1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/SaveAndRestore.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // Statement Emission 40 //===----------------------------------------------------------------------===// 41 42 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 43 if (CGDebugInfo *DI = getDebugInfo()) { 44 SourceLocation Loc; 45 Loc = S->getBeginLoc(); 46 DI->EmitLocation(Builder, Loc); 47 48 LastStopPoint = Loc; 49 } 50 } 51 52 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 53 assert(S && "Null statement?"); 54 PGO.setCurrentStmt(S); 55 56 // These statements have their own debug info handling. 57 if (EmitSimpleStmt(S, Attrs)) 58 return; 59 60 // Check if we are generating unreachable code. 61 if (!HaveInsertPoint()) { 62 // If so, and the statement doesn't contain a label, then we do not need to 63 // generate actual code. This is safe because (1) the current point is 64 // unreachable, so we don't need to execute the code, and (2) we've already 65 // handled the statements which update internal data structures (like the 66 // local variable map) which could be used by subsequent statements. 67 if (!ContainsLabel(S)) { 68 // Verify that any decl statements were handled as simple, they may be in 69 // scope of subsequent reachable statements. 70 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 71 return; 72 } 73 74 // Otherwise, make a new block to hold the code. 75 EnsureInsertPoint(); 76 } 77 78 // Generate a stoppoint if we are emitting debug info. 79 EmitStopPoint(S); 80 81 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 82 // enabled. 83 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 84 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 85 EmitSimpleOMPExecutableDirective(*D); 86 return; 87 } 88 } 89 90 switch (S->getStmtClass()) { 91 case Stmt::NoStmtClass: 92 case Stmt::CXXCatchStmtClass: 93 case Stmt::SEHExceptStmtClass: 94 case Stmt::SEHFinallyStmtClass: 95 case Stmt::MSDependentExistsStmtClass: 96 llvm_unreachable("invalid statement class to emit generically"); 97 case Stmt::NullStmtClass: 98 case Stmt::CompoundStmtClass: 99 case Stmt::DeclStmtClass: 100 case Stmt::LabelStmtClass: 101 case Stmt::AttributedStmtClass: 102 case Stmt::GotoStmtClass: 103 case Stmt::BreakStmtClass: 104 case Stmt::ContinueStmtClass: 105 case Stmt::DefaultStmtClass: 106 case Stmt::CaseStmtClass: 107 case Stmt::SEHLeaveStmtClass: 108 llvm_unreachable("should have emitted these statements as simple"); 109 110 #define STMT(Type, Base) 111 #define ABSTRACT_STMT(Op) 112 #define EXPR(Type, Base) \ 113 case Stmt::Type##Class: 114 #include "clang/AST/StmtNodes.inc" 115 { 116 // Remember the block we came in on. 117 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 118 assert(incoming && "expression emission must have an insertion point"); 119 120 EmitIgnoredExpr(cast<Expr>(S)); 121 122 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 123 assert(outgoing && "expression emission cleared block!"); 124 125 // The expression emitters assume (reasonably!) that the insertion 126 // point is always set. To maintain that, the call-emission code 127 // for noreturn functions has to enter a new block with no 128 // predecessors. We want to kill that block and mark the current 129 // insertion point unreachable in the common case of a call like 130 // "exit();". Since expression emission doesn't otherwise create 131 // blocks with no predecessors, we can just test for that. 132 // However, we must be careful not to do this to our incoming 133 // block, because *statement* emission does sometimes create 134 // reachable blocks which will have no predecessors until later in 135 // the function. This occurs with, e.g., labels that are not 136 // reachable by fallthrough. 137 if (incoming != outgoing && outgoing->use_empty()) { 138 outgoing->eraseFromParent(); 139 Builder.ClearInsertionPoint(); 140 } 141 break; 142 } 143 144 case Stmt::IndirectGotoStmtClass: 145 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 146 147 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 148 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 149 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 150 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 151 152 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 153 154 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 155 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 156 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 157 case Stmt::CoroutineBodyStmtClass: 158 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 159 break; 160 case Stmt::CoreturnStmtClass: 161 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 162 break; 163 case Stmt::CapturedStmtClass: { 164 const CapturedStmt *CS = cast<CapturedStmt>(S); 165 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 166 } 167 break; 168 case Stmt::ObjCAtTryStmtClass: 169 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 170 break; 171 case Stmt::ObjCAtCatchStmtClass: 172 llvm_unreachable( 173 "@catch statements should be handled by EmitObjCAtTryStmt"); 174 case Stmt::ObjCAtFinallyStmtClass: 175 llvm_unreachable( 176 "@finally statements should be handled by EmitObjCAtTryStmt"); 177 case Stmt::ObjCAtThrowStmtClass: 178 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 179 break; 180 case Stmt::ObjCAtSynchronizedStmtClass: 181 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 182 break; 183 case Stmt::ObjCForCollectionStmtClass: 184 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 185 break; 186 case Stmt::ObjCAutoreleasePoolStmtClass: 187 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 188 break; 189 190 case Stmt::CXXTryStmtClass: 191 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 192 break; 193 case Stmt::CXXForRangeStmtClass: 194 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 195 break; 196 case Stmt::SEHTryStmtClass: 197 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 198 break; 199 case Stmt::OMPMetaDirectiveClass: 200 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 201 break; 202 case Stmt::OMPCanonicalLoopClass: 203 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 204 break; 205 case Stmt::OMPParallelDirectiveClass: 206 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 207 break; 208 case Stmt::OMPSimdDirectiveClass: 209 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 210 break; 211 case Stmt::OMPTileDirectiveClass: 212 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 213 break; 214 case Stmt::OMPUnrollDirectiveClass: 215 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 216 break; 217 case Stmt::OMPForDirectiveClass: 218 EmitOMPForDirective(cast<OMPForDirective>(*S)); 219 break; 220 case Stmt::OMPForSimdDirectiveClass: 221 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 222 break; 223 case Stmt::OMPSectionsDirectiveClass: 224 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 225 break; 226 case Stmt::OMPSectionDirectiveClass: 227 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 228 break; 229 case Stmt::OMPSingleDirectiveClass: 230 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 231 break; 232 case Stmt::OMPMasterDirectiveClass: 233 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 234 break; 235 case Stmt::OMPCriticalDirectiveClass: 236 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 237 break; 238 case Stmt::OMPParallelForDirectiveClass: 239 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 240 break; 241 case Stmt::OMPParallelForSimdDirectiveClass: 242 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 243 break; 244 case Stmt::OMPParallelMasterDirectiveClass: 245 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 246 break; 247 case Stmt::OMPParallelSectionsDirectiveClass: 248 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 249 break; 250 case Stmt::OMPTaskDirectiveClass: 251 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 252 break; 253 case Stmt::OMPTaskyieldDirectiveClass: 254 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 255 break; 256 case Stmt::OMPBarrierDirectiveClass: 257 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 258 break; 259 case Stmt::OMPTaskwaitDirectiveClass: 260 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 261 break; 262 case Stmt::OMPTaskgroupDirectiveClass: 263 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 264 break; 265 case Stmt::OMPFlushDirectiveClass: 266 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 267 break; 268 case Stmt::OMPDepobjDirectiveClass: 269 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 270 break; 271 case Stmt::OMPScanDirectiveClass: 272 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 273 break; 274 case Stmt::OMPOrderedDirectiveClass: 275 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 276 break; 277 case Stmt::OMPAtomicDirectiveClass: 278 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 279 break; 280 case Stmt::OMPTargetDirectiveClass: 281 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 282 break; 283 case Stmt::OMPTeamsDirectiveClass: 284 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 285 break; 286 case Stmt::OMPCancellationPointDirectiveClass: 287 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 288 break; 289 case Stmt::OMPCancelDirectiveClass: 290 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 291 break; 292 case Stmt::OMPTargetDataDirectiveClass: 293 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 294 break; 295 case Stmt::OMPTargetEnterDataDirectiveClass: 296 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 297 break; 298 case Stmt::OMPTargetExitDataDirectiveClass: 299 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 300 break; 301 case Stmt::OMPTargetParallelDirectiveClass: 302 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 303 break; 304 case Stmt::OMPTargetParallelForDirectiveClass: 305 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 306 break; 307 case Stmt::OMPTaskLoopDirectiveClass: 308 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 309 break; 310 case Stmt::OMPTaskLoopSimdDirectiveClass: 311 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 312 break; 313 case Stmt::OMPMasterTaskLoopDirectiveClass: 314 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 315 break; 316 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 317 EmitOMPMasterTaskLoopSimdDirective( 318 cast<OMPMasterTaskLoopSimdDirective>(*S)); 319 break; 320 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 321 EmitOMPParallelMasterTaskLoopDirective( 322 cast<OMPParallelMasterTaskLoopDirective>(*S)); 323 break; 324 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 325 EmitOMPParallelMasterTaskLoopSimdDirective( 326 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 327 break; 328 case Stmt::OMPDistributeDirectiveClass: 329 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 330 break; 331 case Stmt::OMPTargetUpdateDirectiveClass: 332 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 333 break; 334 case Stmt::OMPDistributeParallelForDirectiveClass: 335 EmitOMPDistributeParallelForDirective( 336 cast<OMPDistributeParallelForDirective>(*S)); 337 break; 338 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 339 EmitOMPDistributeParallelForSimdDirective( 340 cast<OMPDistributeParallelForSimdDirective>(*S)); 341 break; 342 case Stmt::OMPDistributeSimdDirectiveClass: 343 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 344 break; 345 case Stmt::OMPTargetParallelForSimdDirectiveClass: 346 EmitOMPTargetParallelForSimdDirective( 347 cast<OMPTargetParallelForSimdDirective>(*S)); 348 break; 349 case Stmt::OMPTargetSimdDirectiveClass: 350 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 351 break; 352 case Stmt::OMPTeamsDistributeDirectiveClass: 353 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 354 break; 355 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 356 EmitOMPTeamsDistributeSimdDirective( 357 cast<OMPTeamsDistributeSimdDirective>(*S)); 358 break; 359 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 360 EmitOMPTeamsDistributeParallelForSimdDirective( 361 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 362 break; 363 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 364 EmitOMPTeamsDistributeParallelForDirective( 365 cast<OMPTeamsDistributeParallelForDirective>(*S)); 366 break; 367 case Stmt::OMPTargetTeamsDirectiveClass: 368 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 369 break; 370 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 371 EmitOMPTargetTeamsDistributeDirective( 372 cast<OMPTargetTeamsDistributeDirective>(*S)); 373 break; 374 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 