1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/Builtins.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/LoopHint.h"
23 #include "clang/Sema/SemaDiagnostic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 
31 using namespace clang;
32 using namespace CodeGen;
33 
34 //===----------------------------------------------------------------------===//
35 //                              Statement Emission
36 //===----------------------------------------------------------------------===//
37 
38 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
39   if (CGDebugInfo *DI = getDebugInfo()) {
40     SourceLocation Loc;
41     Loc = S->getBeginLoc();
42     DI->EmitLocation(Builder, Loc);
43 
44     LastStopPoint = Loc;
45   }
46 }
47 
48 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
49   assert(S && "Null statement?");
50   PGO.setCurrentStmt(S);
51 
52   // These statements have their own debug info handling.
53   if (EmitSimpleStmt(S))
54     return;
55 
56   // Check if we are generating unreachable code.
57   if (!HaveInsertPoint()) {
58     // If so, and the statement doesn't contain a label, then we do not need to
59     // generate actual code. This is safe because (1) the current point is
60     // unreachable, so we don't need to execute the code, and (2) we've already
61     // handled the statements which update internal data structures (like the
62     // local variable map) which could be used by subsequent statements.
63     if (!ContainsLabel(S)) {
64       // Verify that any decl statements were handled as simple, they may be in
65       // scope of subsequent reachable statements.
66       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
67       return;
68     }
69 
70     // Otherwise, make a new block to hold the code.
71     EnsureInsertPoint();
72   }
73 
74   // Generate a stoppoint if we are emitting debug info.
75   EmitStopPoint(S);
76 
77   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
78   // enabled.
79   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
80     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
81       EmitSimpleOMPExecutableDirective(*D);
82       return;
83     }
84   }
85 
86   switch (S->getStmtClass()) {
87   case Stmt::NoStmtClass:
88   case Stmt::CXXCatchStmtClass:
89   case Stmt::SEHExceptStmtClass:
90   case Stmt::SEHFinallyStmtClass:
91   case Stmt::MSDependentExistsStmtClass:
92     llvm_unreachable("invalid statement class to emit generically");
93   case Stmt::NullStmtClass:
94   case Stmt::CompoundStmtClass:
95   case Stmt::DeclStmtClass:
96   case Stmt::LabelStmtClass:
97   case Stmt::AttributedStmtClass:
98   case Stmt::GotoStmtClass:
99   case Stmt::BreakStmtClass:
100   case Stmt::ContinueStmtClass:
101   case Stmt::DefaultStmtClass:
102   case Stmt::CaseStmtClass:
103   case Stmt::SEHLeaveStmtClass:
104     llvm_unreachable("should have emitted these statements as simple");
105 
106 #define STMT(Type, Base)
107 #define ABSTRACT_STMT(Op)
108 #define EXPR(Type, Base) \
109   case Stmt::Type##Class:
110 #include "clang/AST/StmtNodes.inc"
111   {
112     // Remember the block we came in on.
113     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
114     assert(incoming && "expression emission must have an insertion point");
115 
116     EmitIgnoredExpr(cast<Expr>(S));
117 
118     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
119     assert(outgoing && "expression emission cleared block!");
120 
121     // The expression emitters assume (reasonably!) that the insertion
122     // point is always set.  To maintain that, the call-emission code
123     // for noreturn functions has to enter a new block with no
124     // predecessors.  We want to kill that block and mark the current
125     // insertion point unreachable in the common case of a call like
126     // "exit();".  Since expression emission doesn't otherwise create
127     // blocks with no predecessors, we can just test for that.
128     // However, we must be careful not to do this to our incoming
129     // block, because *statement* emission does sometimes create
130     // reachable blocks which will have no predecessors until later in
131     // the function.  This occurs with, e.g., labels that are not
132     // reachable by fallthrough.
133     if (incoming != outgoing && outgoing->use_empty()) {
134       outgoing->eraseFromParent();
135       Builder.ClearInsertionPoint();
136     }
137     break;
138   }
139 
140   case Stmt::IndirectGotoStmtClass:
141     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
142 
143   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
144   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
145   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
146   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
147 
148   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
149 
150   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
151   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
152   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
153   case Stmt::CoroutineBodyStmtClass:
154     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
155     break;
156   case Stmt::CoreturnStmtClass:
157     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
158     break;
159   case Stmt::CapturedStmtClass: {
160     const CapturedStmt *CS = cast<CapturedStmt>(S);
161     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
162     }
163     break;
164   case Stmt::ObjCAtTryStmtClass:
165     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
166     break;
167   case Stmt::ObjCAtCatchStmtClass:
168     llvm_unreachable(
169                     "@catch statements should be handled by EmitObjCAtTryStmt");
170   case Stmt::ObjCAtFinallyStmtClass:
171     llvm_unreachable(
172                   "@finally statements should be handled by EmitObjCAtTryStmt");
173   case Stmt::ObjCAtThrowStmtClass:
174     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
175     break;
176   case Stmt::ObjCAtSynchronizedStmtClass:
177     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
178     break;
179   case Stmt::ObjCForCollectionStmtClass:
180     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
181     break;
182   case Stmt::ObjCAutoreleasePoolStmtClass:
183     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
184     break;
185 
186   case Stmt::CXXTryStmtClass:
187     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
188     break;
189   case Stmt::CXXForRangeStmtClass:
190     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
191     break;
192   case Stmt::SEHTryStmtClass:
193     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
194     break;
195   case Stmt::OMPParallelDirectiveClass:
196     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
197     break;
198   case Stmt::OMPSimdDirectiveClass:
199     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
200     break;
201   case Stmt::OMPForDirectiveClass:
202     EmitOMPForDirective(cast<OMPForDirective>(*S));
203     break;
204   case Stmt::OMPForSimdDirectiveClass:
205     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
206     break;
207   case Stmt::OMPSectionsDirectiveClass:
208     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
209     break;
210   case Stmt::OMPSectionDirectiveClass:
211     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
212     break;
213   case Stmt::OMPSingleDirectiveClass:
214     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
215     break;
216   case Stmt::OMPMasterDirectiveClass:
217     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
218     break;
219   case Stmt::OMPCriticalDirectiveClass:
220     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
221     break;
222   case Stmt::OMPParallelForDirectiveClass:
223     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
224     break;
225   case Stmt::OMPParallelForSimdDirectiveClass:
226     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
227     break;
228   case Stmt::OMPParallelSectionsDirectiveClass:
229     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
230     break;
231   case Stmt::OMPTaskDirectiveClass:
232     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
233     break;
234   case Stmt::OMPTaskyieldDirectiveClass:
235     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
236     break;
237   case Stmt::OMPBarrierDirectiveClass:
238     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
239     break;
240   case Stmt::OMPTaskwaitDirectiveClass:
241     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
242     break;
243   case Stmt::OMPTaskgroupDirectiveClass:
244     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
245     break;
246   case Stmt::OMPFlushDirectiveClass:
247     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
248     break;
249   case Stmt::OMPOrderedDirectiveClass:
250     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
251     break;
252   case Stmt::OMPAtomicDirectiveClass:
253     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
254     break;
255   case Stmt::OMPTargetDirectiveClass:
256     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
257     break;
258   case Stmt::OMPTeamsDirectiveClass:
259     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
260     break;
261   case Stmt::OMPCancellationPointDirectiveClass:
262     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
263     break;
264   case Stmt::OMPCancelDirectiveClass:
265     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
266     break;
267   case Stmt::OMPTargetDataDirectiveClass:
268     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
269     break;
270   case Stmt::OMPTargetEnterDataDirectiveClass:
271     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
272     break;
273   case Stmt::OMPTargetExitDataDirectiveClass:
274     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
275     break;
276   case Stmt::OMPTargetParallelDirectiveClass:
277     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
278     break;
279   case Stmt::OMPTargetParallelForDirectiveClass:
280     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
281     break;
282   case Stmt::OMPTaskLoopDirectiveClass:
283     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
284     break;
285   case Stmt::OMPTaskLoopSimdDirectiveClass:
286     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
287     break;
288   case Stmt::OMPDistributeDirectiveClass:
289     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
290     break;
291   case Stmt::OMPTargetUpdateDirectiveClass:
292     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
293     break;
294   case Stmt::OMPDistributeParallelForDirectiveClass:
295     EmitOMPDistributeParallelForDirective(
296         cast<OMPDistributeParallelForDirective>(*S));
297     break;
298   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
299     EmitOMPDistributeParallelForSimdDirective(
300         cast<OMPDistributeParallelForSimdDirective>(*S));
301     break;
302   case Stmt::OMPDistributeSimdDirectiveClass:
303     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForSimdDirectiveClass:
306     EmitOMPTargetParallelForSimdDirective(
307         cast<OMPTargetParallelForSimdDirective>(*S));
308     break;
309   case Stmt::OMPTargetSimdDirectiveClass:
310     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
311     break;
312   case Stmt::OMPTeamsDistributeDirectiveClass:
313     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
314     break;
315   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
316     EmitOMPTeamsDistributeSimdDirective(
317         cast<OMPTeamsDistributeSimdDirective>(*S));
318     break;
319   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
320     EmitOMPTeamsDistributeParallelForSimdDirective(
321         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
322     break;
323   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
324     EmitOMPTeamsDistributeParallelForDirective(
325         cast<OMPTeamsDistributeParallelForDirective>(*S));
326     break;
327   case Stmt::OMPTargetTeamsDirectiveClass:
328     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
329     break;
330   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
331     EmitOMPTargetTeamsDistributeDirective(
332         cast<OMPTargetTeamsDistributeDirective>(*S));
333     break;
334   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
335     EmitOMPTargetTeamsDistributeParallelForDirective(
336         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
337     break;
338   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
339     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
340         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
341     break;
342   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
343     EmitOMPTargetTeamsDistributeSimdDirective(
344         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
345     break;
346   }
347 }
348 
349 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
350   switch (S->getStmtClass()) {
351   default: return false;
352   case Stmt::NullStmtClass: break;
353   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
354   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
355   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
356   case Stmt::AttributedStmtClass:
357                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
358   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
359   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
360   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
361   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
362   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
363   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
364   }
365 
366   return true;
367 }
368 
369 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
370 /// this captures the expression result of the last sub-statement and returns it
371 /// (for use by the statement expression extension).
