1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Assumptions.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/InlineAsm.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/Support/SaveAndRestore.h" 35 36 using namespace clang; 37 using namespace CodeGen; 38 39 //===----------------------------------------------------------------------===// 40 // Statement Emission 41 //===----------------------------------------------------------------------===// 42 43 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 44 if (CGDebugInfo *DI = getDebugInfo()) { 45 SourceLocation Loc; 46 Loc = S->getBeginLoc(); 47 DI->EmitLocation(Builder, Loc); 48 49 LastStopPoint = Loc; 50 } 51 } 52 53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 54 assert(S && "Null statement?"); 55 PGO.setCurrentStmt(S); 56 57 // These statements have their own debug info handling. 58 if (EmitSimpleStmt(S, Attrs)) 59 return; 60 61 // Check if we are generating unreachable code. 62 if (!HaveInsertPoint()) { 63 // If so, and the statement doesn't contain a label, then we do not need to 64 // generate actual code. This is safe because (1) the current point is 65 // unreachable, so we don't need to execute the code, and (2) we've already 66 // handled the statements which update internal data structures (like the 67 // local variable map) which could be used by subsequent statements. 68 if (!ContainsLabel(S)) { 69 // Verify that any decl statements were handled as simple, they may be in 70 // scope of subsequent reachable statements. 71 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 72 return; 73 } 74 75 // Otherwise, make a new block to hold the code. 76 EnsureInsertPoint(); 77 } 78 79 // Generate a stoppoint if we are emitting debug info. 80 EmitStopPoint(S); 81 82 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 83 // enabled. 84 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 85 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 86 EmitSimpleOMPExecutableDirective(*D); 87 return; 88 } 89 } 90 91 switch (S->getStmtClass()) { 92 case Stmt::NoStmtClass: 93 case Stmt::CXXCatchStmtClass: 94 case Stmt::SEHExceptStmtClass: 95 case Stmt::SEHFinallyStmtClass: 96 case Stmt::MSDependentExistsStmtClass: 97 llvm_unreachable("invalid statement class to emit generically"); 98 case Stmt::NullStmtClass: 99 case Stmt::CompoundStmtClass: 100 case Stmt::DeclStmtClass: 101 case Stmt::LabelStmtClass: 102 case Stmt::AttributedStmtClass: 103 case Stmt::GotoStmtClass: 104 case Stmt::BreakStmtClass: 105 case Stmt::ContinueStmtClass: 106 case Stmt::DefaultStmtClass: 107 case Stmt::CaseStmtClass: 108 case Stmt::SEHLeaveStmtClass: 109 llvm_unreachable("should have emitted these statements as simple"); 110 111 #define STMT(Type, Base) 112 #define ABSTRACT_STMT(Op) 113 #define EXPR(Type, Base) \ 114 case Stmt::Type##Class: 115 #include "clang/AST/StmtNodes.inc" 116 { 117 // Remember the block we came in on. 118 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 119 assert(incoming && "expression emission must have an insertion point"); 120 121 EmitIgnoredExpr(cast<Expr>(S)); 122 123 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 124 assert(outgoing && "expression emission cleared block!"); 125 126 // The expression emitters assume (reasonably!) that the insertion 127 // point is always set. To maintain that, the call-emission code 128 // for noreturn functions has to enter a new block with no 129 // predecessors. We want to kill that block and mark the current 130 // insertion point unreachable in the common case of a call like 131 // "exit();". Since expression emission doesn't otherwise create 132 // blocks with no predecessors, we can just test for that. 133 // However, we must be careful not to do this to our incoming 134 // block, because *statement* emission does sometimes create 135 // reachable blocks which will have no predecessors until later in 136 // the function. This occurs with, e.g., labels that are not 137 // reachable by fallthrough. 138 if (incoming != outgoing && outgoing->use_empty()) { 139 outgoing->eraseFromParent(); 140 Builder.ClearInsertionPoint(); 141 } 142 break; 143 } 144 145 case Stmt::IndirectGotoStmtClass: 146 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 147 148 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 149 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 150 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 151 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 152 153 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 154 155 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 156 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 157 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 158 case Stmt::CoroutineBodyStmtClass: 159 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 160 break; 161 case Stmt::CoreturnStmtClass: 162 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 163 break; 164 case Stmt::CapturedStmtClass: { 165 const CapturedStmt *CS = cast<CapturedStmt>(S); 166 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 167 } 168 break; 169 case Stmt::ObjCAtTryStmtClass: 170 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 171 break; 172 case Stmt::ObjCAtCatchStmtClass: 173 llvm_unreachable( 174 "@catch statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtFinallyStmtClass: 176 llvm_unreachable( 177 "@finally statements should be handled by EmitObjCAtTryStmt"); 178 case Stmt::ObjCAtThrowStmtClass: 179 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 180 break; 181 case Stmt::ObjCAtSynchronizedStmtClass: 182 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 183 break; 184 case Stmt::ObjCForCollectionStmtClass: 185 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 186 break; 187 case Stmt::ObjCAutoreleasePoolStmtClass: 188 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 189 break; 190 191 case Stmt::CXXTryStmtClass: 192 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 193 break; 194 case Stmt::CXXForRangeStmtClass: 195 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 196 break; 197 case Stmt::SEHTryStmtClass: 198 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 199 break; 200 case Stmt::OMPMetaDirectiveClass: 201 EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); 202 break; 203 case Stmt::OMPCanonicalLoopClass: 204 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 205 break; 206 case Stmt::OMPParallelDirectiveClass: 207 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 208 break; 209 case Stmt::OMPSimdDirectiveClass: 210 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 211 break; 212 case Stmt::OMPTileDirectiveClass: 213 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 214 break; 215 case Stmt::OMPUnrollDirectiveClass: 216 EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); 217 break; 218 case Stmt::OMPForDirectiveClass: 219 EmitOMPForDirective(cast<OMPForDirective>(*S)); 220 break; 221 case Stmt::OMPForSimdDirectiveClass: 222 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 223 break; 224 case Stmt::OMPSectionsDirectiveClass: 225 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 226 break; 227 case Stmt::OMPSectionDirectiveClass: 228 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 229 break; 230 case Stmt::OMPSingleDirectiveClass: 231 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 232 break; 233 case Stmt::OMPMasterDirectiveClass: 234 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 235 break; 236 case Stmt::OMPCriticalDirectiveClass: 237 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 238 break; 239 case Stmt::OMPParallelForDirectiveClass: 240 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 241 break; 242 case Stmt::OMPParallelForSimdDirectiveClass: 243 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 244 break; 245 case Stmt::OMPParallelMasterDirectiveClass: 246 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 247 break; 248 case Stmt::OMPParallelSectionsDirectiveClass: 249 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 250 break; 251 case Stmt::OMPTaskDirectiveClass: 252 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 253 break; 254 case Stmt::OMPTaskyieldDirectiveClass: 255 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 256 break; 257 case Stmt::OMPBarrierDirectiveClass: 258 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 259 break; 260 case Stmt::OMPTaskwaitDirectiveClass: 261 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 262 break; 263 case Stmt::OMPTaskgroupDirectiveClass: 264 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 265 break; 266 case Stmt::OMPFlushDirectiveClass: 267 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 268 break; 269 case Stmt::OMPDepobjDirectiveClass: 270 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 271 break; 272 case Stmt::OMPScanDirectiveClass: 273 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 274 break; 275 case Stmt::OMPOrderedDirectiveClass: 276 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 277 break; 278 case Stmt::OMPAtomicDirectiveClass: 279 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 280 break; 281 case Stmt::OMPTargetDirectiveClass: 282 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 283 break; 284 case Stmt::OMPTeamsDirectiveClass: 285 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 286 break; 287 case Stmt::OMPCancellationPointDirectiveClass: 288 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 289 break; 290 case Stmt::OMPCancelDirectiveClass: 291 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 292 break; 293 case Stmt::OMPTargetDataDirectiveClass: 294 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 295 break; 296 case Stmt::OMPTargetEnterDataDirectiveClass: 297 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 298 break; 299 case Stmt::OMPTargetExitDataDirectiveClass: 300 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelDirectiveClass: 303 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForDirectiveClass: 306 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 307 break; 308 case Stmt::OMPTaskLoopDirectiveClass: 309 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 310 break; 311 case Stmt::OMPTaskLoopSimdDirectiveClass: 312 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPMasterTaskLoopDirectiveClass: 315 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 316 break; 317 case Stmt::OMPMaskedTaskLoopDirectiveClass: 318 llvm_unreachable("masked taskloop directive not supported yet."); 319 break; 320 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 321 EmitOMPMasterTaskLoopSimdDirective( 322 cast<OMPMasterTaskLoopSimdDirective>(*S)); 323 break; 324 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: 325 llvm_unreachable("masked taskloop simd directive not supported yet."); 326 break; 327 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 328 EmitOMPParallelMasterTaskLoopDirective( 329 cast<OMPParallelMasterTaskLoopDirective>(*S)); 330 break; 331 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 332 EmitOMPParallelMasterTaskLoopSimdDirective( 333 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 334 break; 335 case Stmt::OMPDistributeDirectiveClass: 336 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 337 break; 338 case Stmt::OMPTargetUpdateDirectiveClass: 339 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 340 break; 341 case Stmt::OMPDistributeParallelForDirectiveClass: 342 EmitOMPDistributeParallelForDirective( 343 cast<OMPDistributeParallelForDirective>(*S)); 344 break; 345 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 346 EmitOMPDistributeParallelForSimdDirective( 347 cast<OMPDistributeParallelForSimdDirective>(*S)); 348 break; 349 case Stmt::OMPDistributeSimdDirectiveClass: 350 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 351 break; 352 case Stmt::OMPTargetParallelForSimdDirectiveClass: 353 EmitOMPTargetParallelForSimdDirective( 354 cast<OMPTargetParallelForSimdDirective>(*S)); 355 break; 356 case Stmt::OMPTargetSimdDirectiveClass: 357 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 358 break; 359 case Stmt::OMPTeamsDistributeDirectiveClass: 360 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 361 break; 362 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 363 EmitOMPTeamsDistributeSimdDirective( 364 cast<OMPTeamsDistributeSimdDirective>(*S)); 365 break; 366 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 367 EmitOMPTeamsDistributeParallelForSimdDirective( 368 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 369 break; 370 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 371 EmitOMPTeamsDistributeParallelForDirective( 372 cast<OMPTeamsDistributeParallelForDirective>(*S)); 373 break; 374 case Stmt::OMPTargetTeamsDirectiveClass: 375 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 376 break; 377 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 378 EmitOMPTargetTeamsDistributeDirective( 379 cast<OMPTargetTeamsDistributeDirective>(*S)); 380 break; 381 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 