1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getLocStart();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   switch (S->getStmtClass()) {
78   case Stmt::NoStmtClass:
79   case Stmt::CXXCatchStmtClass:
80   case Stmt::SEHExceptStmtClass:
81   case Stmt::SEHFinallyStmtClass:
82   case Stmt::MSDependentExistsStmtClass:
83     llvm_unreachable("invalid statement class to emit generically");
84   case Stmt::NullStmtClass:
85   case Stmt::CompoundStmtClass:
86   case Stmt::DeclStmtClass:
87   case Stmt::LabelStmtClass:
88   case Stmt::AttributedStmtClass:
89   case Stmt::GotoStmtClass:
90   case Stmt::BreakStmtClass:
91   case Stmt::ContinueStmtClass:
92   case Stmt::DefaultStmtClass:
93   case Stmt::CaseStmtClass:
94   case Stmt::SEHLeaveStmtClass:
95     llvm_unreachable("should have emitted these statements as simple");
96 
97 #define STMT(Type, Base)
98 #define ABSTRACT_STMT(Op)
99 #define EXPR(Type, Base) \
100   case Stmt::Type##Class:
101 #include "clang/AST/StmtNodes.inc"
102   {
103     // Remember the block we came in on.
104     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
105     assert(incoming && "expression emission must have an insertion point");
106 
107     EmitIgnoredExpr(cast<Expr>(S));
108 
109     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
110     assert(outgoing && "expression emission cleared block!");
111 
112     // The expression emitters assume (reasonably!) that the insertion
113     // point is always set.  To maintain that, the call-emission code
114     // for noreturn functions has to enter a new block with no
115     // predecessors.  We want to kill that block and mark the current
116     // insertion point unreachable in the common case of a call like
117     // "exit();".  Since expression emission doesn't otherwise create
118     // blocks with no predecessors, we can just test for that.
119     // However, we must be careful not to do this to our incoming
120     // block, because *statement* emission does sometimes create
121     // reachable blocks which will have no predecessors until later in
122     // the function.  This occurs with, e.g., labels that are not
123     // reachable by fallthrough.
124     if (incoming != outgoing && outgoing->use_empty()) {
125       outgoing->eraseFromParent();
126       Builder.ClearInsertionPoint();
127     }
128     break;
129   }
130 
131   case Stmt::IndirectGotoStmtClass:
132     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
133 
134   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
135   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
136   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
137   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
138 
139   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
140 
141   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
142   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
143   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
144   case Stmt::CoroutineBodyStmtClass:
145   case Stmt::CoreturnStmtClass:
146     CGM.ErrorUnsupported(S, "coroutine");
147     break;
148   case Stmt::CapturedStmtClass: {
149     const CapturedStmt *CS = cast<CapturedStmt>(S);
150     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
151     }
152     break;
153   case Stmt::ObjCAtTryStmtClass:
154     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
155     break;
156   case Stmt::ObjCAtCatchStmtClass:
157     llvm_unreachable(
158                     "@catch statements should be handled by EmitObjCAtTryStmt");
159   case Stmt::ObjCAtFinallyStmtClass:
160     llvm_unreachable(
161                   "@finally statements should be handled by EmitObjCAtTryStmt");
162   case Stmt::ObjCAtThrowStmtClass:
163     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
164     break;
165   case Stmt::ObjCAtSynchronizedStmtClass:
166     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
167     break;
168   case Stmt::ObjCForCollectionStmtClass:
169     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
170     break;
171   case Stmt::ObjCAutoreleasePoolStmtClass:
172     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
173     break;
174 
175   case Stmt::CXXTryStmtClass:
176     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
177     break;
178   case Stmt::CXXForRangeStmtClass:
179     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
180     break;
181   case Stmt::SEHTryStmtClass:
182     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
183     break;
184   case Stmt::OMPParallelDirectiveClass:
185     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
186     break;
187   case Stmt::OMPSimdDirectiveClass:
188     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
189     break;
190   case Stmt::OMPForDirectiveClass:
191     EmitOMPForDirective(cast<OMPForDirective>(*S));
192     break;
193   case Stmt::OMPForSimdDirectiveClass:
194     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
195     break;
196   case Stmt::OMPSectionsDirectiveClass:
197     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
198     break;
199   case Stmt::OMPSectionDirectiveClass:
200     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
201     break;
202   case Stmt::OMPSingleDirectiveClass:
203     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
204     break;
205   case Stmt::OMPMasterDirectiveClass:
206     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
207     break;
208   case Stmt::OMPCriticalDirectiveClass:
209     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
210     break;
211   case Stmt::OMPParallelForDirectiveClass:
212     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
213     break;
214   case Stmt::OMPParallelForSimdDirectiveClass:
215     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
216     break;
217   case Stmt::OMPParallelSectionsDirectiveClass:
218     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
219     break;
220   case Stmt::OMPTaskDirectiveClass:
221     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
222     break;
223   case Stmt::OMPTaskyieldDirectiveClass:
224     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
225     break;
226   case Stmt::OMPBarrierDirectiveClass:
227     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
228     break;
229   case Stmt::OMPTaskwaitDirectiveClass:
230     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
231     break;
232   case Stmt::OMPTaskgroupDirectiveClass:
233     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
234     break;
235   case Stmt::OMPFlushDirectiveClass:
236     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
237     break;
238   case Stmt::OMPOrderedDirectiveClass:
239     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
240     break;
241   case Stmt::OMPAtomicDirectiveClass:
242     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
243     break;
244   case Stmt::OMPTargetDirectiveClass:
245     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
246     break;
247   case Stmt::OMPTeamsDirectiveClass:
248     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
249     break;
250   case Stmt::OMPCancellationPointDirectiveClass:
251     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
252     break;
253   case Stmt::OMPCancelDirectiveClass:
254     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
255     break;
256   case Stmt::OMPTargetDataDirectiveClass:
257     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
258     break;
259   case Stmt::OMPTargetEnterDataDirectiveClass:
260     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
261     break;
262   case Stmt::OMPTargetExitDataDirectiveClass:
263     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
264     break;
265   case Stmt::OMPTargetParallelDirectiveClass:
266     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
267     break;
268   case Stmt::OMPTargetParallelForDirectiveClass:
269     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
270     break;
271   case Stmt::OMPTaskLoopDirectiveClass:
272     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
273     break;
274   case Stmt::OMPTaskLoopSimdDirectiveClass:
275     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
276     break;
277   case Stmt::OMPDistributeDirectiveClass:
278     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
279     break;
280   }
281 }
282 
283 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
284   switch (S->getStmtClass()) {
285   default: return false;
286   case Stmt::NullStmtClass: break;
287   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
288   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
289   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
290   case Stmt::AttributedStmtClass:
291                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
292   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
293   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
294   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
295   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
296   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
297   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
298   }
299 
300   return true;
301 }
302 
303 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
304 /// this captures the expression result of the last sub-statement and returns it
305 /// (for use by the statement expression extension).
306 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
307                                           AggValueSlot AggSlot) {
308   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
309                              "LLVM IR generation of compound statement ('{}')");
310 
311   // Keep track of the current cleanup stack depth, including debug scopes.
312   LexicalScope Scope(*this, S.getSourceRange());
313 
314   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
315 }
316 
317 Address
318 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
319                                               bool GetLast,
320                                               AggValueSlot AggSlot) {
321 
322   for (CompoundStmt::const_body_iterator I = S.body_begin(),
323        E = S.body_end()-GetLast; I != E; ++I)
324     EmitStmt(*I);
325 
326   Address RetAlloca = Address::invalid();
327   if (GetLast) {
328     // We have to special case labels here.  They are statements, but when put
329     // at the end of a statement expression, they yield the value of their
330     // subexpression.  Handle this by walking through all labels we encounter,
331     // emitting them before we evaluate the subexpr.
332     const Stmt *LastStmt = S.body_back();
333     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
334       EmitLabel(LS->getDecl());
335       LastStmt = LS->getSubStmt();
336     }
337 
338     EnsureInsertPoint();
339 
340     QualType ExprTy = cast<Expr>(LastStmt)->getType();
341     if (hasAggregateEvaluationKind(ExprTy)) {
342       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
343     } else {
344       // We can't return an RValue here because there might be cleanups at
345       // the end of the StmtExpr.  Because of that, we have to emit the result
346       // here into a temporary alloca.
347       RetAlloca = CreateMemTemp(ExprTy);
348       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
349                        /*IsInit*/false);
350     }
351 
352   }
353 
354   return RetAlloca;
355 }
356 
357 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
358   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
359 
360   // If there is a cleanup stack, then we it isn't worth trying to
361   // simplify this block (we would need to remove it from the scope map
362   // and cleanup entry).
