1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::SEHLeaveStmtClass: 177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 178 break; 179 case Stmt::OMPParallelDirectiveClass: 180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 181 break; 182 case Stmt::OMPSimdDirectiveClass: 183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 184 break; 185 case Stmt::OMPForDirectiveClass: 186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 187 break; 188 case Stmt::OMPSectionsDirectiveClass: 189 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 190 break; 191 case Stmt::OMPSectionDirectiveClass: 192 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 193 break; 194 case Stmt::OMPSingleDirectiveClass: 195 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 196 break; 197 case Stmt::OMPMasterDirectiveClass: 198 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 199 break; 200 case Stmt::OMPCriticalDirectiveClass: 201 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 202 break; 203 case Stmt::OMPParallelForDirectiveClass: 204 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 205 break; 206 case Stmt::OMPParallelSectionsDirectiveClass: 207 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 208 break; 209 case Stmt::OMPTaskDirectiveClass: 210 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 211 break; 212 case Stmt::OMPTaskyieldDirectiveClass: 213 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 214 break; 215 case Stmt::OMPBarrierDirectiveClass: 216 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 217 break; 218 case Stmt::OMPTaskwaitDirectiveClass: 219 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 220 break; 221 case Stmt::OMPFlushDirectiveClass: 222 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 223 break; 224 case Stmt::OMPOrderedDirectiveClass: 225 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 226 break; 227 case Stmt::OMPAtomicDirectiveClass: 228 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 229 break; 230 } 231 } 232 233 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 234 switch (S->getStmtClass()) { 235 default: return false; 236 case Stmt::NullStmtClass: break; 237 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 238 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 239 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 240 case Stmt::AttributedStmtClass: 241 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 242 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 243 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 244 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 245 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 246 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 247 } 248 249 return true; 250 } 251 252 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 253 /// this captures the expression result of the last sub-statement and returns it 254 /// (for use by the statement expression extension). 255 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 256 AggValueSlot AggSlot) { 257 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 258 "LLVM IR generation of compound statement ('{}')"); 259 260 // Keep track of the current cleanup stack depth, including debug scopes. 261 LexicalScope Scope(*this, S.getSourceRange()); 262 263 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 264 } 265 266 llvm::Value* 267 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 268 bool GetLast, 269 AggValueSlot AggSlot) { 270 271 for (CompoundStmt::const_body_iterator I = S.body_begin(), 272 E = S.body_end()-GetLast; I != E; ++I) 273 EmitStmt(*I); 274 275 llvm::Value *RetAlloca = nullptr; 276 if (GetLast) { 277 // We have to special case labels here. They are statements, but when put 278 // at the end of a statement expression, they yield the value of their 279 // subexpression. Handle this by walking through all labels we encounter, 280 // emitting them before we evaluate the subexpr. 281 const Stmt *LastStmt = S.body_back(); 282 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 283 EmitLabel(LS->getDecl()); 284 LastStmt = LS->getSubStmt(); 285 } 286 287 EnsureInsertPoint(); 288 289 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 290 if (hasAggregateEvaluationKind(ExprTy)) { 291 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 292 } else { 293 // We can't return an RValue here because there might be cleanups at 294 // the end of the StmtExpr. Because of that, we have to emit the result 295 // here into a temporary alloca. 296 RetAlloca = CreateMemTemp(ExprTy); 297 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 298 /*IsInit*/false); 299 } 300 301 } 302 303 return RetAlloca; 304 } 305 306 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 307 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 308 309 // If there is a cleanup stack, then we it isn't worth trying to 310 // simplify this block (we would need to remove it from the scope map 311 // and cleanup entry). 312 if (!EHStack.empty()) 313 return; 314 315 // Can only simplify direct branches. 316 if (!BI || !BI->isUnconditional()) 317 return; 318 319 // Can only simplify empty blocks. 320 if (BI != BB->begin()) 321 return; 322 323 BB->replaceAllUsesWith(BI->getSuccessor(0)); 324 BI->eraseFromParent(); 325 BB->eraseFromParent(); 326 } 327 328 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 329 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 330 331 // Fall out of the current block (if necessary). 332 EmitBranch(BB); 333 334 if (IsFinished && BB->use_empty()) { 335 delete BB; 336 return; 337 } 338 339 // Place the block after the current block, if possible, or else at 340 // the end of the function. 341 if (CurBB && CurBB->getParent()) 342 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 343 else 344 CurFn->getBasicBlockList().push_back(BB); 345 Builder.SetInsertPoint(BB); 346 } 347 348 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 349 // Emit a branch from the current block to the target one if this 350 // was a real block. If this was just a fall-through block after a 351 // terminator, don't emit it. 352 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 353 354 if (!CurBB || CurBB->getTerminator()) { 355 // If there is no insert point or the previous block is already 356 // terminated, don't touch it. 357 } else { 358 // Otherwise, create a fall-through branch. 359 Builder.CreateBr(Target); 360 } 361 362 Builder.ClearInsertionPoint(); 363 } 364 365 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 366 bool inserted = false; 367 for (llvm::User *u : block->users()) { 368 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 369 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 370 inserted = true; 371 break; 372 } 373 } 374 375 if (!inserted) 376 CurFn->getBasicBlockList().push_back(block); 377 378 Builder.SetInsertPoint(block); 379 } 380 381 CodeGenFunction::JumpDest 382 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 383 JumpDest &Dest = LabelMap[D]; 384 if (Dest.isValid()) return Dest; 385 386 // Create, but don't insert, the new block. 387 Dest = JumpDest(createBasicBlock(D->getName()), 388 EHScopeStack::stable_iterator::invalid(), 389 NextCleanupDestIndex++); 390 return Dest; 391 } 392 393 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 394 // Add this label to the current lexical scope if we're within any 395 // normal cleanups. Jumps "in" to this label --- when permitted by 396 // the language --- may need to be routed around such cleanups. 397 if (EHStack.hasNormalCleanups() && CurLexicalScope) 398 CurLexicalScope->addLabel(D); 399 400 JumpDest &Dest = LabelMap[D]; 401 402 // If we didn't need a forward reference to this label, just go 403 // ahead and create a destination at the current scope. 404 if (!Dest.isValid()) { 405 Dest = getJumpDestInCurrentScope(D->getName()); 406 407 // Otherwise, we need to give this label a target depth and remove 408 // it from the branch-fixups list. 409 } else { 410 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 411 Dest.setScopeDepth(EHStack.stable_begin()); 412 ResolveBranchFixups(Dest.getBlock()); 413 } 414 415 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 416 EmitBlock(Dest.getBlock()); 417 Cnt.beginRegion(Builder); 418 } 419 420 /// Change the cleanup scope of the labels in this lexical scope to 421 /// match the scope of the enclosing context. 422 void CodeGenFunction::LexicalScope::rescopeLabels() { 423 assert(!Labels.empty()); 424 EHScopeStack::stable_iterator innermostScope 425 = CGF.EHStack.getInnermostNormalCleanup(); 426 427 // Change the scope depth of all the labels. 428 for (SmallVectorImpl<const LabelDecl*>::const_iterator 429 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 430 assert(CGF.LabelMap.count(*i)); 431 JumpDest &dest = CGF.LabelMap.find(*i)->second; 432 assert(dest.getScopeDepth().isValid()); 433 assert(innermostScope.encloses(dest.getScopeDepth())); 434 dest.setScopeDepth(innermostScope); 435 } 436 437 // Reparent the labels if the new scope also has cleanups. 