375 EmitOMPTargetTeamsDistributeParallelForDirective( 376 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 377 break; 378 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 379 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 380 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 381 break; 382 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 383 EmitOMPTargetTeamsDistributeSimdDirective( 384 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 385 break; 386 case Stmt::OMPInteropDirectiveClass: 387 llvm_unreachable("Interop directive not supported yet."); 388 break; 389 case Stmt::OMPDispatchDirectiveClass: 390 llvm_unreachable("Dispatch directive not supported yet."); 391 break; 392 case Stmt::OMPMaskedDirectiveClass: 393 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 394 break; 395 } 396 } 397 398 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 399 ArrayRef<const Attr *> Attrs) { 400 switch (S->getStmtClass()) { 401 default: 402 return false; 403 case Stmt::NullStmtClass: 404 break; 405 case Stmt::CompoundStmtClass: 406 EmitCompoundStmt(cast<CompoundStmt>(*S)); 407 break; 408 case Stmt::DeclStmtClass: 409 EmitDeclStmt(cast<DeclStmt>(*S)); 410 break; 411 case Stmt::LabelStmtClass: 412 EmitLabelStmt(cast<LabelStmt>(*S)); 413 break; 414 case Stmt::AttributedStmtClass: 415 EmitAttributedStmt(cast<AttributedStmt>(*S)); 416 break; 417 case Stmt::GotoStmtClass: 418 EmitGotoStmt(cast<GotoStmt>(*S)); 419 break; 420 case Stmt::BreakStmtClass: 421 EmitBreakStmt(cast<BreakStmt>(*S)); 422 break; 423 case Stmt::ContinueStmtClass: 424 EmitContinueStmt(cast<ContinueStmt>(*S)); 425 break; 426 case Stmt::DefaultStmtClass: 427 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 428 break; 429 case Stmt::CaseStmtClass: 430 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 431 break; 432 case Stmt::SEHLeaveStmtClass: 433 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 434 break; 435 } 436 return true; 437 } 438 439 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 440 /// this captures the expression result of the last sub-statement and returns it 441 /// (for use by the statement expression extension). 442 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 443 AggValueSlot AggSlot) { 444 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 445 "LLVM IR generation of compound statement ('{}')"); 446 447 // Keep track of the current cleanup stack depth, including debug scopes. 448 LexicalScope Scope(*this, S.getSourceRange()); 449 450 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 451 } 452 453 Address 454 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 455 bool GetLast, 456 AggValueSlot AggSlot) { 457 458 const Stmt *ExprResult = S.getStmtExprResult(); 459 assert((!GetLast || (GetLast && ExprResult)) && 460 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 461 462 Address RetAlloca = Address::invalid(); 463 464 for (auto *CurStmt : S.body()) { 465 if (GetLast && ExprResult == CurStmt) { 466 // We have to special case labels here. They are statements, but when put 467 // at the end of a statement expression, they yield the value of their 468 // subexpression. Handle this by walking through all labels we encounter, 469 // emitting them before we evaluate the subexpr. 470 // Similar issues arise for attributed statements. 471 while (!isa<Expr>(ExprResult)) { 472 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 473 EmitLabel(LS->getDecl()); 474 ExprResult = LS->getSubStmt(); 475 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 476 // FIXME: Update this if we ever have attributes that affect the 477 // semantics of an expression. 478 ExprResult = AS->getSubStmt(); 479 } else { 480 llvm_unreachable("unknown value statement"); 481 } 482 } 483 484 EnsureInsertPoint(); 485 486 const Expr *E = cast<Expr>(ExprResult); 487 QualType ExprTy = E->getType(); 488 if (hasAggregateEvaluationKind(ExprTy)) { 489 EmitAggExpr(E, AggSlot); 490 } else { 491 // We can't return an RValue here because there might be cleanups at 492 // the end of the StmtExpr. Because of that, we have to emit the result 493 // here into a temporary alloca. 494 RetAlloca = CreateMemTemp(ExprTy); 495 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 496 /*IsInit*/ false); 497 } 498 } else { 499 EmitStmt(CurStmt); 500 } 501 } 502 503 return RetAlloca; 504 } 505 506 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 507 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 508 509 // If there is a cleanup stack, then we it isn't worth trying to 510 // simplify this block (we would need to remove it from the scope map 511 // and cleanup entry). 512 if (!EHStack.empty()) 513 return; 514 515 // Can only simplify direct branches. 516 if (!BI || !BI->isUnconditional()) 517 return; 518 519 // Can only simplify empty blocks. 520 if (BI->getIterator() != BB->begin()) 521 return; 522 523 BB->replaceAllUsesWith(BI->getSuccessor(0)); 524 BI->eraseFromParent(); 525 BB->eraseFromParent(); 526 } 527 528 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 529 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 530 531 // Fall out of the current block (if necessary). 532 EmitBranch(BB); 533 534 if (IsFinished && BB->use_empty()) { 535 delete BB; 536 return; 537 } 538 539 // Place the block after the current block, if possible, or else at 540 // the end of the function. 541 if (CurBB && CurBB->getParent()) 542 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 543 else 544 CurFn->getBasicBlockList().push_back(BB); 545 Builder.SetInsertPoint(BB); 546 } 547 548 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 549 // Emit a branch from the current block to the target one if this 550 // was a real block. If this was just a fall-through block after a 551 // terminator, don't emit it. 552 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 553 554 if (!CurBB || CurBB->getTerminator()) { 555 // If there is no insert point or the previous block is already 556 // terminated, don't touch it. 557 } else { 558 // Otherwise, create a fall-through branch. 559 Builder.CreateBr(Target); 560 } 561 562 Builder.ClearInsertionPoint(); 563 } 564 565 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 566 bool inserted = false; 567 for (llvm::User *u : block->users()) { 568 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 569 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 570 block); 571 inserted = true; 572 break; 573 } 574 } 575 576 if (!inserted) 577 CurFn->getBasicBlockList().push_back(block); 578 579 Builder.SetInsertPoint(block); 580 } 581 582 CodeGenFunction::JumpDest 583 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 584 JumpDest &Dest = LabelMap[D]; 585 if (Dest.isValid()) return Dest; 586 587 // Create, but don't insert, the new block. 588 Dest = JumpDest(createBasicBlock(D->getName()), 589 EHScopeStack::stable_iterator::invalid(), 590 NextCleanupDestIndex++); 591 return Dest; 592 } 593 594 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 595 // Add this label to the current lexical scope if we're within any 596 // normal cleanups. Jumps "in" to this label --- when permitted by 597 // the language --- may need to be routed around such cleanups. 598 if (EHStack.hasNormalCleanups() && CurLexicalScope) 599 CurLexicalScope->addLabel(D); 600 601 JumpDest &Dest = LabelMap[D]; 602 603 // If we didn't need a forward reference to this label, just go 604 // ahead and create a destination at the current scope. 605 if (!Dest.isValid()) { 606 Dest = getJumpDestInCurrentScope(D->getName()); 607 608 // Otherwise, we need to give this label a target depth and remove 609 // it from the branch-fixups list. 610 } else { 611 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 612 Dest.setScopeDepth(EHStack.stable_begin()); 613 ResolveBranchFixups(Dest.getBlock()); 614 } 615 616 EmitBlock(Dest.getBlock()); 617 618 // Emit debug info for labels. 619 if (CGDebugInfo *DI = getDebugInfo()) { 620 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 621 DI->setLocation(D->getLocation()); 622 DI->EmitLabel(D, Builder); 623 } 624 } 625 626 incrementProfileCounter(D->getStmt()); 627 } 628 629 /// Change the cleanup scope of the labels in this lexical scope to 630 /// match the scope of the enclosing context. 631 void CodeGenFunction::LexicalScope::rescopeLabels() { 632 assert(!Labels.empty()); 633 EHScopeStack::stable_iterator innermostScope 634 = CGF.EHStack.getInnermostNormalCleanup(); 635 636 // Change the scope depth of all the labels. 637 for (SmallVectorImpl<const LabelDecl*>::const_iterator 638 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 639 assert(CGF.LabelMap.count(*i)); 640 JumpDest &dest = CGF.LabelMap.find(*i)->second; 641 assert(dest.getScopeDepth().isValid()); 642 assert(innermostScope.encloses(dest.getScopeDepth())); 643 dest.setScopeDepth(innermostScope); 644 } 645 646 // Reparent the labels if the new scope also has cleanups. 647 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 648 ParentScope->Labels.append(Labels.begin(), Labels.end()); 649 } 650 } 651 652 653 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 654 EmitLabel(S.getDecl()); 655 656 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 657 if (getLangOpts().EHAsynch && S.isSideEntry()) 658 EmitSehCppScopeBegin(); 659 660 EmitStmt(S.getSubStmt()); 661 } 662 663 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 664 bool nomerge = false; 665 const CallExpr *musttail = nullptr; 666 667 for (const auto *A : S.getAttrs()) { 668 if (A->getKind() == attr::NoMerge) { 669 nomerge = true; 670 } 671 if (A->getKind() == attr::MustTail) { 672 const Stmt *Sub = S.getSubStmt(); 673 const ReturnStmt *R = cast<ReturnStmt>(Sub); 674 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 675 } 676 } 677 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 678 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 679 EmitStmt(S.getSubStmt(), S.getAttrs()); 680 } 681 682 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 683 // If this code is reachable then emit a stop point (if generating 684 // debug info). We have to do this ourselves because we are on the 685 // "simple" statement path. 686 if (HaveInsertPoint()) 687 EmitStopPoint(&S); 688 689 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 690 } 691 692 693 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 694 if (const LabelDecl *Target = S.getConstantTarget()) { 695 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 696 return; 697 } 698 699 // Ensure that we have an i8* for our PHI node. 700 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 701 Int8PtrTy, "addr"); 702 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 703 704 // Get the basic block for the indirect goto. 705 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 706 707 // The first instruction in the block has to be the PHI for the switch dest, 708 // add an entry for this branch. 709 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 710 711 EmitBranch(IndGotoBB); 712 } 713 714 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 715 // C99 6.8.4.1: The first substatement is executed if the expression compares 716 // unequal to 0. The condition must be a scalar type. 717 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 718 719 if (S.getInit()) 720 EmitStmt(S.getInit()); 721 722 if (S.getConditionVariable()) 723 EmitDecl(*S.getConditionVariable()); 724 725 // If the condition constant folds and can be elided, try to avoid emitting 726 // the condition and the dead arm of the if/else. 727 bool CondConstant; 728 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 729 S.isConstexpr())) { 730 // Figure out which block (then or else) is executed. 731 const Stmt *Executed = S.getThen(); 732 const Stmt *Skipped = S.getElse(); 733 if (!CondConstant) // Condition false? 734 std::swap(Executed, Skipped); 735 736 // If the skipped block has no labels in it, just emit the executed block. 737 // This avoids emitting dead code and simplifies the CFG substantially. 738 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 739 if (CondConstant) 740 incrementProfileCounter(&S); 741 if (Executed) { 742 RunCleanupsScope ExecutedScope(*this); 743 EmitStmt(Executed); 744 } 745 return; 746 } 747 } 748 749 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 750 // the conditional branch. 751 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 752 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 753 llvm::BasicBlock *ElseBlock = ContBlock; 754 if (S.getElse()) 755 ElseBlock = createBasicBlock("if.else"); 756 757 // Prefer the PGO based weights over the likelihood attribute. 