363   if (!EHStack.empty())
364     return;
365 
366   // Can only simplify direct branches.
367   if (!BI || !BI->isUnconditional())
368     return;
369 
370   // Can only simplify empty blocks.
371   if (BI->getIterator() != BB->begin())
372     return;
373 
374   BB->replaceAllUsesWith(BI->getSuccessor(0));
375   BI->eraseFromParent();
376   BB->eraseFromParent();
377 }
378 
379 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
380   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
381 
382   // Fall out of the current block (if necessary).
383   EmitBranch(BB);
384 
385   if (IsFinished && BB->use_empty()) {
386     delete BB;
387     return;
388   }
389 
390   // Place the block after the current block, if possible, or else at
391   // the end of the function.
392   if (CurBB && CurBB->getParent())
393     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
394   else
395     CurFn->getBasicBlockList().push_back(BB);
396   Builder.SetInsertPoint(BB);
397 }
398 
399 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
400   // Emit a branch from the current block to the target one if this
401   // was a real block.  If this was just a fall-through block after a
402   // terminator, don't emit it.
403   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
404 
405   if (!CurBB || CurBB->getTerminator()) {
406     // If there is no insert point or the previous block is already
407     // terminated, don't touch it.
408   } else {
409     // Otherwise, create a fall-through branch.
410     Builder.CreateBr(Target);
411   }
412 
413   Builder.ClearInsertionPoint();
414 }
415 
416 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
417   bool inserted = false;
418   for (llvm::User *u : block->users()) {
419     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
420       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
421                                              block);
422       inserted = true;
423       break;
424     }
425   }
426 
427   if (!inserted)
428     CurFn->getBasicBlockList().push_back(block);
429 
430   Builder.SetInsertPoint(block);
431 }
432 
433 CodeGenFunction::JumpDest
434 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
435   JumpDest &Dest = LabelMap[D];
436   if (Dest.isValid()) return Dest;
437 
438   // Create, but don't insert, the new block.
439   Dest = JumpDest(createBasicBlock(D->getName()),
440                   EHScopeStack::stable_iterator::invalid(),
441                   NextCleanupDestIndex++);
442   return Dest;
443 }
444 
445 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
446   // Add this label to the current lexical scope if we're within any
447   // normal cleanups.  Jumps "in" to this label --- when permitted by
448   // the language --- may need to be routed around such cleanups.
449   if (EHStack.hasNormalCleanups() && CurLexicalScope)
450     CurLexicalScope->addLabel(D);
451 
452   JumpDest &Dest = LabelMap[D];
453 
454   // If we didn't need a forward reference to this label, just go
455   // ahead and create a destination at the current scope.
456   if (!Dest.isValid()) {
457     Dest = getJumpDestInCurrentScope(D->getName());
458 
459   // Otherwise, we need to give this label a target depth and remove
460   // it from the branch-fixups list.
461   } else {
462     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
463     Dest.setScopeDepth(EHStack.stable_begin());
464     ResolveBranchFixups(Dest.getBlock());
465   }
466 
467   EmitBlock(Dest.getBlock());
468   incrementProfileCounter(D->getStmt());
469 }
470 
471 /// Change the cleanup scope of the labels in this lexical scope to
472 /// match the scope of the enclosing context.
473 void CodeGenFunction::LexicalScope::rescopeLabels() {
474   assert(!Labels.empty());
475   EHScopeStack::stable_iterator innermostScope
476     = CGF.EHStack.getInnermostNormalCleanup();
477 
478   // Change the scope depth of all the labels.
479   for (SmallVectorImpl<const LabelDecl*>::const_iterator
480          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
481     assert(CGF.LabelMap.count(*i));
482     JumpDest &dest = CGF.LabelMap.find(*i)->second;
483     assert(dest.getScopeDepth().isValid());
484     assert(innermostScope.encloses(dest.getScopeDepth()));
485     dest.setScopeDepth(innermostScope);
486   }
487 
488   // Reparent the labels if the new scope also has cleanups.
489   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
490     ParentScope->Labels.append(Labels.begin(), Labels.end());
491   }
492 }
493 
494 
495 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
496   EmitLabel(S.getDecl());
497   EmitStmt(S.getSubStmt());
498 }
499 
500 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
501   const Stmt *SubStmt = S.getSubStmt();
502   switch (SubStmt->getStmtClass()) {
503   case Stmt::DoStmtClass:
504     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
505     break;
506   case Stmt::ForStmtClass:
507     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
508     break;
509   case Stmt::WhileStmtClass:
510     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
511     break;
512   case Stmt::CXXForRangeStmtClass:
513     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
514     break;
515   default:
516     EmitStmt(SubStmt);
517   }
518 }
519 
520 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
521   // If this code is reachable then emit a stop point (if generating
522   // debug info). We have to do this ourselves because we are on the
523   // "simple" statement path.
524   if (HaveInsertPoint())
525     EmitStopPoint(&S);
526 
527   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
528 }
529 
530 
531 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
532   if (const LabelDecl *Target = S.getConstantTarget()) {
533     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
534     return;
535   }
536 
537   // Ensure that we have an i8* for our PHI node.
538   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
539                                          Int8PtrTy, "addr");
540   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
541 
542   // Get the basic block for the indirect goto.
543   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
544 
545   // The first instruction in the block has to be the PHI for the switch dest,
546   // add an entry for this branch.
547   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
548 
549   EmitBranch(IndGotoBB);
550 }
551 
552 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
553   // C99 6.8.4.1: The first substatement is executed if the expression compares
554   // unequal to 0.  The condition must be a scalar type.
555   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
556 
557   if (S.getConditionVariable())
558     EmitAutoVarDecl(*S.getConditionVariable());
559 
560   // If the condition constant folds and can be elided, try to avoid emitting
561   // the condition and the dead arm of the if/else.
562   bool CondConstant;
563   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
564     // Figure out which block (then or else) is executed.
565     const Stmt *Executed = S.getThen();
566     const Stmt *Skipped  = S.getElse();
567     if (!CondConstant)  // Condition false?
568       std::swap(Executed, Skipped);
569 
570     // If the skipped block has no labels in it, just emit the executed block.
571     // This avoids emitting dead code and simplifies the CFG substantially.
572     if (!ContainsLabel(Skipped)) {
573       if (CondConstant)
574         incrementProfileCounter(&S);
575       if (Executed) {
576         RunCleanupsScope ExecutedScope(*this);
577         EmitStmt(Executed);
578       }
579       return;
580     }
581   }
582 
583   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
584   // the conditional branch.
585   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
586   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
587   llvm::BasicBlock *ElseBlock = ContBlock;
588   if (S.getElse())
589     ElseBlock = createBasicBlock("if.else");
590 
591   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
592                        getProfileCount(S.getThen()));
593 
594   // Emit the 'then' code.
595   EmitBlock(ThenBlock);
596   incrementProfileCounter(&S);
597   {
598     RunCleanupsScope ThenScope(*this);
599     EmitStmt(S.getThen());
600   }
601   EmitBranch(ContBlock);
602 
603   // Emit the 'else' code if present.
604   if (const Stmt *Else = S.getElse()) {
605     {
606       // There is no need to emit line number for an unconditional branch.
607       auto NL = ApplyDebugLocation::CreateEmpty(*this);
608       EmitBlock(ElseBlock);
609     }
610     {
611       RunCleanupsScope ElseScope(*this);
612       EmitStmt(Else);
613     }
614     {
615       // There is no need to emit line number for an unconditional branch.
616       auto NL = ApplyDebugLocation::CreateEmpty(*this);
617       EmitBranch(ContBlock);
618     }
619   }
620 
621   // Emit the continuation block for code after the if.
622   EmitBlock(ContBlock, true);
623 }
624 
625 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
626                                     ArrayRef<const Attr *> WhileAttrs) {
627   // Emit the header for the loop, which will also become
628   // the continue target.
629   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
630   EmitBlock(LoopHeader.getBlock());
631 
632   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs);
633 
634   // Create an exit block for when the condition fails, which will
635   // also become the break target.
636   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
637 
638   // Store the blocks to use for break and continue.
639   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
640 
641   // C++ [stmt.while]p2:
642   //   When the condition of a while statement is a declaration, the
643   //   scope of the variable that is declared extends from its point
644   //   of declaration (3.3.2) to the end of the while statement.
645   //   [...]
646   //   The object created in a condition is destroyed and created
647   //   with each iteration of the loop.
