1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getBeginLoc(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 78 // enabled. 79 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 80 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 81 EmitSimpleOMPExecutableDirective(*D); 82 return; 83 } 84 } 85 86 switch (S->getStmtClass()) { 87 case Stmt::NoStmtClass: 88 case Stmt::CXXCatchStmtClass: 89 case Stmt::SEHExceptStmtClass: 90 case Stmt::SEHFinallyStmtClass: 91 case Stmt::MSDependentExistsStmtClass: 92 llvm_unreachable("invalid statement class to emit generically"); 93 case Stmt::NullStmtClass: 94 case Stmt::CompoundStmtClass: 95 case Stmt::DeclStmtClass: 96 case Stmt::LabelStmtClass: 97 case Stmt::AttributedStmtClass: 98 case Stmt::GotoStmtClass: 99 case Stmt::BreakStmtClass: 100 case Stmt::ContinueStmtClass: 101 case Stmt::DefaultStmtClass: 102 case Stmt::CaseStmtClass: 103 case Stmt::SEHLeaveStmtClass: 104 llvm_unreachable("should have emitted these statements as simple"); 105 106 #define STMT(Type, Base) 107 #define ABSTRACT_STMT(Op) 108 #define EXPR(Type, Base) \ 109 case Stmt::Type##Class: 110 #include "clang/AST/StmtNodes.inc" 111 { 112 // Remember the block we came in on. 113 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 114 assert(incoming && "expression emission must have an insertion point"); 115 116 EmitIgnoredExpr(cast<Expr>(S)); 117 118 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 119 assert(outgoing && "expression emission cleared block!"); 120 121 // The expression emitters assume (reasonably!) that the insertion 122 // point is always set. To maintain that, the call-emission code 123 // for noreturn functions has to enter a new block with no 124 // predecessors. We want to kill that block and mark the current 125 // insertion point unreachable in the common case of a call like 126 // "exit();". Since expression emission doesn't otherwise create 127 // blocks with no predecessors, we can just test for that. 128 // However, we must be careful not to do this to our incoming 129 // block, because *statement* emission does sometimes create 130 // reachable blocks which will have no predecessors until later in 131 // the function. This occurs with, e.g., labels that are not 132 // reachable by fallthrough. 133 if (incoming != outgoing && outgoing->use_empty()) { 134 outgoing->eraseFromParent(); 135 Builder.ClearInsertionPoint(); 136 } 137 break; 138 } 139 140 case Stmt::IndirectGotoStmtClass: 141 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 142 143 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 144 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 145 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 146 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 147 148 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 149 150 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 151 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 152 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 153 case Stmt::CoroutineBodyStmtClass: 154 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 155 break; 156 case Stmt::CoreturnStmtClass: 157 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 158 break; 159 case Stmt::CapturedStmtClass: { 160 const CapturedStmt *CS = cast<CapturedStmt>(S); 161 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 162 } 163 break; 164 case Stmt::ObjCAtTryStmtClass: 165 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 166 break; 167 case Stmt::ObjCAtCatchStmtClass: 168 llvm_unreachable( 169 "@catch statements should be handled by EmitObjCAtTryStmt"); 170 case Stmt::ObjCAtFinallyStmtClass: 171 llvm_unreachable( 172 "@finally statements should be handled by EmitObjCAtTryStmt"); 173 case Stmt::ObjCAtThrowStmtClass: 174 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 175 break; 176 case Stmt::ObjCAtSynchronizedStmtClass: 177 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 178 break; 179 case Stmt::ObjCForCollectionStmtClass: 180 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 181 break; 182 case Stmt::ObjCAutoreleasePoolStmtClass: 183 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 184 break; 185 186 case Stmt::CXXTryStmtClass: 187 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 188 break; 189 case Stmt::CXXForRangeStmtClass: 190 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 191 break; 192 case Stmt::SEHTryStmtClass: 193 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 194 break; 195 case Stmt::OMPParallelDirectiveClass: 196 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 197 break; 198 case Stmt::OMPSimdDirectiveClass: 199 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 200 break; 201 case Stmt::OMPForDirectiveClass: 202 EmitOMPForDirective(cast<OMPForDirective>(*S)); 203 break; 204 case Stmt::OMPForSimdDirectiveClass: 205 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 206 break; 207 case Stmt::OMPSectionsDirectiveClass: 208 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 209 break; 210 case Stmt::OMPSectionDirectiveClass: 211 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 212 break; 213 case Stmt::OMPSingleDirectiveClass: 214 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 215 break; 216 case Stmt::OMPMasterDirectiveClass: 217 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 218 break; 219 case Stmt::OMPCriticalDirectiveClass: 220 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 221 break; 222 case Stmt::OMPParallelForDirectiveClass: 223 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 224 break; 225 case Stmt::OMPParallelForSimdDirectiveClass: 226 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 227 break; 228 case Stmt::OMPParallelSectionsDirectiveClass: 229 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 230 break; 231 case Stmt::OMPTaskDirectiveClass: 232 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 233 break; 234 case Stmt::OMPTaskyieldDirectiveClass: 235 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 236 break; 237 case Stmt::OMPBarrierDirectiveClass: 238 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 239 break; 240 case Stmt::OMPTaskwaitDirectiveClass: 241 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 242 break; 243 case Stmt::OMPTaskgroupDirectiveClass: 244 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 245 break; 246 case Stmt::OMPFlushDirectiveClass: 247 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 248 break; 249 case Stmt::OMPOrderedDirectiveClass: 250 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 251 break; 252 case Stmt::OMPAtomicDirectiveClass: 253 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 254 break; 255 case Stmt::OMPTargetDirectiveClass: 256 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 257 break; 258 case Stmt::OMPTeamsDirectiveClass: 259 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 260 break; 261 case Stmt::OMPCancellationPointDirectiveClass: 262 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 263 break; 264 case Stmt::OMPCancelDirectiveClass: 265 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 266 break; 267 case Stmt::OMPTargetDataDirectiveClass: 268 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 269 break; 270 case Stmt::OMPTargetEnterDataDirectiveClass: 271 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 272 break; 273 case Stmt::OMPTargetExitDataDirectiveClass: 274 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 275 break; 276 case Stmt::OMPTargetParallelDirectiveClass: 277 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 278 break; 279 case Stmt::OMPTargetParallelForDirectiveClass: 280 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 281 break; 282 case Stmt::OMPTaskLoopDirectiveClass: 283 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 284 break; 285 case Stmt::OMPTaskLoopSimdDirectiveClass: 286 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 287 break; 288 case Stmt::OMPDistributeDirectiveClass: 289 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 290 break; 291 case Stmt::OMPTargetUpdateDirectiveClass: 292 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 293 break; 294 case Stmt::OMPDistributeParallelForDirectiveClass: 295 EmitOMPDistributeParallelForDirective( 296 cast<OMPDistributeParallelForDirective>(*S)); 297 break; 298 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 299 EmitOMPDistributeParallelForSimdDirective( 300 cast<OMPDistributeParallelForSimdDirective>(*S)); 301 break; 302 case Stmt::OMPDistributeSimdDirectiveClass: 303 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 304 break; 305 case Stmt::OMPTargetParallelForSimdDirectiveClass: 306 EmitOMPTargetParallelForSimdDirective( 307 cast<OMPTargetParallelForSimdDirective>(*S)); 308 break; 309 case Stmt::OMPTargetSimdDirectiveClass: 310 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 311 break; 312 case Stmt::OMPTeamsDistributeDirectiveClass: 313 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 314 break; 315 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 316 EmitOMPTeamsDistributeSimdDirective( 317 cast<OMPTeamsDistributeSimdDirective>(*S)); 318 break; 319 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 320 EmitOMPTeamsDistributeParallelForSimdDirective( 321 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 322 break; 323 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 324 EmitOMPTeamsDistributeParallelForDirective( 325 cast<OMPTeamsDistributeParallelForDirective>(*S)); 326 break; 327 case Stmt::OMPTargetTeamsDirectiveClass: 328 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 329 break; 330 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 331 EmitOMPTargetTeamsDistributeDirective( 332 cast<OMPTargetTeamsDistributeDirective>(*S)); 333 break; 334 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 335 EmitOMPTargetTeamsDistributeParallelForDirective( 336 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 337 break; 338 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 339 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 340 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 341 break; 342 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 343 EmitOMPTargetTeamsDistributeSimdDirective( 344 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 345 break; 346 } 347 } 348 349 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 350 switch (S->getStmtClass()) { 351 default: return false; 352 case Stmt::NullStmtClass: break; 353 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 354 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 355 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 356 case Stmt::AttributedStmtClass: 357 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 358 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 359 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 360 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 361 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 362 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 363 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 364 } 365 366 return true; 367 } 368 369 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 370 /// this captures the expression result of the last sub-statement and returns it 371 /// (for use by the statement expression extension). 