758 // When the build isn't optimized the metadata isn't used, so don't generate 759 // it. 760 Stmt::Likelihood LH = Stmt::LH_None; 761 uint64_t Count = getProfileCount(S.getThen()); 762 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 763 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 764 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 765 766 // Emit the 'then' code. 767 EmitBlock(ThenBlock); 768 incrementProfileCounter(&S); 769 { 770 RunCleanupsScope ThenScope(*this); 771 EmitStmt(S.getThen()); 772 } 773 EmitBranch(ContBlock); 774 775 // Emit the 'else' code if present. 776 if (const Stmt *Else = S.getElse()) { 777 { 778 // There is no need to emit line number for an unconditional branch. 779 auto NL = ApplyDebugLocation::CreateEmpty(*this); 780 EmitBlock(ElseBlock); 781 } 782 { 783 RunCleanupsScope ElseScope(*this); 784 EmitStmt(Else); 785 } 786 { 787 // There is no need to emit line number for an unconditional branch. 788 auto NL = ApplyDebugLocation::CreateEmpty(*this); 789 EmitBranch(ContBlock); 790 } 791 } 792 793 // Emit the continuation block for code after the if. 794 EmitBlock(ContBlock, true); 795 } 796 797 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 798 ArrayRef<const Attr *> WhileAttrs) { 799 // Emit the header for the loop, which will also become 800 // the continue target. 801 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 802 EmitBlock(LoopHeader.getBlock()); 803 804 // Create an exit block for when the condition fails, which will 805 // also become the break target. 806 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 807 808 // Store the blocks to use for break and continue. 809 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 810 811 // C++ [stmt.while]p2: 812 // When the condition of a while statement is a declaration, the 813 // scope of the variable that is declared extends from its point 814 // of declaration (3.3.2) to the end of the while statement. 815 // [...] 816 // The object created in a condition is destroyed and created 817 // with each iteration of the loop. 818 RunCleanupsScope ConditionScope(*this); 819 820 if (S.getConditionVariable()) 821 EmitDecl(*S.getConditionVariable()); 822 823 // Evaluate the conditional in the while header. C99 6.8.5.1: The 824 // evaluation of the controlling expression takes place before each 825 // execution of the loop body. 826 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 827 828 // while(1) is common, avoid extra exit blocks. Be sure 829 // to correctly handle break/continue though. 830 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 831 bool CondIsConstInt = C != nullptr; 832 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 833 const SourceRange &R = S.getSourceRange(); 834 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 835 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 836 SourceLocToDebugLoc(R.getEnd()), 837 checkIfLoopMustProgress(CondIsConstInt)); 838 839 // As long as the condition is true, go to the loop body. 840 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 841 if (EmitBoolCondBranch) { 842 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 843 if (ConditionScope.requiresCleanups()) 844 ExitBlock = createBasicBlock("while.exit"); 845 llvm::MDNode *Weights = 846 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 847 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 848 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 849 BoolCondVal, Stmt::getLikelihood(S.getBody())); 850 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 851 852 if (ExitBlock != LoopExit.getBlock()) { 853 EmitBlock(ExitBlock); 854 EmitBranchThroughCleanup(LoopExit); 855 } 856 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 857 CGM.getDiags().Report(A->getLocation(), 858 diag::warn_attribute_has_no_effect_on_infinite_loop) 859 << A << A->getRange(); 860 CGM.getDiags().Report( 861 S.getWhileLoc(), 862 diag::note_attribute_has_no_effect_on_infinite_loop_here) 863 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 864 } 865 866 // Emit the loop body. We have to emit this in a cleanup scope 867 // because it might be a singleton DeclStmt. 868 { 869 RunCleanupsScope BodyScope(*this); 870 EmitBlock(LoopBody); 871 incrementProfileCounter(&S); 872 EmitStmt(S.getBody()); 873 } 874 875 BreakContinueStack.pop_back(); 876 877 // Immediately force cleanup. 878 ConditionScope.ForceCleanup(); 879 880 EmitStopPoint(&S); 881 // Branch to the loop header again. 882 EmitBranch(LoopHeader.getBlock()); 883 884 LoopStack.pop(); 885 886 // Emit the exit block. 887 EmitBlock(LoopExit.getBlock(), true); 888 889 // The LoopHeader typically is just a branch if we skipped emitting 890 // a branch, try to erase it. 891 if (!EmitBoolCondBranch) 892 SimplifyForwardingBlocks(LoopHeader.getBlock()); 893 } 894 895 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 896 ArrayRef<const Attr *> DoAttrs) { 897 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 898 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 899 900 uint64_t ParentCount = getCurrentProfileCount(); 901 902 // Store the blocks to use for break and continue. 903 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 904 905 // Emit the body of the loop. 906 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 907 908 EmitBlockWithFallThrough(LoopBody, &S); 909 { 910 RunCleanupsScope BodyScope(*this); 911 EmitStmt(S.getBody()); 912 } 913 914 EmitBlock(LoopCond.getBlock()); 915 916 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 917 // after each execution of the loop body." 918 919 // Evaluate the conditional in the while header. 920 // C99 6.8.5p2/p4: The first substatement is executed if the expression 921 // compares unequal to 0. The condition must be a scalar type. 922 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 923 924 BreakContinueStack.pop_back(); 925 926 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 927 // to correctly handle break/continue though. 928 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 929 bool CondIsConstInt = C; 930 bool EmitBoolCondBranch = !C || !C->isZero(); 931 932 const SourceRange &R = S.getSourceRange(); 933 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 934 SourceLocToDebugLoc(R.getBegin()), 935 SourceLocToDebugLoc(R.getEnd()), 936 checkIfLoopMustProgress(CondIsConstInt)); 937 938 // As long as the condition is true, iterate the loop. 939 if (EmitBoolCondBranch) { 940 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 941 Builder.CreateCondBr( 942 BoolCondVal, LoopBody, LoopExit.getBlock(), 943 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 944 } 945 946 LoopStack.pop(); 947 948 // Emit the exit block. 949 EmitBlock(LoopExit.getBlock()); 950 951 // The DoCond block typically is just a branch if we skipped 952 // emitting a branch, try to erase it. 953 if (!EmitBoolCondBranch) 954 SimplifyForwardingBlocks(LoopCond.getBlock()); 955 } 956 957 void CodeGenFunction::EmitForStmt(const ForStmt &S, 958 ArrayRef<const Attr *> ForAttrs) { 959 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 960 961 LexicalScope ForScope(*this, S.getSourceRange()); 962 963 // Evaluate the first part before the loop. 964 if (S.getInit()) 965 EmitStmt(S.getInit()); 966 967 // Start the loop with a block that tests the condition. 968 // If there's an increment, the continue scope will be overwritten 969 // later. 970 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 971 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 972 EmitBlock(CondBlock); 973 974 Expr::EvalResult Result; 975 bool CondIsConstInt = 976 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 977 978 const SourceRange &R = S.getSourceRange(); 979 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 980 SourceLocToDebugLoc(R.getBegin()), 981 SourceLocToDebugLoc(R.getEnd()), 982 checkIfLoopMustProgress(CondIsConstInt)); 983 984 // Create a cleanup scope for the condition variable cleanups. 985 LexicalScope ConditionScope(*this, S.getSourceRange()); 986 987 // If the for loop doesn't have an increment we can just use the condition as 988 // the continue block. Otherwise, if there is no condition variable, we can 989 // form the continue block now. If there is a condition variable, we can't 990 // form the continue block until after we've emitted the condition, because 991 // the condition is in scope in the increment, but Sema's jump diagnostics 992 // ensure that there are no continues from the condition variable that jump 993 // to the loop increment. 994 JumpDest Continue; 995 if (!S.getInc()) 996 Continue = CondDest; 997 else if (!S.getConditionVariable()) 998 Continue = getJumpDestInCurrentScope("for.inc"); 999 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1000 1001 if (S.getCond()) { 1002 // If the for statement has a condition scope, emit the local variable 1003 // declaration. 1004 if (S.getConditionVariable()) { 1005 EmitDecl(*S.getConditionVariable()); 1006 1007 // We have entered the condition variable's scope, so we're now able to 1008 // jump to the continue block. 1009 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1010 BreakContinueStack.back().ContinueBlock = Continue; 1011 } 1012 1013 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1014 // If there are any cleanups between here and the loop-exit scope, 1015 // create a block to stage a loop exit along. 1016 if (ForScope.requiresCleanups()) 1017 ExitBlock = createBasicBlock("for.cond.cleanup"); 1018 1019 // As long as the condition is true, iterate the loop. 1020 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1021 1022 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1023 // compares unequal to 0. The condition must be a scalar type. 1024 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1025 llvm::MDNode *Weights = 1026 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1027 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1028 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1029 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1030 1031 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1032 1033 if (ExitBlock != LoopExit.getBlock()) { 1034 EmitBlock(ExitBlock); 1035 EmitBranchThroughCleanup(LoopExit); 1036 } 1037 1038 EmitBlock(ForBody); 1039 } else { 1040 // Treat it as a non-zero constant. Don't even create a new block for the 1041 // body, just fall into it. 1042 } 1043 incrementProfileCounter(&S); 1044 1045 { 1046 // Create a separate cleanup scope for the body, in case it is not 1047 // a compound statement. 1048 RunCleanupsScope BodyScope(*this); 1049 EmitStmt(S.getBody()); 1050 } 1051 1052 // If there is an increment, emit it next. 1053 if (S.getInc()) { 1054 EmitBlock(Continue.getBlock()); 1055 EmitStmt(S.getInc()); 1056 } 1057 1058 BreakContinueStack.pop_back(); 1059 1060 ConditionScope.ForceCleanup(); 1061 1062 EmitStopPoint(&S); 1063 EmitBranch(CondBlock); 1064 1065 ForScope.ForceCleanup(); 1066 1067 LoopStack.pop(); 1068 1069 // Emit the fall-through block. 1070 EmitBlock(LoopExit.getBlock(), true); 1071 } 1072 1073 void 1074 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1075 ArrayRef<const Attr *> ForAttrs) { 1076 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1077 1078 LexicalScope ForScope(*this, S.getSourceRange()); 1079 1080 // Evaluate the first pieces before the loop. 1081 if (S.getInit()) 1082 EmitStmt(S.getInit()); 1083 EmitStmt(S.getRangeStmt()); 1084 EmitStmt(S.getBeginStmt()); 1085 EmitStmt(S.getEndStmt()); 1086 1087 // Start the loop with a block that tests the condition. 1088 // If there's an increment, the continue scope will be overwritten 1089 // later. 1090 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1091 EmitBlock(CondBlock); 1092 1093 const SourceRange &R = S.getSourceRange(); 1094 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1095 SourceLocToDebugLoc(R.getBegin()), 1096 SourceLocToDebugLoc(R.getEnd())); 1097 1098 // If there are any cleanups between here and the loop-exit scope, 1099 // create a block to stage a loop exit along. 1100 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1101 if (ForScope.requiresCleanups()) 1102 ExitBlock = createBasicBlock("for.cond.cleanup"); 1103 1104 // The loop body, consisting of the specified body and the loop variable. 1105 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1106 1107 // The body is executed if the expression, contextually converted 1108 // to bool, is true. 1109 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1110 llvm::MDNode *Weights = 1111 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1112 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1113 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1114 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1115 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1116 1117 if (ExitBlock != LoopExit.getBlock()) { 1118 EmitBlock(ExitBlock); 1119 EmitBranchThroughCleanup(LoopExit); 1120 } 1121 1122 EmitBlock(ForBody); 1123 incrementProfileCounter(&S); 1124 1125 // Create a block for the increment. In case of a 'continue', we jump there. 