372 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
373                                           AggValueSlot AggSlot) {
374   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
375                              "LLVM IR generation of compound statement ('{}')");
376 
377   // Keep track of the current cleanup stack depth, including debug scopes.
378   LexicalScope Scope(*this, S.getSourceRange());
379 
380   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
381 }
382 
383 Address
384 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
385                                               bool GetLast,
386                                               AggValueSlot AggSlot) {
387 
388   for (CompoundStmt::const_body_iterator I = S.body_begin(),
389        E = S.body_end()-GetLast; I != E; ++I)
390     EmitStmt(*I);
391 
392   Address RetAlloca = Address::invalid();
393   if (GetLast) {
394     // We have to special case labels here.  They are statements, but when put
395     // at the end of a statement expression, they yield the value of their
396     // subexpression.  Handle this by walking through all labels we encounter,
397     // emitting them before we evaluate the subexpr.
398     const Stmt *LastStmt = S.body_back();
399     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
400       EmitLabel(LS->getDecl());
401       LastStmt = LS->getSubStmt();
402     }
403 
404     EnsureInsertPoint();
405 
406     QualType ExprTy = cast<Expr>(LastStmt)->getType();
407     if (hasAggregateEvaluationKind(ExprTy)) {
408       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
409     } else {
410       // We can't return an RValue here because there might be cleanups at
411       // the end of the StmtExpr.  Because of that, we have to emit the result
412       // here into a temporary alloca.
413       RetAlloca = CreateMemTemp(ExprTy);
414       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
415                        /*IsInit*/false);
416     }
417 
418   }
419 
420   return RetAlloca;
421 }
422 
423 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
424   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
425 
426   // If there is a cleanup stack, then we it isn't worth trying to
427   // simplify this block (we would need to remove it from the scope map
428   // and cleanup entry).
429   if (!EHStack.empty())
430     return;
431 
432   // Can only simplify direct branches.
433   if (!BI || !BI->isUnconditional())
434     return;
435 
436   // Can only simplify empty blocks.
437   if (BI->getIterator() != BB->begin())
438     return;
439 
440   BB->replaceAllUsesWith(BI->getSuccessor(0));
441   BI->eraseFromParent();
442   BB->eraseFromParent();
443 }
444 
445 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
446   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
447 
448   // Fall out of the current block (if necessary).
449   EmitBranch(BB);
450 
451   if (IsFinished && BB->use_empty()) {
452     delete BB;
453     return;
454   }
455 
456   // Place the block after the current block, if possible, or else at
457   // the end of the function.
458   if (CurBB && CurBB->getParent())
459     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
460   else
461     CurFn->getBasicBlockList().push_back(BB);
462   Builder.SetInsertPoint(BB);
463 }
464 
465 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
466   // Emit a branch from the current block to the target one if this
467   // was a real block.  If this was just a fall-through block after a
468   // terminator, don't emit it.
469   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
470 
471   if (!CurBB || CurBB->getTerminator()) {
472     // If there is no insert point or the previous block is already
473     // terminated, don't touch it.
474   } else {
475     // Otherwise, create a fall-through branch.
476     Builder.CreateBr(Target);
477   }
478 
479   Builder.ClearInsertionPoint();
480 }
481 
482 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
483   bool inserted = false;
484   for (llvm::User *u : block->users()) {
485     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
486       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
487                                              block);
488       inserted = true;
489       break;
490     }
491   }
492 
493   if (!inserted)
494     CurFn->getBasicBlockList().push_back(block);
495 
496   Builder.SetInsertPoint(block);
497 }
498 
499 CodeGenFunction::JumpDest
500 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
501   JumpDest &Dest = LabelMap[D];
502   if (Dest.isValid()) return Dest;
503 
504   // Create, but don't insert, the new block.
505   Dest = JumpDest(createBasicBlock(D->getName()),
506                   EHScopeStack::stable_iterator::invalid(),
507                   NextCleanupDestIndex++);
508   return Dest;
509 }
510 
511 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
512   // Add this label to the current lexical scope if we're within any
513   // normal cleanups.  Jumps "in" to this label --- when permitted by
514   // the language --- may need to be routed around such cleanups.
515   if (EHStack.hasNormalCleanups() && CurLexicalScope)
516     CurLexicalScope->addLabel(D);
517 
518   JumpDest &Dest = LabelMap[D];
519 
520   // If we didn't need a forward reference to this label, just go
521   // ahead and create a destination at the current scope.
522   if (!Dest.isValid()) {
523     Dest = getJumpDestInCurrentScope(D->getName());
524 
525   // Otherwise, we need to give this label a target depth and remove
526   // it from the branch-fixups list.
527   } else {
528     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
529     Dest.setScopeDepth(EHStack.stable_begin());
530     ResolveBranchFixups(Dest.getBlock());
531   }
532 
533   EmitBlock(Dest.getBlock());
534   incrementProfileCounter(D->getStmt());
535 }
536 
537 /// Change the cleanup scope of the labels in this lexical scope to
538 /// match the scope of the enclosing context.
539 void CodeGenFunction::LexicalScope::rescopeLabels() {
540   assert(!Labels.empty());
541   EHScopeStack::stable_iterator innermostScope
542     = CGF.EHStack.getInnermostNormalCleanup();
543 
544   // Change the scope depth of all the labels.
545   for (SmallVectorImpl<const LabelDecl*>::const_iterator
546          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
547     assert(CGF.LabelMap.count(*i));
548     JumpDest &dest = CGF.LabelMap.find(*i)->second;
549     assert(dest.getScopeDepth().isValid());
550     assert(innermostScope.encloses(dest.getScopeDepth()));
551     dest.setScopeDepth(innermostScope);
552   }
553 
554   // Reparent the labels if the new scope also has cleanups.
555   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
556     ParentScope->Labels.append(Labels.begin(), Labels.end());
557   }
558 }
559 
560 
561 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
562   EmitLabel(S.getDecl());
563   EmitStmt(S.getSubStmt());
564 }
565 
566 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
567   EmitStmt(S.getSubStmt(), S.getAttrs());
568 }
569 
570 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
571   // If this code is reachable then emit a stop point (if generating
572   // debug info). We have to do this ourselves because we are on the
573   // "simple" statement path.
574   if (HaveInsertPoint())
575     EmitStopPoint(&S);
576 
577   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
578 }
579 
580 
581 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
582   if (const LabelDecl *Target = S.getConstantTarget()) {
583     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
584     return;
585   }
586 
587   // Ensure that we have an i8* for our PHI node.
588   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
589                                          Int8PtrTy, "addr");
590   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
591 
592   // Get the basic block for the indirect goto.
593   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
594 
595   // The first instruction in the block has to be the PHI for the switch dest,
596   // add an entry for this branch.
597   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
598 
599   EmitBranch(IndGotoBB);
600 }
601 
602 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
603   // C99 6.8.4.1: The first substatement is executed if the expression compares
604   // unequal to 0.  The condition must be a scalar type.
605   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
606 
607   if (S.getInit())
608     EmitStmt(S.getInit());
609 
610   if (S.getConditionVariable())
611     EmitDecl(*S.getConditionVariable());
612 
613   // If the condition constant folds and can be elided, try to avoid emitting
614   // the condition and the dead arm of the if/else.
615   bool CondConstant;
616   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
617                                    S.isConstexpr())) {
618     // Figure out which block (then or else) is executed.
619     const Stmt *Executed = S.getThen();
620     const Stmt *Skipped  = S.getElse();
621     if (!CondConstant)  // Condition false?
622       std::swap(Executed, Skipped);
623 
624     // If the skipped block has no labels in it, just emit the executed block.
625     // This avoids emitting dead code and simplifies the CFG substantially.
626     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
627       if (CondConstant)
628         incrementProfileCounter(&S);
629       if (Executed) {
630         RunCleanupsScope ExecutedScope(*this);
631         EmitStmt(Executed);
632       }
633       return;
634     }
635   }
636 
637   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
638   // the conditional branch.
639   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
640   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
641   llvm::BasicBlock *ElseBlock = ContBlock;
642   if (S.getElse())
643     ElseBlock = createBasicBlock("if.else");
644 
645   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
646                        getProfileCount(S.getThen()));
647 
648   // Emit the 'then' code.
649   EmitBlock(ThenBlock);
650   incrementProfileCounter(&S);
651   {
652     RunCleanupsScope ThenScope(*this);
653     EmitStmt(S.getThen());
654   }
655   EmitBranch(ContBlock);
656 
657   // Emit the 'else' code if present.