382 EmitOMPTargetTeamsDistributeParallelForDirective( 383 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 384 break; 385 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 386 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 387 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 388 break; 389 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 390 EmitOMPTargetTeamsDistributeSimdDirective( 391 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 392 break; 393 case Stmt::OMPInteropDirectiveClass: 394 EmitOMPInteropDirective(cast<OMPInteropDirective>(*S)); 395 break; 396 case Stmt::OMPDispatchDirectiveClass: 397 llvm_unreachable("Dispatch directive not supported yet."); 398 break; 399 case Stmt::OMPMaskedDirectiveClass: 400 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 401 break; 402 case Stmt::OMPGenericLoopDirectiveClass: 403 EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S)); 404 break; 405 case Stmt::OMPTeamsGenericLoopDirectiveClass: 406 llvm_unreachable("teams loop directive not supported yet."); 407 break; 408 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 409 llvm_unreachable("target teams loop directive not supported yet."); 410 break; 411 case Stmt::OMPParallelGenericLoopDirectiveClass: 412 llvm_unreachable("parallel loop directive not supported yet."); 413 break; 414 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 415 llvm_unreachable("target parallel loop directive not supported yet."); 416 break; 417 case Stmt::OMPParallelMaskedDirectiveClass: 418 llvm_unreachable("parallel masked directive not supported yet."); 419 break; 420 } 421 } 422 423 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 424 ArrayRef<const Attr *> Attrs) { 425 switch (S->getStmtClass()) { 426 default: 427 return false; 428 case Stmt::NullStmtClass: 429 break; 430 case Stmt::CompoundStmtClass: 431 EmitCompoundStmt(cast<CompoundStmt>(*S)); 432 break; 433 case Stmt::DeclStmtClass: 434 EmitDeclStmt(cast<DeclStmt>(*S)); 435 break; 436 case Stmt::LabelStmtClass: 437 EmitLabelStmt(cast<LabelStmt>(*S)); 438 break; 439 case Stmt::AttributedStmtClass: 440 EmitAttributedStmt(cast<AttributedStmt>(*S)); 441 break; 442 case Stmt::GotoStmtClass: 443 EmitGotoStmt(cast<GotoStmt>(*S)); 444 break; 445 case Stmt::BreakStmtClass: 446 EmitBreakStmt(cast<BreakStmt>(*S)); 447 break; 448 case Stmt::ContinueStmtClass: 449 EmitContinueStmt(cast<ContinueStmt>(*S)); 450 break; 451 case Stmt::DefaultStmtClass: 452 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 453 break; 454 case Stmt::CaseStmtClass: 455 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 456 break; 457 case Stmt::SEHLeaveStmtClass: 458 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 459 break; 460 } 461 return true; 462 } 463 464 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 465 /// this captures the expression result of the last sub-statement and returns it 466 /// (for use by the statement expression extension). 467 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 468 AggValueSlot AggSlot) { 469 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 470 "LLVM IR generation of compound statement ('{}')"); 471 472 // Keep track of the current cleanup stack depth, including debug scopes. 473 LexicalScope Scope(*this, S.getSourceRange()); 474 475 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 476 } 477 478 Address 479 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 480 bool GetLast, 481 AggValueSlot AggSlot) { 482 483 const Stmt *ExprResult = S.getStmtExprResult(); 484 assert((!GetLast || (GetLast && ExprResult)) && 485 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 486 487 Address RetAlloca = Address::invalid(); 488 489 for (auto *CurStmt : S.body()) { 490 if (GetLast && ExprResult == CurStmt) { 491 // We have to special case labels here. They are statements, but when put 492 // at the end of a statement expression, they yield the value of their 493 // subexpression. Handle this by walking through all labels we encounter, 494 // emitting them before we evaluate the subexpr. 495 // Similar issues arise for attributed statements. 496 while (!isa<Expr>(ExprResult)) { 497 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 498 EmitLabel(LS->getDecl()); 499 ExprResult = LS->getSubStmt(); 500 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 501 // FIXME: Update this if we ever have attributes that affect the 502 // semantics of an expression. 503 ExprResult = AS->getSubStmt(); 504 } else { 505 llvm_unreachable("unknown value statement"); 506 } 507 } 508 509 EnsureInsertPoint(); 510 511 const Expr *E = cast<Expr>(ExprResult); 512 QualType ExprTy = E->getType(); 513 if (hasAggregateEvaluationKind(ExprTy)) { 514 EmitAggExpr(E, AggSlot); 515 } else { 516 // We can't return an RValue here because there might be cleanups at 517 // the end of the StmtExpr. Because of that, we have to emit the result 518 // here into a temporary alloca. 519 RetAlloca = CreateMemTemp(ExprTy); 520 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 521 /*IsInit*/ false); 522 } 523 } else { 524 EmitStmt(CurStmt); 525 } 526 } 527 528 return RetAlloca; 529 } 530 531 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 532 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 533 534 // If there is a cleanup stack, then we it isn't worth trying to 535 // simplify this block (we would need to remove it from the scope map 536 // and cleanup entry). 537 if (!EHStack.empty()) 538 return; 539 540 // Can only simplify direct branches. 541 if (!BI || !BI->isUnconditional()) 542 return; 543 544 // Can only simplify empty blocks. 545 if (BI->getIterator() != BB->begin()) 546 return; 547 548 BB->replaceAllUsesWith(BI->getSuccessor(0)); 549 BI->eraseFromParent(); 550 BB->eraseFromParent(); 551 } 552 553 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 554 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 555 556 // Fall out of the current block (if necessary). 557 EmitBranch(BB); 558 559 if (IsFinished && BB->use_empty()) { 560 delete BB; 561 return; 562 } 563 564 // Place the block after the current block, if possible, or else at 565 // the end of the function. 566 if (CurBB && CurBB->getParent()) 567 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 568 else 569 CurFn->getBasicBlockList().push_back(BB); 570 Builder.SetInsertPoint(BB); 571 } 572 573 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 574 // Emit a branch from the current block to the target one if this 575 // was a real block. If this was just a fall-through block after a 576 // terminator, don't emit it. 577 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 578 579 if (!CurBB || CurBB->getTerminator()) { 580 // If there is no insert point or the previous block is already 581 // terminated, don't touch it. 582 } else { 583 // Otherwise, create a fall-through branch. 584 Builder.CreateBr(Target); 585 } 586 587 Builder.ClearInsertionPoint(); 588 } 589 590 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 591 bool inserted = false; 592 for (llvm::User *u : block->users()) { 593 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 594 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 595 block); 596 inserted = true; 597 break; 598 } 599 } 600 601 if (!inserted) 602 CurFn->getBasicBlockList().push_back(block); 603 604 Builder.SetInsertPoint(block); 605 } 606 607 CodeGenFunction::JumpDest 608 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 609 JumpDest &Dest = LabelMap[D]; 610 if (Dest.isValid()) return Dest; 611 612 // Create, but don't insert, the new block. 613 Dest = JumpDest(createBasicBlock(D->getName()), 614 EHScopeStack::stable_iterator::invalid(), 615 NextCleanupDestIndex++); 616 return Dest; 617 } 618 619 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 620 // Add this label to the current lexical scope if we're within any 621 // normal cleanups. Jumps "in" to this label --- when permitted by 622 // the language --- may need to be routed around such cleanups. 623 if (EHStack.hasNormalCleanups() && CurLexicalScope) 624 CurLexicalScope->addLabel(D); 625 626 JumpDest &Dest = LabelMap[D]; 627 628 // If we didn't need a forward reference to this label, just go 629 // ahead and create a destination at the current scope. 630 if (!Dest.isValid()) { 631 Dest = getJumpDestInCurrentScope(D->getName()); 632 633 // Otherwise, we need to give this label a target depth and remove 634 // it from the branch-fixups list. 635 } else { 636 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 637 Dest.setScopeDepth(EHStack.stable_begin()); 638 ResolveBranchFixups(Dest.getBlock()); 639 } 640 641 EmitBlock(Dest.getBlock()); 642 643 // Emit debug info for labels. 644 if (CGDebugInfo *DI = getDebugInfo()) { 645 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 646 DI->setLocation(D->getLocation()); 647 DI->EmitLabel(D, Builder); 648 } 649 } 650 651 incrementProfileCounter(D->getStmt()); 652 } 653 654 /// Change the cleanup scope of the labels in this lexical scope to 655 /// match the scope of the enclosing context. 656 void CodeGenFunction::LexicalScope::rescopeLabels() { 657 assert(!Labels.empty()); 658 EHScopeStack::stable_iterator innermostScope 659 = CGF.EHStack.getInnermostNormalCleanup(); 660 661 // Change the scope depth of all the labels. 662 for (SmallVectorImpl<const LabelDecl*>::const_iterator 663 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 664 assert(CGF.LabelMap.count(*i)); 665 JumpDest &dest = CGF.LabelMap.find(*i)->second; 666 assert(dest.getScopeDepth().isValid()); 667 assert(innermostScope.encloses(dest.getScopeDepth())); 668 dest.setScopeDepth(innermostScope); 669 } 670 671 // Reparent the labels if the new scope also has cleanups. 672 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 673 ParentScope->Labels.append(Labels.begin(), Labels.end()); 674 } 675 } 676 677 678 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 679 EmitLabel(S.getDecl()); 680 681 // IsEHa - emit eha.scope.begin if it's a side entry of a scope 682 if (getLangOpts().EHAsynch && S.isSideEntry()) 683 EmitSehCppScopeBegin(); 684 685 EmitStmt(S.getSubStmt()); 686 } 687 688 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 689 bool nomerge = false; 690 bool noinline = false; 691 bool alwaysinline = false; 692 const CallExpr *musttail = nullptr; 693 694 for (const auto *A : S.getAttrs()) { 695 switch (A->getKind()) { 696 default: 697 break; 698 case attr::NoMerge: 699 nomerge = true; 700 break; 701 case attr::NoInline: 702 noinline = true; 703 break; 704 case attr::AlwaysInline: 705 alwaysinline = true; 706 break; 707 case attr::MustTail: 708 const Stmt *Sub = S.getSubStmt(); 709 const ReturnStmt *R = cast<ReturnStmt>(Sub); 710 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 711 break; 712 } 713 } 714 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 715 SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline); 716 SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt, 717 alwaysinline); 718 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 719 EmitStmt(S.getSubStmt(), S.getAttrs()); 720 } 721 722 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 723 // If this code is reachable then emit a stop point (if generating 724 // debug info). We have to do this ourselves because we are on the 725 // "simple" statement path. 726 if (HaveInsertPoint()) 727 EmitStopPoint(&S); 728 729 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 730 } 731 732 733 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 734 if (const LabelDecl *Target = S.getConstantTarget()) { 735 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 736 return; 737 } 738 739 // Ensure that we have an i8* for our PHI node. 740 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 741 Int8PtrTy, "addr"); 742 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 743 744 // Get the basic block for the indirect goto. 745 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 746 747 // The first instruction in the block has to be the PHI for the switch dest, 748 // add an entry for this branch. 749 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 750 751 EmitBranch(IndGotoBB); 752 } 753 754 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 755 // The else branch of a consteval if statement is always the only branch that 756 // can be runtime evaluated. 757 if (S.isConsteval()) { 758 const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); 759 if (Executed) { 760 RunCleanupsScope ExecutedScope(*this); 761 EmitStmt(Executed); 762 } 763 return; 764 } 765 766 // C99 6.8.4.1: The first substatement is executed if the expression compares 767 // unequal to 0. The condition must be a scalar type. 768 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 769 770 if (S.getInit()) 771 EmitStmt(S.getInit()); 772 773 if (S.getConditionVariable()) 774 EmitDecl(*S.getConditionVariable()); 775 776 // If the condition constant folds and can be elided, try to avoid emitting 777 // the condition and the dead arm of the if/else. 778 bool CondConstant; 779 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 780 S.isConstexpr())) { 781 // Figure out which block (then or else) is executed. 