1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::OMPParallelDirectiveClass: 177 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 178 break; 179 case Stmt::OMPSimdDirectiveClass: 180 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 181 break; 182 case Stmt::OMPForDirectiveClass: 183 EmitOMPForDirective(cast<OMPForDirective>(*S)); 184 break; 185 case Stmt::OMPSectionsDirectiveClass: 186 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 187 break; 188 case Stmt::OMPSectionDirectiveClass: 189 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 190 break; 191 case Stmt::OMPSingleDirectiveClass: 192 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 193 break; 194 } 195 } 196 197 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 198 switch (S->getStmtClass()) { 199 default: return false; 200 case Stmt::NullStmtClass: break; 201 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 202 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 203 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 204 case Stmt::AttributedStmtClass: 205 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 206 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 207 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 208 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 209 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 210 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 211 } 212 213 return true; 214 } 215 216 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 217 /// this captures the expression result of the last sub-statement and returns it 218 /// (for use by the statement expression extension). 219 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 220 AggValueSlot AggSlot) { 221 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 222 "LLVM IR generation of compound statement ('{}')"); 223 224 // Keep track of the current cleanup stack depth, including debug scopes. 225 LexicalScope Scope(*this, S.getSourceRange()); 226 227 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 228 } 229 230 llvm::Value* 231 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 232 bool GetLast, 233 AggValueSlot AggSlot) { 234 235 for (CompoundStmt::const_body_iterator I = S.body_begin(), 236 E = S.body_end()-GetLast; I != E; ++I) 237 EmitStmt(*I); 238 239 llvm::Value *RetAlloca = nullptr; 240 if (GetLast) { 241 // We have to special case labels here. They are statements, but when put 242 // at the end of a statement expression, they yield the value of their 243 // subexpression. Handle this by walking through all labels we encounter, 244 // emitting them before we evaluate the subexpr. 245 const Stmt *LastStmt = S.body_back(); 246 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 247 EmitLabel(LS->getDecl()); 248 LastStmt = LS->getSubStmt(); 249 } 250 251 EnsureInsertPoint(); 252 253 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 254 if (hasAggregateEvaluationKind(ExprTy)) { 255 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 256 } else { 257 // We can't return an RValue here because there might be cleanups at 258 // the end of the StmtExpr. Because of that, we have to emit the result 259 // here into a temporary alloca. 260 RetAlloca = CreateMemTemp(ExprTy); 261 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 262 /*IsInit*/false); 263 } 264 265 } 266 267 return RetAlloca; 268 } 269 270 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 271 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 272 273 // If there is a cleanup stack, then we it isn't worth trying to 274 // simplify this block (we would need to remove it from the scope map 275 // and cleanup entry). 276 if (!EHStack.empty()) 277 return; 278 279 // Can only simplify direct branches. 280 if (!BI || !BI->isUnconditional()) 281 return; 282 283 // Can only simplify empty blocks. 284 if (BI != BB->begin()) 285 return; 286 287 BB->replaceAllUsesWith(BI->getSuccessor(0)); 288 BI->eraseFromParent(); 289 BB->eraseFromParent(); 290 } 291 292 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 293 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 294 295 // Fall out of the current block (if necessary). 296 EmitBranch(BB); 297 298 if (IsFinished && BB->use_empty()) { 299 delete BB; 300 return; 301 } 302 303 // Place the block after the current block, if possible, or else at 304 // the end of the function. 305 if (CurBB && CurBB->getParent()) 306 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 307 else 308 CurFn->getBasicBlockList().push_back(BB); 309 Builder.SetInsertPoint(BB); 310 } 311 312 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 313 // Emit a branch from the current block to the target one if this 314 // was a real block. If this was just a fall-through block after a 315 // terminator, don't emit it. 316 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 317 318 if (!CurBB || CurBB->getTerminator()) { 319 // If there is no insert point or the previous block is already 320 // terminated, don't touch it. 321 } else { 322 // Otherwise, create a fall-through branch. 323 Builder.CreateBr(Target); 324 } 325 326 Builder.ClearInsertionPoint(); 327 } 328 329 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 330 bool inserted = false; 331 for (llvm::User *u : block->users()) { 332 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 333 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 334 inserted = true; 335 break; 336 } 337 } 338 339 if (!inserted) 340 CurFn->getBasicBlockList().push_back(block); 341 342 Builder.SetInsertPoint(block); 343 } 344 345 CodeGenFunction::JumpDest 346 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 347 JumpDest &Dest = LabelMap[D]; 348 if (Dest.isValid()) return Dest; 349 350 // Create, but don't insert, the new block. 351 Dest = JumpDest(createBasicBlock(D->getName()), 352 EHScopeStack::stable_iterator::invalid(), 353 NextCleanupDestIndex++); 354 return Dest; 355 } 356 357 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 358 // Add this label to the current lexical scope if we're within any 359 // normal cleanups. Jumps "in" to this label --- when permitted by 360 // the language --- may need to be routed around such cleanups. 361 if (EHStack.hasNormalCleanups() && CurLexicalScope) 362 CurLexicalScope->addLabel(D); 363 364 JumpDest &Dest = LabelMap[D]; 365 366 // If we didn't need a forward reference to this label, just go 367 // ahead and create a destination at the current scope. 368 if (!Dest.isValid()) { 369 Dest = getJumpDestInCurrentScope(D->getName()); 370 371 // Otherwise, we need to give this label a target depth and remove 372 // it from the branch-fixups list. 373 } else { 374 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 375 Dest.setScopeDepth(EHStack.stable_begin()); 376 ResolveBranchFixups(Dest.getBlock()); 377 } 378 379 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 380 EmitBlock(Dest.getBlock()); 381 Cnt.beginRegion(Builder); 382 } 383 384 /// Change the cleanup scope of the labels in this lexical scope to 385 /// match the scope of the enclosing context. 386 void CodeGenFunction::LexicalScope::rescopeLabels() { 387 assert(!Labels.empty()); 388 EHScopeStack::stable_iterator innermostScope 389 = CGF.EHStack.getInnermostNormalCleanup(); 390 391 // Change the scope depth of all the labels. 392 for (SmallVectorImpl<const LabelDecl*>::const_iterator 393 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 394 assert(CGF.LabelMap.count(*i)); 395 JumpDest &dest = CGF.LabelMap.find(*i)->second; 396 assert(dest.getScopeDepth().isValid()); 397 assert(innermostScope.encloses(dest.getScopeDepth())); 398 dest.setScopeDepth(innermostScope); 399 } 400 401 // Reparent the labels if the new scope also has cleanups. 402 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 403 ParentScope->Labels.append(Labels.begin(), Labels.end()); 404 } 405 } 406 407 408 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 409 EmitLabel(S.getDecl()); 410 EmitStmt(S.getSubStmt()); 411 } 412 413 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 414 const Stmt *SubStmt = S.getSubStmt(); 415 switch (SubStmt->getStmtClass()) { 416 case Stmt::DoStmtClass: 417 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 418 break; 419 case Stmt::ForStmtClass: 420 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 421 break; 422 case Stmt::WhileStmtClass: 423 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 424 break; 425 case Stmt::CXXForRangeStmtClass: 426 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 427 break; 428 default: 429 EmitStmt(SubStmt); 430 } 431 } 432 433 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 434 // If this code is reachable then emit a stop point (if generating 435 // debug info). We have to do this ourselves because we are on the 436 // "simple" statement path. 437 if (HaveInsertPoint()) 438 EmitStopPoint(&S); 439 440 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 441 } 442 443 444 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 445 if (const LabelDecl *Target = S.getConstantTarget()) { 446 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 447 return; 448 } 449 450 // Ensure that we have an i8* for our PHI node. 451 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 452 Int8PtrTy, "addr"); 453 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 454 455 // Get the basic block for the indirect goto. 456 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 457 458 // The first instruction in the block has to be the PHI for the switch dest, 459 // add an entry for this branch. 