1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/Support/CallSite.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getLocStart();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S) {
45   assert(S && "Null statement?");
46 
47   // These statements have their own debug info handling.
48   if (EmitSimpleStmt(S))
49     return;
50 
51   // Check if we are generating unreachable code.
52   if (!HaveInsertPoint()) {
53     // If so, and the statement doesn't contain a label, then we do not need to
54     // generate actual code. This is safe because (1) the current point is
55     // unreachable, so we don't need to execute the code, and (2) we've already
56     // handled the statements which update internal data structures (like the
57     // local variable map) which could be used by subsequent statements.
58     if (!ContainsLabel(S)) {
59       // Verify that any decl statements were handled as simple, they may be in
60       // scope of subsequent reachable statements.
61       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62       return;
63     }
64 
65     // Otherwise, make a new block to hold the code.
66     EnsureInsertPoint();
67   }
68 
69   // Generate a stoppoint if we are emitting debug info.
70   EmitStopPoint(S);
71 
72   switch (S->getStmtClass()) {
73   case Stmt::NoStmtClass:
74   case Stmt::CXXCatchStmtClass:
75   case Stmt::SEHExceptStmtClass:
76   case Stmt::SEHFinallyStmtClass:
77   case Stmt::MSDependentExistsStmtClass:
78   case Stmt::OMPParallelDirectiveClass:
79     llvm_unreachable("invalid statement class to emit generically");
80   case Stmt::NullStmtClass:
81   case Stmt::CompoundStmtClass:
82   case Stmt::DeclStmtClass:
83   case Stmt::LabelStmtClass:
84   case Stmt::AttributedStmtClass:
85   case Stmt::GotoStmtClass:
86   case Stmt::BreakStmtClass:
87   case Stmt::ContinueStmtClass:
88   case Stmt::DefaultStmtClass:
89   case Stmt::CaseStmtClass:
90     llvm_unreachable("should have emitted these statements as simple");
91 
92 #define STMT(Type, Base)
93 #define ABSTRACT_STMT(Op)
94 #define EXPR(Type, Base) \
95   case Stmt::Type##Class:
96 #include "clang/AST/StmtNodes.inc"
97   {
98     // Remember the block we came in on.
99     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
100     assert(incoming && "expression emission must have an insertion point");
101 
102     EmitIgnoredExpr(cast<Expr>(S));
103 
104     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
105     assert(outgoing && "expression emission cleared block!");
106 
107     // The expression emitters assume (reasonably!) that the insertion
108     // point is always set.  To maintain that, the call-emission code
109     // for noreturn functions has to enter a new block with no
110     // predecessors.  We want to kill that block and mark the current
111     // insertion point unreachable in the common case of a call like
112     // "exit();".  Since expression emission doesn't otherwise create
113     // blocks with no predecessors, we can just test for that.
114     // However, we must be careful not to do this to our incoming
115     // block, because *statement* emission does sometimes create
116     // reachable blocks which will have no predecessors until later in
117     // the function.  This occurs with, e.g., labels that are not
118     // reachable by fallthrough.
119     if (incoming != outgoing && outgoing->use_empty()) {
120       outgoing->eraseFromParent();
121       Builder.ClearInsertionPoint();
122     }
123     break;
124   }
125 
126   case Stmt::IndirectGotoStmtClass:
127     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
128 
129   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
130   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
131   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
132   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
133 
134   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
135 
136   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
137   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
138   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
139   case Stmt::CapturedStmtClass: {
140     const CapturedStmt *CS = cast<CapturedStmt>(S);
141     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
142     }
143     break;
144   case Stmt::ObjCAtTryStmtClass:
145     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
146     break;
147   case Stmt::ObjCAtCatchStmtClass:
148     llvm_unreachable(
149                     "@catch statements should be handled by EmitObjCAtTryStmt");
150   case Stmt::ObjCAtFinallyStmtClass:
151     llvm_unreachable(
152                   "@finally statements should be handled by EmitObjCAtTryStmt");
153   case Stmt::ObjCAtThrowStmtClass:
154     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
155     break;
156   case Stmt::ObjCAtSynchronizedStmtClass:
157     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
158     break;
159   case Stmt::ObjCForCollectionStmtClass:
160     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
161     break;
162   case Stmt::ObjCAutoreleasePoolStmtClass:
163     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
164     break;
165 
166   case Stmt::CXXTryStmtClass:
167     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
168     break;
169   case Stmt::CXXForRangeStmtClass:
170     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
171     break;
172   case Stmt::SEHTryStmtClass:
173     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
174     break;
175   }
176 }
177 
178 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
179   switch (S->getStmtClass()) {
180   default: return false;
181   case Stmt::NullStmtClass: break;
182   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
183   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
184   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
185   case Stmt::AttributedStmtClass:
186                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
187   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
188   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
189   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
190   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
191   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
192   }
193 
194   return true;
195 }
196 
197 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
198 /// this captures the expression result of the last sub-statement and returns it
199 /// (for use by the statement expression extension).
200 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
201                                                AggValueSlot AggSlot) {
202   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
203                              "LLVM IR generation of compound statement ('{}')");
204 
205   // Keep track of the current cleanup stack depth, including debug scopes.
206   LexicalScope Scope(*this, S.getSourceRange());
207 
208   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
209 }
210 
211 llvm::Value*
212 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
213                                               bool GetLast,
214                                               AggValueSlot AggSlot) {
215 
216   for (CompoundStmt::const_body_iterator I = S.body_begin(),
217        E = S.body_end()-GetLast; I != E; ++I)
218     EmitStmt(*I);
219 
220   llvm::Value *RetAlloca = 0;
221   if (GetLast) {
222     // We have to special case labels here.  They are statements, but when put
223     // at the end of a statement expression, they yield the value of their
224     // subexpression.  Handle this by walking through all labels we encounter,
225     // emitting them before we evaluate the subexpr.
226     const Stmt *LastStmt = S.body_back();
227     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
228       EmitLabel(LS->getDecl());
229       LastStmt = LS->getSubStmt();
230     }
231 
232     EnsureInsertPoint();
233 
234     QualType ExprTy = cast<Expr>(LastStmt)->getType();
235     if (hasAggregateEvaluationKind(ExprTy)) {
236       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
237     } else {
238       // We can't return an RValue here because there might be cleanups at
239       // the end of the StmtExpr.  Because of that, we have to emit the result
240       // here into a temporary alloca.
241       RetAlloca = CreateMemTemp(ExprTy);
242       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
243                        /*IsInit*/false);
244     }
245 
246   }
247 
248   return RetAlloca;
249 }
250 
251 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
252   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
253 
254   // If there is a cleanup stack, then we it isn't worth trying to
255   // simplify this block (we would need to remove it from the scope map
256   // and cleanup entry).
257   if (!EHStack.empty())
258     return;
259 
260   // Can only simplify direct branches.
261   if (!BI || !BI->isUnconditional())
262     return;
263 
264   // Can only simplify empty blocks.
265   if (BI != BB->begin())
266     return;
267 
268   BB->replaceAllUsesWith(BI->getSuccessor(0));
269   BI->eraseFromParent();
270   BB->eraseFromParent();
271 }
272 
273 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
274   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
275 
276   // Fall out of the current block (if necessary).