658   if (const Stmt *Else = S.getElse()) {
659     {
660       // There is no need to emit line number for an unconditional branch.
661       auto NL = ApplyDebugLocation::CreateEmpty(*this);
662       EmitBlock(ElseBlock);
663     }
664     {
665       RunCleanupsScope ElseScope(*this);
666       EmitStmt(Else);
667     }
668     {
669       // There is no need to emit line number for an unconditional branch.
670       auto NL = ApplyDebugLocation::CreateEmpty(*this);
671       EmitBranch(ContBlock);
672     }
673   }
674 
675   // Emit the continuation block for code after the if.
676   EmitBlock(ContBlock, true);
677 }
678 
679 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
680                                     ArrayRef<const Attr *> WhileAttrs) {
681   // Emit the header for the loop, which will also become
682   // the continue target.
683   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
684   EmitBlock(LoopHeader.getBlock());
685 
686   const SourceRange &R = S.getSourceRange();
687   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
688                  SourceLocToDebugLoc(R.getBegin()),
689                  SourceLocToDebugLoc(R.getEnd()));
690 
691   // Create an exit block for when the condition fails, which will
692   // also become the break target.
693   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
694 
695   // Store the blocks to use for break and continue.
696   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
697 
698   // C++ [stmt.while]p2:
699   //   When the condition of a while statement is a declaration, the
700   //   scope of the variable that is declared extends from its point
701   //   of declaration (3.3.2) to the end of the while statement.
702   //   [...]
703   //   The object created in a condition is destroyed and created
704   //   with each iteration of the loop.
705   RunCleanupsScope ConditionScope(*this);
706 
707   if (S.getConditionVariable())
708     EmitDecl(*S.getConditionVariable());
709 
710   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
711   // evaluation of the controlling expression takes place before each
712   // execution of the loop body.
713   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
714 
715   // while(1) is common, avoid extra exit blocks.  Be sure
716   // to correctly handle break/continue though.
717   bool EmitBoolCondBranch = true;
718   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
719     if (C->isOne())
720       EmitBoolCondBranch = false;
721 
722   // As long as the condition is true, go to the loop body.
723   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
724   if (EmitBoolCondBranch) {
725     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
726     if (ConditionScope.requiresCleanups())
727       ExitBlock = createBasicBlock("while.exit");
728     Builder.CreateCondBr(
729         BoolCondVal, LoopBody, ExitBlock,
730         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
731 
732     if (ExitBlock != LoopExit.getBlock()) {
733       EmitBlock(ExitBlock);
734       EmitBranchThroughCleanup(LoopExit);
735     }
736   }
737 
738   // Emit the loop body.  We have to emit this in a cleanup scope
739   // because it might be a singleton DeclStmt.
740   {
741     RunCleanupsScope BodyScope(*this);
742     EmitBlock(LoopBody);
743     incrementProfileCounter(&S);
744     EmitStmt(S.getBody());
745   }
746 
747   BreakContinueStack.pop_back();
748 
749   // Immediately force cleanup.
750   ConditionScope.ForceCleanup();
751 
752   EmitStopPoint(&S);
753   // Branch to the loop header again.
754   EmitBranch(LoopHeader.getBlock());
755 
756   LoopStack.pop();
757 
758   // Emit the exit block.
759   EmitBlock(LoopExit.getBlock(), true);
760 
761   // The LoopHeader typically is just a branch if we skipped emitting
762   // a branch, try to erase it.
763   if (!EmitBoolCondBranch)
764     SimplifyForwardingBlocks(LoopHeader.getBlock());
765 }
766 
767 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
768                                  ArrayRef<const Attr *> DoAttrs) {
769   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
770   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
771 
772   uint64_t ParentCount = getCurrentProfileCount();
773 
774   // Store the blocks to use for break and continue.
775   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
776 
777   // Emit the body of the loop.
778   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
779 
780   EmitBlockWithFallThrough(LoopBody, &S);
781   {
782     RunCleanupsScope BodyScope(*this);
783     EmitStmt(S.getBody());
784   }
785 
786   EmitBlock(LoopCond.getBlock());
787 
788   const SourceRange &R = S.getSourceRange();
789   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
790                  SourceLocToDebugLoc(R.getBegin()),
791                  SourceLocToDebugLoc(R.getEnd()));
792 
793   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
794   // after each execution of the loop body."
795 
796   // Evaluate the conditional in the while header.
797   // C99 6.8.5p2/p4: The first substatement is executed if the expression
798   // compares unequal to 0.  The condition must be a scalar type.
799   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
800 
801   BreakContinueStack.pop_back();
802 
803   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
804   // to correctly handle break/continue though.
805   bool EmitBoolCondBranch = true;
806   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
807     if (C->isZero())
808       EmitBoolCondBranch = false;
809 
810   // As long as the condition is true, iterate the loop.
811   if (EmitBoolCondBranch) {
812     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
813     Builder.CreateCondBr(
814         BoolCondVal, LoopBody, LoopExit.getBlock(),
815         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
816   }
817 
818   LoopStack.pop();
819 
820   // Emit the exit block.
821   EmitBlock(LoopExit.getBlock());
822 
823   // The DoCond block typically is just a branch if we skipped
824   // emitting a branch, try to erase it.
825   if (!EmitBoolCondBranch)
826     SimplifyForwardingBlocks(LoopCond.getBlock());
827 }
828 
829 void CodeGenFunction::EmitForStmt(const ForStmt &S,
830                                   ArrayRef<const Attr *> ForAttrs) {
831   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
832 
833   LexicalScope ForScope(*this, S.getSourceRange());
834 
835   // Evaluate the first part before the loop.
836   if (S.getInit())
837     EmitStmt(S.getInit());
838 
839   // Start the loop with a block that tests the condition.
840   // If there's an increment, the continue scope will be overwritten
841   // later.
842   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
843   llvm::BasicBlock *CondBlock = Continue.getBlock();
844   EmitBlock(CondBlock);
845 
846   const SourceRange &R = S.getSourceRange();
847   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
848                  SourceLocToDebugLoc(R.getBegin()),
849                  SourceLocToDebugLoc(R.getEnd()));
850 
851   // If the for loop doesn't have an increment we can just use the
852   // condition as the continue block.  Otherwise we'll need to create
853   // a block for it (in the current scope, i.e. in the scope of the
854   // condition), and that we will become our continue block.
855   if (S.getInc())
856     Continue = getJumpDestInCurrentScope("for.inc");
857 
858   // Store the blocks to use for break and continue.
859   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
860 
861   // Create a cleanup scope for the condition variable cleanups.
862   LexicalScope ConditionScope(*this, S.getSourceRange());
863 
864   if (S.getCond()) {
865     // If the for statement has a condition scope, emit the local variable
866     // declaration.
867     if (S.getConditionVariable()) {
868       EmitDecl(*S.getConditionVariable());
869     }
870 
871     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
872     // If there are any cleanups between here and the loop-exit scope,
873     // create a block to stage a loop exit along.
874     if (ForScope.requiresCleanups())
875       ExitBlock = createBasicBlock("for.cond.cleanup");
876 
877     // As long as the condition is true, iterate the loop.
878     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
879 
880     // C99 6.8.5p2/p4: The first substatement is executed if the expression
881     // compares unequal to 0.  The condition must be a scalar type.
882     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
883     Builder.CreateCondBr(
884         BoolCondVal, ForBody, ExitBlock,
885         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
886 
887     if (ExitBlock != LoopExit.getBlock()) {
888       EmitBlock(ExitBlock);
889       EmitBranchThroughCleanup(LoopExit);
890     }
891 
892     EmitBlock(ForBody);
893   } else {
894     // Treat it as a non-zero constant.  Don't even create a new block for the
895     // body, just fall into it.
896   }
897   incrementProfileCounter(&S);
898 
899   {
900     // Create a separate cleanup scope for the body, in case it is not
901     // a compound statement.
902     RunCleanupsScope BodyScope(*this);
903     EmitStmt(S.getBody());
904   }
905 
906   // If there is an increment, emit it next.
907   if (S.getInc()) {
908     EmitBlock(Continue.getBlock());
909     EmitStmt(S.getInc());
910   }
911 
912   BreakContinueStack.pop_back();
913 
914   ConditionScope.ForceCleanup();
915 
916   EmitStopPoint(&S);
917   EmitBranch(CondBlock);
918 
919   ForScope.ForceCleanup();
920 
921   LoopStack.pop();
922 
923   // Emit the fall-through block.
924   EmitBlock(LoopExit.getBlock(), true);
925 }
926 
927 void
928 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
929                                      ArrayRef<const Attr *> ForAttrs) {
930   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
931 
932   LexicalScope ForScope(*this, S.getSourceRange());
933 
934   // Evaluate the first pieces before the loop.
935   if (S.getInit())
936     EmitStmt(S.getInit());
937   EmitStmt(S.getRangeStmt());
938   EmitStmt(S.getBeginStmt());
939   EmitStmt(S.getEndStmt());
940 
941   // Start the loop with a block that tests the condition.
942   // If there's an increment, the continue scope will be overwritten
943   // later.