648   RunCleanupsScope ConditionScope(*this);
649 
650   if (S.getConditionVariable())
651     EmitAutoVarDecl(*S.getConditionVariable());
652 
653   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
654   // evaluation of the controlling expression takes place before each
655   // execution of the loop body.
656   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
657 
658   // while(1) is common, avoid extra exit blocks.  Be sure
659   // to correctly handle break/continue though.
660   bool EmitBoolCondBranch = true;
661   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
662     if (C->isOne())
663       EmitBoolCondBranch = false;
664 
665   // As long as the condition is true, go to the loop body.
666   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
667   if (EmitBoolCondBranch) {
668     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
669     if (ConditionScope.requiresCleanups())
670       ExitBlock = createBasicBlock("while.exit");
671     Builder.CreateCondBr(
672         BoolCondVal, LoopBody, ExitBlock,
673         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
674 
675     if (ExitBlock != LoopExit.getBlock()) {
676       EmitBlock(ExitBlock);
677       EmitBranchThroughCleanup(LoopExit);
678     }
679   }
680 
681   // Emit the loop body.  We have to emit this in a cleanup scope
682   // because it might be a singleton DeclStmt.
683   {
684     RunCleanupsScope BodyScope(*this);
685     EmitBlock(LoopBody);
686     incrementProfileCounter(&S);
687     EmitStmt(S.getBody());
688   }
689 
690   BreakContinueStack.pop_back();
691 
692   // Immediately force cleanup.
693   ConditionScope.ForceCleanup();
694 
695   EmitStopPoint(&S);
696   // Branch to the loop header again.
697   EmitBranch(LoopHeader.getBlock());
698 
699   LoopStack.pop();
700 
701   // Emit the exit block.
702   EmitBlock(LoopExit.getBlock(), true);
703 
704   // The LoopHeader typically is just a branch if we skipped emitting
705   // a branch, try to erase it.
706   if (!EmitBoolCondBranch)
707     SimplifyForwardingBlocks(LoopHeader.getBlock());
708 }
709 
710 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
711                                  ArrayRef<const Attr *> DoAttrs) {
712   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
713   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
714 
715   uint64_t ParentCount = getCurrentProfileCount();
716 
717   // Store the blocks to use for break and continue.
718   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
719 
720   // Emit the body of the loop.
721   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
722 
723   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs);
724 
725   EmitBlockWithFallThrough(LoopBody, &S);
726   {
727     RunCleanupsScope BodyScope(*this);
728     EmitStmt(S.getBody());
729   }
730 
731   EmitBlock(LoopCond.getBlock());
732 
733   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
734   // after each execution of the loop body."
735 
736   // Evaluate the conditional in the while header.
737   // C99 6.8.5p2/p4: The first substatement is executed if the expression
738   // compares unequal to 0.  The condition must be a scalar type.
739   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
740 
741   BreakContinueStack.pop_back();
742 
743   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
744   // to correctly handle break/continue though.
745   bool EmitBoolCondBranch = true;
746   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
747     if (C->isZero())
748       EmitBoolCondBranch = false;
749 
750   // As long as the condition is true, iterate the loop.
751   if (EmitBoolCondBranch) {
752     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
753     Builder.CreateCondBr(
754         BoolCondVal, LoopBody, LoopExit.getBlock(),
755         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
756   }
757 
758   LoopStack.pop();
759 
760   // Emit the exit block.
761   EmitBlock(LoopExit.getBlock());
762 
763   // The DoCond block typically is just a branch if we skipped
764   // emitting a branch, try to erase it.
765   if (!EmitBoolCondBranch)
766     SimplifyForwardingBlocks(LoopCond.getBlock());
767 }
768 
769 void CodeGenFunction::EmitForStmt(const ForStmt &S,
770                                   ArrayRef<const Attr *> ForAttrs) {
771   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
772 
773   LexicalScope ForScope(*this, S.getSourceRange());
774 
775   // Evaluate the first part before the loop.
776   if (S.getInit())
777     EmitStmt(S.getInit());
778 
779   // Start the loop with a block that tests the condition.
780   // If there's an increment, the continue scope will be overwritten
781   // later.
782   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
783   llvm::BasicBlock *CondBlock = Continue.getBlock();
784   EmitBlock(CondBlock);
785 
786   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
787 
788   // If the for loop doesn't have an increment we can just use the
789   // condition as the continue block.  Otherwise we'll need to create
790   // a block for it (in the current scope, i.e. in the scope of the
791   // condition), and that we will become our continue block.
792   if (S.getInc())
793     Continue = getJumpDestInCurrentScope("for.inc");
794 
795   // Store the blocks to use for break and continue.
796   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
797 
798   // Create a cleanup scope for the condition variable cleanups.
799   LexicalScope ConditionScope(*this, S.getSourceRange());
800 
801   if (S.getCond()) {
802     // If the for statement has a condition scope, emit the local variable
803     // declaration.
804     if (S.getConditionVariable()) {
805       EmitAutoVarDecl(*S.getConditionVariable());
806     }
807 
808     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
809     // If there are any cleanups between here and the loop-exit scope,
810     // create a block to stage a loop exit along.
811     if (ForScope.requiresCleanups())
812       ExitBlock = createBasicBlock("for.cond.cleanup");
813 
814     // As long as the condition is true, iterate the loop.
815     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
816 
817     // C99 6.8.5p2/p4: The first substatement is executed if the expression
818     // compares unequal to 0.  The condition must be a scalar type.
819     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
820     Builder.CreateCondBr(
821         BoolCondVal, ForBody, ExitBlock,
822         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
823 
824     if (ExitBlock != LoopExit.getBlock()) {
825       EmitBlock(ExitBlock);
826       EmitBranchThroughCleanup(LoopExit);
827     }
828 
829     EmitBlock(ForBody);
830   } else {
831     // Treat it as a non-zero constant.  Don't even create a new block for the
832     // body, just fall into it.
833   }
834   incrementProfileCounter(&S);
835 
836   {
837     // Create a separate cleanup scope for the body, in case it is not
838     // a compound statement.
839     RunCleanupsScope BodyScope(*this);
840     EmitStmt(S.getBody());
841   }
842 
843   // If there is an increment, emit it next.
844   if (S.getInc()) {
845     EmitBlock(Continue.getBlock());
846     EmitStmt(S.getInc());
847   }
848 
849   BreakContinueStack.pop_back();
850 
851   ConditionScope.ForceCleanup();
852 
853   EmitStopPoint(&S);
854   EmitBranch(CondBlock);
855 
856   ForScope.ForceCleanup();
857 
858   LoopStack.pop();
859 
860   // Emit the fall-through block.
861   EmitBlock(LoopExit.getBlock(), true);
862 }
863 
864 void
865 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
866                                      ArrayRef<const Attr *> ForAttrs) {
867   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
868 
869   LexicalScope ForScope(*this, S.getSourceRange());
870 
871   // Evaluate the first pieces before the loop.
872   EmitStmt(S.getRangeStmt());
873   EmitStmt(S.getBeginEndStmt());
874 
875   // Start the loop with a block that tests the condition.
876   // If there's an increment, the continue scope will be overwritten
877   // later.
878   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
879   EmitBlock(CondBlock);
880 
881   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs);
882 
883   // If there are any cleanups between here and the loop-exit scope,
884   // create a block to stage a loop exit along.
885   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
886   if (ForScope.requiresCleanups())
887     ExitBlock = createBasicBlock("for.cond.cleanup");
888 
889   // The loop body, consisting of the specified body and the loop variable.
890   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
891 
892   // The body is executed if the expression, contextually converted
893   // to bool, is true.
894   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
895   Builder.CreateCondBr(
896       BoolCondVal, ForBody, ExitBlock,
897       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
898 
899   if (ExitBlock != LoopExit.getBlock()) {
900     EmitBlock(ExitBlock);
901     EmitBranchThroughCleanup(LoopExit);
902   }
903 
904   EmitBlock(ForBody);
905   incrementProfileCounter(&S);
906 
907   // Create a block for the increment. In case of a 'continue', we jump there.
908   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
909 
910   // Store the blocks to use for break and continue.
911   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
912 
913   {
914     // Create a separate cleanup scope for the loop variable and body.
915     LexicalScope BodyScope(*this, S.getSourceRange());
916     EmitStmt(S.getLoopVarStmt());
917     EmitStmt(S.getBody());
918   }
919 
920   EmitStopPoint(&S);
921   // If there is an increment, emit it next.
922   EmitBlock(Continue.getBlock());
923   EmitStmt(S.getInc());
924 
925   BreakContinueStack.pop_back();
926 
927   EmitBranch(CondBlock);
928 
929   ForScope.ForceCleanup();
930 
931   LoopStack.pop();
932 
933   // Emit the fall-through block.
