1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "CodeGenFunction.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/InlineAsm.h" 23 #include "llvm/Intrinsics.h" 24 #include "llvm/Target/TargetData.h" 25 using namespace clang; 26 using namespace CodeGen; 27 28 //===----------------------------------------------------------------------===// 29 // Statement Emission 30 //===----------------------------------------------------------------------===// 31 32 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 33 if (CGDebugInfo *DI = getDebugInfo()) { 34 if (isa<DeclStmt>(S)) 35 DI->setLocation(S->getLocEnd()); 36 else 37 DI->setLocation(S->getLocStart()); 38 DI->EmitLocation(Builder); 39 } 40 } 41 42 void CodeGenFunction::EmitStmt(const Stmt *S) { 43 assert(S && "Null statement?"); 44 45 // These statements have their own debug info handling. 46 if (EmitSimpleStmt(S)) 47 return; 48 49 // Check if we are generating unreachable code. 50 if (!HaveInsertPoint()) { 51 // If so, and the statement doesn't contain a label, then we do not need to 52 // generate actual code. This is safe because (1) the current point is 53 // unreachable, so we don't need to execute the code, and (2) we've already 54 // handled the statements which update internal data structures (like the 55 // local variable map) which could be used by subsequent statements. 56 if (!ContainsLabel(S)) { 57 // Verify that any decl statements were handled as simple, they may be in 58 // scope of subsequent reachable statements. 59 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 60 return; 61 } 62 63 // Otherwise, make a new block to hold the code. 64 EnsureInsertPoint(); 65 } 66 67 // Generate a stoppoint if we are emitting debug info. 68 EmitStopPoint(S); 69 70 switch (S->getStmtClass()) { 71 case Stmt::NoStmtClass: 72 case Stmt::CXXCatchStmtClass: 73 case Stmt::SEHExceptStmtClass: 74 case Stmt::SEHFinallyStmtClass: 75 llvm_unreachable("invalid statement class to emit generically"); 76 case Stmt::NullStmtClass: 77 case Stmt::CompoundStmtClass: 78 case Stmt::DeclStmtClass: 79 case Stmt::LabelStmtClass: 80 case Stmt::GotoStmtClass: 81 case Stmt::BreakStmtClass: 82 case Stmt::ContinueStmtClass: 83 case Stmt::DefaultStmtClass: 84 case Stmt::CaseStmtClass: 85 llvm_unreachable("should have emitted these statements as simple"); 86 87 #define STMT(Type, Base) 88 #define ABSTRACT_STMT(Op) 89 #define EXPR(Type, Base) \ 90 case Stmt::Type##Class: 91 #include "clang/AST/StmtNodes.inc" 92 { 93 // Remember the block we came in on. 94 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 95 assert(incoming && "expression emission must have an insertion point"); 96 97 EmitIgnoredExpr(cast<Expr>(S)); 98 99 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 100 assert(outgoing && "expression emission cleared block!"); 101 102 // The expression emitters assume (reasonably!) that the insertion 103 // point is always set. To maintain that, the call-emission code 104 // for noreturn functions has to enter a new block with no 105 // predecessors. We want to kill that block and mark the current 106 // insertion point unreachable in the common case of a call like 107 // "exit();". Since expression emission doesn't otherwise create 108 // blocks with no predecessors, we can just test for that. 109 // However, we must be careful not to do this to our incoming 110 // block, because *statement* emission does sometimes create 111 // reachable blocks which will have no predecessors until later in 112 // the function. This occurs with, e.g., labels that are not 113 // reachable by fallthrough. 114 if (incoming != outgoing && outgoing->use_empty()) { 115 outgoing->eraseFromParent(); 116 Builder.ClearInsertionPoint(); 117 } 118 break; 119 } 120 121 case Stmt::IndirectGotoStmtClass: 122 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 123 124 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 125 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 126 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 127 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 128 129 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 130 131 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 132 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 133 134 case Stmt::ObjCAtTryStmtClass: 135 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 136 break; 137 case Stmt::ObjCAtCatchStmtClass: 138 llvm_unreachable( 139 "@catch statements should be handled by EmitObjCAtTryStmt"); 140 case Stmt::ObjCAtFinallyStmtClass: 141 llvm_unreachable( 142 "@finally statements should be handled by EmitObjCAtTryStmt"); 143 case Stmt::ObjCAtThrowStmtClass: 144 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 145 break; 146 case Stmt::ObjCAtSynchronizedStmtClass: 147 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 148 break; 149 case Stmt::ObjCForCollectionStmtClass: 150 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 151 break; 152 case Stmt::ObjCAutoreleasePoolStmtClass: 153 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 154 break; 155 156 case Stmt::CXXTryStmtClass: 157 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 158 break; 159 case Stmt::CXXForRangeStmtClass: 160 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 161 case Stmt::SEHTryStmtClass: 162 // FIXME Not yet implemented 163 break; 164 } 165 } 166 167 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 168 switch (S->getStmtClass()) { 169 default: return false; 170 case Stmt::NullStmtClass: break; 171 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 172 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 173 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 174 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 175 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 176 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 177 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 178 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 179 } 180 181 return true; 182 } 183 184 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 185 /// this captures the expression result of the last sub-statement and returns it 186 /// (for use by the statement expression extension). 187 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 188 AggValueSlot AggSlot) { 189 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 190 "LLVM IR generation of compound statement ('{}')"); 191 192 CGDebugInfo *DI = getDebugInfo(); 193 if (DI) { 194 DI->setLocation(S.getLBracLoc()); 195 DI->EmitLexicalBlockStart(Builder); 196 } 197 198 // Keep track of the current cleanup stack depth. 199 RunCleanupsScope Scope(*this); 200 201 for (CompoundStmt::const_body_iterator I = S.body_begin(), 202 E = S.body_end()-GetLast; I != E; ++I) 203 EmitStmt(*I); 204 205 if (DI) { 206 DI->setLocation(S.getRBracLoc()); 207 DI->EmitLexicalBlockEnd(Builder); 208 } 209 210 RValue RV; 211 if (!GetLast) 212 RV = RValue::get(0); 213 else { 214 // We have to special case labels here. They are statements, but when put 215 // at the end of a statement expression, they yield the value of their 216 // subexpression. Handle this by walking through all labels we encounter, 217 // emitting them before we evaluate the subexpr. 