277   EmitBranch(BB);
278 
279   if (IsFinished && BB->use_empty()) {
280     delete BB;
281     return;
282   }
283 
284   // Place the block after the current block, if possible, or else at
285   // the end of the function.
286   if (CurBB && CurBB->getParent())
287     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
288   else
289     CurFn->getBasicBlockList().push_back(BB);
290   Builder.SetInsertPoint(BB);
291 }
292 
293 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
294   // Emit a branch from the current block to the target one if this
295   // was a real block.  If this was just a fall-through block after a
296   // terminator, don't emit it.
297   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
298 
299   if (!CurBB || CurBB->getTerminator()) {
300     // If there is no insert point or the previous block is already
301     // terminated, don't touch it.
302   } else {
303     // Otherwise, create a fall-through branch.
304     Builder.CreateBr(Target);
305   }
306 
307   Builder.ClearInsertionPoint();
308 }
309 
310 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
311   bool inserted = false;
312   for (llvm::BasicBlock::use_iterator
313          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
314     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
315       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
316       inserted = true;
317       break;
318     }
319   }
320 
321   if (!inserted)
322     CurFn->getBasicBlockList().push_back(block);
323 
324   Builder.SetInsertPoint(block);
325 }
326 
327 CodeGenFunction::JumpDest
328 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
329   JumpDest &Dest = LabelMap[D];
330   if (Dest.isValid()) return Dest;
331 
332   // Create, but don't insert, the new block.
333   Dest = JumpDest(createBasicBlock(D->getName()),
334                   EHScopeStack::stable_iterator::invalid(),
335                   NextCleanupDestIndex++);
336   return Dest;
337 }
338 
339 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
340   // Add this label to the current lexical scope if we're within any
341   // normal cleanups.  Jumps "in" to this label --- when permitted by
342   // the language --- may need to be routed around such cleanups.
343   if (EHStack.hasNormalCleanups() && CurLexicalScope)
344     CurLexicalScope->addLabel(D);
345 
346   JumpDest &Dest = LabelMap[D];
347 
348   // If we didn't need a forward reference to this label, just go
349   // ahead and create a destination at the current scope.
350   if (!Dest.isValid()) {
351     Dest = getJumpDestInCurrentScope(D->getName());
352 
353   // Otherwise, we need to give this label a target depth and remove
354   // it from the branch-fixups list.
355   } else {
356     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
357     Dest.setScopeDepth(EHStack.stable_begin());
358     ResolveBranchFixups(Dest.getBlock());
359   }
360 
361   EmitBlock(Dest.getBlock());
362 }
363 
364 /// Change the cleanup scope of the labels in this lexical scope to
365 /// match the scope of the enclosing context.
366 void CodeGenFunction::LexicalScope::rescopeLabels() {
367   assert(!Labels.empty());
368   EHScopeStack::stable_iterator innermostScope
369     = CGF.EHStack.getInnermostNormalCleanup();
370 
371   // Change the scope depth of all the labels.
372   for (SmallVectorImpl<const LabelDecl*>::const_iterator
373          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
374     assert(CGF.LabelMap.count(*i));
375     JumpDest &dest = CGF.LabelMap.find(*i)->second;
376     assert(dest.getScopeDepth().isValid());
377     assert(innermostScope.encloses(dest.getScopeDepth()));
378     dest.setScopeDepth(innermostScope);
379   }
380 
381   // Reparent the labels if the new scope also has cleanups.
382   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
383     ParentScope->Labels.append(Labels.begin(), Labels.end());
384   }
385 }
386 
387 
388 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
389   EmitLabel(S.getDecl());
390   EmitStmt(S.getSubStmt());
391 }
392 
393 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
394   EmitStmt(S.getSubStmt());
395 }
396 
397 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
398   // If this code is reachable then emit a stop point (if generating
399   // debug info). We have to do this ourselves because we are on the
400   // "simple" statement path.
401   if (HaveInsertPoint())
402     EmitStopPoint(&S);
403 
404   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
405 }
406 
407 
408 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
409   if (const LabelDecl *Target = S.getConstantTarget()) {
410     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
411     return;
412   }
413 
414   // Ensure that we have an i8* for our PHI node.
415   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
416                                          Int8PtrTy, "addr");
417   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
418 
419   // Get the basic block for the indirect goto.
420   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
421 
422   // The first instruction in the block has to be the PHI for the switch dest,
423   // add an entry for this branch.
424   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
425 
426   EmitBranch(IndGotoBB);
427 }
428 
429 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
430   // C99 6.8.4.1: The first substatement is executed if the expression compares
431   // unequal to 0.  The condition must be a scalar type.
432   LexicalScope ConditionScope(*this, S.getSourceRange());
433 
434   if (S.getConditionVariable())
435     EmitAutoVarDecl(*S.getConditionVariable());
436 
437   // If the condition constant folds and can be elided, try to avoid emitting
438   // the condition and the dead arm of the if/else.
439   bool CondConstant;
440   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
441     // Figure out which block (then or else) is executed.
442     const Stmt *Executed = S.getThen();
443     const Stmt *Skipped  = S.getElse();
444     if (!CondConstant)  // Condition false?
445       std::swap(Executed, Skipped);
446 
447     // If the skipped block has no labels in it, just emit the executed block.
448     // This avoids emitting dead code and simplifies the CFG substantially.
449     if (!ContainsLabel(Skipped)) {
450       if (Executed) {
451         RunCleanupsScope ExecutedScope(*this);
452         EmitStmt(Executed);
453       }
454       return;
455     }
456   }
457 
458   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
459   // the conditional branch.
460   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
461   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
462   llvm::BasicBlock *ElseBlock = ContBlock;
463   if (S.getElse())
464     ElseBlock = createBasicBlock("if.else");
465   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
466 
467   // Emit the 'then' code.
468   EmitBlock(ThenBlock);
469   {
470     RunCleanupsScope ThenScope(*this);
471     EmitStmt(S.getThen());
472   }
473   EmitBranch(ContBlock);
474 
475   // Emit the 'else' code if present.
476   if (const Stmt *Else = S.getElse()) {
477     // There is no need to emit line number for unconditional branch.
478     if (getDebugInfo())
479       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
480     EmitBlock(ElseBlock);
481     {
482       RunCleanupsScope ElseScope(*this);
483       EmitStmt(Else);
484     }
485     // There is no need to emit line number for unconditional branch.
486     if (getDebugInfo())
487       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
488     EmitBranch(ContBlock);
489   }
490 
491   // Emit the continuation block for code after the if.
492   EmitBlock(ContBlock, true);
493 }
494 
495 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
496   // Emit the header for the loop, which will also become
497   // the continue target.
498   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
499   EmitBlock(LoopHeader.getBlock());
500 
501   // Create an exit block for when the condition fails, which will
502   // also become the break target.
503   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
504 
505   // Store the blocks to use for break and continue.
506   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
507 
508   // C++ [stmt.while]p2:
509   //   When the condition of a while statement is a declaration, the
510   //   scope of the variable that is declared extends from its point
511   //   of declaration (3.3.2) to the end of the while statement.
512   //   [...]
513   //   The object created in a condition is destroyed and created
514   //   with each iteration of the loop.