372 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 373 AggValueSlot AggSlot) { 374 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 375 "LLVM IR generation of compound statement ('{}')"); 376 377 // Keep track of the current cleanup stack depth, including debug scopes. 378 LexicalScope Scope(*this, S.getSourceRange()); 379 380 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 381 } 382 383 Address 384 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 385 bool GetLast, 386 AggValueSlot AggSlot) { 387 388 for (CompoundStmt::const_body_iterator I = S.body_begin(), 389 E = S.body_end()-GetLast; I != E; ++I) 390 EmitStmt(*I); 391 392 Address RetAlloca = Address::invalid(); 393 if (GetLast) { 394 // We have to special case labels here. They are statements, but when put 395 // at the end of a statement expression, they yield the value of their 396 // subexpression. Handle this by walking through all labels we encounter, 397 // emitting them before we evaluate the subexpr. 398 const Stmt *LastStmt = S.body_back(); 399 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 400 EmitLabel(LS->getDecl()); 401 LastStmt = LS->getSubStmt(); 402 } 403 404 EnsureInsertPoint(); 405 406 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 407 if (hasAggregateEvaluationKind(ExprTy)) { 408 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 409 } else { 410 // We can't return an RValue here because there might be cleanups at 411 // the end of the StmtExpr. Because of that, we have to emit the result 412 // here into a temporary alloca. 413 RetAlloca = CreateMemTemp(ExprTy); 414 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 415 /*IsInit*/false); 416 } 417 418 } 419 420 return RetAlloca; 421 } 422 423 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 424 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 425 426 // If there is a cleanup stack, then we it isn't worth trying to 427 // simplify this block (we would need to remove it from the scope map 428 // and cleanup entry). 429 if (!EHStack.empty()) 430 return; 431 432 // Can only simplify direct branches. 433 if (!BI || !BI->isUnconditional()) 434 return; 435 436 // Can only simplify empty blocks. 437 if (BI->getIterator() != BB->begin()) 438 return; 439 440 BB->replaceAllUsesWith(BI->getSuccessor(0)); 441 BI->eraseFromParent(); 442 BB->eraseFromParent(); 443 } 444 445 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 446 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 447 448 // Fall out of the current block (if necessary). 449 EmitBranch(BB); 450 451 if (IsFinished && BB->use_empty()) { 452 delete BB; 453 return; 454 } 455 456 // Place the block after the current block, if possible, or else at 457 // the end of the function. 458 if (CurBB && CurBB->getParent()) 459 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 460 else 461 CurFn->getBasicBlockList().push_back(BB); 462 Builder.SetInsertPoint(BB); 463 } 464 465 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 466 // Emit a branch from the current block to the target one if this 467 // was a real block. If this was just a fall-through block after a 468 // terminator, don't emit it. 469 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 470 471 if (!CurBB || CurBB->getTerminator()) { 472 // If there is no insert point or the previous block is already 473 // terminated, don't touch it. 474 } else { 475 // Otherwise, create a fall-through branch. 476 Builder.CreateBr(Target); 477 } 478 479 Builder.ClearInsertionPoint(); 480 } 481 482 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 483 bool inserted = false; 484 for (llvm::User *u : block->users()) { 485 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 486 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 487 block); 488 inserted = true; 489 break; 490 } 491 } 492 493 if (!inserted) 494 CurFn->getBasicBlockList().push_back(block); 495 496 Builder.SetInsertPoint(block); 497 } 498 499 CodeGenFunction::JumpDest 500 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 501 JumpDest &Dest = LabelMap[D]; 502 if (Dest.isValid()) return Dest; 503 504 // Create, but don't insert, the new block. 505 Dest = JumpDest(createBasicBlock(D->getName()), 506 EHScopeStack::stable_iterator::invalid(), 507 NextCleanupDestIndex++); 508 return Dest; 509 } 510 511 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 512 // Add this label to the current lexical scope if we're within any 513 // normal cleanups. Jumps "in" to this label --- when permitted by 514 // the language --- may need to be routed around such cleanups. 515 if (EHStack.hasNormalCleanups() && CurLexicalScope) 516 CurLexicalScope->addLabel(D); 517 518 JumpDest &Dest = LabelMap[D]; 519 520 // If we didn't need a forward reference to this label, just go 521 // ahead and create a destination at the current scope. 522 if (!Dest.isValid()) { 523 Dest = getJumpDestInCurrentScope(D->getName()); 524 525 // Otherwise, we need to give this label a target depth and remove 526 // it from the branch-fixups list. 527 } else { 528 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 529 Dest.setScopeDepth(EHStack.stable_begin()); 530 ResolveBranchFixups(Dest.getBlock()); 531 } 532 533 EmitBlock(Dest.getBlock()); 534 incrementProfileCounter(D->getStmt()); 535 } 536 537 /// Change the cleanup scope of the labels in this lexical scope to 538 /// match the scope of the enclosing context. 539 void CodeGenFunction::LexicalScope::rescopeLabels() { 540 assert(!Labels.empty()); 541 EHScopeStack::stable_iterator innermostScope 542 = CGF.EHStack.getInnermostNormalCleanup(); 543 544 // Change the scope depth of all the labels. 545 for (SmallVectorImpl<const LabelDecl*>::const_iterator 546 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 547 assert(CGF.LabelMap.count(*i)); 548 JumpDest &dest = CGF.LabelMap.find(*i)->second; 549 assert(dest.getScopeDepth().isValid()); 550 assert(innermostScope.encloses(dest.getScopeDepth())); 551 dest.setScopeDepth(innermostScope); 552 } 553 554 // Reparent the labels if the new scope also has cleanups. 555 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 556 ParentScope->Labels.append(Labels.begin(), Labels.end()); 557 } 558 } 559 560 561 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 562 EmitLabel(S.getDecl()); 563 EmitStmt(S.getSubStmt()); 564 } 565 566 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 567 EmitStmt(S.getSubStmt(), S.getAttrs()); 568 } 569 570 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 571 // If this code is reachable then emit a stop point (if generating 572 // debug info). We have to do this ourselves because we are on the 573 // "simple" statement path. 574 if (HaveInsertPoint()) 575 EmitStopPoint(&S); 576 577 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 578 } 579 580 581 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 582 if (const LabelDecl *Target = S.getConstantTarget()) { 583 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 584 return; 585 } 586 587 // Ensure that we have an i8* for our PHI node. 588 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 589 Int8PtrTy, "addr"); 590 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 591 592 // Get the basic block for the indirect goto. 593 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 594 595 // The first instruction in the block has to be the PHI for the switch dest, 596 // add an entry for this branch. 597 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 598 599 EmitBranch(IndGotoBB); 600 } 601 602 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 603 // C99 6.8.4.1: The first substatement is executed if the expression compares 604 // unequal to 0. The condition must be a scalar type. 605 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 606 607 if (S.getInit()) 608 EmitStmt(S.getInit()); 609 610 if (S.getConditionVariable()) 611 EmitDecl(*S.getConditionVariable()); 612 613 // If the condition constant folds and can be elided, try to avoid emitting 614 // the condition and the dead arm of the if/else. 615 bool CondConstant; 616 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 617 S.isConstexpr())) { 618 // Figure out which block (then or else) is executed. 619 const Stmt *Executed = S.getThen(); 620 const Stmt *Skipped = S.getElse(); 621 if (!CondConstant) // Condition false? 622 std::swap(Executed, Skipped); 623 624 // If the skipped block has no labels in it, just emit the executed block. 625 // This avoids emitting dead code and simplifies the CFG substantially. 626 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 627 if (CondConstant) 628 incrementProfileCounter(&S); 629 if (Executed) { 630 RunCleanupsScope ExecutedScope(*this); 631 EmitStmt(Executed); 632 } 633 return; 634 } 635 } 636 637 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 638 // the conditional branch. 639 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 640 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 641 llvm::BasicBlock *ElseBlock = ContBlock; 642 if (S.getElse()) 643 ElseBlock = createBasicBlock("if.else"); 644 645 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 646 getProfileCount(S.getThen())); 647 648 // Emit the 'then' code. 649 EmitBlock(ThenBlock); 650 incrementProfileCounter(&S); 651 { 652 RunCleanupsScope ThenScope(*this); 653 EmitStmt(S.getThen()); 654 } 655 EmitBranch(ContBlock); 656 657 // Emit the 'else' code if present. 