218 const Stmt *LastStmt = S.body_back(); 219 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 220 EmitLabel(LS->getDecl()); 221 LastStmt = LS->getSubStmt(); 222 } 223 224 EnsureInsertPoint(); 225 226 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot); 227 } 228 229 return RV; 230 } 231 232 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 233 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 234 235 // If there is a cleanup stack, then we it isn't worth trying to 236 // simplify this block (we would need to remove it from the scope map 237 // and cleanup entry). 238 if (!EHStack.empty()) 239 return; 240 241 // Can only simplify direct branches. 242 if (!BI || !BI->isUnconditional()) 243 return; 244 245 BB->replaceAllUsesWith(BI->getSuccessor(0)); 246 BI->eraseFromParent(); 247 BB->eraseFromParent(); 248 } 249 250 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 251 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 252 253 // Fall out of the current block (if necessary). 254 EmitBranch(BB); 255 256 if (IsFinished && BB->use_empty()) { 257 delete BB; 258 return; 259 } 260 261 // Place the block after the current block, if possible, or else at 262 // the end of the function. 263 if (CurBB && CurBB->getParent()) 264 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 265 else 266 CurFn->getBasicBlockList().push_back(BB); 267 Builder.SetInsertPoint(BB); 268 } 269 270 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 271 // Emit a branch from the current block to the target one if this 272 // was a real block. If this was just a fall-through block after a 273 // terminator, don't emit it. 274 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 275 276 if (!CurBB || CurBB->getTerminator()) { 277 // If there is no insert point or the previous block is already 278 // terminated, don't touch it. 279 } else { 280 // Otherwise, create a fall-through branch. 281 Builder.CreateBr(Target); 282 } 283 284 Builder.ClearInsertionPoint(); 285 } 286 287 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 288 bool inserted = false; 289 for (llvm::BasicBlock::use_iterator 290 i = block->use_begin(), e = block->use_end(); i != e; ++i) { 291 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) { 292 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 293 inserted = true; 294 break; 295 } 296 } 297 298 if (!inserted) 299 CurFn->getBasicBlockList().push_back(block); 300 301 Builder.SetInsertPoint(block); 302 } 303 304 CodeGenFunction::JumpDest 305 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 306 JumpDest &Dest = LabelMap[D]; 307 if (Dest.isValid()) return Dest; 308 309 // Create, but don't insert, the new block. 310 Dest = JumpDest(createBasicBlock(D->getName()), 311 EHScopeStack::stable_iterator::invalid(), 312 NextCleanupDestIndex++); 313 return Dest; 314 } 315 316 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 317 JumpDest &Dest = LabelMap[D]; 318 319 // If we didn't need a forward reference to this label, just go 320 // ahead and create a destination at the current scope. 321 if (!Dest.isValid()) { 322 Dest = getJumpDestInCurrentScope(D->getName()); 323 324 // Otherwise, we need to give this label a target depth and remove 325 // it from the branch-fixups list. 326 } else { 327 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 328 Dest = JumpDest(Dest.getBlock(), 329 EHStack.stable_begin(), 330 Dest.getDestIndex()); 331 332 ResolveBranchFixups(Dest.getBlock()); 333 } 334 335 EmitBlock(Dest.getBlock()); 336 } 337 338 339 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 340 EmitLabel(S.getDecl()); 341 EmitStmt(S.getSubStmt()); 342 } 343 344 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 345 // If this code is reachable then emit a stop point (if generating 346 // debug info). We have to do this ourselves because we are on the 347 // "simple" statement path. 348 if (HaveInsertPoint()) 349 EmitStopPoint(&S); 350 351 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 352 } 353 354 355 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 356 if (const LabelDecl *Target = S.getConstantTarget()) { 357 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 358 return; 359 } 360 361 // Ensure that we have an i8* for our PHI node. 362 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 363 Int8PtrTy, "addr"); 364 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 365 366 367 // Get the basic block for the indirect goto. 368 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 369 370 // The first instruction in the block has to be the PHI for the switch dest, 371 // add an entry for this branch. 372 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 373 374 EmitBranch(IndGotoBB); 375 } 376 377 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 378 // C99 6.8.4.1: The first substatement is executed if the expression compares 379 // unequal to 0. The condition must be a scalar type. 380 RunCleanupsScope ConditionScope(*this); 381 382 if (S.getConditionVariable()) 383 EmitAutoVarDecl(*S.getConditionVariable()); 384 385 // If the condition constant folds and can be elided, try to avoid emitting 386 // the condition and the dead arm of the if/else. 387 bool CondConstant; 388 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 389 // Figure out which block (then or else) is executed. 390 const Stmt *Executed = S.getThen(); 391 const Stmt *Skipped = S.getElse(); 392 if (!CondConstant) // Condition false? 393 std::swap(Executed, Skipped); 394 395 // If the skipped block has no labels in it, just emit the executed block. 396 // This avoids emitting dead code and simplifies the CFG substantially. 397 if (!ContainsLabel(Skipped)) { 398 if (Executed) { 399 RunCleanupsScope ExecutedScope(*this); 400 EmitStmt(Executed); 401 } 402 return; 403 } 404 } 405 406 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 407 // the conditional branch. 408 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 409 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 410 llvm::BasicBlock *ElseBlock = ContBlock; 411 if (S.getElse()) 412 ElseBlock = createBasicBlock("if.else"); 413 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock); 414 415 // Emit the 'then' code. 416 EmitBlock(ThenBlock); 417 { 418 RunCleanupsScope ThenScope(*this); 419 EmitStmt(S.getThen()); 420 } 421 EmitBranch(ContBlock); 422 423 // Emit the 'else' code if present. 424 if (const Stmt *Else = S.getElse()) { 425 // There is no need to emit line number for unconditional branch. 426 if (getDebugInfo()) 427 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 428 EmitBlock(ElseBlock); 429 { 430 RunCleanupsScope ElseScope(*this); 431 EmitStmt(Else); 432 } 433 // There is no need to emit line number for unconditional branch. 434 if (getDebugInfo()) 435 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 436 EmitBranch(ContBlock); 437 } 438 439 // Emit the continuation block for code after the if. 440 EmitBlock(ContBlock, true); 441 } 442 443 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) { 444 // Emit the header for the loop, which will also become 445 // the continue target. 446 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 447 EmitBlock(LoopHeader.getBlock()); 448 449 // Create an exit block for when the condition fails, which will 450 // also become the break target. 451 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 452 453 // Store the blocks to use for break and continue. 