1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::SEHLeaveStmtClass: 177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 178 break; 179 case Stmt::OMPParallelDirectiveClass: 180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 181 break; 182 case Stmt::OMPSimdDirectiveClass: 183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 184 break; 185 case Stmt::OMPForDirectiveClass: 186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 187 break; 188 case Stmt::OMPSectionsDirectiveClass: 189 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 190 break; 191 case Stmt::OMPSectionDirectiveClass: 192 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 193 break; 194 case Stmt::OMPSingleDirectiveClass: 195 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 196 break; 197 case Stmt::OMPParallelForDirectiveClass: 198 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 199 break; 200 case Stmt::OMPParallelSectionsDirectiveClass: 201 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 202 break; 203 case Stmt::OMPTaskDirectiveClass: 204 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 205 break; 206 } 207 } 208 209 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 210 switch (S->getStmtClass()) { 211 default: return false; 212 case Stmt::NullStmtClass: break; 213 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 214 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 215 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 216 case Stmt::AttributedStmtClass: 217 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 218 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 219 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 220 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 221 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 222 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 223 } 224 225 return true; 226 } 227 228 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 229 /// this captures the expression result of the last sub-statement and returns it 230 /// (for use by the statement expression extension). 231 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 232 AggValueSlot AggSlot) { 233 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 234 "LLVM IR generation of compound statement ('{}')"); 235 236 // Keep track of the current cleanup stack depth, including debug scopes. 237 LexicalScope Scope(*this, S.getSourceRange()); 238 239 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 240 } 241 242 llvm::Value* 243 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 244 bool GetLast, 245 AggValueSlot AggSlot) { 246 247 for (CompoundStmt::const_body_iterator I = S.body_begin(), 248 E = S.body_end()-GetLast; I != E; ++I) 249 EmitStmt(*I); 250 251 llvm::Value *RetAlloca = nullptr; 252 if (GetLast) { 253 // We have to special case labels here. They are statements, but when put 254 // at the end of a statement expression, they yield the value of their 255 // subexpression. Handle this by walking through all labels we encounter, 256 // emitting them before we evaluate the subexpr. 257 const Stmt *LastStmt = S.body_back(); 258 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 259 EmitLabel(LS->getDecl()); 260 LastStmt = LS->getSubStmt(); 261 } 262 263 EnsureInsertPoint(); 264 265 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 266 if (hasAggregateEvaluationKind(ExprTy)) { 267 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 268 } else { 269 // We can't return an RValue here because there might be cleanups at 270 // the end of the StmtExpr. Because of that, we have to emit the result 271 // here into a temporary alloca. 272 RetAlloca = CreateMemTemp(ExprTy); 273 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 274 /*IsInit*/false); 275 } 276 277 } 278 279 return RetAlloca; 280 } 281 282 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 283 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 284 285 // If there is a cleanup stack, then we it isn't worth trying to 286 // simplify this block (we would need to remove it from the scope map 287 // and cleanup entry). 288 if (!EHStack.empty()) 289 return; 290 291 // Can only simplify direct branches. 292 if (!BI || !BI->isUnconditional()) 293 return; 294 295 // Can only simplify empty blocks. 296 if (BI != BB->begin()) 297 return; 298 299 BB->replaceAllUsesWith(BI->getSuccessor(0)); 300 BI->eraseFromParent(); 301 BB->eraseFromParent(); 302 } 303 304 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 305 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 306 307 // Fall out of the current block (if necessary). 308 EmitBranch(BB); 309 310 if (IsFinished && BB->use_empty()) { 311 delete BB; 312 return; 313 } 314 315 // Place the block after the current block, if possible, or else at 316 // the end of the function. 317 if (CurBB && CurBB->getParent()) 318 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 319 else 320 CurFn->getBasicBlockList().push_back(BB); 321 Builder.SetInsertPoint(BB); 322 } 323 324 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 325 // Emit a branch from the current block to the target one if this 326 // was a real block. If this was just a fall-through block after a 327 // terminator, don't emit it. 328 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 329 330 if (!CurBB || CurBB->getTerminator()) { 331 // If there is no insert point or the previous block is already 332 // terminated, don't touch it. 333 } else { 334 // Otherwise, create a fall-through branch. 335 Builder.CreateBr(Target); 336 } 337 338 Builder.ClearInsertionPoint(); 339 } 340 341 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 342 bool inserted = false; 343 for (llvm::User *u : block->users()) { 344 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 345 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 346 inserted = true; 347 break; 348 } 349 } 350 351 if (!inserted) 352 CurFn->getBasicBlockList().push_back(block); 353 354 Builder.SetInsertPoint(block); 355 } 356 357 CodeGenFunction::JumpDest 358 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 359 JumpDest &Dest = LabelMap[D]; 360 if (Dest.isValid()) return Dest; 361 362 // Create, but don't insert, the new block. 363 Dest = JumpDest(createBasicBlock(D->getName()), 364 EHScopeStack::stable_iterator::invalid(), 365 NextCleanupDestIndex++); 366 return Dest; 367 } 368 369 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 370 // Add this label to the current lexical scope if we're within any 371 // normal cleanups. Jumps "in" to this label --- when permitted by 372 // the language --- may need to be routed around such cleanups. 373 if (EHStack.hasNormalCleanups() && CurLexicalScope) 374 CurLexicalScope->addLabel(D); 375 376 JumpDest &Dest = LabelMap[D]; 377 378 // If we didn't need a forward reference to this label, just go 379 // ahead and create a destination at the current scope. 380 if (!Dest.isValid()) { 381 Dest = getJumpDestInCurrentScope(D->getName()); 382 383 // Otherwise, we need to give this label a target depth and remove 384 // it from the branch-fixups list. 385 } else { 386 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 387 Dest.setScopeDepth(EHStack.stable_begin()); 388 ResolveBranchFixups(Dest.getBlock()); 389 } 390 391 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 392 EmitBlock(Dest.getBlock()); 393 Cnt.beginRegion(Builder); 394 } 395 396 /// Change the cleanup scope of the labels in this lexical scope to 397 /// match the scope of the enclosing context. 398 void CodeGenFunction::LexicalScope::rescopeLabels() { 399 assert(!Labels.empty()); 400 EHScopeStack::stable_iterator innermostScope 401 = CGF.EHStack.getInnermostNormalCleanup(); 402 403 // Change the scope depth of all the labels. 404 for (SmallVectorImpl<const LabelDecl*>::const_iterator 405 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 406 assert(CGF.LabelMap.count(*i)); 407 JumpDest &dest = CGF.LabelMap.find(*i)->second; 408 assert(dest.getScopeDepth().isValid()); 409 assert(innermostScope.encloses(dest.getScopeDepth())); 410 dest.setScopeDepth(innermostScope); 411 } 412 413 // Reparent the labels if the new scope also has cleanups. 