438 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 439 ParentScope->Labels.append(Labels.begin(), Labels.end()); 440 } 441 } 442 443 444 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 445 EmitLabel(S.getDecl()); 446 EmitStmt(S.getSubStmt()); 447 } 448 449 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 450 const Stmt *SubStmt = S.getSubStmt(); 451 switch (SubStmt->getStmtClass()) { 452 case Stmt::DoStmtClass: 453 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 454 break; 455 case Stmt::ForStmtClass: 456 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 457 break; 458 case Stmt::WhileStmtClass: 459 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 460 break; 461 case Stmt::CXXForRangeStmtClass: 462 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 463 break; 464 default: 465 EmitStmt(SubStmt); 466 } 467 } 468 469 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 470 // If this code is reachable then emit a stop point (if generating 471 // debug info). We have to do this ourselves because we are on the 472 // "simple" statement path. 473 if (HaveInsertPoint()) 474 EmitStopPoint(&S); 475 476 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 477 } 478 479 480 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 481 if (const LabelDecl *Target = S.getConstantTarget()) { 482 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 483 return; 484 } 485 486 // Ensure that we have an i8* for our PHI node. 487 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 488 Int8PtrTy, "addr"); 489 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 490 491 // Get the basic block for the indirect goto. 492 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 493 494 // The first instruction in the block has to be the PHI for the switch dest, 495 // add an entry for this branch. 496 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 497 498 EmitBranch(IndGotoBB); 499 } 500 501 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 502 // C99 6.8.4.1: The first substatement is executed if the expression compares 503 // unequal to 0. The condition must be a scalar type. 504 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 505 RegionCounter Cnt = getPGORegionCounter(&S); 506 507 if (S.getConditionVariable()) 508 EmitAutoVarDecl(*S.getConditionVariable()); 509 510 // If the condition constant folds and can be elided, try to avoid emitting 511 // the condition and the dead arm of the if/else. 512 bool CondConstant; 513 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 514 // Figure out which block (then or else) is executed. 515 const Stmt *Executed = S.getThen(); 516 const Stmt *Skipped = S.getElse(); 517 if (!CondConstant) // Condition false? 518 std::swap(Executed, Skipped); 519 520 // If the skipped block has no labels in it, just emit the executed block. 521 // This avoids emitting dead code and simplifies the CFG substantially. 522 if (!ContainsLabel(Skipped)) { 523 if (CondConstant) 524 Cnt.beginRegion(Builder); 525 if (Executed) { 526 RunCleanupsScope ExecutedScope(*this); 527 EmitStmt(Executed); 528 } 529 return; 530 } 531 } 532 533 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 534 // the conditional branch. 535 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 536 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 537 llvm::BasicBlock *ElseBlock = ContBlock; 538 if (S.getElse()) 539 ElseBlock = createBasicBlock("if.else"); 540 541 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 542 543 // Emit the 'then' code. 544 EmitBlock(ThenBlock); 545 Cnt.beginRegion(Builder); 546 { 547 RunCleanupsScope ThenScope(*this); 548 EmitStmt(S.getThen()); 549 } 550 EmitBranch(ContBlock); 551 552 // Emit the 'else' code if present. 553 if (const Stmt *Else = S.getElse()) { 554 { 555 // There is no need to emit line number for unconditional branch. 556 SuppressDebugLocation S(Builder); 557 EmitBlock(ElseBlock); 558 } 559 { 560 RunCleanupsScope ElseScope(*this); 561 EmitStmt(Else); 562 } 563 { 564 // There is no need to emit line number for unconditional branch. 565 SuppressDebugLocation S(Builder); 566 EmitBranch(ContBlock); 567 } 568 } 569 570 // Emit the continuation block for code after the if. 571 EmitBlock(ContBlock, true); 572 } 573 574 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 575 llvm::BranchInst *CondBr, 576 const ArrayRef<const Attr *> &Attrs) { 577 // Return if there are no hints. 578 if (Attrs.empty()) 579 return; 580 581 // Add vectorize and unroll hints to the metadata on the conditional branch. 582 SmallVector<llvm::Value *, 2> Metadata(1); 583 for (const auto *Attr : Attrs) { 584 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 585 586 // Skip non loop hint attributes 587 if (!LH) 588 continue; 589 590 LoopHintAttr::OptionType Option = LH->getOption(); 591 LoopHintAttr::LoopHintState State = LH->getState(); 592 int ValueInt = LH->getValue(); 593 594 const char *MetadataName; 595 switch (Option) { 596 case LoopHintAttr::Vectorize: 597 case LoopHintAttr::VectorizeWidth: 598 MetadataName = "llvm.loop.vectorize.width"; 599 break; 600 case LoopHintAttr::Interleave: 601 case LoopHintAttr::InterleaveCount: 602 MetadataName = "llvm.loop.interleave.count"; 603 break; 604 case LoopHintAttr::Unroll: 605 // With the unroll loop hint, a non-zero value indicates full unrolling. 606 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 607 : "llvm.loop.unroll.full"; 608 break; 609 case LoopHintAttr::UnrollCount: 610 MetadataName = "llvm.loop.unroll.count"; 611 break; 612 } 613 llvm::Value *Value; 614 llvm::MDString *Name; 615 switch (Option) { 616 case LoopHintAttr::Vectorize: 617 case LoopHintAttr::Interleave: 618 if (State != LoopHintAttr::Disable) { 619 // FIXME: In the future I will modifiy the behavior of the metadata 620 // so we can enable/disable vectorization and interleaving separately. 621 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 622 Value = Builder.getTrue(); 623 break; 624 } 625 // Vectorization/interleaving is disabled, set width/count to 1. 626 ValueInt = 1; 627 // Fallthrough. 628 case LoopHintAttr::VectorizeWidth: 629 case LoopHintAttr::InterleaveCount: 630 case LoopHintAttr::UnrollCount: 631 Name = llvm::MDString::get(Context, MetadataName); 632 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 633 break; 634 case LoopHintAttr::Unroll: 635 Name = llvm::MDString::get(Context, MetadataName); 636 Value = nullptr; 637 break; 638 } 639 640 SmallVector<llvm::Value *, 2> OpValues; 641 OpValues.push_back(Name); 642 if (Value) 643 OpValues.push_back(Value); 644 645 // Set or overwrite metadata indicated by Name. 646 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 647 } 648 649 if (!Metadata.empty()) { 650 // Add llvm.loop MDNode to CondBr. 651 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 652 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 653 654 CondBr->setMetadata("llvm.loop", LoopID); 655 } 656 } 657 658 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 659 const ArrayRef<const Attr *> &WhileAttrs) { 660 RegionCounter Cnt = getPGORegionCounter(&S); 661 662 // Emit the header for the loop, which will also become 663 // the continue target. 664 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 665 EmitBlock(LoopHeader.getBlock()); 666 667 LoopStack.push(LoopHeader.getBlock()); 668 669 // Create an exit block for when the condition fails, which will 670 // also become the break target. 671 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 672 673 // Store the blocks to use for break and continue. 674 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 675 676 // C++ [stmt.while]p2: 677 // When the condition of a while statement is a declaration, the 678 // scope of the variable that is declared extends from its point 679 // of declaration (3.3.2) to the end of the while statement. 680 // [...] 681 // The object created in a condition is destroyed and created 682 // with each iteration of the loop. 683 RunCleanupsScope ConditionScope(*this); 684 685 if (S.getConditionVariable()) 686 EmitAutoVarDecl(*S.getConditionVariable()); 687 688 // Evaluate the conditional in the while header. C99 6.8.5.1: The 689 // evaluation of the controlling expression takes place before each 690 // execution of the loop body. 691 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 692 693 // while(1) is common, avoid extra exit blocks. Be sure 694 // to correctly handle break/continue though. 695 bool EmitBoolCondBranch = true; 696 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 697 if (C->isOne()) 698 EmitBoolCondBranch = false; 699 700 // As long as the condition is true, go to the loop body. 701 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 702 if (EmitBoolCondBranch) { 703 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 704 if (ConditionScope.requiresCleanups()) 705 ExitBlock = createBasicBlock("while.exit"); 706 llvm::BranchInst *CondBr = 707 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 708 PGO.createLoopWeights(S.getCond(), Cnt)); 709 710 if (ExitBlock != LoopExit.getBlock()) { 711 EmitBlock(ExitBlock); 712 EmitBranchThroughCleanup(LoopExit); 713 } 714 715 // Attach metadata to loop body conditional branch. 