getType(); 2289 2290 uint64_t InputSize = getContext().getTypeSize(InputTy); 2291 if (getContext().getTypeSize(OutputType) < InputSize) { 2292 // Form the asm to return the value as a larger integer or fp type. 2293 ResultRegTypes.back() = ConvertType(InputTy); 2294 } 2295 } 2296 if (llvm::Type* AdjTy = 2297 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2298 ResultRegTypes.back())) 2299 ResultRegTypes.back() = AdjTy; 2300 else { 2301 CGM.getDiags().Report(S.getAsmLoc(), 2302 diag::err_asm_invalid_type_in_input) 2303 << OutExpr->getType() << OutputConstraint; 2304 } 2305 2306 // Update largest vector width for any vector types. 2307 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2308 LargestVectorWidth = 2309 std::max((uint64_t)LargestVectorWidth, 2310 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2311 } else { 2312 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2313 llvm::Value *DestPtr = Dest.getPointer(*this); 2314 // Matrix types in memory are represented by arrays, but accessed through 2315 // vector pointers, with the alignment specified on the access operation. 2316 // For inline assembly, update pointer arguments to use vector pointers. 2317 // Otherwise there will be a mis-match if the matrix is also an 2318 // input-argument which is represented as vector. 2319 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2320 DestAddrTy = llvm::PointerType::get( 2321 ConvertType(OutExpr->getType()), 2322 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2323 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2324 } 2325 ArgTypes.push_back(DestAddrTy); 2326 Args.push_back(DestPtr); 2327 Constraints += "=*"; 2328 Constraints += OutputConstraint; 2329 ReadOnly = ReadNone = false; 2330 } 2331 2332 if (Info.isReadWrite()) { 2333 InOutConstraints += ','; 2334 2335 const Expr *InputExpr = S.getOutputExpr(i); 2336 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2337 InOutConstraints, 2338 InputExpr->getExprLoc()); 2339 2340 if (llvm::Type* AdjTy = 2341 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2342 Arg->getType())) 2343 Arg = Builder.CreateBitCast(Arg, AdjTy); 2344 2345 // Update largest vector width for any vector types. 2346 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2347 LargestVectorWidth = 2348 std::max((uint64_t)LargestVectorWidth, 2349 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2350 // Only tie earlyclobber physregs. 2351 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2352 InOutConstraints += llvm::utostr(i); 2353 else 2354 InOutConstraints += OutputConstraint; 2355 2356 InOutArgTypes.push_back(Arg->getType()); 2357 InOutArgs.push_back(Arg); 2358 } 2359 } 2360 2361 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2362 // to the return value slot. Only do this when returning in registers. 2363 if (isa<MSAsmStmt>(&S)) { 2364 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2365 if (RetAI.isDirect() || RetAI.isExtend()) { 2366 // Make a fake lvalue for the return value slot. 2367 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2368 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2369 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2370 ResultRegDests, AsmString, S.getNumOutputs()); 2371 SawAsmBlock = true; 2372 } 2373 } 2374 2375 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2376 const Expr *InputExpr = S.getInputExpr(i); 2377 2378 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2379 2380 if (Info.allowsMemory()) 2381 ReadNone = false; 2382 2383 if (!Constraints.empty()) 2384 Constraints += ','; 2385 2386 // Simplify the input constraint. 2387 std::string InputConstraint(S.getInputConstraint(i)); 2388 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2389 &OutputConstraintInfos); 2390 2391 InputConstraint = AddVariableConstraints( 2392 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2393 getTarget(), CGM, S, false /* No EarlyClobber */); 2394 2395 std::string ReplaceConstraint (InputConstraint); 2396 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2397 2398 // If this input argument is tied to a larger output result, extend the 2399 // input to be the same size as the output. The LLVM backend wants to see 2400 // the input and output of a matching constraint be the same size. Note 2401 // that GCC does not define what the top bits are here. We use zext because 2402 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2403 if (Info.hasTiedOperand()) { 2404 unsigned Output = Info.getTiedOperand(); 2405 QualType OutputType = S.getOutputExpr(Output)->getType(); 2406 QualType InputTy = InputExpr->getType(); 2407 2408 if (getContext().getTypeSize(OutputType) > 2409 getContext().getTypeSize(InputTy)) { 2410 // Use ptrtoint as appropriate so that we can do our extension. 2411 if (isa<llvm::PointerType>(Arg->getType())) 2412 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2413 llvm::Type *OutputTy = ConvertType(OutputType); 2414 if (isa<llvm::IntegerType>(OutputTy)) 2415 Arg = Builder.CreateZExt(Arg, OutputTy); 2416 else if (isa<llvm::PointerType>(OutputTy)) 2417 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2418 else { 2419 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2420 Arg = Builder.CreateFPExt(Arg, OutputTy); 2421 } 2422 } 2423 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2424 ReplaceConstraint = OutputConstraints[Output]; 2425 } 2426 if (llvm::Type* AdjTy = 2427 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2428 Arg->getType())) 2429 Arg = Builder.CreateBitCast(Arg, AdjTy); 2430 else 2431 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2432 << InputExpr->getType() << InputConstraint; 2433 2434 // Update largest vector width for any vector types. 