1126 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1127 1128 // Store the blocks to use for break and continue. 1129 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1130 1131 { 1132 // Create a separate cleanup scope for the loop variable and body. 1133 LexicalScope BodyScope(*this, S.getSourceRange()); 1134 EmitStmt(S.getLoopVarStmt()); 1135 EmitStmt(S.getBody()); 1136 } 1137 1138 EmitStopPoint(&S); 1139 // If there is an increment, emit it next. 1140 EmitBlock(Continue.getBlock()); 1141 EmitStmt(S.getInc()); 1142 1143 BreakContinueStack.pop_back(); 1144 1145 EmitBranch(CondBlock); 1146 1147 ForScope.ForceCleanup(); 1148 1149 LoopStack.pop(); 1150 1151 // Emit the fall-through block. 1152 EmitBlock(LoopExit.getBlock(), true); 1153 } 1154 1155 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1156 if (RV.isScalar()) { 1157 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1158 } else if (RV.isAggregate()) { 1159 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1160 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1161 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1162 } else { 1163 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1164 /*init*/ true); 1165 } 1166 EmitBranchThroughCleanup(ReturnBlock); 1167 } 1168 1169 namespace { 1170 // RAII struct used to save and restore a return statment's result expression. 1171 struct SaveRetExprRAII { 1172 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1173 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1174 CGF.RetExpr = RetExpr; 1175 } 1176 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1177 const Expr *OldRetExpr; 1178 CodeGenFunction &CGF; 1179 }; 1180 } // namespace 1181 1182 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1183 /// codegen it as 'tail call ...; ret void;'. 1184 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1185 const CGFunctionInfo *CurFnInfo) { 1186 auto calleeQualType = CE->getCallee()->getType(); 1187 const FunctionType *calleeType = nullptr; 1188 if (calleeQualType->isFunctionPointerType() || 1189 calleeQualType->isFunctionReferenceType() || 1190 calleeQualType->isBlockPointerType() || 1191 calleeQualType->isMemberFunctionPointerType()) { 1192 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1193 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1194 calleeType = ty; 1195 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1196 if (auto methodDecl = CMCE->getMethodDecl()) { 1197 // getMethodDecl() doesn't handle member pointers at the moment. 1198 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1199 } else { 1200 return; 1201 } 1202 } else { 1203 return; 1204 } 1205 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1206 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1207 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1208 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1209 Builder.CreateRetVoid(); 1210 Builder.ClearInsertionPoint(); 1211 } 1212 } 1213 1214 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1215 /// if the function returns void, or may be missing one if the function returns 1216 /// non-void. Fun stuff :). 1217 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1218 if (requiresReturnValueCheck()) { 1219 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1220 auto *SLocPtr = 1221 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1222 llvm::GlobalVariable::PrivateLinkage, SLoc); 1223 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1224 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1225 assert(ReturnLocation.isValid() && "No valid return location"); 1226 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1227 ReturnLocation); 1228 } 1229 1230 // Returning from an outlined SEH helper is UB, and we already warn on it. 1231 if (IsOutlinedSEHHelper) { 1232 Builder.CreateUnreachable(); 1233 Builder.ClearInsertionPoint(); 1234 } 1235 1236 // Emit the result value, even if unused, to evaluate the side effects. 1237 const Expr *RV = S.getRetValue(); 1238 1239 // Record the result expression of the return statement. The recorded 1240 // expression is used to determine whether a block capture's lifetime should 1241 // end at the end of the full expression as opposed to the end of the scope 1242 // enclosing the block expression. 1243 // 1244 // This permits a small, easily-implemented exception to our over-conservative 1245 // rules about not jumping to statements following block literals with 1246 // non-trivial cleanups. 1247 SaveRetExprRAII SaveRetExpr(RV, *this); 1248 1249 RunCleanupsScope cleanupScope(*this); 1250 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1251 RV = EWC->getSubExpr(); 1252 // FIXME: Clean this up by using an LValue for ReturnTemp, 1253 // EmitStoreThroughLValue, and EmitAnyExpr. 1254 // Check if the NRVO candidate was not globalized in OpenMP mode. 1255 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1256 S.getNRVOCandidate()->isNRVOVariable() && 1257 (!getLangOpts().OpenMP || 1258 !CGM.getOpenMPRuntime() 1259 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1260 .isValid())) { 1261 // Apply the named return value optimization for this return statement, 1262 // which means doing nothing: the appropriate result has already been 1263 // constructed into the NRVO variable. 1264 1265 // If there is an NRVO flag for this variable, set it to 1 into indicate 1266 // that the cleanup code should not destroy the variable. 1267 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1268 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1269 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1270 // Make sure not to return anything, but evaluate the expression 1271 // for side effects. 1272 if (RV) { 1273 EmitAnyExpr(RV); 1274 if (auto *CE = dyn_cast<CallExpr>(RV)) 1275 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1276 } 1277 } else if (!RV) { 1278 // Do nothing (return value is left uninitialized) 1279 } else if (FnRetTy->isReferenceType()) { 1280 // If this function returns a reference, take the address of the expression 1281 // rather than the value. 1282 RValue Result = EmitReferenceBindingToExpr(RV); 1283 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1284 } else { 1285 switch (getEvaluationKind(RV->getType())) { 1286 case TEK_Scalar: 1287 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1288 break; 1289 case TEK_Complex: 1290 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1291 /*isInit*/ true); 1292 break; 1293 case TEK_Aggregate: 1294 EmitAggExpr(RV, AggValueSlot::forAddr( 1295 ReturnValue, Qualifiers(), 1296 AggValueSlot::IsDestructed, 1297 AggValueSlot::DoesNotNeedGCBarriers, 1298 AggValueSlot::IsNotAliased, 1299 getOverlapForReturnValue())); 1300 break; 1301 } 1302 } 1303 1304 ++NumReturnExprs; 1305 if (!RV || RV->isEvaluatable(getContext())) 1306 ++NumSimpleReturnExprs; 1307 1308 cleanupScope.ForceCleanup(); 1309 EmitBranchThroughCleanup(ReturnBlock); 1310 } 1311 1312 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1313 // As long as debug info is modeled with instructions, we have to ensure we 1314 // have a place to insert here and write the stop point here. 1315 if (HaveInsertPoint()) 1316 EmitStopPoint(&S); 1317 1318 for (const auto *I : S.decls()) 1319 EmitDecl(*I); 1320 } 1321 1322 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1323 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1324 1325 // If this code is reachable then emit a stop point (if generating 1326 // debug info). We have to do this ourselves because we are on the 1327 // "simple" statement path. 1328 if (HaveInsertPoint()) 1329 EmitStopPoint(&S); 1330 1331 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1332 } 1333 1334 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1335 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1336 1337 // If this code is reachable then emit a stop point (if generating 1338 // debug info). We have to do this ourselves because we are on the 1339 // "simple" statement path. 1340 if (HaveInsertPoint()) 1341 EmitStopPoint(&S); 1342 1343 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1344 } 1345 1346 /// EmitCaseStmtRange - If case statement range is not too big then 1347 /// add multiple cases to switch instruction, one for each value within 1348 /// the range. If range is too big then emit "if" condition check. 1349 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1350 ArrayRef<const Attr *> Attrs) { 1351 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1352 1353 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1354 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1355 1356 // Emit the code for this case. We do this first to make sure it is 1357 // properly chained from our predecessor before generating the 1358 // switch machinery to enter this block. 1359 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1360 EmitBlockWithFallThrough(CaseDest, &S); 1361 EmitStmt(S.getSubStmt()); 1362 1363 // If range is empty, do nothing. 1364 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1365 return; 1366 1367 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1368 llvm::APInt Range = RHS - LHS; 1369 // FIXME: parameters such as this should not be hardcoded. 1370 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1371 // Range is small enough to add multiple switch instruction cases. 1372 uint64_t Total = getProfileCount(&S); 1373 unsigned NCases = Range.getZExtValue() + 1; 1374 // We only have one region counter for the entire set of cases here, so we 1375 // need to divide the weights evenly between the generated cases, ensuring 1376 // that the total weight is preserved. E.g., a weight of 5 over three cases 1377 // will be distributed as weights of 2, 2, and 1. 1378 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1379 for (unsigned I = 0; I != NCases; ++I) { 1380 if (SwitchWeights) 1381 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1382 else if (SwitchLikelihood) 1383 SwitchLikelihood->push_back(LH); 1384 1385 if (Rem) 1386 Rem--; 1387 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1388 ++LHS; 1389 } 1390 return; 1391 } 1392 1393 // The range is too big. Emit "if" condition into a new block, 1394 // making sure to save and restore the current insertion point. 1395 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1396 1397 // Push this test onto the chain of range checks (which terminates 1398 // in the default basic block). The switch's default will be changed 1399 // to the top of this chain after switch emission is complete. 1400 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1401 CaseRangeBlock = createBasicBlock("sw.caserange"); 1402 1403 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1404 Builder.SetInsertPoint(CaseRangeBlock); 1405 1406 // Emit range check. 1407 llvm::Value *Diff = 1408 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1409 llvm::Value *Cond = 1410 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1411 1412 llvm::MDNode *Weights = nullptr; 1413 if (SwitchWeights) { 1414 uint64_t ThisCount = getProfileCount(&S); 1415 uint64_t DefaultCount = (*SwitchWeights)[0]; 1416 Weights = createProfileWeights(ThisCount, DefaultCount); 1417 1418 // Since we're chaining the switch default through each large case range, we 1419 // need to update the weight for the default, ie, the first case, to include 1420 // this case. 1421 (*SwitchWeights)[0] += ThisCount; 1422 } else if (SwitchLikelihood) 1423 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1424 1425 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1426 1427 // Restore the appropriate insertion point. 1428 if (RestoreBB) 1429 Builder.SetInsertPoint(RestoreBB); 1430 else 1431 Builder.ClearInsertionPoint(); 1432 } 1433 1434 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1435 ArrayRef<const Attr *> Attrs) { 1436 // If there is no enclosing switch instance that we're aware of, then this 1437 // case statement and its block can be elided. This situation only happens 1438 // when we've constant-folded the switch, are emitting the constant case, 1439 // and part of the constant case includes another case statement. For 1440 // instance: switch (4) { case 4: do { case 5: } while (1); } 1441 if (!SwitchInsn) { 1442 EmitStmt(S.getSubStmt()); 1443 return; 1444 } 1445 1446 // Handle case ranges. 