658 if (const Stmt *Else = S.getElse()) { 659 { 660 // There is no need to emit line number for an unconditional branch. 661 auto NL = ApplyDebugLocation::CreateEmpty(*this); 662 EmitBlock(ElseBlock); 663 } 664 { 665 RunCleanupsScope ElseScope(*this); 666 EmitStmt(Else); 667 } 668 { 669 // There is no need to emit line number for an unconditional branch. 670 auto NL = ApplyDebugLocation::CreateEmpty(*this); 671 EmitBranch(ContBlock); 672 } 673 } 674 675 // Emit the continuation block for code after the if. 676 EmitBlock(ContBlock, true); 677 } 678 679 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 680 ArrayRef<const Attr *> WhileAttrs) { 681 // Emit the header for the loop, which will also become 682 // the continue target. 683 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 684 EmitBlock(LoopHeader.getBlock()); 685 686 const SourceRange &R = S.getSourceRange(); 687 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 688 SourceLocToDebugLoc(R.getBegin()), 689 SourceLocToDebugLoc(R.getEnd())); 690 691 // Create an exit block for when the condition fails, which will 692 // also become the break target. 693 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 694 695 // Store the blocks to use for break and continue. 696 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 697 698 // C++ [stmt.while]p2: 699 // When the condition of a while statement is a declaration, the 700 // scope of the variable that is declared extends from its point 701 // of declaration (3.3.2) to the end of the while statement. 702 // [...] 703 // The object created in a condition is destroyed and created 704 // with each iteration of the loop. 705 RunCleanupsScope ConditionScope(*this); 706 707 if (S.getConditionVariable()) 708 EmitDecl(*S.getConditionVariable()); 709 710 // Evaluate the conditional in the while header. C99 6.8.5.1: The 711 // evaluation of the controlling expression takes place before each 712 // execution of the loop body. 713 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 714 715 // while(1) is common, avoid extra exit blocks. Be sure 716 // to correctly handle break/continue though. 717 bool EmitBoolCondBranch = true; 718 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 719 if (C->isOne()) 720 EmitBoolCondBranch = false; 721 722 // As long as the condition is true, go to the loop body. 723 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 724 if (EmitBoolCondBranch) { 725 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 726 if (ConditionScope.requiresCleanups()) 727 ExitBlock = createBasicBlock("while.exit"); 728 Builder.CreateCondBr( 729 BoolCondVal, LoopBody, ExitBlock, 730 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 731 732 if (ExitBlock != LoopExit.getBlock()) { 733 EmitBlock(ExitBlock); 734 EmitBranchThroughCleanup(LoopExit); 735 } 736 } 737 738 // Emit the loop body. We have to emit this in a cleanup scope 739 // because it might be a singleton DeclStmt. 740 { 741 RunCleanupsScope BodyScope(*this); 742 EmitBlock(LoopBody); 743 incrementProfileCounter(&S); 744 EmitStmt(S.getBody()); 745 } 746 747 BreakContinueStack.pop_back(); 748 749 // Immediately force cleanup. 750 ConditionScope.ForceCleanup(); 751 752 EmitStopPoint(&S); 753 // Branch to the loop header again. 754 EmitBranch(LoopHeader.getBlock()); 755 756 LoopStack.pop(); 757 758 // Emit the exit block. 759 EmitBlock(LoopExit.getBlock(), true); 760 761 // The LoopHeader typically is just a branch if we skipped emitting 762 // a branch, try to erase it. 763 if (!EmitBoolCondBranch) 764 SimplifyForwardingBlocks(LoopHeader.getBlock()); 765 } 766 767 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 768 ArrayRef<const Attr *> DoAttrs) { 769 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 770 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 771 772 uint64_t ParentCount = getCurrentProfileCount(); 773 774 // Store the blocks to use for break and continue. 775 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 776 777 // Emit the body of the loop. 778 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 779 780 EmitBlockWithFallThrough(LoopBody, &S); 781 { 782 RunCleanupsScope BodyScope(*this); 783 EmitStmt(S.getBody()); 784 } 785 786 EmitBlock(LoopCond.getBlock()); 787 788 const SourceRange &R = S.getSourceRange(); 789 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 790 SourceLocToDebugLoc(R.getBegin()), 791 SourceLocToDebugLoc(R.getEnd())); 792 793 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 794 // after each execution of the loop body." 795 796 // Evaluate the conditional in the while header. 797 // C99 6.8.5p2/p4: The first substatement is executed if the expression 798 // compares unequal to 0. The condition must be a scalar type. 799 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 800 801 BreakContinueStack.pop_back(); 802 803 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 804 // to correctly handle break/continue though. 805 bool EmitBoolCondBranch = true; 806 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 807 if (C->isZero()) 808 EmitBoolCondBranch = false; 809 810 // As long as the condition is true, iterate the loop. 811 if (EmitBoolCondBranch) { 812 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 813 Builder.CreateCondBr( 814 BoolCondVal, LoopBody, LoopExit.getBlock(), 815 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 816 } 817 818 LoopStack.pop(); 819 820 // Emit the exit block. 821 EmitBlock(LoopExit.getBlock()); 822 823 // The DoCond block typically is just a branch if we skipped 824 // emitting a branch, try to erase it. 825 if (!EmitBoolCondBranch) 826 SimplifyForwardingBlocks(LoopCond.getBlock()); 827 } 828 829 void CodeGenFunction::EmitForStmt(const ForStmt &S, 830 ArrayRef<const Attr *> ForAttrs) { 831 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 832 833 LexicalScope ForScope(*this, S.getSourceRange()); 834 835 // Evaluate the first part before the loop. 836 if (S.getInit()) 837 EmitStmt(S.getInit()); 838 839 // Start the loop with a block that tests the condition. 840 // If there's an increment, the continue scope will be overwritten 841 // later. 842 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 843 llvm::BasicBlock *CondBlock = Continue.getBlock(); 844 EmitBlock(CondBlock); 845 846 const SourceRange &R = S.getSourceRange(); 847 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 848 SourceLocToDebugLoc(R.getBegin()), 849 SourceLocToDebugLoc(R.getEnd())); 850 851 // If the for loop doesn't have an increment we can just use the 852 // condition as the continue block. Otherwise we'll need to create 853 // a block for it (in the current scope, i.e. in the scope of the 854 // condition), and that we will become our continue block. 855 if (S.getInc()) 856 Continue = getJumpDestInCurrentScope("for.inc"); 857 858 // Store the blocks to use for break and continue. 859 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 860 861 // Create a cleanup scope for the condition variable cleanups. 862 LexicalScope ConditionScope(*this, S.getSourceRange()); 863 864 if (S.getCond()) { 865 // If the for statement has a condition scope, emit the local variable 866 // declaration. 867 if (S.getConditionVariable()) { 868 EmitDecl(*S.getConditionVariable()); 869 } 870 871 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 872 // If there are any cleanups between here and the loop-exit scope, 873 // create a block to stage a loop exit along. 874 if (ForScope.requiresCleanups()) 875 ExitBlock = createBasicBlock("for.cond.cleanup"); 876 877 // As long as the condition is true, iterate the loop. 878 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 879 880 // C99 6.8.5p2/p4: The first substatement is executed if the expression 881 // compares unequal to 0. The condition must be a scalar type. 882 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 883 Builder.CreateCondBr( 884 BoolCondVal, ForBody, ExitBlock, 885 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 886 887 if (ExitBlock != LoopExit.getBlock()) { 888 EmitBlock(ExitBlock); 889 EmitBranchThroughCleanup(LoopExit); 890 } 891 892 EmitBlock(ForBody); 893 } else { 894 // Treat it as a non-zero constant. Don't even create a new block for the 895 // body, just fall into it. 896 } 897 incrementProfileCounter(&S); 898 899 { 900 // Create a separate cleanup scope for the body, in case it is not 901 // a compound statement. 902 RunCleanupsScope BodyScope(*this); 903 EmitStmt(S.getBody()); 904 } 905 906 // If there is an increment, emit it next. 907 if (S.getInc()) { 908 EmitBlock(Continue.getBlock()); 909 EmitStmt(S.getInc()); 910 } 911 912 BreakContinueStack.pop_back(); 913 914 ConditionScope.ForceCleanup(); 915 916 EmitStopPoint(&S); 917 EmitBranch(CondBlock); 918 919 ForScope.ForceCleanup(); 920 921 LoopStack.pop(); 922 923 // Emit the fall-through block. 924 EmitBlock(LoopExit.getBlock(), true); 925 } 926 927 void 928 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 929 ArrayRef<const Attr *> ForAttrs) { 930 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 931 932 LexicalScope ForScope(*this, S.getSourceRange()); 933 934 // Evaluate the first pieces before the loop. 935 if (S.getInit()) 936 EmitStmt(S.getInit()); 937 EmitStmt(S.getRangeStmt()); 938 EmitStmt(S.getBeginStmt()); 939 EmitStmt(S.getEndStmt()); 940 941 // Start the loop with a block that tests the condition. 942 // If there's an increment, the continue scope will be overwritten 943 // later. 944 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 945 EmitBlock(CondBlock); 946 947 const SourceRange &R = S.getSourceRange(); 948 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 949 SourceLocToDebugLoc(R.getBegin()), 950 SourceLocToDebugLoc(R.getEnd())); 951 952 // If there are any cleanups between here and the loop-exit scope, 953 // create a block to stage a loop exit along. 954 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 955 if (ForScope.requiresCleanups()) 956 ExitBlock = createBasicBlock("for.cond.cleanup"); 957 958 // The loop body, consisting of the specified body and the loop variable. 