2435 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2436 LargestVectorWidth = 2437 std::max((uint64_t)LargestVectorWidth, 2438 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2439 2440 ArgTypes.push_back(Arg->getType()); 2441 Args.push_back(Arg); 2442 Constraints += InputConstraint; 2443 } 2444 2445 // Labels 2446 SmallVector<llvm::BasicBlock *, 16> Transfer; 2447 llvm::BasicBlock *Fallthrough = nullptr; 2448 bool IsGCCAsmGoto = false; 2449 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2450 IsGCCAsmGoto = GS->isAsmGoto(); 2451 if (IsGCCAsmGoto) { 2452 for (const auto *E : GS->labels()) { 2453 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2454 Transfer.push_back(Dest.getBlock()); 2455 llvm::BlockAddress *BA = 2456 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2457 Args.push_back(BA); 2458 ArgTypes.push_back(BA->getType()); 2459 if (!Constraints.empty()) 2460 Constraints += ','; 2461 Constraints += 'X'; 2462 } 2463 Fallthrough = createBasicBlock("asm.fallthrough"); 2464 } 2465 } 2466 2467 // Append the "input" part of inout constraints last. 2468 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2469 ArgTypes.push_back(InOutArgTypes[i]); 2470 Args.push_back(InOutArgs[i]); 2471 } 2472 Constraints += InOutConstraints; 2473 2474 // Clobbers 2475 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2476 StringRef Clobber = S.getClobber(i); 2477 2478 if (Clobber == "memory") 2479 ReadOnly = ReadNone = false; 2480 else if (Clobber != "cc") { 2481 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2482 if (CGM.getCodeGenOpts().StackClashProtector && 2483 getTarget().isSPRegName(Clobber)) { 2484 CGM.getDiags().Report(S.getAsmLoc(), 2485 diag::warn_stack_clash_protection_inline_asm); 2486 } 2487 } 2488 2489 if (isa<MSAsmStmt>(&S)) { 2490 if (Clobber == "eax" || Clobber == "edx") { 2491 if (Constraints.find("=&A") != std::string::npos) 2492 continue; 2493 std::string::size_type position1 = 2494 Constraints.find("={" + Clobber.str() + "}"); 2495 if (position1 != std::string::npos) { 2496 Constraints.insert(position1 + 1, "&"); 2497 continue; 2498 } 2499 std::string::size_type position2 = Constraints.find("=A"); 2500 if (position2 != std::string::npos) { 2501 Constraints.insert(position2 + 1, "&"); 2502 continue; 2503 } 2504 } 2505 } 2506 if (!Constraints.empty()) 2507 Constraints += ','; 2508 2509 Constraints += "~{"; 2510 Constraints += Clobber; 2511 Constraints += '}'; 2512 } 2513 2514 // Add machine specific clobbers 2515 std::string MachineClobbers = getTarget().getClobbers(); 2516 if (!MachineClobbers.empty()) { 2517 if (!Constraints.empty()) 2518 Constraints += ','; 2519 Constraints += MachineClobbers; 2520 } 2521 2522 llvm::Type *ResultType; 2523 if (ResultRegTypes.empty()) 2524 ResultType = VoidTy; 2525 else if (ResultRegTypes.size() == 1) 2526 ResultType = ResultRegTypes[0]; 2527 else 2528 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2529 2530 llvm::FunctionType *FTy = 2531 llvm::FunctionType::get(ResultType, ArgTypes, false); 2532 2533 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2534 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2535 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2536 llvm::InlineAsm *IA = 2537 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2538 /* IsAlignStack */ false, AsmDialect); 2539 std::vector<llvm::Value*> RegResults; 2540 if (IsGCCAsmGoto) { 2541 llvm::CallBrInst *Result = 2542 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2543 EmitBlock(Fallthrough); 2544 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2545 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2546 *this, RegResults); 2547 } else { 2548 llvm::CallInst *Result = 2549 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2550 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2551 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2552 *this, RegResults); 2553 } 2554 2555 assert(RegResults.size() == ResultRegTypes.size()); 2556 assert(RegResults.size() == ResultTruncRegTypes.size()); 2557 assert(RegResults.size() == ResultRegDests.size()); 2558 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2559 // in which case its size may grow. 2560 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2561 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2562 llvm::Value *Tmp = RegResults[i]; 2563 2564 // If the result type of the LLVM IR asm doesn't match the result type of 2565 // the expression, do the conversion. 2566 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2567 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2568 2569 // Truncate the integer result to the right size, note that TruncTy can be 2570 // a pointer. 