716 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 717 } 718 719 // Emit the loop body. We have to emit this in a cleanup scope 720 // because it might be a singleton DeclStmt. 721 { 722 RunCleanupsScope BodyScope(*this); 723 EmitBlock(LoopBody); 724 Cnt.beginRegion(Builder); 725 EmitStmt(S.getBody()); 726 } 727 728 BreakContinueStack.pop_back(); 729 730 // Immediately force cleanup. 731 ConditionScope.ForceCleanup(); 732 733 EmitStopPoint(&S); 734 // Branch to the loop header again. 735 EmitBranch(LoopHeader.getBlock()); 736 737 LoopStack.pop(); 738 739 // Emit the exit block. 740 EmitBlock(LoopExit.getBlock(), true); 741 742 // The LoopHeader typically is just a branch if we skipped emitting 743 // a branch, try to erase it. 744 if (!EmitBoolCondBranch) 745 SimplifyForwardingBlocks(LoopHeader.getBlock()); 746 } 747 748 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 749 const ArrayRef<const Attr *> &DoAttrs) { 750 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 751 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 752 753 RegionCounter Cnt = getPGORegionCounter(&S); 754 755 // Store the blocks to use for break and continue. 756 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 757 758 // Emit the body of the loop. 759 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 760 761 LoopStack.push(LoopBody); 762 763 EmitBlockWithFallThrough(LoopBody, Cnt); 764 { 765 RunCleanupsScope BodyScope(*this); 766 EmitStmt(S.getBody()); 767 } 768 769 EmitBlock(LoopCond.getBlock()); 770 771 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 772 // after each execution of the loop body." 773 774 // Evaluate the conditional in the while header. 775 // C99 6.8.5p2/p4: The first substatement is executed if the expression 776 // compares unequal to 0. The condition must be a scalar type. 777 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 778 779 BreakContinueStack.pop_back(); 780 781 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 782 // to correctly handle break/continue though. 783 bool EmitBoolCondBranch = true; 784 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 785 if (C->isZero()) 786 EmitBoolCondBranch = false; 787 788 // As long as the condition is true, iterate the loop. 789 if (EmitBoolCondBranch) { 790 llvm::BranchInst *CondBr = 791 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 792 PGO.createLoopWeights(S.getCond(), Cnt)); 793 794 // Attach metadata to loop body conditional branch. 795 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 796 } 797 798 LoopStack.pop(); 799 800 // Emit the exit block. 801 EmitBlock(LoopExit.getBlock()); 802 803 // The DoCond block typically is just a branch if we skipped 804 // emitting a branch, try to erase it. 805 if (!EmitBoolCondBranch) 806 SimplifyForwardingBlocks(LoopCond.getBlock()); 807 } 808 809 void CodeGenFunction::EmitForStmt(const ForStmt &S, 810 const ArrayRef<const Attr *> &ForAttrs) { 811 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 812 813 LexicalScope ForScope(*this, S.getSourceRange()); 814 815 // Evaluate the first part before the loop. 816 if (S.getInit()) 817 EmitStmt(S.getInit()); 818 819 RegionCounter Cnt = getPGORegionCounter(&S); 820 821 // Start the loop with a block that tests the condition. 822 // If there's an increment, the continue scope will be overwritten 823 // later. 824 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 825 llvm::BasicBlock *CondBlock = Continue.getBlock(); 826 EmitBlock(CondBlock); 827 828 LoopStack.push(CondBlock); 829 830 // If the for loop doesn't have an increment we can just use the 831 // condition as the continue block. Otherwise we'll need to create 832 // a block for it (in the current scope, i.e. in the scope of the 833 // condition), and that we will become our continue block. 834 if (S.getInc()) 835 Continue = getJumpDestInCurrentScope("for.inc"); 836 837 // Store the blocks to use for break and continue. 838 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 839 840 // Create a cleanup scope for the condition variable cleanups. 841 LexicalScope ConditionScope(*this, S.getSourceRange()); 842 843 if (S.getCond()) { 844 // If the for statement has a condition scope, emit the local variable 845 // declaration. 846 if (S.getConditionVariable()) { 847 EmitAutoVarDecl(*S.getConditionVariable()); 848 } 849 850 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 851 // If there are any cleanups between here and the loop-exit scope, 852 // create a block to stage a loop exit along. 853 if (ForScope.requiresCleanups()) 854 ExitBlock = createBasicBlock("for.cond.cleanup"); 855 856 // As long as the condition is true, iterate the loop. 857 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 858 859 // C99 6.8.5p2/p4: The first substatement is executed if the expression 860 // compares unequal to 0. The condition must be a scalar type. 861 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 862 llvm::BranchInst *CondBr = 863 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 864 PGO.createLoopWeights(S.getCond(), Cnt)); 865 866 // Attach metadata to loop body conditional branch. 867 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 868 869 if (ExitBlock != LoopExit.getBlock()) { 870 EmitBlock(ExitBlock); 871 EmitBranchThroughCleanup(LoopExit); 872 } 873 874 EmitBlock(ForBody); 875 } else { 876 // Treat it as a non-zero constant. Don't even create a new block for the 877 // body, just fall into it. 878 } 879 Cnt.beginRegion(Builder); 880 881 { 882 // Create a separate cleanup scope for the body, in case it is not 883 // a compound statement. 884 RunCleanupsScope BodyScope(*this); 885 EmitStmt(S.getBody()); 886 } 887 888 // If there is an increment, emit it next. 889 if (S.getInc()) { 890 EmitBlock(Continue.getBlock()); 891 EmitStmt(S.getInc()); 892 } 893 894 BreakContinueStack.pop_back(); 895 896 ConditionScope.ForceCleanup(); 897 898 EmitStopPoint(&S); 899 EmitBranch(CondBlock); 900 901 ForScope.ForceCleanup(); 902 903 LoopStack.pop(); 904 905 // Emit the fall-through block. 906 EmitBlock(LoopExit.getBlock(), true); 907 } 908 909 void 910 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 911 const ArrayRef<const Attr *> &ForAttrs) { 912 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 913 914 LexicalScope ForScope(*this, S.getSourceRange()); 915 916 // Evaluate the first pieces before the loop. 917 EmitStmt(S.getRangeStmt()); 918 EmitStmt(S.getBeginEndStmt()); 919 920 RegionCounter Cnt = getPGORegionCounter(&S); 921 922 // Start the loop with a block that tests the condition. 923 // If there's an increment, the continue scope will be overwritten 924 // later. 925 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 926 EmitBlock(CondBlock); 927 928 LoopStack.push(CondBlock); 929 930 // If there are any cleanups between here and the loop-exit scope, 931 // create a block to stage a loop exit along. 932 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 933 if (ForScope.requiresCleanups()) 934 ExitBlock = createBasicBlock("for.cond.cleanup"); 935 936 // The loop body, consisting of the specified body and the loop variable. 937 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 938 939 // The body is executed if the expression, contextually converted 940 // to bool, is true. 941 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 942 llvm::BranchInst *CondBr = Builder.CreateCondBr( 943 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 944 945 // Attach metadata to loop body conditional branch. 946 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 947 948 if (ExitBlock != LoopExit.getBlock()) { 949 EmitBlock(ExitBlock); 950 EmitBranchThroughCleanup(LoopExit); 951 } 952 953 EmitBlock(ForBody); 954 Cnt.beginRegion(Builder); 955 956 // Create a block for the increment. In case of a 'continue', we jump there. 957 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 958 959 // Store the blocks to use for break and continue. 960 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 961 962 { 963 // Create a separate cleanup scope for the loop variable and body. 964 LexicalScope BodyScope(*this, S.getSourceRange()); 965 EmitStmt(S.getLoopVarStmt()); 966 EmitStmt(S.getBody()); 967 } 968 969 EmitStopPoint(&S); 970 // If there is an increment, emit it next. 971 EmitBlock(Continue.getBlock()); 972 EmitStmt(S.getInc()); 973 974 BreakContinueStack.pop_back(); 975 976 EmitBranch(CondBlock); 977 978 ForScope.ForceCleanup(); 979 980 LoopStack.pop(); 981 982 // Emit the fall-through block. 