1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                              Statement Emission
30 //===----------------------------------------------------------------------===//
31 
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33   if (CGDebugInfo *DI = getDebugInfo()) {
34     SourceLocation Loc;
35     if (isa<DeclStmt>(S))
36       Loc = S->getLocEnd();
37     else
38       Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40   }
41 }
42 
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44   assert(S && "Null statement?");
45 
46   // These statements have their own debug info handling.
47   if (EmitSimpleStmt(S))
48     return;
49 
50   // Check if we are generating unreachable code.
51   if (!HaveInsertPoint()) {
52     // If so, and the statement doesn't contain a label, then we do not need to
53     // generate actual code. This is safe because (1) the current point is
54     // unreachable, so we don't need to execute the code, and (2) we've already
55     // handled the statements which update internal data structures (like the
56     // local variable map) which could be used by subsequent statements.
57     if (!ContainsLabel(S)) {
58       // Verify that any decl statements were handled as simple, they may be in
59       // scope of subsequent reachable statements.
60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61       return;
62     }
63 
64     // Otherwise, make a new block to hold the code.
65     EnsureInsertPoint();
66   }
67 
68   // Generate a stoppoint if we are emitting debug info.
69   EmitStopPoint(S);
70 
71   switch (S->getStmtClass()) {
72   case Stmt::NoStmtClass:
73   case Stmt::CXXCatchStmtClass:
74   case Stmt::SEHExceptStmtClass:
75   case Stmt::SEHFinallyStmtClass:
76   case Stmt::MSDependentExistsStmtClass:
77     llvm_unreachable("invalid statement class to emit generically");
78   case Stmt::NullStmtClass:
79   case Stmt::CompoundStmtClass:
80   case Stmt::DeclStmtClass:
81   case Stmt::LabelStmtClass:
82   case Stmt::GotoStmtClass:
83   case Stmt::BreakStmtClass:
84   case Stmt::ContinueStmtClass:
85   case Stmt::DefaultStmtClass:
86   case Stmt::CaseStmtClass:
87     llvm_unreachable("should have emitted these statements as simple");
88 
89 #define STMT(Type, Base)
90 #define ABSTRACT_STMT(Op)
91 #define EXPR(Type, Base) \
92   case Stmt::Type##Class:
93 #include "clang/AST/StmtNodes.inc"
94   {
95     // Remember the block we came in on.
96     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97     assert(incoming && "expression emission must have an insertion point");
98 
99     EmitIgnoredExpr(cast<Expr>(S));
100 
101     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102     assert(outgoing && "expression emission cleared block!");
103 
104     // The expression emitters assume (reasonably!) that the insertion
105     // point is always set.  To maintain that, the call-emission code
106     // for noreturn functions has to enter a new block with no
107     // predecessors.  We want to kill that block and mark the current
108     // insertion point unreachable in the common case of a call like
109     // "exit();".  Since expression emission doesn't otherwise create
110     // blocks with no predecessors, we can just test for that.
111     // However, we must be careful not to do this to our incoming
112     // block, because *statement* emission does sometimes create
113     // reachable blocks which will have no predecessors until later in
114     // the function.  This occurs with, e.g., labels that are not
115     // reachable by fallthrough.
116     if (incoming != outgoing && outgoing->use_empty()) {
117       outgoing->eraseFromParent();
118       Builder.ClearInsertionPoint();
119     }
120     break;
121   }
122 
123   case Stmt::IndirectGotoStmtClass:
124     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125 
126   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130 
131   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132 
133   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135 
136   case Stmt::ObjCAtTryStmtClass:
137     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138     break;
139   case Stmt::ObjCAtCatchStmtClass:
140     llvm_unreachable(
141                     "@catch statements should be handled by EmitObjCAtTryStmt");
142   case Stmt::ObjCAtFinallyStmtClass:
143     llvm_unreachable(
144                   "@finally statements should be handled by EmitObjCAtTryStmt");
145   case Stmt::ObjCAtThrowStmtClass:
146     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147     break;
148   case Stmt::ObjCAtSynchronizedStmtClass:
149     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150     break;
151   case Stmt::ObjCForCollectionStmtClass:
152     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153     break;
154   case Stmt::ObjCAutoreleasePoolStmtClass:
155     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
156     break;
157 
158   case Stmt::CXXTryStmtClass:
159     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
160     break;
161   case Stmt::CXXForRangeStmtClass:
162     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
163   case Stmt::SEHTryStmtClass:
164     // FIXME Not yet implemented
165     break;
166   }
167 }
168 
169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
170   switch (S->getStmtClass()) {
171   default: return false;
172   case Stmt::NullStmtClass: break;
173   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
174   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
175   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
176   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
177   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
178   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
179   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
180   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
181   }
182 
183   return true;
184 }
185 
186 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
187 /// this captures the expression result of the last sub-statement and returns it
188 /// (for use by the statement expression extension).
189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
190                                          AggValueSlot AggSlot) {
191   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
192                              "LLVM IR generation of compound statement ('{}')");
193 
194   CGDebugInfo *DI = getDebugInfo();
195   if (DI)
196     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
197 
198   // Keep track of the current cleanup stack depth.
199   RunCleanupsScope Scope(*this);
200 
201   for (CompoundStmt::const_body_iterator I = S.body_begin(),
202        E = S.body_end()-GetLast; I != E; ++I)
203     EmitStmt(*I);
204 
205   if (DI)
206     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
207 
208   RValue RV;
209   if (!GetLast)
210     RV = RValue::get(0);
211   else {
212     // We have to special case labels here.  They are statements, but when put
213     // at the end of a statement expression, they yield the value of their
214     // subexpression.  Handle this by walking through all labels we encounter,
215     // emitting them before we evaluate the subexpr.
216     const Stmt *LastStmt = S.body_back();
217     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
218       EmitLabel(LS->getDecl());
219       LastStmt = LS->getSubStmt();
220     }
221 
222     EnsureInsertPoint();
223 
224     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
225   }
226 
227   return RV;
228 }
229 
230 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
231   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
232 
233   // If there is a cleanup stack, then we it isn't worth trying to
234   // simplify this block (we would need to remove it from the scope map
235   // and cleanup entry).
236   if (!EHStack.empty())
237     return;
238 
239   // Can only simplify direct branches.