414 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 415 ParentScope->Labels.append(Labels.begin(), Labels.end()); 416 } 417 } 418 419 420 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 421 EmitLabel(S.getDecl()); 422 EmitStmt(S.getSubStmt()); 423 } 424 425 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 426 const Stmt *SubStmt = S.getSubStmt(); 427 switch (SubStmt->getStmtClass()) { 428 case Stmt::DoStmtClass: 429 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 430 break; 431 case Stmt::ForStmtClass: 432 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 433 break; 434 case Stmt::WhileStmtClass: 435 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 436 break; 437 case Stmt::CXXForRangeStmtClass: 438 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 439 break; 440 default: 441 EmitStmt(SubStmt); 442 } 443 } 444 445 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 446 // If this code is reachable then emit a stop point (if generating 447 // debug info). We have to do this ourselves because we are on the 448 // "simple" statement path. 449 if (HaveInsertPoint()) 450 EmitStopPoint(&S); 451 452 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 453 } 454 455 456 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 457 if (const LabelDecl *Target = S.getConstantTarget()) { 458 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 459 return; 460 } 461 462 // Ensure that we have an i8* for our PHI node. 463 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 464 Int8PtrTy, "addr"); 465 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 466 467 // Get the basic block for the indirect goto. 468 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 469 470 // The first instruction in the block has to be the PHI for the switch dest, 471 // add an entry for this branch. 472 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 473 474 EmitBranch(IndGotoBB); 475 } 476 477 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 478 // C99 6.8.4.1: The first substatement is executed if the expression compares 479 // unequal to 0. The condition must be a scalar type. 480 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 481 RegionCounter Cnt = getPGORegionCounter(&S); 482 483 if (S.getConditionVariable()) 484 EmitAutoVarDecl(*S.getConditionVariable()); 485 486 // If the condition constant folds and can be elided, try to avoid emitting 487 // the condition and the dead arm of the if/else. 488 bool CondConstant; 489 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 490 // Figure out which block (then or else) is executed. 491 const Stmt *Executed = S.getThen(); 492 const Stmt *Skipped = S.getElse(); 493 if (!CondConstant) // Condition false? 494 std::swap(Executed, Skipped); 495 496 // If the skipped block has no labels in it, just emit the executed block. 497 // This avoids emitting dead code and simplifies the CFG substantially. 498 if (!ContainsLabel(Skipped)) { 499 if (CondConstant) 500 Cnt.beginRegion(Builder); 501 if (Executed) { 502 RunCleanupsScope ExecutedScope(*this); 503 EmitStmt(Executed); 504 } 505 return; 506 } 507 } 508 509 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 510 // the conditional branch. 511 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 512 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 513 llvm::BasicBlock *ElseBlock = ContBlock; 514 if (S.getElse()) 515 ElseBlock = createBasicBlock("if.else"); 516 517 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 518 519 // Emit the 'then' code. 520 EmitBlock(ThenBlock); 521 Cnt.beginRegion(Builder); 522 { 523 RunCleanupsScope ThenScope(*this); 524 EmitStmt(S.getThen()); 525 } 526 EmitBranch(ContBlock); 527 528 // Emit the 'else' code if present. 529 if (const Stmt *Else = S.getElse()) { 530 { 531 // There is no need to emit line number for unconditional branch. 532 SuppressDebugLocation S(Builder); 533 EmitBlock(ElseBlock); 534 } 535 { 536 RunCleanupsScope ElseScope(*this); 537 EmitStmt(Else); 538 } 539 { 540 // There is no need to emit line number for unconditional branch. 541 SuppressDebugLocation S(Builder); 542 EmitBranch(ContBlock); 543 } 544 } 545 546 // Emit the continuation block for code after the if. 547 EmitBlock(ContBlock, true); 548 } 549 550 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 551 llvm::BranchInst *CondBr, 552 const ArrayRef<const Attr *> &Attrs) { 553 // Return if there are no hints. 554 if (Attrs.empty()) 555 return; 556 557 // Add vectorize and unroll hints to the metadata on the conditional branch. 558 SmallVector<llvm::Value *, 2> Metadata(1); 559 for (const auto *Attr : Attrs) { 560 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 561 562 // Skip non loop hint attributes 563 if (!LH) 564 continue; 565 566 LoopHintAttr::OptionType Option = LH->getOption(); 567 int ValueInt = LH->getValue(); 568 569 const char *MetadataName; 570 switch (Option) { 571 case LoopHintAttr::Vectorize: 572 case LoopHintAttr::VectorizeWidth: 573 MetadataName = "llvm.loop.vectorize.width"; 574 break; 575 case LoopHintAttr::Interleave: 576 case LoopHintAttr::InterleaveCount: 577 MetadataName = "llvm.loop.vectorize.unroll"; 578 break; 579 case LoopHintAttr::Unroll: 580 MetadataName = "llvm.loop.unroll.enable"; 581 break; 582 case LoopHintAttr::UnrollCount: 583 MetadataName = "llvm.loop.unroll.count"; 584 break; 585 } 586 587 llvm::Value *Value; 588 llvm::MDString *Name; 589 switch (Option) { 590 case LoopHintAttr::Vectorize: 591 case LoopHintAttr::Interleave: 592 if (ValueInt == 1) { 593 // FIXME: In the future I will modifiy the behavior of the metadata 594 // so we can enable/disable vectorization and interleaving separately. 595 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 596 Value = Builder.getTrue(); 597 break; 598 } 599 // Vectorization/interleaving is disabled, set width/count to 1. 600 ValueInt = 1; 601 // Fallthrough. 602 case LoopHintAttr::VectorizeWidth: 603 case LoopHintAttr::InterleaveCount: 604 Name = llvm::MDString::get(Context, MetadataName); 605 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 606 break; 607 case LoopHintAttr::Unroll: 608 Name = llvm::MDString::get(Context, MetadataName); 609 Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue(); 610 break; 611 case LoopHintAttr::UnrollCount: 612 Name = llvm::MDString::get(Context, MetadataName); 613 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 614 break; 615 } 616 617 SmallVector<llvm::Value *, 2> OpValues; 618 OpValues.push_back(Name); 619 OpValues.push_back(Value); 620 621 // Set or overwrite metadata indicated by Name. 622 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 623 } 624 625 if (!Metadata.empty()) { 626 // Add llvm.loop MDNode to CondBr. 627 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 628 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 629 630 CondBr->setMetadata("llvm.loop", LoopID); 631 } 632 } 633 634 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 635 const ArrayRef<const Attr *> &WhileAttrs) { 636 RegionCounter Cnt = getPGORegionCounter(&S); 637 638 // Emit the header for the loop, which will also become 639 // the continue target. 640 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 641 EmitBlock(LoopHeader.getBlock()); 642 643 LoopStack.push(LoopHeader.getBlock()); 644 645 // Create an exit block for when the condition fails, which will 646 // also become the break target. 647 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 648 649 // Store the blocks to use for break and continue. 650 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 651 652 // C++ [stmt.while]p2: 653 // When the condition of a while statement is a declaration, the 654 // scope of the variable that is declared extends from its point 655 // of declaration (3.3.2) to the end of the while statement. 656 // [...] 657 // The object created in a condition is destroyed and created 658 // with each iteration of the loop. 659 RunCleanupsScope ConditionScope(*this); 660 661 if (S.getConditionVariable()) 662 EmitAutoVarDecl(*S.getConditionVariable()); 663 664 // Evaluate the conditional in the while header. C99 6.8.5.1: The 665 // evaluation of the controlling expression takes place before each 666 // execution of the loop body. 667 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 668 669 // while(1) is common, avoid extra exit blocks. Be sure 670 // to correctly handle break/continue though. 671 bool EmitBoolCondBranch = true; 672 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 673 if (C->isOne()) 674 EmitBoolCondBranch = false; 675 676 // As long as the condition is true, go to the loop body. 677 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 678 if (EmitBoolCondBranch) { 679 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 680 if (ConditionScope.requiresCleanups()) 681 ExitBlock = createBasicBlock("while.exit"); 682 llvm::BranchInst *CondBr = 683 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 684 PGO.createLoopWeights(S.getCond(), Cnt)); 685 686 if (ExitBlock != LoopExit.getBlock()) { 687 EmitBlock(ExitBlock); 688 EmitBranchThroughCleanup(LoopExit); 689 } 690 691 // Attach metadata to loop body conditional branch. 692 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 693 } 694 695 // Emit the loop body. We have to emit this in a cleanup scope 696 // because it might be a singleton DeclStmt. 697 { 698 RunCleanupsScope BodyScope(*this); 699 EmitBlock(LoopBody); 700 Cnt.beginRegion(Builder); 701 EmitStmt(S.getBody()); 702 } 703 704 BreakContinueStack.pop_back(); 705 706 // Immediately force cleanup. 