454 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 455 456 // C++ [stmt.while]p2: 457 // When the condition of a while statement is a declaration, the 458 // scope of the variable that is declared extends from its point 459 // of declaration (3.3.2) to the end of the while statement. 460 // [...] 461 // The object created in a condition is destroyed and created 462 // with each iteration of the loop. 463 RunCleanupsScope ConditionScope(*this); 464 465 if (S.getConditionVariable()) 466 EmitAutoVarDecl(*S.getConditionVariable()); 467 468 // Evaluate the conditional in the while header. C99 6.8.5.1: The 469 // evaluation of the controlling expression takes place before each 470 // execution of the loop body. 471 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 472 473 // while(1) is common, avoid extra exit blocks. Be sure 474 // to correctly handle break/continue though. 475 bool EmitBoolCondBranch = true; 476 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 477 if (C->isOne()) 478 EmitBoolCondBranch = false; 479 480 // As long as the condition is true, go to the loop body. 481 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 482 if (EmitBoolCondBranch) { 483 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 484 if (ConditionScope.requiresCleanups()) 485 ExitBlock = createBasicBlock("while.exit"); 486 487 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock); 488 489 if (ExitBlock != LoopExit.getBlock()) { 490 EmitBlock(ExitBlock); 491 EmitBranchThroughCleanup(LoopExit); 492 } 493 } 494 495 // Emit the loop body. We have to emit this in a cleanup scope 496 // because it might be a singleton DeclStmt. 497 { 498 RunCleanupsScope BodyScope(*this); 499 EmitBlock(LoopBody); 500 EmitStmt(S.getBody()); 501 } 502 503 BreakContinueStack.pop_back(); 504 505 // Immediately force cleanup. 506 ConditionScope.ForceCleanup(); 507 508 // Branch to the loop header again. 509 EmitBranch(LoopHeader.getBlock()); 510 511 // Emit the exit block. 512 EmitBlock(LoopExit.getBlock(), true); 513 514 // The LoopHeader typically is just a branch if we skipped emitting 515 // a branch, try to erase it. 516 if (!EmitBoolCondBranch) 517 SimplifyForwardingBlocks(LoopHeader.getBlock()); 518 } 519 520 void CodeGenFunction::EmitDoStmt(const DoStmt &S) { 521 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 522 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 523 524 // Store the blocks to use for break and continue. 525 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 526 527 // Emit the body of the loop. 528 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 529 EmitBlock(LoopBody); 530 { 531 RunCleanupsScope BodyScope(*this); 532 EmitStmt(S.getBody()); 533 } 534 535 BreakContinueStack.pop_back(); 536 537 EmitBlock(LoopCond.getBlock()); 538 539 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 540 // after each execution of the loop body." 541 542 // Evaluate the conditional in the while header. 543 // C99 6.8.5p2/p4: The first substatement is executed if the expression 544 // compares unequal to 0. The condition must be a scalar type. 545 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 546 547 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 548 // to correctly handle break/continue though. 549 bool EmitBoolCondBranch = true; 550 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 551 if (C->isZero()) 552 EmitBoolCondBranch = false; 553 554 // As long as the condition is true, iterate the loop. 555 if (EmitBoolCondBranch) 556 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock()); 557 558 // Emit the exit block. 559 EmitBlock(LoopExit.getBlock()); 560 561 // The DoCond block typically is just a branch if we skipped 562 // emitting a branch, try to erase it. 563 if (!EmitBoolCondBranch) 564 SimplifyForwardingBlocks(LoopCond.getBlock()); 565 } 566 567 void CodeGenFunction::EmitForStmt(const ForStmt &S) { 568 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 569 570 RunCleanupsScope ForScope(*this); 571 572 CGDebugInfo *DI = getDebugInfo(); 573 if (DI) { 574 DI->setLocation(S.getSourceRange().getBegin()); 575 DI->EmitLexicalBlockStart(Builder); 576 } 577 578 // Evaluate the first part before the loop. 579 if (S.getInit()) 580 EmitStmt(S.getInit()); 581 582 // Start the loop with a block that tests the condition. 583 // If there's an increment, the continue scope will be overwritten 584 // later. 585 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 586 llvm::BasicBlock *CondBlock = Continue.getBlock(); 587 EmitBlock(CondBlock); 588 589 // Create a cleanup scope for the condition variable cleanups. 590 RunCleanupsScope ConditionScope(*this); 591 592 llvm::Value *BoolCondVal = 0; 593 if (S.getCond()) { 594 // If the for statement has a condition scope, emit the local variable 595 // declaration. 596 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 597 if (S.getConditionVariable()) { 598 EmitAutoVarDecl(*S.getConditionVariable()); 599 } 600 601 // If there are any cleanups between here and the loop-exit scope, 602 // create a block to stage a loop exit along. 603 if (ForScope.requiresCleanups()) 604 ExitBlock = createBasicBlock("for.cond.cleanup"); 605 606 // As long as the condition is true, iterate the loop. 607 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 608 609 // C99 6.8.5p2/p4: The first substatement is executed if the expression 610 // compares unequal to 0. The condition must be a scalar type. 611 BoolCondVal = EvaluateExprAsBool(S.getCond()); 612 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 613 614 if (ExitBlock != LoopExit.getBlock()) { 615 EmitBlock(ExitBlock); 616 EmitBranchThroughCleanup(LoopExit); 617 } 618 619 EmitBlock(ForBody); 620 } else { 621 // Treat it as a non-zero constant. Don't even create a new block for the 622 // body, just fall into it. 623 } 624 625 // If the for loop doesn't have an increment we can just use the 626 // condition as the continue block. Otherwise we'll need to create 627 // a block for it (in the current scope, i.e. in the scope of the 628 // condition), and that we will become our continue block. 629 if (S.getInc()) 630 Continue = getJumpDestInCurrentScope("for.inc"); 631 632 // Store the blocks to use for break and continue. 633 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 634 635 { 636 // Create a separate cleanup scope for the body, in case it is not 637 // a compound statement. 638 RunCleanupsScope BodyScope(*this); 639 EmitStmt(S.getBody()); 640 } 641 642 // If there is an increment, emit it next. 643 if (S.getInc()) { 644 EmitBlock(Continue.getBlock()); 645 EmitStmt(S.getInc()); 646 } 647 648 BreakContinueStack.pop_back(); 649 650 ConditionScope.ForceCleanup(); 651 EmitBranch(CondBlock); 652 653 ForScope.ForceCleanup(); 654 655 if (DI) { 656 DI->setLocation(S.getSourceRange().getEnd()); 657 DI->EmitLexicalBlockEnd(Builder); 658 } 659 660 // Emit the fall-through block. 661 EmitBlock(LoopExit.getBlock(), true); 662 } 663 664 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) { 665 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 666 667 RunCleanupsScope ForScope(*this); 668 669 CGDebugInfo *DI = getDebugInfo(); 670 if (DI) { 671 DI->setLocation(S.getSourceRange().getBegin()); 672 DI->EmitLexicalBlockStart(Builder); 673 } 674 675 // Evaluate the first pieces before the loop. 676 EmitStmt(S.getRangeStmt()); 677 EmitStmt(S.getBeginEndStmt()); 678 679 // Start the loop with a block that tests the condition. 