240   if (!BI || !BI->isUnconditional())
241     return;
242 
243   BB->replaceAllUsesWith(BI->getSuccessor(0));
244   BI->eraseFromParent();
245   BB->eraseFromParent();
246 }
247 
248 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   // Fall out of the current block (if necessary).
252   EmitBranch(BB);
253 
254   if (IsFinished && BB->use_empty()) {
255     delete BB;
256     return;
257   }
258 
259   // Place the block after the current block, if possible, or else at
260   // the end of the function.
261   if (CurBB && CurBB->getParent())
262     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
263   else
264     CurFn->getBasicBlockList().push_back(BB);
265   Builder.SetInsertPoint(BB);
266 }
267 
268 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
269   // Emit a branch from the current block to the target one if this
270   // was a real block.  If this was just a fall-through block after a
271   // terminator, don't emit it.
272   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
273 
274   if (!CurBB || CurBB->getTerminator()) {
275     // If there is no insert point or the previous block is already
276     // terminated, don't touch it.
277   } else {
278     // Otherwise, create a fall-through branch.
279     Builder.CreateBr(Target);
280   }
281 
282   Builder.ClearInsertionPoint();
283 }
284 
285 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
286   bool inserted = false;
287   for (llvm::BasicBlock::use_iterator
288          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
289     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
290       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
291       inserted = true;
292       break;
293     }
294   }
295 
296   if (!inserted)
297     CurFn->getBasicBlockList().push_back(block);
298 
299   Builder.SetInsertPoint(block);
300 }
301 
302 CodeGenFunction::JumpDest
303 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
304   JumpDest &Dest = LabelMap[D];
305   if (Dest.isValid()) return Dest;
306 
307   // Create, but don't insert, the new block.
308   Dest = JumpDest(createBasicBlock(D->getName()),
309                   EHScopeStack::stable_iterator::invalid(),
310                   NextCleanupDestIndex++);
311   return Dest;
312 }
313 
314 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
315   JumpDest &Dest = LabelMap[D];
316 
317   // If we didn't need a forward reference to this label, just go
318   // ahead and create a destination at the current scope.
319   if (!Dest.isValid()) {
320     Dest = getJumpDestInCurrentScope(D->getName());
321 
322   // Otherwise, we need to give this label a target depth and remove
323   // it from the branch-fixups list.
324   } else {
325     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
326     Dest = JumpDest(Dest.getBlock(),
327                     EHStack.stable_begin(),
328                     Dest.getDestIndex());
329 
330     ResolveBranchFixups(Dest.getBlock());
331   }
332 
333   EmitBlock(Dest.getBlock());
334 }
335 
336 
337 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
338   EmitLabel(S.getDecl());
339   EmitStmt(S.getSubStmt());
340 }
341 
342 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
343   // If this code is reachable then emit a stop point (if generating
344   // debug info). We have to do this ourselves because we are on the
345   // "simple" statement path.
346   if (HaveInsertPoint())
347     EmitStopPoint(&S);
348 
349   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
350 }
351 
352 
353 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
354   if (const LabelDecl *Target = S.getConstantTarget()) {
355     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
356     return;
357   }
358 
359   // Ensure that we have an i8* for our PHI node.
360   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
361                                          Int8PtrTy, "addr");
362   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
363 
364 
365   // Get the basic block for the indirect goto.
366   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
367 
368   // The first instruction in the block has to be the PHI for the switch dest,
369   // add an entry for this branch.
370   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
371 
372   EmitBranch(IndGotoBB);
373 }
374 
375 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
376   // C99 6.8.4.1: The first substatement is executed if the expression compares
377   // unequal to 0.  The condition must be a scalar type.
378   RunCleanupsScope ConditionScope(*this);
379 
380   if (S.getConditionVariable())
381     EmitAutoVarDecl(*S.getConditionVariable());
382 
383   // If the condition constant folds and can be elided, try to avoid emitting
384   // the condition and the dead arm of the if/else.
385   bool CondConstant;
386   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
387     // Figure out which block (then or else) is executed.
388     const Stmt *Executed = S.getThen();
389     const Stmt *Skipped  = S.getElse();
390     if (!CondConstant)  // Condition false?
391       std::swap(Executed, Skipped);
392 
393     // If the skipped block has no labels in it, just emit the executed block.
394     // This avoids emitting dead code and simplifies the CFG substantially.
395     if (!ContainsLabel(Skipped)) {
396       if (Executed) {
397         RunCleanupsScope ExecutedScope(*this);
398         EmitStmt(Executed);
399       }
400       return;
401     }
402   }
403 
404   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
405   // the conditional branch.
406   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
407   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
408   llvm::BasicBlock *ElseBlock = ContBlock;
409   if (S.getElse())
410     ElseBlock = createBasicBlock("if.else");
411   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
412 
413   // Emit the 'then' code.
414   EmitBlock(ThenBlock);
415   {
416     RunCleanupsScope ThenScope(*this);
417     EmitStmt(S.getThen());
418   }
419   EmitBranch(ContBlock);
420 
421   // Emit the 'else' code if present.
422   if (const Stmt *Else = S.getElse()) {
423     // There is no need to emit line number for unconditional branch.
424     if (getDebugInfo())
425       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
426     EmitBlock(ElseBlock);
427     {
428       RunCleanupsScope ElseScope(*this);
429       EmitStmt(Else);
430     }
431     // There is no need to emit line number for unconditional branch.
432     if (getDebugInfo())
433       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
434     EmitBranch(ContBlock);
435   }
436 
437   // Emit the continuation block for code after the if.
438   EmitBlock(ContBlock, true);
439 }
440 
441 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
442   // Emit the header for the loop, which will also become
443   // the continue target.
444   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
445   EmitBlock(LoopHeader.getBlock());
446 
447   // Create an exit block for when the condition fails, which will
448   // also become the break target.
449   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
450 
451   // Store the blocks to use for break and continue.
452   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
453 
454   // C++ [stmt.while]p2:
455   //   When the condition of a while statement is a declaration, the
456   //   scope of the variable that is declared extends from its point
457   //   of declaration (3.3.2) to the end of the while statement.
458   //   [...]
459   //   The object created in a condition is destroyed and created
460   //   with each iteration of the loop.
461   RunCleanupsScope ConditionScope(*this);
462 
463   if (S.getConditionVariable())
464     EmitAutoVarDecl(*S.getConditionVariable());
465 
466   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
467   // evaluation of the controlling expression takes place before each
468   // execution of the loop body.