1447 if (S.getRHS()) { 1448 EmitCaseStmtRange(S, Attrs); 1449 return; 1450 } 1451 1452 llvm::ConstantInt *CaseVal = 1453 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1454 if (SwitchLikelihood) 1455 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1456 1457 // If the body of the case is just a 'break', try to not emit an empty block. 1458 // If we're profiling or we're not optimizing, leave the block in for better 1459 // debug and coverage analysis. 1460 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1461 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1462 isa<BreakStmt>(S.getSubStmt())) { 1463 JumpDest Block = BreakContinueStack.back().BreakBlock; 1464 1465 // Only do this optimization if there are no cleanups that need emitting. 1466 if (isObviouslyBranchWithoutCleanups(Block)) { 1467 if (SwitchWeights) 1468 SwitchWeights->push_back(getProfileCount(&S)); 1469 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1470 1471 // If there was a fallthrough into this case, make sure to redirect it to 1472 // the end of the switch as well. 1473 if (Builder.GetInsertBlock()) { 1474 Builder.CreateBr(Block.getBlock()); 1475 Builder.ClearInsertionPoint(); 1476 } 1477 return; 1478 } 1479 } 1480 1481 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1482 EmitBlockWithFallThrough(CaseDest, &S); 1483 if (SwitchWeights) 1484 SwitchWeights->push_back(getProfileCount(&S)); 1485 SwitchInsn->addCase(CaseVal, CaseDest); 1486 1487 // Recursively emitting the statement is acceptable, but is not wonderful for 1488 // code where we have many case statements nested together, i.e.: 1489 // case 1: 1490 // case 2: 1491 // case 3: etc. 1492 // Handling this recursively will create a new block for each case statement 1493 // that falls through to the next case which is IR intensive. It also causes 1494 // deep recursion which can run into stack depth limitations. Handle 1495 // sequential non-range case statements specially. 1496 // 1497 // TODO When the next case has a likelihood attribute the code returns to the 1498 // recursive algorithm. Maybe improve this case if it becomes common practice 1499 // to use a lot of attributes. 1500 const CaseStmt *CurCase = &S; 1501 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1502 1503 // Otherwise, iteratively add consecutive cases to this switch stmt. 1504 while (NextCase && NextCase->getRHS() == nullptr) { 1505 CurCase = NextCase; 1506 llvm::ConstantInt *CaseVal = 1507 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1508 1509 if (SwitchWeights) 1510 SwitchWeights->push_back(getProfileCount(NextCase)); 1511 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1512 CaseDest = createBasicBlock("sw.bb"); 1513 EmitBlockWithFallThrough(CaseDest, CurCase); 1514 } 1515 // Since this loop is only executed when the CaseStmt has no attributes 1516 // use a hard-coded value. 1517 if (SwitchLikelihood) 1518 SwitchLikelihood->push_back(Stmt::LH_None); 1519 1520 SwitchInsn->addCase(CaseVal, CaseDest); 1521 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1522 } 1523 1524 // Generate a stop point for debug info if the case statement is 1525 // followed by a default statement. A fallthrough case before a 1526 // default case gets its own branch target. 1527 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1528 EmitStopPoint(CurCase); 1529 1530 // Normal default recursion for non-cases. 1531 EmitStmt(CurCase->getSubStmt()); 1532 } 1533 1534 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1535 ArrayRef<const Attr *> Attrs) { 1536 // If there is no enclosing switch instance that we're aware of, then this 1537 // default statement can be elided. This situation only happens when we've 1538 // constant-folded the switch. 1539 if (!SwitchInsn) { 1540 EmitStmt(S.getSubStmt()); 1541 return; 1542 } 1543 1544 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1545 assert(DefaultBlock->empty() && 1546 "EmitDefaultStmt: Default block already defined?"); 1547 1548 if (SwitchLikelihood) 1549 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1550 1551 EmitBlockWithFallThrough(DefaultBlock, &S); 1552 1553 EmitStmt(S.getSubStmt()); 1554 } 1555 1556 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1557 /// constant value that is being switched on, see if we can dead code eliminate 1558 /// the body of the switch to a simple series of statements to emit. Basically, 1559 /// on a switch (5) we want to find these statements: 1560 /// case 5: 1561 /// printf(...); <-- 1562 /// ++i; <-- 1563 /// break; 1564 /// 1565 /// and add them to the ResultStmts vector. If it is unsafe to do this 1566 /// transformation (for example, one of the elided statements contains a label 1567 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1568 /// should include statements after it (e.g. the printf() line is a substmt of 1569 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1570 /// statement, then return CSFC_Success. 1571 /// 1572 /// If Case is non-null, then we are looking for the specified case, checking 1573 /// that nothing we jump over contains labels. If Case is null, then we found 1574 /// the case and are looking for the break. 1575 /// 1576 /// If the recursive walk actually finds our Case, then we set FoundCase to 1577 /// true. 1578 /// 1579 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1580 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1581 const SwitchCase *Case, 1582 bool &FoundCase, 1583 SmallVectorImpl<const Stmt*> &ResultStmts) { 1584 // If this is a null statement, just succeed. 1585 if (!S) 1586 return Case ? CSFC_Success : CSFC_FallThrough; 1587 1588 // If this is the switchcase (case 4: or default) that we're looking for, then 1589 // we're in business. Just add the substatement. 1590 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1591 if (S == Case) { 1592 FoundCase = true; 1593 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1594 ResultStmts); 1595 } 1596 1597 // Otherwise, this is some other case or default statement, just ignore it. 1598 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1599 ResultStmts); 1600 } 1601 1602 // If we are in the live part of the code and we found our break statement, 1603 // return a success! 1604 if (!Case && isa<BreakStmt>(S)) 1605 return CSFC_Success; 1606 1607 // If this is a switch statement, then it might contain the SwitchCase, the 1608 // break, or neither. 1609 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1610 // Handle this as two cases: we might be looking for the SwitchCase (if so 1611 // the skipped statements must be skippable) or we might already have it. 1612 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1613 bool StartedInLiveCode = FoundCase; 1614 unsigned StartSize = ResultStmts.size(); 1615 1616 // If we've not found the case yet, scan through looking for it. 1617 if (Case) { 1618 // Keep track of whether we see a skipped declaration. The code could be 1619 // using the declaration even if it is skipped, so we can't optimize out 1620 // the decl if the kept statements might refer to it. 1621 bool HadSkippedDecl = false; 1622 1623 // If we're looking for the case, just see if we can skip each of the 1624 // substatements. 1625 for (; Case && I != E; ++I) { 1626 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1627 1628 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1629 case CSFC_Failure: return CSFC_Failure; 1630 case CSFC_Success: 1631 // A successful result means that either 1) that the statement doesn't 1632 // have the case and is skippable, or 2) does contain the case value 1633 // and also contains the break to exit the switch. In the later case, 1634 // we just verify the rest of the statements are elidable. 1635 if (FoundCase) { 1636 // If we found the case and skipped declarations, we can't do the 1637 // optimization. 1638 if (HadSkippedDecl) 1639 return CSFC_Failure; 1640 1641 for (++I; I != E; ++I) 1642 if (CodeGenFunction::ContainsLabel(*I, true)) 1643 return CSFC_Failure; 1644 return CSFC_Success; 1645 } 1646 break; 1647 case CSFC_FallThrough: 1648 // If we have a fallthrough condition, then we must have found the 1649 // case started to include statements. Consider the rest of the 1650 // statements in the compound statement as candidates for inclusion. 1651 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1652 // We recursively found Case, so we're not looking for it anymore. 1653 Case = nullptr; 1654 1655 // If we found the case and skipped declarations, we can't do the 1656 // optimization. 1657 if (HadSkippedDecl) 1658 return CSFC_Failure; 1659 break; 1660 } 1661 } 1662 1663 if (!FoundCase) 1664 return CSFC_Success; 1665 1666 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1667 } 1668 1669 // If we have statements in our range, then we know that the statements are 1670 // live and need to be added to the set of statements we're tracking. 1671 bool AnyDecls = false; 1672 for (; I != E; ++I) { 1673 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1674 1675 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1676 case CSFC_Failure: return CSFC_Failure; 1677 case CSFC_FallThrough: 1678 // A fallthrough result means that the statement was simple and just 1679 // included in ResultStmt, keep adding them afterwards. 1680 break; 1681 case CSFC_Success: 1682 // A successful result means that we found the break statement and 1683 // stopped statement inclusion. We just ensure that any leftover stmts 1684 // are skippable and return success ourselves. 1685 for (++I; I != E; ++I) 1686 if (CodeGenFunction::ContainsLabel(*I, true)) 1687 return CSFC_Failure; 1688 return CSFC_Success; 1689 } 1690 } 1691 1692 // If we're about to fall out of a scope without hitting a 'break;', we 1693 // can't perform the optimization if there were any decls in that scope 1694 // (we'd lose their end-of-lifetime). 1695 if (AnyDecls) { 1696 // If the entire compound statement was live, there's one more thing we 1697 // can try before giving up: emit the whole thing as a single statement. 1698 // We can do that unless the statement contains a 'break;'. 1699 // FIXME: Such a break must be at the end of a construct within this one. 1700 // We could emit this by just ignoring the BreakStmts entirely. 1701 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1702 ResultStmts.resize(StartSize); 1703 ResultStmts.push_back(S); 1704 } else { 1705 return CSFC_Failure; 1706 } 1707 } 1708 1709 return CSFC_FallThrough; 1710 } 1711 1712 // Okay, this is some other statement that we don't handle explicitly, like a 1713 // for statement or increment etc. If we are skipping over this statement, 1714 // just verify it doesn't have labels, which would make it invalid to elide. 1715 if (Case) { 1716 if (CodeGenFunction::ContainsLabel(S, true)) 1717 return CSFC_Failure; 1718 return CSFC_Success; 1719 } 1720 1721 // Otherwise, we want to include this statement. Everything is cool with that 1722 // so long as it doesn't contain a break out of the switch we're in. 1723 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1724 1725 // Otherwise, everything is great. Include the statement and tell the caller 1726 // that we fall through and include the next statement as well. 1727 ResultStmts.push_back(S); 1728 return CSFC_FallThrough; 1729 } 1730 1731 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1732 /// then invoke CollectStatementsForCase to find the list of statements to emit 1733 /// for a switch on constant. See the comment above CollectStatementsForCase 1734 /// for more details. 1735 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1736 const llvm::APSInt &ConstantCondValue, 1737 SmallVectorImpl<const Stmt*> &ResultStmts, 1738 ASTContext &C, 1739 const SwitchCase *&ResultCase) { 1740 // First step, find the switch case that is being branched to. We can do this 1741 // efficiently by scanning the SwitchCase list. 1742 const SwitchCase *Case = S.getSwitchCaseList(); 1743 const DefaultStmt *DefaultCase = nullptr; 1744 1745 for (; Case; Case = Case->getNextSwitchCase()) { 1746 // It's either a default or case. Just remember the default statement in 1747 // case we're not jumping to any numbered cases. 1748 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1749 DefaultCase = DS; 1750 continue; 1751 } 1752 1753 // Check to see if this case is the one we're looking for. 1754 const CaseStmt *CS = cast<CaseStmt>(Case); 1755 // Don't handle case ranges yet. 1756 if (CS->getRHS()) return false; 1757 1758 // If we found our case, remember it as 'case'. 