944   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
945   EmitBlock(CondBlock);
946 
947   const SourceRange &R = S.getSourceRange();
948   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
949                  SourceLocToDebugLoc(R.getBegin()),
950                  SourceLocToDebugLoc(R.getEnd()));
951 
952   // If there are any cleanups between here and the loop-exit scope,
953   // create a block to stage a loop exit along.
954   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
955   if (ForScope.requiresCleanups())
956     ExitBlock = createBasicBlock("for.cond.cleanup");
957 
958   // The loop body, consisting of the specified body and the loop variable.
959   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
960 
961   // The body is executed if the expression, contextually converted
962   // to bool, is true.
963   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
964   Builder.CreateCondBr(
965       BoolCondVal, ForBody, ExitBlock,
966       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
967 
968   if (ExitBlock != LoopExit.getBlock()) {
969     EmitBlock(ExitBlock);
970     EmitBranchThroughCleanup(LoopExit);
971   }
972 
973   EmitBlock(ForBody);
974   incrementProfileCounter(&S);
975 
976   // Create a block for the increment. In case of a 'continue', we jump there.
977   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
978 
979   // Store the blocks to use for break and continue.
980   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
981 
982   {
983     // Create a separate cleanup scope for the loop variable and body.
984     LexicalScope BodyScope(*this, S.getSourceRange());
985     EmitStmt(S.getLoopVarStmt());
986     EmitStmt(S.getBody());
987   }
988 
989   EmitStopPoint(&S);
990   // If there is an increment, emit it next.
991   EmitBlock(Continue.getBlock());
992   EmitStmt(S.getInc());
993 
994   BreakContinueStack.pop_back();
995 
996   EmitBranch(CondBlock);
997 
998   ForScope.ForceCleanup();
999 
1000   LoopStack.pop();
1001 
1002   // Emit the fall-through block.
1003   EmitBlock(LoopExit.getBlock(), true);
1004 }
1005 
1006 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1007   if (RV.isScalar()) {
1008     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1009   } else if (RV.isAggregate()) {
1010     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1011     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1012     EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue());
1013   } else {
1014     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1015                        /*init*/ true);
1016   }
1017   EmitBranchThroughCleanup(ReturnBlock);
1018 }
1019 
1020 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1021 /// if the function returns void, or may be missing one if the function returns
1022 /// non-void.  Fun stuff :).
1023 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1024   if (requiresReturnValueCheck()) {
1025     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1026     auto *SLocPtr =
1027         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1028                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1029     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1030     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1031     assert(ReturnLocation.isValid() && "No valid return location");
1032     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1033                         ReturnLocation);
1034   }
1035 
1036   // Returning from an outlined SEH helper is UB, and we already warn on it.
1037   if (IsOutlinedSEHHelper) {
1038     Builder.CreateUnreachable();
1039     Builder.ClearInsertionPoint();
1040   }
1041 
1042   // Emit the result value, even if unused, to evaluate the side effects.
1043   const Expr *RV = S.getRetValue();
1044 
1045   // Treat block literals in a return expression as if they appeared
1046   // in their own scope.  This permits a small, easily-implemented
1047   // exception to our over-conservative rules about not jumping to
1048   // statements following block literals with non-trivial cleanups.
1049   RunCleanupsScope cleanupScope(*this);
1050   if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) {
1051     enterFullExpression(fe);
1052     RV = fe->getSubExpr();
1053   }
1054 
1055   // FIXME: Clean this up by using an LValue for ReturnTemp,
1056   // EmitStoreThroughLValue, and EmitAnyExpr.
1057   if (getLangOpts().ElideConstructors &&
1058       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1059     // Apply the named return value optimization for this return statement,
1060     // which means doing nothing: the appropriate result has already been
1061     // constructed into the NRVO variable.
1062 
1063     // If there is an NRVO flag for this variable, set it to 1 into indicate
1064     // that the cleanup code should not destroy the variable.
1065     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1066       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1067   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1068     // Make sure not to return anything, but evaluate the expression
1069     // for side effects.
1070     if (RV)
1071       EmitAnyExpr(RV);
1072   } else if (!RV) {
1073     // Do nothing (return value is left uninitialized)
1074   } else if (FnRetTy->isReferenceType()) {
1075     // If this function returns a reference, take the address of the expression
1076     // rather than the value.
1077     RValue Result = EmitReferenceBindingToExpr(RV);
1078     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1079   } else {
1080     switch (getEvaluationKind(RV->getType())) {
1081     case TEK_Scalar:
1082       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1083       break;
1084     case TEK_Complex:
1085       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1086                                 /*isInit*/ true);
1087       break;
1088     case TEK_Aggregate:
1089       EmitAggExpr(RV, AggValueSlot::forAddr(
1090                           ReturnValue, Qualifiers(),
1091                           AggValueSlot::IsDestructed,
1092                           AggValueSlot::DoesNotNeedGCBarriers,
1093                           AggValueSlot::IsNotAliased,
1094                           overlapForReturnValue()));
1095       break;
1096     }
1097   }
1098 
1099   ++NumReturnExprs;
1100   if (!RV || RV->isEvaluatable(getContext()))
1101     ++NumSimpleReturnExprs;
1102 
1103   cleanupScope.ForceCleanup();
1104   EmitBranchThroughCleanup(ReturnBlock);
1105 }
1106 
1107 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1108   // As long as debug info is modeled with instructions, we have to ensure we
1109   // have a place to insert here and write the stop point here.
1110   if (HaveInsertPoint())
1111     EmitStopPoint(&S);
1112 
1113   for (const auto *I : S.decls())
1114     EmitDecl(*I);
1115 }
1116 
1117 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1118   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1119 
1120   // If this code is reachable then emit a stop point (if generating
1121   // debug info). We have to do this ourselves because we are on the
1122   // "simple" statement path.
1123   if (HaveInsertPoint())
1124     EmitStopPoint(&S);
1125 
1126   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1127 }
1128 
1129 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1130   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1131 
1132   // If this code is reachable then emit a stop point (if generating
1133   // debug info). We have to do this ourselves because we are on the
1134   // "simple" statement path.
1135   if (HaveInsertPoint())
1136     EmitStopPoint(&S);
1137 
1138   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1139 }
1140 
1141 /// EmitCaseStmtRange - If case statement range is not too big then
1142 /// add multiple cases to switch instruction, one for each value within
1143 /// the range. If range is too big then emit "if" condition check.
1144 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1145   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1146 
1147   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1148   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1149 
1150   // Emit the code for this case. We do this first to make sure it is
1151   // properly chained from our predecessor before generating the
1152   // switch machinery to enter this block.
1153   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1154   EmitBlockWithFallThrough(CaseDest, &S);
1155   EmitStmt(S.getSubStmt());
1156 
1157   // If range is empty, do nothing.
1158   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1159     return;
1160 
1161   llvm::APInt Range = RHS - LHS;
1162   // FIXME: parameters such as this should not be hardcoded.
1163   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1164     // Range is small enough to add multiple switch instruction cases.
1165     uint64_t Total = getProfileCount(&S);
1166     unsigned NCases = Range.getZExtValue() + 1;
1167     // We only have one region counter for the entire set of cases here, so we
1168     // need to divide the weights evenly between the generated cases, ensuring
1169     // that the total weight is preserved. E.g., a weight of 5 over three cases
1170     // will be distributed as weights of 2, 2, and 1.
1171     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1172     for (unsigned I = 0; I != NCases; ++I) {
1173       if (SwitchWeights)
1174         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1175       if (Rem)
1176         Rem--;
1177       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1178       ++LHS;
1179     }
1180     return;
1181   }
1182 
1183   // The range is too big. Emit "if" condition into a new block,
1184   // making sure to save and restore the current insertion point.
1185   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1186 
1187   // Push this test onto the chain of range checks (which terminates
1188   // in the default basic block). The switch's default will be changed
1189   // to the top of this chain after switch emission is complete.
1190   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1191   CaseRangeBlock = createBasicBlock("sw.caserange");
1192 
1193   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1194   Builder.SetInsertPoint(CaseRangeBlock);
1195 
1196   // Emit range check.
1197   llvm::Value *Diff =
1198     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1199   llvm::Value *Cond =
1200     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1201 
1202   llvm::MDNode *Weights = nullptr;
1203   if (SwitchWeights) {
1204     uint64_t ThisCount = getProfileCount(&S);
1205     uint64_t DefaultCount = (*SwitchWeights)[0];
1206     Weights = createProfileWeights(ThisCount, DefaultCount);
1207 
1208     // Since we're chaining the switch default through each large case range, we
1209     // need to update the weight for the default, ie, the first case, to include
1210     // this case.
1211     (*SwitchWeights)[0] += ThisCount;
1212   }
1213   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1214 
1215   // Restore the appropriate insertion point.
1216   if (RestoreBB)
1217     Builder.SetInsertPoint(RestoreBB);
1218   else
1219     Builder.ClearInsertionPoint();
1220 }
1221 
1222 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1223   // If there is no enclosing switch instance that we're aware of, then this
1224   // case statement and its block can be elided.  This situation only happens
1225   // when we've constant-folded the switch, are emitting the constant case,
1226   // and part of the constant case includes another case statement.  For
1227   // instance: switch (4) { case 4: do { case 5: } while (1); }
1228   if (!SwitchInsn) {
1229     EmitStmt(S.getSubStmt());
1230     return;
1231   }
1232 
1233   // Handle case ranges.