707 ConditionScope.ForceCleanup(); 708 709 // Branch to the loop header again. 710 EmitBranch(LoopHeader.getBlock()); 711 712 LoopStack.pop(); 713 714 // Emit the exit block. 715 EmitBlock(LoopExit.getBlock(), true); 716 717 // The LoopHeader typically is just a branch if we skipped emitting 718 // a branch, try to erase it. 719 if (!EmitBoolCondBranch) 720 SimplifyForwardingBlocks(LoopHeader.getBlock()); 721 } 722 723 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 724 const ArrayRef<const Attr *> &DoAttrs) { 725 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 726 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 727 728 RegionCounter Cnt = getPGORegionCounter(&S); 729 730 // Store the blocks to use for break and continue. 731 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 732 733 // Emit the body of the loop. 734 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 735 736 LoopStack.push(LoopBody); 737 738 EmitBlockWithFallThrough(LoopBody, Cnt); 739 { 740 RunCleanupsScope BodyScope(*this); 741 EmitStmt(S.getBody()); 742 } 743 744 EmitBlock(LoopCond.getBlock()); 745 746 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 747 // after each execution of the loop body." 748 749 // Evaluate the conditional in the while header. 750 // C99 6.8.5p2/p4: The first substatement is executed if the expression 751 // compares unequal to 0. The condition must be a scalar type. 752 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 753 754 BreakContinueStack.pop_back(); 755 756 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 757 // to correctly handle break/continue though. 758 bool EmitBoolCondBranch = true; 759 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 760 if (C->isZero()) 761 EmitBoolCondBranch = false; 762 763 // As long as the condition is true, iterate the loop. 764 if (EmitBoolCondBranch) { 765 llvm::BranchInst *CondBr = 766 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 767 PGO.createLoopWeights(S.getCond(), Cnt)); 768 769 // Attach metadata to loop body conditional branch. 770 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 771 } 772 773 LoopStack.pop(); 774 775 // Emit the exit block. 776 EmitBlock(LoopExit.getBlock()); 777 778 // The DoCond block typically is just a branch if we skipped 779 // emitting a branch, try to erase it. 780 if (!EmitBoolCondBranch) 781 SimplifyForwardingBlocks(LoopCond.getBlock()); 782 } 783 784 void CodeGenFunction::EmitForStmt(const ForStmt &S, 785 const ArrayRef<const Attr *> &ForAttrs) { 786 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 787 788 RunCleanupsScope ForScope(*this); 789 790 CGDebugInfo *DI = getDebugInfo(); 791 if (DI) 792 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 793 794 // Evaluate the first part before the loop. 795 if (S.getInit()) 796 EmitStmt(S.getInit()); 797 798 RegionCounter Cnt = getPGORegionCounter(&S); 799 800 // Start the loop with a block that tests the condition. 801 // If there's an increment, the continue scope will be overwritten 802 // later. 803 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 804 llvm::BasicBlock *CondBlock = Continue.getBlock(); 805 EmitBlock(CondBlock); 806 807 LoopStack.push(CondBlock); 808 809 // If the for loop doesn't have an increment we can just use the 810 // condition as the continue block. Otherwise we'll need to create 811 // a block for it (in the current scope, i.e. in the scope of the 812 // condition), and that we will become our continue block. 813 if (S.getInc()) 814 Continue = getJumpDestInCurrentScope("for.inc"); 815 816 // Store the blocks to use for break and continue. 817 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 818 819 // Create a cleanup scope for the condition variable cleanups. 820 RunCleanupsScope ConditionScope(*this); 821 822 if (S.getCond()) { 823 // If the for statement has a condition scope, emit the local variable 824 // declaration. 825 if (S.getConditionVariable()) { 826 EmitAutoVarDecl(*S.getConditionVariable()); 827 } 828 829 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 830 // If there are any cleanups between here and the loop-exit scope, 831 // create a block to stage a loop exit along. 832 if (ForScope.requiresCleanups()) 833 ExitBlock = createBasicBlock("for.cond.cleanup"); 834 835 // As long as the condition is true, iterate the loop. 836 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 837 838 // C99 6.8.5p2/p4: The first substatement is executed if the expression 839 // compares unequal to 0. The condition must be a scalar type. 840 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 841 llvm::BranchInst *CondBr = 842 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 843 PGO.createLoopWeights(S.getCond(), Cnt)); 844 845 // Attach metadata to loop body conditional branch. 846 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 847 848 if (ExitBlock != LoopExit.getBlock()) { 849 EmitBlock(ExitBlock); 850 EmitBranchThroughCleanup(LoopExit); 851 } 852 853 EmitBlock(ForBody); 854 } else { 855 // Treat it as a non-zero constant. Don't even create a new block for the 856 // body, just fall into it. 857 } 858 Cnt.beginRegion(Builder); 859 860 { 861 // Create a separate cleanup scope for the body, in case it is not 862 // a compound statement. 863 RunCleanupsScope BodyScope(*this); 864 EmitStmt(S.getBody()); 865 } 866 867 // If there is an increment, emit it next. 868 if (S.getInc()) { 869 EmitBlock(Continue.getBlock()); 870 EmitStmt(S.getInc()); 871 } 872 873 BreakContinueStack.pop_back(); 874 875 ConditionScope.ForceCleanup(); 876 EmitBranch(CondBlock); 877 878 ForScope.ForceCleanup(); 879 880 if (DI) 881 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 882 883 LoopStack.pop(); 884 885 // Emit the fall-through block. 886 EmitBlock(LoopExit.getBlock(), true); 887 } 888 889 void 890 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 891 const ArrayRef<const Attr *> &ForAttrs) { 892 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 893 894 RunCleanupsScope ForScope(*this); 895 896 CGDebugInfo *DI = getDebugInfo(); 897 if (DI) 898 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 899 900 // Evaluate the first pieces before the loop. 901 EmitStmt(S.getRangeStmt()); 902 EmitStmt(S.getBeginEndStmt()); 903 904 RegionCounter Cnt = getPGORegionCounter(&S); 905 906 // Start the loop with a block that tests the condition. 907 // If there's an increment, the continue scope will be overwritten 908 // later. 909 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 910 EmitBlock(CondBlock); 911 912 LoopStack.push(CondBlock); 913 914 // If there are any cleanups between here and the loop-exit scope, 915 // create a block to stage a loop exit along. 916 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 917 if (ForScope.requiresCleanups()) 918 ExitBlock = createBasicBlock("for.cond.cleanup"); 919 920 // The loop body, consisting of the specified body and the loop variable. 921 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 922 923 // The body is executed if the expression, contextually converted 924 // to bool, is true. 925 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 926 llvm::BranchInst *CondBr = Builder.CreateCondBr( 927 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 928 929 // Attach metadata to loop body conditional branch. 930 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 931 932 if (ExitBlock != LoopExit.getBlock()) { 933 EmitBlock(ExitBlock); 934 EmitBranchThroughCleanup(LoopExit); 935 } 936 937 EmitBlock(ForBody); 938 Cnt.beginRegion(Builder); 939 940 // Create a block for the increment. In case of a 'continue', we jump there. 941 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 942 943 // Store the blocks to use for break and continue. 944 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 945 946 { 947 // Create a separate cleanup scope for the loop variable and body. 948 RunCleanupsScope BodyScope(*this); 949 EmitStmt(S.getLoopVarStmt()); 950 EmitStmt(S.getBody()); 951 } 952 953 // If there is an increment, emit it next. 954 EmitBlock(Continue.getBlock()); 955 EmitStmt(S.getInc()); 956 957 BreakContinueStack.pop_back(); 958 959 EmitBranch(CondBlock); 960 961 ForScope.ForceCleanup(); 962 963 if (DI) 964 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 965 966 LoopStack.pop(); 967 968 // Emit the fall-through block. 969 EmitBlock(LoopExit.getBlock(), true); 970 } 971 972 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 973 if (RV.isScalar()) { 974 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 975 } else if (RV.isAggregate()) { 976 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 977 } else { 978 EmitStoreOfComplex(RV.getComplexVal(), 979 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 980 /*init*/ true); 981 } 982 EmitBranchThroughCleanup(ReturnBlock); 983 } 984 985 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 986 /// if the function returns void, or may be missing one if the function returns 987 /// non-void. Fun stuff :). 