469   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
470 
471   // while(1) is common, avoid extra exit blocks.  Be sure
472   // to correctly handle break/continue though.
473   bool EmitBoolCondBranch = true;
474   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
475     if (C->isOne())
476       EmitBoolCondBranch = false;
477 
478   // As long as the condition is true, go to the loop body.
479   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
480   if (EmitBoolCondBranch) {
481     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
482     if (ConditionScope.requiresCleanups())
483       ExitBlock = createBasicBlock("while.exit");
484 
485     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
486 
487     if (ExitBlock != LoopExit.getBlock()) {
488       EmitBlock(ExitBlock);
489       EmitBranchThroughCleanup(LoopExit);
490     }
491   }
492 
493   // Emit the loop body.  We have to emit this in a cleanup scope
494   // because it might be a singleton DeclStmt.
495   {
496     RunCleanupsScope BodyScope(*this);
497     EmitBlock(LoopBody);
498     EmitStmt(S.getBody());
499   }
500 
501   BreakContinueStack.pop_back();
502 
503   // Immediately force cleanup.
504   ConditionScope.ForceCleanup();
505 
506   // Branch to the loop header again.
507   EmitBranch(LoopHeader.getBlock());
508 
509   // Emit the exit block.
510   EmitBlock(LoopExit.getBlock(), true);
511 
512   // The LoopHeader typically is just a branch if we skipped emitting
513   // a branch, try to erase it.
514   if (!EmitBoolCondBranch)
515     SimplifyForwardingBlocks(LoopHeader.getBlock());
516 }
517 
518 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
519   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
520   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
521 
522   // Store the blocks to use for break and continue.
523   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
524 
525   // Emit the body of the loop.
526   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
527   EmitBlock(LoopBody);
528   {
529     RunCleanupsScope BodyScope(*this);
530     EmitStmt(S.getBody());
531   }
532 
533   BreakContinueStack.pop_back();
534 
535   EmitBlock(LoopCond.getBlock());
536 
537   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
538   // after each execution of the loop body."
539 
540   // Evaluate the conditional in the while header.
541   // C99 6.8.5p2/p4: The first substatement is executed if the expression
542   // compares unequal to 0.  The condition must be a scalar type.
543   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
544 
545   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
546   // to correctly handle break/continue though.
547   bool EmitBoolCondBranch = true;
548   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
549     if (C->isZero())
550       EmitBoolCondBranch = false;
551 
552   // As long as the condition is true, iterate the loop.
553   if (EmitBoolCondBranch)
554     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
555 
556   // Emit the exit block.
557   EmitBlock(LoopExit.getBlock());
558 
559   // The DoCond block typically is just a branch if we skipped
560   // emitting a branch, try to erase it.
561   if (!EmitBoolCondBranch)
562     SimplifyForwardingBlocks(LoopCond.getBlock());
563 }
564 
565 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
566   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
567 
568   RunCleanupsScope ForScope(*this);
569 
570   CGDebugInfo *DI = getDebugInfo();
571   if (DI)
572     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
573 
574   // Evaluate the first part before the loop.
575   if (S.getInit())
576     EmitStmt(S.getInit());
577 
578   // Start the loop with a block that tests the condition.
579   // If there's an increment, the continue scope will be overwritten
580   // later.
581   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
582   llvm::BasicBlock *CondBlock = Continue.getBlock();
583   EmitBlock(CondBlock);
584 
585   // Create a cleanup scope for the condition variable cleanups.
586   RunCleanupsScope ConditionScope(*this);
587 
588   llvm::Value *BoolCondVal = 0;
589   if (S.getCond()) {
590     // If the for statement has a condition scope, emit the local variable
591     // declaration.
592     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
593     if (S.getConditionVariable()) {
594       EmitAutoVarDecl(*S.getConditionVariable());
595     }
596 
597     // If there are any cleanups between here and the loop-exit scope,
598     // create a block to stage a loop exit along.
599     if (ForScope.requiresCleanups())
600       ExitBlock = createBasicBlock("for.cond.cleanup");
601 
602     // As long as the condition is true, iterate the loop.
603     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
604 
605     // C99 6.8.5p2/p4: The first substatement is executed if the expression
606     // compares unequal to 0.  The condition must be a scalar type.
607     BoolCondVal = EvaluateExprAsBool(S.getCond());
608     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
609 
610     if (ExitBlock != LoopExit.getBlock()) {
611       EmitBlock(ExitBlock);
612       EmitBranchThroughCleanup(LoopExit);
613     }
614 
615     EmitBlock(ForBody);
616   } else {
617     // Treat it as a non-zero constant.  Don't even create a new block for the
618     // body, just fall into it.
619   }
620 
621   // If the for loop doesn't have an increment we can just use the
622   // condition as the continue block.  Otherwise we'll need to create
623   // a block for it (in the current scope, i.e. in the scope of the
624   // condition), and that we will become our continue block.
625   if (S.getInc())
626     Continue = getJumpDestInCurrentScope("for.inc");
627 
628   // Store the blocks to use for break and continue.
629   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
630 
631   {
632     // Create a separate cleanup scope for the body, in case it is not
633     // a compound statement.
634     RunCleanupsScope BodyScope(*this);
635     EmitStmt(S.getBody());
636   }
637 
638   // If there is an increment, emit it next.
639   if (S.getInc()) {
640     EmitBlock(Continue.getBlock());
641     EmitStmt(S.getInc());
642   }
643 
644   BreakContinueStack.pop_back();
645 
646   ConditionScope.ForceCleanup();
647   EmitBranch(CondBlock);
648 
649   ForScope.ForceCleanup();
650 
651   if (DI)
652     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
653 
654   // Emit the fall-through block.
655   EmitBlock(LoopExit.getBlock(), true);
656 }
657 
658 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
659   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
660 
661   RunCleanupsScope ForScope(*this);
662 
663   CGDebugInfo *DI = getDebugInfo();
664   if (DI)
665     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
666 
667   // Evaluate the first pieces before the loop.
668   EmitStmt(S.getRangeStmt());
669   EmitStmt(S.getBeginEndStmt());
670 
671   // Start the loop with a block that tests the condition.
672   // If there's an increment, the continue scope will be overwritten
673   // later.