983 EmitBlock(LoopExit.getBlock(), true); 984 } 985 986 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 987 if (RV.isScalar()) { 988 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 989 } else if (RV.isAggregate()) { 990 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 991 } else { 992 EmitStoreOfComplex(RV.getComplexVal(), 993 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 994 /*init*/ true); 995 } 996 EmitBranchThroughCleanup(ReturnBlock); 997 } 998 999 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1000 /// if the function returns void, or may be missing one if the function returns 1001 /// non-void. Fun stuff :). 1002 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1003 // Emit the result value, even if unused, to evalute the side effects. 1004 const Expr *RV = S.getRetValue(); 1005 1006 // Treat block literals in a return expression as if they appeared 1007 // in their own scope. This permits a small, easily-implemented 1008 // exception to our over-conservative rules about not jumping to 1009 // statements following block literals with non-trivial cleanups. 1010 RunCleanupsScope cleanupScope(*this); 1011 if (const ExprWithCleanups *cleanups = 1012 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1013 enterFullExpression(cleanups); 1014 RV = cleanups->getSubExpr(); 1015 } 1016 1017 // FIXME: Clean this up by using an LValue for ReturnTemp, 1018 // EmitStoreThroughLValue, and EmitAnyExpr. 1019 if (getLangOpts().ElideConstructors && 1020 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1021 // Apply the named return value optimization for this return statement, 1022 // which means doing nothing: the appropriate result has already been 1023 // constructed into the NRVO variable. 1024 1025 // If there is an NRVO flag for this variable, set it to 1 into indicate 1026 // that the cleanup code should not destroy the variable. 1027 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1028 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1029 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1030 // Make sure not to return anything, but evaluate the expression 1031 // for side effects. 1032 if (RV) 1033 EmitAnyExpr(RV); 1034 } else if (!RV) { 1035 // Do nothing (return value is left uninitialized) 1036 } else if (FnRetTy->isReferenceType()) { 1037 // If this function returns a reference, take the address of the expression 1038 // rather than the value. 1039 RValue Result = EmitReferenceBindingToExpr(RV); 1040 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1041 } else { 1042 switch (getEvaluationKind(RV->getType())) { 1043 case TEK_Scalar: 1044 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1045 break; 1046 case TEK_Complex: 1047 EmitComplexExprIntoLValue(RV, 1048 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1049 /*isInit*/ true); 1050 break; 1051 case TEK_Aggregate: { 1052 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1053 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1054 Qualifiers(), 1055 AggValueSlot::IsDestructed, 1056 AggValueSlot::DoesNotNeedGCBarriers, 1057 AggValueSlot::IsNotAliased)); 1058 break; 1059 } 1060 } 1061 } 1062 1063 ++NumReturnExprs; 1064 if (!RV || RV->isEvaluatable(getContext())) 1065 ++NumSimpleReturnExprs; 1066 1067 cleanupScope.ForceCleanup(); 1068 EmitBranchThroughCleanup(ReturnBlock); 1069 } 1070 1071 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1072 // As long as debug info is modeled with instructions, we have to ensure we 1073 // have a place to insert here and write the stop point here. 1074 if (HaveInsertPoint()) 1075 EmitStopPoint(&S); 1076 1077 for (const auto *I : S.decls()) 1078 EmitDecl(*I); 1079 } 1080 1081 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1082 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1083 1084 // If this code is reachable then emit a stop point (if generating 1085 // debug info). We have to do this ourselves because we are on the 1086 // "simple" statement path. 1087 if (HaveInsertPoint()) 1088 EmitStopPoint(&S); 1089 1090 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1091 } 1092 1093 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1094 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1095 1096 // If this code is reachable then emit a stop point (if generating 1097 // debug info). We have to do this ourselves because we are on the 1098 // "simple" statement path. 1099 if (HaveInsertPoint()) 1100 EmitStopPoint(&S); 1101 1102 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1103 } 1104 1105 /// EmitCaseStmtRange - If case statement range is not too big then 1106 /// add multiple cases to switch instruction, one for each value within 1107 /// the range. If range is too big then emit "if" condition check. 1108 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1109 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1110 1111 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1112 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1113 1114 RegionCounter CaseCnt = getPGORegionCounter(&S); 1115 1116 // Emit the code for this case. We do this first to make sure it is 1117 // properly chained from our predecessor before generating the 1118 // switch machinery to enter this block. 1119 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1120 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1121 EmitStmt(S.getSubStmt()); 1122 1123 // If range is empty, do nothing. 1124 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1125 return; 1126 1127 llvm::APInt Range = RHS - LHS; 1128 // FIXME: parameters such as this should not be hardcoded. 1129 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1130 // Range is small enough to add multiple switch instruction cases. 1131 uint64_t Total = CaseCnt.getCount(); 1132 unsigned NCases = Range.getZExtValue() + 1; 1133 // We only have one region counter for the entire set of cases here, so we 1134 // need to divide the weights evenly between the generated cases, ensuring 1135 // that the total weight is preserved. E.g., a weight of 5 over three cases 1136 // will be distributed as weights of 2, 2, and 1. 1137 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1138 for (unsigned I = 0; I != NCases; ++I) { 1139 if (SwitchWeights) 1140 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1141 if (Rem) 1142 Rem--; 1143 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1144 LHS++; 1145 } 1146 return; 1147 } 1148 1149 // The range is too big. Emit "if" condition into a new block, 1150 // making sure to save and restore the current insertion point. 1151 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1152 1153 // Push this test onto the chain of range checks (which terminates 1154 // in the default basic block). The switch's default will be changed 1155 // to the top of this chain after switch emission is complete. 1156 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1157 CaseRangeBlock = createBasicBlock("sw.caserange"); 1158 1159 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1160 Builder.SetInsertPoint(CaseRangeBlock); 1161 1162 // Emit range check. 1163 llvm::Value *Diff = 1164 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1165 llvm::Value *Cond = 1166 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1167 1168 llvm::MDNode *Weights = nullptr; 1169 if (SwitchWeights) { 1170 uint64_t ThisCount = CaseCnt.getCount(); 1171 uint64_t DefaultCount = (*SwitchWeights)[0]; 1172 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1173 1174 // Since we're chaining the switch default through each large case range, we 1175 // need to update the weight for the default, ie, the first case, to include 1176 // this case. 1177 (*SwitchWeights)[0] += ThisCount; 1178 } 1179 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1180 1181 // Restore the appropriate insertion point. 1182 if (RestoreBB) 1183 Builder.SetInsertPoint(RestoreBB); 1184 else 1185 Builder.ClearInsertionPoint(); 1186 } 1187 1188 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1189 // If there is no enclosing switch instance that we're aware of, then this 1190 // case statement and its block can be elided. This situation only happens 1191 // when we've constant-folded the switch, are emitting the constant case, 1192 // and part of the constant case includes another case statement. For 1193 // instance: switch (4) { case 4: do { case 5: } while (1); } 1194 if (!SwitchInsn) { 1195 EmitStmt(S.getSubStmt()); 1196 return; 1197 } 1198 1199 // Handle case ranges. 1200 if (S.getRHS()) { 1201 EmitCaseStmtRange(S); 1202 return; 1203 } 1204 1205 RegionCounter CaseCnt = getPGORegionCounter(&S); 1206 llvm::ConstantInt *CaseVal = 1207 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1208 1209 // If the body of the case is just a 'break', try to not emit an empty block. 1210 // If we're profiling or we're not optimizing, leave the block in for better 1211 // debug and coverage analysis. 1212 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1213 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1214 isa<BreakStmt>(S.getSubStmt())) { 1215 JumpDest Block = BreakContinueStack.back().BreakBlock; 1216 1217 // Only do this optimization if there are no cleanups that need emitting. 