934   EmitBlock(LoopExit.getBlock(), true);
935 }
936 
937 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
938   if (RV.isScalar()) {
939     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
940   } else if (RV.isAggregate()) {
941     EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty);
942   } else {
943     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
944                        /*init*/ true);
945   }
946   EmitBranchThroughCleanup(ReturnBlock);
947 }
948 
949 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
950 /// if the function returns void, or may be missing one if the function returns
951 /// non-void.  Fun stuff :).
952 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
953   // Returning from an outlined SEH helper is UB, and we already warn on it.
954   if (IsOutlinedSEHHelper) {
955     Builder.CreateUnreachable();
956     Builder.ClearInsertionPoint();
957   }
958 
959   // Emit the result value, even if unused, to evalute the side effects.
960   const Expr *RV = S.getRetValue();
961 
962   // Treat block literals in a return expression as if they appeared
963   // in their own scope.  This permits a small, easily-implemented
964   // exception to our over-conservative rules about not jumping to
965   // statements following block literals with non-trivial cleanups.
966   RunCleanupsScope cleanupScope(*this);
967   if (const ExprWithCleanups *cleanups =
968         dyn_cast_or_null<ExprWithCleanups>(RV)) {
969     enterFullExpression(cleanups);
970     RV = cleanups->getSubExpr();
971   }
972 
973   // FIXME: Clean this up by using an LValue for ReturnTemp,
974   // EmitStoreThroughLValue, and EmitAnyExpr.
975   if (getLangOpts().ElideConstructors &&
976       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
977     // Apply the named return value optimization for this return statement,
978     // which means doing nothing: the appropriate result has already been
979     // constructed into the NRVO variable.
980 
981     // If there is an NRVO flag for this variable, set it to 1 into indicate
982     // that the cleanup code should not destroy the variable.
983     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
984       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
985   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
986     // Make sure not to return anything, but evaluate the expression
987     // for side effects.
988     if (RV)
989       EmitAnyExpr(RV);
990   } else if (!RV) {
991     // Do nothing (return value is left uninitialized)
992   } else if (FnRetTy->isReferenceType()) {
993     // If this function returns a reference, take the address of the expression
994     // rather than the value.
995     RValue Result = EmitReferenceBindingToExpr(RV);
996     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
997   } else {
998     switch (getEvaluationKind(RV->getType())) {
999     case TEK_Scalar:
1000       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1001       break;
1002     case TEK_Complex:
1003       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1004                                 /*isInit*/ true);
1005       break;
1006     case TEK_Aggregate:
1007       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue,
1008                                             Qualifiers(),
1009                                             AggValueSlot::IsDestructed,
1010                                             AggValueSlot::DoesNotNeedGCBarriers,
1011                                             AggValueSlot::IsNotAliased));
1012       break;
1013     }
1014   }
1015 
1016   ++NumReturnExprs;
1017   if (!RV || RV->isEvaluatable(getContext()))
1018     ++NumSimpleReturnExprs;
1019 
1020   cleanupScope.ForceCleanup();
1021   EmitBranchThroughCleanup(ReturnBlock);
1022 }
1023 
1024 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1025   // As long as debug info is modeled with instructions, we have to ensure we
1026   // have a place to insert here and write the stop point here.
1027   if (HaveInsertPoint())
1028     EmitStopPoint(&S);
1029 
1030   for (const auto *I : S.decls())
1031     EmitDecl(*I);
1032 }
1033 
1034 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1035   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1036 
1037   // If this code is reachable then emit a stop point (if generating
1038   // debug info). We have to do this ourselves because we are on the
1039   // "simple" statement path.
1040   if (HaveInsertPoint())
1041     EmitStopPoint(&S);
1042 
1043   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1044 }
1045 
1046 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1047   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1048 
1049   // If this code is reachable then emit a stop point (if generating
1050   // debug info). We have to do this ourselves because we are on the
1051   // "simple" statement path.
1052   if (HaveInsertPoint())
1053     EmitStopPoint(&S);
1054 
1055   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1056 }
1057 
1058 /// EmitCaseStmtRange - If case statement range is not too big then
1059 /// add multiple cases to switch instruction, one for each value within
1060 /// the range. If range is too big then emit "if" condition check.
1061 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1062   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1063 
1064   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1065   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1066 
1067   // Emit the code for this case. We do this first to make sure it is
1068   // properly chained from our predecessor before generating the
1069   // switch machinery to enter this block.
1070   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1071   EmitBlockWithFallThrough(CaseDest, &S);
1072   EmitStmt(S.getSubStmt());
1073 
1074   // If range is empty, do nothing.
1075   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1076     return;
1077 
1078   llvm::APInt Range = RHS - LHS;
1079   // FIXME: parameters such as this should not be hardcoded.
1080   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1081     // Range is small enough to add multiple switch instruction cases.
1082     uint64_t Total = getProfileCount(&S);
1083     unsigned NCases = Range.getZExtValue() + 1;
1084     // We only have one region counter for the entire set of cases here, so we
1085     // need to divide the weights evenly between the generated cases, ensuring
1086     // that the total weight is preserved. E.g., a weight of 5 over three cases
1087     // will be distributed as weights of 2, 2, and 1.
1088     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1089     for (unsigned I = 0; I != NCases; ++I) {
1090       if (SwitchWeights)
1091         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1092       if (Rem)
1093         Rem--;
1094       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1095       LHS++;
1096     }
1097     return;
1098   }
1099 
1100   // The range is too big. Emit "if" condition into a new block,
1101   // making sure to save and restore the current insertion point.
1102   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1103 
1104   // Push this test onto the chain of range checks (which terminates
1105   // in the default basic block). The switch's default will be changed
1106   // to the top of this chain after switch emission is complete.
1107   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1108   CaseRangeBlock = createBasicBlock("sw.caserange");
1109 
1110   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1111   Builder.SetInsertPoint(CaseRangeBlock);
1112 
1113   // Emit range check.
1114   llvm::Value *Diff =
1115     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1116   llvm::Value *Cond =
1117     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1118 
1119   llvm::MDNode *Weights = nullptr;
1120   if (SwitchWeights) {
1121     uint64_t ThisCount = getProfileCount(&S);
1122     uint64_t DefaultCount = (*SwitchWeights)[0];
1123     Weights = createProfileWeights(ThisCount, DefaultCount);
1124 
1125     // Since we're chaining the switch default through each large case range, we
1126     // need to update the weight for the default, ie, the first case, to include
1127     // this case.
1128     (*SwitchWeights)[0] += ThisCount;
1129   }
1130   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1131 
1132   // Restore the appropriate insertion point.
1133   if (RestoreBB)
1134     Builder.SetInsertPoint(RestoreBB);
1135   else
1136     Builder.ClearInsertionPoint();
1137 }
1138 
1139 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1140   // If there is no enclosing switch instance that we're aware of, then this
1141   // case statement and its block can be elided.  This situation only happens
1142   // when we've constant-folded the switch, are emitting the constant case,
1143   // and part of the constant case includes another case statement.  For
1144   // instance: switch (4) { case 4: do { case 5: } while (1); }
1145   if (!SwitchInsn) {
1146     EmitStmt(S.getSubStmt());
1147     return;
1148   }
1149 
1150   // Handle case ranges.
1151   if (S.getRHS()) {
1152     EmitCaseStmtRange(S);
1153     return;
1154   }
1155 
1156   llvm::ConstantInt *CaseVal =
1157     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1158 
1159   // If the body of the case is just a 'break', try to not emit an empty block.
1160   // If we're profiling or we're not optimizing, leave the block in for better
1161   // debug and coverage analysis.
1162   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1163       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1164       isa<BreakStmt>(S.getSubStmt())) {
1165     JumpDest Block = BreakContinueStack.back().BreakBlock;
1166 
1167     // Only do this optimization if there are no cleanups that need emitting.
1168     if (isObviouslyBranchWithoutCleanups(Block)) {
1169       if (SwitchWeights)
1170         SwitchWeights->push_back(getProfileCount(&S));
1171       SwitchInsn->addCase(CaseVal, Block.getBlock());
1172 
1173       // If there was a fallthrough into this case, make sure to redirect it to
1174       // the end of the switch as well.