460 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 461 462 EmitBranch(IndGotoBB); 463 } 464 465 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 466 // C99 6.8.4.1: The first substatement is executed if the expression compares 467 // unequal to 0. The condition must be a scalar type. 468 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 469 RegionCounter Cnt = getPGORegionCounter(&S); 470 471 if (S.getConditionVariable()) 472 EmitAutoVarDecl(*S.getConditionVariable()); 473 474 // If the condition constant folds and can be elided, try to avoid emitting 475 // the condition and the dead arm of the if/else. 476 bool CondConstant; 477 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 478 // Figure out which block (then or else) is executed. 479 const Stmt *Executed = S.getThen(); 480 const Stmt *Skipped = S.getElse(); 481 if (!CondConstant) // Condition false? 482 std::swap(Executed, Skipped); 483 484 // If the skipped block has no labels in it, just emit the executed block. 485 // This avoids emitting dead code and simplifies the CFG substantially. 486 if (!ContainsLabel(Skipped)) { 487 if (CondConstant) 488 Cnt.beginRegion(Builder); 489 if (Executed) { 490 RunCleanupsScope ExecutedScope(*this); 491 EmitStmt(Executed); 492 } 493 return; 494 } 495 } 496 497 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 498 // the conditional branch. 499 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 500 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 501 llvm::BasicBlock *ElseBlock = ContBlock; 502 if (S.getElse()) 503 ElseBlock = createBasicBlock("if.else"); 504 505 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 506 507 // Emit the 'then' code. 508 EmitBlock(ThenBlock); 509 Cnt.beginRegion(Builder); 510 { 511 RunCleanupsScope ThenScope(*this); 512 EmitStmt(S.getThen()); 513 } 514 EmitBranch(ContBlock); 515 516 // Emit the 'else' code if present. 517 if (const Stmt *Else = S.getElse()) { 518 // There is no need to emit line number for unconditional branch. 519 if (getDebugInfo()) 520 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 521 EmitBlock(ElseBlock); 522 { 523 RunCleanupsScope ElseScope(*this); 524 EmitStmt(Else); 525 } 526 // There is no need to emit line number for unconditional branch. 527 if (getDebugInfo()) 528 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 529 EmitBranch(ContBlock); 530 } 531 532 // Emit the continuation block for code after the if. 533 EmitBlock(ContBlock, true); 534 } 535 536 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 537 llvm::BranchInst *CondBr, 538 const ArrayRef<const Attr *> &Attrs) { 539 // Return if there are no hints. 540 if (Attrs.empty()) 541 return; 542 543 // Add vectorize and unroll hints to the metadata on the conditional branch. 544 SmallVector<llvm::Value *, 2> Metadata(1); 545 for (const auto *Attr : Attrs) { 546 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 547 548 // Skip non loop hint attributes 549 if (!LH) 550 continue; 551 552 LoopHintAttr::OptionType Option = LH->getOption(); 553 int ValueInt = LH->getValue(); 554 555 const char *MetadataName; 556 switch (Option) { 557 case LoopHintAttr::Vectorize: 558 case LoopHintAttr::VectorizeWidth: 559 MetadataName = "llvm.loop.vectorize.width"; 560 break; 561 case LoopHintAttr::Interleave: 562 case LoopHintAttr::InterleaveCount: 563 MetadataName = "llvm.loop.vectorize.unroll"; 564 break; 565 case LoopHintAttr::Unroll: 566 MetadataName = "llvm.loop.unroll.enable"; 567 break; 568 case LoopHintAttr::UnrollCount: 569 MetadataName = "llvm.loop.unroll.count"; 570 break; 571 } 572 573 llvm::Value *Value; 574 llvm::MDString *Name; 575 switch (Option) { 576 case LoopHintAttr::Vectorize: 577 case LoopHintAttr::Interleave: 578 if (ValueInt == 1) { 579 // FIXME: In the future I will modifiy the behavior of the metadata 580 // so we can enable/disable vectorization and interleaving separately. 581 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 582 Value = Builder.getTrue(); 583 break; 584 } 585 // Vectorization/interleaving is disabled, set width/count to 1. 586 ValueInt = 1; 587 // Fallthrough. 588 case LoopHintAttr::VectorizeWidth: 589 case LoopHintAttr::InterleaveCount: 590 Name = llvm::MDString::get(Context, MetadataName); 591 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 592 break; 593 case LoopHintAttr::Unroll: 594 Name = llvm::MDString::get(Context, MetadataName); 595 Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue(); 596 break; 597 case LoopHintAttr::UnrollCount: 598 Name = llvm::MDString::get(Context, MetadataName); 599 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 600 break; 601 } 602 603 SmallVector<llvm::Value *, 2> OpValues; 604 OpValues.push_back(Name); 605 OpValues.push_back(Value); 606 607 // Set or overwrite metadata indicated by Name. 608 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 609 } 610 611 if (!Metadata.empty()) { 612 // Add llvm.loop MDNode to CondBr. 613 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 614 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 615 616 CondBr->setMetadata("llvm.loop", LoopID); 617 } 618 } 619 620 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 621 const ArrayRef<const Attr *> &WhileAttrs) { 622 RegionCounter Cnt = getPGORegionCounter(&S); 623 624 // Emit the header for the loop, which will also become 625 // the continue target. 626 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 627 EmitBlock(LoopHeader.getBlock()); 628 629 LoopStack.push(LoopHeader.getBlock()); 630 631 // Create an exit block for when the condition fails, which will 632 // also become the break target. 633 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 634 635 // Store the blocks to use for break and continue. 636 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 637 638 // C++ [stmt.while]p2: 639 // When the condition of a while statement is a declaration, the 640 // scope of the variable that is declared extends from its point 641 // of declaration (3.3.2) to the end of the while statement. 642 // [...] 643 // The object created in a condition is destroyed and created 644 // with each iteration of the loop. 645 RunCleanupsScope ConditionScope(*this); 646 647 if (S.getConditionVariable()) 648 EmitAutoVarDecl(*S.getConditionVariable()); 649 650 // Evaluate the conditional in the while header. C99 6.8.5.1: The 651 // evaluation of the controlling expression takes place before each 652 // execution of the loop body. 653 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 654 655 // while(1) is common, avoid extra exit blocks. Be sure 656 // to correctly handle break/continue though. 657 bool EmitBoolCondBranch = true; 658 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 659 if (C->isOne()) 660 EmitBoolCondBranch = false; 661 662 // As long as the condition is true, go to the loop body. 663 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 664 if (EmitBoolCondBranch) { 665 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 666 if (ConditionScope.requiresCleanups()) 667 ExitBlock = createBasicBlock("while.exit"); 668 llvm::BranchInst *CondBr = 669 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 670 PGO.createLoopWeights(S.getCond(), Cnt)); 671 672 if (ExitBlock != LoopExit.getBlock()) { 673 EmitBlock(ExitBlock); 674 EmitBranchThroughCleanup(LoopExit); 675 } 676 677 // Attach metadata to loop body conditional branch. 678 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 679 } 680 681 // Emit the loop body. We have to emit this in a cleanup scope 682 // because it might be a singleton DeclStmt. 683 { 684 RunCleanupsScope BodyScope(*this); 685 EmitBlock(LoopBody); 686 Cnt.beginRegion(Builder); 687 EmitStmt(S.getBody()); 688 } 689 690 BreakContinueStack.pop_back(); 691 692 // Immediately force cleanup. 693 ConditionScope.ForceCleanup(); 694 695 // Branch to the loop header again. 696 EmitBranch(LoopHeader.getBlock()); 697 698 LoopStack.pop(); 699 700 // Emit the exit block. 