680 // If there's an increment, the continue scope will be overwritten 681 // later. 682 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 683 EmitBlock(CondBlock); 684 685 // If there are any cleanups between here and the loop-exit scope, 686 // create a block to stage a loop exit along. 687 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 688 if (ForScope.requiresCleanups()) 689 ExitBlock = createBasicBlock("for.cond.cleanup"); 690 691 // The loop body, consisting of the specified body and the loop variable. 692 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 693 694 // The body is executed if the expression, contextually converted 695 // to bool, is true. 696 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 697 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock); 698 699 if (ExitBlock != LoopExit.getBlock()) { 700 EmitBlock(ExitBlock); 701 EmitBranchThroughCleanup(LoopExit); 702 } 703 704 EmitBlock(ForBody); 705 706 // Create a block for the increment. In case of a 'continue', we jump there. 707 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 708 709 // Store the blocks to use for break and continue. 710 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 711 712 { 713 // Create a separate cleanup scope for the loop variable and body. 714 RunCleanupsScope BodyScope(*this); 715 EmitStmt(S.getLoopVarStmt()); 716 EmitStmt(S.getBody()); 717 } 718 719 // If there is an increment, emit it next. 720 EmitBlock(Continue.getBlock()); 721 EmitStmt(S.getInc()); 722 723 BreakContinueStack.pop_back(); 724 725 EmitBranch(CondBlock); 726 727 ForScope.ForceCleanup(); 728 729 if (DI) { 730 DI->setLocation(S.getSourceRange().getEnd()); 731 DI->EmitLexicalBlockEnd(Builder); 732 } 733 734 // Emit the fall-through block. 735 EmitBlock(LoopExit.getBlock(), true); 736 } 737 738 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 739 if (RV.isScalar()) { 740 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 741 } else if (RV.isAggregate()) { 742 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 743 } else { 744 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false); 745 } 746 EmitBranchThroughCleanup(ReturnBlock); 747 } 748 749 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 750 /// if the function returns void, or may be missing one if the function returns 751 /// non-void. Fun stuff :). 752 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 753 // Emit the result value, even if unused, to evalute the side effects. 754 const Expr *RV = S.getRetValue(); 755 756 // FIXME: Clean this up by using an LValue for ReturnTemp, 757 // EmitStoreThroughLValue, and EmitAnyExpr. 758 if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() && 759 !Target.useGlobalsForAutomaticVariables()) { 760 // Apply the named return value optimization for this return statement, 761 // which means doing nothing: the appropriate result has already been 762 // constructed into the NRVO variable. 763 764 // If there is an NRVO flag for this variable, set it to 1 into indicate 765 // that the cleanup code should not destroy the variable. 766 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 767 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 768 } else if (!ReturnValue) { 769 // Make sure not to return anything, but evaluate the expression 770 // for side effects. 771 if (RV) 772 EmitAnyExpr(RV); 773 } else if (RV == 0) { 774 // Do nothing (return value is left uninitialized) 775 } else if (FnRetTy->isReferenceType()) { 776 // If this function returns a reference, take the address of the expression 777 // rather than the value. 778 RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0); 779 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 780 } else if (!hasAggregateLLVMType(RV->getType())) { 781 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 782 } else if (RV->getType()->isAnyComplexType()) { 783 EmitComplexExprIntoAddr(RV, ReturnValue, false); 784 } else { 785 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(), 786 AggValueSlot::IsDestructed, 787 AggValueSlot::DoesNotNeedGCBarriers, 788 AggValueSlot::IsNotAliased)); 789 } 790 791 EmitBranchThroughCleanup(ReturnBlock); 792 } 793 794 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 795 // As long as debug info is modeled with instructions, we have to ensure we 796 // have a place to insert here and write the stop point here. 797 if (getDebugInfo() && HaveInsertPoint()) 798 EmitStopPoint(&S); 799 800 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end(); 801 I != E; ++I) 802 EmitDecl(**I); 803 } 804 805 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 806 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 807 808 // If this code is reachable then emit a stop point (if generating 809 // debug info). We have to do this ourselves because we are on the 810 // "simple" statement path. 811 if (HaveInsertPoint()) 812 EmitStopPoint(&S); 813 814 JumpDest Block = BreakContinueStack.back().BreakBlock; 815 EmitBranchThroughCleanup(Block); 816 } 817 818 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 819 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 820 821 // If this code is reachable then emit a stop point (if generating 822 // debug info). We have to do this ourselves because we are on the 823 // "simple" statement path. 824 if (HaveInsertPoint()) 825 EmitStopPoint(&S); 826 827 JumpDest Block = BreakContinueStack.back().ContinueBlock; 828 EmitBranchThroughCleanup(Block); 829 } 830 831 /// EmitCaseStmtRange - If case statement range is not too big then 832 /// add multiple cases to switch instruction, one for each value within 833 /// the range. If range is too big then emit "if" condition check. 834 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 835 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 836 837 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 838 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 839 840 // Emit the code for this case. We do this first to make sure it is 841 // properly chained from our predecessor before generating the 842 // switch machinery to enter this block. 843 EmitBlock(createBasicBlock("sw.bb")); 844 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 845 EmitStmt(S.getSubStmt()); 846 847 // If range is empty, do nothing. 848 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 849 return; 850 851 llvm::APInt Range = RHS - LHS; 852 // FIXME: parameters such as this should not be hardcoded. 853 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 854 // Range is small enough to add multiple switch instruction cases. 855 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) { 856 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 857 LHS++; 858 } 859 return; 860 } 861 862 // The range is too big. Emit "if" condition into a new block, 863 // making sure to save and restore the current insertion point. 864 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 865 866 // Push this test onto the chain of range checks (which terminates 867 // in the default basic block). The switch's default will be changed 868 // to the top of this chain after switch emission is complete. 869 llvm::BasicBlock *FalseDest = CaseRangeBlock; 870 CaseRangeBlock = createBasicBlock("sw.caserange"); 871 872 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 873 Builder.SetInsertPoint(CaseRangeBlock); 874 875 // Emit range check. 