674   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
675   EmitBlock(CondBlock);
676 
677   // If there are any cleanups between here and the loop-exit scope,
678   // create a block to stage a loop exit along.
679   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
680   if (ForScope.requiresCleanups())
681     ExitBlock = createBasicBlock("for.cond.cleanup");
682 
683   // The loop body, consisting of the specified body and the loop variable.
684   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685 
686   // The body is executed if the expression, contextually converted
687   // to bool, is true.
688   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
690 
691   if (ExitBlock != LoopExit.getBlock()) {
692     EmitBlock(ExitBlock);
693     EmitBranchThroughCleanup(LoopExit);
694   }
695 
696   EmitBlock(ForBody);
697 
698   // Create a block for the increment. In case of a 'continue', we jump there.
699   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
700 
701   // Store the blocks to use for break and continue.
702   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
703 
704   {
705     // Create a separate cleanup scope for the loop variable and body.
706     RunCleanupsScope BodyScope(*this);
707     EmitStmt(S.getLoopVarStmt());
708     EmitStmt(S.getBody());
709   }
710 
711   // If there is an increment, emit it next.
712   EmitBlock(Continue.getBlock());
713   EmitStmt(S.getInc());
714 
715   BreakContinueStack.pop_back();
716 
717   EmitBranch(CondBlock);
718 
719   ForScope.ForceCleanup();
720 
721   if (DI)
722     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
723 
724   // Emit the fall-through block.
725   EmitBlock(LoopExit.getBlock(), true);
726 }
727 
728 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
729   if (RV.isScalar()) {
730     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
731   } else if (RV.isAggregate()) {
732     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
733   } else {
734     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
735   }
736   EmitBranchThroughCleanup(ReturnBlock);
737 }
738 
739 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
740 /// if the function returns void, or may be missing one if the function returns
741 /// non-void.  Fun stuff :).
742 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
743   // Emit the result value, even if unused, to evalute the side effects.
744   const Expr *RV = S.getRetValue();
745 
746   // FIXME: Clean this up by using an LValue for ReturnTemp,
747   // EmitStoreThroughLValue, and EmitAnyExpr.
748   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
749       !Target.useGlobalsForAutomaticVariables()) {
750     // Apply the named return value optimization for this return statement,
751     // which means doing nothing: the appropriate result has already been
752     // constructed into the NRVO variable.
753 
754     // If there is an NRVO flag for this variable, set it to 1 into indicate
755     // that the cleanup code should not destroy the variable.
756     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
757       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
758   } else if (!ReturnValue) {
759     // Make sure not to return anything, but evaluate the expression
760     // for side effects.
761     if (RV)
762       EmitAnyExpr(RV);
763   } else if (RV == 0) {
764     // Do nothing (return value is left uninitialized)
765   } else if (FnRetTy->isReferenceType()) {
766     // If this function returns a reference, take the address of the expression
767     // rather than the value.
768     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
769     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
770   } else if (!hasAggregateLLVMType(RV->getType())) {
771     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
772   } else if (RV->getType()->isAnyComplexType()) {
773     EmitComplexExprIntoAddr(RV, ReturnValue, false);
774   } else {
775     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Qualifiers(),
776                                           AggValueSlot::IsDestructed,
777                                           AggValueSlot::DoesNotNeedGCBarriers,
778                                           AggValueSlot::IsNotAliased));
779   }
780 
781   EmitBranchThroughCleanup(ReturnBlock);
782 }
783 
784 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
785   // As long as debug info is modeled with instructions, we have to ensure we
786   // have a place to insert here and write the stop point here.
787   if (getDebugInfo() && HaveInsertPoint())
788     EmitStopPoint(&S);
789 
790   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
791        I != E; ++I)
792     EmitDecl(**I);
793 }
794 
795 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
796   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
797 
798   // If this code is reachable then emit a stop point (if generating
799   // debug info). We have to do this ourselves because we are on the
800   // "simple" statement path.
801   if (HaveInsertPoint())
802     EmitStopPoint(&S);
803 
804   JumpDest Block = BreakContinueStack.back().BreakBlock;
805   EmitBranchThroughCleanup(Block);
806 }
807 
808 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
809   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
810 
811   // If this code is reachable then emit a stop point (if generating
812   // debug info). We have to do this ourselves because we are on the
813   // "simple" statement path.
814   if (HaveInsertPoint())
815     EmitStopPoint(&S);
816 
817   JumpDest Block = BreakContinueStack.back().ContinueBlock;
818   EmitBranchThroughCleanup(Block);
819 }
820 
821 /// EmitCaseStmtRange - If case statement range is not too big then
822 /// add multiple cases to switch instruction, one for each value within
823 /// the range. If range is too big then emit "if" condition check.
824 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
825   assert(S.getRHS() && "Expected RHS value in CaseStmt");
826 
827   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
828   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
829 
830   // Emit the code for this case. We do this first to make sure it is
831   // properly chained from our predecessor before generating the
832   // switch machinery to enter this block.
833   EmitBlock(createBasicBlock("sw.bb"));
834   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
835   EmitStmt(S.getSubStmt());
836 
837   // If range is empty, do nothing.
838   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
839     return;
840 
841   llvm::APInt Range = RHS - LHS;
842   // FIXME: parameters such as this should not be hardcoded.
843   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
844     // Range is small enough to add multiple switch instruction cases.
845     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
846       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
847       LHS++;
848     }
849     return;
850   }
851 
852   // The range is too big. Emit "if" condition into a new block,
853   // making sure to save and restore the current insertion point.
854   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
855 
856   // Push this test onto the chain of range checks (which terminates
857   // in the default basic block). The switch's default will be changed
858   // to the top of this chain after switch emission is complete.
859   llvm::BasicBlock *FalseDest = CaseRangeBlock;
860   CaseRangeBlock = createBasicBlock("sw.caserange");
861 
862   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
863   Builder.SetInsertPoint(CaseRangeBlock);
864 
865   // Emit range check.
866   llvm::Value *Diff =
867     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
868   llvm::Value *Cond =
869     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
870   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
871 
872   // Restore the appropriate insertion point.
873   if (RestoreBB)
874     Builder.SetInsertPoint(RestoreBB);
875   else
876     Builder.ClearInsertionPoint();
877 }
878 
879 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
880   // Handle case ranges.