701 EmitBlock(LoopExit.getBlock(), true); 702 703 // The LoopHeader typically is just a branch if we skipped emitting 704 // a branch, try to erase it. 705 if (!EmitBoolCondBranch) 706 SimplifyForwardingBlocks(LoopHeader.getBlock()); 707 } 708 709 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 710 const ArrayRef<const Attr *> &DoAttrs) { 711 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 712 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 713 714 RegionCounter Cnt = getPGORegionCounter(&S); 715 716 // Store the blocks to use for break and continue. 717 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 718 719 // Emit the body of the loop. 720 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 721 722 LoopStack.push(LoopBody); 723 724 EmitBlockWithFallThrough(LoopBody, Cnt); 725 { 726 RunCleanupsScope BodyScope(*this); 727 EmitStmt(S.getBody()); 728 } 729 730 EmitBlock(LoopCond.getBlock()); 731 732 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 733 // after each execution of the loop body." 734 735 // Evaluate the conditional in the while header. 736 // C99 6.8.5p2/p4: The first substatement is executed if the expression 737 // compares unequal to 0. The condition must be a scalar type. 738 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 739 740 BreakContinueStack.pop_back(); 741 742 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 743 // to correctly handle break/continue though. 744 bool EmitBoolCondBranch = true; 745 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 746 if (C->isZero()) 747 EmitBoolCondBranch = false; 748 749 // As long as the condition is true, iterate the loop. 750 if (EmitBoolCondBranch) { 751 llvm::BranchInst *CondBr = 752 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 753 PGO.createLoopWeights(S.getCond(), Cnt)); 754 755 // Attach metadata to loop body conditional branch. 756 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 757 } 758 759 LoopStack.pop(); 760 761 // Emit the exit block. 762 EmitBlock(LoopExit.getBlock()); 763 764 // The DoCond block typically is just a branch if we skipped 765 // emitting a branch, try to erase it. 766 if (!EmitBoolCondBranch) 767 SimplifyForwardingBlocks(LoopCond.getBlock()); 768 } 769 770 void CodeGenFunction::EmitForStmt(const ForStmt &S, 771 const ArrayRef<const Attr *> &ForAttrs) { 772 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 773 774 RunCleanupsScope ForScope(*this); 775 776 CGDebugInfo *DI = getDebugInfo(); 777 if (DI) 778 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 779 780 // Evaluate the first part before the loop. 781 if (S.getInit()) 782 EmitStmt(S.getInit()); 783 784 RegionCounter Cnt = getPGORegionCounter(&S); 785 786 // Start the loop with a block that tests the condition. 787 // If there's an increment, the continue scope will be overwritten 788 // later. 789 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 790 llvm::BasicBlock *CondBlock = Continue.getBlock(); 791 EmitBlock(CondBlock); 792 793 LoopStack.push(CondBlock); 794 795 // If the for loop doesn't have an increment we can just use the 796 // condition as the continue block. Otherwise we'll need to create 797 // a block for it (in the current scope, i.e. in the scope of the 798 // condition), and that we will become our continue block. 799 if (S.getInc()) 800 Continue = getJumpDestInCurrentScope("for.inc"); 801 802 // Store the blocks to use for break and continue. 803 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 804 805 // Create a cleanup scope for the condition variable cleanups. 806 RunCleanupsScope ConditionScope(*this); 807 808 if (S.getCond()) { 809 // If the for statement has a condition scope, emit the local variable 810 // declaration. 811 if (S.getConditionVariable()) { 812 EmitAutoVarDecl(*S.getConditionVariable()); 813 } 814 815 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 816 // If there are any cleanups between here and the loop-exit scope, 817 // create a block to stage a loop exit along. 818 if (ForScope.requiresCleanups()) 819 ExitBlock = createBasicBlock("for.cond.cleanup"); 820 821 // As long as the condition is true, iterate the loop. 822 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 823 824 // C99 6.8.5p2/p4: The first substatement is executed if the expression 825 // compares unequal to 0. The condition must be a scalar type. 826 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 827 llvm::BranchInst *CondBr = 828 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 829 PGO.createLoopWeights(S.getCond(), Cnt)); 830 831 // Attach metadata to loop body conditional branch. 832 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 833 834 if (ExitBlock != LoopExit.getBlock()) { 835 EmitBlock(ExitBlock); 836 EmitBranchThroughCleanup(LoopExit); 837 } 838 839 EmitBlock(ForBody); 840 } else { 841 // Treat it as a non-zero constant. Don't even create a new block for the 842 // body, just fall into it. 843 } 844 Cnt.beginRegion(Builder); 845 846 { 847 // Create a separate cleanup scope for the body, in case it is not 848 // a compound statement. 849 RunCleanupsScope BodyScope(*this); 850 EmitStmt(S.getBody()); 851 } 852 853 // If there is an increment, emit it next. 854 if (S.getInc()) { 855 EmitBlock(Continue.getBlock()); 856 EmitStmt(S.getInc()); 857 } 858 859 BreakContinueStack.pop_back(); 860 861 ConditionScope.ForceCleanup(); 862 EmitBranch(CondBlock); 863 864 ForScope.ForceCleanup(); 865 866 if (DI) 867 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 868 869 LoopStack.pop(); 870 871 // Emit the fall-through block. 872 EmitBlock(LoopExit.getBlock(), true); 873 } 874 875 void 876 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 877 const ArrayRef<const Attr *> &ForAttrs) { 878 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 879 880 RunCleanupsScope ForScope(*this); 881 882 CGDebugInfo *DI = getDebugInfo(); 883 if (DI) 884 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 885 886 // Evaluate the first pieces before the loop. 887 EmitStmt(S.getRangeStmt()); 888 EmitStmt(S.getBeginEndStmt()); 889 890 RegionCounter Cnt = getPGORegionCounter(&S); 891 892 // Start the loop with a block that tests the condition. 893 // If there's an increment, the continue scope will be overwritten 894 // later. 895 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 896 EmitBlock(CondBlock); 897 898 LoopStack.push(CondBlock); 899 900 // If there are any cleanups between here and the loop-exit scope, 901 // create a block to stage a loop exit along. 902 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 903 if (ForScope.requiresCleanups()) 904 ExitBlock = createBasicBlock("for.cond.cleanup"); 905 906 // The loop body, consisting of the specified body and the loop variable. 907 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 908 909 // The body is executed if the expression, contextually converted 910 // to bool, is true. 911 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 912 llvm::BranchInst *CondBr = Builder.CreateCondBr( 913 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 914 915 // Attach metadata to loop body conditional branch. 916 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 917 918 if (ExitBlock != LoopExit.getBlock()) { 919 EmitBlock(ExitBlock); 920 EmitBranchThroughCleanup(LoopExit); 921 } 922 923 EmitBlock(ForBody); 924 Cnt.beginRegion(Builder); 925 926 // Create a block for the increment. In case of a 'continue', we jump there. 927 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 928 929 // Store the blocks to use for break and continue. 930 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 931 932 { 933 // Create a separate cleanup scope for the loop variable and body. 934 RunCleanupsScope BodyScope(*this); 935 EmitStmt(S.getLoopVarStmt()); 936 EmitStmt(S.getBody()); 937 } 938 939 // If there is an increment, emit it next. 940 EmitBlock(Continue.getBlock()); 941 EmitStmt(S.getInc()); 942 943 BreakContinueStack.pop_back(); 944 945 EmitBranch(CondBlock); 946 947 ForScope.ForceCleanup(); 948 949 if (DI) 950 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 951 952 LoopStack.pop(); 953 954 // Emit the fall-through block. 955 EmitBlock(LoopExit.getBlock(), true); 956 } 957 958 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 959 if (RV.isScalar()) { 960 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 961 } else if (RV.isAggregate()) { 962 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 963 } else { 964 EmitStoreOfComplex(RV.getComplexVal(), 965 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 966 /*init*/ true); 967 } 968 EmitBranchThroughCleanup(ReturnBlock); 969 } 970 971 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 972 /// if the function returns void, or may be missing one if the function returns 973 /// non-void. Fun stuff :). 974 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 975 // Emit the result value, even if unused, to evalute the side effects. 