876 llvm::Value *Diff = 877 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 878 llvm::Value *Cond = 879 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 880 Builder.CreateCondBr(Cond, CaseDest, FalseDest); 881 882 // Restore the appropriate insertion point. 883 if (RestoreBB) 884 Builder.SetInsertPoint(RestoreBB); 885 else 886 Builder.ClearInsertionPoint(); 887 } 888 889 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 890 // Handle case ranges. 891 if (S.getRHS()) { 892 EmitCaseStmtRange(S); 893 return; 894 } 895 896 llvm::ConstantInt *CaseVal = 897 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 898 899 // If the body of the case is just a 'break', and if there was no fallthrough, 900 // try to not emit an empty block. 901 if (isa<BreakStmt>(S.getSubStmt())) { 902 JumpDest Block = BreakContinueStack.back().BreakBlock; 903 904 // Only do this optimization if there are no cleanups that need emitting. 905 if (isObviouslyBranchWithoutCleanups(Block)) { 906 SwitchInsn->addCase(CaseVal, Block.getBlock()); 907 908 // If there was a fallthrough into this case, make sure to redirect it to 909 // the end of the switch as well. 910 if (Builder.GetInsertBlock()) { 911 Builder.CreateBr(Block.getBlock()); 912 Builder.ClearInsertionPoint(); 913 } 914 return; 915 } 916 } 917 918 EmitBlock(createBasicBlock("sw.bb")); 919 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock(); 920 SwitchInsn->addCase(CaseVal, CaseDest); 921 922 // Recursively emitting the statement is acceptable, but is not wonderful for 923 // code where we have many case statements nested together, i.e.: 924 // case 1: 925 // case 2: 926 // case 3: etc. 927 // Handling this recursively will create a new block for each case statement 928 // that falls through to the next case which is IR intensive. It also causes 929 // deep recursion which can run into stack depth limitations. Handle 930 // sequential non-range case statements specially. 931 const CaseStmt *CurCase = &S; 932 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 933 934 // Otherwise, iteratively add consecutive cases to this switch stmt. 935 while (NextCase && NextCase->getRHS() == 0) { 936 CurCase = NextCase; 937 llvm::ConstantInt *CaseVal = 938 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 939 SwitchInsn->addCase(CaseVal, CaseDest); 940 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 941 } 942 943 // Normal default recursion for non-cases. 944 EmitStmt(CurCase->getSubStmt()); 945 } 946 947 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 948 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 949 assert(DefaultBlock->empty() && 950 "EmitDefaultStmt: Default block already defined?"); 951 EmitBlock(DefaultBlock); 952 EmitStmt(S.getSubStmt()); 953 } 954 955 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 956 /// constant value that is being switched on, see if we can dead code eliminate 957 /// the body of the switch to a simple series of statements to emit. Basically, 958 /// on a switch (5) we want to find these statements: 959 /// case 5: 960 /// printf(...); <-- 961 /// ++i; <-- 962 /// break; 963 /// 964 /// and add them to the ResultStmts vector. If it is unsafe to do this 965 /// transformation (for example, one of the elided statements contains a label 966 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 967 /// should include statements after it (e.g. the printf() line is a substmt of 968 /// the case) then return CSFC_FallThrough. If we handled it and found a break 969 /// statement, then return CSFC_Success. 970 /// 971 /// If Case is non-null, then we are looking for the specified case, checking 972 /// that nothing we jump over contains labels. If Case is null, then we found 973 /// the case and are looking for the break. 974 /// 975 /// If the recursive walk actually finds our Case, then we set FoundCase to 976 /// true. 977 /// 978 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 979 static CSFC_Result CollectStatementsForCase(const Stmt *S, 980 const SwitchCase *Case, 981 bool &FoundCase, 982 SmallVectorImpl<const Stmt*> &ResultStmts) { 983 // If this is a null statement, just succeed. 984 if (S == 0) 985 return Case ? CSFC_Success : CSFC_FallThrough; 986 987 // If this is the switchcase (case 4: or default) that we're looking for, then 988 // we're in business. Just add the substatement. 989 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 990 if (S == Case) { 991 FoundCase = true; 992 return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase, 993 ResultStmts); 994 } 995 996 // Otherwise, this is some other case or default statement, just ignore it. 997 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 998 ResultStmts); 999 } 1000 1001 // If we are in the live part of the code and we found our break statement, 1002 // return a success! 1003 if (Case == 0 && isa<BreakStmt>(S)) 1004 return CSFC_Success; 1005 1006 // If this is a switch statement, then it might contain the SwitchCase, the 1007 // break, or neither. 1008 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1009 // Handle this as two cases: we might be looking for the SwitchCase (if so 1010 // the skipped statements must be skippable) or we might already have it. 1011 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1012 if (Case) { 1013 // Keep track of whether we see a skipped declaration. The code could be 1014 // using the declaration even if it is skipped, so we can't optimize out 1015 // the decl if the kept statements might refer to it. 1016 bool HadSkippedDecl = false; 1017 1018 // If we're looking for the case, just see if we can skip each of the 1019 // substatements. 1020 for (; Case && I != E; ++I) { 1021 HadSkippedDecl |= isa<DeclStmt>(*I); 1022 1023 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1024 case CSFC_Failure: return CSFC_Failure; 1025 case CSFC_Success: 1026 // A successful result means that either 1) that the statement doesn't 1027 // have the case and is skippable, or 2) does contain the case value 1028 // and also contains the break to exit the switch. In the later case, 1029 // we just verify the rest of the statements are elidable. 1030 if (FoundCase) { 1031 // If we found the case and skipped declarations, we can't do the 1032 // optimization. 1033 if (HadSkippedDecl) 1034 return CSFC_Failure; 1035 1036 for (++I; I != E; ++I) 1037 if (CodeGenFunction::ContainsLabel(*I, true)) 1038 return CSFC_Failure; 1039 return CSFC_Success; 1040 } 1041 break; 1042 case CSFC_FallThrough: 1043 // If we have a fallthrough condition, then we must have found the 1044 // case started to include statements. Consider the rest of the 1045 // statements in the compound statement as candidates for inclusion. 1046 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1047 // We recursively found Case, so we're not looking for it anymore. 1048 Case = 0; 1049 1050 // If we found the case and skipped declarations, we can't do the 1051 // optimization. 1052 if (HadSkippedDecl) 1053 return CSFC_Failure; 1054 break; 1055 } 1056 } 1057 } 1058 1059 // If we have statements in our range, then we know that the statements are 1060 // live and need to be added to the set of statements we're tracking. 