1759 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1760 break; 1761 } 1762 1763 // If we didn't find a matching case, we use a default if it exists, or we 1764 // elide the whole switch body! 1765 if (!Case) { 1766 // It is safe to elide the body of the switch if it doesn't contain labels 1767 // etc. If it is safe, return successfully with an empty ResultStmts list. 1768 if (!DefaultCase) 1769 return !CodeGenFunction::ContainsLabel(&S); 1770 Case = DefaultCase; 1771 } 1772 1773 // Ok, we know which case is being jumped to, try to collect all the 1774 // statements that follow it. This can fail for a variety of reasons. Also, 1775 // check to see that the recursive walk actually found our case statement. 1776 // Insane cases like this can fail to find it in the recursive walk since we 1777 // don't handle every stmt kind: 1778 // switch (4) { 1779 // while (1) { 1780 // case 4: ... 1781 bool FoundCase = false; 1782 ResultCase = Case; 1783 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1784 ResultStmts) != CSFC_Failure && 1785 FoundCase; 1786 } 1787 1788 static Optional<SmallVector<uint64_t, 16>> 1789 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1790 // Are there enough branches to weight them? 1791 if (Likelihoods.size() <= 1) 1792 return None; 1793 1794 uint64_t NumUnlikely = 0; 1795 uint64_t NumNone = 0; 1796 uint64_t NumLikely = 0; 1797 for (const auto LH : Likelihoods) { 1798 switch (LH) { 1799 case Stmt::LH_Unlikely: 1800 ++NumUnlikely; 1801 break; 1802 case Stmt::LH_None: 1803 ++NumNone; 1804 break; 1805 case Stmt::LH_Likely: 1806 ++NumLikely; 1807 break; 1808 } 1809 } 1810 1811 // Is there a likelihood attribute used? 1812 if (NumUnlikely == 0 && NumLikely == 0) 1813 return None; 1814 1815 // When multiple cases share the same code they can be combined during 1816 // optimization. In that case the weights of the branch will be the sum of 1817 // the individual weights. Make sure the combined sum of all neutral cases 1818 // doesn't exceed the value of a single likely attribute. 1819 // The additions both avoid divisions by 0 and make sure the weights of None 1820 // don't exceed the weight of Likely. 1821 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1822 const uint64_t None = Likely / (NumNone + 1); 1823 const uint64_t Unlikely = 0; 1824 1825 SmallVector<uint64_t, 16> Result; 1826 Result.reserve(Likelihoods.size()); 1827 for (const auto LH : Likelihoods) { 1828 switch (LH) { 1829 case Stmt::LH_Unlikely: 1830 Result.push_back(Unlikely); 1831 break; 1832 case Stmt::LH_None: 1833 Result.push_back(None); 1834 break; 1835 case Stmt::LH_Likely: 1836 Result.push_back(Likely); 1837 break; 1838 } 1839 } 1840 1841 return Result; 1842 } 1843 1844 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1845 // Handle nested switch statements. 1846 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1847 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1848 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1849 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1850 1851 // See if we can constant fold the condition of the switch and therefore only 1852 // emit the live case statement (if any) of the switch. 1853 llvm::APSInt ConstantCondValue; 1854 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1855 SmallVector<const Stmt*, 4> CaseStmts; 1856 const SwitchCase *Case = nullptr; 1857 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1858 getContext(), Case)) { 1859 if (Case) 1860 incrementProfileCounter(Case); 1861 RunCleanupsScope ExecutedScope(*this); 1862 1863 if (S.getInit()) 1864 EmitStmt(S.getInit()); 1865 1866 // Emit the condition variable if needed inside the entire cleanup scope 1867 // used by this special case for constant folded switches. 1868 if (S.getConditionVariable()) 1869 EmitDecl(*S.getConditionVariable()); 1870 1871 // At this point, we are no longer "within" a switch instance, so 1872 // we can temporarily enforce this to ensure that any embedded case 1873 // statements are not emitted. 1874 SwitchInsn = nullptr; 1875 1876 // Okay, we can dead code eliminate everything except this case. Emit the 1877 // specified series of statements and we're good. 1878 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1879 EmitStmt(CaseStmts[i]); 1880 incrementProfileCounter(&S); 1881 1882 // Now we want to restore the saved switch instance so that nested 1883 // switches continue to function properly 1884 SwitchInsn = SavedSwitchInsn; 1885 1886 return; 1887 } 1888 } 1889 1890 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1891 1892 RunCleanupsScope ConditionScope(*this); 1893 1894 if (S.getInit()) 1895 EmitStmt(S.getInit()); 1896 1897 if (S.getConditionVariable()) 1898 EmitDecl(*S.getConditionVariable()); 1899 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1900 1901 // Create basic block to hold stuff that comes after switch 1902 // statement. We also need to create a default block now so that 1903 // explicit case ranges tests can have a place to jump to on 1904 // failure. 1905 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1906 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1907 if (PGO.haveRegionCounts()) { 1908 // Walk the SwitchCase list to find how many there are. 1909 uint64_t DefaultCount = 0; 1910 unsigned NumCases = 0; 1911 for (const SwitchCase *Case = S.getSwitchCaseList(); 1912 Case; 1913 Case = Case->getNextSwitchCase()) { 1914 if (isa<DefaultStmt>(Case)) 1915 DefaultCount = getProfileCount(Case); 1916 NumCases += 1; 1917 } 1918 SwitchWeights = new SmallVector<uint64_t, 16>(); 1919 SwitchWeights->reserve(NumCases); 1920 // The default needs to be first. We store the edge count, so we already 1921 // know the right weight. 1922 SwitchWeights->push_back(DefaultCount); 1923 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1924 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1925 // Initialize the default case. 1926 SwitchLikelihood->push_back(Stmt::LH_None); 1927 } 1928 1929 CaseRangeBlock = DefaultBlock; 1930 1931 // Clear the insertion point to indicate we are in unreachable code. 1932 Builder.ClearInsertionPoint(); 1933 1934 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1935 // then reuse last ContinueBlock. 1936 JumpDest OuterContinue; 1937 if (!BreakContinueStack.empty()) 1938 OuterContinue = BreakContinueStack.back().ContinueBlock; 1939 1940 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1941 1942 // Emit switch body. 1943 EmitStmt(S.getBody()); 1944 1945 BreakContinueStack.pop_back(); 1946 1947 // Update the default block in case explicit case range tests have 1948 // been chained on top. 1949 SwitchInsn->setDefaultDest(CaseRangeBlock); 1950 1951 // If a default was never emitted: 1952 if (!DefaultBlock->getParent()) { 1953 // If we have cleanups, emit the default block so that there's a 1954 // place to jump through the cleanups from. 1955 if (ConditionScope.requiresCleanups()) { 1956 EmitBlock(DefaultBlock); 1957 1958 // Otherwise, just forward the default block to the switch end. 1959 } else { 1960 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1961 delete DefaultBlock; 1962 } 1963 } 1964 1965 ConditionScope.ForceCleanup(); 1966 1967 // Emit continuation. 1968 EmitBlock(SwitchExit.getBlock(), true); 1969 incrementProfileCounter(&S); 1970 1971 // If the switch has a condition wrapped by __builtin_unpredictable, 1972 // create metadata that specifies that the switch is unpredictable. 1973 // Don't bother if not optimizing because that metadata would not be used. 1974 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1975 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1976 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1977 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1978 llvm::MDBuilder MDHelper(getLLVMContext()); 1979 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1980 MDHelper.createUnpredictable()); 1981 } 1982 } 1983 1984 if (SwitchWeights) { 1985 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1986 "switch weights do not match switch cases"); 1987 // If there's only one jump destination there's no sense weighting it. 1988 if (SwitchWeights->size() > 1) 1989 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1990 createProfileWeights(*SwitchWeights)); 1991 delete SwitchWeights; 1992 } else if (SwitchLikelihood) { 1993 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1994 "switch likelihoods do not match switch cases"); 1995 Optional<SmallVector<uint64_t, 16>> LHW = 1996 getLikelihoodWeights(*SwitchLikelihood); 1997 if (LHW) { 1998 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1999 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2000 createProfileWeights(*LHW)); 2001 } 2002 delete SwitchLikelihood; 2003 } 2004 SwitchInsn = SavedSwitchInsn; 2005 SwitchWeights = SavedSwitchWeights; 2006 SwitchLikelihood = SavedSwitchLikelihood; 2007 CaseRangeBlock = SavedCRBlock; 2008 } 2009 2010 static std::string 2011 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2012 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2013 std::string Result; 2014 2015 while (*Constraint) { 2016 switch (*Constraint) { 2017 default: 2018 Result += Target.convertConstraint(Constraint); 2019 break; 2020 // Ignore these 2021 case '*': 2022 case '?': 2023 case '!': 2024 case '=': // Will see this and the following in mult-alt constraints. 2025 case '+': 2026 break; 2027 case '#': // Ignore the rest of the constraint alternative. 2028 while (Constraint[1] && Constraint[1] != ',') 2029 Constraint++; 2030 break; 2031 case '&': 2032 case '%': 2033 Result += *Constraint; 2034 while (Constraint[1] && Constraint[1] == *Constraint) 2035 Constraint++; 2036 break; 2037 case ',': 2038 Result += "|"; 2039 break; 2040 case 'g': 2041 Result += "imr"; 2042 break; 2043 case '[': { 2044 assert(OutCons && 2045 "Must pass output names to constraints with a symbolic name"); 2046 unsigned Index; 2047 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2048 assert(result && "Could not resolve symbolic name"); (void)result; 2049 Result += llvm::utostr(Index); 2050 break; 2051 } 2052 } 2053 2054 Constraint++; 2055 } 2056 2057 return Result; 2058 } 2059 2060 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2061 /// as using a particular register add that as a constraint that will be used 2062 /// in this asm stmt. 2063 static std::string 2064 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2065 const TargetInfo &Target, CodeGenModule &CGM, 2066 const AsmStmt &Stmt, const bool EarlyClobber, 2067 std::string *GCCReg = nullptr) { 2068 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2069 if (!AsmDeclRef) 2070 return Constraint; 2071 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2072 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2073 if (!Variable) 2074 return Constraint; 2075 if (Variable->getStorageClass() != SC_Register) 2076 return Constraint; 2077 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2078 if (!Attr) 2079 return Constraint; 2080 StringRef Register = Attr->getLabel(); 2081 assert(Target.isValidGCCRegisterName(Register)); 2082 // We're using validateOutputConstraint here because we only care if 2083 // this is a register constraint. 2084 TargetInfo::ConstraintInfo Info(Constraint, ""); 2085 if (Target.validateOutputConstraint(Info) && 2086 !Info.allowsRegister()) { 2087 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2088 return Constraint; 2089 } 2090 // Canonicalize the register here before returning it. 2091 Register = Target.getNormalizedGCCRegisterName(Register); 2092 if (GCCReg != nullptr) 2093 *GCCReg = Register.str(); 2094 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2095 } 2096 2097 llvm::Value* 2098 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2099 LValue InputValue, QualType InputType, 2100 std::string &ConstraintStr, 2101 SourceLocation Loc) { 2102 llvm::Value *Arg; 2103 if (Info.allowsRegister() || !Info.allowsMemory()) { 2104 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2105 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2106 } else { 2107 llvm::Type *Ty = ConvertType(InputType); 2108 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2109 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2110 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2111 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2112 Ty = llvm::PointerType::getUnqual(Ty); 2113 2114 Arg = Builder.CreateLoad( 2115 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2116 } else { 2117 Arg = InputValue.getPointer(*this); 2118 ConstraintStr += '*'; 2119 } 2120 } 2121 } else { 2122 Arg = InputValue.getPointer(*this); 2123 ConstraintStr += '*'; 2124 } 2125 2126 return Arg; 2127 } 2128 2129 llvm::Value* CodeGenFunction::EmitAsmInput( 2130 const TargetInfo::ConstraintInfo &Info, 2131 const Expr *InputExpr, 2132 std::string &ConstraintStr) { 2133 // If this can't be a register or memory, i.e., has to be a constant 2134 // (immediate or symbolic), try to emit it as such. 2135 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2136 if (Info.requiresImmediateConstant()) { 2137 Expr::EvalResult EVResult; 2138 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2139 2140 llvm::APSInt IntResult; 2141 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2142 getContext())) 2143 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2144 } 2145 2146 Expr::EvalResult Result; 2147 if (InputExpr->EvaluateAsInt(Result, getContext())) 2148 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2149 } 2150 2151 if (Info.allowsRegister() || !Info.allowsMemory()) 2152 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2153 return EmitScalarExpr(InputExpr); 2154 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2155 return EmitScalarExpr(InputExpr); 2156 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2157 LValue Dest = EmitLValue(InputExpr); 2158 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2159 InputExpr->getExprLoc()); 2160 } 2161 2162 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2163 /// asm call instruction. The !srcloc MDNode contains a list of constant 2164 /// integers which are the source locations of the start of each line in the 2165 /// asm. 2166 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2167 CodeGenFunction &CGF) { 2168 SmallVector<llvm::Metadata *, 8> Locs; 2169 // Add the location of the first line to the MDNode. 