976 const Expr *RV = S.getRetValue(); 977 978 // Treat block literals in a return expression as if they appeared 979 // in their own scope. This permits a small, easily-implemented 980 // exception to our over-conservative rules about not jumping to 981 // statements following block literals with non-trivial cleanups. 982 RunCleanupsScope cleanupScope(*this); 983 if (const ExprWithCleanups *cleanups = 984 dyn_cast_or_null<ExprWithCleanups>(RV)) { 985 enterFullExpression(cleanups); 986 RV = cleanups->getSubExpr(); 987 } 988 989 // FIXME: Clean this up by using an LValue for ReturnTemp, 990 // EmitStoreThroughLValue, and EmitAnyExpr. 991 if (getLangOpts().ElideConstructors && 992 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 993 // Apply the named return value optimization for this return statement, 994 // which means doing nothing: the appropriate result has already been 995 // constructed into the NRVO variable. 996 997 // If there is an NRVO flag for this variable, set it to 1 into indicate 998 // that the cleanup code should not destroy the variable. 999 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1000 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1001 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1002 // Make sure not to return anything, but evaluate the expression 1003 // for side effects. 1004 if (RV) 1005 EmitAnyExpr(RV); 1006 } else if (!RV) { 1007 // Do nothing (return value is left uninitialized) 1008 } else if (FnRetTy->isReferenceType()) { 1009 // If this function returns a reference, take the address of the expression 1010 // rather than the value. 1011 RValue Result = EmitReferenceBindingToExpr(RV); 1012 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1013 } else { 1014 switch (getEvaluationKind(RV->getType())) { 1015 case TEK_Scalar: 1016 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1017 break; 1018 case TEK_Complex: 1019 EmitComplexExprIntoLValue(RV, 1020 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1021 /*isInit*/ true); 1022 break; 1023 case TEK_Aggregate: { 1024 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1025 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1026 Qualifiers(), 1027 AggValueSlot::IsDestructed, 1028 AggValueSlot::DoesNotNeedGCBarriers, 1029 AggValueSlot::IsNotAliased)); 1030 break; 1031 } 1032 } 1033 } 1034 1035 ++NumReturnExprs; 1036 if (!RV || RV->isEvaluatable(getContext())) 1037 ++NumSimpleReturnExprs; 1038 1039 cleanupScope.ForceCleanup(); 1040 EmitBranchThroughCleanup(ReturnBlock); 1041 } 1042 1043 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1044 // As long as debug info is modeled with instructions, we have to ensure we 1045 // have a place to insert here and write the stop point here. 1046 if (HaveInsertPoint()) 1047 EmitStopPoint(&S); 1048 1049 for (const auto *I : S.decls()) 1050 EmitDecl(*I); 1051 } 1052 1053 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1054 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1055 1056 // If this code is reachable then emit a stop point (if generating 1057 // debug info). We have to do this ourselves because we are on the 1058 // "simple" statement path. 1059 if (HaveInsertPoint()) 1060 EmitStopPoint(&S); 1061 1062 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1063 } 1064 1065 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1066 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1067 1068 // If this code is reachable then emit a stop point (if generating 1069 // debug info). We have to do this ourselves because we are on the 1070 // "simple" statement path. 1071 if (HaveInsertPoint()) 1072 EmitStopPoint(&S); 1073 1074 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1075 } 1076 1077 /// EmitCaseStmtRange - If case statement range is not too big then 1078 /// add multiple cases to switch instruction, one for each value within 1079 /// the range. If range is too big then emit "if" condition check. 1080 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1081 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1082 1083 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1084 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1085 1086 RegionCounter CaseCnt = getPGORegionCounter(&S); 1087 1088 // Emit the code for this case. We do this first to make sure it is 1089 // properly chained from our predecessor before generating the 1090 // switch machinery to enter this block. 1091 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1092 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1093 EmitStmt(S.getSubStmt()); 1094 1095 // If range is empty, do nothing. 1096 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1097 return; 1098 1099 llvm::APInt Range = RHS - LHS; 1100 // FIXME: parameters such as this should not be hardcoded. 1101 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1102 // Range is small enough to add multiple switch instruction cases. 1103 uint64_t Total = CaseCnt.getCount(); 1104 unsigned NCases = Range.getZExtValue() + 1; 1105 // We only have one region counter for the entire set of cases here, so we 1106 // need to divide the weights evenly between the generated cases, ensuring 1107 // that the total weight is preserved. E.g., a weight of 5 over three cases 1108 // will be distributed as weights of 2, 2, and 1. 1109 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1110 for (unsigned I = 0; I != NCases; ++I) { 1111 if (SwitchWeights) 1112 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1113 if (Rem) 1114 Rem--; 1115 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1116 LHS++; 1117 } 1118 return; 1119 } 1120 1121 // The range is too big. Emit "if" condition into a new block, 1122 // making sure to save and restore the current insertion point. 1123 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1124 1125 // Push this test onto the chain of range checks (which terminates 1126 // in the default basic block). The switch's default will be changed 1127 // to the top of this chain after switch emission is complete. 1128 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1129 CaseRangeBlock = createBasicBlock("sw.caserange"); 1130 1131 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1132 Builder.SetInsertPoint(CaseRangeBlock); 1133 1134 // Emit range check. 1135 llvm::Value *Diff = 1136 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1137 llvm::Value *Cond = 1138 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1139 1140 llvm::MDNode *Weights = nullptr; 1141 if (SwitchWeights) { 1142 uint64_t ThisCount = CaseCnt.getCount(); 1143 uint64_t DefaultCount = (*SwitchWeights)[0]; 1144 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1145 1146 // Since we're chaining the switch default through each large case range, we 1147 // need to update the weight for the default, ie, the first case, to include 1148 // this case. 1149 (*SwitchWeights)[0] += ThisCount; 1150 } 1151 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1152 1153 // Restore the appropriate insertion point. 1154 if (RestoreBB) 1155 Builder.SetInsertPoint(RestoreBB); 1156 else 1157 Builder.ClearInsertionPoint(); 1158 } 1159 1160 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1161 // If there is no enclosing switch instance that we're aware of, then this 1162 // case statement and its block can be elided. This situation only happens 1163 // when we've constant-folded the switch, are emitting the constant case, 1164 // and part of the constant case includes another case statement. For 1165 // instance: switch (4) { case 4: do { case 5: } while (1); } 1166 if (!SwitchInsn) { 1167 EmitStmt(S.getSubStmt()); 1168 return; 1169 } 1170 1171 // Handle case ranges. 1172 if (S.getRHS()) { 1173 EmitCaseStmtRange(S); 1174 return; 1175 } 1176 1177 RegionCounter CaseCnt = getPGORegionCounter(&S); 1178 llvm::ConstantInt *CaseVal = 1179 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1180 1181 // If the body of the case is just a 'break', try to not emit an empty block. 1182 // If we're profiling or we're not optimizing, leave the block in for better 1183 // debug and coverage analysis. 1184 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1185 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1186 isa<BreakStmt>(S.getSubStmt())) { 1187 JumpDest Block = BreakContinueStack.back().BreakBlock; 1188 1189 // Only do this optimization if there are no cleanups that need emitting. 