959 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 960 961 // The body is executed if the expression, contextually converted 962 // to bool, is true. 963 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 964 Builder.CreateCondBr( 965 BoolCondVal, ForBody, ExitBlock, 966 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 967 968 if (ExitBlock != LoopExit.getBlock()) { 969 EmitBlock(ExitBlock); 970 EmitBranchThroughCleanup(LoopExit); 971 } 972 973 EmitBlock(ForBody); 974 incrementProfileCounter(&S); 975 976 // Create a block for the increment. In case of a 'continue', we jump there. 977 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 978 979 // Store the blocks to use for break and continue. 980 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 981 982 { 983 // Create a separate cleanup scope for the loop variable and body. 984 LexicalScope BodyScope(*this, S.getSourceRange()); 985 EmitStmt(S.getLoopVarStmt()); 986 EmitStmt(S.getBody()); 987 } 988 989 EmitStopPoint(&S); 990 // If there is an increment, emit it next. 991 EmitBlock(Continue.getBlock()); 992 EmitStmt(S.getInc()); 993 994 BreakContinueStack.pop_back(); 995 996 EmitBranch(CondBlock); 997 998 ForScope.ForceCleanup(); 999 1000 LoopStack.pop(); 1001 1002 // Emit the fall-through block. 1003 EmitBlock(LoopExit.getBlock(), true); 1004 } 1005 1006 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1007 if (RV.isScalar()) { 1008 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1009 } else if (RV.isAggregate()) { 1010 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1011 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1012 EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue()); 1013 } else { 1014 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1015 /*init*/ true); 1016 } 1017 EmitBranchThroughCleanup(ReturnBlock); 1018 } 1019 1020 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1021 /// if the function returns void, or may be missing one if the function returns 1022 /// non-void. Fun stuff :). 1023 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1024 if (requiresReturnValueCheck()) { 1025 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1026 auto *SLocPtr = 1027 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1028 llvm::GlobalVariable::PrivateLinkage, SLoc); 1029 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1030 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1031 assert(ReturnLocation.isValid() && "No valid return location"); 1032 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1033 ReturnLocation); 1034 } 1035 1036 // Returning from an outlined SEH helper is UB, and we already warn on it. 1037 if (IsOutlinedSEHHelper) { 1038 Builder.CreateUnreachable(); 1039 Builder.ClearInsertionPoint(); 1040 } 1041 1042 // Emit the result value, even if unused, to evaluate the side effects. 1043 const Expr *RV = S.getRetValue(); 1044 1045 // Treat block literals in a return expression as if they appeared 1046 // in their own scope. This permits a small, easily-implemented 1047 // exception to our over-conservative rules about not jumping to 1048 // statements following block literals with non-trivial cleanups. 1049 RunCleanupsScope cleanupScope(*this); 1050 if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { 1051 enterFullExpression(fe); 1052 RV = fe->getSubExpr(); 1053 } 1054 1055 // FIXME: Clean this up by using an LValue for ReturnTemp, 1056 // EmitStoreThroughLValue, and EmitAnyExpr. 1057 if (getLangOpts().ElideConstructors && 1058 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1059 // Apply the named return value optimization for this return statement, 1060 // which means doing nothing: the appropriate result has already been 1061 // constructed into the NRVO variable. 1062 1063 // If there is an NRVO flag for this variable, set it to 1 into indicate 1064 // that the cleanup code should not destroy the variable. 1065 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1066 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1067 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1068 // Make sure not to return anything, but evaluate the expression 1069 // for side effects. 1070 if (RV) 1071 EmitAnyExpr(RV); 1072 } else if (!RV) { 1073 // Do nothing (return value is left uninitialized) 1074 } else if (FnRetTy->isReferenceType()) { 1075 // If this function returns a reference, take the address of the expression 1076 // rather than the value. 1077 RValue Result = EmitReferenceBindingToExpr(RV); 1078 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1079 } else { 1080 switch (getEvaluationKind(RV->getType())) { 1081 case TEK_Scalar: 1082 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1083 break; 1084 case TEK_Complex: 1085 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1086 /*isInit*/ true); 1087 break; 1088 case TEK_Aggregate: 1089 EmitAggExpr(RV, AggValueSlot::forAddr( 1090 ReturnValue, Qualifiers(), 1091 AggValueSlot::IsDestructed, 1092 AggValueSlot::DoesNotNeedGCBarriers, 1093 AggValueSlot::IsNotAliased, 1094 overlapForReturnValue())); 1095 break; 1096 } 1097 } 1098 1099 ++NumReturnExprs; 1100 if (!RV || RV->isEvaluatable(getContext())) 1101 ++NumSimpleReturnExprs; 1102 1103 cleanupScope.ForceCleanup(); 1104 EmitBranchThroughCleanup(ReturnBlock); 1105 } 1106 1107 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1108 // As long as debug info is modeled with instructions, we have to ensure we 1109 // have a place to insert here and write the stop point here. 1110 if (HaveInsertPoint()) 1111 EmitStopPoint(&S); 1112 1113 for (const auto *I : S.decls()) 1114 EmitDecl(*I); 1115 } 1116 1117 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1118 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1119 1120 // If this code is reachable then emit a stop point (if generating 1121 // debug info). We have to do this ourselves because we are on the 1122 // "simple" statement path. 1123 if (HaveInsertPoint()) 1124 EmitStopPoint(&S); 1125 1126 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1127 } 1128 1129 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1130 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1131 1132 // If this code is reachable then emit a stop point (if generating 1133 // debug info). We have to do this ourselves because we are on the 1134 // "simple" statement path. 1135 if (HaveInsertPoint()) 1136 EmitStopPoint(&S); 1137 1138 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1139 } 1140 1141 /// EmitCaseStmtRange - If case statement range is not too big then 1142 /// add multiple cases to switch instruction, one for each value within 1143 /// the range. If range is too big then emit "if" condition check. 1144 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1145 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1146 1147 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1148 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1149 1150 // Emit the code for this case. We do this first to make sure it is 1151 // properly chained from our predecessor before generating the 1152 // switch machinery to enter this block. 1153 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1154 EmitBlockWithFallThrough(CaseDest, &S); 1155 EmitStmt(S.getSubStmt()); 1156 1157 // If range is empty, do nothing. 1158 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1159 return; 1160 1161 llvm::APInt Range = RHS - LHS; 1162 // FIXME: parameters such as this should not be hardcoded. 1163 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1164 // Range is small enough to add multiple switch instruction cases. 1165 uint64_t Total = getProfileCount(&S); 1166 unsigned NCases = Range.getZExtValue() + 1; 1167 // We only have one region counter for the entire set of cases here, so we 1168 // need to divide the weights evenly between the generated cases, ensuring 1169 // that the total weight is preserved. E.g., a weight of 5 over three cases 1170 // will be distributed as weights of 2, 2, and 1. 1171 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1172 for (unsigned I = 0; I != NCases; ++I) { 1173 if (SwitchWeights) 1174 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1175 if (Rem) 1176 Rem--; 1177 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1178 ++LHS; 1179 } 1180 return; 1181 } 1182 1183 // The range is too big. Emit "if" condition into a new block, 1184 // making sure to save and restore the current insertion point. 1185 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1186 1187 // Push this test onto the chain of range checks (which terminates 1188 // in the default basic block). The switch's default will be changed 1189 // to the top of this chain after switch emission is complete. 1190 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1191 CaseRangeBlock = createBasicBlock("sw.caserange"); 1192 1193 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1194 Builder.SetInsertPoint(CaseRangeBlock); 1195 1196 // Emit range check. 1197 llvm::Value *Diff = 1198 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1199 llvm::Value *Cond = 1200 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1201 1202 llvm::MDNode *Weights = nullptr; 1203 if (SwitchWeights) { 1204 uint64_t ThisCount = getProfileCount(&S); 1205 uint64_t DefaultCount = (*SwitchWeights)[0]; 1206 Weights = createProfileWeights(ThisCount, DefaultCount); 1207 1208 // Since we're chaining the switch default through each large case range, we 1209 // need to update the weight for the default, ie, the first case, to include 1210 // this case. 1211 (*SwitchWeights)[0] += ThisCount; 1212 } 1213 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1214 1215 // Restore the appropriate insertion point. 1216 if (RestoreBB) 1217 Builder.SetInsertPoint(RestoreBB); 1218 else 1219 Builder.ClearInsertionPoint(); 1220 } 1221 1222 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1223 // If there is no enclosing switch instance that we're aware of, then this 1224 // case statement and its block can be elided. This situation only happens 1225 // when we've constant-folded the switch, are emitting the constant case, 1226 // and part of the constant case includes another case statement. For 1227 // instance: switch (4) { case 4: do { case 5: } while (1); } 1228 if (!SwitchInsn) { 1229 EmitStmt(S.getSubStmt()); 1230 return; 1231 } 1232 1233 // Handle case ranges. 1234 if (S.getRHS()) { 1235 EmitCaseStmtRange(S); 1236 return; 1237 } 1238 1239 llvm::ConstantInt *CaseVal = 1240 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1241 1242 // If the body of the case is just a 'break', try to not emit an empty block. 