515   RunCleanupsScope ConditionScope(*this);
516 
517   if (S.getConditionVariable())
518     EmitAutoVarDecl(*S.getConditionVariable());
519 
520   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
521   // evaluation of the controlling expression takes place before each
522   // execution of the loop body.
523   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
524 
525   // while(1) is common, avoid extra exit blocks.  Be sure
526   // to correctly handle break/continue though.
527   bool EmitBoolCondBranch = true;
528   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
529     if (C->isOne())
530       EmitBoolCondBranch = false;
531 
532   // As long as the condition is true, go to the loop body.
533   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
534   if (EmitBoolCondBranch) {
535     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
536     if (ConditionScope.requiresCleanups())
537       ExitBlock = createBasicBlock("while.exit");
538 
539     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
540 
541     if (ExitBlock != LoopExit.getBlock()) {
542       EmitBlock(ExitBlock);
543       EmitBranchThroughCleanup(LoopExit);
544     }
545   }
546 
547   // Emit the loop body.  We have to emit this in a cleanup scope
548   // because it might be a singleton DeclStmt.
549   {
550     RunCleanupsScope BodyScope(*this);
551     EmitBlock(LoopBody);
552     EmitStmt(S.getBody());
553   }
554 
555   BreakContinueStack.pop_back();
556 
557   // Immediately force cleanup.
558   ConditionScope.ForceCleanup();
559 
560   // Branch to the loop header again.
561   EmitBranch(LoopHeader.getBlock());
562 
563   // Emit the exit block.
564   EmitBlock(LoopExit.getBlock(), true);
565 
566   // The LoopHeader typically is just a branch if we skipped emitting
567   // a branch, try to erase it.
568   if (!EmitBoolCondBranch)
569     SimplifyForwardingBlocks(LoopHeader.getBlock());
570 }
571 
572 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
573   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
574   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
575 
576   // Store the blocks to use for break and continue.
577   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
578 
579   // Emit the body of the loop.
580   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
581   EmitBlock(LoopBody);
582   {
583     RunCleanupsScope BodyScope(*this);
584     EmitStmt(S.getBody());
585   }
586 
587   BreakContinueStack.pop_back();
588 
589   EmitBlock(LoopCond.getBlock());
590 
591   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
592   // after each execution of the loop body."
593 
594   // Evaluate the conditional in the while header.
595   // C99 6.8.5p2/p4: The first substatement is executed if the expression
596   // compares unequal to 0.  The condition must be a scalar type.
597   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
598 
599   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
600   // to correctly handle break/continue though.
601   bool EmitBoolCondBranch = true;
602   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
603     if (C->isZero())
604       EmitBoolCondBranch = false;
605 
606   // As long as the condition is true, iterate the loop.
607   if (EmitBoolCondBranch)
608     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
609 
610   // Emit the exit block.
611   EmitBlock(LoopExit.getBlock());
612 
613   // The DoCond block typically is just a branch if we skipped
614   // emitting a branch, try to erase it.
615   if (!EmitBoolCondBranch)
616     SimplifyForwardingBlocks(LoopCond.getBlock());
617 }
618 
619 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
620   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
621 
622   RunCleanupsScope ForScope(*this);
623 
624   CGDebugInfo *DI = getDebugInfo();
625   if (DI)
626     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
627 
628   // Evaluate the first part before the loop.
629   if (S.getInit())
630     EmitStmt(S.getInit());
631 
632   // Start the loop with a block that tests the condition.
633   // If there's an increment, the continue scope will be overwritten
634   // later.
635   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
636   llvm::BasicBlock *CondBlock = Continue.getBlock();
637   EmitBlock(CondBlock);
638 
639   // Create a cleanup scope for the condition variable cleanups.
640   RunCleanupsScope ConditionScope(*this);
641 
642   llvm::Value *BoolCondVal = 0;
643   if (S.getCond()) {
644     // If the for statement has a condition scope, emit the local variable
645     // declaration.
646     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
647     if (S.getConditionVariable()) {
648       EmitAutoVarDecl(*S.getConditionVariable());
649     }
650 
651     // If there are any cleanups between here and the loop-exit scope,
652     // create a block to stage a loop exit along.
653     if (ForScope.requiresCleanups())
654       ExitBlock = createBasicBlock("for.cond.cleanup");
655 
656     // As long as the condition is true, iterate the loop.
657     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
658 
659     // C99 6.8.5p2/p4: The first substatement is executed if the expression
660     // compares unequal to 0.  The condition must be a scalar type.
661     BoolCondVal = EvaluateExprAsBool(S.getCond());
662     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
663 
664     if (ExitBlock != LoopExit.getBlock()) {
665       EmitBlock(ExitBlock);
666       EmitBranchThroughCleanup(LoopExit);
667     }
668 
669     EmitBlock(ForBody);
670   } else {
671     // Treat it as a non-zero constant.  Don't even create a new block for the
672     // body, just fall into it.
673   }
674 
675   // If the for loop doesn't have an increment we can just use the
676   // condition as the continue block.  Otherwise we'll need to create
677   // a block for it (in the current scope, i.e. in the scope of the
678   // condition), and that we will become our continue block.
679   if (S.getInc())
680     Continue = getJumpDestInCurrentScope("for.inc");
681 
682   // Store the blocks to use for break and continue.
683   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
684 
685   {
686     // Create a separate cleanup scope for the body, in case it is not
687     // a compound statement.
688     RunCleanupsScope BodyScope(*this);
689     EmitStmt(S.getBody());
690   }
691 
692   // If there is an increment, emit it next.
693   if (S.getInc()) {
694     EmitBlock(Continue.getBlock());
695     EmitStmt(S.getInc());
696   }
697 
698   BreakContinueStack.pop_back();
699 
700   ConditionScope.ForceCleanup();
701   EmitBranch(CondBlock);
702 
703   ForScope.ForceCleanup();
704 
705   if (DI)
706     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
707 
708   // Emit the fall-through block.
709   EmitBlock(LoopExit.getBlock(), true);
710 }
711 
712 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
713   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
714 
715   RunCleanupsScope ForScope(*this);
716 
717   CGDebugInfo *DI = getDebugInfo();
718   if (DI)
719     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
720 
721   // Evaluate the first pieces before the loop.
722   EmitStmt(S.getRangeStmt());
723   EmitStmt(S.getBeginEndStmt());
724 
725   // Start the loop with a block that tests the condition.
726   // If there's an increment, the continue scope will be overwritten
727   // later.
728   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
729   EmitBlock(CondBlock);
730 
731   // If there are any cleanups between here and the loop-exit scope,
732   // create a block to stage a loop exit along.
733   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
734   if (ForScope.requiresCleanups())
735     ExitBlock = createBasicBlock("for.cond.cleanup");
736 
737   // The loop body, consisting of the specified body and the loop variable.
738   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
739 
740   // The body is executed if the expression, contextually converted
741   // to bool, is true.
742   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
743   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
744 
745   if (ExitBlock != LoopExit.getBlock()) {
746     EmitBlock(ExitBlock);
747     EmitBranchThroughCleanup(LoopExit);
748   }
749 
750   EmitBlock(ForBody);
751 
752   // Create a block for the increment. In case of a 'continue', we jump there.