988 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 989 // Emit the result value, even if unused, to evalute the side effects. 990 const Expr *RV = S.getRetValue(); 991 992 // Treat block literals in a return expression as if they appeared 993 // in their own scope. This permits a small, easily-implemented 994 // exception to our over-conservative rules about not jumping to 995 // statements following block literals with non-trivial cleanups. 996 RunCleanupsScope cleanupScope(*this); 997 if (const ExprWithCleanups *cleanups = 998 dyn_cast_or_null<ExprWithCleanups>(RV)) { 999 enterFullExpression(cleanups); 1000 RV = cleanups->getSubExpr(); 1001 } 1002 1003 // FIXME: Clean this up by using an LValue for ReturnTemp, 1004 // EmitStoreThroughLValue, and EmitAnyExpr. 1005 if (getLangOpts().ElideConstructors && 1006 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1007 // Apply the named return value optimization for this return statement, 1008 // which means doing nothing: the appropriate result has already been 1009 // constructed into the NRVO variable. 1010 1011 // If there is an NRVO flag for this variable, set it to 1 into indicate 1012 // that the cleanup code should not destroy the variable. 1013 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1014 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1015 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1016 // Make sure not to return anything, but evaluate the expression 1017 // for side effects. 1018 if (RV) 1019 EmitAnyExpr(RV); 1020 } else if (!RV) { 1021 // Do nothing (return value is left uninitialized) 1022 } else if (FnRetTy->isReferenceType()) { 1023 // If this function returns a reference, take the address of the expression 1024 // rather than the value. 1025 RValue Result = EmitReferenceBindingToExpr(RV); 1026 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1027 } else { 1028 switch (getEvaluationKind(RV->getType())) { 1029 case TEK_Scalar: 1030 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1031 break; 1032 case TEK_Complex: 1033 EmitComplexExprIntoLValue(RV, 1034 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1035 /*isInit*/ true); 1036 break; 1037 case TEK_Aggregate: { 1038 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1039 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1040 Qualifiers(), 1041 AggValueSlot::IsDestructed, 1042 AggValueSlot::DoesNotNeedGCBarriers, 1043 AggValueSlot::IsNotAliased)); 1044 break; 1045 } 1046 } 1047 } 1048 1049 ++NumReturnExprs; 1050 if (!RV || RV->isEvaluatable(getContext())) 1051 ++NumSimpleReturnExprs; 1052 1053 cleanupScope.ForceCleanup(); 1054 EmitBranchThroughCleanup(ReturnBlock); 1055 } 1056 1057 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1058 // As long as debug info is modeled with instructions, we have to ensure we 1059 // have a place to insert here and write the stop point here. 1060 if (HaveInsertPoint()) 1061 EmitStopPoint(&S); 1062 1063 for (const auto *I : S.decls()) 1064 EmitDecl(*I); 1065 } 1066 1067 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1068 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1069 1070 // If this code is reachable then emit a stop point (if generating 1071 // debug info). We have to do this ourselves because we are on the 1072 // "simple" statement path. 1073 if (HaveInsertPoint()) 1074 EmitStopPoint(&S); 1075 1076 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1077 } 1078 1079 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1080 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1081 1082 // If this code is reachable then emit a stop point (if generating 1083 // debug info). We have to do this ourselves because we are on the 1084 // "simple" statement path. 1085 if (HaveInsertPoint()) 1086 EmitStopPoint(&S); 1087 1088 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1089 } 1090 1091 /// EmitCaseStmtRange - If case statement range is not too big then 1092 /// add multiple cases to switch instruction, one for each value within 1093 /// the range. If range is too big then emit "if" condition check. 1094 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1095 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1096 1097 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1098 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1099 1100 RegionCounter CaseCnt = getPGORegionCounter(&S); 1101 1102 // Emit the code for this case. We do this first to make sure it is 1103 // properly chained from our predecessor before generating the 1104 // switch machinery to enter this block. 1105 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1106 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1107 EmitStmt(S.getSubStmt()); 1108 1109 // If range is empty, do nothing. 1110 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1111 return; 1112 1113 llvm::APInt Range = RHS - LHS; 1114 // FIXME: parameters such as this should not be hardcoded. 1115 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1116 // Range is small enough to add multiple switch instruction cases. 1117 uint64_t Total = CaseCnt.getCount(); 1118 unsigned NCases = Range.getZExtValue() + 1; 1119 // We only have one region counter for the entire set of cases here, so we 1120 // need to divide the weights evenly between the generated cases, ensuring 1121 // that the total weight is preserved. E.g., a weight of 5 over three cases 1122 // will be distributed as weights of 2, 2, and 1. 1123 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1124 for (unsigned I = 0; I != NCases; ++I) { 1125 if (SwitchWeights) 1126 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1127 if (Rem) 1128 Rem--; 1129 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1130 LHS++; 1131 } 1132 return; 1133 } 1134 1135 // The range is too big. Emit "if" condition into a new block, 1136 // making sure to save and restore the current insertion point. 1137 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1138 1139 // Push this test onto the chain of range checks (which terminates 1140 // in the default basic block). The switch's default will be changed 1141 // to the top of this chain after switch emission is complete. 1142 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1143 CaseRangeBlock = createBasicBlock("sw.caserange"); 1144 1145 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1146 Builder.SetInsertPoint(CaseRangeBlock); 1147 1148 // Emit range check. 1149 llvm::Value *Diff = 1150 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1151 llvm::Value *Cond = 1152 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1153 1154 llvm::MDNode *Weights = nullptr; 1155 if (SwitchWeights) { 1156 uint64_t ThisCount = CaseCnt.getCount(); 1157 uint64_t DefaultCount = (*SwitchWeights)[0]; 1158 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1159 1160 // Since we're chaining the switch default through each large case range, we 1161 // need to update the weight for the default, ie, the first case, to include 1162 // this case. 1163 (*SwitchWeights)[0] += ThisCount; 1164 } 1165 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1166 1167 // Restore the appropriate insertion point. 1168 if (RestoreBB) 1169 Builder.SetInsertPoint(RestoreBB); 1170 else 1171 Builder.ClearInsertionPoint(); 1172 } 1173 1174 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1175 // If there is no enclosing switch instance that we're aware of, then this 1176 // case statement and its block can be elided. This situation only happens 1177 // when we've constant-folded the switch, are emitting the constant case, 1178 // and part of the constant case includes another case statement. For 1179 // instance: switch (4) { case 4: do { case 5: } while (1); } 1180 if (!SwitchInsn) { 1181 EmitStmt(S.getSubStmt()); 1182 return; 1183 } 1184 1185 // Handle case ranges. 1186 if (S.getRHS()) { 1187 EmitCaseStmtRange(S); 1188 return; 1189 } 1190 1191 RegionCounter CaseCnt = getPGORegionCounter(&S); 1192 llvm::ConstantInt *CaseVal = 1193 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1194 1195 // If the body of the case is just a 'break', try to not emit an empty block. 1196 // If we're profiling or we're not optimizing, leave the block in for better 1197 // debug and coverage analysis. 1198 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1199 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1200 isa<BreakStmt>(S.getSubStmt())) { 1201 JumpDest Block = BreakContinueStack.back().BreakBlock; 1202 1203 // Only do this optimization if there are no cleanups that need emitting. 