1243 // If we're profiling or we're not optimizing, leave the block in for better 1244 // debug and coverage analysis. 1245 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1246 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1247 isa<BreakStmt>(S.getSubStmt())) { 1248 JumpDest Block = BreakContinueStack.back().BreakBlock; 1249 1250 // Only do this optimization if there are no cleanups that need emitting. 1251 if (isObviouslyBranchWithoutCleanups(Block)) { 1252 if (SwitchWeights) 1253 SwitchWeights->push_back(getProfileCount(&S)); 1254 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1255 1256 // If there was a fallthrough into this case, make sure to redirect it to 1257 // the end of the switch as well. 1258 if (Builder.GetInsertBlock()) { 1259 Builder.CreateBr(Block.getBlock()); 1260 Builder.ClearInsertionPoint(); 1261 } 1262 return; 1263 } 1264 } 1265 1266 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1267 EmitBlockWithFallThrough(CaseDest, &S); 1268 if (SwitchWeights) 1269 SwitchWeights->push_back(getProfileCount(&S)); 1270 SwitchInsn->addCase(CaseVal, CaseDest); 1271 1272 // Recursively emitting the statement is acceptable, but is not wonderful for 1273 // code where we have many case statements nested together, i.e.: 1274 // case 1: 1275 // case 2: 1276 // case 3: etc. 1277 // Handling this recursively will create a new block for each case statement 1278 // that falls through to the next case which is IR intensive. It also causes 1279 // deep recursion which can run into stack depth limitations. Handle 1280 // sequential non-range case statements specially. 1281 const CaseStmt *CurCase = &S; 1282 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1283 1284 // Otherwise, iteratively add consecutive cases to this switch stmt. 1285 while (NextCase && NextCase->getRHS() == nullptr) { 1286 CurCase = NextCase; 1287 llvm::ConstantInt *CaseVal = 1288 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1289 1290 if (SwitchWeights) 1291 SwitchWeights->push_back(getProfileCount(NextCase)); 1292 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1293 CaseDest = createBasicBlock("sw.bb"); 1294 EmitBlockWithFallThrough(CaseDest, &S); 1295 } 1296 1297 SwitchInsn->addCase(CaseVal, CaseDest); 1298 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1299 } 1300 1301 // Normal default recursion for non-cases. 1302 EmitStmt(CurCase->getSubStmt()); 1303 } 1304 1305 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1306 // If there is no enclosing switch instance that we're aware of, then this 1307 // default statement can be elided. This situation only happens when we've 1308 // constant-folded the switch. 1309 if (!SwitchInsn) { 1310 EmitStmt(S.getSubStmt()); 1311 return; 1312 } 1313 1314 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1315 assert(DefaultBlock->empty() && 1316 "EmitDefaultStmt: Default block already defined?"); 1317 1318 EmitBlockWithFallThrough(DefaultBlock, &S); 1319 1320 EmitStmt(S.getSubStmt()); 1321 } 1322 1323 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1324 /// constant value that is being switched on, see if we can dead code eliminate 1325 /// the body of the switch to a simple series of statements to emit. Basically, 1326 /// on a switch (5) we want to find these statements: 1327 /// case 5: 1328 /// printf(...); <-- 1329 /// ++i; <-- 1330 /// break; 1331 /// 1332 /// and add them to the ResultStmts vector. If it is unsafe to do this 1333 /// transformation (for example, one of the elided statements contains a label 1334 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1335 /// should include statements after it (e.g. the printf() line is a substmt of 1336 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1337 /// statement, then return CSFC_Success. 1338 /// 1339 /// If Case is non-null, then we are looking for the specified case, checking 1340 /// that nothing we jump over contains labels. If Case is null, then we found 1341 /// the case and are looking for the break. 1342 /// 1343 /// If the recursive walk actually finds our Case, then we set FoundCase to 1344 /// true. 1345 /// 1346 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1347 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1348 const SwitchCase *Case, 1349 bool &FoundCase, 1350 SmallVectorImpl<const Stmt*> &ResultStmts) { 1351 // If this is a null statement, just succeed. 1352 if (!S) 1353 return Case ? CSFC_Success : CSFC_FallThrough; 1354 1355 // If this is the switchcase (case 4: or default) that we're looking for, then 1356 // we're in business. Just add the substatement. 1357 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1358 if (S == Case) { 1359 FoundCase = true; 1360 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1361 ResultStmts); 1362 } 1363 1364 // Otherwise, this is some other case or default statement, just ignore it. 1365 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1366 ResultStmts); 1367 } 1368 1369 // If we are in the live part of the code and we found our break statement, 1370 // return a success! 1371 if (!Case && isa<BreakStmt>(S)) 1372 return CSFC_Success; 1373 1374 // If this is a switch statement, then it might contain the SwitchCase, the 1375 // break, or neither. 1376 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1377 // Handle this as two cases: we might be looking for the SwitchCase (if so 1378 // the skipped statements must be skippable) or we might already have it. 1379 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1380 bool StartedInLiveCode = FoundCase; 1381 unsigned StartSize = ResultStmts.size(); 1382 1383 // If we've not found the case yet, scan through looking for it. 1384 if (Case) { 1385 // Keep track of whether we see a skipped declaration. The code could be 1386 // using the declaration even if it is skipped, so we can't optimize out 1387 // the decl if the kept statements might refer to it. 1388 bool HadSkippedDecl = false; 1389 1390 // If we're looking for the case, just see if we can skip each of the 1391 // substatements. 1392 for (; Case && I != E; ++I) { 1393 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1394 1395 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1396 case CSFC_Failure: return CSFC_Failure; 1397 case CSFC_Success: 1398 // A successful result means that either 1) that the statement doesn't 1399 // have the case and is skippable, or 2) does contain the case value 1400 // and also contains the break to exit the switch. In the later case, 1401 // we just verify the rest of the statements are elidable. 1402 if (FoundCase) { 1403 // If we found the case and skipped declarations, we can't do the 1404 // optimization. 1405 if (HadSkippedDecl) 1406 return CSFC_Failure; 1407 1408 for (++I; I != E; ++I) 1409 if (CodeGenFunction::ContainsLabel(*I, true)) 1410 return CSFC_Failure; 1411 return CSFC_Success; 1412 } 1413 break; 1414 case CSFC_FallThrough: 1415 // If we have a fallthrough condition, then we must have found the 1416 // case started to include statements. Consider the rest of the 1417 // statements in the compound statement as candidates for inclusion. 1418 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1419 // We recursively found Case, so we're not looking for it anymore. 1420 Case = nullptr; 1421 1422 // If we found the case and skipped declarations, we can't do the 1423 // optimization. 1424 if (HadSkippedDecl) 1425 return CSFC_Failure; 1426 break; 1427 } 1428 } 1429 1430 if (!FoundCase) 1431 return CSFC_Success; 1432 1433 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1434 } 1435 1436 // If we have statements in our range, then we know that the statements are 1437 // live and need to be added to the set of statements we're tracking. 1438 bool AnyDecls = false; 1439 for (; I != E; ++I) { 1440 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1441 1442 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1443 case CSFC_Failure: return CSFC_Failure; 1444 case CSFC_FallThrough: 1445 // A fallthrough result means that the statement was simple and just 1446 // included in ResultStmt, keep adding them afterwards. 1447 break; 1448 case CSFC_Success: 1449 // A successful result means that we found the break statement and 1450 // stopped statement inclusion. We just ensure that any leftover stmts 1451 // are skippable and return success ourselves. 1452 for (++I; I != E; ++I) 1453 if (CodeGenFunction::ContainsLabel(*I, true)) 1454 return CSFC_Failure; 1455 return CSFC_Success; 1456 } 1457 } 1458 1459 // If we're about to fall out of a scope without hitting a 'break;', we 1460 // can't perform the optimization if there were any decls in that scope 1461 // (we'd lose their end-of-lifetime). 1462 if (AnyDecls) { 1463 // If the entire compound statement was live, there's one more thing we 1464 // can try before giving up: emit the whole thing as a single statement. 1465 // We can do that unless the statement contains a 'break;'. 1466 // FIXME: Such a break must be at the end of a construct within this one. 1467 // We could emit this by just ignoring the BreakStmts entirely. 1468 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1469 ResultStmts.resize(StartSize); 1470 ResultStmts.push_back(S); 1471 } else { 1472 return CSFC_Failure; 1473 } 1474 } 1475 1476 return CSFC_FallThrough; 1477 } 1478 1479 // Okay, this is some other statement that we don't handle explicitly, like a 1480 // for statement or increment etc. If we are skipping over this statement, 1481 // just verify it doesn't have labels, which would make it invalid to elide. 1482 if (Case) { 1483 if (CodeGenFunction::ContainsLabel(S, true)) 1484 return CSFC_Failure; 1485 return CSFC_Success; 1486 } 1487 1488 // Otherwise, we want to include this statement. Everything is cool with that 1489 // so long as it doesn't contain a break out of the switch we're in. 1490 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1491 1492 // Otherwise, everything is great. Include the statement and tell the caller 1493 // that we fall through and include the next statement as well. 1494 ResultStmts.push_back(S); 1495 return CSFC_FallThrough; 1496 } 1497 1498 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1499 /// then invoke CollectStatementsForCase to find the list of statements to emit 1500 /// for a switch on constant. See the comment above CollectStatementsForCase 1501 /// for more details. 