753   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
754 
755   // Store the blocks to use for break and continue.
756   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
757 
758   {
759     // Create a separate cleanup scope for the loop variable and body.
760     RunCleanupsScope BodyScope(*this);
761     EmitStmt(S.getLoopVarStmt());
762     EmitStmt(S.getBody());
763   }
764 
765   // If there is an increment, emit it next.
766   EmitBlock(Continue.getBlock());
767   EmitStmt(S.getInc());
768 
769   BreakContinueStack.pop_back();
770 
771   EmitBranch(CondBlock);
772 
773   ForScope.ForceCleanup();
774 
775   if (DI)
776     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
777 
778   // Emit the fall-through block.
779   EmitBlock(LoopExit.getBlock(), true);
780 }
781 
782 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
783   if (RV.isScalar()) {
784     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
785   } else if (RV.isAggregate()) {
786     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
787   } else {
788     EmitStoreOfComplex(RV.getComplexVal(),
789                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
790                        /*init*/ true);
791   }
792   EmitBranchThroughCleanup(ReturnBlock);
793 }
794 
795 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
796 /// if the function returns void, or may be missing one if the function returns
797 /// non-void.  Fun stuff :).
798 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
799   // Emit the result value, even if unused, to evalute the side effects.
800   const Expr *RV = S.getRetValue();
801 
802   // Treat block literals in a return expression as if they appeared
803   // in their own scope.  This permits a small, easily-implemented
804   // exception to our over-conservative rules about not jumping to
805   // statements following block literals with non-trivial cleanups.
806   RunCleanupsScope cleanupScope(*this);
807   if (const ExprWithCleanups *cleanups =
808         dyn_cast_or_null<ExprWithCleanups>(RV)) {
809     enterFullExpression(cleanups);
810     RV = cleanups->getSubExpr();
811   }
812 
813   // FIXME: Clean this up by using an LValue for ReturnTemp,
814   // EmitStoreThroughLValue, and EmitAnyExpr.
815   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
816     // Apply the named return value optimization for this return statement,
817     // which means doing nothing: the appropriate result has already been
818     // constructed into the NRVO variable.
819 
820     // If there is an NRVO flag for this variable, set it to 1 into indicate
821     // that the cleanup code should not destroy the variable.
822     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
823       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
824   } else if (!ReturnValue) {
825     // Make sure not to return anything, but evaluate the expression
826     // for side effects.
827     if (RV)
828       EmitAnyExpr(RV);
829   } else if (RV == 0) {
830     // Do nothing (return value is left uninitialized)
831   } else if (FnRetTy->isReferenceType()) {
832     // If this function returns a reference, take the address of the expression
833     // rather than the value.
834     RValue Result = EmitReferenceBindingToExpr(RV);
835     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
836   } else {
837     switch (getEvaluationKind(RV->getType())) {
838     case TEK_Scalar:
839       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
840       break;
841     case TEK_Complex:
842       EmitComplexExprIntoLValue(RV,
843                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
844                                 /*isInit*/ true);
845       break;
846     case TEK_Aggregate: {
847       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
848       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
849                                             Qualifiers(),
850                                             AggValueSlot::IsDestructed,
851                                             AggValueSlot::DoesNotNeedGCBarriers,
852                                             AggValueSlot::IsNotAliased));
853       break;
854     }
855     }
856   }
857 
858   ++NumReturnExprs;
859   if (RV == 0 || RV->isEvaluatable(getContext()))
860     ++NumSimpleReturnExprs;
861 
862   cleanupScope.ForceCleanup();
863   EmitBranchThroughCleanup(ReturnBlock);
864 }
865 
866 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
867   // As long as debug info is modeled with instructions, we have to ensure we
868   // have a place to insert here and write the stop point here.
869   if (HaveInsertPoint())
870     EmitStopPoint(&S);
871 
872   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
873        I != E; ++I)
874     EmitDecl(**I);
875 }
876 
877 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
878   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
879 
880   // If this code is reachable then emit a stop point (if generating
881   // debug info). We have to do this ourselves because we are on the
882   // "simple" statement path.
883   if (HaveInsertPoint())
884     EmitStopPoint(&S);
885 
886   JumpDest Block = BreakContinueStack.back().BreakBlock;
887   EmitBranchThroughCleanup(Block);
888 }
889 
890 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
891   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
892 
893   // If this code is reachable then emit a stop point (if generating
894   // debug info). We have to do this ourselves because we are on the
895   // "simple" statement path.
896   if (HaveInsertPoint())
897     EmitStopPoint(&S);
898 
899   JumpDest Block = BreakContinueStack.back().ContinueBlock;
900   EmitBranchThroughCleanup(Block);
901 }
902 
903 /// EmitCaseStmtRange - If case statement range is not too big then
904 /// add multiple cases to switch instruction, one for each value within
905 /// the range. If range is too big then emit "if" condition check.
906 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
907   assert(S.getRHS() && "Expected RHS value in CaseStmt");
908 
909   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
910   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
911 
912   // Emit the code for this case. We do this first to make sure it is
913   // properly chained from our predecessor before generating the
914   // switch machinery to enter this block.
915   EmitBlock(createBasicBlock("sw.bb"));
916   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
917   EmitStmt(S.getSubStmt());
918 
919   // If range is empty, do nothing.
920   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
921     return;
922 
923   llvm::APInt Range = RHS - LHS;
924   // FIXME: parameters such as this should not be hardcoded.
925   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
926     // Range is small enough to add multiple switch instruction cases.
927     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
928       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
929       LHS++;
930     }
931     return;
932   }
933 
934   // The range is too big. Emit "if" condition into a new block,
935   // making sure to save and restore the current insertion point.
936   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
937 
938   // Push this test onto the chain of range checks (which terminates
939   // in the default basic block). The switch's default will be changed
940   // to the top of this chain after switch emission is complete.
941   llvm::BasicBlock *FalseDest = CaseRangeBlock;
942   CaseRangeBlock = createBasicBlock("sw.caserange");
943 
944   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
945   Builder.SetInsertPoint(CaseRangeBlock);
946 
947   // Emit range check.
948   llvm::Value *Diff =
949     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
950   llvm::Value *Cond =
951     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
952   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
953 
954   // Restore the appropriate insertion point.
955   if (RestoreBB)
956     Builder.SetInsertPoint(RestoreBB);
957   else
958     Builder.ClearInsertionPoint();
959 }
960 
961 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
962   // If there is no enclosing switch instance that we're aware of, then this
963   // case statement and its block can be elided.  This situation only happens
964   // when we've constant-folded the switch, are emitting the constant case,
965   // and part of the constant case includes another case statement.  For
966   // instance: switch (4) { case 4: do { case 5: } while (1); }
967   if (!SwitchInsn) {
968     EmitStmt(S.getSubStmt());
969     return;
970   }
971 
972   // Handle case ranges.
973   if (S.getRHS()) {
974     EmitCaseStmtRange(S);
975     return;
976   }
977 
978   llvm::ConstantInt *CaseVal =
979     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
980 
981   // If the body of the case is just a 'break', and if there was no fallthrough,
982   // try to not emit an empty block.
983   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
984       isa<BreakStmt>(S.getSubStmt())) {
985     JumpDest Block = BreakContinueStack.back().BreakBlock;
986 
987     // Only do this optimization if there are no cleanups that need emitting.
