1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/LoopHint.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                              Statement Emission
33 //===----------------------------------------------------------------------===//
34 
35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36   if (CGDebugInfo *DI = getDebugInfo()) {
37     SourceLocation Loc;
38     Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40 
41     LastStopPoint = Loc;
42   }
43 }
44 
45 void CodeGenFunction::EmitStmt(const Stmt *S) {
46   assert(S && "Null statement?");
47   PGO.setCurrentStmt(S);
48 
49   // These statements have their own debug info handling.
50   if (EmitSimpleStmt(S))
51     return;
52 
53   // Check if we are generating unreachable code.
54   if (!HaveInsertPoint()) {
55     // If so, and the statement doesn't contain a label, then we do not need to
56     // generate actual code. This is safe because (1) the current point is
57     // unreachable, so we don't need to execute the code, and (2) we've already
58     // handled the statements which update internal data structures (like the
59     // local variable map) which could be used by subsequent statements.
60     if (!ContainsLabel(S)) {
61       // Verify that any decl statements were handled as simple, they may be in
62       // scope of subsequent reachable statements.
63       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64       return;
65     }
66 
67     // Otherwise, make a new block to hold the code.
68     EnsureInsertPoint();
69   }
70 
71   // Generate a stoppoint if we are emitting debug info.
72   EmitStopPoint(S);
73 
74   switch (S->getStmtClass()) {
75   case Stmt::NoStmtClass:
76   case Stmt::CXXCatchStmtClass:
77   case Stmt::SEHExceptStmtClass:
78   case Stmt::SEHFinallyStmtClass:
79   case Stmt::MSDependentExistsStmtClass:
80     llvm_unreachable("invalid statement class to emit generically");
81   case Stmt::NullStmtClass:
82   case Stmt::CompoundStmtClass:
83   case Stmt::DeclStmtClass:
84   case Stmt::LabelStmtClass:
85   case Stmt::AttributedStmtClass:
86   case Stmt::GotoStmtClass:
87   case Stmt::BreakStmtClass:
88   case Stmt::ContinueStmtClass:
89   case Stmt::DefaultStmtClass:
90   case Stmt::CaseStmtClass:
91     llvm_unreachable("should have emitted these statements as simple");
92 
93 #define STMT(Type, Base)
94 #define ABSTRACT_STMT(Op)
95 #define EXPR(Type, Base) \
96   case Stmt::Type##Class:
97 #include "clang/AST/StmtNodes.inc"
98   {
99     // Remember the block we came in on.
100     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
101     assert(incoming && "expression emission must have an insertion point");
102 
103     EmitIgnoredExpr(cast<Expr>(S));
104 
105     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
106     assert(outgoing && "expression emission cleared block!");
107 
108     // The expression emitters assume (reasonably!) that the insertion
109     // point is always set.  To maintain that, the call-emission code
110     // for noreturn functions has to enter a new block with no
111     // predecessors.  We want to kill that block and mark the current
112     // insertion point unreachable in the common case of a call like
113     // "exit();".  Since expression emission doesn't otherwise create
114     // blocks with no predecessors, we can just test for that.
115     // However, we must be careful not to do this to our incoming
116     // block, because *statement* emission does sometimes create
117     // reachable blocks which will have no predecessors until later in
118     // the function.  This occurs with, e.g., labels that are not
119     // reachable by fallthrough.
120     if (incoming != outgoing && outgoing->use_empty()) {
121       outgoing->eraseFromParent();
122       Builder.ClearInsertionPoint();
123     }
124     break;
125   }
126 
127   case Stmt::IndirectGotoStmtClass:
128     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
129 
130   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
131   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
132   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
133   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
134 
135   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
136 
137   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
138   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
139   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
140   case Stmt::CapturedStmtClass: {
141     const CapturedStmt *CS = cast<CapturedStmt>(S);
142     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
143     }
144     break;
145   case Stmt::ObjCAtTryStmtClass:
146     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
147     break;
148   case Stmt::ObjCAtCatchStmtClass:
149     llvm_unreachable(
150                     "@catch statements should be handled by EmitObjCAtTryStmt");
151   case Stmt::ObjCAtFinallyStmtClass:
152     llvm_unreachable(
153                   "@finally statements should be handled by EmitObjCAtTryStmt");
154   case Stmt::ObjCAtThrowStmtClass:
155     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
156     break;
157   case Stmt::ObjCAtSynchronizedStmtClass:
158     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
159     break;
160   case Stmt::ObjCForCollectionStmtClass:
161     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
162     break;
163   case Stmt::ObjCAutoreleasePoolStmtClass:
164     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
165     break;
166 
167   case Stmt::CXXTryStmtClass:
168     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
169     break;
170   case Stmt::CXXForRangeStmtClass:
171     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
172     break;
173   case Stmt::SEHTryStmtClass:
174     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
175     break;
176   case Stmt::OMPParallelDirectiveClass:
177     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
178     break;
179   case Stmt::OMPSimdDirectiveClass:
180     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
181     break;
182   case Stmt::OMPForDirectiveClass:
183     EmitOMPForDirective(cast<OMPForDirective>(*S));
184     break;
185   case Stmt::OMPSectionsDirectiveClass:
186     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
187     break;
188   case Stmt::OMPSectionDirectiveClass:
189     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
190     break;
191   case Stmt::OMPSingleDirectiveClass:
192     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
193     break;
194   }
195 }
196 
197 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
198   switch (S->getStmtClass()) {
199   default: return false;
200   case Stmt::NullStmtClass: break;
201   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
202   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
203   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
204   case Stmt::AttributedStmtClass:
205                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
206   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
207   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
208   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
209   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
210   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
211   }
212 
213   return true;
214 }
215 
216 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
217 /// this captures the expression result of the last sub-statement and returns it
218 /// (for use by the statement expression extension).
219 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
220                                                AggValueSlot AggSlot) {
221   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
222                              "LLVM IR generation of compound statement ('{}')");
223 
224   // Keep track of the current cleanup stack depth, including debug scopes.
225   LexicalScope Scope(*this, S.getSourceRange());
226 
227   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
228 }
229 
230 llvm::Value*
231 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
232                                               bool GetLast,
233                                               AggValueSlot AggSlot) {
234 
235   for (CompoundStmt::const_body_iterator I = S.body_begin(),
236        E = S.body_end()-GetLast; I != E; ++I)
237     EmitStmt(*I);
238 
239   llvm::Value *RetAlloca = nullptr;
240   if (GetLast) {
241     // We have to special case labels here.  They are statements, but when put
242     // at the end of a statement expression, they yield the value of their
243     // subexpression.  Handle this by walking through all labels we encounter,
244     // emitting them before we evaluate the subexpr.
245     const Stmt *LastStmt = S.body_back();
246     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
247       EmitLabel(LS->getDecl());
248       LastStmt = LS->getSubStmt();
249     }
250 
251     EnsureInsertPoint();
252 
253     QualType ExprTy = cast<Expr>(LastStmt)->getType();
254     if (hasAggregateEvaluationKind(ExprTy)) {
255       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
256     } else {
257       // We can't return an RValue here because there might be cleanups at
258       // the end of the StmtExpr.  Because of that, we have to emit the result
259       // here into a temporary alloca.
260       RetAlloca = CreateMemTemp(ExprTy);
261       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
262                        /*IsInit*/false);
263     }
264 
265   }
266 
267   return RetAlloca;
268 }
269 
270 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
271   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
272 
273   // If there is a cleanup stack, then we it isn't worth trying to
274   // simplify this block (we would need to remove it from the scope map
275   // and cleanup entry).
276   if (!EHStack.empty())
277     return;
278 
279   // Can only simplify direct branches.
280   if (!BI || !BI->isUnconditional())
281     return;
282 
283   // Can only simplify empty blocks.
284   if (BI != BB->begin())
285     return;
286 
287   BB->replaceAllUsesWith(BI->getSuccessor(0));
288   BI->eraseFromParent();
289   BB->eraseFromParent();
290 }
291 
292 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
293   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
294 
295   // Fall out of the current block (if necessary).
296   EmitBranch(BB);
297 
298   if (IsFinished && BB->use_empty()) {
299     delete BB;
300     return;
301   }
302 
303   // Place the block after the current block, if possible, or else at
304   // the end of the function.
305   if (CurBB && CurBB->getParent())
306     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
307   else
308     CurFn->getBasicBlockList().push_back(BB);
309   Builder.SetInsertPoint(BB);
310 }
311 
312 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
313   // Emit a branch from the current block to the target one if this
314   // was a real block.  If this was just a fall-through block after a
315   // terminator, don't emit it.