1502 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1503 const llvm::APSInt &ConstantCondValue, 1504 SmallVectorImpl<const Stmt*> &ResultStmts, 1505 ASTContext &C, 1506 const SwitchCase *&ResultCase) { 1507 // First step, find the switch case that is being branched to. We can do this 1508 // efficiently by scanning the SwitchCase list. 1509 const SwitchCase *Case = S.getSwitchCaseList(); 1510 const DefaultStmt *DefaultCase = nullptr; 1511 1512 for (; Case; Case = Case->getNextSwitchCase()) { 1513 // It's either a default or case. Just remember the default statement in 1514 // case we're not jumping to any numbered cases. 1515 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1516 DefaultCase = DS; 1517 continue; 1518 } 1519 1520 // Check to see if this case is the one we're looking for. 1521 const CaseStmt *CS = cast<CaseStmt>(Case); 1522 // Don't handle case ranges yet. 1523 if (CS->getRHS()) return false; 1524 1525 // If we found our case, remember it as 'case'. 1526 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1527 break; 1528 } 1529 1530 // If we didn't find a matching case, we use a default if it exists, or we 1531 // elide the whole switch body! 1532 if (!Case) { 1533 // It is safe to elide the body of the switch if it doesn't contain labels 1534 // etc. If it is safe, return successfully with an empty ResultStmts list. 1535 if (!DefaultCase) 1536 return !CodeGenFunction::ContainsLabel(&S); 1537 Case = DefaultCase; 1538 } 1539 1540 // Ok, we know which case is being jumped to, try to collect all the 1541 // statements that follow it. This can fail for a variety of reasons. Also, 1542 // check to see that the recursive walk actually found our case statement. 1543 // Insane cases like this can fail to find it in the recursive walk since we 1544 // don't handle every stmt kind: 1545 // switch (4) { 1546 // while (1) { 1547 // case 4: ... 1548 bool FoundCase = false; 1549 ResultCase = Case; 1550 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1551 ResultStmts) != CSFC_Failure && 1552 FoundCase; 1553 } 1554 1555 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1556 // Handle nested switch statements. 1557 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1558 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1559 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1560 1561 // See if we can constant fold the condition of the switch and therefore only 1562 // emit the live case statement (if any) of the switch. 1563 llvm::APSInt ConstantCondValue; 1564 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1565 SmallVector<const Stmt*, 4> CaseStmts; 1566 const SwitchCase *Case = nullptr; 1567 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1568 getContext(), Case)) { 1569 if (Case) 1570 incrementProfileCounter(Case); 1571 RunCleanupsScope ExecutedScope(*this); 1572 1573 if (S.getInit()) 1574 EmitStmt(S.getInit()); 1575 1576 // Emit the condition variable if needed inside the entire cleanup scope 1577 // used by this special case for constant folded switches. 1578 if (S.getConditionVariable()) 1579 EmitDecl(*S.getConditionVariable()); 1580 1581 // At this point, we are no longer "within" a switch instance, so 1582 // we can temporarily enforce this to ensure that any embedded case 1583 // statements are not emitted. 1584 SwitchInsn = nullptr; 1585 1586 // Okay, we can dead code eliminate everything except this case. Emit the 1587 // specified series of statements and we're good. 1588 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1589 EmitStmt(CaseStmts[i]); 1590 incrementProfileCounter(&S); 1591 1592 // Now we want to restore the saved switch instance so that nested 1593 // switches continue to function properly 1594 SwitchInsn = SavedSwitchInsn; 1595 1596 return; 1597 } 1598 } 1599 1600 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1601 1602 RunCleanupsScope ConditionScope(*this); 1603 1604 if (S.getInit()) 1605 EmitStmt(S.getInit()); 1606 1607 if (S.getConditionVariable()) 1608 EmitDecl(*S.getConditionVariable()); 1609 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1610 1611 // Create basic block to hold stuff that comes after switch 1612 // statement. We also need to create a default block now so that 1613 // explicit case ranges tests can have a place to jump to on 1614 // failure. 1615 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1616 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1617 if (PGO.haveRegionCounts()) { 1618 // Walk the SwitchCase list to find how many there are. 1619 uint64_t DefaultCount = 0; 1620 unsigned NumCases = 0; 1621 for (const SwitchCase *Case = S.getSwitchCaseList(); 1622 Case; 1623 Case = Case->getNextSwitchCase()) { 1624 if (isa<DefaultStmt>(Case)) 1625 DefaultCount = getProfileCount(Case); 1626 NumCases += 1; 1627 } 1628 SwitchWeights = new SmallVector<uint64_t, 16>(); 1629 SwitchWeights->reserve(NumCases); 1630 // The default needs to be first. We store the edge count, so we already 1631 // know the right weight. 1632 SwitchWeights->push_back(DefaultCount); 1633 } 1634 CaseRangeBlock = DefaultBlock; 1635 1636 // Clear the insertion point to indicate we are in unreachable code. 1637 Builder.ClearInsertionPoint(); 1638 1639 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1640 // then reuse last ContinueBlock. 1641 JumpDest OuterContinue; 1642 if (!BreakContinueStack.empty()) 1643 OuterContinue = BreakContinueStack.back().ContinueBlock; 1644 1645 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1646 1647 // Emit switch body. 1648 EmitStmt(S.getBody()); 1649 1650 BreakContinueStack.pop_back(); 1651 1652 // Update the default block in case explicit case range tests have 1653 // been chained on top. 1654 SwitchInsn->setDefaultDest(CaseRangeBlock); 1655 1656 // If a default was never emitted: 1657 if (!DefaultBlock->getParent()) { 1658 // If we have cleanups, emit the default block so that there's a 1659 // place to jump through the cleanups from. 1660 if (ConditionScope.requiresCleanups()) { 1661 EmitBlock(DefaultBlock); 1662 1663 // Otherwise, just forward the default block to the switch end. 1664 } else { 1665 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1666 delete DefaultBlock; 1667 } 1668 } 1669 1670 ConditionScope.ForceCleanup(); 1671 1672 // Emit continuation. 1673 EmitBlock(SwitchExit.getBlock(), true); 1674 incrementProfileCounter(&S); 1675 1676 // If the switch has a condition wrapped by __builtin_unpredictable, 1677 // create metadata that specifies that the switch is unpredictable. 1678 // Don't bother if not optimizing because that metadata would not be used. 1679 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1680 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1681 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1682 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1683 llvm::MDBuilder MDHelper(getLLVMContext()); 1684 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1685 MDHelper.createUnpredictable()); 1686 } 1687 } 1688 1689 if (SwitchWeights) { 1690 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1691 "switch weights do not match switch cases"); 1692 // If there's only one jump destination there's no sense weighting it. 1693 if (SwitchWeights->size() > 1) 1694 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1695 createProfileWeights(*SwitchWeights)); 1696 delete SwitchWeights; 1697 } 1698 SwitchInsn = SavedSwitchInsn; 1699 SwitchWeights = SavedSwitchWeights; 1700 CaseRangeBlock = SavedCRBlock; 1701 } 1702 1703 static std::string 1704 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1705 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1706 std::string Result; 1707 1708 while (*Constraint) { 1709 switch (*Constraint) { 1710 default: 1711 Result += Target.convertConstraint(Constraint); 1712 break; 1713 // Ignore these 1714 case '*': 1715 case '?': 1716 case '!': 1717 case '=': // Will see this and the following in mult-alt constraints. 1718 case '+': 1719 break; 1720 case '#': // Ignore the rest of the constraint alternative. 1721 while (Constraint[1] && Constraint[1] != ',') 1722 Constraint++; 1723 break; 1724 case '&': 1725 case '%': 1726 Result += *Constraint; 1727 while (Constraint[1] && Constraint[1] == *Constraint) 1728 Constraint++; 1729 break; 1730 case ',': 1731 Result += "|"; 1732 break; 1733 case 'g': 1734 Result += "imr"; 1735 break; 1736 case '[': { 1737 assert(OutCons && 1738 "Must pass output names to constraints with a symbolic name"); 1739 unsigned Index; 1740 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1741 assert(result && "Could not resolve symbolic name"); (void)result; 1742 Result += llvm::utostr(Index); 1743 break; 1744 } 1745 } 1746 1747 Constraint++; 1748 } 1749 1750 return Result; 1751 } 1752 1753 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1754 /// as using a particular register add that as a constraint that will be used 1755 /// in this asm stmt. 1756 static std::string 1757 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1758 const TargetInfo &Target, CodeGenModule &CGM, 1759 const AsmStmt &Stmt, const bool EarlyClobber) { 1760 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1761 if (!AsmDeclRef) 1762 return Constraint; 1763 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1764 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1765 if (!Variable) 1766 return Constraint; 1767 if (Variable->getStorageClass() != SC_Register) 1768 return Constraint; 1769 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1770 if (!Attr) 1771 return Constraint; 1772 StringRef Register = Attr->getLabel(); 1773 assert(Target.isValidGCCRegisterName(Register)); 1774 // We're using validateOutputConstraint here because we only care if 1775 // this is a register constraint. 