1175       if (Builder.GetInsertBlock()) {
1176         Builder.CreateBr(Block.getBlock());
1177         Builder.ClearInsertionPoint();
1178       }
1179       return;
1180     }
1181   }
1182 
1183   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1184   EmitBlockWithFallThrough(CaseDest, &S);
1185   if (SwitchWeights)
1186     SwitchWeights->push_back(getProfileCount(&S));
1187   SwitchInsn->addCase(CaseVal, CaseDest);
1188 
1189   // Recursively emitting the statement is acceptable, but is not wonderful for
1190   // code where we have many case statements nested together, i.e.:
1191   //  case 1:
1192   //    case 2:
1193   //      case 3: etc.
1194   // Handling this recursively will create a new block for each case statement
1195   // that falls through to the next case which is IR intensive.  It also causes
1196   // deep recursion which can run into stack depth limitations.  Handle
1197   // sequential non-range case statements specially.
1198   const CaseStmt *CurCase = &S;
1199   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1200 
1201   // Otherwise, iteratively add consecutive cases to this switch stmt.
1202   while (NextCase && NextCase->getRHS() == nullptr) {
1203     CurCase = NextCase;
1204     llvm::ConstantInt *CaseVal =
1205       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1206 
1207     if (SwitchWeights)
1208       SwitchWeights->push_back(getProfileCount(NextCase));
1209     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1210       CaseDest = createBasicBlock("sw.bb");
1211       EmitBlockWithFallThrough(CaseDest, &S);
1212     }
1213 
1214     SwitchInsn->addCase(CaseVal, CaseDest);
1215     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1216   }
1217 
1218   // Normal default recursion for non-cases.
1219   EmitStmt(CurCase->getSubStmt());
1220 }
1221 
1222 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1223   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1224   assert(DefaultBlock->empty() &&
1225          "EmitDefaultStmt: Default block already defined?");
1226 
1227   EmitBlockWithFallThrough(DefaultBlock, &S);
1228 
1229   EmitStmt(S.getSubStmt());
1230 }
1231 
1232 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1233 /// constant value that is being switched on, see if we can dead code eliminate
1234 /// the body of the switch to a simple series of statements to emit.  Basically,
1235 /// on a switch (5) we want to find these statements:
1236 ///    case 5:
1237 ///      printf(...);    <--
1238 ///      ++i;            <--
1239 ///      break;
1240 ///
1241 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1242 /// transformation (for example, one of the elided statements contains a label
1243 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1244 /// should include statements after it (e.g. the printf() line is a substmt of
1245 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1246 /// statement, then return CSFC_Success.
1247 ///
1248 /// If Case is non-null, then we are looking for the specified case, checking
1249 /// that nothing we jump over contains labels.  If Case is null, then we found
1250 /// the case and are looking for the break.
1251 ///
1252 /// If the recursive walk actually finds our Case, then we set FoundCase to
1253 /// true.
1254 ///
1255 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1256 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1257                                             const SwitchCase *Case,
1258                                             bool &FoundCase,
1259                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1260   // If this is a null statement, just succeed.
1261   if (!S)
1262     return Case ? CSFC_Success : CSFC_FallThrough;
1263 
1264   // If this is the switchcase (case 4: or default) that we're looking for, then
1265   // we're in business.  Just add the substatement.
1266   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1267     if (S == Case) {
1268       FoundCase = true;
1269       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1270                                       ResultStmts);
1271     }
1272 
1273     // Otherwise, this is some other case or default statement, just ignore it.
1274     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1275                                     ResultStmts);
1276   }
1277 
1278   // If we are in the live part of the code and we found our break statement,
1279   // return a success!
1280   if (!Case && isa<BreakStmt>(S))
1281     return CSFC_Success;
1282 
1283   // If this is a switch statement, then it might contain the SwitchCase, the
1284   // break, or neither.
1285   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1286     // Handle this as two cases: we might be looking for the SwitchCase (if so
1287     // the skipped statements must be skippable) or we might already have it.
1288     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1289     if (Case) {
1290       // Keep track of whether we see a skipped declaration.  The code could be
1291       // using the declaration even if it is skipped, so we can't optimize out
1292       // the decl if the kept statements might refer to it.
1293       bool HadSkippedDecl = false;
1294 
1295       // If we're looking for the case, just see if we can skip each of the
1296       // substatements.
1297       for (; Case && I != E; ++I) {
1298         HadSkippedDecl |= isa<DeclStmt>(*I);
1299 
1300         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1301         case CSFC_Failure: return CSFC_Failure;
1302         case CSFC_Success:
1303           // A successful result means that either 1) that the statement doesn't
1304           // have the case and is skippable, or 2) does contain the case value
1305           // and also contains the break to exit the switch.  In the later case,
1306           // we just verify the rest of the statements are elidable.
1307           if (FoundCase) {
1308             // If we found the case and skipped declarations, we can't do the
1309             // optimization.
1310             if (HadSkippedDecl)
1311               return CSFC_Failure;
1312 
1313             for (++I; I != E; ++I)
1314               if (CodeGenFunction::ContainsLabel(*I, true))
1315                 return CSFC_Failure;
1316             return CSFC_Success;
1317           }
1318           break;
1319         case CSFC_FallThrough:
1320           // If we have a fallthrough condition, then we must have found the
1321           // case started to include statements.  Consider the rest of the
1322           // statements in the compound statement as candidates for inclusion.
1323           assert(FoundCase && "Didn't find case but returned fallthrough?");
1324           // We recursively found Case, so we're not looking for it anymore.
1325           Case = nullptr;
1326 
1327           // If we found the case and skipped declarations, we can't do the
1328           // optimization.
1329           if (HadSkippedDecl)
1330             return CSFC_Failure;
1331           break;
1332         }
1333       }
1334     }
1335 
1336     // If we have statements in our range, then we know that the statements are
1337     // live and need to be added to the set of statements we're tracking.
1338     for (; I != E; ++I) {
1339       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1340       case CSFC_Failure: return CSFC_Failure;
1341       case CSFC_FallThrough:
1342         // A fallthrough result means that the statement was simple and just
1343         // included in ResultStmt, keep adding them afterwards.
1344         break;
1345       case CSFC_Success:
1346         // A successful result means that we found the break statement and
1347         // stopped statement inclusion.  We just ensure that any leftover stmts
1348         // are skippable and return success ourselves.
1349         for (++I; I != E; ++I)
1350           if (CodeGenFunction::ContainsLabel(*I, true))
1351             return CSFC_Failure;
1352         return CSFC_Success;
1353       }
1354     }
1355 
1356     return Case ? CSFC_Success : CSFC_FallThrough;
1357   }
1358 
1359   // Okay, this is some other statement that we don't handle explicitly, like a
1360   // for statement or increment etc.  If we are skipping over this statement,
1361   // just verify it doesn't have labels, which would make it invalid to elide.
1362   if (Case) {
1363     if (CodeGenFunction::ContainsLabel(S, true))
1364       return CSFC_Failure;
1365     return CSFC_Success;
1366   }
1367 
1368   // Otherwise, we want to include this statement.  Everything is cool with that
1369   // so long as it doesn't contain a break out of the switch we're in.
1370   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1371 
1372   // Otherwise, everything is great.  Include the statement and tell the caller
1373   // that we fall through and include the next statement as well.
1374   ResultStmts.push_back(S);
1375   return CSFC_FallThrough;
1376 }
1377 
1378 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1379 /// then invoke CollectStatementsForCase to find the list of statements to emit
1380 /// for a switch on constant.  See the comment above CollectStatementsForCase
1381 /// for more details.
1382 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1383                                        const llvm::APSInt &ConstantCondValue,
1384                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1385                                        ASTContext &C,
1386                                        const SwitchCase *&ResultCase) {
1387   // First step, find the switch case that is being branched to.  We can do this
1388   // efficiently by scanning the SwitchCase list.
1389   const SwitchCase *Case = S.getSwitchCaseList();
1390   const DefaultStmt *DefaultCase = nullptr;
1391 
1392   for (; Case; Case = Case->getNextSwitchCase()) {
1393     // It's either a default or case.  Just remember the default statement in
1394     // case we're not jumping to any numbered cases.
1395     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1396       DefaultCase = DS;
1397       continue;
1398     }
1399 
1400     // Check to see if this case is the one we're looking for.
1401     const CaseStmt *CS = cast<CaseStmt>(Case);
1402     // Don't handle case ranges yet.
1403     if (CS->getRHS()) return false;
1404 
1405     // If we found our case, remember it as 'case'.
1406     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1407       break;
1408   }
1409 
1410   // If we didn't find a matching case, we use a default if it exists, or we
1411   // elide the whole switch body!