988     if (isObviouslyBranchWithoutCleanups(Block)) {
989       SwitchInsn->addCase(CaseVal, Block.getBlock());
990 
991       // If there was a fallthrough into this case, make sure to redirect it to
992       // the end of the switch as well.
993       if (Builder.GetInsertBlock()) {
994         Builder.CreateBr(Block.getBlock());
995         Builder.ClearInsertionPoint();
996       }
997       return;
998     }
999   }
1000 
1001   EmitBlock(createBasicBlock("sw.bb"));
1002   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
1003   SwitchInsn->addCase(CaseVal, CaseDest);
1004 
1005   // Recursively emitting the statement is acceptable, but is not wonderful for
1006   // code where we have many case statements nested together, i.e.:
1007   //  case 1:
1008   //    case 2:
1009   //      case 3: etc.
1010   // Handling this recursively will create a new block for each case statement
1011   // that falls through to the next case which is IR intensive.  It also causes
1012   // deep recursion which can run into stack depth limitations.  Handle
1013   // sequential non-range case statements specially.
1014   const CaseStmt *CurCase = &S;
1015   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1016 
1017   // Otherwise, iteratively add consecutive cases to this switch stmt.
1018   while (NextCase && NextCase->getRHS() == 0) {
1019     CurCase = NextCase;
1020     llvm::ConstantInt *CaseVal =
1021       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1022     SwitchInsn->addCase(CaseVal, CaseDest);
1023     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1024   }
1025 
1026   // Normal default recursion for non-cases.
1027   EmitStmt(CurCase->getSubStmt());
1028 }
1029 
1030 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1031   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1032   assert(DefaultBlock->empty() &&
1033          "EmitDefaultStmt: Default block already defined?");
1034   EmitBlock(DefaultBlock);
1035   EmitStmt(S.getSubStmt());
1036 }
1037 
1038 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1039 /// constant value that is being switched on, see if we can dead code eliminate
1040 /// the body of the switch to a simple series of statements to emit.  Basically,
1041 /// on a switch (5) we want to find these statements:
1042 ///    case 5:
1043 ///      printf(...);    <--
1044 ///      ++i;            <--
1045 ///      break;
1046 ///
1047 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1048 /// transformation (for example, one of the elided statements contains a label
1049 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1050 /// should include statements after it (e.g. the printf() line is a substmt of
1051 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1052 /// statement, then return CSFC_Success.
1053 ///
1054 /// If Case is non-null, then we are looking for the specified case, checking
1055 /// that nothing we jump over contains labels.  If Case is null, then we found
1056 /// the case and are looking for the break.
1057 ///
1058 /// If the recursive walk actually finds our Case, then we set FoundCase to
1059 /// true.
1060 ///
1061 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1062 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1063                                             const SwitchCase *Case,
1064                                             bool &FoundCase,
1065                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1066   // If this is a null statement, just succeed.
1067   if (S == 0)
1068     return Case ? CSFC_Success : CSFC_FallThrough;
1069 
1070   // If this is the switchcase (case 4: or default) that we're looking for, then
1071   // we're in business.  Just add the substatement.
1072   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1073     if (S == Case) {
1074       FoundCase = true;
1075       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1076                                       ResultStmts);
1077     }
1078 
1079     // Otherwise, this is some other case or default statement, just ignore it.
1080     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1081                                     ResultStmts);
1082   }
1083 
1084   // If we are in the live part of the code and we found our break statement,
1085   // return a success!
1086   if (Case == 0 && isa<BreakStmt>(S))
1087     return CSFC_Success;
1088 
1089   // If this is a switch statement, then it might contain the SwitchCase, the
1090   // break, or neither.
1091   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1092     // Handle this as two cases: we might be looking for the SwitchCase (if so
1093     // the skipped statements must be skippable) or we might already have it.
1094     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1095     if (Case) {
1096       // Keep track of whether we see a skipped declaration.  The code could be
1097       // using the declaration even if it is skipped, so we can't optimize out
1098       // the decl if the kept statements might refer to it.
1099       bool HadSkippedDecl = false;
1100 
1101       // If we're looking for the case, just see if we can skip each of the
1102       // substatements.
1103       for (; Case && I != E; ++I) {
1104         HadSkippedDecl |= isa<DeclStmt>(*I);
1105 
1106         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1107         case CSFC_Failure: return CSFC_Failure;
1108         case CSFC_Success:
1109           // A successful result means that either 1) that the statement doesn't
1110           // have the case and is skippable, or 2) does contain the case value
1111           // and also contains the break to exit the switch.  In the later case,
1112           // we just verify the rest of the statements are elidable.
1113           if (FoundCase) {
1114             // If we found the case and skipped declarations, we can't do the
1115             // optimization.
1116             if (HadSkippedDecl)
1117               return CSFC_Failure;
1118 
1119             for (++I; I != E; ++I)
1120               if (CodeGenFunction::ContainsLabel(*I, true))
1121                 return CSFC_Failure;
1122             return CSFC_Success;
1123           }
1124           break;
1125         case CSFC_FallThrough:
1126           // If we have a fallthrough condition, then we must have found the
1127           // case started to include statements.  Consider the rest of the
1128           // statements in the compound statement as candidates for inclusion.
1129           assert(FoundCase && "Didn't find case but returned fallthrough?");
1130           // We recursively found Case, so we're not looking for it anymore.
1131           Case = 0;
1132 
1133           // If we found the case and skipped declarations, we can't do the
1134           // optimization.
1135           if (HadSkippedDecl)
1136             return CSFC_Failure;
1137           break;
1138         }
1139       }
1140     }
1141 
1142     // If we have statements in our range, then we know that the statements are
1143     // live and need to be added to the set of statements we're tracking.
1144     for (; I != E; ++I) {
1145       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1146       case CSFC_Failure: return CSFC_Failure;
1147       case CSFC_FallThrough:
1148         // A fallthrough result means that the statement was simple and just
1149         // included in ResultStmt, keep adding them afterwards.
1150         break;
1151       case CSFC_Success:
1152         // A successful result means that we found the break statement and
1153         // stopped statement inclusion.  We just ensure that any leftover stmts
1154         // are skippable and return success ourselves.
1155         for (++I; I != E; ++I)
1156           if (CodeGenFunction::ContainsLabel(*I, true))
1157             return CSFC_Failure;
1158         return CSFC_Success;
1159       }
1160     }
1161 
1162     return Case ? CSFC_Success : CSFC_FallThrough;
1163   }
1164 
1165   // Okay, this is some other statement that we don't handle explicitly, like a
1166   // for statement or increment etc.  If we are skipping over this statement,
1167   // just verify it doesn't have labels, which would make it invalid to elide.
1168   if (Case) {
1169     if (CodeGenFunction::ContainsLabel(S, true))
1170       return CSFC_Failure;
1171     return CSFC_Success;
1172   }
1173 
1174   // Otherwise, we want to include this statement.  Everything is cool with that
1175   // so long as it doesn't contain a break out of the switch we're in.
1176   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1177 
1178   // Otherwise, everything is great.  Include the statement and tell the caller
1179   // that we fall through and include the next statement as well.