1776 TargetInfo::ConstraintInfo Info(Constraint, ""); 1777 if (Target.validateOutputConstraint(Info) && 1778 !Info.allowsRegister()) { 1779 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1780 return Constraint; 1781 } 1782 // Canonicalize the register here before returning it. 1783 Register = Target.getNormalizedGCCRegisterName(Register); 1784 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1785 } 1786 1787 llvm::Value* 1788 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1789 LValue InputValue, QualType InputType, 1790 std::string &ConstraintStr, 1791 SourceLocation Loc) { 1792 llvm::Value *Arg; 1793 if (Info.allowsRegister() || !Info.allowsMemory()) { 1794 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1795 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1796 } else { 1797 llvm::Type *Ty = ConvertType(InputType); 1798 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1799 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1800 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1801 Ty = llvm::PointerType::getUnqual(Ty); 1802 1803 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1804 Ty)); 1805 } else { 1806 Arg = InputValue.getPointer(); 1807 ConstraintStr += '*'; 1808 } 1809 } 1810 } else { 1811 Arg = InputValue.getPointer(); 1812 ConstraintStr += '*'; 1813 } 1814 1815 return Arg; 1816 } 1817 1818 llvm::Value* CodeGenFunction::EmitAsmInput( 1819 const TargetInfo::ConstraintInfo &Info, 1820 const Expr *InputExpr, 1821 std::string &ConstraintStr) { 1822 // If this can't be a register or memory, i.e., has to be a constant 1823 // (immediate or symbolic), try to emit it as such. 1824 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1825 llvm::APSInt Result; 1826 if (InputExpr->EvaluateAsInt(Result, getContext())) 1827 return llvm::ConstantInt::get(getLLVMContext(), Result); 1828 assert(!Info.requiresImmediateConstant() && 1829 "Required-immediate inlineasm arg isn't constant?"); 1830 } 1831 1832 if (Info.allowsRegister() || !Info.allowsMemory()) 1833 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1834 return EmitScalarExpr(InputExpr); 1835 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1836 return EmitScalarExpr(InputExpr); 1837 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1838 LValue Dest = EmitLValue(InputExpr); 1839 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1840 InputExpr->getExprLoc()); 1841 } 1842 1843 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1844 /// asm call instruction. The !srcloc MDNode contains a list of constant 1845 /// integers which are the source locations of the start of each line in the 1846 /// asm. 1847 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1848 CodeGenFunction &CGF) { 1849 SmallVector<llvm::Metadata *, 8> Locs; 1850 // Add the location of the first line to the MDNode. 1851 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1852 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1853 StringRef StrVal = Str->getString(); 1854 if (!StrVal.empty()) { 1855 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1856 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1857 unsigned StartToken = 0; 1858 unsigned ByteOffset = 0; 1859 1860 // Add the location of the start of each subsequent line of the asm to the 1861 // MDNode. 1862 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1863 if (StrVal[i] != '\n') continue; 1864 SourceLocation LineLoc = Str->getLocationOfByte( 1865 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1866 Locs.push_back(llvm::ConstantAsMetadata::get( 1867 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1868 } 1869 } 1870 1871 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1872 } 1873 1874 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1875 // Assemble the final asm string. 1876 std::string AsmString = S.generateAsmString(getContext()); 1877 1878 // Get all the output and input constraints together. 1879 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1880 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1881 1882 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1883 StringRef Name; 1884 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1885 Name = GAS->getOutputName(i); 1886 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1887 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1888 assert(IsValid && "Failed to parse output constraint"); 1889 OutputConstraintInfos.push_back(Info); 1890 } 1891 1892 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1893 StringRef Name; 1894 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1895 Name = GAS->getInputName(i); 1896 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1897 bool IsValid = 1898 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1899 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1900 InputConstraintInfos.push_back(Info); 1901 } 1902 1903 std::string Constraints; 1904 1905 std::vector<LValue> ResultRegDests; 1906 std::vector<QualType> ResultRegQualTys; 1907 std::vector<llvm::Type *> ResultRegTypes; 1908 std::vector<llvm::Type *> ResultTruncRegTypes; 1909 std::vector<llvm::Type *> ArgTypes; 1910 std::vector<llvm::Value*> Args; 1911 1912 // Keep track of inout constraints. 1913 std::string InOutConstraints; 1914 std::vector<llvm::Value*> InOutArgs; 1915 std::vector<llvm::Type*> InOutArgTypes; 1916 1917 // An inline asm can be marked readonly if it meets the following conditions: 1918 // - it doesn't have any sideeffects 1919 // - it doesn't clobber memory 1920 // - it doesn't return a value by-reference 1921 // It can be marked readnone if it doesn't have any input memory constraints 1922 // in addition to meeting the conditions listed above. 1923 bool ReadOnly = true, ReadNone = true; 1924 1925 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1926 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1927 1928 // Simplify the output constraint. 1929 std::string OutputConstraint(S.getOutputConstraint(i)); 1930 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1931 getTarget(), &OutputConstraintInfos); 1932 1933 const Expr *OutExpr = S.getOutputExpr(i); 1934 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1935 1936 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1937 getTarget(), CGM, S, 1938 Info.earlyClobber()); 1939 1940 LValue Dest = EmitLValue(OutExpr); 1941 if (!Constraints.empty()) 1942 Constraints += ','; 1943 1944 // If this is a register output, then make the inline asm return it 1945 // by-value. If this is a memory result, return the value by-reference. 1946 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1947 Constraints += "=" + OutputConstraint; 1948 ResultRegQualTys.push_back(OutExpr->getType()); 1949 ResultRegDests.push_back(Dest); 1950 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1951 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1952 1953 // If this output is tied to an input, and if the input is larger, then 1954 // we need to set the actual result type of the inline asm node to be the 1955 // same as the input type. 1956 if (Info.hasMatchingInput()) { 1957 unsigned InputNo; 1958 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1959 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1960 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1961 break; 1962 } 1963 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1964 1965 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1966 QualType OutputType = OutExpr->getType(); 1967 1968 uint64_t InputSize = getContext().getTypeSize(InputTy); 1969 if (getContext().getTypeSize(OutputType) < InputSize) { 1970 // Form the asm to return the value as a larger integer or fp type. 1971 ResultRegTypes.back() = ConvertType(InputTy); 1972 } 1973 } 1974 if (llvm::Type* AdjTy = 1975 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1976 ResultRegTypes.back())) 1977 ResultRegTypes.back() = AdjTy; 1978 else { 1979 CGM.getDiags().Report(S.getAsmLoc(), 1980 diag::err_asm_invalid_type_in_input) 1981 << OutExpr->getType() << OutputConstraint; 1982 } 1983 1984 // Update largest vector width for any vector types. 1985 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 1986 LargestVectorWidth = std::max(LargestVectorWidth, 1987 VT->getPrimitiveSizeInBits()); 1988 } else { 1989 ArgTypes.push_back(Dest.getAddress().getType()); 1990 Args.push_back(Dest.getPointer()); 1991 Constraints += "=*"; 1992 Constraints += OutputConstraint; 1993 ReadOnly = ReadNone = false; 1994 } 1995 1996 if (Info.isReadWrite()) { 1997 InOutConstraints += ','; 1998 1999 const Expr *InputExpr = S.getOutputExpr(i); 2000 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2001 InOutConstraints, 2002 InputExpr->getExprLoc()); 2003 2004 if (llvm::Type* AdjTy = 2005 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2006 Arg->getType())) 2007 Arg = Builder.CreateBitCast(Arg, AdjTy); 2008 2009 // Update largest vector width for any vector types. 2010 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2011 LargestVectorWidth = std::max(LargestVectorWidth, 2012 VT->getPrimitiveSizeInBits()); 2013 if (Info.allowsRegister()) 2014 InOutConstraints += llvm::utostr(i); 2015 else 2016 InOutConstraints += OutputConstraint; 2017 2018 InOutArgTypes.push_back(Arg->getType()); 2019 InOutArgs.push_back(Arg); 2020 } 2021 } 2022 2023 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2024 // to the return value slot. Only do this when returning in registers. 2025 if (isa<MSAsmStmt>(&S)) { 2026 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2027 if (RetAI.isDirect() || RetAI.isExtend()) { 2028 // Make a fake lvalue for the return value slot. 2029 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2030 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2031 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2032 ResultRegDests, AsmString, S.getNumOutputs()); 2033 SawAsmBlock = true; 2034 } 2035 } 2036 2037 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2038 const Expr *InputExpr = S.getInputExpr(i); 2039 2040 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2041 2042 if (Info.allowsMemory()) 2043 ReadNone = false; 2044 2045 if (!Constraints.empty()) 2046 Constraints += ','; 2047 2048 // Simplify the input constraint. 2049 std::string InputConstraint(S.getInputConstraint(i)); 2050 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2051 &OutputConstraintInfos); 2052 2053 InputConstraint = AddVariableConstraints( 2054 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2055 getTarget(), CGM, S, false /* No EarlyClobber */); 2056 2057 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2058 2059 // If this input argument is tied to a larger output result, extend the 2060 // input to be the same size as the output. The LLVM backend wants to see 2061 // the input and output of a matching constraint be the same size. Note 2062 // that GCC does not define what the top bits are here. We use zext because 2063 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2064 if (Info.hasTiedOperand()) { 2065 unsigned Output = Info.getTiedOperand(); 2066 QualType OutputType = S.getOutputExpr(Output)->getType(); 2067 QualType InputTy = InputExpr->getType(); 2068 2069 if (getContext().getTypeSize(OutputType) > 2070 getContext().getTypeSize(InputTy)) { 2071 // Use ptrtoint as appropriate so that we can do our extension. 