1190 if (isObviouslyBranchWithoutCleanups(Block)) { 1191 if (SwitchWeights) 1192 SwitchWeights->push_back(CaseCnt.getCount()); 1193 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1194 1195 // If there was a fallthrough into this case, make sure to redirect it to 1196 // the end of the switch as well. 1197 if (Builder.GetInsertBlock()) { 1198 Builder.CreateBr(Block.getBlock()); 1199 Builder.ClearInsertionPoint(); 1200 } 1201 return; 1202 } 1203 } 1204 1205 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1206 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1207 if (SwitchWeights) 1208 SwitchWeights->push_back(CaseCnt.getCount()); 1209 SwitchInsn->addCase(CaseVal, CaseDest); 1210 1211 // Recursively emitting the statement is acceptable, but is not wonderful for 1212 // code where we have many case statements nested together, i.e.: 1213 // case 1: 1214 // case 2: 1215 // case 3: etc. 1216 // Handling this recursively will create a new block for each case statement 1217 // that falls through to the next case which is IR intensive. It also causes 1218 // deep recursion which can run into stack depth limitations. Handle 1219 // sequential non-range case statements specially. 1220 const CaseStmt *CurCase = &S; 1221 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1222 1223 // Otherwise, iteratively add consecutive cases to this switch stmt. 1224 while (NextCase && NextCase->getRHS() == nullptr) { 1225 CurCase = NextCase; 1226 llvm::ConstantInt *CaseVal = 1227 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1228 1229 CaseCnt = getPGORegionCounter(NextCase); 1230 if (SwitchWeights) 1231 SwitchWeights->push_back(CaseCnt.getCount()); 1232 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1233 CaseDest = createBasicBlock("sw.bb"); 1234 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1235 } 1236 1237 SwitchInsn->addCase(CaseVal, CaseDest); 1238 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1239 } 1240 1241 // Normal default recursion for non-cases. 1242 EmitStmt(CurCase->getSubStmt()); 1243 } 1244 1245 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1246 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1247 assert(DefaultBlock->empty() && 1248 "EmitDefaultStmt: Default block already defined?"); 1249 1250 RegionCounter Cnt = getPGORegionCounter(&S); 1251 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1252 1253 EmitStmt(S.getSubStmt()); 1254 } 1255 1256 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1257 /// constant value that is being switched on, see if we can dead code eliminate 1258 /// the body of the switch to a simple series of statements to emit. Basically, 1259 /// on a switch (5) we want to find these statements: 1260 /// case 5: 1261 /// printf(...); <-- 1262 /// ++i; <-- 1263 /// break; 1264 /// 1265 /// and add them to the ResultStmts vector. If it is unsafe to do this 1266 /// transformation (for example, one of the elided statements contains a label 1267 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1268 /// should include statements after it (e.g. the printf() line is a substmt of 1269 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1270 /// statement, then return CSFC_Success. 1271 /// 1272 /// If Case is non-null, then we are looking for the specified case, checking 1273 /// that nothing we jump over contains labels. If Case is null, then we found 1274 /// the case and are looking for the break. 1275 /// 1276 /// If the recursive walk actually finds our Case, then we set FoundCase to 1277 /// true. 1278 /// 1279 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1280 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1281 const SwitchCase *Case, 1282 bool &FoundCase, 1283 SmallVectorImpl<const Stmt*> &ResultStmts) { 1284 // If this is a null statement, just succeed. 1285 if (!S) 1286 return Case ? CSFC_Success : CSFC_FallThrough; 1287 1288 // If this is the switchcase (case 4: or default) that we're looking for, then 1289 // we're in business. Just add the substatement. 1290 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1291 if (S == Case) { 1292 FoundCase = true; 1293 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1294 ResultStmts); 1295 } 1296 1297 // Otherwise, this is some other case or default statement, just ignore it. 1298 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1299 ResultStmts); 1300 } 1301 1302 // If we are in the live part of the code and we found our break statement, 1303 // return a success! 1304 if (!Case && isa<BreakStmt>(S)) 1305 return CSFC_Success; 1306 1307 // If this is a switch statement, then it might contain the SwitchCase, the 1308 // break, or neither. 1309 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1310 // Handle this as two cases: we might be looking for the SwitchCase (if so 1311 // the skipped statements must be skippable) or we might already have it. 1312 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1313 if (Case) { 1314 // Keep track of whether we see a skipped declaration. The code could be 1315 // using the declaration even if it is skipped, so we can't optimize out 1316 // the decl if the kept statements might refer to it. 1317 bool HadSkippedDecl = false; 1318 1319 // If we're looking for the case, just see if we can skip each of the 1320 // substatements. 1321 for (; Case && I != E; ++I) { 1322 HadSkippedDecl |= isa<DeclStmt>(*I); 1323 1324 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1325 case CSFC_Failure: return CSFC_Failure; 1326 case CSFC_Success: 1327 // A successful result means that either 1) that the statement doesn't 1328 // have the case and is skippable, or 2) does contain the case value 1329 // and also contains the break to exit the switch. In the later case, 1330 // we just verify the rest of the statements are elidable. 1331 if (FoundCase) { 1332 // If we found the case and skipped declarations, we can't do the 1333 // optimization. 1334 if (HadSkippedDecl) 1335 return CSFC_Failure; 1336 1337 for (++I; I != E; ++I) 1338 if (CodeGenFunction::ContainsLabel(*I, true)) 1339 return CSFC_Failure; 1340 return CSFC_Success; 1341 } 1342 break; 1343 case CSFC_FallThrough: 1344 // If we have a fallthrough condition, then we must have found the 1345 // case started to include statements. Consider the rest of the 1346 // statements in the compound statement as candidates for inclusion. 1347 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1348 // We recursively found Case, so we're not looking for it anymore. 1349 Case = nullptr; 1350 1351 // If we found the case and skipped declarations, we can't do the 1352 // optimization. 1353 if (HadSkippedDecl) 1354 return CSFC_Failure; 1355 break; 1356 } 1357 } 1358 } 1359 1360 // If we have statements in our range, then we know that the statements are 1361 // live and need to be added to the set of statements we're tracking. 1362 for (; I != E; ++I) { 1363 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1364 case CSFC_Failure: return CSFC_Failure; 1365 case CSFC_FallThrough: 1366 // A fallthrough result means that the statement was simple and just 1367 // included in ResultStmt, keep adding them afterwards. 1368 break; 1369 case CSFC_Success: 1370 // A successful result means that we found the break statement and 1371 // stopped statement inclusion. We just ensure that any leftover stmts 1372 // are skippable and return success ourselves. 1373 for (++I; I != E; ++I) 1374 if (CodeGenFunction::ContainsLabel(*I, true)) 1375 return CSFC_Failure; 1376 return CSFC_Success; 1377 } 1378 } 1379 1380 return Case ? CSFC_Success : CSFC_FallThrough; 1381 } 1382 1383 // Okay, this is some other statement that we don't handle explicitly, like a 1384 // for statement or increment etc. If we are skipping over this statement, 1385 // just verify it doesn't have labels, which would make it invalid to elide. 1386 if (Case) { 1387 if (CodeGenFunction::ContainsLabel(S, true)) 1388 return CSFC_Failure; 1389 return CSFC_Success; 1390 } 1391 1392 // Otherwise, we want to include this statement. Everything is cool with that 1393 // so long as it doesn't contain a break out of the switch we're in. 1394 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1395 1396 // Otherwise, everything is great. Include the statement and tell the caller 1397 // that we fall through and include the next statement as well. 1398 ResultStmts.push_back(S); 1399 return CSFC_FallThrough; 1400 } 1401 1402 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1403 /// then invoke CollectStatementsForCase to find the list of statements to emit 1404 /// for a switch on constant. See the comment above CollectStatementsForCase 1405 /// for more details. 1406 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1407 const llvm::APSInt &ConstantCondValue, 1408 SmallVectorImpl<const Stmt*> &ResultStmts, 1409 ASTContext &C, 1410 const SwitchCase *&ResultCase) { 1411 // First step, find the switch case that is being branched to. We can do this 1412 // efficiently by scanning the SwitchCase list. 1413 const SwitchCase *Case = S.getSwitchCaseList(); 1414 const DefaultStmt *DefaultCase = nullptr; 1415 1416 for (; Case; Case = Case->getNextSwitchCase()) { 1417 // It's either a default or case. Just remember the default statement in 1418 // case we're not jumping to any numbered cases. 