1180   ResultStmts.push_back(S);
1181   return CSFC_FallThrough;
1182 }
1183 
1184 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1185 /// then invoke CollectStatementsForCase to find the list of statements to emit
1186 /// for a switch on constant.  See the comment above CollectStatementsForCase
1187 /// for more details.
1188 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1189                                        const llvm::APSInt &ConstantCondValue,
1190                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1191                                        ASTContext &C) {
1192   // First step, find the switch case that is being branched to.  We can do this
1193   // efficiently by scanning the SwitchCase list.
1194   const SwitchCase *Case = S.getSwitchCaseList();
1195   const DefaultStmt *DefaultCase = 0;
1196 
1197   for (; Case; Case = Case->getNextSwitchCase()) {
1198     // It's either a default or case.  Just remember the default statement in
1199     // case we're not jumping to any numbered cases.
1200     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1201       DefaultCase = DS;
1202       continue;
1203     }
1204 
1205     // Check to see if this case is the one we're looking for.
1206     const CaseStmt *CS = cast<CaseStmt>(Case);
1207     // Don't handle case ranges yet.
1208     if (CS->getRHS()) return false;
1209 
1210     // If we found our case, remember it as 'case'.
1211     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1212       break;
1213   }
1214 
1215   // If we didn't find a matching case, we use a default if it exists, or we
1216   // elide the whole switch body!
1217   if (Case == 0) {
1218     // It is safe to elide the body of the switch if it doesn't contain labels
1219     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1220     if (DefaultCase == 0)
1221       return !CodeGenFunction::ContainsLabel(&S);
1222     Case = DefaultCase;
1223   }
1224 
1225   // Ok, we know which case is being jumped to, try to collect all the
1226   // statements that follow it.  This can fail for a variety of reasons.  Also,
1227   // check to see that the recursive walk actually found our case statement.
1228   // Insane cases like this can fail to find it in the recursive walk since we
1229   // don't handle every stmt kind:
1230   // switch (4) {
1231   //   while (1) {
1232   //     case 4: ...
1233   bool FoundCase = false;
1234   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1235                                   ResultStmts) != CSFC_Failure &&
1236          FoundCase;
1237 }
1238 
1239 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1240   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1241 
1242   RunCleanupsScope ConditionScope(*this);
1243 
1244   if (S.getConditionVariable())
1245     EmitAutoVarDecl(*S.getConditionVariable());
1246 
1247   // Handle nested switch statements.
1248   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1249   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1250 
1251   // See if we can constant fold the condition of the switch and therefore only
1252   // emit the live case statement (if any) of the switch.
1253   llvm::APSInt ConstantCondValue;
1254   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1255     SmallVector<const Stmt*, 4> CaseStmts;
1256     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1257                                    getContext())) {
1258       RunCleanupsScope ExecutedScope(*this);
1259 
1260       // At this point, we are no longer "within" a switch instance, so
1261       // we can temporarily enforce this to ensure that any embedded case
1262       // statements are not emitted.
1263       SwitchInsn = 0;
1264 
1265       // Okay, we can dead code eliminate everything except this case.  Emit the
1266       // specified series of statements and we're good.
1267       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1268         EmitStmt(CaseStmts[i]);
1269 
1270       // Now we want to restore the saved switch instance so that nested
1271       // switches continue to function properly
1272       SwitchInsn = SavedSwitchInsn;
1273 
1274       return;
1275     }
1276   }
1277 
1278   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1279 
1280   // Create basic block to hold stuff that comes after switch
1281   // statement. We also need to create a default block now so that
1282   // explicit case ranges tests can have a place to jump to on
1283   // failure.
1284   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1285   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1286   CaseRangeBlock = DefaultBlock;
1287 
1288   // Clear the insertion point to indicate we are in unreachable code.
1289   Builder.ClearInsertionPoint();
1290 
1291   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1292   // then reuse last ContinueBlock.
1293   JumpDest OuterContinue;
1294   if (!BreakContinueStack.empty())
1295     OuterContinue = BreakContinueStack.back().ContinueBlock;
1296 
1297   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1298 
1299   // Emit switch body.
1300   EmitStmt(S.getBody());
1301 
1302   BreakContinueStack.pop_back();
1303 
1304   // Update the default block in case explicit case range tests have
1305   // been chained on top.
1306   SwitchInsn->setDefaultDest(CaseRangeBlock);
1307 
1308   // If a default was never emitted:
1309   if (!DefaultBlock->getParent()) {
1310     // If we have cleanups, emit the default block so that there's a
1311     // place to jump through the cleanups from.
1312     if (ConditionScope.requiresCleanups()) {
1313       EmitBlock(DefaultBlock);
1314 
1315     // Otherwise, just forward the default block to the switch end.
1316     } else {
1317       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1318       delete DefaultBlock;
1319     }
1320   }
1321 
1322   ConditionScope.ForceCleanup();
1323 
1324   // Emit continuation.
1325   EmitBlock(SwitchExit.getBlock(), true);
1326 
1327   SwitchInsn = SavedSwitchInsn;
1328   CaseRangeBlock = SavedCRBlock;
1329 }
1330 
1331 static std::string
1332 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1333                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1334   std::string Result;
1335 
1336   while (*Constraint) {
1337     switch (*Constraint) {
1338     default:
1339       Result += Target.convertConstraint(Constraint);
1340       break;
1341     // Ignore these
1342     case '*':
1343     case '?':
1344     case '!':
1345     case '=': // Will see this and the following in mult-alt constraints.
1346     case '+':
1347       break;
1348     case '#': // Ignore the rest of the constraint alternative.
1349       while (Constraint[1] && Constraint[1] != ',')
1350         Constraint++;
1351       break;
1352     case ',':
1353       Result += "|";
1354       break;
1355     case 'g':
1356       Result += "imr";
1357       break;
1358     case '[': {
1359       assert(OutCons &&
1360              "Must pass output names to constraints with a symbolic name");
1361       unsigned Index;
1362       bool result = Target.resolveSymbolicName(Constraint,
1363                                                &(*OutCons)[0],
1364                                                OutCons->size(), Index);
1365       assert(result && "Could not resolve symbolic name"); (void)result;
1366       Result += llvm::utostr(Index);
1367       break;
1368     }
1369     }
1370 
1371     Constraint++;
1372   }
1373 
1374   return Result;
1375 }
1376 
1377 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1378 /// as using a particular register add that as a constraint that will be used
1379 /// in this asm stmt.
1380 static std::string
1381 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1382                        const TargetInfo &Target, CodeGenModule &CGM,
1383                        const AsmStmt &Stmt) {
1384   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1385   if (!AsmDeclRef)
1386     return Constraint;
1387   const ValueDecl &Value = *AsmDeclRef->getDecl();
1388   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1389   if (!Variable)
1390     return Constraint;
1391   if (Variable->getStorageClass() != SC_Register)
1392     return Constraint;
1393   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1394   if (!Attr)
1395     return Constraint;
1396   StringRef Register = Attr->getLabel();
1397   assert(Target.isValidGCCRegisterName(Register));
1398   // We're using validateOutputConstraint here because we only care if
1399   // this is a register constraint.