1204 if (isObviouslyBranchWithoutCleanups(Block)) { 1205 if (SwitchWeights) 1206 SwitchWeights->push_back(CaseCnt.getCount()); 1207 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1208 1209 // If there was a fallthrough into this case, make sure to redirect it to 1210 // the end of the switch as well. 1211 if (Builder.GetInsertBlock()) { 1212 Builder.CreateBr(Block.getBlock()); 1213 Builder.ClearInsertionPoint(); 1214 } 1215 return; 1216 } 1217 } 1218 1219 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1220 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1221 if (SwitchWeights) 1222 SwitchWeights->push_back(CaseCnt.getCount()); 1223 SwitchInsn->addCase(CaseVal, CaseDest); 1224 1225 // Recursively emitting the statement is acceptable, but is not wonderful for 1226 // code where we have many case statements nested together, i.e.: 1227 // case 1: 1228 // case 2: 1229 // case 3: etc. 1230 // Handling this recursively will create a new block for each case statement 1231 // that falls through to the next case which is IR intensive. It also causes 1232 // deep recursion which can run into stack depth limitations. Handle 1233 // sequential non-range case statements specially. 1234 const CaseStmt *CurCase = &S; 1235 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1236 1237 // Otherwise, iteratively add consecutive cases to this switch stmt. 1238 while (NextCase && NextCase->getRHS() == nullptr) { 1239 CurCase = NextCase; 1240 llvm::ConstantInt *CaseVal = 1241 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1242 1243 CaseCnt = getPGORegionCounter(NextCase); 1244 if (SwitchWeights) 1245 SwitchWeights->push_back(CaseCnt.getCount()); 1246 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1247 CaseDest = createBasicBlock("sw.bb"); 1248 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1249 } 1250 1251 SwitchInsn->addCase(CaseVal, CaseDest); 1252 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1253 } 1254 1255 // Normal default recursion for non-cases. 1256 EmitStmt(CurCase->getSubStmt()); 1257 } 1258 1259 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1260 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1261 assert(DefaultBlock->empty() && 1262 "EmitDefaultStmt: Default block already defined?"); 1263 1264 RegionCounter Cnt = getPGORegionCounter(&S); 1265 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1266 1267 EmitStmt(S.getSubStmt()); 1268 } 1269 1270 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1271 /// constant value that is being switched on, see if we can dead code eliminate 1272 /// the body of the switch to a simple series of statements to emit. Basically, 1273 /// on a switch (5) we want to find these statements: 1274 /// case 5: 1275 /// printf(...); <-- 1276 /// ++i; <-- 1277 /// break; 1278 /// 1279 /// and add them to the ResultStmts vector. If it is unsafe to do this 1280 /// transformation (for example, one of the elided statements contains a label 1281 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1282 /// should include statements after it (e.g. the printf() line is a substmt of 1283 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1284 /// statement, then return CSFC_Success. 1285 /// 1286 /// If Case is non-null, then we are looking for the specified case, checking 1287 /// that nothing we jump over contains labels. If Case is null, then we found 1288 /// the case and are looking for the break. 1289 /// 1290 /// If the recursive walk actually finds our Case, then we set FoundCase to 1291 /// true. 1292 /// 1293 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1294 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1295 const SwitchCase *Case, 1296 bool &FoundCase, 1297 SmallVectorImpl<const Stmt*> &ResultStmts) { 1298 // If this is a null statement, just succeed. 1299 if (!S) 1300 return Case ? CSFC_Success : CSFC_FallThrough; 1301 1302 // If this is the switchcase (case 4: or default) that we're looking for, then 1303 // we're in business. Just add the substatement. 1304 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1305 if (S == Case) { 1306 FoundCase = true; 1307 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1308 ResultStmts); 1309 } 1310 1311 // Otherwise, this is some other case or default statement, just ignore it. 1312 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1313 ResultStmts); 1314 } 1315 1316 // If we are in the live part of the code and we found our break statement, 1317 // return a success! 1318 if (!Case && isa<BreakStmt>(S)) 1319 return CSFC_Success; 1320 1321 // If this is a switch statement, then it might contain the SwitchCase, the 1322 // break, or neither. 1323 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1324 // Handle this as two cases: we might be looking for the SwitchCase (if so 1325 // the skipped statements must be skippable) or we might already have it. 1326 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1327 if (Case) { 1328 // Keep track of whether we see a skipped declaration. The code could be 1329 // using the declaration even if it is skipped, so we can't optimize out 1330 // the decl if the kept statements might refer to it. 1331 bool HadSkippedDecl = false; 1332 1333 // If we're looking for the case, just see if we can skip each of the 1334 // substatements. 1335 for (; Case && I != E; ++I) { 1336 HadSkippedDecl |= isa<DeclStmt>(*I); 1337 1338 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1339 case CSFC_Failure: return CSFC_Failure; 1340 case CSFC_Success: 1341 // A successful result means that either 1) that the statement doesn't 1342 // have the case and is skippable, or 2) does contain the case value 1343 // and also contains the break to exit the switch. In the later case, 1344 // we just verify the rest of the statements are elidable. 1345 if (FoundCase) { 1346 // If we found the case and skipped declarations, we can't do the 1347 // optimization. 1348 if (HadSkippedDecl) 1349 return CSFC_Failure; 1350 1351 for (++I; I != E; ++I) 1352 if (CodeGenFunction::ContainsLabel(*I, true)) 1353 return CSFC_Failure; 1354 return CSFC_Success; 1355 } 1356 break; 1357 case CSFC_FallThrough: 1358 // If we have a fallthrough condition, then we must have found the 1359 // case started to include statements. Consider the rest of the 1360 // statements in the compound statement as candidates for inclusion. 1361 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1362 // We recursively found Case, so we're not looking for it anymore. 1363 Case = nullptr; 1364 1365 // If we found the case and skipped declarations, we can't do the 1366 // optimization. 1367 if (HadSkippedDecl) 1368 return CSFC_Failure; 1369 break; 1370 } 1371 } 1372 } 1373 1374 // If we have statements in our range, then we know that the statements are 1375 // live and need to be added to the set of statements we're tracking. 1376 for (; I != E; ++I) { 1377 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1378 case CSFC_Failure: return CSFC_Failure; 1379 case CSFC_FallThrough: 1380 // A fallthrough result means that the statement was simple and just 1381 // included in ResultStmt, keep adding them afterwards. 1382 break; 1383 case CSFC_Success: 1384 // A successful result means that we found the break statement and 1385 // stopped statement inclusion. We just ensure that any leftover stmts 1386 // are skippable and return success ourselves. 1387 for (++I; I != E; ++I) 1388 if (CodeGenFunction::ContainsLabel(*I, true)) 1389 return CSFC_Failure; 1390 return CSFC_Success; 1391 } 1392 } 1393 1394 return Case ? CSFC_Success : CSFC_FallThrough; 1395 } 1396 1397 // Okay, this is some other statement that we don't handle explicitly, like a 1398 // for statement or increment etc. If we are skipping over this statement, 1399 // just verify it doesn't have labels, which would make it invalid to elide. 1400 if (Case) { 1401 if (CodeGenFunction::ContainsLabel(S, true)) 1402 return CSFC_Failure; 1403 return CSFC_Success; 1404 } 1405 1406 // Otherwise, we want to include this statement. Everything is cool with that 1407 // so long as it doesn't contain a break out of the switch we're in. 1408 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1409 1410 // Otherwise, everything is great. Include the statement and tell the caller 1411 // that we fall through and include the next statement as well. 1412 ResultStmts.push_back(S); 1413 return CSFC_FallThrough; 1414 } 1415 1416 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1417 /// then invoke CollectStatementsForCase to find the list of statements to emit 1418 /// for a switch on constant. See the comment above CollectStatementsForCase 1419 /// for more details. 1420 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1421 const llvm::APSInt &ConstantCondValue, 1422 SmallVectorImpl<const Stmt*> &ResultStmts, 1423 ASTContext &C, 1424 const SwitchCase *&ResultCase) { 1425 // First step, find the switch case that is being branched to. We can do this 1426 // efficiently by scanning the SwitchCase list. 1427 const SwitchCase *Case = S.getSwitchCaseList(); 1428 const DefaultStmt *DefaultCase = nullptr; 1429 1430 for (; Case; Case = Case->getNextSwitchCase()) { 1431 // It's either a default or case. Just remember the default statement in 1432 // case we're not jumping to any numbered cases. 