1419 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1420 DefaultCase = DS; 1421 continue; 1422 } 1423 1424 // Check to see if this case is the one we're looking for. 1425 const CaseStmt *CS = cast<CaseStmt>(Case); 1426 // Don't handle case ranges yet. 1427 if (CS->getRHS()) return false; 1428 1429 // If we found our case, remember it as 'case'. 1430 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1431 break; 1432 } 1433 1434 // If we didn't find a matching case, we use a default if it exists, or we 1435 // elide the whole switch body! 1436 if (!Case) { 1437 // It is safe to elide the body of the switch if it doesn't contain labels 1438 // etc. If it is safe, return successfully with an empty ResultStmts list. 1439 if (!DefaultCase) 1440 return !CodeGenFunction::ContainsLabel(&S); 1441 Case = DefaultCase; 1442 } 1443 1444 // Ok, we know which case is being jumped to, try to collect all the 1445 // statements that follow it. This can fail for a variety of reasons. Also, 1446 // check to see that the recursive walk actually found our case statement. 1447 // Insane cases like this can fail to find it in the recursive walk since we 1448 // don't handle every stmt kind: 1449 // switch (4) { 1450 // while (1) { 1451 // case 4: ... 1452 bool FoundCase = false; 1453 ResultCase = Case; 1454 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1455 ResultStmts) != CSFC_Failure && 1456 FoundCase; 1457 } 1458 1459 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1460 // Handle nested switch statements. 1461 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1462 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1463 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1464 1465 // See if we can constant fold the condition of the switch and therefore only 1466 // emit the live case statement (if any) of the switch. 1467 llvm::APSInt ConstantCondValue; 1468 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1469 SmallVector<const Stmt*, 4> CaseStmts; 1470 const SwitchCase *Case = nullptr; 1471 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1472 getContext(), Case)) { 1473 if (Case) { 1474 RegionCounter CaseCnt = getPGORegionCounter(Case); 1475 CaseCnt.beginRegion(Builder); 1476 } 1477 RunCleanupsScope ExecutedScope(*this); 1478 1479 // Emit the condition variable if needed inside the entire cleanup scope 1480 // used by this special case for constant folded switches. 1481 if (S.getConditionVariable()) 1482 EmitAutoVarDecl(*S.getConditionVariable()); 1483 1484 // At this point, we are no longer "within" a switch instance, so 1485 // we can temporarily enforce this to ensure that any embedded case 1486 // statements are not emitted. 1487 SwitchInsn = nullptr; 1488 1489 // Okay, we can dead code eliminate everything except this case. Emit the 1490 // specified series of statements and we're good. 1491 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1492 EmitStmt(CaseStmts[i]); 1493 RegionCounter ExitCnt = getPGORegionCounter(&S); 1494 ExitCnt.beginRegion(Builder); 1495 1496 // Now we want to restore the saved switch instance so that nested 1497 // switches continue to function properly 1498 SwitchInsn = SavedSwitchInsn; 1499 1500 return; 1501 } 1502 } 1503 1504 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1505 1506 RunCleanupsScope ConditionScope(*this); 1507 if (S.getConditionVariable()) 1508 EmitAutoVarDecl(*S.getConditionVariable()); 1509 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1510 1511 // Create basic block to hold stuff that comes after switch 1512 // statement. We also need to create a default block now so that 1513 // explicit case ranges tests can have a place to jump to on 1514 // failure. 1515 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1516 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1517 if (PGO.haveRegionCounts()) { 1518 // Walk the SwitchCase list to find how many there are. 1519 uint64_t DefaultCount = 0; 1520 unsigned NumCases = 0; 1521 for (const SwitchCase *Case = S.getSwitchCaseList(); 1522 Case; 1523 Case = Case->getNextSwitchCase()) { 1524 if (isa<DefaultStmt>(Case)) 1525 DefaultCount = getPGORegionCounter(Case).getCount(); 1526 NumCases += 1; 1527 } 1528 SwitchWeights = new SmallVector<uint64_t, 16>(); 1529 SwitchWeights->reserve(NumCases); 1530 // The default needs to be first. We store the edge count, so we already 1531 // know the right weight. 1532 SwitchWeights->push_back(DefaultCount); 1533 } 1534 CaseRangeBlock = DefaultBlock; 1535 1536 // Clear the insertion point to indicate we are in unreachable code. 1537 Builder.ClearInsertionPoint(); 1538 1539 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1540 // then reuse last ContinueBlock. 1541 JumpDest OuterContinue; 1542 if (!BreakContinueStack.empty()) 1543 OuterContinue = BreakContinueStack.back().ContinueBlock; 1544 1545 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1546 1547 // Emit switch body. 1548 EmitStmt(S.getBody()); 1549 1550 BreakContinueStack.pop_back(); 1551 1552 // Update the default block in case explicit case range tests have 1553 // been chained on top. 1554 SwitchInsn->setDefaultDest(CaseRangeBlock); 1555 1556 // If a default was never emitted: 1557 if (!DefaultBlock->getParent()) { 1558 // If we have cleanups, emit the default block so that there's a 1559 // place to jump through the cleanups from. 1560 if (ConditionScope.requiresCleanups()) { 1561 EmitBlock(DefaultBlock); 1562 1563 // Otherwise, just forward the default block to the switch end. 1564 } else { 1565 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1566 delete DefaultBlock; 1567 } 1568 } 1569 1570 ConditionScope.ForceCleanup(); 1571 1572 // Emit continuation. 1573 EmitBlock(SwitchExit.getBlock(), true); 1574 RegionCounter ExitCnt = getPGORegionCounter(&S); 1575 ExitCnt.beginRegion(Builder); 1576 1577 if (SwitchWeights) { 1578 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1579 "switch weights do not match switch cases"); 1580 // If there's only one jump destination there's no sense weighting it. 1581 if (SwitchWeights->size() > 1) 1582 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1583 PGO.createBranchWeights(*SwitchWeights)); 1584 delete SwitchWeights; 1585 } 1586 SwitchInsn = SavedSwitchInsn; 1587 SwitchWeights = SavedSwitchWeights; 1588 CaseRangeBlock = SavedCRBlock; 1589 } 1590 1591 static std::string 1592 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1593 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1594 std::string Result; 1595 1596 while (*Constraint) { 1597 switch (*Constraint) { 1598 default: 1599 Result += Target.convertConstraint(Constraint); 1600 break; 1601 // Ignore these 1602 case '*': 1603 case '?': 1604 case '!': 1605 case '=': // Will see this and the following in mult-alt constraints. 1606 case '+': 1607 break; 1608 case '#': // Ignore the rest of the constraint alternative. 1609 while (Constraint[1] && Constraint[1] != ',') 1610 Constraint++; 1611 break; 1612 case ',': 1613 Result += "|"; 1614 break; 1615 case 'g': 1616 Result += "imr"; 1617 break; 1618 case '[': { 1619 assert(OutCons && 1620 "Must pass output names to constraints with a symbolic name"); 1621 unsigned Index; 1622 bool result = Target.resolveSymbolicName(Constraint, 1623 &(*OutCons)[0], 1624 OutCons->size(), Index); 1625 assert(result && "Could not resolve symbolic name"); (void)result; 1626 Result += llvm::utostr(Index); 1627 break; 1628 } 1629 } 1630 1631 Constraint++; 1632 } 1633 1634 return Result; 1635 } 1636 1637 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1638 /// as using a particular register add that as a constraint that will be used 1639 /// in this asm stmt. 1640 static std::string 1641 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1642 const TargetInfo &Target, CodeGenModule &CGM, 1643 const AsmStmt &Stmt) { 1644 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1645 if (!AsmDeclRef) 1646 return Constraint; 1647 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1648 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1649 if (!Variable) 1650 return Constraint; 1651 if (Variable->getStorageClass() != SC_Register) 1652 return Constraint; 1653 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1654 if (!Attr) 1655 return Constraint; 1656 StringRef Register = Attr->getLabel(); 1657 assert(Target.isValidGCCRegisterName(Register)); 1658 // We're using validateOutputConstraint here because we only care if 1659 // this is a register constraint. 