1061 for (; I != E; ++I) { 1062 switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) { 1063 case CSFC_Failure: return CSFC_Failure; 1064 case CSFC_FallThrough: 1065 // A fallthrough result means that the statement was simple and just 1066 // included in ResultStmt, keep adding them afterwards. 1067 break; 1068 case CSFC_Success: 1069 // A successful result means that we found the break statement and 1070 // stopped statement inclusion. We just ensure that any leftover stmts 1071 // are skippable and return success ourselves. 1072 for (++I; I != E; ++I) 1073 if (CodeGenFunction::ContainsLabel(*I, true)) 1074 return CSFC_Failure; 1075 return CSFC_Success; 1076 } 1077 } 1078 1079 return Case ? CSFC_Success : CSFC_FallThrough; 1080 } 1081 1082 // Okay, this is some other statement that we don't handle explicitly, like a 1083 // for statement or increment etc. If we are skipping over this statement, 1084 // just verify it doesn't have labels, which would make it invalid to elide. 1085 if (Case) { 1086 if (CodeGenFunction::ContainsLabel(S, true)) 1087 return CSFC_Failure; 1088 return CSFC_Success; 1089 } 1090 1091 // Otherwise, we want to include this statement. Everything is cool with that 1092 // so long as it doesn't contain a break out of the switch we're in. 1093 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1094 1095 // Otherwise, everything is great. Include the statement and tell the caller 1096 // that we fall through and include the next statement as well. 1097 ResultStmts.push_back(S); 1098 return CSFC_FallThrough; 1099 } 1100 1101 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1102 /// then invoke CollectStatementsForCase to find the list of statements to emit 1103 /// for a switch on constant. See the comment above CollectStatementsForCase 1104 /// for more details. 1105 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1106 const llvm::APInt &ConstantCondValue, 1107 SmallVectorImpl<const Stmt*> &ResultStmts, 1108 ASTContext &C) { 1109 // First step, find the switch case that is being branched to. We can do this 1110 // efficiently by scanning the SwitchCase list. 1111 const SwitchCase *Case = S.getSwitchCaseList(); 1112 const DefaultStmt *DefaultCase = 0; 1113 1114 for (; Case; Case = Case->getNextSwitchCase()) { 1115 // It's either a default or case. Just remember the default statement in 1116 // case we're not jumping to any numbered cases. 1117 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1118 DefaultCase = DS; 1119 continue; 1120 } 1121 1122 // Check to see if this case is the one we're looking for. 1123 const CaseStmt *CS = cast<CaseStmt>(Case); 1124 // Don't handle case ranges yet. 1125 if (CS->getRHS()) return false; 1126 1127 // If we found our case, remember it as 'case'. 1128 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1129 break; 1130 } 1131 1132 // If we didn't find a matching case, we use a default if it exists, or we 1133 // elide the whole switch body! 1134 if (Case == 0) { 1135 // It is safe to elide the body of the switch if it doesn't contain labels 1136 // etc. If it is safe, return successfully with an empty ResultStmts list. 1137 if (DefaultCase == 0) 1138 return !CodeGenFunction::ContainsLabel(&S); 1139 Case = DefaultCase; 1140 } 1141 1142 // Ok, we know which case is being jumped to, try to collect all the 1143 // statements that follow it. This can fail for a variety of reasons. Also, 1144 // check to see that the recursive walk actually found our case statement. 1145 // Insane cases like this can fail to find it in the recursive walk since we 1146 // don't handle every stmt kind: 1147 // switch (4) { 1148 // while (1) { 1149 // case 4: ... 1150 bool FoundCase = false; 1151 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1152 ResultStmts) != CSFC_Failure && 1153 FoundCase; 1154 } 1155 1156 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1157 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1158 1159 RunCleanupsScope ConditionScope(*this); 1160 1161 if (S.getConditionVariable()) 1162 EmitAutoVarDecl(*S.getConditionVariable()); 1163 1164 // See if we can constant fold the condition of the switch and therefore only 1165 // emit the live case statement (if any) of the switch. 1166 llvm::APInt ConstantCondValue; 1167 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1168 SmallVector<const Stmt*, 4> CaseStmts; 1169 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1170 getContext())) { 1171 RunCleanupsScope ExecutedScope(*this); 1172 1173 // Okay, we can dead code eliminate everything except this case. Emit the 1174 // specified series of statements and we're good. 1175 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1176 EmitStmt(CaseStmts[i]); 1177 return; 1178 } 1179 } 1180 1181 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1182 1183 // Handle nested switch statements. 1184 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1185 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1186 1187 // Create basic block to hold stuff that comes after switch 1188 // statement. We also need to create a default block now so that 1189 // explicit case ranges tests can have a place to jump to on 1190 // failure. 1191 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1192 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1193 CaseRangeBlock = DefaultBlock; 1194 1195 // Clear the insertion point to indicate we are in unreachable code. 1196 Builder.ClearInsertionPoint(); 1197 1198 // All break statements jump to NextBlock. If BreakContinueStack is non empty 1199 // then reuse last ContinueBlock. 1200 JumpDest OuterContinue; 1201 if (!BreakContinueStack.empty()) 1202 OuterContinue = BreakContinueStack.back().ContinueBlock; 1203 1204 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1205 1206 // Emit switch body. 1207 EmitStmt(S.getBody()); 1208 1209 BreakContinueStack.pop_back(); 1210 1211 // Update the default block in case explicit case range tests have 1212 // been chained on top. 1213 SwitchInsn->setSuccessor(0, CaseRangeBlock); 1214 1215 // If a default was never emitted: 1216 if (!DefaultBlock->getParent()) { 1217 // If we have cleanups, emit the default block so that there's a 1218 // place to jump through the cleanups from. 1219 if (ConditionScope.requiresCleanups()) { 1220 EmitBlock(DefaultBlock); 1221 1222 // Otherwise, just forward the default block to the switch end. 1223 } else { 1224 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1225 delete DefaultBlock; 1226 } 1227 } 1228 1229 ConditionScope.ForceCleanup(); 1230 1231 // Emit continuation. 1232 EmitBlock(SwitchExit.getBlock(), true); 1233 1234 SwitchInsn = SavedSwitchInsn; 1235 CaseRangeBlock = SavedCRBlock; 1236 } 1237 1238 static std::string 1239 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1240 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) { 1241 std::string Result; 1242 1243 while (*Constraint) { 1244 switch (*Constraint) { 1245 default: 1246 Result += Target.convertConstraint(Constraint); 1247 break; 1248 // Ignore these 1249 case '*': 1250 case '?': 1251 case '!': 1252 case '=': // Will see this and the following in mult-alt constraints. 