1412   if (!Case) {
1413     // It is safe to elide the body of the switch if it doesn't contain labels
1414     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1415     if (!DefaultCase)
1416       return !CodeGenFunction::ContainsLabel(&S);
1417     Case = DefaultCase;
1418   }
1419 
1420   // Ok, we know which case is being jumped to, try to collect all the
1421   // statements that follow it.  This can fail for a variety of reasons.  Also,
1422   // check to see that the recursive walk actually found our case statement.
1423   // Insane cases like this can fail to find it in the recursive walk since we
1424   // don't handle every stmt kind:
1425   // switch (4) {
1426   //   while (1) {
1427   //     case 4: ...
1428   bool FoundCase = false;
1429   ResultCase = Case;
1430   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1431                                   ResultStmts) != CSFC_Failure &&
1432          FoundCase;
1433 }
1434 
1435 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1436   // Handle nested switch statements.
1437   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1438   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1439   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1440 
1441   // See if we can constant fold the condition of the switch and therefore only
1442   // emit the live case statement (if any) of the switch.
1443   llvm::APSInt ConstantCondValue;
1444   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1445     SmallVector<const Stmt*, 4> CaseStmts;
1446     const SwitchCase *Case = nullptr;
1447     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1448                                    getContext(), Case)) {
1449       if (Case)
1450         incrementProfileCounter(Case);
1451       RunCleanupsScope ExecutedScope(*this);
1452 
1453       // Emit the condition variable if needed inside the entire cleanup scope
1454       // used by this special case for constant folded switches.
1455       if (S.getConditionVariable())
1456         EmitAutoVarDecl(*S.getConditionVariable());
1457 
1458       // At this point, we are no longer "within" a switch instance, so
1459       // we can temporarily enforce this to ensure that any embedded case
1460       // statements are not emitted.
1461       SwitchInsn = nullptr;
1462 
1463       // Okay, we can dead code eliminate everything except this case.  Emit the
1464       // specified series of statements and we're good.
1465       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1466         EmitStmt(CaseStmts[i]);
1467       incrementProfileCounter(&S);
1468 
1469       // Now we want to restore the saved switch instance so that nested
1470       // switches continue to function properly
1471       SwitchInsn = SavedSwitchInsn;
1472 
1473       return;
1474     }
1475   }
1476 
1477   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1478 
1479   RunCleanupsScope ConditionScope(*this);
1480   if (S.getConditionVariable())
1481     EmitAutoVarDecl(*S.getConditionVariable());
1482   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1483 
1484   // Create basic block to hold stuff that comes after switch
1485   // statement. We also need to create a default block now so that
1486   // explicit case ranges tests can have a place to jump to on
1487   // failure.
1488   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1489   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1490   if (PGO.haveRegionCounts()) {
1491     // Walk the SwitchCase list to find how many there are.
1492     uint64_t DefaultCount = 0;
1493     unsigned NumCases = 0;
1494     for (const SwitchCase *Case = S.getSwitchCaseList();
1495          Case;
1496          Case = Case->getNextSwitchCase()) {
1497       if (isa<DefaultStmt>(Case))
1498         DefaultCount = getProfileCount(Case);
1499       NumCases += 1;
1500     }
1501     SwitchWeights = new SmallVector<uint64_t, 16>();
1502     SwitchWeights->reserve(NumCases);
1503     // The default needs to be first. We store the edge count, so we already
1504     // know the right weight.
1505     SwitchWeights->push_back(DefaultCount);
1506   }
1507   CaseRangeBlock = DefaultBlock;
1508 
1509   // Clear the insertion point to indicate we are in unreachable code.
1510   Builder.ClearInsertionPoint();
1511 
1512   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1513   // then reuse last ContinueBlock.
1514   JumpDest OuterContinue;
1515   if (!BreakContinueStack.empty())
1516     OuterContinue = BreakContinueStack.back().ContinueBlock;
1517 
1518   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1519 
1520   // Emit switch body.
1521   EmitStmt(S.getBody());
1522 
1523   BreakContinueStack.pop_back();
1524 
1525   // Update the default block in case explicit case range tests have
1526   // been chained on top.
1527   SwitchInsn->setDefaultDest(CaseRangeBlock);
1528 
1529   // If a default was never emitted:
1530   if (!DefaultBlock->getParent()) {
1531     // If we have cleanups, emit the default block so that there's a
1532     // place to jump through the cleanups from.
1533     if (ConditionScope.requiresCleanups()) {
1534       EmitBlock(DefaultBlock);
1535 
1536     // Otherwise, just forward the default block to the switch end.
1537     } else {
1538       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1539       delete DefaultBlock;
1540     }
1541   }
1542 
1543   ConditionScope.ForceCleanup();
1544 
1545   // Emit continuation.
1546   EmitBlock(SwitchExit.getBlock(), true);
1547   incrementProfileCounter(&S);
1548 
1549   // If the switch has a condition wrapped by __builtin_unpredictable,
1550   // create metadata that specifies that the switch is unpredictable.
1551   // Don't bother if not optimizing because that metadata would not be used.
1552   if (CGM.getCodeGenOpts().OptimizationLevel != 0) {
1553     if (const CallExpr *Call = dyn_cast<CallExpr>(S.getCond())) {
1554       const Decl *TargetDecl = Call->getCalleeDecl();
1555       if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
1556         if (FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1557           llvm::MDBuilder MDHelper(getLLVMContext());
1558           SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1559                                   MDHelper.createUnpredictable());
1560         }
1561       }
1562     }
1563   }
1564 
1565   if (SwitchWeights) {
1566     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1567            "switch weights do not match switch cases");
1568     // If there's only one jump destination there's no sense weighting it.
1569     if (SwitchWeights->size() > 1)
1570       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1571                               createProfileWeights(*SwitchWeights));
1572     delete SwitchWeights;
1573   }
1574   SwitchInsn = SavedSwitchInsn;
1575   SwitchWeights = SavedSwitchWeights;
1576   CaseRangeBlock = SavedCRBlock;
1577 }
1578 
1579 static std::string
1580 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1581                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1582   std::string Result;
1583 
1584   while (*Constraint) {
1585     switch (*Constraint) {
1586     default:
1587       Result += Target.convertConstraint(Constraint);
1588       break;
1589     // Ignore these
1590     case '*':
1591     case '?':
1592     case '!':
1593     case '=': // Will see this and the following in mult-alt constraints.
1594     case '+':
1595       break;
1596     case '#': // Ignore the rest of the constraint alternative.
1597       while (Constraint[1] && Constraint[1] != ',')
1598         Constraint++;
1599       break;
1600     case '&':
1601     case '%':
1602       Result += *Constraint;
1603       while (Constraint[1] && Constraint[1] == *Constraint)
1604         Constraint++;
1605       break;
1606     case ',':
1607       Result += "|";
1608       break;
1609     case 'g':
1610       Result += "imr";
1611       break;
1612     case '[': {
1613       assert(OutCons &&
1614              "Must pass output names to constraints with a symbolic name");
1615       unsigned Index;
1616       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1617       assert(result && "Could not resolve symbolic name"); (void)result;
1618       Result += llvm::utostr(Index);
1619       break;
1620     }
1621     }
1622 
1623     Constraint++;
1624   }
1625 
1626   return Result;
1627 }
1628 
1629 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1630 /// as using a particular register add that as a constraint that will be used
1631 /// in this asm stmt.
1632 static std::string
1633 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1634                        const TargetInfo &Target, CodeGenModule &CGM,
1635                        const AsmStmt &Stmt, const bool EarlyClobber) {
1636   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1637   if (!AsmDeclRef)
1638     return Constraint;
1639   const ValueDecl &Value = *AsmDeclRef->getDecl();
1640   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1641   if (!Variable)
1642     return Constraint;
1643   if (Variable->getStorageClass() != SC_Register)
1644     return Constraint;
1645   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1646   if (!Attr)
1647     return Constraint;
1648   StringRef Register = Attr->getLabel();
1649   assert(Target.isValidGCCRegisterName(Register));
1650   // We're using validateOutputConstraint here because we only care if
1651   // this is a register constraint.
1652   TargetInfo::ConstraintInfo Info(Constraint, "");
1653   if (Target.validateOutputConstraint(Info) &&
1654       !Info.allowsRegister()) {
1655     CGM.ErrorUnsupported(&Stmt, "__asm__");
1656     return Constraint;
1657   }
1658   // Canonicalize the register here before returning it.