1218 if (isObviouslyBranchWithoutCleanups(Block)) { 1219 if (SwitchWeights) 1220 SwitchWeights->push_back(CaseCnt.getCount()); 1221 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1222 1223 // If there was a fallthrough into this case, make sure to redirect it to 1224 // the end of the switch as well. 1225 if (Builder.GetInsertBlock()) { 1226 Builder.CreateBr(Block.getBlock()); 1227 Builder.ClearInsertionPoint(); 1228 } 1229 return; 1230 } 1231 } 1232 1233 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1234 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1235 if (SwitchWeights) 1236 SwitchWeights->push_back(CaseCnt.getCount()); 1237 SwitchInsn->addCase(CaseVal, CaseDest); 1238 1239 // Recursively emitting the statement is acceptable, but is not wonderful for 1240 // code where we have many case statements nested together, i.e.: 1241 // case 1: 1242 // case 2: 1243 // case 3: etc. 1244 // Handling this recursively will create a new block for each case statement 1245 // that falls through to the next case which is IR intensive. It also causes 1246 // deep recursion which can run into stack depth limitations. Handle 1247 // sequential non-range case statements specially. 1248 const CaseStmt *CurCase = &S; 1249 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1250 1251 // Otherwise, iteratively add consecutive cases to this switch stmt. 1252 while (NextCase && NextCase->getRHS() == nullptr) { 1253 CurCase = NextCase; 1254 llvm::ConstantInt *CaseVal = 1255 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1256 1257 CaseCnt = getPGORegionCounter(NextCase); 1258 if (SwitchWeights) 1259 SwitchWeights->push_back(CaseCnt.getCount()); 1260 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1261 CaseDest = createBasicBlock("sw.bb"); 1262 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1263 } 1264 1265 SwitchInsn->addCase(CaseVal, CaseDest); 1266 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1267 } 1268 1269 // Normal default recursion for non-cases. 1270 EmitStmt(CurCase->getSubStmt()); 1271 } 1272 1273 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1274 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1275 assert(DefaultBlock->empty() && 1276 "EmitDefaultStmt: Default block already defined?"); 1277 1278 RegionCounter Cnt = getPGORegionCounter(&S); 1279 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1280 1281 EmitStmt(S.getSubStmt()); 1282 } 1283 1284 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1285 /// constant value that is being switched on, see if we can dead code eliminate 1286 /// the body of the switch to a simple series of statements to emit. Basically, 1287 /// on a switch (5) we want to find these statements: 1288 /// case 5: 1289 /// printf(...); <-- 1290 /// ++i; <-- 1291 /// break; 1292 /// 1293 /// and add them to the ResultStmts vector. If it is unsafe to do this 1294 /// transformation (for example, one of the elided statements contains a label 1295 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1296 /// should include statements after it (e.g. the printf() line is a substmt of 1297 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1298 /// statement, then return CSFC_Success. 1299 /// 1300 /// If Case is non-null, then we are looking for the specified case, checking 1301 /// that nothing we jump over contains labels. If Case is null, then we found 1302 /// the case and are looking for the break. 1303 /// 1304 /// If the recursive walk actually finds our Case, then we set FoundCase to 1305 /// true. 1306 /// 1307 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1308 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1309 const SwitchCase *Case, 1310 bool &FoundCase, 1311 SmallVectorImpl<const Stmt*> &ResultStmts) { 1312 // If this is a null statement, just succeed. 1313 if (!S) 1314 return Case ? CSFC_Success : CSFC_FallThrough; 1315 1316 // If this is the switchcase (case 4: or default) that we're looking for, then 1317 // we're in business. Just add the substatement. 1318 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1319 if (S == Case) { 1320 FoundCase = true; 1321 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1322 ResultStmts); 1323 } 1324 1325 // Otherwise, this is some other case or default statement, just ignore it. 1326 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1327 ResultStmts); 1328 } 1329 1330 // If we are in the live part of the code and we found our break statement, 1331 // return a success! 1332 if (!Case && isa<BreakStmt>(S)) 1333 return CSFC_Success; 1334 1335 // If this is a switch statement, then it might contain the SwitchCase, the 1336 // break, or neither. 1337 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1338 // Handle this as two cases: we might be looking for the SwitchCase (if so 1339 // the skipped statements must be skippable) or we might already have it. 1340 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1341 if (Case) { 1342 // Keep track of whether we see a skipped declaration. The code could be 1343 // using the declaration even if it is skipped, so we can't optimize out 1344 // the decl if the kept statements might refer to it. 1345 bool HadSkippedDecl = false; 1346 1347 // If we're looking for the case, just see if we can skip each of the 1348 // substatements. 1349 for (; Case && I != E; ++I) { 1350 HadSkippedDecl |= isa<DeclStmt>(*I); 1351 1352 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1353 case CSFC_Failure: return CSFC_Failure; 1354 case CSFC_Success: 1355 // A successful result means that either 1) that the statement doesn't 1356 // have the case and is skippable, or 2) does contain the case value 1357 // and also contains the break to exit the switch. In the later case, 1358 // we just verify the rest of the statements are elidable. 1359 if (FoundCase) { 1360 // If we found the case and skipped declarations, we can't do the 1361 // optimization. 1362 if (HadSkippedDecl) 1363 return CSFC_Failure; 1364 1365 for (++I; I != E; ++I) 1366 if (CodeGenFunction::ContainsLabel(*I, true)) 1367 return CSFC_Failure; 1368 return CSFC_Success; 1369 } 1370 break; 1371 case CSFC_FallThrough: 1372 // If we have a fallthrough condition, then we must have found the 1373 // case started to include statements. Consider the rest of the 1374 // statements in the compound statement as candidates for inclusion. 1375 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1376 // We recursively found Case, so we're not looking for it anymore. 1377 Case = nullptr; 1378 1379 // If we found the case and skipped declarations, we can't do the 1380 // optimization. 1381 if (HadSkippedDecl) 1382 return CSFC_Failure; 1383 break; 1384 } 1385 } 1386 } 1387 1388 // If we have statements in our range, then we know that the statements are 1389 // live and need to be added to the set of statements we're tracking. 1390 for (; I != E; ++I) { 1391 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1392 case CSFC_Failure: return CSFC_Failure; 1393 case CSFC_FallThrough: 1394 // A fallthrough result means that the statement was simple and just 1395 // included in ResultStmt, keep adding them afterwards. 1396 break; 1397 case CSFC_Success: 1398 // A successful result means that we found the break statement and 1399 // stopped statement inclusion. We just ensure that any leftover stmts 1400 // are skippable and return success ourselves. 1401 for (++I; I != E; ++I) 1402 if (CodeGenFunction::ContainsLabel(*I, true)) 1403 return CSFC_Failure; 1404 return CSFC_Success; 1405 } 1406 } 1407 1408 return Case ? CSFC_Success : CSFC_FallThrough; 1409 } 1410 1411 // Okay, this is some other statement that we don't handle explicitly, like a 1412 // for statement or increment etc. If we are skipping over this statement, 1413 // just verify it doesn't have labels, which would make it invalid to elide. 1414 if (Case) { 1415 if (CodeGenFunction::ContainsLabel(S, true)) 1416 return CSFC_Failure; 1417 return CSFC_Success; 1418 } 1419 1420 // Otherwise, we want to include this statement. Everything is cool with that 1421 // so long as it doesn't contain a break out of the switch we're in. 1422 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1423 1424 // Otherwise, everything is great. Include the statement and tell the caller 1425 // that we fall through and include the next statement as well. 1426 ResultStmts.push_back(S); 1427 return CSFC_FallThrough; 1428 } 1429 1430 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1431 /// then invoke CollectStatementsForCase to find the list of statements to emit 1432 /// for a switch on constant. See the comment above CollectStatementsForCase 1433 /// for more details. 