782 const Stmt *Executed = S.getThen(); 783 const Stmt *Skipped = S.getElse(); 784 if (!CondConstant) // Condition false? 785 std::swap(Executed, Skipped); 786 787 // If the skipped block has no labels in it, just emit the executed block. 788 // This avoids emitting dead code and simplifies the CFG substantially. 789 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 790 if (CondConstant) 791 incrementProfileCounter(&S); 792 if (Executed) { 793 RunCleanupsScope ExecutedScope(*this); 794 EmitStmt(Executed); 795 } 796 return; 797 } 798 } 799 800 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 801 // the conditional branch. 802 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 803 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 804 llvm::BasicBlock *ElseBlock = ContBlock; 805 if (S.getElse()) 806 ElseBlock = createBasicBlock("if.else"); 807 808 // Prefer the PGO based weights over the likelihood attribute. 809 // When the build isn't optimized the metadata isn't used, so don't generate 810 // it. 811 Stmt::Likelihood LH = Stmt::LH_None; 812 uint64_t Count = getProfileCount(S.getThen()); 813 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 814 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 815 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 816 817 // Emit the 'then' code. 818 EmitBlock(ThenBlock); 819 incrementProfileCounter(&S); 820 { 821 RunCleanupsScope ThenScope(*this); 822 EmitStmt(S.getThen()); 823 } 824 EmitBranch(ContBlock); 825 826 // Emit the 'else' code if present. 827 if (const Stmt *Else = S.getElse()) { 828 { 829 // There is no need to emit line number for an unconditional branch. 830 auto NL = ApplyDebugLocation::CreateEmpty(*this); 831 EmitBlock(ElseBlock); 832 } 833 { 834 RunCleanupsScope ElseScope(*this); 835 EmitStmt(Else); 836 } 837 { 838 // There is no need to emit line number for an unconditional branch. 839 auto NL = ApplyDebugLocation::CreateEmpty(*this); 840 EmitBranch(ContBlock); 841 } 842 } 843 844 // Emit the continuation block for code after the if. 845 EmitBlock(ContBlock, true); 846 } 847 848 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 849 ArrayRef<const Attr *> WhileAttrs) { 850 // Emit the header for the loop, which will also become 851 // the continue target. 852 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 853 EmitBlock(LoopHeader.getBlock()); 854 855 // Create an exit block for when the condition fails, which will 856 // also become the break target. 857 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 858 859 // Store the blocks to use for break and continue. 860 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 861 862 // C++ [stmt.while]p2: 863 // When the condition of a while statement is a declaration, the 864 // scope of the variable that is declared extends from its point 865 // of declaration (3.3.2) to the end of the while statement. 866 // [...] 867 // The object created in a condition is destroyed and created 868 // with each iteration of the loop. 869 RunCleanupsScope ConditionScope(*this); 870 871 if (S.getConditionVariable()) 872 EmitDecl(*S.getConditionVariable()); 873 874 // Evaluate the conditional in the while header. C99 6.8.5.1: The 875 // evaluation of the controlling expression takes place before each 876 // execution of the loop body. 877 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 878 879 // while(1) is common, avoid extra exit blocks. Be sure 880 // to correctly handle break/continue though. 881 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 882 bool CondIsConstInt = C != nullptr; 883 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 884 const SourceRange &R = S.getSourceRange(); 885 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 886 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 887 SourceLocToDebugLoc(R.getEnd()), 888 checkIfLoopMustProgress(CondIsConstInt)); 889 890 // As long as the condition is true, go to the loop body. 891 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 892 if (EmitBoolCondBranch) { 893 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 894 if (ConditionScope.requiresCleanups()) 895 ExitBlock = createBasicBlock("while.exit"); 896 llvm::MDNode *Weights = 897 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 898 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 899 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 900 BoolCondVal, Stmt::getLikelihood(S.getBody())); 901 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 902 903 if (ExitBlock != LoopExit.getBlock()) { 904 EmitBlock(ExitBlock); 905 EmitBranchThroughCleanup(LoopExit); 906 } 907 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 908 CGM.getDiags().Report(A->getLocation(), 909 diag::warn_attribute_has_no_effect_on_infinite_loop) 910 << A << A->getRange(); 911 CGM.getDiags().Report( 912 S.getWhileLoc(), 913 diag::note_attribute_has_no_effect_on_infinite_loop_here) 914 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 915 } 916 917 // Emit the loop body. We have to emit this in a cleanup scope 918 // because it might be a singleton DeclStmt. 919 { 920 RunCleanupsScope BodyScope(*this); 921 EmitBlock(LoopBody); 922 incrementProfileCounter(&S); 923 EmitStmt(S.getBody()); 924 } 925 926 BreakContinueStack.pop_back(); 927 928 // Immediately force cleanup. 929 ConditionScope.ForceCleanup(); 930 931 EmitStopPoint(&S); 932 // Branch to the loop header again. 933 EmitBranch(LoopHeader.getBlock()); 934 935 LoopStack.pop(); 936 937 // Emit the exit block. 938 EmitBlock(LoopExit.getBlock(), true); 939 940 // The LoopHeader typically is just a branch if we skipped emitting 941 // a branch, try to erase it. 942 if (!EmitBoolCondBranch) 943 SimplifyForwardingBlocks(LoopHeader.getBlock()); 944 } 945 946 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 947 ArrayRef<const Attr *> DoAttrs) { 948 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 949 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 950 951 uint64_t ParentCount = getCurrentProfileCount(); 952 953 // Store the blocks to use for break and continue. 954 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 955 956 // Emit the body of the loop. 957 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 958 959 EmitBlockWithFallThrough(LoopBody, &S); 960 { 961 RunCleanupsScope BodyScope(*this); 962 EmitStmt(S.getBody()); 963 } 964 965 EmitBlock(LoopCond.getBlock()); 966 967 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 968 // after each execution of the loop body." 969 970 // Evaluate the conditional in the while header. 971 // C99 6.8.5p2/p4: The first substatement is executed if the expression 972 // compares unequal to 0. The condition must be a scalar type. 973 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 974 975 BreakContinueStack.pop_back(); 976 977 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 978 // to correctly handle break/continue though. 979 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 980 bool CondIsConstInt = C; 981 bool EmitBoolCondBranch = !C || !C->isZero(); 982 983 const SourceRange &R = S.getSourceRange(); 984 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 985 SourceLocToDebugLoc(R.getBegin()), 986 SourceLocToDebugLoc(R.getEnd()), 987 checkIfLoopMustProgress(CondIsConstInt)); 988 989 // As long as the condition is true, iterate the loop. 990 if (EmitBoolCondBranch) { 991 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 992 Builder.CreateCondBr( 993 BoolCondVal, LoopBody, LoopExit.getBlock(), 994 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 995 } 996 997 LoopStack.pop(); 998 999 // Emit the exit block. 1000 EmitBlock(LoopExit.getBlock()); 1001 1002 // The DoCond block typically is just a branch if we skipped 1003 // emitting a branch, try to erase it. 1004 if (!EmitBoolCondBranch) 1005 SimplifyForwardingBlocks(LoopCond.getBlock()); 1006 } 1007 1008 void CodeGenFunction::EmitForStmt(const ForStmt &S, 1009 ArrayRef<const Attr *> ForAttrs) { 1010 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1011 1012 LexicalScope ForScope(*this, S.getSourceRange()); 1013 1014 // Evaluate the first part before the loop. 1015 if (S.getInit()) 1016 EmitStmt(S.getInit()); 1017 1018 // Start the loop with a block that tests the condition. 1019 // If there's an increment, the continue scope will be overwritten 1020 // later. 1021 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 1022 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 1023 EmitBlock(CondBlock); 1024 1025 Expr::EvalResult Result; 1026 bool CondIsConstInt = 1027 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 1028 1029 const SourceRange &R = S.getSourceRange(); 1030 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1031 SourceLocToDebugLoc(R.getBegin()), 1032 SourceLocToDebugLoc(R.getEnd()), 1033 checkIfLoopMustProgress(CondIsConstInt)); 1034 1035 // Create a cleanup scope for the condition variable cleanups. 1036 LexicalScope ConditionScope(*this, S.getSourceRange()); 1037 1038 // If the for loop doesn't have an increment we can just use the condition as 1039 // the continue block. Otherwise, if there is no condition variable, we can 1040 // form the continue block now. If there is a condition variable, we can't 1041 // form the continue block until after we've emitted the condition, because 1042 // the condition is in scope in the increment, but Sema's jump diagnostics 1043 // ensure that there are no continues from the condition variable that jump 1044 // to the loop increment. 1045 JumpDest Continue; 1046 if (!S.getInc()) 1047 Continue = CondDest; 1048 else if (!S.getConditionVariable()) 1049 Continue = getJumpDestInCurrentScope("for.inc"); 1050 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1051 1052 if (S.getCond()) { 1053 // If the for statement has a condition scope, emit the local variable 1054 // declaration. 1055 if (S.getConditionVariable()) { 1056 EmitDecl(*S.getConditionVariable()); 1057 1058 // We have entered the condition variable's scope, so we're now able to 1059 // jump to the continue block. 1060 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 1061 BreakContinueStack.back().ContinueBlock = Continue; 1062 } 1063 1064 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1065 // If there are any cleanups between here and the loop-exit scope, 1066 // create a block to stage a loop exit along. 1067 if (ForScope.requiresCleanups()) 1068 ExitBlock = createBasicBlock("for.cond.cleanup"); 1069 1070 // As long as the condition is true, iterate the loop. 1071 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1072 1073 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1074 // compares unequal to 0. The condition must be a scalar type. 1075 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1076 llvm::MDNode *Weights = 1077 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1078 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1079 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1080 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1081 1082 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1083 1084 if (ExitBlock != LoopExit.getBlock()) { 1085 EmitBlock(ExitBlock); 1086 EmitBranchThroughCleanup(LoopExit); 1087 } 1088 1089 EmitBlock(ForBody); 1090 } else { 1091 // Treat it as a non-zero constant. Don't even create a new block for the 1092 // body, just fall into it. 1093 } 1094 incrementProfileCounter(&S); 1095 1096 { 1097 // Create a separate cleanup scope for the body, in case it is not 1098 // a compound statement. 1099 RunCleanupsScope BodyScope(*this); 1100 EmitStmt(S.getBody()); 1101 } 1102 1103 // If there is an increment, emit it next. 1104 if (S.getInc()) { 1105 EmitBlock(Continue.getBlock()); 1106 EmitStmt(S.getInc()); 1107 } 1108 1109 BreakContinueStack.pop_back(); 1110 1111 ConditionScope.ForceCleanup(); 1112 1113 EmitStopPoint(&S); 1114 EmitBranch(CondBlock); 1115 1116 ForScope.ForceCleanup(); 1117 1118 LoopStack.pop(); 1119 1120 // Emit the fall-through block. 1121 EmitBlock(LoopExit.getBlock(), true); 1122 } 1123 1124 void 1125 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1126 ArrayRef<const Attr *> ForAttrs) { 1127 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1128 1129 LexicalScope ForScope(*this, S.getSourceRange()); 1130 1131 // Evaluate the first pieces before the loop. 1132 if (S.getInit()) 1133 EmitStmt(S.getInit()); 1134 EmitStmt(S.getRangeStmt()); 1135 EmitStmt(S.getBeginStmt()); 1136 EmitStmt(S.getEndStmt()); 1137 1138 // Start the loop with a block that tests the condition. 1139 // If there's an increment, the continue scope will be overwritten 1140 // later. 1141 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1142 EmitBlock(CondBlock); 1143 1144 const SourceRange &R = S.getSourceRange(); 1145 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1146 SourceLocToDebugLoc(R.getBegin()), 1147 SourceLocToDebugLoc(R.getEnd())); 1148 1149 // If there are any cleanups between here and the loop-exit scope, 1150 // create a block to stage a loop exit along. 