1253 case '+': 1254 break; 1255 case ',': 1256 Result += "|"; 1257 break; 1258 case 'g': 1259 Result += "imr"; 1260 break; 1261 case '[': { 1262 assert(OutCons && 1263 "Must pass output names to constraints with a symbolic name"); 1264 unsigned Index; 1265 bool result = Target.resolveSymbolicName(Constraint, 1266 &(*OutCons)[0], 1267 OutCons->size(), Index); 1268 assert(result && "Could not resolve symbolic name"); (void)result; 1269 Result += llvm::utostr(Index); 1270 break; 1271 } 1272 } 1273 1274 Constraint++; 1275 } 1276 1277 return Result; 1278 } 1279 1280 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1281 /// as using a particular register add that as a constraint that will be used 1282 /// in this asm stmt. 1283 static std::string 1284 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1285 const TargetInfo &Target, CodeGenModule &CGM, 1286 const AsmStmt &Stmt) { 1287 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1288 if (!AsmDeclRef) 1289 return Constraint; 1290 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1291 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1292 if (!Variable) 1293 return Constraint; 1294 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1295 if (!Attr) 1296 return Constraint; 1297 StringRef Register = Attr->getLabel(); 1298 assert(Target.isValidGCCRegisterName(Register)); 1299 // We're using validateOutputConstraint here because we only care if 1300 // this is a register constraint. 1301 TargetInfo::ConstraintInfo Info(Constraint, ""); 1302 if (Target.validateOutputConstraint(Info) && 1303 !Info.allowsRegister()) { 1304 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1305 return Constraint; 1306 } 1307 // Canonicalize the register here before returning it. 1308 Register = Target.getNormalizedGCCRegisterName(Register); 1309 return "{" + Register.str() + "}"; 1310 } 1311 1312 llvm::Value* 1313 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S, 1314 const TargetInfo::ConstraintInfo &Info, 1315 LValue InputValue, QualType InputType, 1316 std::string &ConstraintStr) { 1317 llvm::Value *Arg; 1318 if (Info.allowsRegister() || !Info.allowsMemory()) { 1319 if (!CodeGenFunction::hasAggregateLLVMType(InputType)) { 1320 Arg = EmitLoadOfLValue(InputValue).getScalarVal(); 1321 } else { 1322 llvm::Type *Ty = ConvertType(InputType); 1323 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty); 1324 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1325 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1326 Ty = llvm::PointerType::getUnqual(Ty); 1327 1328 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1329 Ty)); 1330 } else { 1331 Arg = InputValue.getAddress(); 1332 ConstraintStr += '*'; 1333 } 1334 } 1335 } else { 1336 Arg = InputValue.getAddress(); 1337 ConstraintStr += '*'; 1338 } 1339 1340 return Arg; 1341 } 1342 1343 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S, 1344 const TargetInfo::ConstraintInfo &Info, 1345 const Expr *InputExpr, 1346 std::string &ConstraintStr) { 1347 if (Info.allowsRegister() || !Info.allowsMemory()) 1348 if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) 1349 return EmitScalarExpr(InputExpr); 1350 1351 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1352 LValue Dest = EmitLValue(InputExpr); 1353 return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr); 1354 } 1355 1356 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1357 /// asm call instruction. The !srcloc MDNode contains a list of constant 1358 /// integers which are the source locations of the start of each line in the 1359 /// asm. 1360 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1361 CodeGenFunction &CGF) { 1362 SmallVector<llvm::Value *, 8> Locs; 1363 // Add the location of the first line to the MDNode. 1364 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1365 Str->getLocStart().getRawEncoding())); 1366 StringRef StrVal = Str->getString(); 1367 if (!StrVal.empty()) { 1368 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1369 const LangOptions &LangOpts = CGF.CGM.getLangOptions(); 1370 1371 // Add the location of the start of each subsequent line of the asm to the 1372 // MDNode. 1373 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1374 if (StrVal[i] != '\n') continue; 1375 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1376 CGF.Target); 1377 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1378 LineLoc.getRawEncoding())); 1379 } 1380 } 1381 1382 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1383 } 1384 1385 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1386 // Analyze the asm string to decompose it into its pieces. We know that Sema 1387 // has already done this, so it is guaranteed to be successful. 1388 SmallVector<AsmStmt::AsmStringPiece, 4> Pieces; 1389 unsigned DiagOffs; 1390 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs); 1391 1392 // Assemble the pieces into the final asm string. 1393 std::string AsmString; 1394 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) { 1395 if (Pieces[i].isString()) 1396 AsmString += Pieces[i].getString(); 1397 else if (Pieces[i].getModifier() == '\0') 1398 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo()); 1399 else 1400 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' + 1401 Pieces[i].getModifier() + '}'; 1402 } 1403 1404 // Get all the output and input constraints together. 1405 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1406 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1407 1408 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1409 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), 1410 S.getOutputName(i)); 1411 bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid; 1412 assert(IsValid && "Failed to parse output constraint"); 1413 OutputConstraintInfos.push_back(Info); 1414 } 1415 1416 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1417 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), 1418 S.getInputName(i)); 1419 bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(), 1420 S.getNumOutputs(), Info); 1421 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1422 InputConstraintInfos.push_back(Info); 1423 } 1424 1425 std::string Constraints; 1426 1427 std::vector<LValue> ResultRegDests; 1428 std::vector<QualType> ResultRegQualTys; 1429 std::vector<llvm::Type *> ResultRegTypes; 1430 std::vector<llvm::Type *> ResultTruncRegTypes; 1431 std::vector<llvm::Type*> ArgTypes; 1432 std::vector<llvm::Value*> Args; 1433 1434 // Keep track of inout constraints. 1435 std::string InOutConstraints; 1436 std::vector<llvm::Value*> InOutArgs; 1437 std::vector<llvm::Type*> InOutArgTypes; 1438 1439 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1440 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1441 1442 // Simplify the output constraint. 1443 std::string OutputConstraint(S.getOutputConstraint(i)); 1444 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target); 1445 1446 const Expr *OutExpr = S.getOutputExpr(i); 1447 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1448 1449 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1450 Target, CGM, S); 1451 1452 LValue Dest = EmitLValue(OutExpr); 1453 if (!Constraints.empty()) 1454 Constraints += ','; 1455 1456 // If this is a register output, then make the inline asm return it 1457 // by-value. If this is a memory result, return the value by-reference. 