316   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
317 
318   if (!CurBB || CurBB->getTerminator()) {
319     // If there is no insert point or the previous block is already
320     // terminated, don't touch it.
321   } else {
322     // Otherwise, create a fall-through branch.
323     Builder.CreateBr(Target);
324   }
325 
326   Builder.ClearInsertionPoint();
327 }
328 
329 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
330   bool inserted = false;
331   for (llvm::User *u : block->users()) {
332     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
333       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
334       inserted = true;
335       break;
336     }
337   }
338 
339   if (!inserted)
340     CurFn->getBasicBlockList().push_back(block);
341 
342   Builder.SetInsertPoint(block);
343 }
344 
345 CodeGenFunction::JumpDest
346 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
347   JumpDest &Dest = LabelMap[D];
348   if (Dest.isValid()) return Dest;
349 
350   // Create, but don't insert, the new block.
351   Dest = JumpDest(createBasicBlock(D->getName()),
352                   EHScopeStack::stable_iterator::invalid(),
353                   NextCleanupDestIndex++);
354   return Dest;
355 }
356 
357 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
358   // Add this label to the current lexical scope if we're within any
359   // normal cleanups.  Jumps "in" to this label --- when permitted by
360   // the language --- may need to be routed around such cleanups.
361   if (EHStack.hasNormalCleanups() && CurLexicalScope)
362     CurLexicalScope->addLabel(D);
363 
364   JumpDest &Dest = LabelMap[D];
365 
366   // If we didn't need a forward reference to this label, just go
367   // ahead and create a destination at the current scope.
368   if (!Dest.isValid()) {
369     Dest = getJumpDestInCurrentScope(D->getName());
370 
371   // Otherwise, we need to give this label a target depth and remove
372   // it from the branch-fixups list.
373   } else {
374     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
375     Dest.setScopeDepth(EHStack.stable_begin());
376     ResolveBranchFixups(Dest.getBlock());
377   }
378 
379   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
380   EmitBlock(Dest.getBlock());
381   Cnt.beginRegion(Builder);
382 }
383 
384 /// Change the cleanup scope of the labels in this lexical scope to
385 /// match the scope of the enclosing context.
386 void CodeGenFunction::LexicalScope::rescopeLabels() {
387   assert(!Labels.empty());
388   EHScopeStack::stable_iterator innermostScope
389     = CGF.EHStack.getInnermostNormalCleanup();
390 
391   // Change the scope depth of all the labels.
392   for (SmallVectorImpl<const LabelDecl*>::const_iterator
393          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
394     assert(CGF.LabelMap.count(*i));
395     JumpDest &dest = CGF.LabelMap.find(*i)->second;
396     assert(dest.getScopeDepth().isValid());
397     assert(innermostScope.encloses(dest.getScopeDepth()));
398     dest.setScopeDepth(innermostScope);
399   }
400 
401   // Reparent the labels if the new scope also has cleanups.
402   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
403     ParentScope->Labels.append(Labels.begin(), Labels.end());
404   }
405 }
406 
407 
408 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
409   EmitLabel(S.getDecl());
410   EmitStmt(S.getSubStmt());
411 }
412 
413 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
414   const Stmt *SubStmt = S.getSubStmt();
415   switch (SubStmt->getStmtClass()) {
416   case Stmt::DoStmtClass:
417     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
418     break;
419   case Stmt::ForStmtClass:
420     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
421     break;
422   case Stmt::WhileStmtClass:
423     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
424     break;
425   case Stmt::CXXForRangeStmtClass:
426     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
427     break;
428   default:
429     EmitStmt(SubStmt);
430   }
431 }
432 
433 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
434   // If this code is reachable then emit a stop point (if generating
435   // debug info). We have to do this ourselves because we are on the
436   // "simple" statement path.
437   if (HaveInsertPoint())
438     EmitStopPoint(&S);
439 
440   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
441 }
442 
443 
444 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
445   if (const LabelDecl *Target = S.getConstantTarget()) {
446     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
447     return;
448   }
449 
450   // Ensure that we have an i8* for our PHI node.
451   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
452                                          Int8PtrTy, "addr");
453   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
454 
455   // Get the basic block for the indirect goto.
456   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
457 
458   // The first instruction in the block has to be the PHI for the switch dest,
459   // add an entry for this branch.
460   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
461 
462   EmitBranch(IndGotoBB);
463 }
464 
465 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
466   // C99 6.8.4.1: The first substatement is executed if the expression compares
467   // unequal to 0.  The condition must be a scalar type.
468   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
469   RegionCounter Cnt = getPGORegionCounter(&S);
470 
471   if (S.getConditionVariable())
472     EmitAutoVarDecl(*S.getConditionVariable());
473 
474   // If the condition constant folds and can be elided, try to avoid emitting
475   // the condition and the dead arm of the if/else.
476   bool CondConstant;
477   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
478     // Figure out which block (then or else) is executed.
479     const Stmt *Executed = S.getThen();
480     const Stmt *Skipped  = S.getElse();
481     if (!CondConstant)  // Condition false?
482       std::swap(Executed, Skipped);
483 
484     // If the skipped block has no labels in it, just emit the executed block.
485     // This avoids emitting dead code and simplifies the CFG substantially.
486     if (!ContainsLabel(Skipped)) {
487       if (CondConstant)
488         Cnt.beginRegion(Builder);
489       if (Executed) {
490         RunCleanupsScope ExecutedScope(*this);
491         EmitStmt(Executed);
492       }
493       return;
494     }
495   }
496 
497   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
498   // the conditional branch.
499   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
500   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
501   llvm::BasicBlock *ElseBlock = ContBlock;
502   if (S.getElse())
503     ElseBlock = createBasicBlock("if.else");
504 
505   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
506 
507   // Emit the 'then' code.
508   EmitBlock(ThenBlock);
509   Cnt.beginRegion(Builder);
510   {
511     RunCleanupsScope ThenScope(*this);
512     EmitStmt(S.getThen());
513   }
514   EmitBranch(ContBlock);
515 
516   // Emit the 'else' code if present.
517   if (const Stmt *Else = S.getElse()) {
518     // There is no need to emit line number for unconditional branch.
519     if (getDebugInfo())
520       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
521     EmitBlock(ElseBlock);
522     {
523       RunCleanupsScope ElseScope(*this);
524       EmitStmt(Else);
525     }
526     // There is no need to emit line number for unconditional branch.
527     if (getDebugInfo())
528       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
529     EmitBranch(ContBlock);
530   }
531 
532   // Emit the continuation block for code after the if.
533   EmitBlock(ContBlock, true);
534 }
535 
536 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
537                                       llvm::BranchInst *CondBr,
538                                       const ArrayRef<const Attr *> &Attrs) {
539   // Return if there are no hints.
540   if (Attrs.empty())
541     return;
542 
543   // Add vectorize and unroll hints to the metadata on the conditional branch.
544   SmallVector<llvm::Value *, 2> Metadata(1);
545   for (const auto *Attr : Attrs) {
546     const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
547 
548     // Skip non loop hint attributes
549     if (!LH)
550       continue;
551 
552     LoopHintAttr::OptionType Option = LH->getOption();
553     int ValueInt = LH->getValue();
554 
555     const char *MetadataName;
556     switch (Option) {
557     case LoopHintAttr::Vectorize:
558     case LoopHintAttr::VectorizeWidth:
559       MetadataName = "llvm.loop.vectorize.width";
560       break;
561     case LoopHintAttr::Interleave:
562     case LoopHintAttr::InterleaveCount:
563       MetadataName = "llvm.loop.vectorize.unroll";
564       break;
565     case LoopHintAttr::Unroll:
566       MetadataName = "llvm.loop.unroll.enable";
567       break;
568     case LoopHintAttr::UnrollCount:
569       MetadataName = "llvm.loop.unroll.count";
570       break;
571     }
572 
573     llvm::Value *Value;
574     llvm::MDString *Name;
575     switch (Option) {
576     case LoopHintAttr::Vectorize:
577     case LoopHintAttr::Interleave:
578       if (ValueInt == 1) {
579         // FIXME: In the future I will modifiy the behavior of the metadata
580         // so we can enable/disable vectorization and interleaving separately.
581         Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
582         Value = Builder.getTrue();
583         break;
584       }
585       // Vectorization/interleaving is disabled, set width/count to 1.
586       ValueInt = 1;
587       // Fallthrough.