1151 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1152 if (ForScope.requiresCleanups()) 1153 ExitBlock = createBasicBlock("for.cond.cleanup"); 1154 1155 // The loop body, consisting of the specified body and the loop variable. 1156 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1157 1158 // The body is executed if the expression, contextually converted 1159 // to bool, is true. 1160 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1161 llvm::MDNode *Weights = 1162 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1163 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1164 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1165 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1166 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1167 1168 if (ExitBlock != LoopExit.getBlock()) { 1169 EmitBlock(ExitBlock); 1170 EmitBranchThroughCleanup(LoopExit); 1171 } 1172 1173 EmitBlock(ForBody); 1174 incrementProfileCounter(&S); 1175 1176 // Create a block for the increment. In case of a 'continue', we jump there. 1177 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1178 1179 // Store the blocks to use for break and continue. 1180 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1181 1182 { 1183 // Create a separate cleanup scope for the loop variable and body. 1184 LexicalScope BodyScope(*this, S.getSourceRange()); 1185 EmitStmt(S.getLoopVarStmt()); 1186 EmitStmt(S.getBody()); 1187 } 1188 1189 EmitStopPoint(&S); 1190 // If there is an increment, emit it next. 1191 EmitBlock(Continue.getBlock()); 1192 EmitStmt(S.getInc()); 1193 1194 BreakContinueStack.pop_back(); 1195 1196 EmitBranch(CondBlock); 1197 1198 ForScope.ForceCleanup(); 1199 1200 LoopStack.pop(); 1201 1202 // Emit the fall-through block. 1203 EmitBlock(LoopExit.getBlock(), true); 1204 } 1205 1206 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1207 if (RV.isScalar()) { 1208 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1209 } else if (RV.isAggregate()) { 1210 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1211 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1212 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1213 } else { 1214 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1215 /*init*/ true); 1216 } 1217 EmitBranchThroughCleanup(ReturnBlock); 1218 } 1219 1220 namespace { 1221 // RAII struct used to save and restore a return statment's result expression. 1222 struct SaveRetExprRAII { 1223 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1224 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1225 CGF.RetExpr = RetExpr; 1226 } 1227 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1228 const Expr *OldRetExpr; 1229 CodeGenFunction &CGF; 1230 }; 1231 } // namespace 1232 1233 /// If we have 'return f(...);', where both caller and callee are SwiftAsync, 1234 /// codegen it as 'tail call ...; ret void;'. 1235 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, 1236 const CGFunctionInfo *CurFnInfo) { 1237 auto calleeQualType = CE->getCallee()->getType(); 1238 const FunctionType *calleeType = nullptr; 1239 if (calleeQualType->isFunctionPointerType() || 1240 calleeQualType->isFunctionReferenceType() || 1241 calleeQualType->isBlockPointerType() || 1242 calleeQualType->isMemberFunctionPointerType()) { 1243 calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); 1244 } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { 1245 calleeType = ty; 1246 } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { 1247 if (auto methodDecl = CMCE->getMethodDecl()) { 1248 // getMethodDecl() doesn't handle member pointers at the moment. 1249 calleeType = methodDecl->getType()->castAs<FunctionType>(); 1250 } else { 1251 return; 1252 } 1253 } else { 1254 return; 1255 } 1256 if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && 1257 (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { 1258 auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); 1259 CI->setTailCallKind(llvm::CallInst::TCK_MustTail); 1260 Builder.CreateRetVoid(); 1261 Builder.ClearInsertionPoint(); 1262 } 1263 } 1264 1265 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1266 /// if the function returns void, or may be missing one if the function returns 1267 /// non-void. Fun stuff :). 1268 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1269 if (requiresReturnValueCheck()) { 1270 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1271 auto *SLocPtr = 1272 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1273 llvm::GlobalVariable::PrivateLinkage, SLoc); 1274 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1275 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1276 assert(ReturnLocation.isValid() && "No valid return location"); 1277 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1278 ReturnLocation); 1279 } 1280 1281 // Returning from an outlined SEH helper is UB, and we already warn on it. 1282 if (IsOutlinedSEHHelper) { 1283 Builder.CreateUnreachable(); 1284 Builder.ClearInsertionPoint(); 1285 } 1286 1287 // Emit the result value, even if unused, to evaluate the side effects. 1288 const Expr *RV = S.getRetValue(); 1289 1290 // Record the result expression of the return statement. The recorded 1291 // expression is used to determine whether a block capture's lifetime should 1292 // end at the end of the full expression as opposed to the end of the scope 1293 // enclosing the block expression. 1294 // 1295 // This permits a small, easily-implemented exception to our over-conservative 1296 // rules about not jumping to statements following block literals with 1297 // non-trivial cleanups. 1298 SaveRetExprRAII SaveRetExpr(RV, *this); 1299 1300 RunCleanupsScope cleanupScope(*this); 1301 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1302 RV = EWC->getSubExpr(); 1303 // FIXME: Clean this up by using an LValue for ReturnTemp, 1304 // EmitStoreThroughLValue, and EmitAnyExpr. 1305 // Check if the NRVO candidate was not globalized in OpenMP mode. 1306 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1307 S.getNRVOCandidate()->isNRVOVariable() && 1308 (!getLangOpts().OpenMP || 1309 !CGM.getOpenMPRuntime() 1310 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1311 .isValid())) { 1312 // Apply the named return value optimization for this return statement, 1313 // which means doing nothing: the appropriate result has already been 1314 // constructed into the NRVO variable. 1315 1316 // If there is an NRVO flag for this variable, set it to 1 into indicate 1317 // that the cleanup code should not destroy the variable. 1318 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1319 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1320 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1321 // Make sure not to return anything, but evaluate the expression 1322 // for side effects. 1323 if (RV) { 1324 EmitAnyExpr(RV); 1325 if (auto *CE = dyn_cast<CallExpr>(RV)) 1326 makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); 1327 } 1328 } else if (!RV) { 1329 // Do nothing (return value is left uninitialized) 1330 } else if (FnRetTy->isReferenceType()) { 1331 // If this function returns a reference, take the address of the expression 1332 // rather than the value. 1333 RValue Result = EmitReferenceBindingToExpr(RV); 1334 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1335 } else { 1336 switch (getEvaluationKind(RV->getType())) { 1337 case TEK_Scalar: 1338 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1339 break; 1340 case TEK_Complex: 1341 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1342 /*isInit*/ true); 1343 break; 1344 case TEK_Aggregate: 1345 EmitAggExpr(RV, AggValueSlot::forAddr( 1346 ReturnValue, Qualifiers(), 1347 AggValueSlot::IsDestructed, 1348 AggValueSlot::DoesNotNeedGCBarriers, 1349 AggValueSlot::IsNotAliased, 1350 getOverlapForReturnValue())); 1351 break; 1352 } 1353 } 1354 1355 ++NumReturnExprs; 1356 if (!RV || RV->isEvaluatable(getContext())) 1357 ++NumSimpleReturnExprs; 1358 1359 cleanupScope.ForceCleanup(); 1360 EmitBranchThroughCleanup(ReturnBlock); 1361 } 1362 1363 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1364 // As long as debug info is modeled with instructions, we have to ensure we 1365 // have a place to insert here and write the stop point here. 1366 if (HaveInsertPoint()) 1367 EmitStopPoint(&S); 1368 1369 for (const auto *I : S.decls()) 1370 EmitDecl(*I); 1371 } 1372 1373 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1374 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1375 1376 // If this code is reachable then emit a stop point (if generating 1377 // debug info). We have to do this ourselves because we are on the 1378 // "simple" statement path. 1379 if (HaveInsertPoint()) 1380 EmitStopPoint(&S); 1381 1382 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1383 } 1384 1385 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1386 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1387 1388 // If this code is reachable then emit a stop point (if generating 1389 // debug info). We have to do this ourselves because we are on the 1390 // "simple" statement path. 1391 if (HaveInsertPoint()) 1392 EmitStopPoint(&S); 1393 1394 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1395 } 1396 1397 /// EmitCaseStmtRange - If case statement range is not too big then 1398 /// add multiple cases to switch instruction, one for each value within 1399 /// the range. If range is too big then emit "if" condition check. 1400 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1401 ArrayRef<const Attr *> Attrs) { 1402 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1403 1404 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1405 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1406 1407 // Emit the code for this case. We do this first to make sure it is 1408 // properly chained from our predecessor before generating the 1409 // switch machinery to enter this block. 1410 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1411 EmitBlockWithFallThrough(CaseDest, &S); 1412 EmitStmt(S.getSubStmt()); 1413 1414 // If range is empty, do nothing. 1415 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1416 return; 1417 1418 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1419 llvm::APInt Range = RHS - LHS; 1420 // FIXME: parameters such as this should not be hardcoded. 1421 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1422 // Range is small enough to add multiple switch instruction cases. 1423 uint64_t Total = getProfileCount(&S); 1424 unsigned NCases = Range.getZExtValue() + 1; 1425 // We only have one region counter for the entire set of cases here, so we 1426 // need to divide the weights evenly between the generated cases, ensuring 1427 // that the total weight is preserved. E.g., a weight of 5 over three cases 1428 // will be distributed as weights of 2, 2, and 1. 1429 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1430 for (unsigned I = 0; I != NCases; ++I) { 1431 if (SwitchWeights) 1432 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1433 else if (SwitchLikelihood) 1434 SwitchLikelihood->push_back(LH); 1435 1436 if (Rem) 1437 Rem--; 1438 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1439 ++LHS; 1440 } 1441 return; 1442 } 1443 1444 // The range is too big. Emit "if" condition into a new block, 1445 // making sure to save and restore the current insertion point. 1446 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1447 1448 // Push this test onto the chain of range checks (which terminates 1449 // in the default basic block). The switch's default will be changed 1450 // to the top of this chain after switch emission is complete. 1451 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1452 CaseRangeBlock = createBasicBlock("sw.caserange"); 1453 1454 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1455 Builder.SetInsertPoint(CaseRangeBlock); 1456 1457 // Emit range check. 1458 llvm::Value *Diff = 1459 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1460 llvm::Value *Cond = 1461 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1462 1463 llvm::MDNode *Weights = nullptr; 1464 if (SwitchWeights) { 1465 uint64_t ThisCount = getProfileCount(&S); 1466 uint64_t DefaultCount = (*SwitchWeights)[0]; 1467 Weights = createProfileWeights(ThisCount, DefaultCount); 1468 1469 // Since we're chaining the switch default through each large case range, we 1470 // need to update the weight for the default, ie, the first case, to include 1471 // this case. 1472 (*SwitchWeights)[0] += ThisCount; 1473 } else if (SwitchLikelihood) 1474 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1475 1476 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1477 1478 // Restore the appropriate insertion point. 