1434 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1435 const llvm::APSInt &ConstantCondValue, 1436 SmallVectorImpl<const Stmt*> &ResultStmts, 1437 ASTContext &C, 1438 const SwitchCase *&ResultCase) { 1439 // First step, find the switch case that is being branched to. We can do this 1440 // efficiently by scanning the SwitchCase list. 1441 const SwitchCase *Case = S.getSwitchCaseList(); 1442 const DefaultStmt *DefaultCase = nullptr; 1443 1444 for (; Case; Case = Case->getNextSwitchCase()) { 1445 // It's either a default or case. Just remember the default statement in 1446 // case we're not jumping to any numbered cases. 1447 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1448 DefaultCase = DS; 1449 continue; 1450 } 1451 1452 // Check to see if this case is the one we're looking for. 1453 const CaseStmt *CS = cast<CaseStmt>(Case); 1454 // Don't handle case ranges yet. 1455 if (CS->getRHS()) return false; 1456 1457 // If we found our case, remember it as 'case'. 1458 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1459 break; 1460 } 1461 1462 // If we didn't find a matching case, we use a default if it exists, or we 1463 // elide the whole switch body! 1464 if (!Case) { 1465 // It is safe to elide the body of the switch if it doesn't contain labels 1466 // etc. If it is safe, return successfully with an empty ResultStmts list. 1467 if (!DefaultCase) 1468 return !CodeGenFunction::ContainsLabel(&S); 1469 Case = DefaultCase; 1470 } 1471 1472 // Ok, we know which case is being jumped to, try to collect all the 1473 // statements that follow it. This can fail for a variety of reasons. Also, 1474 // check to see that the recursive walk actually found our case statement. 1475 // Insane cases like this can fail to find it in the recursive walk since we 1476 // don't handle every stmt kind: 1477 // switch (4) { 1478 // while (1) { 1479 // case 4: ... 1480 bool FoundCase = false; 1481 ResultCase = Case; 1482 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1483 ResultStmts) != CSFC_Failure && 1484 FoundCase; 1485 } 1486 1487 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1488 // Handle nested switch statements. 1489 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1490 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1491 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1492 1493 // See if we can constant fold the condition of the switch and therefore only 1494 // emit the live case statement (if any) of the switch. 1495 llvm::APSInt ConstantCondValue; 1496 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1497 SmallVector<const Stmt*, 4> CaseStmts; 1498 const SwitchCase *Case = nullptr; 1499 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1500 getContext(), Case)) { 1501 if (Case) { 1502 RegionCounter CaseCnt = getPGORegionCounter(Case); 1503 CaseCnt.beginRegion(Builder); 1504 } 1505 RunCleanupsScope ExecutedScope(*this); 1506 1507 // Emit the condition variable if needed inside the entire cleanup scope 1508 // used by this special case for constant folded switches. 1509 if (S.getConditionVariable()) 1510 EmitAutoVarDecl(*S.getConditionVariable()); 1511 1512 // At this point, we are no longer "within" a switch instance, so 1513 // we can temporarily enforce this to ensure that any embedded case 1514 // statements are not emitted. 1515 SwitchInsn = nullptr; 1516 1517 // Okay, we can dead code eliminate everything except this case. Emit the 1518 // specified series of statements and we're good. 1519 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1520 EmitStmt(CaseStmts[i]); 1521 RegionCounter ExitCnt = getPGORegionCounter(&S); 1522 ExitCnt.beginRegion(Builder); 1523 1524 // Now we want to restore the saved switch instance so that nested 1525 // switches continue to function properly 1526 SwitchInsn = SavedSwitchInsn; 1527 1528 return; 1529 } 1530 } 1531 1532 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1533 1534 RunCleanupsScope ConditionScope(*this); 1535 if (S.getConditionVariable()) 1536 EmitAutoVarDecl(*S.getConditionVariable()); 1537 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1538 1539 // Create basic block to hold stuff that comes after switch 1540 // statement. We also need to create a default block now so that 1541 // explicit case ranges tests can have a place to jump to on 1542 // failure. 1543 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1544 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1545 if (PGO.haveRegionCounts()) { 1546 // Walk the SwitchCase list to find how many there are. 1547 uint64_t DefaultCount = 0; 1548 unsigned NumCases = 0; 1549 for (const SwitchCase *Case = S.getSwitchCaseList(); 1550 Case; 1551 Case = Case->getNextSwitchCase()) { 1552 if (isa<DefaultStmt>(Case)) 1553 DefaultCount = getPGORegionCounter(Case).getCount(); 1554 NumCases += 1; 1555 } 1556 SwitchWeights = new SmallVector<uint64_t, 16>(); 1557 SwitchWeights->reserve(NumCases); 1558 // The default needs to be first. We store the edge count, so we already 1559 // know the right weight. 1560 SwitchWeights->push_back(DefaultCount); 1561 } 1562 CaseRangeBlock = DefaultBlock; 1563 1564 // Clear the insertion point to indicate we are in unreachable code. 1565 Builder.ClearInsertionPoint(); 1566 1567 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1568 // then reuse last ContinueBlock. 1569 JumpDest OuterContinue; 1570 if (!BreakContinueStack.empty()) 1571 OuterContinue = BreakContinueStack.back().ContinueBlock; 1572 1573 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1574 1575 // Emit switch body. 1576 EmitStmt(S.getBody()); 1577 1578 BreakContinueStack.pop_back(); 1579 1580 // Update the default block in case explicit case range tests have 1581 // been chained on top. 1582 SwitchInsn->setDefaultDest(CaseRangeBlock); 1583 1584 // If a default was never emitted: 1585 if (!DefaultBlock->getParent()) { 1586 // If we have cleanups, emit the default block so that there's a 1587 // place to jump through the cleanups from. 1588 if (ConditionScope.requiresCleanups()) { 1589 EmitBlock(DefaultBlock); 1590 1591 // Otherwise, just forward the default block to the switch end. 1592 } else { 1593 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1594 delete DefaultBlock; 1595 } 1596 } 1597 1598 ConditionScope.ForceCleanup(); 1599 1600 // Emit continuation. 1601 EmitBlock(SwitchExit.getBlock(), true); 1602 RegionCounter ExitCnt = getPGORegionCounter(&S); 1603 ExitCnt.beginRegion(Builder); 1604 1605 if (SwitchWeights) { 1606 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1607 "switch weights do not match switch cases"); 1608 // If there's only one jump destination there's no sense weighting it. 1609 if (SwitchWeights->size() > 1) 1610 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1611 PGO.createBranchWeights(*SwitchWeights)); 1612 delete SwitchWeights; 1613 } 1614 SwitchInsn = SavedSwitchInsn; 1615 SwitchWeights = SavedSwitchWeights; 1616 CaseRangeBlock = SavedCRBlock; 1617 } 1618 1619 static std::string 1620 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1621 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1622 std::string Result; 1623 1624 while (*Constraint) { 1625 switch (*Constraint) { 1626 default: 1627 Result += Target.convertConstraint(Constraint); 1628 break; 1629 // Ignore these 1630 case '*': 1631 case '?': 1632 case '!': 1633 case '=': // Will see this and the following in mult-alt constraints. 1634 case '+': 1635 break; 1636 case '#': // Ignore the rest of the constraint alternative. 1637 while (Constraint[1] && Constraint[1] != ',') 1638 Constraint++; 1639 break; 1640 case ',': 1641 Result += "|"; 1642 break; 1643 case 'g': 1644 Result += "imr"; 1645 break; 1646 case '[': { 1647 assert(OutCons && 1648 "Must pass output names to constraints with a symbolic name"); 1649 unsigned Index; 1650 bool result = Target.resolveSymbolicName(Constraint, 1651 &(*OutCons)[0], 1652 OutCons->size(), Index); 1653 assert(result && "Could not resolve symbolic name"); (void)result; 1654 Result += llvm::utostr(Index); 1655 break; 1656 } 1657 } 1658 1659 Constraint++; 1660 } 1661 1662 return Result; 1663 } 1664 1665 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1666 /// as using a particular register add that as a constraint that will be used 1667 /// in this asm stmt. 1668 static std::string 1669 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1670 const TargetInfo &Target, CodeGenModule &CGM, 1671 const AsmStmt &Stmt) { 1672 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1673 if (!AsmDeclRef) 1674 return Constraint; 1675 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1676 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1677 if (!Variable) 1678 return Constraint; 1679 if (Variable->getStorageClass() != SC_Register) 1680 return Constraint; 1681 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1682 if (!Attr) 1683 return Constraint; 1684 StringRef Register = Attr->getLabel(); 1685 assert(Target.isValidGCCRegisterName(Register)); 1686 // We're using validateOutputConstraint here because we only care if 1687 // this is a register constraint. 