1458 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) { 1459 Constraints += "=" + OutputConstraint; 1460 ResultRegQualTys.push_back(OutExpr->getType()); 1461 ResultRegDests.push_back(Dest); 1462 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1463 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1464 1465 // If this output is tied to an input, and if the input is larger, then 1466 // we need to set the actual result type of the inline asm node to be the 1467 // same as the input type. 1468 if (Info.hasMatchingInput()) { 1469 unsigned InputNo; 1470 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1471 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1472 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1473 break; 1474 } 1475 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1476 1477 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1478 QualType OutputType = OutExpr->getType(); 1479 1480 uint64_t InputSize = getContext().getTypeSize(InputTy); 1481 if (getContext().getTypeSize(OutputType) < InputSize) { 1482 // Form the asm to return the value as a larger integer or fp type. 1483 ResultRegTypes.back() = ConvertType(InputTy); 1484 } 1485 } 1486 if (llvm::Type* AdjTy = 1487 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1488 ResultRegTypes.back())) 1489 ResultRegTypes.back() = AdjTy; 1490 } else { 1491 ArgTypes.push_back(Dest.getAddress()->getType()); 1492 Args.push_back(Dest.getAddress()); 1493 Constraints += "=*"; 1494 Constraints += OutputConstraint; 1495 } 1496 1497 if (Info.isReadWrite()) { 1498 InOutConstraints += ','; 1499 1500 const Expr *InputExpr = S.getOutputExpr(i); 1501 llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), 1502 InOutConstraints); 1503 1504 if (Info.allowsRegister()) 1505 InOutConstraints += llvm::utostr(i); 1506 else 1507 InOutConstraints += OutputConstraint; 1508 1509 InOutArgTypes.push_back(Arg->getType()); 1510 InOutArgs.push_back(Arg); 1511 } 1512 } 1513 1514 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1515 1516 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1517 const Expr *InputExpr = S.getInputExpr(i); 1518 1519 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1520 1521 if (!Constraints.empty()) 1522 Constraints += ','; 1523 1524 // Simplify the input constraint. 1525 std::string InputConstraint(S.getInputConstraint(i)); 1526 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target, 1527 &OutputConstraintInfos); 1528 1529 InputConstraint = 1530 AddVariableConstraints(InputConstraint, 1531 *InputExpr->IgnoreParenNoopCasts(getContext()), 1532 Target, CGM, S); 1533 1534 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints); 1535 1536 // If this input argument is tied to a larger output result, extend the 1537 // input to be the same size as the output. The LLVM backend wants to see 1538 // the input and output of a matching constraint be the same size. Note 1539 // that GCC does not define what the top bits are here. We use zext because 1540 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1541 if (Info.hasTiedOperand()) { 1542 unsigned Output = Info.getTiedOperand(); 1543 QualType OutputType = S.getOutputExpr(Output)->getType(); 1544 QualType InputTy = InputExpr->getType(); 1545 1546 if (getContext().getTypeSize(OutputType) > 1547 getContext().getTypeSize(InputTy)) { 1548 // Use ptrtoint as appropriate so that we can do our extension. 1549 if (isa<llvm::PointerType>(Arg->getType())) 1550 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1551 llvm::Type *OutputTy = ConvertType(OutputType); 1552 if (isa<llvm::IntegerType>(OutputTy)) 1553 Arg = Builder.CreateZExt(Arg, OutputTy); 1554 else if (isa<llvm::PointerType>(OutputTy)) 1555 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1556 else { 1557 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1558 Arg = Builder.CreateFPExt(Arg, OutputTy); 1559 } 1560 } 1561 } 1562 if (llvm::Type* AdjTy = 1563 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1564 Arg->getType())) 1565 Arg = Builder.CreateBitCast(Arg, AdjTy); 1566 1567 ArgTypes.push_back(Arg->getType()); 1568 Args.push_back(Arg); 1569 Constraints += InputConstraint; 1570 } 1571 1572 // Append the "input" part of inout constraints last. 1573 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1574 ArgTypes.push_back(InOutArgTypes[i]); 1575 Args.push_back(InOutArgs[i]); 1576 } 1577 Constraints += InOutConstraints; 1578 1579 // Clobbers 1580 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1581 StringRef Clobber = S.getClobber(i)->getString(); 1582 1583 if (Clobber != "memory" && Clobber != "cc") 1584 Clobber = Target.getNormalizedGCCRegisterName(Clobber); 1585 1586 if (i != 0 || NumConstraints != 0) 1587 Constraints += ','; 1588 1589 Constraints += "~{"; 1590 Constraints += Clobber; 1591 Constraints += '}'; 1592 } 1593 1594 // Add machine specific clobbers 1595 std::string MachineClobbers = Target.getClobbers(); 1596 if (!MachineClobbers.empty()) { 1597 if (!Constraints.empty()) 1598 Constraints += ','; 1599 Constraints += MachineClobbers; 1600 } 1601 1602 llvm::Type *ResultType; 1603 if (ResultRegTypes.empty()) 1604 ResultType = llvm::Type::getVoidTy(getLLVMContext()); 1605 else if (ResultRegTypes.size() == 1) 1606 ResultType = ResultRegTypes[0]; 1607 else 1608 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1609 1610 llvm::FunctionType *FTy = 1611 llvm::FunctionType::get(ResultType, ArgTypes, false); 1612 1613 llvm::InlineAsm *IA = 1614 llvm::InlineAsm::get(FTy, AsmString, Constraints, 1615 S.isVolatile() || S.getNumOutputs() == 0); 1616 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1617 Result->addAttribute(~0, llvm::Attribute::NoUnwind); 1618 1619 // Slap the source location of the inline asm into a !srcloc metadata on the 1620 // call. 1621 Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this)); 1622 1623 // Extract all of the register value results from the asm. 1624 std::vector<llvm::Value*> RegResults; 1625 if (ResultRegTypes.size() == 1) { 1626 RegResults.push_back(Result); 1627 } else { 1628 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1629 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1630 RegResults.push_back(Tmp); 1631 } 1632 } 1633 1634 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1635 llvm::Value *Tmp = RegResults[i]; 1636 1637 // If the result type of the LLVM IR asm doesn't match the result type of 1638 // the expression, do the conversion. 1639 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 1640 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 1641 1642 // Truncate the integer result to the right size, note that TruncTy can be 1643 // a pointer. 1644 if (TruncTy->isFloatingPointTy()) 1645 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 1646 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 1647 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy); 1648 Tmp = Builder.CreateTrunc(Tmp, 1649 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 1650 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 1651 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 1652 uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType()); 1653 Tmp = Builder.CreatePtrToInt(Tmp, 1654 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 1655 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1656 } else if (TruncTy->isIntegerTy()) { 1657 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 1658 } else if (TruncTy->isVectorTy()) { 1659 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 1660 } 1661 } 1662 1663 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 1664 } 1665 } 1666