881   if (S.getRHS()) {
882     EmitCaseStmtRange(S);
883     return;
884   }
885 
886   llvm::ConstantInt *CaseVal =
887     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
888 
889   // If the body of the case is just a 'break', and if there was no fallthrough,
890   // try to not emit an empty block.
891   if (isa<BreakStmt>(S.getSubStmt())) {
892     JumpDest Block = BreakContinueStack.back().BreakBlock;
893 
894     // Only do this optimization if there are no cleanups that need emitting.
895     if (isObviouslyBranchWithoutCleanups(Block)) {
896       SwitchInsn->addCase(CaseVal, Block.getBlock());
897 
898       // If there was a fallthrough into this case, make sure to redirect it to
899       // the end of the switch as well.
900       if (Builder.GetInsertBlock()) {
901         Builder.CreateBr(Block.getBlock());
902         Builder.ClearInsertionPoint();
903       }
904       return;
905     }
906   }
907 
908   EmitBlock(createBasicBlock("sw.bb"));
909   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
910   SwitchInsn->addCase(CaseVal, CaseDest);
911 
912   // Recursively emitting the statement is acceptable, but is not wonderful for
913   // code where we have many case statements nested together, i.e.:
914   //  case 1:
915   //    case 2:
916   //      case 3: etc.
917   // Handling this recursively will create a new block for each case statement
918   // that falls through to the next case which is IR intensive.  It also causes
919   // deep recursion which can run into stack depth limitations.  Handle
920   // sequential non-range case statements specially.
921   const CaseStmt *CurCase = &S;
922   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
923 
924   // Otherwise, iteratively add consecutive cases to this switch stmt.
925   while (NextCase && NextCase->getRHS() == 0) {
926     CurCase = NextCase;
927     llvm::ConstantInt *CaseVal =
928       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
929     SwitchInsn->addCase(CaseVal, CaseDest);
930     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
931   }
932 
933   // Normal default recursion for non-cases.
934   EmitStmt(CurCase->getSubStmt());
935 }
936 
937 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
938   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
939   assert(DefaultBlock->empty() &&
940          "EmitDefaultStmt: Default block already defined?");
941   EmitBlock(DefaultBlock);
942   EmitStmt(S.getSubStmt());
943 }
944 
945 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
946 /// constant value that is being switched on, see if we can dead code eliminate
947 /// the body of the switch to a simple series of statements to emit.  Basically,
948 /// on a switch (5) we want to find these statements:
949 ///    case 5:
950 ///      printf(...);    <--
951 ///      ++i;            <--
952 ///      break;
953 ///
954 /// and add them to the ResultStmts vector.  If it is unsafe to do this
955 /// transformation (for example, one of the elided statements contains a label
956 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
957 /// should include statements after it (e.g. the printf() line is a substmt of
958 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
959 /// statement, then return CSFC_Success.
960 ///
961 /// If Case is non-null, then we are looking for the specified case, checking
962 /// that nothing we jump over contains labels.  If Case is null, then we found
963 /// the case and are looking for the break.
964 ///
965 /// If the recursive walk actually finds our Case, then we set FoundCase to
966 /// true.
967 ///
968 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
969 static CSFC_Result CollectStatementsForCase(const Stmt *S,
970                                             const SwitchCase *Case,
971                                             bool &FoundCase,
972                               SmallVectorImpl<const Stmt*> &ResultStmts) {
973   // If this is a null statement, just succeed.
974   if (S == 0)
975     return Case ? CSFC_Success : CSFC_FallThrough;
976 
977   // If this is the switchcase (case 4: or default) that we're looking for, then
978   // we're in business.  Just add the substatement.
979   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
980     if (S == Case) {
981       FoundCase = true;
982       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
983                                       ResultStmts);
984     }
985 
986     // Otherwise, this is some other case or default statement, just ignore it.
987     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
988                                     ResultStmts);
989   }
990 
991   // If we are in the live part of the code and we found our break statement,
992   // return a success!
993   if (Case == 0 && isa<BreakStmt>(S))
994     return CSFC_Success;
995 
996   // If this is a switch statement, then it might contain the SwitchCase, the
997   // break, or neither.
998   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
999     // Handle this as two cases: we might be looking for the SwitchCase (if so
1000     // the skipped statements must be skippable) or we might already have it.
1001     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1002     if (Case) {
1003       // Keep track of whether we see a skipped declaration.  The code could be
1004       // using the declaration even if it is skipped, so we can't optimize out
1005       // the decl if the kept statements might refer to it.
1006       bool HadSkippedDecl = false;
1007 
1008       // If we're looking for the case, just see if we can skip each of the
1009       // substatements.
1010       for (; Case && I != E; ++I) {
1011         HadSkippedDecl |= isa<DeclStmt>(*I);
1012 
1013         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1014         case CSFC_Failure: return CSFC_Failure;
1015         case CSFC_Success:
1016           // A successful result means that either 1) that the statement doesn't
1017           // have the case and is skippable, or 2) does contain the case value
1018           // and also contains the break to exit the switch.  In the later case,
1019           // we just verify the rest of the statements are elidable.
1020           if (FoundCase) {
1021             // If we found the case and skipped declarations, we can't do the
1022             // optimization.
1023             if (HadSkippedDecl)
1024               return CSFC_Failure;
1025 
1026             for (++I; I != E; ++I)
1027               if (CodeGenFunction::ContainsLabel(*I, true))
1028                 return CSFC_Failure;
1029             return CSFC_Success;
1030           }
1031           break;
1032         case CSFC_FallThrough:
1033           // If we have a fallthrough condition, then we must have found the
1034           // case started to include statements.  Consider the rest of the
1035           // statements in the compound statement as candidates for inclusion.
1036           assert(FoundCase && "Didn't find case but returned fallthrough?");
1037           // We recursively found Case, so we're not looking for it anymore.
1038           Case = 0;
1039 
1040           // If we found the case and skipped declarations, we can't do the
1041           // optimization.
1042           if (HadSkippedDecl)
1043             return CSFC_Failure;
1044           break;
1045         }
1046       }
1047     }
1048 
1049     // If we have statements in our range, then we know that the statements are
1050     // live and need to be added to the set of statements we're tracking.
1051     for (; I != E; ++I) {
1052       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1053       case CSFC_Failure: return CSFC_Failure;
1054       case CSFC_FallThrough:
1055         // A fallthrough result means that the statement was simple and just
1056         // included in ResultStmt, keep adding them afterwards.