1688 TargetInfo::ConstraintInfo Info(Constraint, ""); 1689 if (Target.validateOutputConstraint(Info) && 1690 !Info.allowsRegister()) { 1691 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1692 return Constraint; 1693 } 1694 // Canonicalize the register here before returning it. 1695 Register = Target.getNormalizedGCCRegisterName(Register); 1696 return "{" + Register.str() + "}"; 1697 } 1698 1699 llvm::Value* 1700 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1701 LValue InputValue, QualType InputType, 1702 std::string &ConstraintStr, 1703 SourceLocation Loc) { 1704 llvm::Value *Arg; 1705 if (Info.allowsRegister() || !Info.allowsMemory()) { 1706 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1707 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1708 } else { 1709 llvm::Type *Ty = ConvertType(InputType); 1710 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1711 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1712 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1713 Ty = llvm::PointerType::getUnqual(Ty); 1714 1715 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1716 Ty)); 1717 } else { 1718 Arg = InputValue.getAddress(); 1719 ConstraintStr += '*'; 1720 } 1721 } 1722 } else { 1723 Arg = InputValue.getAddress(); 1724 ConstraintStr += '*'; 1725 } 1726 1727 return Arg; 1728 } 1729 1730 llvm::Value* CodeGenFunction::EmitAsmInput( 1731 const TargetInfo::ConstraintInfo &Info, 1732 const Expr *InputExpr, 1733 std::string &ConstraintStr) { 1734 if (Info.allowsRegister() || !Info.allowsMemory()) 1735 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1736 return EmitScalarExpr(InputExpr); 1737 1738 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1739 LValue Dest = EmitLValue(InputExpr); 1740 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1741 InputExpr->getExprLoc()); 1742 } 1743 1744 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1745 /// asm call instruction. The !srcloc MDNode contains a list of constant 1746 /// integers which are the source locations of the start of each line in the 1747 /// asm. 1748 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1749 CodeGenFunction &CGF) { 1750 SmallVector<llvm::Value *, 8> Locs; 1751 // Add the location of the first line to the MDNode. 1752 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1753 Str->getLocStart().getRawEncoding())); 1754 StringRef StrVal = Str->getString(); 1755 if (!StrVal.empty()) { 1756 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1757 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1758 1759 // Add the location of the start of each subsequent line of the asm to the 1760 // MDNode. 1761 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1762 if (StrVal[i] != '\n') continue; 1763 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1764 CGF.getTarget()); 1765 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1766 LineLoc.getRawEncoding())); 1767 } 1768 } 1769 1770 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1771 } 1772 1773 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1774 // Assemble the final asm string. 1775 std::string AsmString = S.generateAsmString(getContext()); 1776 1777 // Get all the output and input constraints together. 1778 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1779 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1780 1781 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1782 StringRef Name; 1783 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1784 Name = GAS->getOutputName(i); 1785 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1786 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1787 assert(IsValid && "Failed to parse output constraint"); 1788 OutputConstraintInfos.push_back(Info); 1789 } 1790 1791 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1792 StringRef Name; 1793 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1794 Name = GAS->getInputName(i); 1795 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1796 bool IsValid = 1797 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1798 S.getNumOutputs(), Info); 1799 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1800 InputConstraintInfos.push_back(Info); 1801 } 1802 1803 std::string Constraints; 1804 1805 std::vector<LValue> ResultRegDests; 1806 std::vector<QualType> ResultRegQualTys; 1807 std::vector<llvm::Type *> ResultRegTypes; 1808 std::vector<llvm::Type *> ResultTruncRegTypes; 1809 std::vector<llvm::Type *> ArgTypes; 1810 std::vector<llvm::Value*> Args; 1811 1812 // Keep track of inout constraints. 1813 std::string InOutConstraints; 1814 std::vector<llvm::Value*> InOutArgs; 1815 std::vector<llvm::Type*> InOutArgTypes; 1816 1817 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1818 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1819 1820 // Simplify the output constraint. 1821 std::string OutputConstraint(S.getOutputConstraint(i)); 1822 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1823 getTarget()); 1824 1825 const Expr *OutExpr = S.getOutputExpr(i); 1826 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1827 1828 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1829 getTarget(), CGM, S); 1830 1831 LValue Dest = EmitLValue(OutExpr); 1832 if (!Constraints.empty()) 1833 Constraints += ','; 1834 1835 // If this is a register output, then make the inline asm return it 1836 // by-value. If this is a memory result, return the value by-reference. 1837 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1838 Constraints += "=" + OutputConstraint; 1839 ResultRegQualTys.push_back(OutExpr->getType()); 1840 ResultRegDests.push_back(Dest); 1841 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1842 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1843 1844 // If this output is tied to an input, and if the input is larger, then 1845 // we need to set the actual result type of the inline asm node to be the 1846 // same as the input type. 1847 if (Info.hasMatchingInput()) { 1848 unsigned InputNo; 1849 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1850 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1851 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1852 break; 1853 } 1854 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1855 1856 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1857 QualType OutputType = OutExpr->getType(); 1858 1859 uint64_t InputSize = getContext().getTypeSize(InputTy); 1860 if (getContext().getTypeSize(OutputType) < InputSize) { 1861 // Form the asm to return the value as a larger integer or fp type. 1862 ResultRegTypes.back() = ConvertType(InputTy); 1863 } 1864 } 1865 if (llvm::Type* AdjTy = 1866 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1867 ResultRegTypes.back())) 1868 ResultRegTypes.back() = AdjTy; 1869 else { 1870 CGM.getDiags().Report(S.getAsmLoc(), 1871 diag::err_asm_invalid_type_in_input) 1872 << OutExpr->getType() << OutputConstraint; 1873 } 1874 } else { 1875 ArgTypes.push_back(Dest.getAddress()->getType()); 1876 Args.push_back(Dest.getAddress()); 1877 Constraints += "=*"; 1878 Constraints += OutputConstraint; 1879 } 1880 1881 if (Info.isReadWrite()) { 1882 InOutConstraints += ','; 1883 1884 const Expr *InputExpr = S.getOutputExpr(i); 1885 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1886 InOutConstraints, 1887 InputExpr->getExprLoc()); 1888 1889 if (llvm::Type* AdjTy = 1890 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1891 Arg->getType())) 1892 Arg = Builder.CreateBitCast(Arg, AdjTy); 1893 1894 if (Info.allowsRegister()) 1895 InOutConstraints += llvm::utostr(i); 1896 else 1897 InOutConstraints += OutputConstraint; 1898 1899 InOutArgTypes.push_back(Arg->getType()); 1900 InOutArgs.push_back(Arg); 1901 } 1902 } 1903 1904 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1905 1906 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1907 const Expr *InputExpr = S.getInputExpr(i); 1908 1909 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1910 1911 if (!Constraints.empty()) 1912 Constraints += ','; 1913 1914 // Simplify the input constraint. 1915 std::string InputConstraint(S.getInputConstraint(i)); 1916 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1917 &OutputConstraintInfos); 1918 1919 InputConstraint = 1920 AddVariableConstraints(InputConstraint, 1921 *InputExpr->IgnoreParenNoopCasts(getContext()), 1922 getTarget(), CGM, S); 1923 1924 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1925 1926 // If this input argument is tied to a larger output result, extend the 1927 // input to be the same size as the output. The LLVM backend wants to see 1928 // the input and output of a matching constraint be the same size. Note 1929 // that GCC does not define what the top bits are here. We use zext because 1930 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1931 if (Info.hasTiedOperand()) { 1932 unsigned Output = Info.getTiedOperand(); 1933 QualType OutputType = S.getOutputExpr(Output)->getType(); 1934 QualType InputTy = InputExpr->getType(); 1935 1936 if (getContext().getTypeSize(OutputType) > 1937 getContext().getTypeSize(InputTy)) { 1938 // Use ptrtoint as appropriate so that we can do our extension. 