1433 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1434 DefaultCase = DS; 1435 continue; 1436 } 1437 1438 // Check to see if this case is the one we're looking for. 1439 const CaseStmt *CS = cast<CaseStmt>(Case); 1440 // Don't handle case ranges yet. 1441 if (CS->getRHS()) return false; 1442 1443 // If we found our case, remember it as 'case'. 1444 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1445 break; 1446 } 1447 1448 // If we didn't find a matching case, we use a default if it exists, or we 1449 // elide the whole switch body! 1450 if (!Case) { 1451 // It is safe to elide the body of the switch if it doesn't contain labels 1452 // etc. If it is safe, return successfully with an empty ResultStmts list. 1453 if (!DefaultCase) 1454 return !CodeGenFunction::ContainsLabel(&S); 1455 Case = DefaultCase; 1456 } 1457 1458 // Ok, we know which case is being jumped to, try to collect all the 1459 // statements that follow it. This can fail for a variety of reasons. Also, 1460 // check to see that the recursive walk actually found our case statement. 1461 // Insane cases like this can fail to find it in the recursive walk since we 1462 // don't handle every stmt kind: 1463 // switch (4) { 1464 // while (1) { 1465 // case 4: ... 1466 bool FoundCase = false; 1467 ResultCase = Case; 1468 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1469 ResultStmts) != CSFC_Failure && 1470 FoundCase; 1471 } 1472 1473 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1474 // Handle nested switch statements. 1475 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1476 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1477 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1478 1479 // See if we can constant fold the condition of the switch and therefore only 1480 // emit the live case statement (if any) of the switch. 1481 llvm::APSInt ConstantCondValue; 1482 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1483 SmallVector<const Stmt*, 4> CaseStmts; 1484 const SwitchCase *Case = nullptr; 1485 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1486 getContext(), Case)) { 1487 if (Case) { 1488 RegionCounter CaseCnt = getPGORegionCounter(Case); 1489 CaseCnt.beginRegion(Builder); 1490 } 1491 RunCleanupsScope ExecutedScope(*this); 1492 1493 // Emit the condition variable if needed inside the entire cleanup scope 1494 // used by this special case for constant folded switches. 1495 if (S.getConditionVariable()) 1496 EmitAutoVarDecl(*S.getConditionVariable()); 1497 1498 // At this point, we are no longer "within" a switch instance, so 1499 // we can temporarily enforce this to ensure that any embedded case 1500 // statements are not emitted. 1501 SwitchInsn = nullptr; 1502 1503 // Okay, we can dead code eliminate everything except this case. Emit the 1504 // specified series of statements and we're good. 1505 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1506 EmitStmt(CaseStmts[i]); 1507 RegionCounter ExitCnt = getPGORegionCounter(&S); 1508 ExitCnt.beginRegion(Builder); 1509 1510 // Now we want to restore the saved switch instance so that nested 1511 // switches continue to function properly 1512 SwitchInsn = SavedSwitchInsn; 1513 1514 return; 1515 } 1516 } 1517 1518 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1519 1520 RunCleanupsScope ConditionScope(*this); 1521 if (S.getConditionVariable()) 1522 EmitAutoVarDecl(*S.getConditionVariable()); 1523 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1524 1525 // Create basic block to hold stuff that comes after switch 1526 // statement. We also need to create a default block now so that 1527 // explicit case ranges tests can have a place to jump to on 1528 // failure. 1529 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1530 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1531 if (PGO.haveRegionCounts()) { 1532 // Walk the SwitchCase list to find how many there are. 1533 uint64_t DefaultCount = 0; 1534 unsigned NumCases = 0; 1535 for (const SwitchCase *Case = S.getSwitchCaseList(); 1536 Case; 1537 Case = Case->getNextSwitchCase()) { 1538 if (isa<DefaultStmt>(Case)) 1539 DefaultCount = getPGORegionCounter(Case).getCount(); 1540 NumCases += 1; 1541 } 1542 SwitchWeights = new SmallVector<uint64_t, 16>(); 1543 SwitchWeights->reserve(NumCases); 1544 // The default needs to be first. We store the edge count, so we already 1545 // know the right weight. 1546 SwitchWeights->push_back(DefaultCount); 1547 } 1548 CaseRangeBlock = DefaultBlock; 1549 1550 // Clear the insertion point to indicate we are in unreachable code. 1551 Builder.ClearInsertionPoint(); 1552 1553 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1554 // then reuse last ContinueBlock. 1555 JumpDest OuterContinue; 1556 if (!BreakContinueStack.empty()) 1557 OuterContinue = BreakContinueStack.back().ContinueBlock; 1558 1559 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1560 1561 // Emit switch body. 1562 EmitStmt(S.getBody()); 1563 1564 BreakContinueStack.pop_back(); 1565 1566 // Update the default block in case explicit case range tests have 1567 // been chained on top. 1568 SwitchInsn->setDefaultDest(CaseRangeBlock); 1569 1570 // If a default was never emitted: 1571 if (!DefaultBlock->getParent()) { 1572 // If we have cleanups, emit the default block so that there's a 1573 // place to jump through the cleanups from. 1574 if (ConditionScope.requiresCleanups()) { 1575 EmitBlock(DefaultBlock); 1576 1577 // Otherwise, just forward the default block to the switch end. 1578 } else { 1579 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1580 delete DefaultBlock; 1581 } 1582 } 1583 1584 ConditionScope.ForceCleanup(); 1585 1586 // Emit continuation. 1587 EmitBlock(SwitchExit.getBlock(), true); 1588 RegionCounter ExitCnt = getPGORegionCounter(&S); 1589 ExitCnt.beginRegion(Builder); 1590 1591 if (SwitchWeights) { 1592 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1593 "switch weights do not match switch cases"); 1594 // If there's only one jump destination there's no sense weighting it. 1595 if (SwitchWeights->size() > 1) 1596 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1597 PGO.createBranchWeights(*SwitchWeights)); 1598 delete SwitchWeights; 1599 } 1600 SwitchInsn = SavedSwitchInsn; 1601 SwitchWeights = SavedSwitchWeights; 1602 CaseRangeBlock = SavedCRBlock; 1603 } 1604 1605 static std::string 1606 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1607 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1608 std::string Result; 1609 1610 while (*Constraint) { 1611 switch (*Constraint) { 1612 default: 1613 Result += Target.convertConstraint(Constraint); 1614 break; 1615 // Ignore these 1616 case '*': 1617 case '?': 1618 case '!': 1619 case '=': // Will see this and the following in mult-alt constraints. 1620 case '+': 1621 break; 1622 case '#': // Ignore the rest of the constraint alternative. 1623 while (Constraint[1] && Constraint[1] != ',') 1624 Constraint++; 1625 break; 1626 case ',': 1627 Result += "|"; 1628 break; 1629 case 'g': 1630 Result += "imr"; 1631 break; 1632 case '[': { 1633 assert(OutCons && 1634 "Must pass output names to constraints with a symbolic name"); 1635 unsigned Index; 1636 bool result = Target.resolveSymbolicName(Constraint, 1637 &(*OutCons)[0], 1638 OutCons->size(), Index); 1639 assert(result && "Could not resolve symbolic name"); (void)result; 1640 Result += llvm::utostr(Index); 1641 break; 1642 } 1643 } 1644 1645 Constraint++; 1646 } 1647 1648 return Result; 1649 } 1650 1651 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1652 /// as using a particular register add that as a constraint that will be used 1653 /// in this asm stmt. 1654 static std::string 1655 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1656 const TargetInfo &Target, CodeGenModule &CGM, 1657 const AsmStmt &Stmt) { 1658 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1659 if (!AsmDeclRef) 1660 return Constraint; 1661 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1662 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1663 if (!Variable) 1664 return Constraint; 1665 if (Variable->getStorageClass() != SC_Register) 1666 return Constraint; 1667 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1668 if (!Attr) 1669 return Constraint; 1670 StringRef Register = Attr->getLabel(); 1671 assert(Target.isValidGCCRegisterName(Register)); 1672 // We're using validateOutputConstraint here because we only care if 1673 // this is a register constraint. 