1057         break;
1058       case CSFC_Success:
1059         // A successful result means that we found the break statement and
1060         // stopped statement inclusion.  We just ensure that any leftover stmts
1061         // are skippable and return success ourselves.
1062         for (++I; I != E; ++I)
1063           if (CodeGenFunction::ContainsLabel(*I, true))
1064             return CSFC_Failure;
1065         return CSFC_Success;
1066       }
1067     }
1068 
1069     return Case ? CSFC_Success : CSFC_FallThrough;
1070   }
1071 
1072   // Okay, this is some other statement that we don't handle explicitly, like a
1073   // for statement or increment etc.  If we are skipping over this statement,
1074   // just verify it doesn't have labels, which would make it invalid to elide.
1075   if (Case) {
1076     if (CodeGenFunction::ContainsLabel(S, true))
1077       return CSFC_Failure;
1078     return CSFC_Success;
1079   }
1080 
1081   // Otherwise, we want to include this statement.  Everything is cool with that
1082   // so long as it doesn't contain a break out of the switch we're in.
1083   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1084 
1085   // Otherwise, everything is great.  Include the statement and tell the caller
1086   // that we fall through and include the next statement as well.
1087   ResultStmts.push_back(S);
1088   return CSFC_FallThrough;
1089 }
1090 
1091 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1092 /// then invoke CollectStatementsForCase to find the list of statements to emit
1093 /// for a switch on constant.  See the comment above CollectStatementsForCase
1094 /// for more details.
1095 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1096                                        const llvm::APInt &ConstantCondValue,
1097                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1098                                        ASTContext &C) {
1099   // First step, find the switch case that is being branched to.  We can do this
1100   // efficiently by scanning the SwitchCase list.
1101   const SwitchCase *Case = S.getSwitchCaseList();
1102   const DefaultStmt *DefaultCase = 0;
1103 
1104   for (; Case; Case = Case->getNextSwitchCase()) {
1105     // It's either a default or case.  Just remember the default statement in
1106     // case we're not jumping to any numbered cases.
1107     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1108       DefaultCase = DS;
1109       continue;
1110     }
1111 
1112     // Check to see if this case is the one we're looking for.
1113     const CaseStmt *CS = cast<CaseStmt>(Case);
1114     // Don't handle case ranges yet.
1115     if (CS->getRHS()) return false;
1116 
1117     // If we found our case, remember it as 'case'.
1118     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1119       break;
1120   }
1121 
1122   // If we didn't find a matching case, we use a default if it exists, or we
1123   // elide the whole switch body!
1124   if (Case == 0) {
1125     // It is safe to elide the body of the switch if it doesn't contain labels
1126     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1127     if (DefaultCase == 0)
1128       return !CodeGenFunction::ContainsLabel(&S);
1129     Case = DefaultCase;
1130   }
1131 
1132   // Ok, we know which case is being jumped to, try to collect all the
1133   // statements that follow it.  This can fail for a variety of reasons.  Also,
1134   // check to see that the recursive walk actually found our case statement.
1135   // Insane cases like this can fail to find it in the recursive walk since we
1136   // don't handle every stmt kind:
1137   // switch (4) {
1138   //   while (1) {
1139   //     case 4: ...
1140   bool FoundCase = false;
1141   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1142                                   ResultStmts) != CSFC_Failure &&
1143          FoundCase;
1144 }
1145 
1146 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1147   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1148 
1149   RunCleanupsScope ConditionScope(*this);
1150 
1151   if (S.getConditionVariable())
1152     EmitAutoVarDecl(*S.getConditionVariable());
1153 
1154   // See if we can constant fold the condition of the switch and therefore only
1155   // emit the live case statement (if any) of the switch.
1156   llvm::APInt ConstantCondValue;
1157   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1158     SmallVector<const Stmt*, 4> CaseStmts;
1159     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1160                                    getContext())) {
1161       RunCleanupsScope ExecutedScope(*this);
1162 
1163       // Okay, we can dead code eliminate everything except this case.  Emit the
1164       // specified series of statements and we're good.
1165       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1166         EmitStmt(CaseStmts[i]);
1167       return;
1168     }
1169   }
1170 
1171   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1172 
1173   // Handle nested switch statements.
1174   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1175   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1176 
1177   // Create basic block to hold stuff that comes after switch
1178   // statement. We also need to create a default block now so that
1179   // explicit case ranges tests can have a place to jump to on
1180   // failure.
1181   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1182   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1183   CaseRangeBlock = DefaultBlock;
1184 
1185   // Clear the insertion point to indicate we are in unreachable code.
1186   Builder.ClearInsertionPoint();
1187 
1188   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1189   // then reuse last ContinueBlock.
1190   JumpDest OuterContinue;
1191   if (!BreakContinueStack.empty())
1192     OuterContinue = BreakContinueStack.back().ContinueBlock;
1193 
1194   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1195 
1196   // Emit switch body.
1197   EmitStmt(S.getBody());
1198 
1199   BreakContinueStack.pop_back();
1200 
1201   // Update the default block in case explicit case range tests have
1202   // been chained on top.
1203   SwitchInsn->setSuccessor(0, CaseRangeBlock);
1204 
1205   // If a default was never emitted:
1206   if (!DefaultBlock->getParent()) {
1207     // If we have cleanups, emit the default block so that there's a
1208     // place to jump through the cleanups from.
1209     if (ConditionScope.requiresCleanups()) {
1210       EmitBlock(DefaultBlock);
1211 
1212     // Otherwise, just forward the default block to the switch end.
1213     } else {
1214       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1215       delete DefaultBlock;
1216     }
1217   }
1218 
1219   ConditionScope.ForceCleanup();
1220 
1221   // Emit continuation.
1222   EmitBlock(SwitchExit.getBlock(), true);
1223 
1224   SwitchInsn = SavedSwitchInsn;
1225   CaseRangeBlock = SavedCRBlock;
1226 }
1227 
1228 static std::string
1229 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1230                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1231   std::string Result;
1232 
1233   while (*Constraint) {
1234     switch (*Constraint) {
1235     default:
1236       Result += Target.convertConstraint(Constraint);
1237       break;
1238     // Ignore these
1239     case '*':
1240     case '?':
1241     case '!':
1242     case '=': // Will see this and the following in mult-alt constraints.