1234   if (S.getRHS()) {
1235     EmitCaseStmtRange(S);
1236     return;
1237   }
1238 
1239   llvm::ConstantInt *CaseVal =
1240     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1241 
1242   // If the body of the case is just a 'break', try to not emit an empty block.
1243   // If we're profiling or we're not optimizing, leave the block in for better
1244   // debug and coverage analysis.
1245   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1246       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1247       isa<BreakStmt>(S.getSubStmt())) {
1248     JumpDest Block = BreakContinueStack.back().BreakBlock;
1249 
1250     // Only do this optimization if there are no cleanups that need emitting.
1251     if (isObviouslyBranchWithoutCleanups(Block)) {
1252       if (SwitchWeights)
1253         SwitchWeights->push_back(getProfileCount(&S));
1254       SwitchInsn->addCase(CaseVal, Block.getBlock());
1255 
1256       // If there was a fallthrough into this case, make sure to redirect it to
1257       // the end of the switch as well.
1258       if (Builder.GetInsertBlock()) {
1259         Builder.CreateBr(Block.getBlock());
1260         Builder.ClearInsertionPoint();
1261       }
1262       return;
1263     }
1264   }
1265 
1266   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1267   EmitBlockWithFallThrough(CaseDest, &S);
1268   if (SwitchWeights)
1269     SwitchWeights->push_back(getProfileCount(&S));
1270   SwitchInsn->addCase(CaseVal, CaseDest);
1271 
1272   // Recursively emitting the statement is acceptable, but is not wonderful for
1273   // code where we have many case statements nested together, i.e.:
1274   //  case 1:
1275   //    case 2:
1276   //      case 3: etc.
1277   // Handling this recursively will create a new block for each case statement
1278   // that falls through to the next case which is IR intensive.  It also causes
1279   // deep recursion which can run into stack depth limitations.  Handle
1280   // sequential non-range case statements specially.
1281   const CaseStmt *CurCase = &S;
1282   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1283 
1284   // Otherwise, iteratively add consecutive cases to this switch stmt.
1285   while (NextCase && NextCase->getRHS() == nullptr) {
1286     CurCase = NextCase;
1287     llvm::ConstantInt *CaseVal =
1288       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1289 
1290     if (SwitchWeights)
1291       SwitchWeights->push_back(getProfileCount(NextCase));
1292     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1293       CaseDest = createBasicBlock("sw.bb");
1294       EmitBlockWithFallThrough(CaseDest, &S);
1295     }
1296 
1297     SwitchInsn->addCase(CaseVal, CaseDest);
1298     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1299   }
1300 
1301   // Normal default recursion for non-cases.
1302   EmitStmt(CurCase->getSubStmt());
1303 }
1304 
1305 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1306   // If there is no enclosing switch instance that we're aware of, then this
1307   // default statement can be elided. This situation only happens when we've
1308   // constant-folded the switch.
1309   if (!SwitchInsn) {
1310     EmitStmt(S.getSubStmt());
1311     return;
1312   }
1313 
1314   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1315   assert(DefaultBlock->empty() &&
1316          "EmitDefaultStmt: Default block already defined?");
1317 
1318   EmitBlockWithFallThrough(DefaultBlock, &S);
1319 
1320   EmitStmt(S.getSubStmt());
1321 }
1322 
1323 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1324 /// constant value that is being switched on, see if we can dead code eliminate
1325 /// the body of the switch to a simple series of statements to emit.  Basically,
1326 /// on a switch (5) we want to find these statements:
1327 ///    case 5:
1328 ///      printf(...);    <--
1329 ///      ++i;            <--
1330 ///      break;
1331 ///
1332 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1333 /// transformation (for example, one of the elided statements contains a label
1334 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1335 /// should include statements after it (e.g. the printf() line is a substmt of
1336 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1337 /// statement, then return CSFC_Success.
1338 ///
1339 /// If Case is non-null, then we are looking for the specified case, checking
1340 /// that nothing we jump over contains labels.  If Case is null, then we found
1341 /// the case and are looking for the break.
1342 ///
1343 /// If the recursive walk actually finds our Case, then we set FoundCase to
1344 /// true.
1345 ///
1346 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1347 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1348                                             const SwitchCase *Case,
1349                                             bool &FoundCase,
1350                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1351   // If this is a null statement, just succeed.
1352   if (!S)
1353     return Case ? CSFC_Success : CSFC_FallThrough;
1354 
1355   // If this is the switchcase (case 4: or default) that we're looking for, then
1356   // we're in business.  Just add the substatement.
1357   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1358     if (S == Case) {
1359       FoundCase = true;
1360       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1361                                       ResultStmts);
1362     }
1363 
1364     // Otherwise, this is some other case or default statement, just ignore it.
1365     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1366                                     ResultStmts);
1367   }
1368 
1369   // If we are in the live part of the code and we found our break statement,
1370   // return a success!
1371   if (!Case && isa<BreakStmt>(S))
1372     return CSFC_Success;
1373 
1374   // If this is a switch statement, then it might contain the SwitchCase, the
1375   // break, or neither.
1376   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1377     // Handle this as two cases: we might be looking for the SwitchCase (if so
1378     // the skipped statements must be skippable) or we might already have it.
1379     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1380     bool StartedInLiveCode = FoundCase;
1381     unsigned StartSize = ResultStmts.size();
1382 
1383     // If we've not found the case yet, scan through looking for it.
1384     if (Case) {
1385       // Keep track of whether we see a skipped declaration.  The code could be
1386       // using the declaration even if it is skipped, so we can't optimize out
1387       // the decl if the kept statements might refer to it.
1388       bool HadSkippedDecl = false;
1389 
1390       // If we're looking for the case, just see if we can skip each of the
1391       // substatements.
1392       for (; Case && I != E; ++I) {
1393         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1394 
1395         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1396         case CSFC_Failure: return CSFC_Failure;
1397         case CSFC_Success:
1398           // A successful result means that either 1) that the statement doesn't
1399           // have the case and is skippable, or 2) does contain the case value
1400           // and also contains the break to exit the switch.  In the later case,
1401           // we just verify the rest of the statements are elidable.
1402           if (FoundCase) {
1403             // If we found the case and skipped declarations, we can't do the
1404             // optimization.
1405             if (HadSkippedDecl)
1406               return CSFC_Failure;
1407 
1408             for (++I; I != E; ++I)
1409               if (CodeGenFunction::ContainsLabel(*I, true))
1410                 return CSFC_Failure;
1411             return CSFC_Success;
1412           }
1413           break;
1414         case CSFC_FallThrough:
1415           // If we have a fallthrough condition, then we must have found the
1416           // case started to include statements.  Consider the rest of the
1417           // statements in the compound statement as candidates for inclusion.
1418           assert(FoundCase && "Didn't find case but returned fallthrough?");
1419           // We recursively found Case, so we're not looking for it anymore.
1420           Case = nullptr;
1421 
1422           // If we found the case and skipped declarations, we can't do the
1423           // optimization.
1424           if (HadSkippedDecl)
1425             return CSFC_Failure;
1426           break;
1427         }
1428       }
1429 
1430       if (!FoundCase)
1431         return CSFC_Success;
1432 
1433       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1434     }
1435 
1436     // If we have statements in our range, then we know that the statements are
1437     // live and need to be added to the set of statements we're tracking.
1438     bool AnyDecls = false;
1439     for (; I != E; ++I) {
1440       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1441 
1442       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1443       case CSFC_Failure: return CSFC_Failure;
1444       case CSFC_FallThrough:
1445         // A fallthrough result means that the statement was simple and just
1446         // included in ResultStmt, keep adding them afterwards.
1447         break;
1448       case CSFC_Success:
1449         // A successful result means that we found the break statement and
1450         // stopped statement inclusion.  We just ensure that any leftover stmts
1451         // are skippable and return success ourselves.
1452         for (++I; I != E; ++I)
1453           if (CodeGenFunction::ContainsLabel(*I, true))
1454             return CSFC_Failure;
1455         return CSFC_Success;
1456       }
1457     }
1458 
1459     // If we're about to fall out of a scope without hitting a 'break;', we
1460     // can't perform the optimization if there were any decls in that scope
1461     // (we'd lose their end-of-lifetime).
1462     if (AnyDecls) {
1463       // If the entire compound statement was live, there's one more thing we
1464       // can try before giving up: emit the whole thing as a single statement.
1465       // We can do that unless the statement contains a 'break;'.
1466       // FIXME: Such a break must be at the end of a construct within this one.
1467       // We could emit this by just ignoring the BreakStmts entirely.
1468       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1469         ResultStmts.resize(StartSize);
1470         ResultStmts.push_back(S);
1471       } else {
1472         return CSFC_Failure;
1473       }
1474     }
1475 
1476     return CSFC_FallThrough;
1477   }
1478 
1479   // Okay, this is some other statement that we don't handle explicitly, like a
1480   // for statement or increment etc.  If we are skipping over this statement,
1481   // just verify it doesn't have labels, which would make it invalid to elide.
1482   if (Case) {
1483     if (CodeGenFunction::ContainsLabel(S, true))
1484       return CSFC_Failure;
1485     return CSFC_Success;
1486   }
1487 
1488   // Otherwise, we want to include this statement.  Everything is cool with that
1489   // so long as it doesn't contain a break out of the switch we're in.
1490   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1491 
1492   // Otherwise, everything is great.  Include the statement and tell the caller
1493   // that we fall through and include the next statement as well.