1674 TargetInfo::ConstraintInfo Info(Constraint, ""); 1675 if (Target.validateOutputConstraint(Info) && 1676 !Info.allowsRegister()) { 1677 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1678 return Constraint; 1679 } 1680 // Canonicalize the register here before returning it. 1681 Register = Target.getNormalizedGCCRegisterName(Register); 1682 return "{" + Register.str() + "}"; 1683 } 1684 1685 llvm::Value* 1686 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1687 LValue InputValue, QualType InputType, 1688 std::string &ConstraintStr, 1689 SourceLocation Loc) { 1690 llvm::Value *Arg; 1691 if (Info.allowsRegister() || !Info.allowsMemory()) { 1692 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1693 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1694 } else { 1695 llvm::Type *Ty = ConvertType(InputType); 1696 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1697 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1698 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1699 Ty = llvm::PointerType::getUnqual(Ty); 1700 1701 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1702 Ty)); 1703 } else { 1704 Arg = InputValue.getAddress(); 1705 ConstraintStr += '*'; 1706 } 1707 } 1708 } else { 1709 Arg = InputValue.getAddress(); 1710 ConstraintStr += '*'; 1711 } 1712 1713 return Arg; 1714 } 1715 1716 llvm::Value* CodeGenFunction::EmitAsmInput( 1717 const TargetInfo::ConstraintInfo &Info, 1718 const Expr *InputExpr, 1719 std::string &ConstraintStr) { 1720 if (Info.allowsRegister() || !Info.allowsMemory()) 1721 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1722 return EmitScalarExpr(InputExpr); 1723 1724 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1725 LValue Dest = EmitLValue(InputExpr); 1726 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1727 InputExpr->getExprLoc()); 1728 } 1729 1730 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1731 /// asm call instruction. The !srcloc MDNode contains a list of constant 1732 /// integers which are the source locations of the start of each line in the 1733 /// asm. 1734 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1735 CodeGenFunction &CGF) { 1736 SmallVector<llvm::Value *, 8> Locs; 1737 // Add the location of the first line to the MDNode. 1738 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1739 Str->getLocStart().getRawEncoding())); 1740 StringRef StrVal = Str->getString(); 1741 if (!StrVal.empty()) { 1742 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1743 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1744 1745 // Add the location of the start of each subsequent line of the asm to the 1746 // MDNode. 1747 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1748 if (StrVal[i] != '\n') continue; 1749 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1750 CGF.getTarget()); 1751 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1752 LineLoc.getRawEncoding())); 1753 } 1754 } 1755 1756 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1757 } 1758 1759 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1760 // Assemble the final asm string. 1761 std::string AsmString = S.generateAsmString(getContext()); 1762 1763 // Get all the output and input constraints together. 1764 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1765 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1766 1767 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1768 StringRef Name; 1769 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1770 Name = GAS->getOutputName(i); 1771 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1772 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1773 assert(IsValid && "Failed to parse output constraint"); 1774 OutputConstraintInfos.push_back(Info); 1775 } 1776 1777 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1778 StringRef Name; 1779 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1780 Name = GAS->getInputName(i); 1781 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1782 bool IsValid = 1783 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1784 S.getNumOutputs(), Info); 1785 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1786 InputConstraintInfos.push_back(Info); 1787 } 1788 1789 std::string Constraints; 1790 1791 std::vector<LValue> ResultRegDests; 1792 std::vector<QualType> ResultRegQualTys; 1793 std::vector<llvm::Type *> ResultRegTypes; 1794 std::vector<llvm::Type *> ResultTruncRegTypes; 1795 std::vector<llvm::Type *> ArgTypes; 1796 std::vector<llvm::Value*> Args; 1797 1798 // Keep track of inout constraints. 1799 std::string InOutConstraints; 1800 std::vector<llvm::Value*> InOutArgs; 1801 std::vector<llvm::Type*> InOutArgTypes; 1802 1803 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1804 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1805 1806 // Simplify the output constraint. 1807 std::string OutputConstraint(S.getOutputConstraint(i)); 1808 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1809 getTarget()); 1810 1811 const Expr *OutExpr = S.getOutputExpr(i); 1812 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1813 1814 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1815 getTarget(), CGM, S); 1816 1817 LValue Dest = EmitLValue(OutExpr); 1818 if (!Constraints.empty()) 1819 Constraints += ','; 1820 1821 // If this is a register output, then make the inline asm return it 1822 // by-value. If this is a memory result, return the value by-reference. 1823 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1824 Constraints += "=" + OutputConstraint; 1825 ResultRegQualTys.push_back(OutExpr->getType()); 1826 ResultRegDests.push_back(Dest); 1827 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1828 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1829 1830 // If this output is tied to an input, and if the input is larger, then 1831 // we need to set the actual result type of the inline asm node to be the 1832 // same as the input type. 1833 if (Info.hasMatchingInput()) { 1834 unsigned InputNo; 1835 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1836 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1837 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1838 break; 1839 } 1840 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1841 1842 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1843 QualType OutputType = OutExpr->getType(); 1844 1845 uint64_t InputSize = getContext().getTypeSize(InputTy); 1846 if (getContext().getTypeSize(OutputType) < InputSize) { 1847 // Form the asm to return the value as a larger integer or fp type. 1848 ResultRegTypes.back() = ConvertType(InputTy); 1849 } 1850 } 1851 if (llvm::Type* AdjTy = 1852 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1853 ResultRegTypes.back())) 1854 ResultRegTypes.back() = AdjTy; 1855 else { 1856 CGM.getDiags().Report(S.getAsmLoc(), 1857 diag::err_asm_invalid_type_in_input) 1858 << OutExpr->getType() << OutputConstraint; 1859 } 1860 } else { 1861 ArgTypes.push_back(Dest.getAddress()->getType()); 1862 Args.push_back(Dest.getAddress()); 1863 Constraints += "=*"; 1864 Constraints += OutputConstraint; 1865 } 1866 1867 if (Info.isReadWrite()) { 1868 InOutConstraints += ','; 1869 1870 const Expr *InputExpr = S.getOutputExpr(i); 1871 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1872 InOutConstraints, 1873 InputExpr->getExprLoc()); 1874 1875 if (llvm::Type* AdjTy = 1876 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1877 Arg->getType())) 1878 Arg = Builder.CreateBitCast(Arg, AdjTy); 1879 1880 if (Info.allowsRegister()) 1881 InOutConstraints += llvm::utostr(i); 1882 else 1883 InOutConstraints += OutputConstraint; 1884 1885 InOutArgTypes.push_back(Arg->getType()); 1886 InOutArgs.push_back(Arg); 1887 } 1888 } 1889 1890 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1891 1892 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1893 const Expr *InputExpr = S.getInputExpr(i); 1894 1895 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1896 1897 if (!Constraints.empty()) 1898 Constraints += ','; 1899 1900 // Simplify the input constraint. 1901 std::string InputConstraint(S.getInputConstraint(i)); 1902 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1903 &OutputConstraintInfos); 1904 1905 InputConstraint = 1906 AddVariableConstraints(InputConstraint, 1907 *InputExpr->IgnoreParenNoopCasts(getContext()), 1908 getTarget(), CGM, S); 1909 1910 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1911 1912 // If this input argument is tied to a larger output result, extend the 1913 // input to be the same size as the output. The LLVM backend wants to see 1914 // the input and output of a matching constraint be the same size. Note 1915 // that GCC does not define what the top bits are here. We use zext because 1916 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1917 if (Info.hasTiedOperand()) { 1918 unsigned Output = Info.getTiedOperand(); 1919 QualType OutputType = S.getOutputExpr(Output)->getType(); 1920 QualType InputTy = InputExpr->getType(); 1921 1922 if (getContext().getTypeSize(OutputType) > 1923 getContext().getTypeSize(InputTy)) { 1924 // Use ptrtoint as appropriate so that we can do our extension. 