1479 if (RestoreBB) 1480 Builder.SetInsertPoint(RestoreBB); 1481 else 1482 Builder.ClearInsertionPoint(); 1483 } 1484 1485 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1486 ArrayRef<const Attr *> Attrs) { 1487 // If there is no enclosing switch instance that we're aware of, then this 1488 // case statement and its block can be elided. This situation only happens 1489 // when we've constant-folded the switch, are emitting the constant case, 1490 // and part of the constant case includes another case statement. For 1491 // instance: switch (4) { case 4: do { case 5: } while (1); } 1492 if (!SwitchInsn) { 1493 EmitStmt(S.getSubStmt()); 1494 return; 1495 } 1496 1497 // Handle case ranges. 1498 if (S.getRHS()) { 1499 EmitCaseStmtRange(S, Attrs); 1500 return; 1501 } 1502 1503 llvm::ConstantInt *CaseVal = 1504 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1505 if (SwitchLikelihood) 1506 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1507 1508 // If the body of the case is just a 'break', try to not emit an empty block. 1509 // If we're profiling or we're not optimizing, leave the block in for better 1510 // debug and coverage analysis. 1511 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1512 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1513 isa<BreakStmt>(S.getSubStmt())) { 1514 JumpDest Block = BreakContinueStack.back().BreakBlock; 1515 1516 // Only do this optimization if there are no cleanups that need emitting. 1517 if (isObviouslyBranchWithoutCleanups(Block)) { 1518 if (SwitchWeights) 1519 SwitchWeights->push_back(getProfileCount(&S)); 1520 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1521 1522 // If there was a fallthrough into this case, make sure to redirect it to 1523 // the end of the switch as well. 1524 if (Builder.GetInsertBlock()) { 1525 Builder.CreateBr(Block.getBlock()); 1526 Builder.ClearInsertionPoint(); 1527 } 1528 return; 1529 } 1530 } 1531 1532 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1533 EmitBlockWithFallThrough(CaseDest, &S); 1534 if (SwitchWeights) 1535 SwitchWeights->push_back(getProfileCount(&S)); 1536 SwitchInsn->addCase(CaseVal, CaseDest); 1537 1538 // Recursively emitting the statement is acceptable, but is not wonderful for 1539 // code where we have many case statements nested together, i.e.: 1540 // case 1: 1541 // case 2: 1542 // case 3: etc. 1543 // Handling this recursively will create a new block for each case statement 1544 // that falls through to the next case which is IR intensive. It also causes 1545 // deep recursion which can run into stack depth limitations. Handle 1546 // sequential non-range case statements specially. 1547 // 1548 // TODO When the next case has a likelihood attribute the code returns to the 1549 // recursive algorithm. Maybe improve this case if it becomes common practice 1550 // to use a lot of attributes. 1551 const CaseStmt *CurCase = &S; 1552 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1553 1554 // Otherwise, iteratively add consecutive cases to this switch stmt. 1555 while (NextCase && NextCase->getRHS() == nullptr) { 1556 CurCase = NextCase; 1557 llvm::ConstantInt *CaseVal = 1558 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1559 1560 if (SwitchWeights) 1561 SwitchWeights->push_back(getProfileCount(NextCase)); 1562 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1563 CaseDest = createBasicBlock("sw.bb"); 1564 EmitBlockWithFallThrough(CaseDest, CurCase); 1565 } 1566 // Since this loop is only executed when the CaseStmt has no attributes 1567 // use a hard-coded value. 1568 if (SwitchLikelihood) 1569 SwitchLikelihood->push_back(Stmt::LH_None); 1570 1571 SwitchInsn->addCase(CaseVal, CaseDest); 1572 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1573 } 1574 1575 // Generate a stop point for debug info if the case statement is 1576 // followed by a default statement. A fallthrough case before a 1577 // default case gets its own branch target. 1578 if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) 1579 EmitStopPoint(CurCase); 1580 1581 // Normal default recursion for non-cases. 1582 EmitStmt(CurCase->getSubStmt()); 1583 } 1584 1585 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1586 ArrayRef<const Attr *> Attrs) { 1587 // If there is no enclosing switch instance that we're aware of, then this 1588 // default statement can be elided. This situation only happens when we've 1589 // constant-folded the switch. 1590 if (!SwitchInsn) { 1591 EmitStmt(S.getSubStmt()); 1592 return; 1593 } 1594 1595 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1596 assert(DefaultBlock->empty() && 1597 "EmitDefaultStmt: Default block already defined?"); 1598 1599 if (SwitchLikelihood) 1600 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1601 1602 EmitBlockWithFallThrough(DefaultBlock, &S); 1603 1604 EmitStmt(S.getSubStmt()); 1605 } 1606 1607 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1608 /// constant value that is being switched on, see if we can dead code eliminate 1609 /// the body of the switch to a simple series of statements to emit. Basically, 1610 /// on a switch (5) we want to find these statements: 1611 /// case 5: 1612 /// printf(...); <-- 1613 /// ++i; <-- 1614 /// break; 1615 /// 1616 /// and add them to the ResultStmts vector. If it is unsafe to do this 1617 /// transformation (for example, one of the elided statements contains a label 1618 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1619 /// should include statements after it (e.g. the printf() line is a substmt of 1620 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1621 /// statement, then return CSFC_Success. 1622 /// 1623 /// If Case is non-null, then we are looking for the specified case, checking 1624 /// that nothing we jump over contains labels. If Case is null, then we found 1625 /// the case and are looking for the break. 1626 /// 1627 /// If the recursive walk actually finds our Case, then we set FoundCase to 1628 /// true. 1629 /// 1630 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1631 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1632 const SwitchCase *Case, 1633 bool &FoundCase, 1634 SmallVectorImpl<const Stmt*> &ResultStmts) { 1635 // If this is a null statement, just succeed. 1636 if (!S) 1637 return Case ? CSFC_Success : CSFC_FallThrough; 1638 1639 // If this is the switchcase (case 4: or default) that we're looking for, then 1640 // we're in business. Just add the substatement. 1641 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1642 if (S == Case) { 1643 FoundCase = true; 1644 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1645 ResultStmts); 1646 } 1647 1648 // Otherwise, this is some other case or default statement, just ignore it. 1649 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1650 ResultStmts); 1651 } 1652 1653 // If we are in the live part of the code and we found our break statement, 1654 // return a success! 1655 if (!Case && isa<BreakStmt>(S)) 1656 return CSFC_Success; 1657 1658 // If this is a switch statement, then it might contain the SwitchCase, the 1659 // break, or neither. 1660 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1661 // Handle this as two cases: we might be looking for the SwitchCase (if so 1662 // the skipped statements must be skippable) or we might already have it. 1663 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1664 bool StartedInLiveCode = FoundCase; 1665 unsigned StartSize = ResultStmts.size(); 1666 1667 // If we've not found the case yet, scan through looking for it. 1668 if (Case) { 1669 // Keep track of whether we see a skipped declaration. The code could be 1670 // using the declaration even if it is skipped, so we can't optimize out 1671 // the decl if the kept statements might refer to it. 1672 bool HadSkippedDecl = false; 1673 1674 // If we're looking for the case, just see if we can skip each of the 1675 // substatements. 1676 for (; Case && I != E; ++I) { 1677 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1678 1679 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1680 case CSFC_Failure: return CSFC_Failure; 1681 case CSFC_Success: 1682 // A successful result means that either 1) that the statement doesn't 1683 // have the case and is skippable, or 2) does contain the case value 1684 // and also contains the break to exit the switch. In the later case, 1685 // we just verify the rest of the statements are elidable. 1686 if (FoundCase) { 1687 // If we found the case and skipped declarations, we can't do the 1688 // optimization. 1689 if (HadSkippedDecl) 1690 return CSFC_Failure; 1691 1692 for (++I; I != E; ++I) 1693 if (CodeGenFunction::ContainsLabel(*I, true)) 1694 return CSFC_Failure; 1695 return CSFC_Success; 1696 } 1697 break; 1698 case CSFC_FallThrough: 1699 // If we have a fallthrough condition, then we must have found the 1700 // case started to include statements. Consider the rest of the 1701 // statements in the compound statement as candidates for inclusion. 1702 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1703 // We recursively found Case, so we're not looking for it anymore. 1704 Case = nullptr; 1705 1706 // If we found the case and skipped declarations, we can't do the 1707 // optimization. 1708 if (HadSkippedDecl) 1709 return CSFC_Failure; 1710 break; 1711 } 1712 } 1713 1714 if (!FoundCase) 1715 return CSFC_Success; 1716 1717 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1718 } 1719 1720 // If we have statements in our range, then we know that the statements are 1721 // live and need to be added to the set of statements we're tracking. 1722 bool AnyDecls = false; 1723 for (; I != E; ++I) { 1724 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1725 1726 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1727 case CSFC_Failure: return CSFC_Failure; 1728 case CSFC_FallThrough: 1729 // A fallthrough result means that the statement was simple and just 1730 // included in ResultStmt, keep adding them afterwards. 1731 break; 1732 case CSFC_Success: 1733 // A successful result means that we found the break statement and 1734 // stopped statement inclusion. We just ensure that any leftover stmts 1735 // are skippable and return success ourselves. 1736 for (++I; I != E; ++I) 1737 if (CodeGenFunction::ContainsLabel(*I, true)) 1738 return CSFC_Failure; 1739 return CSFC_Success; 1740 } 1741 } 1742 1743 // If we're about to fall out of a scope without hitting a 'break;', we 1744 // can't perform the optimization if there were any decls in that scope 1745 // (we'd lose their end-of-lifetime). 1746 if (AnyDecls) { 1747 // If the entire compound statement was live, there's one more thing we 1748 // can try before giving up: emit the whole thing as a single statement. 1749 // We can do that unless the statement contains a 'break;'. 1750 // FIXME: Such a break must be at the end of a construct within this one. 1751 // We could emit this by just ignoring the BreakStmts entirely. 1752 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1753 ResultStmts.resize(StartSize); 1754 ResultStmts.push_back(S); 1755 } else { 1756 return CSFC_Failure; 1757 } 1758 } 1759 1760 return CSFC_FallThrough; 1761 } 1762 1763 // Okay, this is some other statement that we don't handle explicitly, like a 1764 // for statement or increment etc. If we are skipping over this statement, 1765 // just verify it doesn't have labels, which would make it invalid to elide. 1766 if (Case) { 1767 if (CodeGenFunction::ContainsLabel(S, true)) 1768 return CSFC_Failure; 1769 return CSFC_Success; 1770 } 1771 1772 // Otherwise, we want to include this statement. Everything is cool with that 1773 // so long as it doesn't contain a break out of the switch we're in. 1774 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1775 1776 // Otherwise, everything is great. Include the statement and tell the caller 1777 // that we fall through and include the next statement as well. 1778 ResultStmts.push_back(S); 1779 return CSFC_FallThrough; 1780 } 1781 1782 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1783 /// then invoke CollectStatementsForCase to find the list of statements to emit 1784 /// for a switch on constant. See the comment above CollectStatementsForCase 1785 /// for more details. 1786 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1787 const llvm::APSInt &ConstantCondValue, 1788 SmallVectorImpl<const Stmt*> &ResultStmts, 1789 ASTContext &C, 1790 const SwitchCase *&ResultCase) { 1791 // First step, find the switch case that is being branched to. We can do this 1792 // efficiently by scanning the SwitchCase list. 1793 const SwitchCase *Case = S.getSwitchCaseList(); 1794 const DefaultStmt *DefaultCase = nullptr; 1795 1796 for (; Case; Case = Case->getNextSwitchCase()) { 1797 // It's either a default or case. Just remember the default statement in 1798 // case we're not jumping to any numbered cases. 1799 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1800 DefaultCase = DS; 1801 continue; 1802 } 1803 1804 // Check to see if this case is the one we're looking for. 1805 const CaseStmt *CS = cast<CaseStmt>(Case); 1806 // Don't handle case ranges yet. 1807 if (CS->getRHS()) return false; 1808 1809 // If we found our case, remember it as 'case'. 