588     case LoopHintAttr::VectorizeWidth:
589     case LoopHintAttr::InterleaveCount:
590       Name = llvm::MDString::get(Context, MetadataName);
591       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
592       break;
593     case LoopHintAttr::Unroll:
594       Name = llvm::MDString::get(Context, MetadataName);
595       Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue();
596       break;
597     case LoopHintAttr::UnrollCount:
598       Name = llvm::MDString::get(Context, MetadataName);
599       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
600       break;
601     }
602 
603     SmallVector<llvm::Value *, 2> OpValues;
604     OpValues.push_back(Name);
605     OpValues.push_back(Value);
606 
607     // Set or overwrite metadata indicated by Name.
608     Metadata.push_back(llvm::MDNode::get(Context, OpValues));
609   }
610 
611   if (!Metadata.empty()) {
612     // Add llvm.loop MDNode to CondBr.
613     llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
614     LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
615 
616     CondBr->setMetadata("llvm.loop", LoopID);
617   }
618 }
619 
620 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
621                                     const ArrayRef<const Attr *> &WhileAttrs) {
622   RegionCounter Cnt = getPGORegionCounter(&S);
623 
624   // Emit the header for the loop, which will also become
625   // the continue target.
626   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
627   EmitBlock(LoopHeader.getBlock());
628 
629   LoopStack.push(LoopHeader.getBlock());
630 
631   // Create an exit block for when the condition fails, which will
632   // also become the break target.
633   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
634 
635   // Store the blocks to use for break and continue.
636   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
637 
638   // C++ [stmt.while]p2:
639   //   When the condition of a while statement is a declaration, the
640   //   scope of the variable that is declared extends from its point
641   //   of declaration (3.3.2) to the end of the while statement.
642   //   [...]
643   //   The object created in a condition is destroyed and created
644   //   with each iteration of the loop.
645   RunCleanupsScope ConditionScope(*this);
646 
647   if (S.getConditionVariable())
648     EmitAutoVarDecl(*S.getConditionVariable());
649 
650   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
651   // evaluation of the controlling expression takes place before each
652   // execution of the loop body.
653   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
654 
655   // while(1) is common, avoid extra exit blocks.  Be sure
656   // to correctly handle break/continue though.
657   bool EmitBoolCondBranch = true;
658   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
659     if (C->isOne())
660       EmitBoolCondBranch = false;
661 
662   // As long as the condition is true, go to the loop body.
663   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
664   if (EmitBoolCondBranch) {
665     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
666     if (ConditionScope.requiresCleanups())
667       ExitBlock = createBasicBlock("while.exit");
668     llvm::BranchInst *CondBr =
669         Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
670                              PGO.createLoopWeights(S.getCond(), Cnt));
671 
672     if (ExitBlock != LoopExit.getBlock()) {
673       EmitBlock(ExitBlock);
674       EmitBranchThroughCleanup(LoopExit);
675     }
676 
677     // Attach metadata to loop body conditional branch.
678     EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
679   }
680 
681   // Emit the loop body.  We have to emit this in a cleanup scope
682   // because it might be a singleton DeclStmt.
683   {
684     RunCleanupsScope BodyScope(*this);
685     EmitBlock(LoopBody);
686     Cnt.beginRegion(Builder);
687     EmitStmt(S.getBody());
688   }
689 
690   BreakContinueStack.pop_back();
691 
692   // Immediately force cleanup.
693   ConditionScope.ForceCleanup();
694 
695   // Branch to the loop header again.
696   EmitBranch(LoopHeader.getBlock());
697 
698   LoopStack.pop();
699 
700   // Emit the exit block.
701   EmitBlock(LoopExit.getBlock(), true);
702 
703   // The LoopHeader typically is just a branch if we skipped emitting
704   // a branch, try to erase it.
705   if (!EmitBoolCondBranch)
706     SimplifyForwardingBlocks(LoopHeader.getBlock());
707 }
708 
709 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
710                                  const ArrayRef<const Attr *> &DoAttrs) {
711   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
712   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
713 
714   RegionCounter Cnt = getPGORegionCounter(&S);
715 
716   // Store the blocks to use for break and continue.
717   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
718 
719   // Emit the body of the loop.
720   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
721 
722   LoopStack.push(LoopBody);
723 
724   EmitBlockWithFallThrough(LoopBody, Cnt);
725   {
726     RunCleanupsScope BodyScope(*this);
727     EmitStmt(S.getBody());
728   }
729 
730   EmitBlock(LoopCond.getBlock());
731 
732   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
733   // after each execution of the loop body."
734 
735   // Evaluate the conditional in the while header.
736   // C99 6.8.5p2/p4: The first substatement is executed if the expression
737   // compares unequal to 0.  The condition must be a scalar type.
738   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
739 
740   BreakContinueStack.pop_back();
741 
742   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
743   // to correctly handle break/continue though.
744   bool EmitBoolCondBranch = true;
745   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
746     if (C->isZero())
747       EmitBoolCondBranch = false;
748 
749   // As long as the condition is true, iterate the loop.
750   if (EmitBoolCondBranch) {
751     llvm::BranchInst *CondBr =
752         Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
753                              PGO.createLoopWeights(S.getCond(), Cnt));
754 
755     // Attach metadata to loop body conditional branch.
756     EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
757   }
758 
759   LoopStack.pop();
760 
761   // Emit the exit block.
762   EmitBlock(LoopExit.getBlock());
763 
764   // The DoCond block typically is just a branch if we skipped
765   // emitting a branch, try to erase it.
766   if (!EmitBoolCondBranch)
767     SimplifyForwardingBlocks(LoopCond.getBlock());
768 }
769 
770 void CodeGenFunction::EmitForStmt(const ForStmt &S,
771                                   const ArrayRef<const Attr *> &ForAttrs) {
772   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
773 
774   RunCleanupsScope ForScope(*this);
775 
776   CGDebugInfo *DI = getDebugInfo();
777   if (DI)
778     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
779 
780   // Evaluate the first part before the loop.
781   if (S.getInit())
782     EmitStmt(S.getInit());
783 
784   RegionCounter Cnt = getPGORegionCounter(&S);
785 
786   // Start the loop with a block that tests the condition.
787   // If there's an increment, the continue scope will be overwritten
788   // later.
789   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
790   llvm::BasicBlock *CondBlock = Continue.getBlock();
791   EmitBlock(CondBlock);
792 
793   LoopStack.push(CondBlock);
794 
795   // If the for loop doesn't have an increment we can just use the
796   // condition as the continue block.  Otherwise we'll need to create
797   // a block for it (in the current scope, i.e. in the scope of the
798   // condition), and that we will become our continue block.
799   if (S.getInc())
800     Continue = getJumpDestInCurrentScope("for.inc");
801 
802   // Store the blocks to use for break and continue.
803   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
804 
805   // Create a cleanup scope for the condition variable cleanups.
806   RunCleanupsScope ConditionScope(*this);
807 
808   if (S.getCond()) {
809     // If the for statement has a condition scope, emit the local variable
810     // declaration.
811     if (S.getConditionVariable()) {
812       EmitAutoVarDecl(*S.getConditionVariable());
813     }
814 
815     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
816     // If there are any cleanups between here and the loop-exit scope,
817     // create a block to stage a loop exit along.
818     if (ForScope.requiresCleanups())
819       ExitBlock = createBasicBlock("for.cond.cleanup");
820 
821     // As long as the condition is true, iterate the loop.
822     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
823 
824     // C99 6.8.5p2/p4: The first substatement is executed if the expression
825     // compares unequal to 0.  The condition must be a scalar type.
826     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
827     llvm::BranchInst *CondBr =
828         Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
829                              PGO.createLoopWeights(S.getCond(), Cnt));
830 
831     // Attach metadata to loop body conditional branch.
832     EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
833 
834     if (ExitBlock != LoopExit.getBlock()) {
835       EmitBlock(ExitBlock);
836       EmitBranchThroughCleanup(LoopExit);
837     }
838 
839     EmitBlock(ForBody);
840   } else {
841     // Treat it as a non-zero constant.  Don't even create a new block for the
842     // body, just fall into it.
843   }
844   Cnt.beginRegion(Builder);
845 
846   {
847     // Create a separate cleanup scope for the body, in case it is not
848     // a compound statement.
849     RunCleanupsScope BodyScope(*this);
850     EmitStmt(S.getBody());
851   }
852 
853   // If there is an increment, emit it next.