1925 if (isa<llvm::PointerType>(Arg->getType())) 1926 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1927 llvm::Type *OutputTy = ConvertType(OutputType); 1928 if (isa<llvm::IntegerType>(OutputTy)) 1929 Arg = Builder.CreateZExt(Arg, OutputTy); 1930 else if (isa<llvm::PointerType>(OutputTy)) 1931 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1932 else { 1933 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1934 Arg = Builder.CreateFPExt(Arg, OutputTy); 1935 } 1936 } 1937 } 1938 if (llvm::Type* AdjTy = 1939 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1940 Arg->getType())) 1941 Arg = Builder.CreateBitCast(Arg, AdjTy); 1942 else 1943 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1944 << InputExpr->getType() << InputConstraint; 1945 1946 ArgTypes.push_back(Arg->getType()); 1947 Args.push_back(Arg); 1948 Constraints += InputConstraint; 1949 } 1950 1951 // Append the "input" part of inout constraints last. 1952 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1953 ArgTypes.push_back(InOutArgTypes[i]); 1954 Args.push_back(InOutArgs[i]); 1955 } 1956 Constraints += InOutConstraints; 1957 1958 // Clobbers 1959 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1960 StringRef Clobber = S.getClobber(i); 1961 1962 if (Clobber != "memory" && Clobber != "cc") 1963 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1964 1965 if (i != 0 || NumConstraints != 0) 1966 Constraints += ','; 1967 1968 Constraints += "~{"; 1969 Constraints += Clobber; 1970 Constraints += '}'; 1971 } 1972 1973 // Add machine specific clobbers 1974 std::string MachineClobbers = getTarget().getClobbers(); 1975 if (!MachineClobbers.empty()) { 1976 if (!Constraints.empty()) 1977 Constraints += ','; 1978 Constraints += MachineClobbers; 1979 } 1980 1981 llvm::Type *ResultType; 1982 if (ResultRegTypes.empty()) 1983 ResultType = VoidTy; 1984 else if (ResultRegTypes.size() == 1) 1985 ResultType = ResultRegTypes[0]; 1986 else 1987 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1988 1989 llvm::FunctionType *FTy = 1990 llvm::FunctionType::get(ResultType, ArgTypes, false); 1991 1992 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1993 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1994 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1995 llvm::InlineAsm *IA = 1996 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1997 /* IsAlignStack */ false, AsmDialect); 1998 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1999 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2000 llvm::Attribute::NoUnwind); 2001 2002 // Slap the source location of the inline asm into a !srcloc metadata on the 2003 // call. FIXME: Handle metadata for MS-style inline asms. 2004 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2005 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2006 *this)); 2007 2008 // Extract all of the register value results from the asm. 2009 std::vector<llvm::Value*> RegResults; 2010 if (ResultRegTypes.size() == 1) { 2011 RegResults.push_back(Result); 2012 } else { 2013 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2014 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2015 RegResults.push_back(Tmp); 2016 } 2017 } 2018 2019 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2020 llvm::Value *Tmp = RegResults[i]; 2021 2022 // If the result type of the LLVM IR asm doesn't match the result type of 2023 // the expression, do the conversion. 2024 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2025 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2026 2027 // Truncate the integer result to the right size, note that TruncTy can be 2028 // a pointer. 2029 if (TruncTy->isFloatingPointTy()) 2030 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2031 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2032 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2033 Tmp = Builder.CreateTrunc(Tmp, 2034 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2035 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2036 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2037 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2038 Tmp = Builder.CreatePtrToInt(Tmp, 2039 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2040 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2041 } else if (TruncTy->isIntegerTy()) { 2042 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2043 } else if (TruncTy->isVectorTy()) { 2044 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2045 } 2046 } 2047 2048 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2049 } 2050 } 2051 2052 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2053 const RecordDecl *RD = S.getCapturedRecordDecl(); 2054 QualType RecordTy = CGF.getContext().getRecordType(RD); 2055 2056 // Initialize the captured struct. 2057 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2058 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2059 2060 RecordDecl::field_iterator CurField = RD->field_begin(); 2061 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2062 E = S.capture_init_end(); 2063 I != E; ++I, ++CurField) { 2064 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2065 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2066 } 2067 2068 return SlotLV; 2069 } 2070 2071 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) { 2072 for (auto &C : S.captures()) { 2073 if (C.capturesVariable()) { 2074 QualType QTy; 2075 auto VD = C.getCapturedVar(); 2076 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 2077 QTy = PVD->getOriginalType(); 2078 else 2079 QTy = VD->getType(); 2080 if (QTy->isVariablyModifiedType()) { 2081 CGF.EmitVariablyModifiedType(QTy); 2082 } 2083 } 2084 } 2085 } 2086 2087 /// Generate an outlined function for the body of a CapturedStmt, store any 2088 /// captured variables into the captured struct, and call the outlined function. 2089 llvm::Function * 2090 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2091 LValue CapStruct = InitCapturedStruct(*this, S); 2092 2093 // Emit the CapturedDecl 2094 CodeGenFunction CGF(CGM, true); 2095 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2096 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2097 delete CGF.CapturedStmtInfo; 2098 2099 // Emit call to the helper function. 2100 EmitCallOrInvoke(F, CapStruct.getAddress()); 2101 2102 return F; 2103 } 2104 2105 llvm::Value * 2106 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2107 LValue CapStruct = InitCapturedStruct(*this, S); 2108 return CapStruct.getAddress(); 2109 } 2110 2111 /// Creates the outlined function for a CapturedStmt. 2112 llvm::Function * 2113 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2114 assert(CapturedStmtInfo && 2115 "CapturedStmtInfo should be set when generating the captured function"); 2116 const CapturedDecl *CD = S.getCapturedDecl(); 2117 const RecordDecl *RD = S.getCapturedRecordDecl(); 2118 SourceLocation Loc = S.getLocStart(); 2119 assert(CD->hasBody() && "missing CapturedDecl body"); 2120 2121 // Build the argument list. 2122 ASTContext &Ctx = CGM.getContext(); 2123 FunctionArgList Args; 2124 Args.append(CD->param_begin(), CD->param_end()); 2125 2126 // Create the function declaration. 2127 FunctionType::ExtInfo ExtInfo; 2128 const CGFunctionInfo &FuncInfo = 2129 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2130 /*IsVariadic=*/false); 2131 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2132 2133 llvm::Function *F = 2134 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2135 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2136 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2137 2138 // Generate the function. 2139 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2140 CD->getLocation(), 2141 CD->getBody()->getLocStart()); 2142 // Set the context parameter in CapturedStmtInfo. 2143 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2144 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2145 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2146 2147 // Initialize variable-length arrays. 2148 InitVLACaptures(*this, S); 2149 2150 // If 'this' is captured, load it into CXXThisValue. 2151 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2152 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2153 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2154 Ctx.getTagDeclType(RD)); 2155 LValue ThisLValue = EmitLValueForField(LV, FD); 2156 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2157 } 2158 2159 PGO.assignRegionCounters(CD, F); 2160 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2161 FinishFunction(CD->getBodyRBrace()); 2162 PGO.emitInstrumentationData(); 2163 PGO.destroyRegionCounters(); 2164 2165 return F; 2166 } 2167