1810 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1811 break; 1812 } 1813 1814 // If we didn't find a matching case, we use a default if it exists, or we 1815 // elide the whole switch body! 1816 if (!Case) { 1817 // It is safe to elide the body of the switch if it doesn't contain labels 1818 // etc. If it is safe, return successfully with an empty ResultStmts list. 1819 if (!DefaultCase) 1820 return !CodeGenFunction::ContainsLabel(&S); 1821 Case = DefaultCase; 1822 } 1823 1824 // Ok, we know which case is being jumped to, try to collect all the 1825 // statements that follow it. This can fail for a variety of reasons. Also, 1826 // check to see that the recursive walk actually found our case statement. 1827 // Insane cases like this can fail to find it in the recursive walk since we 1828 // don't handle every stmt kind: 1829 // switch (4) { 1830 // while (1) { 1831 // case 4: ... 1832 bool FoundCase = false; 1833 ResultCase = Case; 1834 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1835 ResultStmts) != CSFC_Failure && 1836 FoundCase; 1837 } 1838 1839 static Optional<SmallVector<uint64_t, 16>> 1840 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1841 // Are there enough branches to weight them? 1842 if (Likelihoods.size() <= 1) 1843 return None; 1844 1845 uint64_t NumUnlikely = 0; 1846 uint64_t NumNone = 0; 1847 uint64_t NumLikely = 0; 1848 for (const auto LH : Likelihoods) { 1849 switch (LH) { 1850 case Stmt::LH_Unlikely: 1851 ++NumUnlikely; 1852 break; 1853 case Stmt::LH_None: 1854 ++NumNone; 1855 break; 1856 case Stmt::LH_Likely: 1857 ++NumLikely; 1858 break; 1859 } 1860 } 1861 1862 // Is there a likelihood attribute used? 1863 if (NumUnlikely == 0 && NumLikely == 0) 1864 return None; 1865 1866 // When multiple cases share the same code they can be combined during 1867 // optimization. In that case the weights of the branch will be the sum of 1868 // the individual weights. Make sure the combined sum of all neutral cases 1869 // doesn't exceed the value of a single likely attribute. 1870 // The additions both avoid divisions by 0 and make sure the weights of None 1871 // don't exceed the weight of Likely. 1872 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1873 const uint64_t None = Likely / (NumNone + 1); 1874 const uint64_t Unlikely = 0; 1875 1876 SmallVector<uint64_t, 16> Result; 1877 Result.reserve(Likelihoods.size()); 1878 for (const auto LH : Likelihoods) { 1879 switch (LH) { 1880 case Stmt::LH_Unlikely: 1881 Result.push_back(Unlikely); 1882 break; 1883 case Stmt::LH_None: 1884 Result.push_back(None); 1885 break; 1886 case Stmt::LH_Likely: 1887 Result.push_back(Likely); 1888 break; 1889 } 1890 } 1891 1892 return Result; 1893 } 1894 1895 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1896 // Handle nested switch statements. 1897 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1898 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1899 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1900 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1901 1902 // See if we can constant fold the condition of the switch and therefore only 1903 // emit the live case statement (if any) of the switch. 1904 llvm::APSInt ConstantCondValue; 1905 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1906 SmallVector<const Stmt*, 4> CaseStmts; 1907 const SwitchCase *Case = nullptr; 1908 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1909 getContext(), Case)) { 1910 if (Case) 1911 incrementProfileCounter(Case); 1912 RunCleanupsScope ExecutedScope(*this); 1913 1914 if (S.getInit()) 1915 EmitStmt(S.getInit()); 1916 1917 // Emit the condition variable if needed inside the entire cleanup scope 1918 // used by this special case for constant folded switches. 1919 if (S.getConditionVariable()) 1920 EmitDecl(*S.getConditionVariable()); 1921 1922 // At this point, we are no longer "within" a switch instance, so 1923 // we can temporarily enforce this to ensure that any embedded case 1924 // statements are not emitted. 1925 SwitchInsn = nullptr; 1926 1927 // Okay, we can dead code eliminate everything except this case. Emit the 1928 // specified series of statements and we're good. 1929 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1930 EmitStmt(CaseStmts[i]); 1931 incrementProfileCounter(&S); 1932 1933 // Now we want to restore the saved switch instance so that nested 1934 // switches continue to function properly 1935 SwitchInsn = SavedSwitchInsn; 1936 1937 return; 1938 } 1939 } 1940 1941 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1942 1943 RunCleanupsScope ConditionScope(*this); 1944 1945 if (S.getInit()) 1946 EmitStmt(S.getInit()); 1947 1948 if (S.getConditionVariable()) 1949 EmitDecl(*S.getConditionVariable()); 1950 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1951 1952 // Create basic block to hold stuff that comes after switch 1953 // statement. We also need to create a default block now so that 1954 // explicit case ranges tests can have a place to jump to on 1955 // failure. 1956 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1957 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1958 if (PGO.haveRegionCounts()) { 1959 // Walk the SwitchCase list to find how many there are. 1960 uint64_t DefaultCount = 0; 1961 unsigned NumCases = 0; 1962 for (const SwitchCase *Case = S.getSwitchCaseList(); 1963 Case; 1964 Case = Case->getNextSwitchCase()) { 1965 if (isa<DefaultStmt>(Case)) 1966 DefaultCount = getProfileCount(Case); 1967 NumCases += 1; 1968 } 1969 SwitchWeights = new SmallVector<uint64_t, 16>(); 1970 SwitchWeights->reserve(NumCases); 1971 // The default needs to be first. We store the edge count, so we already 1972 // know the right weight. 1973 SwitchWeights->push_back(DefaultCount); 1974 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1975 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1976 // Initialize the default case. 1977 SwitchLikelihood->push_back(Stmt::LH_None); 1978 } 1979 1980 CaseRangeBlock = DefaultBlock; 1981 1982 // Clear the insertion point to indicate we are in unreachable code. 1983 Builder.ClearInsertionPoint(); 1984 1985 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1986 // then reuse last ContinueBlock. 1987 JumpDest OuterContinue; 1988 if (!BreakContinueStack.empty()) 1989 OuterContinue = BreakContinueStack.back().ContinueBlock; 1990 1991 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1992 1993 // Emit switch body. 1994 EmitStmt(S.getBody()); 1995 1996 BreakContinueStack.pop_back(); 1997 1998 // Update the default block in case explicit case range tests have 1999 // been chained on top. 2000 SwitchInsn->setDefaultDest(CaseRangeBlock); 2001 2002 // If a default was never emitted: 2003 if (!DefaultBlock->getParent()) { 2004 // If we have cleanups, emit the default block so that there's a 2005 // place to jump through the cleanups from. 2006 if (ConditionScope.requiresCleanups()) { 2007 EmitBlock(DefaultBlock); 2008 2009 // Otherwise, just forward the default block to the switch end. 2010 } else { 2011 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 2012 delete DefaultBlock; 2013 } 2014 } 2015 2016 ConditionScope.ForceCleanup(); 2017 2018 // Emit continuation. 2019 EmitBlock(SwitchExit.getBlock(), true); 2020 incrementProfileCounter(&S); 2021 2022 // If the switch has a condition wrapped by __builtin_unpredictable, 2023 // create metadata that specifies that the switch is unpredictable. 2024 // Don't bother if not optimizing because that metadata would not be used. 2025 auto *Call = dyn_cast<CallExpr>(S.getCond()); 2026 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 2027 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 2028 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 2029 llvm::MDBuilder MDHelper(getLLVMContext()); 2030 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 2031 MDHelper.createUnpredictable()); 2032 } 2033 } 2034 2035 if (SwitchWeights) { 2036 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 2037 "switch weights do not match switch cases"); 2038 // If there's only one jump destination there's no sense weighting it. 2039 if (SwitchWeights->size() > 1) 2040 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2041 createProfileWeights(*SwitchWeights)); 2042 delete SwitchWeights; 2043 } else if (SwitchLikelihood) { 2044 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 2045 "switch likelihoods do not match switch cases"); 2046 Optional<SmallVector<uint64_t, 16>> LHW = 2047 getLikelihoodWeights(*SwitchLikelihood); 2048 if (LHW) { 2049 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 2050 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 2051 createProfileWeights(*LHW)); 2052 } 2053 delete SwitchLikelihood; 2054 } 2055 SwitchInsn = SavedSwitchInsn; 2056 SwitchWeights = SavedSwitchWeights; 2057 SwitchLikelihood = SavedSwitchLikelihood; 2058 CaseRangeBlock = SavedCRBlock; 2059 } 2060 2061 static std::string 2062 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 2063 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 2064 std::string Result; 2065 2066 while (*Constraint) { 2067 switch (*Constraint) { 2068 default: 2069 Result += Target.convertConstraint(Constraint); 2070 break; 2071 // Ignore these 2072 case '*': 2073 case '?': 2074 case '!': 2075 case '=': // Will see this and the following in mult-alt constraints. 2076 case '+': 2077 break; 2078 case '#': // Ignore the rest of the constraint alternative. 2079 while (Constraint[1] && Constraint[1] != ',') 2080 Constraint++; 2081 break; 2082 case '&': 2083 case '%': 2084 Result += *Constraint; 2085 while (Constraint[1] && Constraint[1] == *Constraint) 2086 Constraint++; 2087 break; 2088 case ',': 2089 Result += "|"; 2090 break; 2091 case 'g': 2092 Result += "imr"; 2093 break; 2094 case '[': { 2095 assert(OutCons && 2096 "Must pass output names to constraints with a symbolic name"); 2097 unsigned Index; 2098 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 2099 assert(result && "Could not resolve symbolic name"); (void)result; 2100 Result += llvm::utostr(Index); 2101 break; 2102 } 2103 } 2104 2105 Constraint++; 2106 } 2107 2108 return Result; 2109 } 2110 2111 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2112 /// as using a particular register add that as a constraint that will be used 2113 /// in this asm stmt. 2114 static std::string 2115 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2116 const TargetInfo &Target, CodeGenModule &CGM, 2117 const AsmStmt &Stmt, const bool EarlyClobber, 2118 std::string *GCCReg = nullptr) { 2119 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2120 if (!AsmDeclRef) 2121 return Constraint; 2122 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2123 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2124 if (!Variable) 2125 return Constraint; 2126 if (Variable->getStorageClass() != SC_Register) 2127 return Constraint; 2128 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2129 if (!Attr) 2130 return Constraint; 2131 StringRef Register = Attr->getLabel(); 2132 assert(Target.isValidGCCRegisterName(Register)); 2133 // We're using validateOutputConstraint here because we only care if 2134 // this is a register constraint. 2135 TargetInfo::ConstraintInfo Info(Constraint, ""); 2136 if (Target.validateOutputConstraint(Info) && 2137 !Info.allowsRegister()) { 2138 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2139 return Constraint; 2140 } 2141 // Canonicalize the register here before returning it. 2142 Register = Target.getNormalizedGCCRegisterName(Register); 2143 if (GCCReg != nullptr) 2144 *GCCReg = Register.str(); 2145 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2146 } 2147 2148 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue( 2149 const TargetInfo::ConstraintInfo &Info, LValue InputValue, 2150 QualType InputType, std::string &ConstraintStr, SourceLocation Loc) { 2151 if (Info.allowsRegister() || !Info.allowsMemory()) { 2152 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) 2153 return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr}; 2154 2155 llvm::Type *Ty = ConvertType(InputType); 2156 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2157 if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || 2158 getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { 2159 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2160 2161 return {Builder.CreateLoad(Builder.CreateElementBitCast( 2162 InputValue.getAddress(*this), Ty)), 2163 nullptr}; 2164 } 2165 } 2166 2167 Address Addr = InputValue.getAddress(*this); 2168 ConstraintStr += '*'; 2169 return {Addr.getPointer(), Addr.getElementType()}; 2170 } 2171 2172 std::pair<llvm::Value *, llvm::Type *> 2173 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 2174 const Expr *InputExpr, 2175 std::string &ConstraintStr) { 2176 // If this can't be a register or memory, i.e., has to be a constant 2177 // (immediate or symbolic), try to emit it as such. 2178 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2179 if (Info.requiresImmediateConstant()) { 2180 Expr::EvalResult EVResult; 2181 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2182 2183 llvm::APSInt IntResult; 2184 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2185 getContext())) 2186 return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr}; 2187 } 2188 2189 Expr::EvalResult Result; 2190 if (InputExpr->EvaluateAsInt(Result, getContext())) 2191 return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()), 2192 nullptr}; 2193 } 2194 2195 if (Info.allowsRegister() || !Info.allowsMemory()) 2196 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2197 return {EmitScalarExpr(InputExpr), nullptr}; 2198 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2199 return {EmitScalarExpr(InputExpr), nullptr}; 2200 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2201 LValue Dest = EmitLValue(InputExpr); 2202 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2203 InputExpr->getExprLoc()); 2204 } 2205 2206 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2207 /// asm call instruction. The !srcloc MDNode contains a list of constant 2208 /// integers which are the source locations of the start of each line in the 2209 /// asm. 2210 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2211 CodeGenFunction &CGF) { 2212 SmallVector<llvm::Metadata *, 8> Locs; 2213 // Add the location of the first line to the MDNode. 