854   if (S.getInc()) {
855     EmitBlock(Continue.getBlock());
856     EmitStmt(S.getInc());
857   }
858 
859   BreakContinueStack.pop_back();
860 
861   ConditionScope.ForceCleanup();
862   EmitBranch(CondBlock);
863 
864   ForScope.ForceCleanup();
865 
866   if (DI)
867     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
868 
869   LoopStack.pop();
870 
871   // Emit the fall-through block.
872   EmitBlock(LoopExit.getBlock(), true);
873 }
874 
875 void
876 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
877                                      const ArrayRef<const Attr *> &ForAttrs) {
878   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
879 
880   RunCleanupsScope ForScope(*this);
881 
882   CGDebugInfo *DI = getDebugInfo();
883   if (DI)
884     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
885 
886   // Evaluate the first pieces before the loop.
887   EmitStmt(S.getRangeStmt());
888   EmitStmt(S.getBeginEndStmt());
889 
890   RegionCounter Cnt = getPGORegionCounter(&S);
891 
892   // Start the loop with a block that tests the condition.
893   // If there's an increment, the continue scope will be overwritten
894   // later.
895   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
896   EmitBlock(CondBlock);
897 
898   LoopStack.push(CondBlock);
899 
900   // If there are any cleanups between here and the loop-exit scope,
901   // create a block to stage a loop exit along.
902   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
903   if (ForScope.requiresCleanups())
904     ExitBlock = createBasicBlock("for.cond.cleanup");
905 
906   // The loop body, consisting of the specified body and the loop variable.
907   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
908 
909   // The body is executed if the expression, contextually converted
910   // to bool, is true.
911   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
912   llvm::BranchInst *CondBr = Builder.CreateCondBr(
913       BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
914 
915   // Attach metadata to loop body conditional branch.
916   EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
917 
918   if (ExitBlock != LoopExit.getBlock()) {
919     EmitBlock(ExitBlock);
920     EmitBranchThroughCleanup(LoopExit);
921   }
922 
923   EmitBlock(ForBody);
924   Cnt.beginRegion(Builder);
925 
926   // Create a block for the increment. In case of a 'continue', we jump there.
927   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
928 
929   // Store the blocks to use for break and continue.
930   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
931 
932   {
933     // Create a separate cleanup scope for the loop variable and body.
934     RunCleanupsScope BodyScope(*this);
935     EmitStmt(S.getLoopVarStmt());
936     EmitStmt(S.getBody());
937   }
938 
939   // If there is an increment, emit it next.
940   EmitBlock(Continue.getBlock());
941   EmitStmt(S.getInc());
942 
943   BreakContinueStack.pop_back();
944 
945   EmitBranch(CondBlock);
946 
947   ForScope.ForceCleanup();
948 
949   if (DI)
950     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
951 
952   LoopStack.pop();
953 
954   // Emit the fall-through block.
955   EmitBlock(LoopExit.getBlock(), true);
956 }
957 
958 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
959   if (RV.isScalar()) {
960     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
961   } else if (RV.isAggregate()) {
962     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
963   } else {
964     EmitStoreOfComplex(RV.getComplexVal(),
965                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
966                        /*init*/ true);
967   }
968   EmitBranchThroughCleanup(ReturnBlock);
969 }
970 
971 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
972 /// if the function returns void, or may be missing one if the function returns
973 /// non-void.  Fun stuff :).
974 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
975   // Emit the result value, even if unused, to evalute the side effects.
976   const Expr *RV = S.getRetValue();
977 
978   // Treat block literals in a return expression as if they appeared
979   // in their own scope.  This permits a small, easily-implemented
980   // exception to our over-conservative rules about not jumping to
981   // statements following block literals with non-trivial cleanups.
982   RunCleanupsScope cleanupScope(*this);
983   if (const ExprWithCleanups *cleanups =
984         dyn_cast_or_null<ExprWithCleanups>(RV)) {
985     enterFullExpression(cleanups);
986     RV = cleanups->getSubExpr();
987   }
988 
989   // FIXME: Clean this up by using an LValue for ReturnTemp,
990   // EmitStoreThroughLValue, and EmitAnyExpr.
991   if (getLangOpts().ElideConstructors &&
992       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
993     // Apply the named return value optimization for this return statement,
994     // which means doing nothing: the appropriate result has already been
995     // constructed into the NRVO variable.
996 
997     // If there is an NRVO flag for this variable, set it to 1 into indicate
998     // that the cleanup code should not destroy the variable.
999     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1000       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
1001   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
1002     // Make sure not to return anything, but evaluate the expression
1003     // for side effects.
1004     if (RV)
1005       EmitAnyExpr(RV);
1006   } else if (!RV) {
1007     // Do nothing (return value is left uninitialized)
1008   } else if (FnRetTy->isReferenceType()) {
1009     // If this function returns a reference, take the address of the expression
1010     // rather than the value.
1011     RValue Result = EmitReferenceBindingToExpr(RV);
1012     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1013   } else {
1014     switch (getEvaluationKind(RV->getType())) {
1015     case TEK_Scalar:
1016       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1017       break;
1018     case TEK_Complex:
1019       EmitComplexExprIntoLValue(RV,
1020                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1021                                 /*isInit*/ true);
1022       break;
1023     case TEK_Aggregate: {
1024       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1025       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1026                                             Qualifiers(),
1027                                             AggValueSlot::IsDestructed,
1028                                             AggValueSlot::DoesNotNeedGCBarriers,
1029                                             AggValueSlot::IsNotAliased));
1030       break;
1031     }
1032     }
1033   }
1034 
1035   ++NumReturnExprs;
1036   if (!RV || RV->isEvaluatable(getContext()))
1037     ++NumSimpleReturnExprs;
1038 
1039   cleanupScope.ForceCleanup();
1040   EmitBranchThroughCleanup(ReturnBlock);
1041 }
1042 
1043 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1044   // As long as debug info is modeled with instructions, we have to ensure we
1045   // have a place to insert here and write the stop point here.
1046   if (HaveInsertPoint())
1047     EmitStopPoint(&S);
1048 
1049   for (const auto *I : S.decls())
1050     EmitDecl(*I);
1051 }
1052 
1053 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1054   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1055 
1056   // If this code is reachable then emit a stop point (if generating
1057   // debug info). We have to do this ourselves because we are on the
1058   // "simple" statement path.
1059   if (HaveInsertPoint())
1060     EmitStopPoint(&S);
1061 
1062   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1063 }
1064 
1065 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1066   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1067 
1068   // If this code is reachable then emit a stop point (if generating
1069   // debug info). We have to do this ourselves because we are on the
1070   // "simple" statement path.
1071   if (HaveInsertPoint())
1072     EmitStopPoint(&S);
1073 
1074   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1075 }
1076 
1077 /// EmitCaseStmtRange - If case statement range is not too big then
1078 /// add multiple cases to switch instruction, one for each value within
1079 /// the range. If range is too big then emit "if" condition check.
1080 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1081   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1082 
1083   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1084   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1085 
1086   RegionCounter CaseCnt = getPGORegionCounter(&S);
1087 
1088   // Emit the code for this case. We do this first to make sure it is
1089   // properly chained from our predecessor before generating the
1090   // switch machinery to enter this block.
1091   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1092   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1093   EmitStmt(S.getSubStmt());
1094 
1095   // If range is empty, do nothing.
1096   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1097     return;
1098 
1099   llvm::APInt Range = RHS - LHS;
1100   // FIXME: parameters such as this should not be hardcoded.
1101   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1102     // Range is small enough to add multiple switch instruction cases.
1103     uint64_t Total = CaseCnt.getCount();
1104     unsigned NCases = Range.getZExtValue() + 1;
1105     // We only have one region counter for the entire set of cases here, so we
1106     // need to divide the weights evenly between the generated cases, ensuring
1107     // that the total weight is preserved. E.g., a weight of 5 over three cases
1108     // will be distributed as weights of 2, 2, and 1.
1109     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1110     for (unsigned I = 0; I != NCases; ++I) {
1111       if (SwitchWeights)
1112         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1113       if (Rem)
1114         Rem--;
1115       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1116       LHS++;
1117     }
1118     return;
1119   }
1120 
1121   // The range is too big. Emit "if" condition into a new block,
1122   // making sure to save and restore the current insertion point.
1123   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1124 
1125   // Push this test onto the chain of range checks (which terminates
1126   // in the default basic block). The switch's default will be changed
1127   // to the top of this chain after switch emission is complete.
1128   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1129   CaseRangeBlock = createBasicBlock("sw.caserange");
1130 
1131   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1132   Builder.SetInsertPoint(CaseRangeBlock);
1133 
1134   // Emit range check.