1494   ResultStmts.push_back(S);
1495   return CSFC_FallThrough;
1496 }
1497 
1498 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1499 /// then invoke CollectStatementsForCase to find the list of statements to emit
1500 /// for a switch on constant.  See the comment above CollectStatementsForCase
1501 /// for more details.
1502 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1503                                        const llvm::APSInt &ConstantCondValue,
1504                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1505                                        ASTContext &C,
1506                                        const SwitchCase *&ResultCase) {
1507   // First step, find the switch case that is being branched to.  We can do this
1508   // efficiently by scanning the SwitchCase list.
1509   const SwitchCase *Case = S.getSwitchCaseList();
1510   const DefaultStmt *DefaultCase = nullptr;
1511 
1512   for (; Case; Case = Case->getNextSwitchCase()) {
1513     // It's either a default or case.  Just remember the default statement in
1514     // case we're not jumping to any numbered cases.
1515     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1516       DefaultCase = DS;
1517       continue;
1518     }
1519 
1520     // Check to see if this case is the one we're looking for.
1521     const CaseStmt *CS = cast<CaseStmt>(Case);
1522     // Don't handle case ranges yet.
1523     if (CS->getRHS()) return false;
1524 
1525     // If we found our case, remember it as 'case'.
1526     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1527       break;
1528   }
1529 
1530   // If we didn't find a matching case, we use a default if it exists, or we
1531   // elide the whole switch body!
1532   if (!Case) {
1533     // It is safe to elide the body of the switch if it doesn't contain labels
1534     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1535     if (!DefaultCase)
1536       return !CodeGenFunction::ContainsLabel(&S);
1537     Case = DefaultCase;
1538   }
1539 
1540   // Ok, we know which case is being jumped to, try to collect all the
1541   // statements that follow it.  This can fail for a variety of reasons.  Also,
1542   // check to see that the recursive walk actually found our case statement.
1543   // Insane cases like this can fail to find it in the recursive walk since we
1544   // don't handle every stmt kind:
1545   // switch (4) {
1546   //   while (1) {
1547   //     case 4: ...
1548   bool FoundCase = false;
1549   ResultCase = Case;
1550   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1551                                   ResultStmts) != CSFC_Failure &&
1552          FoundCase;
1553 }
1554 
1555 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1556   // Handle nested switch statements.
1557   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1558   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1559   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1560 
1561   // See if we can constant fold the condition of the switch and therefore only
1562   // emit the live case statement (if any) of the switch.
1563   llvm::APSInt ConstantCondValue;
1564   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1565     SmallVector<const Stmt*, 4> CaseStmts;
1566     const SwitchCase *Case = nullptr;
1567     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1568                                    getContext(), Case)) {
1569       if (Case)
1570         incrementProfileCounter(Case);
1571       RunCleanupsScope ExecutedScope(*this);
1572 
1573       if (S.getInit())
1574         EmitStmt(S.getInit());
1575 
1576       // Emit the condition variable if needed inside the entire cleanup scope
1577       // used by this special case for constant folded switches.
1578       if (S.getConditionVariable())
1579         EmitDecl(*S.getConditionVariable());
1580 
1581       // At this point, we are no longer "within" a switch instance, so
1582       // we can temporarily enforce this to ensure that any embedded case
1583       // statements are not emitted.
1584       SwitchInsn = nullptr;
1585 
1586       // Okay, we can dead code eliminate everything except this case.  Emit the
1587       // specified series of statements and we're good.
1588       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1589         EmitStmt(CaseStmts[i]);
1590       incrementProfileCounter(&S);
1591 
1592       // Now we want to restore the saved switch instance so that nested
1593       // switches continue to function properly
1594       SwitchInsn = SavedSwitchInsn;
1595 
1596       return;
1597     }
1598   }
1599 
1600   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1601 
1602   RunCleanupsScope ConditionScope(*this);
1603 
1604   if (S.getInit())
1605     EmitStmt(S.getInit());
1606 
1607   if (S.getConditionVariable())
1608     EmitDecl(*S.getConditionVariable());
1609   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1610 
1611   // Create basic block to hold stuff that comes after switch
1612   // statement. We also need to create a default block now so that
1613   // explicit case ranges tests can have a place to jump to on
1614   // failure.
1615   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1616   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1617   if (PGO.haveRegionCounts()) {
1618     // Walk the SwitchCase list to find how many there are.
1619     uint64_t DefaultCount = 0;
1620     unsigned NumCases = 0;
1621     for (const SwitchCase *Case = S.getSwitchCaseList();
1622          Case;
1623          Case = Case->getNextSwitchCase()) {
1624       if (isa<DefaultStmt>(Case))
1625         DefaultCount = getProfileCount(Case);
1626       NumCases += 1;
1627     }
1628     SwitchWeights = new SmallVector<uint64_t, 16>();
1629     SwitchWeights->reserve(NumCases);
1630     // The default needs to be first. We store the edge count, so we already
1631     // know the right weight.
1632     SwitchWeights->push_back(DefaultCount);
1633   }
1634   CaseRangeBlock = DefaultBlock;
1635 
1636   // Clear the insertion point to indicate we are in unreachable code.
1637   Builder.ClearInsertionPoint();
1638 
1639   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1640   // then reuse last ContinueBlock.
1641   JumpDest OuterContinue;
1642   if (!BreakContinueStack.empty())
1643     OuterContinue = BreakContinueStack.back().ContinueBlock;
1644 
1645   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1646 
1647   // Emit switch body.
1648   EmitStmt(S.getBody());
1649 
1650   BreakContinueStack.pop_back();
1651 
1652   // Update the default block in case explicit case range tests have
1653   // been chained on top.
1654   SwitchInsn->setDefaultDest(CaseRangeBlock);
1655 
1656   // If a default was never emitted:
1657   if (!DefaultBlock->getParent()) {
1658     // If we have cleanups, emit the default block so that there's a
1659     // place to jump through the cleanups from.
1660     if (ConditionScope.requiresCleanups()) {
1661       EmitBlock(DefaultBlock);
1662 
1663     // Otherwise, just forward the default block to the switch end.
1664     } else {
1665       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1666       delete DefaultBlock;
1667     }
1668   }
1669 
1670   ConditionScope.ForceCleanup();
1671 
1672   // Emit continuation.
1673   EmitBlock(SwitchExit.getBlock(), true);
1674   incrementProfileCounter(&S);
1675 
1676   // If the switch has a condition wrapped by __builtin_unpredictable,
1677   // create metadata that specifies that the switch is unpredictable.
1678   // Don't bother if not optimizing because that metadata would not be used.
1679   auto *Call = dyn_cast<CallExpr>(S.getCond());
1680   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1681     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1682     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1683       llvm::MDBuilder MDHelper(getLLVMContext());
1684       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1685                               MDHelper.createUnpredictable());
1686     }
1687   }
1688 
1689   if (SwitchWeights) {
1690     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1691            "switch weights do not match switch cases");
1692     // If there's only one jump destination there's no sense weighting it.
1693     if (SwitchWeights->size() > 1)
1694       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1695                               createProfileWeights(*SwitchWeights));
1696     delete SwitchWeights;
1697   }
1698   SwitchInsn = SavedSwitchInsn;
1699   SwitchWeights = SavedSwitchWeights;
1700   CaseRangeBlock = SavedCRBlock;
1701 }
1702 
1703 static std::string
1704 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1705                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1706   std::string Result;
1707 
1708   while (*Constraint) {
1709     switch (*Constraint) {
1710     default:
1711       Result += Target.convertConstraint(Constraint);
1712       break;
1713     // Ignore these
1714     case '*':
1715     case '?':
1716     case '!':
1717     case '=': // Will see this and the following in mult-alt constraints.
1718     case '+':
1719       break;
1720     case '#': // Ignore the rest of the constraint alternative.
1721       while (Constraint[1] && Constraint[1] != ',')
1722         Constraint++;
1723       break;
1724     case '&':
1725     case '%':
1726       Result += *Constraint;
1727       while (Constraint[1] && Constraint[1] == *Constraint)
1728         Constraint++;
1729       break;
1730     case ',':
1731       Result += "|";
1732       break;
1733     case 'g':
1734       Result += "imr";
1735       break;
1736     case '[': {
1737       assert(OutCons &&
1738              "Must pass output names to constraints with a symbolic name");
1739       unsigned Index;
1740       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1741       assert(result && "Could not resolve symbolic name"); (void)result;
1742       Result += llvm::utostr(Index);
1743       break;
1744     }
1745     }
1746 
1747     Constraint++;
1748   }
1749 
1750   return Result;
1751 }
1752 
1753 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1754 /// as using a particular register add that as a constraint that will be used
1755 /// in this asm stmt.
1756 static std::string
1757 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1758                        const TargetInfo &Target, CodeGenModule &CGM,
1759                        const AsmStmt &Stmt, const bool EarlyClobber) {
1760   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1761   if (!AsmDeclRef)
1762     return Constraint;
1763   const ValueDecl &Value = *AsmDeclRef->getDecl();
1764   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1765   if (!Variable)
1766     return Constraint;
1767   if (Variable->getStorageClass() != SC_Register)
1768     return Constraint;
1769   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1770   if (!Attr)
1771     return Constraint;
1772   StringRef Register = Attr->getLabel();
1773   assert(Target.isValidGCCRegisterName(Register));
1774   // We're using validateOutputConstraint here because we only care if
1775   // this is a register constraint.