2214 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2215 CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); 2216 StringRef StrVal = Str->getString(); 2217 if (!StrVal.empty()) { 2218 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2219 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2220 unsigned StartToken = 0; 2221 unsigned ByteOffset = 0; 2222 2223 // Add the location of the start of each subsequent line of the asm to the 2224 // MDNode. 2225 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2226 if (StrVal[i] != '\n') continue; 2227 SourceLocation LineLoc = Str->getLocationOfByte( 2228 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2229 Locs.push_back(llvm::ConstantAsMetadata::get( 2230 llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); 2231 } 2232 } 2233 2234 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2235 } 2236 2237 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2238 bool HasUnwindClobber, bool ReadOnly, 2239 bool ReadNone, bool NoMerge, const AsmStmt &S, 2240 const std::vector<llvm::Type *> &ResultRegTypes, 2241 const std::vector<llvm::Type *> &ArgElemTypes, 2242 CodeGenFunction &CGF, 2243 std::vector<llvm::Value *> &RegResults) { 2244 if (!HasUnwindClobber) 2245 Result.addFnAttr(llvm::Attribute::NoUnwind); 2246 2247 if (NoMerge) 2248 Result.addFnAttr(llvm::Attribute::NoMerge); 2249 // Attach readnone and readonly attributes. 2250 if (!HasSideEffect) { 2251 if (ReadNone) 2252 Result.addFnAttr(llvm::Attribute::ReadNone); 2253 else if (ReadOnly) 2254 Result.addFnAttr(llvm::Attribute::ReadOnly); 2255 } 2256 2257 // Add elementtype attribute for indirect constraints. 2258 for (auto Pair : llvm::enumerate(ArgElemTypes)) { 2259 if (Pair.value()) { 2260 auto Attr = llvm::Attribute::get( 2261 CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value()); 2262 Result.addParamAttr(Pair.index(), Attr); 2263 } 2264 } 2265 2266 // Slap the source location of the inline asm into a !srcloc metadata on the 2267 // call. 2268 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2269 Result.setMetadata("srcloc", 2270 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2271 else { 2272 // At least put the line number on MS inline asm blobs. 2273 llvm::Constant *Loc = 2274 llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); 2275 Result.setMetadata("srcloc", 2276 llvm::MDNode::get(CGF.getLLVMContext(), 2277 llvm::ConstantAsMetadata::get(Loc))); 2278 } 2279 2280 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2281 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2282 // convergent (meaning, they may call an intrinsically convergent op, such 2283 // as bar.sync, and so can't have certain optimizations applied around 2284 // them). 2285 Result.addFnAttr(llvm::Attribute::Convergent); 2286 // Extract all of the register value results from the asm. 2287 if (ResultRegTypes.size() == 1) { 2288 RegResults.push_back(&Result); 2289 } else { 2290 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2291 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2292 RegResults.push_back(Tmp); 2293 } 2294 } 2295 } 2296 2297 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2298 // Pop all cleanup blocks at the end of the asm statement. 2299 CodeGenFunction::RunCleanupsScope Cleanups(*this); 2300 2301 // Assemble the final asm string. 2302 std::string AsmString = S.generateAsmString(getContext()); 2303 2304 // Get all the output and input constraints together. 2305 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2306 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2307 2308 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2309 StringRef Name; 2310 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2311 Name = GAS->getOutputName(i); 2312 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2313 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2314 assert(IsValid && "Failed to parse output constraint"); 2315 OutputConstraintInfos.push_back(Info); 2316 } 2317 2318 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2319 StringRef Name; 2320 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2321 Name = GAS->getInputName(i); 2322 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2323 bool IsValid = 2324 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2325 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2326 InputConstraintInfos.push_back(Info); 2327 } 2328 2329 std::string Constraints; 2330 2331 std::vector<LValue> ResultRegDests; 2332 std::vector<QualType> ResultRegQualTys; 2333 std::vector<llvm::Type *> ResultRegTypes; 2334 std::vector<llvm::Type *> ResultTruncRegTypes; 2335 std::vector<llvm::Type *> ArgTypes; 2336 std::vector<llvm::Type *> ArgElemTypes; 2337 std::vector<llvm::Value*> Args; 2338 llvm::BitVector ResultTypeRequiresCast; 2339 2340 // Keep track of inout constraints. 2341 std::string InOutConstraints; 2342 std::vector<llvm::Value*> InOutArgs; 2343 std::vector<llvm::Type*> InOutArgTypes; 2344 std::vector<llvm::Type*> InOutArgElemTypes; 2345 2346 // Keep track of out constraints for tied input operand. 2347 std::vector<std::string> OutputConstraints; 2348 2349 // Keep track of defined physregs. 2350 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2351 2352 // An inline asm can be marked readonly if it meets the following conditions: 2353 // - it doesn't have any sideeffects 2354 // - it doesn't clobber memory 2355 // - it doesn't return a value by-reference 2356 // It can be marked readnone if it doesn't have any input memory constraints 2357 // in addition to meeting the conditions listed above. 2358 bool ReadOnly = true, ReadNone = true; 2359 2360 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2361 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2362 2363 // Simplify the output constraint. 2364 std::string OutputConstraint(S.getOutputConstraint(i)); 2365 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2366 getTarget(), &OutputConstraintInfos); 2367 2368 const Expr *OutExpr = S.getOutputExpr(i); 2369 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2370 2371 std::string GCCReg; 2372 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2373 getTarget(), CGM, S, 2374 Info.earlyClobber(), 2375 &GCCReg); 2376 // Give an error on multiple outputs to same physreg. 2377 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2378 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2379 2380 OutputConstraints.push_back(OutputConstraint); 2381 LValue Dest = EmitLValue(OutExpr); 2382 if (!Constraints.empty()) 2383 Constraints += ','; 2384 2385 // If this is a register output, then make the inline asm return it 2386 // by-value. If this is a memory result, return the value by-reference. 2387 QualType QTy = OutExpr->getType(); 2388 const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || 2389 hasAggregateEvaluationKind(QTy); 2390 if (!Info.allowsMemory() && IsScalarOrAggregate) { 2391 2392 Constraints += "=" + OutputConstraint; 2393 ResultRegQualTys.push_back(QTy); 2394 ResultRegDests.push_back(Dest); 2395 2396 llvm::Type *Ty = ConvertTypeForMem(QTy); 2397 const bool RequiresCast = Info.allowsRegister() && 2398 (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || 2399 Ty->isAggregateType()); 2400 2401 ResultTruncRegTypes.push_back(Ty); 2402 ResultTypeRequiresCast.push_back(RequiresCast); 2403 2404 if (RequiresCast) { 2405 unsigned Size = getContext().getTypeSize(QTy); 2406 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2407 } 2408 ResultRegTypes.push_back(Ty); 2409 // If this output is tied to an input, and if the input is larger, then 2410 // we need to set the actual result type of the inline asm node to be the 2411 // same as the input type. 2412 if (Info.hasMatchingInput()) { 2413 unsigned InputNo; 2414 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2415 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2416 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2417 break; 2418 } 2419 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2420 2421 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2422 QualType OutputType = OutExpr->getType(); 2423 2424 uint64_t InputSize = getContext().getTypeSize(InputTy); 2425 if (getContext().getTypeSize(OutputType) < InputSize) { 2426 // Form the asm to return the value as a larger integer or fp type. 2427 ResultRegTypes.back() = ConvertType(InputTy); 2428 } 2429 } 2430 if (llvm::Type* AdjTy = 2431 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2432 ResultRegTypes.back())) 2433 ResultRegTypes.back() = AdjTy; 2434 else { 2435 CGM.getDiags().Report(S.getAsmLoc(), 2436 diag::err_asm_invalid_type_in_input) 2437 << OutExpr->getType() << OutputConstraint; 2438 } 2439 2440 // Update largest vector width for any vector types. 2441 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2442 LargestVectorWidth = 2443 std::max((uint64_t)LargestVectorWidth, 2444 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2445 } else { 2446 Address DestAddr = Dest.getAddress(*this); 2447 // Matrix types in memory are represented by arrays, but accessed through 2448 // vector pointers, with the alignment specified on the access operation. 2449 // For inline assembly, update pointer arguments to use vector pointers. 2450 // Otherwise there will be a mis-match if the matrix is also an 2451 // input-argument which is represented as vector. 2452 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) 2453 DestAddr = Builder.CreateElementBitCast( 2454 DestAddr, ConvertType(OutExpr->getType())); 2455 2456 ArgTypes.push_back(DestAddr.getType()); 2457 ArgElemTypes.push_back(DestAddr.getElementType()); 2458 Args.push_back(DestAddr.getPointer()); 2459 Constraints += "=*"; 2460 Constraints += OutputConstraint; 2461 ReadOnly = ReadNone = false; 2462 } 2463 2464 if (Info.isReadWrite()) { 2465 InOutConstraints += ','; 2466 2467 const Expr *InputExpr = S.getOutputExpr(i); 2468 llvm::Value *Arg; 2469 llvm::Type *ArgElemType; 2470 std::tie(Arg, ArgElemType) = EmitAsmInputLValue( 2471 Info, Dest, InputExpr->getType(), InOutConstraints, 2472 InputExpr->getExprLoc()); 2473 2474 if (llvm::Type* AdjTy = 2475 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2476 Arg->getType())) 2477 Arg = Builder.CreateBitCast(Arg, AdjTy); 2478 2479 // Update largest vector width for any vector types. 2480 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2481 LargestVectorWidth = 2482 std::max((uint64_t)LargestVectorWidth, 2483 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2484 // Only tie earlyclobber physregs. 2485 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2486 InOutConstraints += llvm::utostr(i); 2487 else 2488 InOutConstraints += OutputConstraint; 2489 2490 InOutArgTypes.push_back(Arg->getType()); 2491 InOutArgElemTypes.push_back(ArgElemType); 2492 InOutArgs.push_back(Arg); 2493 } 2494 } 2495 2496 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2497 // to the return value slot. Only do this when returning in registers. 2498 if (isa<MSAsmStmt>(&S)) { 2499 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2500 if (RetAI.isDirect() || RetAI.isExtend()) { 2501 // Make a fake lvalue for the return value slot. 2502 LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy); 2503 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2504 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2505 ResultRegDests, AsmString, S.getNumOutputs()); 2506 SawAsmBlock = true; 2507 } 2508 } 2509 2510 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2511 const Expr *InputExpr = S.getInputExpr(i); 2512 2513 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2514 2515 if (Info.allowsMemory()) 2516 ReadNone = false; 2517 2518 if (!Constraints.empty()) 2519 Constraints += ','; 2520 2521 // Simplify the input constraint. 