2571 if (TruncTy->isFloatingPointTy()) 2572 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2573 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2574 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2575 Tmp = Builder.CreateTrunc(Tmp, 2576 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2577 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2578 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2579 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2580 Tmp = Builder.CreatePtrToInt(Tmp, 2581 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2582 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2583 } else if (TruncTy->isIntegerTy()) { 2584 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2585 } else if (TruncTy->isVectorTy()) { 2586 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2587 } 2588 } 2589 2590 LValue Dest = ResultRegDests[i]; 2591 // ResultTypeRequiresCast elements correspond to the first 2592 // ResultTypeRequiresCast.size() elements of RegResults. 2593 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2594 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2595 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2596 ResultRegTypes[i]->getPointerTo()); 2597 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2598 if (Ty.isNull()) { 2599 const Expr *OutExpr = S.getOutputExpr(i); 2600 CGM.Error( 2601 OutExpr->getExprLoc(), 2602 "impossible constraint in asm: can't store value into a register"); 2603 return; 2604 } 2605 Dest = MakeAddrLValue(A, Ty); 2606 } 2607 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2608 } 2609 } 2610 2611 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2612 const RecordDecl *RD = S.getCapturedRecordDecl(); 2613 QualType RecordTy = getContext().getRecordType(RD); 2614 2615 // Initialize the captured struct. 2616 LValue SlotLV = 2617 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2618 2619 RecordDecl::field_iterator CurField = RD->field_begin(); 2620 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2621 E = S.capture_init_end(); 2622 I != E; ++I, ++CurField) { 2623 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2624 if (CurField->hasCapturedVLAType()) { 2625 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2626 } else { 2627 EmitInitializerForField(*CurField, LV, *I); 2628 } 2629 } 2630 2631 return SlotLV; 2632 } 2633 2634 /// Generate an outlined function for the body of a CapturedStmt, store any 2635 /// captured variables into the captured struct, and call the outlined function. 2636 llvm::Function * 2637 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2638 LValue CapStruct = InitCapturedStruct(S); 2639 2640 // Emit the CapturedDecl 2641 CodeGenFunction CGF(CGM, true); 2642 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2643 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2644 delete CGF.CapturedStmtInfo; 2645 2646 // Emit call to the helper function. 2647 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2648 2649 return F; 2650 } 2651 2652 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2653 LValue CapStruct = InitCapturedStruct(S); 2654 return CapStruct.getAddress(*this); 2655 } 2656 2657 /// Creates the outlined function for a CapturedStmt. 2658 llvm::Function * 2659 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2660 assert(CapturedStmtInfo && 2661 "CapturedStmtInfo should be set when generating the captured function"); 2662 const CapturedDecl *CD = S.getCapturedDecl(); 2663 const RecordDecl *RD = S.getCapturedRecordDecl(); 2664 SourceLocation Loc = S.getBeginLoc(); 2665 assert(CD->hasBody() && "missing CapturedDecl body"); 2666 2667 // Build the argument list. 2668 ASTContext &Ctx = CGM.getContext(); 2669 FunctionArgList Args; 2670 Args.append(CD->param_begin(), CD->param_end()); 2671 2672 // Create the function declaration. 2673 const CGFunctionInfo &FuncInfo = 2674 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2675 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2676 2677 llvm::Function *F = 2678 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2679 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2680 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2681 if (CD->isNothrow()) 2682 F->addFnAttr(llvm::Attribute::NoUnwind); 2683 2684 // Generate the function. 2685 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2686 CD->getBody()->getBeginLoc()); 2687 // Set the context parameter in CapturedStmtInfo. 2688 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2689 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2690 2691 // Initialize variable-length arrays. 2692 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2693 Ctx.getTagDeclType(RD)); 2694 for (auto *FD : RD->fields()) { 2695 if (FD->hasCapturedVLAType()) { 2696 auto *ExprArg = 2697 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2698 .getScalarVal(); 2699 auto VAT = FD->getCapturedVLAType(); 2700 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2701 } 2702 } 2703 2704 // If 'this' is captured, load it into CXXThisValue. 2705 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2706 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2707 LValue ThisLValue = EmitLValueForField(Base, FD); 2708 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2709 } 2710 2711 PGO.assignRegionCounters(GlobalDecl(CD), F); 2712 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2713 FinishFunction(CD->getBodyRBrace()); 2714 2715 return F; 2716 } 2717