1776   TargetInfo::ConstraintInfo Info(Constraint, "");
1777   if (Target.validateOutputConstraint(Info) &&
1778       !Info.allowsRegister()) {
1779     CGM.ErrorUnsupported(&Stmt, "__asm__");
1780     return Constraint;
1781   }
1782   // Canonicalize the register here before returning it.
1783   Register = Target.getNormalizedGCCRegisterName(Register);
1784   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1785 }
1786 
1787 llvm::Value*
1788 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1789                                     LValue InputValue, QualType InputType,
1790                                     std::string &ConstraintStr,
1791                                     SourceLocation Loc) {
1792   llvm::Value *Arg;
1793   if (Info.allowsRegister() || !Info.allowsMemory()) {
1794     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1795       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1796     } else {
1797       llvm::Type *Ty = ConvertType(InputType);
1798       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1799       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1800         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1801         Ty = llvm::PointerType::getUnqual(Ty);
1802 
1803         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1804                                                        Ty));
1805       } else {
1806         Arg = InputValue.getPointer();
1807         ConstraintStr += '*';
1808       }
1809     }
1810   } else {
1811     Arg = InputValue.getPointer();
1812     ConstraintStr += '*';
1813   }
1814 
1815   return Arg;
1816 }
1817 
1818 llvm::Value* CodeGenFunction::EmitAsmInput(
1819                                          const TargetInfo::ConstraintInfo &Info,
1820                                            const Expr *InputExpr,
1821                                            std::string &ConstraintStr) {
1822   // If this can't be a register or memory, i.e., has to be a constant
1823   // (immediate or symbolic), try to emit it as such.
1824   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1825     llvm::APSInt Result;
1826     if (InputExpr->EvaluateAsInt(Result, getContext()))
1827       return llvm::ConstantInt::get(getLLVMContext(), Result);
1828     assert(!Info.requiresImmediateConstant() &&
1829            "Required-immediate inlineasm arg isn't constant?");
1830   }
1831 
1832   if (Info.allowsRegister() || !Info.allowsMemory())
1833     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1834       return EmitScalarExpr(InputExpr);
1835   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1836     return EmitScalarExpr(InputExpr);
1837   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1838   LValue Dest = EmitLValue(InputExpr);
1839   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1840                             InputExpr->getExprLoc());
1841 }
1842 
1843 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1844 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1845 /// integers which are the source locations of the start of each line in the
1846 /// asm.
1847 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1848                                       CodeGenFunction &CGF) {
1849   SmallVector<llvm::Metadata *, 8> Locs;
1850   // Add the location of the first line to the MDNode.
1851   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1852       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1853   StringRef StrVal = Str->getString();
1854   if (!StrVal.empty()) {
1855     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1856     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1857     unsigned StartToken = 0;
1858     unsigned ByteOffset = 0;
1859 
1860     // Add the location of the start of each subsequent line of the asm to the
1861     // MDNode.
1862     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1863       if (StrVal[i] != '\n') continue;
1864       SourceLocation LineLoc = Str->getLocationOfByte(
1865           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1866       Locs.push_back(llvm::ConstantAsMetadata::get(
1867           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1868     }
1869   }
1870 
1871   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1872 }
1873 
1874 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1875   // Assemble the final asm string.
1876   std::string AsmString = S.generateAsmString(getContext());
1877 
1878   // Get all the output and input constraints together.
1879   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1880   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1881 
1882   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1883     StringRef Name;
1884     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1885       Name = GAS->getOutputName(i);
1886     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1887     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1888     assert(IsValid && "Failed to parse output constraint");
1889     OutputConstraintInfos.push_back(Info);
1890   }
1891 
1892   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1893     StringRef Name;
1894     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1895       Name = GAS->getInputName(i);
1896     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1897     bool IsValid =
1898       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1899     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1900     InputConstraintInfos.push_back(Info);
1901   }
1902 
1903   std::string Constraints;
1904 
1905   std::vector<LValue> ResultRegDests;
1906   std::vector<QualType> ResultRegQualTys;
1907   std::vector<llvm::Type *> ResultRegTypes;
1908   std::vector<llvm::Type *> ResultTruncRegTypes;
1909   std::vector<llvm::Type *> ArgTypes;
1910   std::vector<llvm::Value*> Args;
1911 
1912   // Keep track of inout constraints.
1913   std::string InOutConstraints;
1914   std::vector<llvm::Value*> InOutArgs;
1915   std::vector<llvm::Type*> InOutArgTypes;
1916 
1917   // An inline asm can be marked readonly if it meets the following conditions:
1918   //  - it doesn't have any sideeffects
1919   //  - it doesn't clobber memory
1920   //  - it doesn't return a value by-reference
1921   // It can be marked readnone if it doesn't have any input memory constraints
1922   // in addition to meeting the conditions listed above.
1923   bool ReadOnly = true, ReadNone = true;
1924 
1925   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1926     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1927 
1928     // Simplify the output constraint.
1929     std::string OutputConstraint(S.getOutputConstraint(i));
1930     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1931                                           getTarget(), &OutputConstraintInfos);
1932 
1933     const Expr *OutExpr = S.getOutputExpr(i);
1934     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1935 
1936     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1937                                               getTarget(), CGM, S,
1938                                               Info.earlyClobber());
1939 
1940     LValue Dest = EmitLValue(OutExpr);
1941     if (!Constraints.empty())
1942       Constraints += ',';
1943 
1944     // If this is a register output, then make the inline asm return it
1945     // by-value.  If this is a memory result, return the value by-reference.
1946     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1947       Constraints += "=" + OutputConstraint;
1948       ResultRegQualTys.push_back(OutExpr->getType());
1949       ResultRegDests.push_back(Dest);
1950       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1951       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1952 
1953       // If this output is tied to an input, and if the input is larger, then
1954       // we need to set the actual result type of the inline asm node to be the
1955       // same as the input type.
1956       if (Info.hasMatchingInput()) {
1957         unsigned InputNo;
1958         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1959           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1960           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1961             break;
1962         }
1963         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1964 
1965         QualType InputTy = S.getInputExpr(InputNo)->getType();
1966         QualType OutputType = OutExpr->getType();
1967 
1968         uint64_t InputSize = getContext().getTypeSize(InputTy);
1969         if (getContext().getTypeSize(OutputType) < InputSize) {
1970           // Form the asm to return the value as a larger integer or fp type.
1971           ResultRegTypes.back() = ConvertType(InputTy);
1972         }
1973       }
1974       if (llvm::Type* AdjTy =
1975             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1976                                                  ResultRegTypes.back()))
1977         ResultRegTypes.back() = AdjTy;
1978       else {
1979         CGM.getDiags().Report(S.getAsmLoc(),
1980                               diag::err_asm_invalid_type_in_input)
1981             << OutExpr->getType() << OutputConstraint;
1982       }
1983 
1984       // Update largest vector width for any vector types.
1985       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
1986         LargestVectorWidth = std::max(LargestVectorWidth,
1987                                       VT->getPrimitiveSizeInBits());
1988     } else {
1989       ArgTypes.push_back(Dest.getAddress().getType());
1990       Args.push_back(Dest.getPointer());
1991       Constraints += "=*";
1992       Constraints += OutputConstraint;
1993       ReadOnly = ReadNone = false;
1994     }
1995 
1996     if (Info.isReadWrite()) {
1997       InOutConstraints += ',';
1998 
1999       const Expr *InputExpr = S.getOutputExpr(i);
2000       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2001                                             InOutConstraints,
2002                                             InputExpr->getExprLoc());
2003 
2004       if (llvm::Type* AdjTy =
2005           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2006                                                Arg->getType()))
2007         Arg = Builder.CreateBitCast(Arg, AdjTy);
2008 
2009       // Update largest vector width for any vector types.
2010       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2011         LargestVectorWidth = std::max(LargestVectorWidth,
2012                                       VT->getPrimitiveSizeInBits());
2013       if (Info.allowsRegister())
2014         InOutConstraints += llvm::utostr(i);
2015       else
2016         InOutConstraints += OutputConstraint;
2017 
2018       InOutArgTypes.push_back(Arg->getType());
2019       InOutArgs.push_back(Arg);
2020     }
2021   }
2022 
2023   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2024   // to the return value slot. Only do this when returning in registers.
2025   if (isa<MSAsmStmt>(&S)) {
2026     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2027     if (RetAI.isDirect() || RetAI.isExtend()) {
2028       // Make a fake lvalue for the return value slot.
2029       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2030       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2031           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2032           ResultRegDests, AsmString, S.getNumOutputs());
2033       SawAsmBlock = true;
2034     }
2035   }
2036 
2037   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2038     const Expr *InputExpr = S.getInputExpr(i);
2039 
2040     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2041 
2042     if (Info.allowsMemory())
2043       ReadNone = false;
2044 
2045     if (!Constraints.empty())
2046       Constraints += ',';
2047 
2048     // Simplify the input constraint.