1135   llvm::Value *Diff =
1136     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1137   llvm::Value *Cond =
1138     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1139 
1140   llvm::MDNode *Weights = nullptr;
1141   if (SwitchWeights) {
1142     uint64_t ThisCount = CaseCnt.getCount();
1143     uint64_t DefaultCount = (*SwitchWeights)[0];
1144     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1145 
1146     // Since we're chaining the switch default through each large case range, we
1147     // need to update the weight for the default, ie, the first case, to include
1148     // this case.
1149     (*SwitchWeights)[0] += ThisCount;
1150   }
1151   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1152 
1153   // Restore the appropriate insertion point.
1154   if (RestoreBB)
1155     Builder.SetInsertPoint(RestoreBB);
1156   else
1157     Builder.ClearInsertionPoint();
1158 }
1159 
1160 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1161   // If there is no enclosing switch instance that we're aware of, then this
1162   // case statement and its block can be elided.  This situation only happens
1163   // when we've constant-folded the switch, are emitting the constant case,
1164   // and part of the constant case includes another case statement.  For
1165   // instance: switch (4) { case 4: do { case 5: } while (1); }
1166   if (!SwitchInsn) {
1167     EmitStmt(S.getSubStmt());
1168     return;
1169   }
1170 
1171   // Handle case ranges.
1172   if (S.getRHS()) {
1173     EmitCaseStmtRange(S);
1174     return;
1175   }
1176 
1177   RegionCounter CaseCnt = getPGORegionCounter(&S);
1178   llvm::ConstantInt *CaseVal =
1179     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1180 
1181   // If the body of the case is just a 'break', try to not emit an empty block.
1182   // If we're profiling or we're not optimizing, leave the block in for better
1183   // debug and coverage analysis.
1184   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1185       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1186       isa<BreakStmt>(S.getSubStmt())) {
1187     JumpDest Block = BreakContinueStack.back().BreakBlock;
1188 
1189     // Only do this optimization if there are no cleanups that need emitting.
1190     if (isObviouslyBranchWithoutCleanups(Block)) {
1191       if (SwitchWeights)
1192         SwitchWeights->push_back(CaseCnt.getCount());
1193       SwitchInsn->addCase(CaseVal, Block.getBlock());
1194 
1195       // If there was a fallthrough into this case, make sure to redirect it to
1196       // the end of the switch as well.
1197       if (Builder.GetInsertBlock()) {
1198         Builder.CreateBr(Block.getBlock());
1199         Builder.ClearInsertionPoint();
1200       }
1201       return;
1202     }
1203   }
1204 
1205   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1206   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1207   if (SwitchWeights)
1208     SwitchWeights->push_back(CaseCnt.getCount());
1209   SwitchInsn->addCase(CaseVal, CaseDest);
1210 
1211   // Recursively emitting the statement is acceptable, but is not wonderful for
1212   // code where we have many case statements nested together, i.e.:
1213   //  case 1:
1214   //    case 2:
1215   //      case 3: etc.
1216   // Handling this recursively will create a new block for each case statement
1217   // that falls through to the next case which is IR intensive.  It also causes
1218   // deep recursion which can run into stack depth limitations.  Handle
1219   // sequential non-range case statements specially.
1220   const CaseStmt *CurCase = &S;
1221   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1222 
1223   // Otherwise, iteratively add consecutive cases to this switch stmt.
1224   while (NextCase && NextCase->getRHS() == nullptr) {
1225     CurCase = NextCase;
1226     llvm::ConstantInt *CaseVal =
1227       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1228 
1229     CaseCnt = getPGORegionCounter(NextCase);
1230     if (SwitchWeights)
1231       SwitchWeights->push_back(CaseCnt.getCount());
1232     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1233       CaseDest = createBasicBlock("sw.bb");
1234       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1235     }
1236 
1237     SwitchInsn->addCase(CaseVal, CaseDest);
1238     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1239   }
1240 
1241   // Normal default recursion for non-cases.
1242   EmitStmt(CurCase->getSubStmt());
1243 }
1244 
1245 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1246   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1247   assert(DefaultBlock->empty() &&
1248          "EmitDefaultStmt: Default block already defined?");
1249 
1250   RegionCounter Cnt = getPGORegionCounter(&S);
1251   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1252 
1253   EmitStmt(S.getSubStmt());
1254 }
1255 
1256 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1257 /// constant value that is being switched on, see if we can dead code eliminate
1258 /// the body of the switch to a simple series of statements to emit.  Basically,
1259 /// on a switch (5) we want to find these statements:
1260 ///    case 5:
1261 ///      printf(...);    <--
1262 ///      ++i;            <--
1263 ///      break;
1264 ///
1265 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1266 /// transformation (for example, one of the elided statements contains a label
1267 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1268 /// should include statements after it (e.g. the printf() line is a substmt of
1269 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1270 /// statement, then return CSFC_Success.
1271 ///
1272 /// If Case is non-null, then we are looking for the specified case, checking
1273 /// that nothing we jump over contains labels.  If Case is null, then we found
1274 /// the case and are looking for the break.
1275 ///
1276 /// If the recursive walk actually finds our Case, then we set FoundCase to
1277 /// true.
1278 ///
1279 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1280 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1281                                             const SwitchCase *Case,
1282                                             bool &FoundCase,
1283                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1284   // If this is a null statement, just succeed.
1285   if (!S)
1286     return Case ? CSFC_Success : CSFC_FallThrough;
1287 
1288   // If this is the switchcase (case 4: or default) that we're looking for, then
1289   // we're in business.  Just add the substatement.
1290   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1291     if (S == Case) {
1292       FoundCase = true;
1293       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1294                                       ResultStmts);
1295     }
1296 
1297     // Otherwise, this is some other case or default statement, just ignore it.
1298     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1299                                     ResultStmts);
1300   }
1301 
1302   // If we are in the live part of the code and we found our break statement,
1303   // return a success!
1304   if (!Case && isa<BreakStmt>(S))
1305     return CSFC_Success;
1306 
1307   // If this is a switch statement, then it might contain the SwitchCase, the
1308   // break, or neither.
1309   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1310     // Handle this as two cases: we might be looking for the SwitchCase (if so
1311     // the skipped statements must be skippable) or we might already have it.
1312     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1313     if (Case) {
1314       // Keep track of whether we see a skipped declaration.  The code could be
1315       // using the declaration even if it is skipped, so we can't optimize out
1316       // the decl if the kept statements might refer to it.
1317       bool HadSkippedDecl = false;
1318 
1319       // If we're looking for the case, just see if we can skip each of the
1320       // substatements.
1321       for (; Case && I != E; ++I) {
1322         HadSkippedDecl |= isa<DeclStmt>(*I);
1323 
1324         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1325         case CSFC_Failure: return CSFC_Failure;
1326         case CSFC_Success:
1327           // A successful result means that either 1) that the statement doesn't
1328           // have the case and is skippable, or 2) does contain the case value
1329           // and also contains the break to exit the switch.  In the later case,
1330           // we just verify the rest of the statements are elidable.
1331           if (FoundCase) {
1332             // If we found the case and skipped declarations, we can't do the
1333             // optimization.
1334             if (HadSkippedDecl)
1335               return CSFC_Failure;
1336 
1337             for (++I; I != E; ++I)
1338               if (CodeGenFunction::ContainsLabel(*I, true))
1339                 return CSFC_Failure;
1340             return CSFC_Success;
1341           }
1342           break;
1343         case CSFC_FallThrough:
1344           // If we have a fallthrough condition, then we must have found the
1345           // case started to include statements.  Consider the rest of the
1346           // statements in the compound statement as candidates for inclusion.
1347           assert(FoundCase && "Didn't find case but returned fallthrough?");
1348           // We recursively found Case, so we're not looking for it anymore.
1349           Case = nullptr;
1350 
1351           // If we found the case and skipped declarations, we can't do the
1352           // optimization.
1353           if (HadSkippedDecl)
1354             return CSFC_Failure;
1355           break;
1356         }
1357       }
1358     }
1359 
1360     // If we have statements in our range, then we know that the statements are
1361     // live and need to be added to the set of statements we're tracking.
1362     for (; I != E; ++I) {
1363       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1364       case CSFC_Failure: return CSFC_Failure;
1365       case CSFC_FallThrough:
1366         // A fallthrough result means that the statement was simple and just
1367         // included in ResultStmt, keep adding them afterwards.