1660 TargetInfo::ConstraintInfo Info(Constraint, ""); 1661 if (Target.validateOutputConstraint(Info) && 1662 !Info.allowsRegister()) { 1663 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1664 return Constraint; 1665 } 1666 // Canonicalize the register here before returning it. 1667 Register = Target.getNormalizedGCCRegisterName(Register); 1668 return "{" + Register.str() + "}"; 1669 } 1670 1671 llvm::Value* 1672 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1673 LValue InputValue, QualType InputType, 1674 std::string &ConstraintStr, 1675 SourceLocation Loc) { 1676 llvm::Value *Arg; 1677 if (Info.allowsRegister() || !Info.allowsMemory()) { 1678 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1679 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1680 } else { 1681 llvm::Type *Ty = ConvertType(InputType); 1682 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1683 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1684 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1685 Ty = llvm::PointerType::getUnqual(Ty); 1686 1687 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1688 Ty)); 1689 } else { 1690 Arg = InputValue.getAddress(); 1691 ConstraintStr += '*'; 1692 } 1693 } 1694 } else { 1695 Arg = InputValue.getAddress(); 1696 ConstraintStr += '*'; 1697 } 1698 1699 return Arg; 1700 } 1701 1702 llvm::Value* CodeGenFunction::EmitAsmInput( 1703 const TargetInfo::ConstraintInfo &Info, 1704 const Expr *InputExpr, 1705 std::string &ConstraintStr) { 1706 if (Info.allowsRegister() || !Info.allowsMemory()) 1707 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1708 return EmitScalarExpr(InputExpr); 1709 1710 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1711 LValue Dest = EmitLValue(InputExpr); 1712 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1713 InputExpr->getExprLoc()); 1714 } 1715 1716 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1717 /// asm call instruction. The !srcloc MDNode contains a list of constant 1718 /// integers which are the source locations of the start of each line in the 1719 /// asm. 1720 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1721 CodeGenFunction &CGF) { 1722 SmallVector<llvm::Value *, 8> Locs; 1723 // Add the location of the first line to the MDNode. 1724 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1725 Str->getLocStart().getRawEncoding())); 1726 StringRef StrVal = Str->getString(); 1727 if (!StrVal.empty()) { 1728 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1729 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1730 1731 // Add the location of the start of each subsequent line of the asm to the 1732 // MDNode. 1733 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1734 if (StrVal[i] != '\n') continue; 1735 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1736 CGF.getTarget()); 1737 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1738 LineLoc.getRawEncoding())); 1739 } 1740 } 1741 1742 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1743 } 1744 1745 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1746 // Assemble the final asm string. 1747 std::string AsmString = S.generateAsmString(getContext()); 1748 1749 // Get all the output and input constraints together. 1750 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1751 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1752 1753 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1754 StringRef Name; 1755 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1756 Name = GAS->getOutputName(i); 1757 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1758 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1759 assert(IsValid && "Failed to parse output constraint"); 1760 OutputConstraintInfos.push_back(Info); 1761 } 1762 1763 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1764 StringRef Name; 1765 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1766 Name = GAS->getInputName(i); 1767 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1768 bool IsValid = 1769 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1770 S.getNumOutputs(), Info); 1771 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1772 InputConstraintInfos.push_back(Info); 1773 } 1774 1775 std::string Constraints; 1776 1777 std::vector<LValue> ResultRegDests; 1778 std::vector<QualType> ResultRegQualTys; 1779 std::vector<llvm::Type *> ResultRegTypes; 1780 std::vector<llvm::Type *> ResultTruncRegTypes; 1781 std::vector<llvm::Type *> ArgTypes; 1782 std::vector<llvm::Value*> Args; 1783 1784 // Keep track of inout constraints. 1785 std::string InOutConstraints; 1786 std::vector<llvm::Value*> InOutArgs; 1787 std::vector<llvm::Type*> InOutArgTypes; 1788 1789 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1790 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1791 1792 // Simplify the output constraint. 1793 std::string OutputConstraint(S.getOutputConstraint(i)); 1794 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1795 getTarget()); 1796 1797 const Expr *OutExpr = S.getOutputExpr(i); 1798 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1799 1800 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1801 getTarget(), CGM, S); 1802 1803 LValue Dest = EmitLValue(OutExpr); 1804 if (!Constraints.empty()) 1805 Constraints += ','; 1806 1807 // If this is a register output, then make the inline asm return it 1808 // by-value. If this is a memory result, return the value by-reference. 1809 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1810 Constraints += "=" + OutputConstraint; 1811 ResultRegQualTys.push_back(OutExpr->getType()); 1812 ResultRegDests.push_back(Dest); 1813 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1814 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1815 1816 // If this output is tied to an input, and if the input is larger, then 1817 // we need to set the actual result type of the inline asm node to be the 1818 // same as the input type. 1819 if (Info.hasMatchingInput()) { 1820 unsigned InputNo; 1821 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1822 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1823 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1824 break; 1825 } 1826 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1827 1828 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1829 QualType OutputType = OutExpr->getType(); 1830 1831 uint64_t InputSize = getContext().getTypeSize(InputTy); 1832 if (getContext().getTypeSize(OutputType) < InputSize) { 1833 // Form the asm to return the value as a larger integer or fp type. 1834 ResultRegTypes.back() = ConvertType(InputTy); 1835 } 1836 } 1837 if (llvm::Type* AdjTy = 1838 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1839 ResultRegTypes.back())) 1840 ResultRegTypes.back() = AdjTy; 1841 else { 1842 CGM.getDiags().Report(S.getAsmLoc(), 1843 diag::err_asm_invalid_type_in_input) 1844 << OutExpr->getType() << OutputConstraint; 1845 } 1846 } else { 1847 ArgTypes.push_back(Dest.getAddress()->getType()); 1848 Args.push_back(Dest.getAddress()); 1849 Constraints += "=*"; 1850 Constraints += OutputConstraint; 1851 } 1852 1853 if (Info.isReadWrite()) { 1854 InOutConstraints += ','; 1855 1856 const Expr *InputExpr = S.getOutputExpr(i); 1857 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1858 InOutConstraints, 1859 InputExpr->getExprLoc()); 1860 1861 if (llvm::Type* AdjTy = 1862 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1863 Arg->getType())) 1864 Arg = Builder.CreateBitCast(Arg, AdjTy); 1865 1866 if (Info.allowsRegister()) 1867 InOutConstraints += llvm::utostr(i); 1868 else 1869 InOutConstraints += OutputConstraint; 1870 1871 InOutArgTypes.push_back(Arg->getType()); 1872 InOutArgs.push_back(Arg); 1873 } 1874 } 1875 1876 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1877 1878 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1879 const Expr *InputExpr = S.getInputExpr(i); 1880 1881 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1882 1883 if (!Constraints.empty()) 1884 Constraints += ','; 1885 1886 // Simplify the input constraint. 1887 std::string InputConstraint(S.getInputConstraint(i)); 1888 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1889 &OutputConstraintInfos); 1890 1891 InputConstraint = 1892 AddVariableConstraints(InputConstraint, 1893 *InputExpr->IgnoreParenNoopCasts(getContext()), 1894 getTarget(), CGM, S); 1895 1896 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1897 1898 // If this input argument is tied to a larger output result, extend the 1899 // input to be the same size as the output. The LLVM backend wants to see 1900 // the input and output of a matching constraint be the same size. Note 1901 // that GCC does not define what the top bits are here. We use zext because 1902 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1903 if (Info.hasTiedOperand()) { 1904 unsigned Output = Info.getTiedOperand(); 1905 QualType OutputType = S.getOutputExpr(Output)->getType(); 1906 QualType InputTy = InputExpr->getType(); 1907 1908 if (getContext().getTypeSize(OutputType) > 1909 getContext().getTypeSize(InputTy)) { 1910 // Use ptrtoint as appropriate so that we can do our extension. 