1400   TargetInfo::ConstraintInfo Info(Constraint, "");
1401   if (Target.validateOutputConstraint(Info) &&
1402       !Info.allowsRegister()) {
1403     CGM.ErrorUnsupported(&Stmt, "__asm__");
1404     return Constraint;
1405   }
1406   // Canonicalize the register here before returning it.
1407   Register = Target.getNormalizedGCCRegisterName(Register);
1408   return "{" + Register.str() + "}";
1409 }
1410 
1411 llvm::Value*
1412 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1413                                     LValue InputValue, QualType InputType,
1414                                     std::string &ConstraintStr,
1415                                     SourceLocation Loc) {
1416   llvm::Value *Arg;
1417   if (Info.allowsRegister() || !Info.allowsMemory()) {
1418     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1419       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1420     } else {
1421       llvm::Type *Ty = ConvertType(InputType);
1422       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1423       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1424         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1425         Ty = llvm::PointerType::getUnqual(Ty);
1426 
1427         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1428                                                        Ty));
1429       } else {
1430         Arg = InputValue.getAddress();
1431         ConstraintStr += '*';
1432       }
1433     }
1434   } else {
1435     Arg = InputValue.getAddress();
1436     ConstraintStr += '*';
1437   }
1438 
1439   return Arg;
1440 }
1441 
1442 llvm::Value* CodeGenFunction::EmitAsmInput(
1443                                          const TargetInfo::ConstraintInfo &Info,
1444                                            const Expr *InputExpr,
1445                                            std::string &ConstraintStr) {
1446   if (Info.allowsRegister() || !Info.allowsMemory())
1447     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1448       return EmitScalarExpr(InputExpr);
1449 
1450   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1451   LValue Dest = EmitLValue(InputExpr);
1452   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1453                             InputExpr->getExprLoc());
1454 }
1455 
1456 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1457 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1458 /// integers which are the source locations of the start of each line in the
1459 /// asm.
1460 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1461                                       CodeGenFunction &CGF) {
1462   SmallVector<llvm::Value *, 8> Locs;
1463   // Add the location of the first line to the MDNode.
1464   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1465                                         Str->getLocStart().getRawEncoding()));
1466   StringRef StrVal = Str->getString();
1467   if (!StrVal.empty()) {
1468     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1469     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1470 
1471     // Add the location of the start of each subsequent line of the asm to the
1472     // MDNode.
1473     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1474       if (StrVal[i] != '\n') continue;
1475       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1476                                                       CGF.getTarget());
1477       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1478                                             LineLoc.getRawEncoding()));
1479     }
1480   }
1481 
1482   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1483 }
1484 
1485 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1486   // Assemble the final asm string.
1487   std::string AsmString = S.generateAsmString(getContext());
1488 
1489   // Get all the output and input constraints together.
1490   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1491   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1492 
1493   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1494     StringRef Name;
1495     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1496       Name = GAS->getOutputName(i);
1497     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1498     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1499     assert(IsValid && "Failed to parse output constraint");
1500     OutputConstraintInfos.push_back(Info);
1501   }
1502 
1503   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1504     StringRef Name;
1505     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1506       Name = GAS->getInputName(i);
1507     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1508     bool IsValid =
1509       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1510                                           S.getNumOutputs(), Info);
1511     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1512     InputConstraintInfos.push_back(Info);
1513   }
1514 
1515   std::string Constraints;
1516 
1517   std::vector<LValue> ResultRegDests;
1518   std::vector<QualType> ResultRegQualTys;
1519   std::vector<llvm::Type *> ResultRegTypes;
1520   std::vector<llvm::Type *> ResultTruncRegTypes;
1521   std::vector<llvm::Type *> ArgTypes;
1522   std::vector<llvm::Value*> Args;
1523 
1524   // Keep track of inout constraints.
1525   std::string InOutConstraints;
1526   std::vector<llvm::Value*> InOutArgs;
1527   std::vector<llvm::Type*> InOutArgTypes;
1528 
1529   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1530     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1531 
1532     // Simplify the output constraint.
1533     std::string OutputConstraint(S.getOutputConstraint(i));
1534     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1535                                           getTarget());
1536 
1537     const Expr *OutExpr = S.getOutputExpr(i);
1538     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1539 
1540     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1541                                               getTarget(), CGM, S);
1542 
1543     LValue Dest = EmitLValue(OutExpr);
1544     if (!Constraints.empty())
1545       Constraints += ',';
1546 
1547     // If this is a register output, then make the inline asm return it
1548     // by-value.  If this is a memory result, return the value by-reference.
1549     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1550       Constraints += "=" + OutputConstraint;
1551       ResultRegQualTys.push_back(OutExpr->getType());
1552       ResultRegDests.push_back(Dest);
1553       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1554       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1555 
1556       // If this output is tied to an input, and if the input is larger, then
1557       // we need to set the actual result type of the inline asm node to be the
1558       // same as the input type.
1559       if (Info.hasMatchingInput()) {
1560         unsigned InputNo;
1561         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1562           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1563           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1564             break;
1565         }
1566         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1567 
1568         QualType InputTy = S.getInputExpr(InputNo)->getType();
1569         QualType OutputType = OutExpr->getType();
1570 
1571         uint64_t InputSize = getContext().getTypeSize(InputTy);
1572         if (getContext().getTypeSize(OutputType) < InputSize) {
1573           // Form the asm to return the value as a larger integer or fp type.
1574           ResultRegTypes.back() = ConvertType(InputTy);
1575         }
1576       }
1577       if (llvm::Type* AdjTy =
1578             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1579                                                  ResultRegTypes.back()))
1580         ResultRegTypes.back() = AdjTy;
1581       else {
1582         CGM.getDiags().Report(S.getAsmLoc(),
1583                               diag::err_asm_invalid_type_in_input)
1584             << OutExpr->getType() << OutputConstraint;
1585       }
1586     } else {
1587       ArgTypes.push_back(Dest.getAddress()->getType());
1588       Args.push_back(Dest.getAddress());
1589       Constraints += "=*";
1590       Constraints += OutputConstraint;
1591     }
1592 
1593     if (Info.isReadWrite()) {
1594       InOutConstraints += ',';
1595 
1596       const Expr *InputExpr = S.getOutputExpr(i);
1597       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1598                                             InOutConstraints,
1599                                             InputExpr->getExprLoc());
1600 
1601       if (llvm::Type* AdjTy =
1602           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1603                                                Arg->getType()))
1604         Arg = Builder.CreateBitCast(Arg, AdjTy);
1605 
1606       if (Info.allowsRegister())
1607         InOutConstraints += llvm::utostr(i);
1608       else
1609         InOutConstraints += OutputConstraint;
1610 
1611       InOutArgTypes.push_back(Arg->getType());
1612       InOutArgs.push_back(Arg);
1613     }
1614   }
1615 
1616   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1617 
1618   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1619     const Expr *InputExpr = S.getInputExpr(i);
1620 
1621     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1622 
1623     if (!Constraints.empty())
1624       Constraints += ',';
1625 
1626     // Simplify the input constraint.