2170 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2171 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2172 StringRef StrVal = Str->getString(); 2173 if (!StrVal.empty()) { 2174 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2175 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2176 unsigned StartToken = 0; 2177 unsigned ByteOffset = 0; 2178 2179 // Add the location of the start of each subsequent line of the asm to the 2180 // MDNode. 2181 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2182 if (StrVal[i] != '\n') continue; 2183 SourceLocation LineLoc = Str->getLocationOfByte( 2184 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2185 Locs.push_back(llvm::ConstantAsMetadata::get( 2186 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2187 } 2188 } 2189 2190 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2191 } 2192 2193 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2194 bool HasUnwindClobber, bool ReadOnly, 2195 bool ReadNone, bool NoMerge, const AsmStmt &S, 2196 const std::vector<llvm::Type *> &ResultRegTypes, 2197 CodeGenFunction &CGF, 2198 std::vector<llvm::Value *> &RegResults) { 2199 if (!HasUnwindClobber) 2200 Result.addFnAttr(llvm::Attribute::NoUnwind); 2201 2202 if (NoMerge) 2203 Result.addFnAttr(llvm::Attribute::NoMerge); 2204 // Attach readnone and readonly attributes. 2205 if (!HasSideEffect) { 2206 if (ReadNone) 2207 Result.addFnAttr(llvm::Attribute::ReadNone); 2208 else if (ReadOnly) 2209 Result.addFnAttr(llvm::Attribute::ReadOnly); 2210 } 2211 2212 // Slap the source location of the inline asm into a !srcloc metadata on the 2213 // call. 2214 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2215 Result.setMetadata("srcloc", 2216 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2217 else { 2218 // At least put the line number on MS inline asm blobs. 2219 llvm::Constant *Loc = 2220 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2221 Result.setMetadata("srcloc", 2222 llvm::MDNode::get(CGF.getLLVMContext(), 2223 llvm::ConstantAsMetadata::get(Loc))); 2224 } 2225 2226 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2227 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2228 // convergent (meaning, they may call an intrinsically convergent op, such 2229 // as bar.sync, and so can't have certain optimizations applied around 2230 // them). 2231 Result.addFnAttr(llvm::Attribute::Convergent); 2232 // Extract all of the register value results from the asm. 2233 if (ResultRegTypes.size() == 1) { 2234 RegResults.push_back(&Result); 2235 } else { 2236 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2237 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2238 RegResults.push_back(Tmp); 2239 } 2240 } 2241 } 2242 2243 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2244 // Assemble the final asm string. 2245 std::string AsmString = S.generateAsmString(getContext()); 2246 2247 // Get all the output and input constraints together. 2248 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2249 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2250 2251 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2252 StringRef Name; 2253 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2254 Name = GAS->getOutputName(i); 2255 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2256 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2257 assert(IsValid && "Failed to parse output constraint"); 2258 OutputConstraintInfos.push_back(Info); 2259 } 2260 2261 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2262 StringRef Name; 2263 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2264 Name = GAS->getInputName(i); 2265 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2266 bool IsValid = 2267 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2268 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2269 InputConstraintInfos.push_back(Info); 2270 } 2271 2272 std::string Constraints; 2273 2274 std::vector<LValue> ResultRegDests; 2275 std::vector<QualType> ResultRegQualTys; 2276 std::vector<llvm::Type *> ResultRegTypes; 2277 std::vector<llvm::Type *> ResultTruncRegTypes; 2278 std::vector<llvm::Type *> ArgTypes; 2279 std::vector<llvm::Value*> Args; 2280 llvm::BitVector ResultTypeRequiresCast; 2281 2282 // Keep track of inout constraints. 2283 std::string InOutConstraints; 2284 std::vector<llvm::Value*> InOutArgs; 2285 std::vector<llvm::Type*> InOutArgTypes; 2286 2287 // Keep track of out constraints for tied input operand. 2288 std::vector<std::string> OutputConstraints; 2289 2290 // Keep track of defined physregs. 2291 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2292 2293 // An inline asm can be marked readonly if it meets the following conditions: 2294 // - it doesn't have any sideeffects 2295 // - it doesn't clobber memory 2296 // - it doesn't return a value by-reference 2297 // It can be marked readnone if it doesn't have any input memory constraints 2298 // in addition to meeting the conditions listed above. 2299 bool ReadOnly = true, ReadNone = true; 2300 2301 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2302 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2303 2304 // Simplify the output constraint. 2305 std::string OutputConstraint(S.getOutputConstraint(i)); 2306 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2307 getTarget(), &OutputConstraintInfos); 2308 2309 const Expr *OutExpr = S.getOutputExpr(i); 2310 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2311 2312 std::string GCCReg; 2313 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2314 getTarget(), CGM, S, 2315 Info.earlyClobber(), 2316 &GCCReg); 2317 // Give an error on multiple outputs to same physreg. 2318 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2319 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2320 2321 OutputConstraints.push_back(OutputConstraint); 2322 LValue Dest = EmitLValue(OutExpr); 2323 if (!Constraints.empty()) 2324 Constraints += ','; 2325 2326 // If this is a register output, then make the inline asm return it 2327 // by-value. If this is a memory result, return the value by-reference. 2328 QualType QTy = OutExpr->getType(); 2329 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2330 hasAggregateEvaluationKind(QTy); 2331 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2332 2333 Constraints += "=" + OutputConstraint; 2334 ResultRegQualTys.push_back(QTy); 2335 ResultRegDests.push_back(Dest); 2336 2337 llvm::Type *Ty = ConvertTypeForMem(QTy); 2338 const bool RequiresCast = Info.allowsRegister() && 2339 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2340 Ty->isAggregateType()); 2341 2342 ResultTruncRegTypes.push_back(Ty); 2343 ResultTypeRequiresCast.push_back(RequiresCast); 2344 2345 if (RequiresCast) { 2346 unsigned Size = getContext().getTypeSize(QTy); 2347 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2348 } 2349 ResultRegTypes.push_back(Ty); 2350 // If this output is tied to an input, and if the input is larger, then 2351 // we need to set the actual result type of the inline asm node to be the 2352 // same as the input type. 2353 if (Info.hasMatchingInput()) { 2354 unsigned InputNo; 2355 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2356 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2357 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2358 break; 2359 } 2360 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2361 2362 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2363 QualType OutputType = OutExpr->getType(); 2364 2365 uint64_t InputSize = getContext().getTypeSize(InputTy); 2366 if (getContext().getTypeSize(OutputType) < InputSize) { 2367 // Form the asm to return the value as a larger integer or fp type. 2368 ResultRegTypes.back() = ConvertType(InputTy); 2369 } 2370 } 2371 if (llvm::Type* AdjTy = 2372 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2373 ResultRegTypes.back())) 2374 ResultRegTypes.back() = AdjTy; 2375 else { 2376 CGM.getDiags().Report(S.getAsmLoc(), 2377 diag::err_asm_invalid_type_in_input) 2378 << OutExpr->getType() << OutputConstraint; 2379 } 2380 2381 // Update largest vector width for any vector types. 2382 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2383 LargestVectorWidth = 2384 std::max((uint64_t)LargestVectorWidth, 2385 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2386 } else { 2387 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2388 llvm::Value *DestPtr = Dest.getPointer(*this); 2389 // Matrix types in memory are represented by arrays, but accessed through 2390 // vector pointers, with the alignment specified on the access operation. 2391 // For inline assembly, update pointer arguments to use vector pointers. 2392 // Otherwise there will be a mis-match if the matrix is also an 2393 // input-argument which is represented as vector. 2394 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2395 DestAddrTy = llvm::PointerType::get( 2396 ConvertType(OutExpr->getType()), 2397 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2398 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2399 } 2400 ArgTypes.push_back(DestAddrTy); 2401 Args.push_back(DestPtr); 2402 Constraints += "=*"; 2403 Constraints += OutputConstraint; 2404 ReadOnly = ReadNone = false; 2405 } 2406 2407 if (Info.isReadWrite()) { 2408 InOutConstraints += ','; 2409 2410 const Expr *InputExpr = S.getOutputExpr(i); 2411 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2412 InOutConstraints, 2413 InputExpr->getExprLoc()); 2414 2415 if (llvm::Type* AdjTy = 2416 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2417 Arg->getType())) 2418 Arg = Builder.CreateBitCast(Arg, AdjTy); 2419 2420 // Update largest vector width for any vector types. 2421 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2422 LargestVectorWidth = 2423 std::max((uint64_t)LargestVectorWidth, 2424 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2425 // Only tie earlyclobber physregs. 2426 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2427 InOutConstraints += llvm::utostr(i); 2428 else 2429 InOutConstraints += OutputConstraint; 2430 2431 InOutArgTypes.push_back(Arg->getType()); 2432 InOutArgs.push_back(Arg); 2433 } 2434 } 2435 2436 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2437 // to the return value slot. Only do this when returning in registers. 2438 if (isa<MSAsmStmt>(&S)) { 2439 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2440 if (RetAI.isDirect() || RetAI.isExtend()) { 2441 // Make a fake lvalue for the return value slot. 2442 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2443 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2444 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2445 ResultRegDests, AsmString, S.getNumOutputs()); 2446 SawAsmBlock = true; 2447 } 2448 } 2449 2450 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2451 const Expr *InputExpr = S.getInputExpr(i); 2452 2453 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2454 2455 if (Info.allowsMemory()) 2456 ReadNone = false; 2457 2458 if (!Constraints.empty()) 2459 Constraints += ','; 2460 2461 // Simplify the input constraint. 