1243     case '+':
1244       break;
1245     case ',':
1246       Result += "|";
1247       break;
1248     case 'g':
1249       Result += "imr";
1250       break;
1251     case '[': {
1252       assert(OutCons &&
1253              "Must pass output names to constraints with a symbolic name");
1254       unsigned Index;
1255       bool result = Target.resolveSymbolicName(Constraint,
1256                                                &(*OutCons)[0],
1257                                                OutCons->size(), Index);
1258       assert(result && "Could not resolve symbolic name"); (void)result;
1259       Result += llvm::utostr(Index);
1260       break;
1261     }
1262     }
1263 
1264     Constraint++;
1265   }
1266 
1267   return Result;
1268 }
1269 
1270 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1271 /// as using a particular register add that as a constraint that will be used
1272 /// in this asm stmt.
1273 static std::string
1274 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1275                        const TargetInfo &Target, CodeGenModule &CGM,
1276                        const AsmStmt &Stmt) {
1277   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1278   if (!AsmDeclRef)
1279     return Constraint;
1280   const ValueDecl &Value = *AsmDeclRef->getDecl();
1281   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1282   if (!Variable)
1283     return Constraint;
1284   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1285   if (!Attr)
1286     return Constraint;
1287   StringRef Register = Attr->getLabel();
1288   assert(Target.isValidGCCRegisterName(Register));
1289   // We're using validateOutputConstraint here because we only care if
1290   // this is a register constraint.
1291   TargetInfo::ConstraintInfo Info(Constraint, "");
1292   if (Target.validateOutputConstraint(Info) &&
1293       !Info.allowsRegister()) {
1294     CGM.ErrorUnsupported(&Stmt, "__asm__");
1295     return Constraint;
1296   }
1297   // Canonicalize the register here before returning it.
1298   Register = Target.getNormalizedGCCRegisterName(Register);
1299   return "{" + Register.str() + "}";
1300 }
1301 
1302 llvm::Value*
1303 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1304                                     const TargetInfo::ConstraintInfo &Info,
1305                                     LValue InputValue, QualType InputType,
1306                                     std::string &ConstraintStr) {
1307   llvm::Value *Arg;
1308   if (Info.allowsRegister() || !Info.allowsMemory()) {
1309     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1310       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1311     } else {
1312       llvm::Type *Ty = ConvertType(InputType);
1313       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1314       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1315         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1316         Ty = llvm::PointerType::getUnqual(Ty);
1317 
1318         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1319                                                        Ty));
1320       } else {
1321         Arg = InputValue.getAddress();
1322         ConstraintStr += '*';
1323       }
1324     }
1325   } else {
1326     Arg = InputValue.getAddress();
1327     ConstraintStr += '*';
1328   }
1329 
1330   return Arg;
1331 }
1332 
1333 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1334                                          const TargetInfo::ConstraintInfo &Info,
1335                                            const Expr *InputExpr,
1336                                            std::string &ConstraintStr) {
1337   if (Info.allowsRegister() || !Info.allowsMemory())
1338     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1339       return EmitScalarExpr(InputExpr);
1340 
1341   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1342   LValue Dest = EmitLValue(InputExpr);
1343   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1344 }
1345 
1346 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1347 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1348 /// integers which are the source locations of the start of each line in the
1349 /// asm.
1350 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1351                                       CodeGenFunction &CGF) {
1352   SmallVector<llvm::Value *, 8> Locs;
1353   // Add the location of the first line to the MDNode.
1354   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1355                                         Str->getLocStart().getRawEncoding()));
1356   StringRef StrVal = Str->getString();
1357   if (!StrVal.empty()) {
1358     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1359     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1360 
1361     // Add the location of the start of each subsequent line of the asm to the
1362     // MDNode.
1363     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1364       if (StrVal[i] != '\n') continue;
1365       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1366                                                       CGF.Target);
1367       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1368                                             LineLoc.getRawEncoding()));
1369     }
1370   }
1371 
1372   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1373 }
1374 
1375 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1376   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1377   // has already done this, so it is guaranteed to be successful.
1378   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1379   unsigned DiagOffs;
1380   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1381 
1382   // Assemble the pieces into the final asm string.
1383   std::string AsmString;
1384   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1385     if (Pieces[i].isString())
1386       AsmString += Pieces[i].getString();
1387     else if (Pieces[i].getModifier() == '\0')
1388       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1389     else
1390       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1391                    Pieces[i].getModifier() + '}';
1392   }
1393 
1394   // Get all the output and input constraints together.
1395   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1396   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1397 
1398   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1399     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1400                                     S.getOutputName(i));
1401     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1402     assert(IsValid && "Failed to parse output constraint");
1403     OutputConstraintInfos.push_back(Info);
1404   }
1405 
1406   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1407     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1408                                     S.getInputName(i));
1409     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1410                                                   S.getNumOutputs(), Info);
1411     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1412     InputConstraintInfos.push_back(Info);
1413   }
1414 
1415   std::string Constraints;
1416 
1417   std::vector<LValue> ResultRegDests;
1418   std::vector<QualType> ResultRegQualTys;
1419   std::vector<llvm::Type *> ResultRegTypes;
1420   std::vector<llvm::Type *> ResultTruncRegTypes;
1421   std::vector<llvm::Type*> ArgTypes;
1422   std::vector<llvm::Value*> Args;
1423 
1424   // Keep track of inout constraints.
1425   std::string InOutConstraints;
1426   std::vector<llvm::Value*> InOutArgs;
1427   std::vector<llvm::Type*> InOutArgTypes;
1428 
1429   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1430     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1431 
1432     // Simplify the output constraint.
1433     std::string OutputConstraint(S.getOutputConstraint(i));
1434     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1435 
1436     const Expr *OutExpr = S.getOutputExpr(i);
1437     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1438 
1439     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1440                                               Target, CGM, S);
1441 
1442     LValue Dest = EmitLValue(OutExpr);
1443     if (!Constraints.empty())
1444       Constraints += ',';
1445 
1446     // If this is a register output, then make the inline asm return it
1447     // by-value.  If this is a memory result, return the value by-reference.
1448     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1449       Constraints += "=" + OutputConstraint;
1450       ResultRegQualTys.push_back(OutExpr->getType());
1451       ResultRegDests.push_back(Dest);
1452       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1453       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1454 
1455       // If this output is tied to an input, and if the input is larger, then
1456       // we need to set the actual result type of the inline asm node to be the
1457       // same as the input type.