1368         break;
1369       case CSFC_Success:
1370         // A successful result means that we found the break statement and
1371         // stopped statement inclusion.  We just ensure that any leftover stmts
1372         // are skippable and return success ourselves.
1373         for (++I; I != E; ++I)
1374           if (CodeGenFunction::ContainsLabel(*I, true))
1375             return CSFC_Failure;
1376         return CSFC_Success;
1377       }
1378     }
1379 
1380     return Case ? CSFC_Success : CSFC_FallThrough;
1381   }
1382 
1383   // Okay, this is some other statement that we don't handle explicitly, like a
1384   // for statement or increment etc.  If we are skipping over this statement,
1385   // just verify it doesn't have labels, which would make it invalid to elide.
1386   if (Case) {
1387     if (CodeGenFunction::ContainsLabel(S, true))
1388       return CSFC_Failure;
1389     return CSFC_Success;
1390   }
1391 
1392   // Otherwise, we want to include this statement.  Everything is cool with that
1393   // so long as it doesn't contain a break out of the switch we're in.
1394   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1395 
1396   // Otherwise, everything is great.  Include the statement and tell the caller
1397   // that we fall through and include the next statement as well.
1398   ResultStmts.push_back(S);
1399   return CSFC_FallThrough;
1400 }
1401 
1402 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1403 /// then invoke CollectStatementsForCase to find the list of statements to emit
1404 /// for a switch on constant.  See the comment above CollectStatementsForCase
1405 /// for more details.
1406 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1407                                        const llvm::APSInt &ConstantCondValue,
1408                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1409                                        ASTContext &C,
1410                                        const SwitchCase *&ResultCase) {
1411   // First step, find the switch case that is being branched to.  We can do this
1412   // efficiently by scanning the SwitchCase list.
1413   const SwitchCase *Case = S.getSwitchCaseList();
1414   const DefaultStmt *DefaultCase = nullptr;
1415 
1416   for (; Case; Case = Case->getNextSwitchCase()) {
1417     // It's either a default or case.  Just remember the default statement in
1418     // case we're not jumping to any numbered cases.
1419     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1420       DefaultCase = DS;
1421       continue;
1422     }
1423 
1424     // Check to see if this case is the one we're looking for.
1425     const CaseStmt *CS = cast<CaseStmt>(Case);
1426     // Don't handle case ranges yet.
1427     if (CS->getRHS()) return false;
1428 
1429     // If we found our case, remember it as 'case'.
1430     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1431       break;
1432   }
1433 
1434   // If we didn't find a matching case, we use a default if it exists, or we
1435   // elide the whole switch body!
1436   if (!Case) {
1437     // It is safe to elide the body of the switch if it doesn't contain labels
1438     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1439     if (!DefaultCase)
1440       return !CodeGenFunction::ContainsLabel(&S);
1441     Case = DefaultCase;
1442   }
1443 
1444   // Ok, we know which case is being jumped to, try to collect all the
1445   // statements that follow it.  This can fail for a variety of reasons.  Also,
1446   // check to see that the recursive walk actually found our case statement.
1447   // Insane cases like this can fail to find it in the recursive walk since we
1448   // don't handle every stmt kind:
1449   // switch (4) {
1450   //   while (1) {
1451   //     case 4: ...
1452   bool FoundCase = false;
1453   ResultCase = Case;
1454   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1455                                   ResultStmts) != CSFC_Failure &&
1456          FoundCase;
1457 }
1458 
1459 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1460   // Handle nested switch statements.
1461   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1462   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1463   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1464 
1465   // See if we can constant fold the condition of the switch and therefore only
1466   // emit the live case statement (if any) of the switch.
1467   llvm::APSInt ConstantCondValue;
1468   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1469     SmallVector<const Stmt*, 4> CaseStmts;
1470     const SwitchCase *Case = nullptr;
1471     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1472                                    getContext(), Case)) {
1473       if (Case) {
1474         RegionCounter CaseCnt = getPGORegionCounter(Case);
1475         CaseCnt.beginRegion(Builder);
1476       }
1477       RunCleanupsScope ExecutedScope(*this);
1478 
1479       // Emit the condition variable if needed inside the entire cleanup scope
1480       // used by this special case for constant folded switches.
1481       if (S.getConditionVariable())
1482         EmitAutoVarDecl(*S.getConditionVariable());
1483 
1484       // At this point, we are no longer "within" a switch instance, so
1485       // we can temporarily enforce this to ensure that any embedded case
1486       // statements are not emitted.
1487       SwitchInsn = nullptr;
1488 
1489       // Okay, we can dead code eliminate everything except this case.  Emit the
1490       // specified series of statements and we're good.
1491       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1492         EmitStmt(CaseStmts[i]);
1493       RegionCounter ExitCnt = getPGORegionCounter(&S);
1494       ExitCnt.beginRegion(Builder);
1495 
1496       // Now we want to restore the saved switch instance so that nested
1497       // switches continue to function properly
1498       SwitchInsn = SavedSwitchInsn;
1499 
1500       return;
1501     }
1502   }
1503 
1504   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1505 
1506   RunCleanupsScope ConditionScope(*this);
1507   if (S.getConditionVariable())
1508     EmitAutoVarDecl(*S.getConditionVariable());
1509   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1510 
1511   // Create basic block to hold stuff that comes after switch
1512   // statement. We also need to create a default block now so that
1513   // explicit case ranges tests can have a place to jump to on
1514   // failure.
1515   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1516   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1517   if (PGO.haveRegionCounts()) {
1518     // Walk the SwitchCase list to find how many there are.
1519     uint64_t DefaultCount = 0;
1520     unsigned NumCases = 0;
1521     for (const SwitchCase *Case = S.getSwitchCaseList();
1522          Case;
1523          Case = Case->getNextSwitchCase()) {
1524       if (isa<DefaultStmt>(Case))
1525         DefaultCount = getPGORegionCounter(Case).getCount();
1526       NumCases += 1;
1527     }
1528     SwitchWeights = new SmallVector<uint64_t, 16>();
1529     SwitchWeights->reserve(NumCases);
1530     // The default needs to be first. We store the edge count, so we already
1531     // know the right weight.
1532     SwitchWeights->push_back(DefaultCount);
1533   }
1534   CaseRangeBlock = DefaultBlock;
1535 
1536   // Clear the insertion point to indicate we are in unreachable code.
1537   Builder.ClearInsertionPoint();
1538 
1539   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1540   // then reuse last ContinueBlock.
1541   JumpDest OuterContinue;
1542   if (!BreakContinueStack.empty())
1543     OuterContinue = BreakContinueStack.back().ContinueBlock;
1544 
1545   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1546 
1547   // Emit switch body.
1548   EmitStmt(S.getBody());
1549 
1550   BreakContinueStack.pop_back();
1551 
1552   // Update the default block in case explicit case range tests have
1553   // been chained on top.
1554   SwitchInsn->setDefaultDest(CaseRangeBlock);
1555 
1556   // If a default was never emitted:
1557   if (!DefaultBlock->getParent()) {
1558     // If we have cleanups, emit the default block so that there's a
1559     // place to jump through the cleanups from.
1560     if (ConditionScope.requiresCleanups()) {
1561       EmitBlock(DefaultBlock);
1562 
1563     // Otherwise, just forward the default block to the switch end.
1564     } else {
1565       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1566       delete DefaultBlock;
1567     }
1568   }
1569 
1570   ConditionScope.ForceCleanup();
1571 
1572   // Emit continuation.
1573   EmitBlock(SwitchExit.getBlock(), true);
1574   RegionCounter ExitCnt = getPGORegionCounter(&S);
1575   ExitCnt.beginRegion(Builder);
1576 
1577   if (SwitchWeights) {
1578     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1579            "switch weights do not match switch cases");
1580     // If there's only one jump destination there's no sense weighting it.
1581     if (SwitchWeights->size() > 1)
1582       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1583                               PGO.createBranchWeights(*SwitchWeights));
1584     delete SwitchWeights;
1585   }
1586   SwitchInsn = SavedSwitchInsn;
1587   SwitchWeights = SavedSwitchWeights;
1588   CaseRangeBlock = SavedCRBlock;
1589 }
1590 
1591 static std::string
1592 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1593                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1594   std::string Result;
1595 
1596   while (*Constraint) {
1597     switch (*Constraint) {
1598     default:
1599       Result += Target.convertConstraint(Constraint);
1600       break;
1601     // Ignore these
1602     case '*':
1603     case '?':
1604     case '!':
1605     case '=': // Will see this and the following in mult-alt constraints.