2072 if (isa<llvm::PointerType>(Arg->getType())) 2073 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2074 llvm::Type *OutputTy = ConvertType(OutputType); 2075 if (isa<llvm::IntegerType>(OutputTy)) 2076 Arg = Builder.CreateZExt(Arg, OutputTy); 2077 else if (isa<llvm::PointerType>(OutputTy)) 2078 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2079 else { 2080 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2081 Arg = Builder.CreateFPExt(Arg, OutputTy); 2082 } 2083 } 2084 } 2085 if (llvm::Type* AdjTy = 2086 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2087 Arg->getType())) 2088 Arg = Builder.CreateBitCast(Arg, AdjTy); 2089 else 2090 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2091 << InputExpr->getType() << InputConstraint; 2092 2093 // Update largest vector width for any vector types. 2094 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2095 LargestVectorWidth = std::max(LargestVectorWidth, 2096 VT->getPrimitiveSizeInBits()); 2097 2098 ArgTypes.push_back(Arg->getType()); 2099 Args.push_back(Arg); 2100 Constraints += InputConstraint; 2101 } 2102 2103 // Append the "input" part of inout constraints last. 2104 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2105 ArgTypes.push_back(InOutArgTypes[i]); 2106 Args.push_back(InOutArgs[i]); 2107 } 2108 Constraints += InOutConstraints; 2109 2110 // Clobbers 2111 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2112 StringRef Clobber = S.getClobber(i); 2113 2114 if (Clobber == "memory") 2115 ReadOnly = ReadNone = false; 2116 else if (Clobber != "cc") 2117 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2118 2119 if (!Constraints.empty()) 2120 Constraints += ','; 2121 2122 Constraints += "~{"; 2123 Constraints += Clobber; 2124 Constraints += '}'; 2125 } 2126 2127 // Add machine specific clobbers 2128 std::string MachineClobbers = getTarget().getClobbers(); 2129 if (!MachineClobbers.empty()) { 2130 if (!Constraints.empty()) 2131 Constraints += ','; 2132 Constraints += MachineClobbers; 2133 } 2134 2135 llvm::Type *ResultType; 2136 if (ResultRegTypes.empty()) 2137 ResultType = VoidTy; 2138 else if (ResultRegTypes.size() == 1) 2139 ResultType = ResultRegTypes[0]; 2140 else 2141 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2142 2143 llvm::FunctionType *FTy = 2144 llvm::FunctionType::get(ResultType, ArgTypes, false); 2145 2146 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2147 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2148 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2149 llvm::InlineAsm *IA = 2150 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2151 /* IsAlignStack */ false, AsmDialect); 2152 llvm::CallInst *Result = 2153 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2154 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2155 llvm::Attribute::NoUnwind); 2156 2157 // Attach readnone and readonly attributes. 2158 if (!HasSideEffect) { 2159 if (ReadNone) 2160 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2161 llvm::Attribute::ReadNone); 2162 else if (ReadOnly) 2163 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2164 llvm::Attribute::ReadOnly); 2165 } 2166 2167 // Slap the source location of the inline asm into a !srcloc metadata on the 2168 // call. 2169 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2170 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2171 *this)); 2172 } else { 2173 // At least put the line number on MS inline asm blobs. 2174 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2175 Result->setMetadata("srcloc", 2176 llvm::MDNode::get(getLLVMContext(), 2177 llvm::ConstantAsMetadata::get(Loc))); 2178 } 2179 2180 if (getLangOpts().assumeFunctionsAreConvergent()) { 2181 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2182 // convergent (meaning, they may call an intrinsically convergent op, such 2183 // as bar.sync, and so can't have certain optimizations applied around 2184 // them). 2185 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2186 llvm::Attribute::Convergent); 2187 } 2188 2189 // Extract all of the register value results from the asm. 2190 std::vector<llvm::Value*> RegResults; 2191 if (ResultRegTypes.size() == 1) { 2192 RegResults.push_back(Result); 2193 } else { 2194 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2195 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2196 RegResults.push_back(Tmp); 2197 } 2198 } 2199 2200 assert(RegResults.size() == ResultRegTypes.size()); 2201 assert(RegResults.size() == ResultTruncRegTypes.size()); 2202 assert(RegResults.size() == ResultRegDests.size()); 2203 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2204 llvm::Value *Tmp = RegResults[i]; 2205 2206 // If the result type of the LLVM IR asm doesn't match the result type of 2207 // the expression, do the conversion. 2208 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2209 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2210 2211 // Truncate the integer result to the right size, note that TruncTy can be 2212 // a pointer. 2213 if (TruncTy->isFloatingPointTy()) 2214 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2215 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2216 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2217 Tmp = Builder.CreateTrunc(Tmp, 2218 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2219 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2220 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2221 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2222 Tmp = Builder.CreatePtrToInt(Tmp, 2223 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2224 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2225 } else if (TruncTy->isIntegerTy()) { 2226 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2227 } else if (TruncTy->isVectorTy()) { 2228 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2229 } 2230 } 2231 2232 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2233 } 2234 } 2235 2236 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2237 const RecordDecl *RD = S.getCapturedRecordDecl(); 2238 QualType RecordTy = getContext().getRecordType(RD); 2239 2240 // Initialize the captured struct. 2241 LValue SlotLV = 2242 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2243 2244 RecordDecl::field_iterator CurField = RD->field_begin(); 2245 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2246 E = S.capture_init_end(); 2247 I != E; ++I, ++CurField) { 2248 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2249 if (CurField->hasCapturedVLAType()) { 2250 auto VAT = CurField->getCapturedVLAType(); 2251 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2252 } else { 2253 EmitInitializerForField(*CurField, LV, *I); 2254 } 2255 } 2256 2257 return SlotLV; 2258 } 2259 2260 /// Generate an outlined function for the body of a CapturedStmt, store any 2261 /// captured variables into the captured struct, and call the outlined function. 2262 llvm::Function * 2263 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2264 LValue CapStruct = InitCapturedStruct(S); 2265 2266 // Emit the CapturedDecl 2267 CodeGenFunction CGF(CGM, true); 2268 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2269 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2270 delete CGF.CapturedStmtInfo; 2271 2272 // Emit call to the helper function. 2273 EmitCallOrInvoke(F, CapStruct.getPointer()); 2274 2275 return F; 2276 } 2277 2278 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2279 LValue CapStruct = InitCapturedStruct(S); 2280 return CapStruct.getAddress(); 2281 } 2282 2283 /// Creates the outlined function for a CapturedStmt. 2284 llvm::Function * 2285 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2286 assert(CapturedStmtInfo && 2287 "CapturedStmtInfo should be set when generating the captured function"); 2288 const CapturedDecl *CD = S.getCapturedDecl(); 2289 const RecordDecl *RD = S.getCapturedRecordDecl(); 2290 SourceLocation Loc = S.getBeginLoc(); 2291 assert(CD->hasBody() && "missing CapturedDecl body"); 2292 2293 // Build the argument list. 2294 ASTContext &Ctx = CGM.getContext(); 2295 FunctionArgList Args; 2296 Args.append(CD->param_begin(), CD->param_end()); 2297 2298 // Create the function declaration. 2299 const CGFunctionInfo &FuncInfo = 2300 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2301 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2302 2303 llvm::Function *F = 2304 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2305 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2306 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2307 if (CD->isNothrow()) 2308 F->addFnAttr(llvm::Attribute::NoUnwind); 2309 2310 // Generate the function. 2311 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2312 CD->getBody()->getBeginLoc()); 2313 // Set the context parameter in CapturedStmtInfo. 2314 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2315 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2316 2317 // Initialize variable-length arrays. 2318 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2319 Ctx.getTagDeclType(RD)); 2320 for (auto *FD : RD->fields()) { 2321 if (FD->hasCapturedVLAType()) { 2322 auto *ExprArg = 2323 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2324 .getScalarVal(); 2325 auto VAT = FD->getCapturedVLAType(); 2326 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2327 } 2328 } 2329 2330 // If 'this' is captured, load it into CXXThisValue. 2331 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2332 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2333 LValue ThisLValue = EmitLValueForField(Base, FD); 2334 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2335 } 2336 2337 PGO.assignRegionCounters(GlobalDecl(CD), F); 2338 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2339 FinishFunction(CD->getBodyRBrace()); 2340 2341 return F; 2342 } 2343