1659   Register = Target.getNormalizedGCCRegisterName(Register);
1660   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1661 }
1662 
1663 llvm::Value*
1664 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1665                                     LValue InputValue, QualType InputType,
1666                                     std::string &ConstraintStr,
1667                                     SourceLocation Loc) {
1668   llvm::Value *Arg;
1669   if (Info.allowsRegister() || !Info.allowsMemory()) {
1670     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1671       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1672     } else {
1673       llvm::Type *Ty = ConvertType(InputType);
1674       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1675       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1676         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1677         Ty = llvm::PointerType::getUnqual(Ty);
1678 
1679         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1680                                                        Ty));
1681       } else {
1682         Arg = InputValue.getPointer();
1683         ConstraintStr += '*';
1684       }
1685     }
1686   } else {
1687     Arg = InputValue.getPointer();
1688     ConstraintStr += '*';
1689   }
1690 
1691   return Arg;
1692 }
1693 
1694 llvm::Value* CodeGenFunction::EmitAsmInput(
1695                                          const TargetInfo::ConstraintInfo &Info,
1696                                            const Expr *InputExpr,
1697                                            std::string &ConstraintStr) {
1698   // If this can't be a register or memory, i.e., has to be a constant
1699   // (immediate or symbolic), try to emit it as such.
1700   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1701     llvm::APSInt Result;
1702     if (InputExpr->EvaluateAsInt(Result, getContext()))
1703       return llvm::ConstantInt::get(getLLVMContext(), Result);
1704     assert(!Info.requiresImmediateConstant() &&
1705            "Required-immediate inlineasm arg isn't constant?");
1706   }
1707 
1708   if (Info.allowsRegister() || !Info.allowsMemory())
1709     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1710       return EmitScalarExpr(InputExpr);
1711   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1712     return EmitScalarExpr(InputExpr);
1713   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1714   LValue Dest = EmitLValue(InputExpr);
1715   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1716                             InputExpr->getExprLoc());
1717 }
1718 
1719 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1720 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1721 /// integers which are the source locations of the start of each line in the
1722 /// asm.
1723 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1724                                       CodeGenFunction &CGF) {
1725   SmallVector<llvm::Metadata *, 8> Locs;
1726   // Add the location of the first line to the MDNode.
1727   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1728       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1729   StringRef StrVal = Str->getString();
1730   if (!StrVal.empty()) {
1731     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1732     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1733     unsigned StartToken = 0;
1734     unsigned ByteOffset = 0;
1735 
1736     // Add the location of the start of each subsequent line of the asm to the
1737     // MDNode.
1738     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1739       if (StrVal[i] != '\n') continue;
1740       SourceLocation LineLoc = Str->getLocationOfByte(
1741           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1742       Locs.push_back(llvm::ConstantAsMetadata::get(
1743           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1744     }
1745   }
1746 
1747   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1748 }
1749 
1750 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1751   // Assemble the final asm string.
1752   std::string AsmString = S.generateAsmString(getContext());
1753 
1754   // Get all the output and input constraints together.
1755   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1756   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1757 
1758   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1759     StringRef Name;
1760     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1761       Name = GAS->getOutputName(i);
1762     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1763     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1764     assert(IsValid && "Failed to parse output constraint");
1765     OutputConstraintInfos.push_back(Info);
1766   }
1767 
1768   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1769     StringRef Name;
1770     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1771       Name = GAS->getInputName(i);
1772     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1773     bool IsValid =
1774       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1775     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1776     InputConstraintInfos.push_back(Info);
1777   }
1778 
1779   std::string Constraints;
1780 
1781   std::vector<LValue> ResultRegDests;
1782   std::vector<QualType> ResultRegQualTys;
1783   std::vector<llvm::Type *> ResultRegTypes;
1784   std::vector<llvm::Type *> ResultTruncRegTypes;
1785   std::vector<llvm::Type *> ArgTypes;
1786   std::vector<llvm::Value*> Args;
1787 
1788   // Keep track of inout constraints.
1789   std::string InOutConstraints;
1790   std::vector<llvm::Value*> InOutArgs;
1791   std::vector<llvm::Type*> InOutArgTypes;
1792 
1793   // An inline asm can be marked readonly if it meets the following conditions:
1794   //  - it doesn't have any sideeffects
1795   //  - it doesn't clobber memory
1796   //  - it doesn't return a value by-reference
1797   // It can be marked readnone if it doesn't have any input memory constraints
1798   // in addition to meeting the conditions listed above.
1799   bool ReadOnly = true, ReadNone = true;
1800 
1801   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1802     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1803 
1804     // Simplify the output constraint.
1805     std::string OutputConstraint(S.getOutputConstraint(i));
1806     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1807                                           getTarget());
1808 
1809     const Expr *OutExpr = S.getOutputExpr(i);
1810     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1811 
1812     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1813                                               getTarget(), CGM, S,
1814                                               Info.earlyClobber());
1815 
1816     LValue Dest = EmitLValue(OutExpr);
1817     if (!Constraints.empty())
1818       Constraints += ',';
1819 
1820     // If this is a register output, then make the inline asm return it
1821     // by-value.  If this is a memory result, return the value by-reference.
1822     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1823       Constraints += "=" + OutputConstraint;
1824       ResultRegQualTys.push_back(OutExpr->getType());
1825       ResultRegDests.push_back(Dest);
1826       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1827       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1828 
1829       // If this output is tied to an input, and if the input is larger, then
1830       // we need to set the actual result type of the inline asm node to be the
1831       // same as the input type.
1832       if (Info.hasMatchingInput()) {
1833         unsigned InputNo;
1834         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1835           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1836           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1837             break;
1838         }
1839         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1840 
1841         QualType InputTy = S.getInputExpr(InputNo)->getType();
1842         QualType OutputType = OutExpr->getType();
1843 
1844         uint64_t InputSize = getContext().getTypeSize(InputTy);
1845         if (getContext().getTypeSize(OutputType) < InputSize) {
1846           // Form the asm to return the value as a larger integer or fp type.
1847           ResultRegTypes.back() = ConvertType(InputTy);
1848         }
1849       }
1850       if (llvm::Type* AdjTy =
1851             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1852                                                  ResultRegTypes.back()))
1853         ResultRegTypes.back() = AdjTy;
1854       else {
1855         CGM.getDiags().Report(S.getAsmLoc(),
1856                               diag::err_asm_invalid_type_in_input)
1857             << OutExpr->getType() << OutputConstraint;
1858       }
1859     } else {
1860       ArgTypes.push_back(Dest.getAddress().getType());
1861       Args.push_back(Dest.getPointer());
1862       Constraints += "=*";
1863       Constraints += OutputConstraint;
1864       ReadOnly = ReadNone = false;
1865     }
1866 
1867     if (Info.isReadWrite()) {
1868       InOutConstraints += ',';
1869 
1870       const Expr *InputExpr = S.getOutputExpr(i);
1871       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1872                                             InOutConstraints,
1873                                             InputExpr->getExprLoc());
1874 
1875       if (llvm::Type* AdjTy =
1876           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1877                                                Arg->getType()))
1878         Arg = Builder.CreateBitCast(Arg, AdjTy);
1879 
1880       if (Info.allowsRegister())
1881         InOutConstraints += llvm::utostr(i);
1882       else
1883         InOutConstraints += OutputConstraint;
1884 
1885       InOutArgTypes.push_back(Arg->getType());
1886       InOutArgs.push_back(Arg);
1887     }
1888   }
1889 
1890   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1891   // to the return value slot. Only do this when returning in registers.
1892   if (isa<MSAsmStmt>(&S)) {
1893     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1894     if (RetAI.isDirect() || RetAI.isExtend()) {
1895       // Make a fake lvalue for the return value slot.
1896       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1897       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1898           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1899           ResultRegDests, AsmString, S.getNumOutputs());
1900       SawAsmBlock = true;
1901     }
1902   }
1903 
1904   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1905     const Expr *InputExpr = S.getInputExpr(i);
1906 
1907     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1908 
1909     if (Info.allowsMemory())
1910       ReadNone = false;
1911 
1912     if (!Constraints.empty())
1913       Constraints += ',';
1914 
1915     // Simplify the input constraint.
1916     std::string InputConstraint(S.getInputConstraint(i));
1917     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1918                                          &OutputConstraintInfos);
1919 
1920     InputConstraint = AddVariableConstraints(
1921         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1922         getTarget(), CGM, S, false /* No EarlyClobber */);
1923 
1924     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1925 
1926     // If this input argument is tied to a larger output result, extend the
1927     // input to be the same size as the output.  The LLVM backend wants to see
1928     // the input and output of a matching constraint be the same size.  Note
1929     // that GCC does not define what the top bits are here.  We use zext because
1930     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1931     if (Info.hasTiedOperand()) {
1932       unsigned Output = Info.getTiedOperand();
1933       QualType OutputType = S.getOutputExpr(Output)->getType();
1934       QualType InputTy = InputExpr->getType();
1935 
1936       if (getContext().getTypeSize(OutputType) >
1937           getContext().getTypeSize(InputTy)) {
1938         // Use ptrtoint as appropriate so that we can do our extension.