1606     case '+':
1607       break;
1608     case '#': // Ignore the rest of the constraint alternative.
1609       while (Constraint[1] && Constraint[1] != ',')
1610         Constraint++;
1611       break;
1612     case ',':
1613       Result += "|";
1614       break;
1615     case 'g':
1616       Result += "imr";
1617       break;
1618     case '[': {
1619       assert(OutCons &&
1620              "Must pass output names to constraints with a symbolic name");
1621       unsigned Index;
1622       bool result = Target.resolveSymbolicName(Constraint,
1623                                                &(*OutCons)[0],
1624                                                OutCons->size(), Index);
1625       assert(result && "Could not resolve symbolic name"); (void)result;
1626       Result += llvm::utostr(Index);
1627       break;
1628     }
1629     }
1630 
1631     Constraint++;
1632   }
1633 
1634   return Result;
1635 }
1636 
1637 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1638 /// as using a particular register add that as a constraint that will be used
1639 /// in this asm stmt.
1640 static std::string
1641 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1642                        const TargetInfo &Target, CodeGenModule &CGM,
1643                        const AsmStmt &Stmt) {
1644   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1645   if (!AsmDeclRef)
1646     return Constraint;
1647   const ValueDecl &Value = *AsmDeclRef->getDecl();
1648   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1649   if (!Variable)
1650     return Constraint;
1651   if (Variable->getStorageClass() != SC_Register)
1652     return Constraint;
1653   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1654   if (!Attr)
1655     return Constraint;
1656   StringRef Register = Attr->getLabel();
1657   assert(Target.isValidGCCRegisterName(Register));
1658   // We're using validateOutputConstraint here because we only care if
1659   // this is a register constraint.
1660   TargetInfo::ConstraintInfo Info(Constraint, "");
1661   if (Target.validateOutputConstraint(Info) &&
1662       !Info.allowsRegister()) {
1663     CGM.ErrorUnsupported(&Stmt, "__asm__");
1664     return Constraint;
1665   }
1666   // Canonicalize the register here before returning it.
1667   Register = Target.getNormalizedGCCRegisterName(Register);
1668   return "{" + Register.str() + "}";
1669 }
1670 
1671 llvm::Value*
1672 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1673                                     LValue InputValue, QualType InputType,
1674                                     std::string &ConstraintStr,
1675                                     SourceLocation Loc) {
1676   llvm::Value *Arg;
1677   if (Info.allowsRegister() || !Info.allowsMemory()) {
1678     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1679       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1680     } else {
1681       llvm::Type *Ty = ConvertType(InputType);
1682       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1683       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1684         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1685         Ty = llvm::PointerType::getUnqual(Ty);
1686 
1687         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1688                                                        Ty));
1689       } else {
1690         Arg = InputValue.getAddress();
1691         ConstraintStr += '*';
1692       }
1693     }
1694   } else {
1695     Arg = InputValue.getAddress();
1696     ConstraintStr += '*';
1697   }
1698 
1699   return Arg;
1700 }
1701 
1702 llvm::Value* CodeGenFunction::EmitAsmInput(
1703                                          const TargetInfo::ConstraintInfo &Info,
1704                                            const Expr *InputExpr,
1705                                            std::string &ConstraintStr) {
1706   if (Info.allowsRegister() || !Info.allowsMemory())
1707     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1708       return EmitScalarExpr(InputExpr);
1709 
1710   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1711   LValue Dest = EmitLValue(InputExpr);
1712   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1713                             InputExpr->getExprLoc());
1714 }
1715 
1716 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1717 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1718 /// integers which are the source locations of the start of each line in the
1719 /// asm.
1720 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1721                                       CodeGenFunction &CGF) {
1722   SmallVector<llvm::Value *, 8> Locs;
1723   // Add the location of the first line to the MDNode.
1724   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1725                                         Str->getLocStart().getRawEncoding()));
1726   StringRef StrVal = Str->getString();
1727   if (!StrVal.empty()) {
1728     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1729     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1730 
1731     // Add the location of the start of each subsequent line of the asm to the
1732     // MDNode.
1733     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1734       if (StrVal[i] != '\n') continue;
1735       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1736                                                       CGF.getTarget());
1737       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1738                                             LineLoc.getRawEncoding()));
1739     }
1740   }
1741 
1742   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1743 }
1744 
1745 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1746   // Assemble the final asm string.
1747   std::string AsmString = S.generateAsmString(getContext());
1748 
1749   // Get all the output and input constraints together.
1750   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1751   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1752 
1753   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1754     StringRef Name;
1755     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1756       Name = GAS->getOutputName(i);
1757     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1758     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1759     assert(IsValid && "Failed to parse output constraint");
1760     OutputConstraintInfos.push_back(Info);
1761   }
1762 
1763   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1764     StringRef Name;
1765     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1766       Name = GAS->getInputName(i);
1767     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1768     bool IsValid =
1769       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1770                                           S.getNumOutputs(), Info);
1771     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1772     InputConstraintInfos.push_back(Info);
1773   }
1774 
1775   std::string Constraints;
1776 
1777   std::vector<LValue> ResultRegDests;
1778   std::vector<QualType> ResultRegQualTys;
1779   std::vector<llvm::Type *> ResultRegTypes;
1780   std::vector<llvm::Type *> ResultTruncRegTypes;
1781   std::vector<llvm::Type *> ArgTypes;
1782   std::vector<llvm::Value*> Args;
1783 
1784   // Keep track of inout constraints.
1785   std::string InOutConstraints;
1786   std::vector<llvm::Value*> InOutArgs;
1787   std::vector<llvm::Type*> InOutArgTypes;
1788 
1789   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1790     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1791 
1792     // Simplify the output constraint.
1793     std::string OutputConstraint(S.getOutputConstraint(i));
1794     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1795                                           getTarget());
1796 
1797     const Expr *OutExpr = S.getOutputExpr(i);
1798     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1799 
1800     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1801                                               getTarget(), CGM, S);
1802 
1803     LValue Dest = EmitLValue(OutExpr);
1804     if (!Constraints.empty())
1805       Constraints += ',';
1806 
1807     // If this is a register output, then make the inline asm return it
1808     // by-value.  If this is a memory result, return the value by-reference.
1809     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1810       Constraints += "=" + OutputConstraint;
1811       ResultRegQualTys.push_back(OutExpr->getType());
1812       ResultRegDests.push_back(Dest);
1813       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1814       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1815 
1816       // If this output is tied to an input, and if the input is larger, then
1817       // we need to set the actual result type of the inline asm node to be the
1818       // same as the input type.
1819       if (Info.hasMatchingInput()) {
1820         unsigned InputNo;
1821         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1822           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1823           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1824             break;
1825         }
1826         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1827 
1828         QualType InputTy = S.getInputExpr(InputNo)->getType();
1829         QualType OutputType = OutExpr->getType();
1830 
1831         uint64_t InputSize = getContext().getTypeSize(InputTy);
1832         if (getContext().getTypeSize(OutputType) < InputSize) {
1833           // Form the asm to return the value as a larger integer or fp type.
1834           ResultRegTypes.back() = ConvertType(InputTy);
1835         }
1836       }
1837       if (llvm::Type* AdjTy =
1838             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1839                                                  ResultRegTypes.back()))
1840         ResultRegTypes.back() = AdjTy;
1841       else {
1842         CGM.getDiags().Report(S.getAsmLoc(),
1843                               diag::err_asm_invalid_type_in_input)
1844             << OutExpr->getType() << OutputConstraint;
1845       }
1846     } else {
1847       ArgTypes.push_back(Dest.getAddress()->getType());
1848       Args.push_back(Dest.getAddress());
1849       Constraints += "=*";
1850       Constraints += OutputConstraint;
1851     }
1852 
1853     if (Info.isReadWrite()) {
1854       InOutConstraints += ',';
1855 
1856       const Expr *InputExpr = S.getOutputExpr(i);
1857       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1858                                             InOutConstraints,
1859                                             InputExpr->getExprLoc());
1860 
1861       if (llvm::Type* AdjTy =
1862           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1863                                                Arg->getType()))
1864         Arg = Builder.CreateBitCast(Arg, AdjTy);
1865 
1866       if (Info.allowsRegister())
1867         InOutConstraints += llvm::utostr(i);
1868       else
1869         InOutConstraints += OutputConstraint;
1870 
1871       InOutArgTypes.push_back(Arg->getType());
1872       InOutArgs.push_back(Arg);
1873     }
1874   }
1875 
1876   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1877 
1878   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1879     const Expr *InputExpr = S.getInputExpr(i);
1880 
1881     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1882 
1883     if (!Constraints.empty())
1884       Constraints += ',';
1885 
1886     // Simplify the input constraint.