1911 if (isa<llvm::PointerType>(Arg->getType())) 1912 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1913 llvm::Type *OutputTy = ConvertType(OutputType); 1914 if (isa<llvm::IntegerType>(OutputTy)) 1915 Arg = Builder.CreateZExt(Arg, OutputTy); 1916 else if (isa<llvm::PointerType>(OutputTy)) 1917 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1918 else { 1919 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1920 Arg = Builder.CreateFPExt(Arg, OutputTy); 1921 } 1922 } 1923 } 1924 if (llvm::Type* AdjTy = 1925 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1926 Arg->getType())) 1927 Arg = Builder.CreateBitCast(Arg, AdjTy); 1928 else 1929 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1930 << InputExpr->getType() << InputConstraint; 1931 1932 ArgTypes.push_back(Arg->getType()); 1933 Args.push_back(Arg); 1934 Constraints += InputConstraint; 1935 } 1936 1937 // Append the "input" part of inout constraints last. 1938 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1939 ArgTypes.push_back(InOutArgTypes[i]); 1940 Args.push_back(InOutArgs[i]); 1941 } 1942 Constraints += InOutConstraints; 1943 1944 // Clobbers 1945 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1946 StringRef Clobber = S.getClobber(i); 1947 1948 if (Clobber != "memory" && Clobber != "cc") 1949 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1950 1951 if (i != 0 || NumConstraints != 0) 1952 Constraints += ','; 1953 1954 Constraints += "~{"; 1955 Constraints += Clobber; 1956 Constraints += '}'; 1957 } 1958 1959 // Add machine specific clobbers 1960 std::string MachineClobbers = getTarget().getClobbers(); 1961 if (!MachineClobbers.empty()) { 1962 if (!Constraints.empty()) 1963 Constraints += ','; 1964 Constraints += MachineClobbers; 1965 } 1966 1967 llvm::Type *ResultType; 1968 if (ResultRegTypes.empty()) 1969 ResultType = VoidTy; 1970 else if (ResultRegTypes.size() == 1) 1971 ResultType = ResultRegTypes[0]; 1972 else 1973 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1974 1975 llvm::FunctionType *FTy = 1976 llvm::FunctionType::get(ResultType, ArgTypes, false); 1977 1978 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1979 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1980 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1981 llvm::InlineAsm *IA = 1982 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1983 /* IsAlignStack */ false, AsmDialect); 1984 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1985 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1986 llvm::Attribute::NoUnwind); 1987 1988 // Slap the source location of the inline asm into a !srcloc metadata on the 1989 // call. FIXME: Handle metadata for MS-style inline asms. 1990 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1991 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1992 *this)); 1993 1994 // Extract all of the register value results from the asm. 1995 std::vector<llvm::Value*> RegResults; 1996 if (ResultRegTypes.size() == 1) { 1997 RegResults.push_back(Result); 1998 } else { 1999 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2000 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2001 RegResults.push_back(Tmp); 2002 } 2003 } 2004 2005 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2006 llvm::Value *Tmp = RegResults[i]; 2007 2008 // If the result type of the LLVM IR asm doesn't match the result type of 2009 // the expression, do the conversion. 2010 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2011 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2012 2013 // Truncate the integer result to the right size, note that TruncTy can be 2014 // a pointer. 2015 if (TruncTy->isFloatingPointTy()) 2016 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2017 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2018 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2019 Tmp = Builder.CreateTrunc(Tmp, 2020 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2021 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2022 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2023 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2024 Tmp = Builder.CreatePtrToInt(Tmp, 2025 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2026 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2027 } else if (TruncTy->isIntegerTy()) { 2028 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2029 } else if (TruncTy->isVectorTy()) { 2030 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2031 } 2032 } 2033 2034 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2035 } 2036 } 2037 2038 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2039 const RecordDecl *RD = S.getCapturedRecordDecl(); 2040 QualType RecordTy = CGF.getContext().getRecordType(RD); 2041 2042 // Initialize the captured struct. 2043 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2044 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2045 2046 RecordDecl::field_iterator CurField = RD->field_begin(); 2047 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2048 E = S.capture_init_end(); 2049 I != E; ++I, ++CurField) { 2050 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2051 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2052 } 2053 2054 return SlotLV; 2055 } 2056 2057 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) { 2058 for (auto &C : S.captures()) { 2059 if (C.capturesVariable()) { 2060 QualType QTy; 2061 auto VD = C.getCapturedVar(); 2062 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 2063 QTy = PVD->getOriginalType(); 2064 else 2065 QTy = VD->getType(); 2066 if (QTy->isVariablyModifiedType()) { 2067 CGF.EmitVariablyModifiedType(QTy); 2068 } 2069 } 2070 } 2071 } 2072 2073 /// Generate an outlined function for the body of a CapturedStmt, store any 2074 /// captured variables into the captured struct, and call the outlined function. 2075 llvm::Function * 2076 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2077 LValue CapStruct = InitCapturedStruct(*this, S); 2078 2079 // Emit the CapturedDecl 2080 CodeGenFunction CGF(CGM, true); 2081 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2082 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2083 delete CGF.CapturedStmtInfo; 2084 2085 // Emit call to the helper function. 2086 EmitCallOrInvoke(F, CapStruct.getAddress()); 2087 2088 return F; 2089 } 2090 2091 llvm::Value * 2092 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2093 LValue CapStruct = InitCapturedStruct(*this, S); 2094 return CapStruct.getAddress(); 2095 } 2096 2097 /// Creates the outlined function for a CapturedStmt. 2098 llvm::Function * 2099 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2100 assert(CapturedStmtInfo && 2101 "CapturedStmtInfo should be set when generating the captured function"); 2102 const CapturedDecl *CD = S.getCapturedDecl(); 2103 const RecordDecl *RD = S.getCapturedRecordDecl(); 2104 SourceLocation Loc = S.getLocStart(); 2105 assert(CD->hasBody() && "missing CapturedDecl body"); 2106 2107 // Build the argument list. 2108 ASTContext &Ctx = CGM.getContext(); 2109 FunctionArgList Args; 2110 Args.append(CD->param_begin(), CD->param_end()); 2111 2112 // Create the function declaration. 2113 FunctionType::ExtInfo ExtInfo; 2114 const CGFunctionInfo &FuncInfo = 2115 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2116 /*IsVariadic=*/false); 2117 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2118 2119 llvm::Function *F = 2120 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2121 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2122 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2123 2124 // Generate the function. 2125 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2126 CD->getLocation(), 2127 CD->getBody()->getLocStart()); 2128 // Set the context parameter in CapturedStmtInfo. 2129 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2130 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2131 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2132 2133 // Initialize variable-length arrays. 2134 InitVLACaptures(*this, S); 2135 2136 // If 'this' is captured, load it into CXXThisValue. 2137 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2138 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2139 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2140 Ctx.getTagDeclType(RD)); 2141 LValue ThisLValue = EmitLValueForField(LV, FD); 2142 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2143 } 2144 2145 PGO.assignRegionCounters(CD, F); 2146 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2147 FinishFunction(CD->getBodyRBrace()); 2148 PGO.emitInstrumentationData(); 2149 PGO.destroyRegionCounters(); 2150 2151 return F; 2152 } 2153