2462 std::string InputConstraint(S.getInputConstraint(i)); 2463 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2464 &OutputConstraintInfos); 2465 2466 InputConstraint = AddVariableConstraints( 2467 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2468 getTarget(), CGM, S, false /* No EarlyClobber */); 2469 2470 std::string ReplaceConstraint (InputConstraint); 2471 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2472 2473 // If this input argument is tied to a larger output result, extend the 2474 // input to be the same size as the output. The LLVM backend wants to see 2475 // the input and output of a matching constraint be the same size. Note 2476 // that GCC does not define what the top bits are here. We use zext because 2477 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2478 if (Info.hasTiedOperand()) { 2479 unsigned Output = Info.getTiedOperand(); 2480 QualType OutputType = S.getOutputExpr(Output)->getType(); 2481 QualType InputTy = InputExpr->getType(); 2482 2483 if (getContext().getTypeSize(OutputType) > 2484 getContext().getTypeSize(InputTy)) { 2485 // Use ptrtoint as appropriate so that we can do our extension. 2486 if (isa<llvm::PointerType>(Arg->getType())) 2487 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2488 llvm::Type *OutputTy = ConvertType(OutputType); 2489 if (isa<llvm::IntegerType>(OutputTy)) 2490 Arg = Builder.CreateZExt(Arg, OutputTy); 2491 else if (isa<llvm::PointerType>(OutputTy)) 2492 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2493 else { 2494 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2495 Arg = Builder.CreateFPExt(Arg, OutputTy); 2496 } 2497 } 2498 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2499 ReplaceConstraint = OutputConstraints[Output]; 2500 } 2501 if (llvm::Type* AdjTy = 2502 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2503 Arg->getType())) 2504 Arg = Builder.CreateBitCast(Arg, AdjTy); 2505 else 2506 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2507 << InputExpr->getType() << InputConstraint; 2508 2509 // Update largest vector width for any vector types. 2510 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2511 LargestVectorWidth = 2512 std::max((uint64_t)LargestVectorWidth, 2513 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2514 2515 ArgTypes.push_back(Arg->getType()); 2516 Args.push_back(Arg); 2517 Constraints += InputConstraint; 2518 } 2519 2520 // Labels 2521 SmallVector<llvm::BasicBlock *, 16> Transfer; 2522 llvm::BasicBlock *Fallthrough = nullptr; 2523 bool IsGCCAsmGoto = false; 2524 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2525 IsGCCAsmGoto = GS->isAsmGoto(); 2526 if (IsGCCAsmGoto) { 2527 for (const auto *E : GS->labels()) { 2528 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2529 Transfer.push_back(Dest.getBlock()); 2530 llvm::BlockAddress *BA = 2531 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2532 Args.push_back(BA); 2533 ArgTypes.push_back(BA->getType()); 2534 if (!Constraints.empty()) 2535 Constraints += ','; 2536 Constraints += 'X'; 2537 } 2538 Fallthrough = createBasicBlock("asm.fallthrough"); 2539 } 2540 } 2541 2542 // Append the "input" part of inout constraints last. 2543 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2544 ArgTypes.push_back(InOutArgTypes[i]); 2545 Args.push_back(InOutArgs[i]); 2546 } 2547 Constraints += InOutConstraints; 2548 2549 bool HasUnwindClobber = false; 2550 2551 // Clobbers 2552 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2553 StringRef Clobber = S.getClobber(i); 2554 2555 if (Clobber == "memory") 2556 ReadOnly = ReadNone = false; 2557 else if (Clobber == "unwind") { 2558 HasUnwindClobber = true; 2559 continue; 2560 } else if (Clobber != "cc") { 2561 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2562 if (CGM.getCodeGenOpts().StackClashProtector && 2563 getTarget().isSPRegName(Clobber)) { 2564 CGM.getDiags().Report(S.getAsmLoc(), 2565 diag::warn_stack_clash_protection_inline_asm); 2566 } 2567 } 2568 2569 if (isa<MSAsmStmt>(&S)) { 2570 if (Clobber == "eax" || Clobber == "edx") { 2571 if (Constraints.find("=&A") != std::string::npos) 2572 continue; 2573 std::string::size_type position1 = 2574 Constraints.find("={" + Clobber.str() + "}"); 2575 if (position1 != std::string::npos) { 2576 Constraints.insert(position1 + 1, "&"); 2577 continue; 2578 } 2579 std::string::size_type position2 = Constraints.find("=A"); 2580 if (position2 != std::string::npos) { 2581 Constraints.insert(position2 + 1, "&"); 2582 continue; 2583 } 2584 } 2585 } 2586 if (!Constraints.empty()) 2587 Constraints += ','; 2588 2589 Constraints += "~{"; 2590 Constraints += Clobber; 2591 Constraints += '}'; 2592 } 2593 2594 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2595 "unwind clobber can't be used with asm goto"); 2596 2597 // Add machine specific clobbers 2598 std::string MachineClobbers = getTarget().getClobbers(); 2599 if (!MachineClobbers.empty()) { 2600 if (!Constraints.empty()) 2601 Constraints += ','; 2602 Constraints += MachineClobbers; 2603 } 2604 2605 llvm::Type *ResultType; 2606 if (ResultRegTypes.empty()) 2607 ResultType = VoidTy; 2608 else if (ResultRegTypes.size() == 1) 2609 ResultType = ResultRegTypes[0]; 2610 else 2611 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2612 2613 llvm::FunctionType *FTy = 2614 llvm::FunctionType::get(ResultType, ArgTypes, false); 2615 2616 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2617 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2618 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2619 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2620 FTy, AsmString, Constraints, HasSideEffect, 2621 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2622 std::vector<llvm::Value*> RegResults; 2623 if (IsGCCAsmGoto) { 2624 llvm::CallBrInst *Result = 2625 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2626 EmitBlock(Fallthrough); 2627 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2628 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2629 ResultRegTypes, *this, RegResults); 2630 } else if (HasUnwindClobber) { 2631 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2632 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2633 InNoMergeAttributedStmt, S, ResultRegTypes, *this, 2634 RegResults); 2635 } else { 2636 llvm::CallInst *Result = 2637 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2638 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2639 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2640 ResultRegTypes, *this, RegResults); 2641 } 2642 2643 assert(RegResults.size() == ResultRegTypes.size()); 2644 assert(RegResults.size() == ResultTruncRegTypes.size()); 2645 assert(RegResults.size() == ResultRegDests.size()); 2646 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2647 // in which case its size may grow. 2648 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2649 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2650 llvm::Value *Tmp = RegResults[i]; 2651 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2652 2653 // If the result type of the LLVM IR asm doesn't match the result type of 2654 // the expression, do the conversion. 2655 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2656 2657 // Truncate the integer result to the right size, note that TruncTy can be 2658 // a pointer. 2659 if (TruncTy->isFloatingPointTy()) 2660 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2661 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2662 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2663 Tmp = Builder.CreateTrunc(Tmp, 2664 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2665 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2666 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2667 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2668 Tmp = Builder.CreatePtrToInt(Tmp, 2669 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2670 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2671 } else if (TruncTy->isIntegerTy()) { 2672 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2673 } else if (TruncTy->isVectorTy()) { 2674 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2675 } 2676 } 2677 2678 LValue Dest = ResultRegDests[i]; 2679 // ResultTypeRequiresCast elements correspond to the first 2680 // ResultTypeRequiresCast.size() elements of RegResults. 2681 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2682 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2683 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2684 ResultRegTypes[i]->getPointerTo()); 2685 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2686 Builder.CreateStore(Tmp, A); 2687 continue; 2688 } 2689 2690 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2691 if (Ty.isNull()) { 2692 const Expr *OutExpr = S.getOutputExpr(i); 2693 CGM.Error( 2694 OutExpr->getExprLoc(), 2695 "impossible constraint in asm: can't store value into a register"); 2696 return; 2697 } 2698 Dest = MakeAddrLValue(A, Ty); 2699 } 2700 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2701 } 2702 } 2703 2704 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2705 const RecordDecl *RD = S.getCapturedRecordDecl(); 2706 QualType RecordTy = getContext().getRecordType(RD); 2707 2708 // Initialize the captured struct. 2709 LValue SlotLV = 2710 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2711 2712 RecordDecl::field_iterator CurField = RD->field_begin(); 2713 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2714 E = S.capture_init_end(); 2715 I != E; ++I, ++CurField) { 2716 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2717 if (CurField->hasCapturedVLAType()) { 2718 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2719 } else { 2720 EmitInitializerForField(*CurField, LV, *I); 2721 } 2722 } 2723 2724 return SlotLV; 2725 } 2726 2727 /// Generate an outlined function for the body of a CapturedStmt, store any 2728 /// captured variables into the captured struct, and call the outlined function. 2729 llvm::Function * 2730 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2731 LValue CapStruct = InitCapturedStruct(S); 2732 2733 // Emit the CapturedDecl 2734 CodeGenFunction CGF(CGM, true); 2735 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2736 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2737 delete CGF.CapturedStmtInfo; 2738 2739 // Emit call to the helper function. 2740 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2741 2742 return F; 2743 } 2744 2745 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2746 LValue CapStruct = InitCapturedStruct(S); 2747 return CapStruct.getAddress(*this); 2748 } 2749 2750 /// Creates the outlined function for a CapturedStmt. 2751 llvm::Function * 2752 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2753 assert(CapturedStmtInfo && 2754 "CapturedStmtInfo should be set when generating the captured function"); 2755 const CapturedDecl *CD = S.getCapturedDecl(); 2756 const RecordDecl *RD = S.getCapturedRecordDecl(); 2757 SourceLocation Loc = S.getBeginLoc(); 2758 assert(CD->hasBody() && "missing CapturedDecl body"); 2759 2760 // Build the argument list. 2761 ASTContext &Ctx = CGM.getContext(); 2762 FunctionArgList Args; 2763 Args.append(CD->param_begin(), CD->param_end()); 2764 2765 // Create the function declaration. 2766 const CGFunctionInfo &FuncInfo = 2767 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2768 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2769 2770 llvm::Function *F = 2771 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2772 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2773 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2774 if (CD->isNothrow()) 2775 F->addFnAttr(llvm::Attribute::NoUnwind); 2776 2777 // Generate the function. 2778 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2779 CD->getBody()->getBeginLoc()); 2780 // Set the context parameter in CapturedStmtInfo. 2781 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2782 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2783 2784 // Initialize variable-length arrays. 2785 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2786 Ctx.getTagDeclType(RD)); 2787 for (auto *FD : RD->fields()) { 2788 if (FD->hasCapturedVLAType()) { 2789 auto *ExprArg = 2790 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2791 .getScalarVal(); 2792 auto VAT = FD->getCapturedVLAType(); 2793 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2794 } 2795 } 2796 2797 // If 'this' is captured, load it into CXXThisValue. 2798 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2799 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2800 LValue ThisLValue = EmitLValueForField(Base, FD); 2801 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2802 } 2803 2804 PGO.assignRegionCounters(GlobalDecl(CD), F); 2805 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2806 FinishFunction(CD->getBodyRBrace()); 2807 2808 return F; 2809 } 2810