1939         if (isa<llvm::PointerType>(Arg->getType()))
1940           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1941         llvm::Type *OutputTy = ConvertType(OutputType);
1942         if (isa<llvm::IntegerType>(OutputTy))
1943           Arg = Builder.CreateZExt(Arg, OutputTy);
1944         else if (isa<llvm::PointerType>(OutputTy))
1945           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1946         else {
1947           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1948           Arg = Builder.CreateFPExt(Arg, OutputTy);
1949         }
1950       }
1951     }
1952     if (llvm::Type* AdjTy =
1953               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1954                                                    Arg->getType()))
1955       Arg = Builder.CreateBitCast(Arg, AdjTy);
1956     else
1957       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1958           << InputExpr->getType() << InputConstraint;
1959 
1960     ArgTypes.push_back(Arg->getType());
1961     Args.push_back(Arg);
1962     Constraints += InputConstraint;
1963   }
1964 
1965   // Append the "input" part of inout constraints last.
1966   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1967     ArgTypes.push_back(InOutArgTypes[i]);
1968     Args.push_back(InOutArgs[i]);
1969   }
1970   Constraints += InOutConstraints;
1971 
1972   // Clobbers
1973   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1974     StringRef Clobber = S.getClobber(i);
1975 
1976     if (Clobber == "memory")
1977       ReadOnly = ReadNone = false;
1978     else if (Clobber != "cc")
1979       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1980 
1981     if (!Constraints.empty())
1982       Constraints += ',';
1983 
1984     Constraints += "~{";
1985     Constraints += Clobber;
1986     Constraints += '}';
1987   }
1988 
1989   // Add machine specific clobbers
1990   std::string MachineClobbers = getTarget().getClobbers();
1991   if (!MachineClobbers.empty()) {
1992     if (!Constraints.empty())
1993       Constraints += ',';
1994     Constraints += MachineClobbers;
1995   }
1996 
1997   llvm::Type *ResultType;
1998   if (ResultRegTypes.empty())
1999     ResultType = VoidTy;
2000   else if (ResultRegTypes.size() == 1)
2001     ResultType = ResultRegTypes[0];
2002   else
2003     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2004 
2005   llvm::FunctionType *FTy =
2006     llvm::FunctionType::get(ResultType, ArgTypes, false);
2007 
2008   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2009   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2010     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2011   llvm::InlineAsm *IA =
2012     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2013                          /* IsAlignStack */ false, AsmDialect);
2014   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2015   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2016                        llvm::Attribute::NoUnwind);
2017 
2018   if (isa<MSAsmStmt>(&S)) {
2019     // If the assembly contains any labels, mark the call noduplicate to prevent
2020     // defining the same ASM label twice (PR23715). This is pretty hacky, but it
2021     // works.
2022     if (AsmString.find("__MSASMLABEL_") != std::string::npos)
2023       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2024                            llvm::Attribute::NoDuplicate);
2025   }
2026 
2027   // Attach readnone and readonly attributes.
2028   if (!HasSideEffect) {
2029     if (ReadNone)
2030       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2031                            llvm::Attribute::ReadNone);
2032     else if (ReadOnly)
2033       Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2034                            llvm::Attribute::ReadOnly);
2035   }
2036 
2037   // Slap the source location of the inline asm into a !srcloc metadata on the
2038   // call.
2039   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2040     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2041                                                    *this));
2042   } else {
2043     // At least put the line number on MS inline asm blobs.
2044     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2045     Result->setMetadata("srcloc",
2046                         llvm::MDNode::get(getLLVMContext(),
2047                                           llvm::ConstantAsMetadata::get(Loc)));
2048   }
2049 
2050   // Extract all of the register value results from the asm.
2051   std::vector<llvm::Value*> RegResults;
2052   if (ResultRegTypes.size() == 1) {
2053     RegResults.push_back(Result);
2054   } else {
2055     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2056       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2057       RegResults.push_back(Tmp);
2058     }
2059   }
2060 
2061   assert(RegResults.size() == ResultRegTypes.size());
2062   assert(RegResults.size() == ResultTruncRegTypes.size());
2063   assert(RegResults.size() == ResultRegDests.size());
2064   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2065     llvm::Value *Tmp = RegResults[i];
2066 
2067     // If the result type of the LLVM IR asm doesn't match the result type of
2068     // the expression, do the conversion.
2069     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2070       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2071 
2072       // Truncate the integer result to the right size, note that TruncTy can be
2073       // a pointer.
2074       if (TruncTy->isFloatingPointTy())
2075         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2076       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2077         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2078         Tmp = Builder.CreateTrunc(Tmp,
2079                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2080         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2081       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2082         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2083         Tmp = Builder.CreatePtrToInt(Tmp,
2084                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2085         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2086       } else if (TruncTy->isIntegerTy()) {
2087         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2088       } else if (TruncTy->isVectorTy()) {
2089         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2090       }
2091     }
2092 
2093     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2094   }
2095 }
2096 
2097 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2098   const RecordDecl *RD = S.getCapturedRecordDecl();
2099   QualType RecordTy = getContext().getRecordType(RD);
2100 
2101   // Initialize the captured struct.
2102   LValue SlotLV =
2103     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2104 
2105   RecordDecl::field_iterator CurField = RD->field_begin();
2106   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2107                                                  E = S.capture_init_end();
2108        I != E; ++I, ++CurField) {
2109     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2110     if (CurField->hasCapturedVLAType()) {
2111       auto VAT = CurField->getCapturedVLAType();
2112       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2113     } else {
2114       EmitInitializerForField(*CurField, LV, *I, None);
2115     }
2116   }
2117 
2118   return SlotLV;
2119 }
2120 
2121 /// Generate an outlined function for the body of a CapturedStmt, store any
2122 /// captured variables into the captured struct, and call the outlined function.
2123 llvm::Function *
2124 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2125   LValue CapStruct = InitCapturedStruct(S);
2126 
2127   // Emit the CapturedDecl
2128   CodeGenFunction CGF(CGM, true);
2129   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2130   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2131   delete CGF.CapturedStmtInfo;
2132 
2133   // Emit call to the helper function.
2134   EmitCallOrInvoke(F, CapStruct.getPointer());
2135 
2136   return F;
2137 }
2138 
2139 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2140   LValue CapStruct = InitCapturedStruct(S);
2141   return CapStruct.getAddress();
2142 }
2143 
2144 /// Creates the outlined function for a CapturedStmt.
2145 llvm::Function *
2146 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2147   assert(CapturedStmtInfo &&
2148     "CapturedStmtInfo should be set when generating the captured function");
2149   const CapturedDecl *CD = S.getCapturedDecl();
2150   const RecordDecl *RD = S.getCapturedRecordDecl();
2151   SourceLocation Loc = S.getLocStart();
2152   assert(CD->hasBody() && "missing CapturedDecl body");
2153 
2154   // Build the argument list.
2155   ASTContext &Ctx = CGM.getContext();
2156   FunctionArgList Args;
2157   Args.append(CD->param_begin(), CD->param_end());
2158 
2159   // Create the function declaration.
2160   FunctionType::ExtInfo ExtInfo;
2161   const CGFunctionInfo &FuncInfo =
2162       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2163                                                     /*IsVariadic=*/false);
2164   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2165 
2166   llvm::Function *F =
2167     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2168                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2169   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2170   if (CD->isNothrow())
2171     F->addFnAttr(llvm::Attribute::NoUnwind);
2172 
2173   // Generate the function.
2174   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2175                 CD->getLocation(),
2176                 CD->getBody()->getLocStart());
2177   // Set the context parameter in CapturedStmtInfo.
2178   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2179   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2180 
2181   // Initialize variable-length arrays.
2182   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2183                                            Ctx.getTagDeclType(RD));
2184   for (auto *FD : RD->fields()) {
2185     if (FD->hasCapturedVLAType()) {
2186       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2187                                        S.getLocStart()).getScalarVal();
2188       auto VAT = FD->getCapturedVLAType();
2189       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2190     }
2191   }
2192 
2193   // If 'this' is captured, load it into CXXThisValue.
2194   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2195     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2196     LValue ThisLValue = EmitLValueForField(Base, FD);
2197     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2198   }
2199 
2200   PGO.assignRegionCounters(GlobalDecl(CD), F);
2201   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2202   FinishFunction(CD->getBodyRBrace());
2203 
2204   return F;
2205 }
2206