1887     std::string InputConstraint(S.getInputConstraint(i));
1888     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1889                                          &OutputConstraintInfos);
1890 
1891     InputConstraint =
1892       AddVariableConstraints(InputConstraint,
1893                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1894                             getTarget(), CGM, S);
1895 
1896     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1897 
1898     // If this input argument is tied to a larger output result, extend the
1899     // input to be the same size as the output.  The LLVM backend wants to see
1900     // the input and output of a matching constraint be the same size.  Note
1901     // that GCC does not define what the top bits are here.  We use zext because
1902     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1903     if (Info.hasTiedOperand()) {
1904       unsigned Output = Info.getTiedOperand();
1905       QualType OutputType = S.getOutputExpr(Output)->getType();
1906       QualType InputTy = InputExpr->getType();
1907 
1908       if (getContext().getTypeSize(OutputType) >
1909           getContext().getTypeSize(InputTy)) {
1910         // Use ptrtoint as appropriate so that we can do our extension.
1911         if (isa<llvm::PointerType>(Arg->getType()))
1912           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1913         llvm::Type *OutputTy = ConvertType(OutputType);
1914         if (isa<llvm::IntegerType>(OutputTy))
1915           Arg = Builder.CreateZExt(Arg, OutputTy);
1916         else if (isa<llvm::PointerType>(OutputTy))
1917           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1918         else {
1919           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1920           Arg = Builder.CreateFPExt(Arg, OutputTy);
1921         }
1922       }
1923     }
1924     if (llvm::Type* AdjTy =
1925               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1926                                                    Arg->getType()))
1927       Arg = Builder.CreateBitCast(Arg, AdjTy);
1928     else
1929       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1930           << InputExpr->getType() << InputConstraint;
1931 
1932     ArgTypes.push_back(Arg->getType());
1933     Args.push_back(Arg);
1934     Constraints += InputConstraint;
1935   }
1936 
1937   // Append the "input" part of inout constraints last.
1938   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1939     ArgTypes.push_back(InOutArgTypes[i]);
1940     Args.push_back(InOutArgs[i]);
1941   }
1942   Constraints += InOutConstraints;
1943 
1944   // Clobbers
1945   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1946     StringRef Clobber = S.getClobber(i);
1947 
1948     if (Clobber != "memory" && Clobber != "cc")
1949     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1950 
1951     if (i != 0 || NumConstraints != 0)
1952       Constraints += ',';
1953 
1954     Constraints += "~{";
1955     Constraints += Clobber;
1956     Constraints += '}';
1957   }
1958 
1959   // Add machine specific clobbers
1960   std::string MachineClobbers = getTarget().getClobbers();
1961   if (!MachineClobbers.empty()) {
1962     if (!Constraints.empty())
1963       Constraints += ',';
1964     Constraints += MachineClobbers;
1965   }
1966 
1967   llvm::Type *ResultType;
1968   if (ResultRegTypes.empty())
1969     ResultType = VoidTy;
1970   else if (ResultRegTypes.size() == 1)
1971     ResultType = ResultRegTypes[0];
1972   else
1973     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1974 
1975   llvm::FunctionType *FTy =
1976     llvm::FunctionType::get(ResultType, ArgTypes, false);
1977 
1978   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1979   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1980     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1981   llvm::InlineAsm *IA =
1982     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1983                          /* IsAlignStack */ false, AsmDialect);
1984   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1985   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1986                        llvm::Attribute::NoUnwind);
1987 
1988   // Slap the source location of the inline asm into a !srcloc metadata on the
1989   // call.  FIXME: Handle metadata for MS-style inline asms.
1990   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1991     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1992                                                    *this));
1993 
1994   // Extract all of the register value results from the asm.
1995   std::vector<llvm::Value*> RegResults;
1996   if (ResultRegTypes.size() == 1) {
1997     RegResults.push_back(Result);
1998   } else {
1999     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2000       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2001       RegResults.push_back(Tmp);
2002     }
2003   }
2004 
2005   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2006     llvm::Value *Tmp = RegResults[i];
2007 
2008     // If the result type of the LLVM IR asm doesn't match the result type of
2009     // the expression, do the conversion.
2010     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2011       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2012 
2013       // Truncate the integer result to the right size, note that TruncTy can be
2014       // a pointer.
2015       if (TruncTy->isFloatingPointTy())
2016         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2017       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2018         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2019         Tmp = Builder.CreateTrunc(Tmp,
2020                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2021         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2022       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2023         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2024         Tmp = Builder.CreatePtrToInt(Tmp,
2025                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2026         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2027       } else if (TruncTy->isIntegerTy()) {
2028         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2029       } else if (TruncTy->isVectorTy()) {
2030         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2031       }
2032     }
2033 
2034     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2035   }
2036 }
2037 
2038 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
2039   const RecordDecl *RD = S.getCapturedRecordDecl();
2040   QualType RecordTy = CGF.getContext().getRecordType(RD);
2041 
2042   // Initialize the captured struct.
2043   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
2044                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2045 
2046   RecordDecl::field_iterator CurField = RD->field_begin();
2047   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2048                                            E = S.capture_init_end();
2049        I != E; ++I, ++CurField) {
2050     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
2051     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
2052   }
2053 
2054   return SlotLV;
2055 }
2056 
2057 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) {
2058   for (auto &C : S.captures()) {
2059     if (C.capturesVariable()) {
2060       QualType QTy;
2061       auto VD = C.getCapturedVar();
2062       if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
2063         QTy = PVD->getOriginalType();
2064       else
2065         QTy = VD->getType();
2066       if (QTy->isVariablyModifiedType()) {
2067         CGF.EmitVariablyModifiedType(QTy);
2068       }
2069     }
2070   }
2071 }
2072 
2073 /// Generate an outlined function for the body of a CapturedStmt, store any
2074 /// captured variables into the captured struct, and call the outlined function.
2075 llvm::Function *
2076 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2077   LValue CapStruct = InitCapturedStruct(*this, S);
2078 
2079   // Emit the CapturedDecl
2080   CodeGenFunction CGF(CGM, true);
2081   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2082   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2083   delete CGF.CapturedStmtInfo;
2084 
2085   // Emit call to the helper function.
2086   EmitCallOrInvoke(F, CapStruct.getAddress());
2087 
2088   return F;
2089 }
2090 
2091 llvm::Value *
2092 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2093   LValue CapStruct = InitCapturedStruct(*this, S);
2094   return CapStruct.getAddress();
2095 }
2096 
2097 /// Creates the outlined function for a CapturedStmt.
2098 llvm::Function *
2099 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2100   assert(CapturedStmtInfo &&
2101     "CapturedStmtInfo should be set when generating the captured function");
2102   const CapturedDecl *CD = S.getCapturedDecl();
2103   const RecordDecl *RD = S.getCapturedRecordDecl();
2104   SourceLocation Loc = S.getLocStart();
2105   assert(CD->hasBody() && "missing CapturedDecl body");
2106 
2107   // Build the argument list.
2108   ASTContext &Ctx = CGM.getContext();
2109   FunctionArgList Args;
2110   Args.append(CD->param_begin(), CD->param_end());
2111 
2112   // Create the function declaration.
2113   FunctionType::ExtInfo ExtInfo;
2114   const CGFunctionInfo &FuncInfo =
2115       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2116                                                     /*IsVariadic=*/false);
2117   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2118 
2119   llvm::Function *F =
2120     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2121                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2122   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2123 
2124   // Generate the function.
2125   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2126                 CD->getLocation(),
2127                 CD->getBody()->getLocStart());
2128   // Set the context parameter in CapturedStmtInfo.
2129   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2130   assert(DeclPtr && "missing context parameter for CapturedStmt");
2131   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2132 
2133   // Initialize variable-length arrays.
2134   InitVLACaptures(*this, S);
2135 
2136   // If 'this' is captured, load it into CXXThisValue.
2137   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2138     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2139     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2140                                            Ctx.getTagDeclType(RD));
2141     LValue ThisLValue = EmitLValueForField(LV, FD);
2142     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2143   }
2144 
2145   PGO.assignRegionCounters(CD, F);
2146   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2147   FinishFunction(CD->getBodyRBrace());
2148   PGO.emitInstrumentationData();
2149   PGO.destroyRegionCounters();
2150 
2151   return F;
2152 }
2153