2049     std::string InputConstraint(S.getInputConstraint(i));
2050     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2051                                          &OutputConstraintInfos);
2052 
2053     InputConstraint = AddVariableConstraints(
2054         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2055         getTarget(), CGM, S, false /* No EarlyClobber */);
2056 
2057     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2058 
2059     // If this input argument is tied to a larger output result, extend the
2060     // input to be the same size as the output.  The LLVM backend wants to see
2061     // the input and output of a matching constraint be the same size.  Note
2062     // that GCC does not define what the top bits are here.  We use zext because
2063     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2064     if (Info.hasTiedOperand()) {
2065       unsigned Output = Info.getTiedOperand();
2066       QualType OutputType = S.getOutputExpr(Output)->getType();
2067       QualType InputTy = InputExpr->getType();
2068 
2069       if (getContext().getTypeSize(OutputType) >
2070           getContext().getTypeSize(InputTy)) {
2071         // Use ptrtoint as appropriate so that we can do our extension.
2072         if (isa<llvm::PointerType>(Arg->getType()))
2073           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2074         llvm::Type *OutputTy = ConvertType(OutputType);
2075         if (isa<llvm::IntegerType>(OutputTy))
2076           Arg = Builder.CreateZExt(Arg, OutputTy);
2077         else if (isa<llvm::PointerType>(OutputTy))
2078           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2079         else {
2080           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2081           Arg = Builder.CreateFPExt(Arg, OutputTy);
2082         }
2083       }
2084     }
2085     if (llvm::Type* AdjTy =
2086               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
2087                                                    Arg->getType()))
2088       Arg = Builder.CreateBitCast(Arg, AdjTy);
2089     else
2090       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2091           << InputExpr->getType() << InputConstraint;
2092 
2093     // Update largest vector width for any vector types.
2094     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2095       LargestVectorWidth = std::max(LargestVectorWidth,
2096                                     VT->getPrimitiveSizeInBits());
2097 
2098     ArgTypes.push_back(Arg->getType());
2099     Args.push_back(Arg);
2100     Constraints += InputConstraint;
2101   }
2102 
2103   // Append the "input" part of inout constraints last.
2104   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2105     ArgTypes.push_back(InOutArgTypes[i]);
2106     Args.push_back(InOutArgs[i]);
2107   }
2108   Constraints += InOutConstraints;
2109 
2110   // Clobbers
2111   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2112     StringRef Clobber = S.getClobber(i);
2113 
2114     if (Clobber == "memory")
2115       ReadOnly = ReadNone = false;
2116     else if (Clobber != "cc")
2117       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2118 
2119     if (!Constraints.empty())
2120       Constraints += ',';
2121 
2122     Constraints += "~{";
2123     Constraints += Clobber;
2124     Constraints += '}';
2125   }
2126 
2127   // Add machine specific clobbers
2128   std::string MachineClobbers = getTarget().getClobbers();
2129   if (!MachineClobbers.empty()) {
2130     if (!Constraints.empty())
2131       Constraints += ',';
2132     Constraints += MachineClobbers;
2133   }
2134 
2135   llvm::Type *ResultType;
2136   if (ResultRegTypes.empty())
2137     ResultType = VoidTy;
2138   else if (ResultRegTypes.size() == 1)
2139     ResultType = ResultRegTypes[0];
2140   else
2141     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2142 
2143   llvm::FunctionType *FTy =
2144     llvm::FunctionType::get(ResultType, ArgTypes, false);
2145 
2146   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2147   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2148     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2149   llvm::InlineAsm *IA =
2150     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2151                          /* IsAlignStack */ false, AsmDialect);
2152   llvm::CallInst *Result =
2153       Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2154   Result->addAttribute(llvm::AttributeList::FunctionIndex,
2155                        llvm::Attribute::NoUnwind);
2156 
2157   // Attach readnone and readonly attributes.
2158   if (!HasSideEffect) {
2159     if (ReadNone)
2160       Result->addAttribute(llvm::AttributeList::FunctionIndex,
2161                            llvm::Attribute::ReadNone);
2162     else if (ReadOnly)
2163       Result->addAttribute(llvm::AttributeList::FunctionIndex,
2164                            llvm::Attribute::ReadOnly);
2165   }
2166 
2167   // Slap the source location of the inline asm into a !srcloc metadata on the
2168   // call.
2169   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2170     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2171                                                    *this));
2172   } else {
2173     // At least put the line number on MS inline asm blobs.
2174     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2175     Result->setMetadata("srcloc",
2176                         llvm::MDNode::get(getLLVMContext(),
2177                                           llvm::ConstantAsMetadata::get(Loc)));
2178   }
2179 
2180   if (getLangOpts().assumeFunctionsAreConvergent()) {
2181     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2182     // convergent (meaning, they may call an intrinsically convergent op, such
2183     // as bar.sync, and so can't have certain optimizations applied around
2184     // them).
2185     Result->addAttribute(llvm::AttributeList::FunctionIndex,
2186                          llvm::Attribute::Convergent);
2187   }
2188 
2189   // Extract all of the register value results from the asm.
2190   std::vector<llvm::Value*> RegResults;
2191   if (ResultRegTypes.size() == 1) {
2192     RegResults.push_back(Result);
2193   } else {
2194     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2195       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2196       RegResults.push_back(Tmp);
2197     }
2198   }
2199 
2200   assert(RegResults.size() == ResultRegTypes.size());
2201   assert(RegResults.size() == ResultTruncRegTypes.size());
2202   assert(RegResults.size() == ResultRegDests.size());
2203   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2204     llvm::Value *Tmp = RegResults[i];
2205 
2206     // If the result type of the LLVM IR asm doesn't match the result type of
2207     // the expression, do the conversion.
2208     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2209       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2210 
2211       // Truncate the integer result to the right size, note that TruncTy can be
2212       // a pointer.
2213       if (TruncTy->isFloatingPointTy())
2214         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2215       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2216         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2217         Tmp = Builder.CreateTrunc(Tmp,
2218                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2219         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2220       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2221         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2222         Tmp = Builder.CreatePtrToInt(Tmp,
2223                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2224         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2225       } else if (TruncTy->isIntegerTy()) {
2226         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2227       } else if (TruncTy->isVectorTy()) {
2228         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2229       }
2230     }
2231 
2232     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2233   }
2234 }
2235 
2236 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2237   const RecordDecl *RD = S.getCapturedRecordDecl();
2238   QualType RecordTy = getContext().getRecordType(RD);
2239 
2240   // Initialize the captured struct.
2241   LValue SlotLV =
2242     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2243 
2244   RecordDecl::field_iterator CurField = RD->field_begin();
2245   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2246                                                  E = S.capture_init_end();
2247        I != E; ++I, ++CurField) {
2248     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2249     if (CurField->hasCapturedVLAType()) {
2250       auto VAT = CurField->getCapturedVLAType();
2251       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2252     } else {
2253       EmitInitializerForField(*CurField, LV, *I);
2254     }
2255   }
2256 
2257   return SlotLV;
2258 }
2259 
2260 /// Generate an outlined function for the body of a CapturedStmt, store any
2261 /// captured variables into the captured struct, and call the outlined function.
2262 llvm::Function *
2263 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2264   LValue CapStruct = InitCapturedStruct(S);
2265 
2266   // Emit the CapturedDecl
2267   CodeGenFunction CGF(CGM, true);
2268   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2269   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2270   delete CGF.CapturedStmtInfo;
2271 
2272   // Emit call to the helper function.
2273   EmitCallOrInvoke(F, CapStruct.getPointer());
2274 
2275   return F;
2276 }
2277 
2278 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2279   LValue CapStruct = InitCapturedStruct(S);
2280   return CapStruct.getAddress();
2281 }
2282 
2283 /// Creates the outlined function for a CapturedStmt.
2284 llvm::Function *
2285 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2286   assert(CapturedStmtInfo &&
2287     "CapturedStmtInfo should be set when generating the captured function");
2288   const CapturedDecl *CD = S.getCapturedDecl();
2289   const RecordDecl *RD = S.getCapturedRecordDecl();
2290   SourceLocation Loc = S.getBeginLoc();
2291   assert(CD->hasBody() && "missing CapturedDecl body");
2292 
2293   // Build the argument list.
2294   ASTContext &Ctx = CGM.getContext();
2295   FunctionArgList Args;
2296   Args.append(CD->param_begin(), CD->param_end());
2297 
2298   // Create the function declaration.
2299   const CGFunctionInfo &FuncInfo =
2300     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2301   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2302 
2303   llvm::Function *F =
2304     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2305                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2306   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2307   if (CD->isNothrow())
2308     F->addFnAttr(llvm::Attribute::NoUnwind);
2309 
2310   // Generate the function.
2311   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2312                 CD->getBody()->getBeginLoc());
2313   // Set the context parameter in CapturedStmtInfo.
2314   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2315   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2316 
2317   // Initialize variable-length arrays.
2318   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2319                                            Ctx.getTagDeclType(RD));
2320   for (auto *FD : RD->fields()) {
2321     if (FD->hasCapturedVLAType()) {
2322       auto *ExprArg =
2323           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2324               .getScalarVal();
2325       auto VAT = FD->getCapturedVLAType();
2326       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2327     }
2328   }
2329 
2330   // If 'this' is captured, load it into CXXThisValue.
2331   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2332     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2333     LValue ThisLValue = EmitLValueForField(Base, FD);
2334     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2335   }
2336 
2337   PGO.assignRegionCounters(GlobalDecl(CD), F);
2338   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2339   FinishFunction(CD->getBodyRBrace());
2340 
2341   return F;
2342 }
2343