1939 if (isa<llvm::PointerType>(Arg->getType())) 1940 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1941 llvm::Type *OutputTy = ConvertType(OutputType); 1942 if (isa<llvm::IntegerType>(OutputTy)) 1943 Arg = Builder.CreateZExt(Arg, OutputTy); 1944 else if (isa<llvm::PointerType>(OutputTy)) 1945 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1946 else { 1947 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1948 Arg = Builder.CreateFPExt(Arg, OutputTy); 1949 } 1950 } 1951 } 1952 if (llvm::Type* AdjTy = 1953 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1954 Arg->getType())) 1955 Arg = Builder.CreateBitCast(Arg, AdjTy); 1956 else 1957 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1958 << InputExpr->getType() << InputConstraint; 1959 1960 ArgTypes.push_back(Arg->getType()); 1961 Args.push_back(Arg); 1962 Constraints += InputConstraint; 1963 } 1964 1965 // Append the "input" part of inout constraints last. 1966 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1967 ArgTypes.push_back(InOutArgTypes[i]); 1968 Args.push_back(InOutArgs[i]); 1969 } 1970 Constraints += InOutConstraints; 1971 1972 // Clobbers 1973 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1974 StringRef Clobber = S.getClobber(i); 1975 1976 if (Clobber != "memory" && Clobber != "cc") 1977 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1978 1979 if (i != 0 || NumConstraints != 0) 1980 Constraints += ','; 1981 1982 Constraints += "~{"; 1983 Constraints += Clobber; 1984 Constraints += '}'; 1985 } 1986 1987 // Add machine specific clobbers 1988 std::string MachineClobbers = getTarget().getClobbers(); 1989 if (!MachineClobbers.empty()) { 1990 if (!Constraints.empty()) 1991 Constraints += ','; 1992 Constraints += MachineClobbers; 1993 } 1994 1995 llvm::Type *ResultType; 1996 if (ResultRegTypes.empty()) 1997 ResultType = VoidTy; 1998 else if (ResultRegTypes.size() == 1) 1999 ResultType = ResultRegTypes[0]; 2000 else 2001 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2002 2003 llvm::FunctionType *FTy = 2004 llvm::FunctionType::get(ResultType, ArgTypes, false); 2005 2006 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2007 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2008 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2009 llvm::InlineAsm *IA = 2010 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2011 /* IsAlignStack */ false, AsmDialect); 2012 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2013 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2014 llvm::Attribute::NoUnwind); 2015 2016 // Slap the source location of the inline asm into a !srcloc metadata on the 2017 // call. 2018 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2019 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2020 *this)); 2021 } else { 2022 // At least put the line number on MS inline asm blobs. 2023 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2024 Result->setMetadata("srcloc", llvm::MDNode::get(getLLVMContext(), Loc)); 2025 } 2026 2027 // Extract all of the register value results from the asm. 2028 std::vector<llvm::Value*> RegResults; 2029 if (ResultRegTypes.size() == 1) { 2030 RegResults.push_back(Result); 2031 } else { 2032 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2033 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2034 RegResults.push_back(Tmp); 2035 } 2036 } 2037 2038 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2039 llvm::Value *Tmp = RegResults[i]; 2040 2041 // If the result type of the LLVM IR asm doesn't match the result type of 2042 // the expression, do the conversion. 2043 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2044 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2045 2046 // Truncate the integer result to the right size, note that TruncTy can be 2047 // a pointer. 2048 if (TruncTy->isFloatingPointTy()) 2049 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2050 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2051 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2052 Tmp = Builder.CreateTrunc(Tmp, 2053 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2054 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2055 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2056 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2057 Tmp = Builder.CreatePtrToInt(Tmp, 2058 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2059 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2060 } else if (TruncTy->isIntegerTy()) { 2061 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2062 } else if (TruncTy->isVectorTy()) { 2063 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2064 } 2065 } 2066 2067 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2068 } 2069 } 2070 2071 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2072 const RecordDecl *RD = S.getCapturedRecordDecl(); 2073 QualType RecordTy = CGF.getContext().getRecordType(RD); 2074 2075 // Initialize the captured struct. 2076 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2077 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2078 2079 RecordDecl::field_iterator CurField = RD->field_begin(); 2080 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2081 E = S.capture_init_end(); 2082 I != E; ++I, ++CurField) { 2083 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2084 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2085 } 2086 2087 return SlotLV; 2088 } 2089 2090 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) { 2091 for (auto &C : S.captures()) { 2092 if (C.capturesVariable()) { 2093 QualType QTy; 2094 auto VD = C.getCapturedVar(); 2095 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 2096 QTy = PVD->getOriginalType(); 2097 else 2098 QTy = VD->getType(); 2099 if (QTy->isVariablyModifiedType()) { 2100 CGF.EmitVariablyModifiedType(QTy); 2101 } 2102 } 2103 } 2104 } 2105 2106 /// Generate an outlined function for the body of a CapturedStmt, store any 2107 /// captured variables into the captured struct, and call the outlined function. 2108 llvm::Function * 2109 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2110 LValue CapStruct = InitCapturedStruct(*this, S); 2111 2112 // Emit the CapturedDecl 2113 CodeGenFunction CGF(CGM, true); 2114 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2115 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2116 delete CGF.CapturedStmtInfo; 2117 2118 // Emit call to the helper function. 2119 EmitCallOrInvoke(F, CapStruct.getAddress()); 2120 2121 return F; 2122 } 2123 2124 llvm::Value * 2125 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2126 LValue CapStruct = InitCapturedStruct(*this, S); 2127 return CapStruct.getAddress(); 2128 } 2129 2130 /// Creates the outlined function for a CapturedStmt. 2131 llvm::Function * 2132 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2133 assert(CapturedStmtInfo && 2134 "CapturedStmtInfo should be set when generating the captured function"); 2135 const CapturedDecl *CD = S.getCapturedDecl(); 2136 const RecordDecl *RD = S.getCapturedRecordDecl(); 2137 SourceLocation Loc = S.getLocStart(); 2138 assert(CD->hasBody() && "missing CapturedDecl body"); 2139 2140 // Build the argument list. 2141 ASTContext &Ctx = CGM.getContext(); 2142 FunctionArgList Args; 2143 Args.append(CD->param_begin(), CD->param_end()); 2144 2145 // Create the function declaration. 2146 FunctionType::ExtInfo ExtInfo; 2147 const CGFunctionInfo &FuncInfo = 2148 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2149 /*IsVariadic=*/false); 2150 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2151 2152 llvm::Function *F = 2153 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2154 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2155 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2156 2157 // Generate the function. 2158 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2159 CD->getLocation(), 2160 CD->getBody()->getLocStart()); 2161 // Set the context parameter in CapturedStmtInfo. 2162 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2163 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2164 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2165 2166 // Initialize variable-length arrays. 2167 InitVLACaptures(*this, S); 2168 2169 // If 'this' is captured, load it into CXXThisValue. 2170 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2171 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2172 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2173 Ctx.getTagDeclType(RD)); 2174 LValue ThisLValue = EmitLValueForField(LV, FD); 2175 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2176 } 2177 2178 PGO.assignRegionCounters(CD, F); 2179 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2180 FinishFunction(CD->getBodyRBrace()); 2181 PGO.emitInstrumentationData(); 2182 PGO.destroyRegionCounters(); 2183 2184 return F; 2185 } 2186