1627     std::string InputConstraint(S.getInputConstraint(i));
1628     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1629                                          &OutputConstraintInfos);
1630 
1631     InputConstraint =
1632       AddVariableConstraints(InputConstraint,
1633                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1634                             getTarget(), CGM, S);
1635 
1636     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1637 
1638     // If this input argument is tied to a larger output result, extend the
1639     // input to be the same size as the output.  The LLVM backend wants to see
1640     // the input and output of a matching constraint be the same size.  Note
1641     // that GCC does not define what the top bits are here.  We use zext because
1642     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1643     if (Info.hasTiedOperand()) {
1644       unsigned Output = Info.getTiedOperand();
1645       QualType OutputType = S.getOutputExpr(Output)->getType();
1646       QualType InputTy = InputExpr->getType();
1647 
1648       if (getContext().getTypeSize(OutputType) >
1649           getContext().getTypeSize(InputTy)) {
1650         // Use ptrtoint as appropriate so that we can do our extension.
1651         if (isa<llvm::PointerType>(Arg->getType()))
1652           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1653         llvm::Type *OutputTy = ConvertType(OutputType);
1654         if (isa<llvm::IntegerType>(OutputTy))
1655           Arg = Builder.CreateZExt(Arg, OutputTy);
1656         else if (isa<llvm::PointerType>(OutputTy))
1657           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1658         else {
1659           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1660           Arg = Builder.CreateFPExt(Arg, OutputTy);
1661         }
1662       }
1663     }
1664     if (llvm::Type* AdjTy =
1665               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1666                                                    Arg->getType()))
1667       Arg = Builder.CreateBitCast(Arg, AdjTy);
1668     else
1669       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1670           << InputExpr->getType() << InputConstraint;
1671 
1672     ArgTypes.push_back(Arg->getType());
1673     Args.push_back(Arg);
1674     Constraints += InputConstraint;
1675   }
1676 
1677   // Append the "input" part of inout constraints last.
1678   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1679     ArgTypes.push_back(InOutArgTypes[i]);
1680     Args.push_back(InOutArgs[i]);
1681   }
1682   Constraints += InOutConstraints;
1683 
1684   // Clobbers
1685   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1686     StringRef Clobber = S.getClobber(i);
1687 
1688     if (Clobber != "memory" && Clobber != "cc")
1689     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1690 
1691     if (i != 0 || NumConstraints != 0)
1692       Constraints += ',';
1693 
1694     Constraints += "~{";
1695     Constraints += Clobber;
1696     Constraints += '}';
1697   }
1698 
1699   // Add machine specific clobbers
1700   std::string MachineClobbers = getTarget().getClobbers();
1701   if (!MachineClobbers.empty()) {
1702     if (!Constraints.empty())
1703       Constraints += ',';
1704     Constraints += MachineClobbers;
1705   }
1706 
1707   llvm::Type *ResultType;
1708   if (ResultRegTypes.empty())
1709     ResultType = VoidTy;
1710   else if (ResultRegTypes.size() == 1)
1711     ResultType = ResultRegTypes[0];
1712   else
1713     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1714 
1715   llvm::FunctionType *FTy =
1716     llvm::FunctionType::get(ResultType, ArgTypes, false);
1717 
1718   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1719   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1720     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1721   llvm::InlineAsm *IA =
1722     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1723                          /* IsAlignStack */ false, AsmDialect);
1724   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1725   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1726                        llvm::Attribute::NoUnwind);
1727 
1728   // Slap the source location of the inline asm into a !srcloc metadata on the
1729   // call.  FIXME: Handle metadata for MS-style inline asms.
1730   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1731     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1732                                                    *this));
1733 
1734   // Extract all of the register value results from the asm.
1735   std::vector<llvm::Value*> RegResults;
1736   if (ResultRegTypes.size() == 1) {
1737     RegResults.push_back(Result);
1738   } else {
1739     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1740       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1741       RegResults.push_back(Tmp);
1742     }
1743   }
1744 
1745   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1746     llvm::Value *Tmp = RegResults[i];
1747 
1748     // If the result type of the LLVM IR asm doesn't match the result type of
1749     // the expression, do the conversion.
1750     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1751       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1752 
1753       // Truncate the integer result to the right size, note that TruncTy can be
1754       // a pointer.
1755       if (TruncTy->isFloatingPointTy())
1756         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1757       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1758         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1759         Tmp = Builder.CreateTrunc(Tmp,
1760                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1761         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1762       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1763         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1764         Tmp = Builder.CreatePtrToInt(Tmp,
1765                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1766         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1767       } else if (TruncTy->isIntegerTy()) {
1768         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1769       } else if (TruncTy->isVectorTy()) {
1770         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1771       }
1772     }
1773 
1774     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1775   }
1776 }
1777 
1778 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1779   const RecordDecl *RD = S.getCapturedRecordDecl();
1780   QualType RecordTy = CGF.getContext().getRecordType(RD);
1781 
1782   // Initialize the captured struct.
1783   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1784                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1785 
1786   RecordDecl::field_iterator CurField = RD->field_begin();
1787   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1788                                            E = S.capture_init_end();
1789        I != E; ++I, ++CurField) {
1790     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1791     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1792   }
1793 
1794   return SlotLV;
1795 }
1796 
1797 /// Generate an outlined function for the body of a CapturedStmt, store any
1798 /// captured variables into the captured struct, and call the outlined function.
1799 llvm::Function *
1800 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1801   const CapturedDecl *CD = S.getCapturedDecl();
1802   const RecordDecl *RD = S.getCapturedRecordDecl();
1803   assert(CD->hasBody() && "missing CapturedDecl body");
1804 
1805   LValue CapStruct = InitCapturedStruct(*this, S);
1806 
1807   // Emit the CapturedDecl
1808   CodeGenFunction CGF(CGM, true);
1809   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1810   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
1811   delete CGF.CapturedStmtInfo;
1812 
1813   // Emit call to the helper function.
1814   EmitCallOrInvoke(F, CapStruct.getAddress());
1815 
1816   return F;
1817 }
1818 
1819 /// Creates the outlined function for a CapturedStmt.
1820 llvm::Function *
1821 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1822                                               const RecordDecl *RD,
1823                                               SourceLocation Loc) {
1824   assert(CapturedStmtInfo &&
1825     "CapturedStmtInfo should be set when generating the captured function");
1826 
1827   // Build the argument list.
1828   ASTContext &Ctx = CGM.getContext();
1829   FunctionArgList Args;
1830   Args.append(CD->param_begin(), CD->param_end());
1831 
1832   // Create the function declaration.
1833   FunctionType::ExtInfo ExtInfo;
1834   const CGFunctionInfo &FuncInfo =
1835     CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1836                                               /*IsVariadic=*/false);
1837   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1838 
1839   llvm::Function *F =
1840     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1841                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
1842   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1843 
1844   // Generate the function.
1845   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
1846 
1847   // Set the context parameter in CapturedStmtInfo.
1848   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1849   assert(DeclPtr && "missing context parameter for CapturedStmt");
1850   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1851 
1852   // If 'this' is captured, load it into CXXThisValue.
1853   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1854     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1855     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1856                                            Ctx.getTagDeclType(RD));
1857     LValue ThisLValue = EmitLValueForField(LV, FD);
1858     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
1859   }
1860 
1861   CapturedStmtInfo->EmitBody(*this, CD->getBody());
1862   FinishFunction(CD->getBodyRBrace());
1863 
1864   return F;
1865 }
1866