2522 std::string InputConstraint(S.getInputConstraint(i)); 2523 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2524 &OutputConstraintInfos); 2525 2526 InputConstraint = AddVariableConstraints( 2527 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2528 getTarget(), CGM, S, false /* No EarlyClobber */); 2529 2530 std::string ReplaceConstraint (InputConstraint); 2531 llvm::Value *Arg; 2532 llvm::Type *ArgElemType; 2533 std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints); 2534 2535 // If this input argument is tied to a larger output result, extend the 2536 // input to be the same size as the output. The LLVM backend wants to see 2537 // the input and output of a matching constraint be the same size. Note 2538 // that GCC does not define what the top bits are here. We use zext because 2539 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2540 if (Info.hasTiedOperand()) { 2541 unsigned Output = Info.getTiedOperand(); 2542 QualType OutputType = S.getOutputExpr(Output)->getType(); 2543 QualType InputTy = InputExpr->getType(); 2544 2545 if (getContext().getTypeSize(OutputType) > 2546 getContext().getTypeSize(InputTy)) { 2547 // Use ptrtoint as appropriate so that we can do our extension. 2548 if (isa<llvm::PointerType>(Arg->getType())) 2549 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2550 llvm::Type *OutputTy = ConvertType(OutputType); 2551 if (isa<llvm::IntegerType>(OutputTy)) 2552 Arg = Builder.CreateZExt(Arg, OutputTy); 2553 else if (isa<llvm::PointerType>(OutputTy)) 2554 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2555 else if (OutputTy->isFloatingPointTy()) 2556 Arg = Builder.CreateFPExt(Arg, OutputTy); 2557 } 2558 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2559 ReplaceConstraint = OutputConstraints[Output]; 2560 } 2561 if (llvm::Type* AdjTy = 2562 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2563 Arg->getType())) 2564 Arg = Builder.CreateBitCast(Arg, AdjTy); 2565 else 2566 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2567 << InputExpr->getType() << InputConstraint; 2568 2569 // Update largest vector width for any vector types. 2570 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2571 LargestVectorWidth = 2572 std::max((uint64_t)LargestVectorWidth, 2573 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2574 2575 ArgTypes.push_back(Arg->getType()); 2576 ArgElemTypes.push_back(ArgElemType); 2577 Args.push_back(Arg); 2578 Constraints += InputConstraint; 2579 } 2580 2581 // Append the "input" part of inout constraints. 2582 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2583 ArgTypes.push_back(InOutArgTypes[i]); 2584 ArgElemTypes.push_back(InOutArgElemTypes[i]); 2585 Args.push_back(InOutArgs[i]); 2586 } 2587 Constraints += InOutConstraints; 2588 2589 // Labels 2590 SmallVector<llvm::BasicBlock *, 16> Transfer; 2591 llvm::BasicBlock *Fallthrough = nullptr; 2592 bool IsGCCAsmGoto = false; 2593 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2594 IsGCCAsmGoto = GS->isAsmGoto(); 2595 if (IsGCCAsmGoto) { 2596 for (const auto *E : GS->labels()) { 2597 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2598 Transfer.push_back(Dest.getBlock()); 2599 llvm::BlockAddress *BA = 2600 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2601 Args.push_back(BA); 2602 ArgTypes.push_back(BA->getType()); 2603 ArgElemTypes.push_back(nullptr); 2604 if (!Constraints.empty()) 2605 Constraints += ','; 2606 Constraints += 'i'; 2607 } 2608 Fallthrough = createBasicBlock("asm.fallthrough"); 2609 } 2610 } 2611 2612 bool HasUnwindClobber = false; 2613 2614 // Clobbers 2615 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2616 StringRef Clobber = S.getClobber(i); 2617 2618 if (Clobber == "memory") 2619 ReadOnly = ReadNone = false; 2620 else if (Clobber == "unwind") { 2621 HasUnwindClobber = true; 2622 continue; 2623 } else if (Clobber != "cc") { 2624 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2625 if (CGM.getCodeGenOpts().StackClashProtector && 2626 getTarget().isSPRegName(Clobber)) { 2627 CGM.getDiags().Report(S.getAsmLoc(), 2628 diag::warn_stack_clash_protection_inline_asm); 2629 } 2630 } 2631 2632 if (isa<MSAsmStmt>(&S)) { 2633 if (Clobber == "eax" || Clobber == "edx") { 2634 if (Constraints.find("=&A") != std::string::npos) 2635 continue; 2636 std::string::size_type position1 = 2637 Constraints.find("={" + Clobber.str() + "}"); 2638 if (position1 != std::string::npos) { 2639 Constraints.insert(position1 + 1, "&"); 2640 continue; 2641 } 2642 std::string::size_type position2 = Constraints.find("=A"); 2643 if (position2 != std::string::npos) { 2644 Constraints.insert(position2 + 1, "&"); 2645 continue; 2646 } 2647 } 2648 } 2649 if (!Constraints.empty()) 2650 Constraints += ','; 2651 2652 Constraints += "~{"; 2653 Constraints += Clobber; 2654 Constraints += '}'; 2655 } 2656 2657 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2658 "unwind clobber can't be used with asm goto"); 2659 2660 // Add machine specific clobbers 2661 std::string MachineClobbers = getTarget().getClobbers(); 2662 if (!MachineClobbers.empty()) { 2663 if (!Constraints.empty()) 2664 Constraints += ','; 2665 Constraints += MachineClobbers; 2666 } 2667 2668 llvm::Type *ResultType; 2669 if (ResultRegTypes.empty()) 2670 ResultType = VoidTy; 2671 else if (ResultRegTypes.size() == 1) 2672 ResultType = ResultRegTypes[0]; 2673 else 2674 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2675 2676 llvm::FunctionType *FTy = 2677 llvm::FunctionType::get(ResultType, ArgTypes, false); 2678 2679 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2680 2681 llvm::InlineAsm::AsmDialect GnuAsmDialect = 2682 CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT 2683 ? llvm::InlineAsm::AD_ATT 2684 : llvm::InlineAsm::AD_Intel; 2685 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2686 llvm::InlineAsm::AD_Intel : GnuAsmDialect; 2687 2688 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2689 FTy, AsmString, Constraints, HasSideEffect, 2690 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2691 std::vector<llvm::Value*> RegResults; 2692 if (IsGCCAsmGoto) { 2693 llvm::CallBrInst *Result = 2694 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2695 EmitBlock(Fallthrough); 2696 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2697 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2698 ResultRegTypes, ArgElemTypes, *this, RegResults); 2699 } else if (HasUnwindClobber) { 2700 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2701 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2702 InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes, 2703 *this, RegResults); 2704 } else { 2705 llvm::CallInst *Result = 2706 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2707 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2708 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2709 ResultRegTypes, ArgElemTypes, *this, RegResults); 2710 } 2711 2712 assert(RegResults.size() == ResultRegTypes.size()); 2713 assert(RegResults.size() == ResultTruncRegTypes.size()); 2714 assert(RegResults.size() == ResultRegDests.size()); 2715 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2716 // in which case its size may grow. 2717 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2718 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2719 llvm::Value *Tmp = RegResults[i]; 2720 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2721 2722 // If the result type of the LLVM IR asm doesn't match the result type of 2723 // the expression, do the conversion. 2724 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2725 2726 // Truncate the integer result to the right size, note that TruncTy can be 2727 // a pointer. 2728 if (TruncTy->isFloatingPointTy()) 2729 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2730 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2731 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2732 Tmp = Builder.CreateTrunc(Tmp, 2733 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2734 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2735 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2736 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2737 Tmp = Builder.CreatePtrToInt(Tmp, 2738 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2739 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2740 } else if (TruncTy->isIntegerTy()) { 2741 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2742 } else if (TruncTy->isVectorTy()) { 2743 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2744 } 2745 } 2746 2747 LValue Dest = ResultRegDests[i]; 2748 // ResultTypeRequiresCast elements correspond to the first 2749 // ResultTypeRequiresCast.size() elements of RegResults. 2750 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2751 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2752 Address A = Builder.CreateElementBitCast(Dest.getAddress(*this), 2753 ResultRegTypes[i]); 2754 if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { 2755 Builder.CreateStore(Tmp, A); 2756 continue; 2757 } 2758 2759 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2760 if (Ty.isNull()) { 2761 const Expr *OutExpr = S.getOutputExpr(i); 2762 CGM.getDiags().Report(OutExpr->getExprLoc(), 2763 diag::err_store_value_to_reg); 2764 return; 2765 } 2766 Dest = MakeAddrLValue(A, Ty); 2767 } 2768 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2769 } 2770 } 2771 2772 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2773 const RecordDecl *RD = S.getCapturedRecordDecl(); 2774 QualType RecordTy = getContext().getRecordType(RD); 2775 2776 // Initialize the captured struct. 2777 LValue SlotLV = 2778 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2779 2780 RecordDecl::field_iterator CurField = RD->field_begin(); 2781 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2782 E = S.capture_init_end(); 2783 I != E; ++I, ++CurField) { 2784 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2785 if (CurField->hasCapturedVLAType()) { 2786 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2787 } else { 2788 EmitInitializerForField(*CurField, LV, *I); 2789 } 2790 } 2791 2792 return SlotLV; 2793 } 2794 2795 /// Generate an outlined function for the body of a CapturedStmt, store any 2796 /// captured variables into the captured struct, and call the outlined function. 2797 llvm::Function * 2798 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2799 LValue CapStruct = InitCapturedStruct(S); 2800 2801 // Emit the CapturedDecl 2802 CodeGenFunction CGF(CGM, true); 2803 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2804 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2805 delete CGF.CapturedStmtInfo; 2806 2807 // Emit call to the helper function. 2808 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2809 2810 return F; 2811 } 2812 2813 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2814 LValue CapStruct = InitCapturedStruct(S); 2815 return CapStruct.getAddress(*this); 2816 } 2817 2818 /// Creates the outlined function for a CapturedStmt. 2819 llvm::Function * 2820 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2821 assert(CapturedStmtInfo && 2822 "CapturedStmtInfo should be set when generating the captured function"); 2823 const CapturedDecl *CD = S.getCapturedDecl(); 2824 const RecordDecl *RD = S.getCapturedRecordDecl(); 2825 SourceLocation Loc = S.getBeginLoc(); 2826 assert(CD->hasBody() && "missing CapturedDecl body"); 2827 2828 // Build the argument list. 2829 ASTContext &Ctx = CGM.getContext(); 2830 FunctionArgList Args; 2831 Args.append(CD->param_begin(), CD->param_end()); 2832 2833 // Create the function declaration. 2834 const CGFunctionInfo &FuncInfo = 2835 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2836 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2837 2838 llvm::Function *F = 2839 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2840 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2841 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2842 if (CD->isNothrow()) 2843 F->addFnAttr(llvm::Attribute::NoUnwind); 2844 2845 // Generate the function. 2846 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2847 CD->getBody()->getBeginLoc()); 2848 // Set the context parameter in CapturedStmtInfo. 2849 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2850 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2851 2852 // Initialize variable-length arrays. 2853 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2854 Ctx.getTagDeclType(RD)); 2855 for (auto *FD : RD->fields()) { 2856 if (FD->hasCapturedVLAType()) { 2857 auto *ExprArg = 2858 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2859 .getScalarVal(); 2860 auto VAT = FD->getCapturedVLAType(); 2861 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2862 } 2863 } 2864 2865 // If 'this' is captured, load it into CXXThisValue. 2866 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2867 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2868 LValue ThisLValue = EmitLValueForField(Base, FD); 2869 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2870 } 2871 2872 PGO.assignRegionCounters(GlobalDecl(CD), F); 2873 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2874 FinishFunction(CD->getBodyRBrace()); 2875 2876 return F; 2877 } 2878