1458       if (Info.hasMatchingInput()) {
1459         unsigned InputNo;
1460         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1461           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1462           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1463             break;
1464         }
1465         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1466 
1467         QualType InputTy = S.getInputExpr(InputNo)->getType();
1468         QualType OutputType = OutExpr->getType();
1469 
1470         uint64_t InputSize = getContext().getTypeSize(InputTy);
1471         if (getContext().getTypeSize(OutputType) < InputSize) {
1472           // Form the asm to return the value as a larger integer or fp type.
1473           ResultRegTypes.back() = ConvertType(InputTy);
1474         }
1475       }
1476       if (llvm::Type* AdjTy =
1477             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1478                                                  ResultRegTypes.back()))
1479         ResultRegTypes.back() = AdjTy;
1480     } else {
1481       ArgTypes.push_back(Dest.getAddress()->getType());
1482       Args.push_back(Dest.getAddress());
1483       Constraints += "=*";
1484       Constraints += OutputConstraint;
1485     }
1486 
1487     if (Info.isReadWrite()) {
1488       InOutConstraints += ',';
1489 
1490       const Expr *InputExpr = S.getOutputExpr(i);
1491       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1492                                             InOutConstraints);
1493 
1494       if (Info.allowsRegister())
1495         InOutConstraints += llvm::utostr(i);
1496       else
1497         InOutConstraints += OutputConstraint;
1498 
1499       InOutArgTypes.push_back(Arg->getType());
1500       InOutArgs.push_back(Arg);
1501     }
1502   }
1503 
1504   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1505 
1506   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1507     const Expr *InputExpr = S.getInputExpr(i);
1508 
1509     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1510 
1511     if (!Constraints.empty())
1512       Constraints += ',';
1513 
1514     // Simplify the input constraint.
1515     std::string InputConstraint(S.getInputConstraint(i));
1516     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1517                                          &OutputConstraintInfos);
1518 
1519     InputConstraint =
1520       AddVariableConstraints(InputConstraint,
1521                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1522                             Target, CGM, S);
1523 
1524     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1525 
1526     // If this input argument is tied to a larger output result, extend the
1527     // input to be the same size as the output.  The LLVM backend wants to see
1528     // the input and output of a matching constraint be the same size.  Note
1529     // that GCC does not define what the top bits are here.  We use zext because
1530     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1531     if (Info.hasTiedOperand()) {
1532       unsigned Output = Info.getTiedOperand();
1533       QualType OutputType = S.getOutputExpr(Output)->getType();
1534       QualType InputTy = InputExpr->getType();
1535 
1536       if (getContext().getTypeSize(OutputType) >
1537           getContext().getTypeSize(InputTy)) {
1538         // Use ptrtoint as appropriate so that we can do our extension.
1539         if (isa<llvm::PointerType>(Arg->getType()))
1540           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1541         llvm::Type *OutputTy = ConvertType(OutputType);
1542         if (isa<llvm::IntegerType>(OutputTy))
1543           Arg = Builder.CreateZExt(Arg, OutputTy);
1544         else if (isa<llvm::PointerType>(OutputTy))
1545           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1546         else {
1547           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1548           Arg = Builder.CreateFPExt(Arg, OutputTy);
1549         }
1550       }
1551     }
1552     if (llvm::Type* AdjTy =
1553               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1554                                                    Arg->getType()))
1555       Arg = Builder.CreateBitCast(Arg, AdjTy);
1556 
1557     ArgTypes.push_back(Arg->getType());
1558     Args.push_back(Arg);
1559     Constraints += InputConstraint;
1560   }
1561 
1562   // Append the "input" part of inout constraints last.
1563   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1564     ArgTypes.push_back(InOutArgTypes[i]);
1565     Args.push_back(InOutArgs[i]);
1566   }
1567   Constraints += InOutConstraints;
1568 
1569   // Clobbers
1570   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1571     StringRef Clobber = S.getClobber(i)->getString();
1572 
1573     if (Clobber != "memory" && Clobber != "cc")
1574     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1575 
1576     if (i != 0 || NumConstraints != 0)
1577       Constraints += ',';
1578 
1579     Constraints += "~{";
1580     Constraints += Clobber;
1581     Constraints += '}';
1582   }
1583 
1584   // Add machine specific clobbers
1585   std::string MachineClobbers = Target.getClobbers();
1586   if (!MachineClobbers.empty()) {
1587     if (!Constraints.empty())
1588       Constraints += ',';
1589     Constraints += MachineClobbers;
1590   }
1591 
1592   llvm::Type *ResultType;
1593   if (ResultRegTypes.empty())
1594     ResultType = llvm::Type::getVoidTy(getLLVMContext());
1595   else if (ResultRegTypes.size() == 1)
1596     ResultType = ResultRegTypes[0];
1597   else
1598     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1599 
1600   llvm::FunctionType *FTy =
1601     llvm::FunctionType::get(ResultType, ArgTypes, false);
1602 
1603   llvm::InlineAsm *IA =
1604     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1605                          S.isVolatile() || S.getNumOutputs() == 0);
1606   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1607   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1608 
1609   // Slap the source location of the inline asm into a !srcloc metadata on the
1610   // call.
1611   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1612 
1613   // Extract all of the register value results from the asm.
1614   std::vector<llvm::Value*> RegResults;
1615   if (ResultRegTypes.size() == 1) {
1616     RegResults.push_back(Result);
1617   } else {
1618     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1619       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1620       RegResults.push_back(Tmp);
1621     }
1622   }
1623 
1624   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1625     llvm::Value *Tmp = RegResults[i];
1626 
1627     // If the result type of the LLVM IR asm doesn't match the result type of
1628     // the expression, do the conversion.
1629     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1630       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1631 
1632       // Truncate the integer result to the right size, note that TruncTy can be
1633       // a pointer.
1634       if (TruncTy->isFloatingPointTy())
1635         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1636       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1637         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1638         Tmp = Builder.CreateTrunc(Tmp,
1639                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1640         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1641       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1642         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1643         Tmp = Builder.CreatePtrToInt(Tmp,
1644                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1645         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1646       } else if (TruncTy->isIntegerTy()) {
1647         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1648       } else if (TruncTy->isVectorTy()) {
1649         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1650       }
1651     }
1652 
1653     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1654   }
1655 }
1656