1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/LoopHint.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                              Statement Emission
33 //===----------------------------------------------------------------------===//
34 
35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36   if (CGDebugInfo *DI = getDebugInfo()) {
37     SourceLocation Loc;
38     Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40 
41     LastStopPoint = Loc;
42   }
43 }
44 
45 void CodeGenFunction::EmitStmt(const Stmt *S) {
46   assert(S && "Null statement?");
47   PGO.setCurrentStmt(S);
48 
49   // These statements have their own debug info handling.
50   if (EmitSimpleStmt(S))
51     return;
52 
53   // Check if we are generating unreachable code.
54   if (!HaveInsertPoint()) {
55     // If so, and the statement doesn't contain a label, then we do not need to
56     // generate actual code. This is safe because (1) the current point is
57     // unreachable, so we don't need to execute the code, and (2) we've already
58     // handled the statements which update internal data structures (like the
59     // local variable map) which could be used by subsequent statements.
60     if (!ContainsLabel(S)) {
61       // Verify that any decl statements were handled as simple, they may be in
62       // scope of subsequent reachable statements.
63       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64       return;
65     }
66 
67     // Otherwise, make a new block to hold the code.
68     EnsureInsertPoint();
69   }
70 
71   // Generate a stoppoint if we are emitting debug info.
72   EmitStopPoint(S);
73 
74   switch (S->getStmtClass()) {
75   case Stmt::NoStmtClass:
76   case Stmt::CXXCatchStmtClass:
77   case Stmt::SEHExceptStmtClass:
78   case Stmt::SEHFinallyStmtClass:
79   case Stmt::MSDependentExistsStmtClass:
80     llvm_unreachable("invalid statement class to emit generically");
81   case Stmt::NullStmtClass:
82   case Stmt::CompoundStmtClass:
83   case Stmt::DeclStmtClass:
84   case Stmt::LabelStmtClass:
85   case Stmt::AttributedStmtClass:
86   case Stmt::GotoStmtClass:
87   case Stmt::BreakStmtClass:
88   case Stmt::ContinueStmtClass:
89   case Stmt::DefaultStmtClass:
90   case Stmt::CaseStmtClass:
91     llvm_unreachable("should have emitted these statements as simple");
92 
93 #define STMT(Type, Base)
94 #define ABSTRACT_STMT(Op)
95 #define EXPR(Type, Base) \
96   case Stmt::Type##Class:
97 #include "clang/AST/StmtNodes.inc"
98   {
99     // Remember the block we came in on.
100     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
101     assert(incoming && "expression emission must have an insertion point");
102 
103     EmitIgnoredExpr(cast<Expr>(S));
104 
105     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
106     assert(outgoing && "expression emission cleared block!");
107 
108     // The expression emitters assume (reasonably!) that the insertion
109     // point is always set.  To maintain that, the call-emission code
110     // for noreturn functions has to enter a new block with no
111     // predecessors.  We want to kill that block and mark the current
112     // insertion point unreachable in the common case of a call like
113     // "exit();".  Since expression emission doesn't otherwise create
114     // blocks with no predecessors, we can just test for that.
115     // However, we must be careful not to do this to our incoming
116     // block, because *statement* emission does sometimes create
117     // reachable blocks which will have no predecessors until later in
118     // the function.  This occurs with, e.g., labels that are not
119     // reachable by fallthrough.
120     if (incoming != outgoing && outgoing->use_empty()) {
121       outgoing->eraseFromParent();
122       Builder.ClearInsertionPoint();
123     }
124     break;
125   }
126 
127   case Stmt::IndirectGotoStmtClass:
128     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
129 
130   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
131   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
132   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
133   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
134 
135   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
136 
137   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
138   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
139   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
140   case Stmt::CapturedStmtClass: {
141     const CapturedStmt *CS = cast<CapturedStmt>(S);
142     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
143     }
144     break;
145   case Stmt::ObjCAtTryStmtClass:
146     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
147     break;
148   case Stmt::ObjCAtCatchStmtClass:
149     llvm_unreachable(
150                     "@catch statements should be handled by EmitObjCAtTryStmt");
151   case Stmt::ObjCAtFinallyStmtClass:
152     llvm_unreachable(
153                   "@finally statements should be handled by EmitObjCAtTryStmt");
154   case Stmt::ObjCAtThrowStmtClass:
155     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
156     break;
157   case Stmt::ObjCAtSynchronizedStmtClass:
158     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
159     break;
160   case Stmt::ObjCForCollectionStmtClass:
161     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
162     break;
163   case Stmt::ObjCAutoreleasePoolStmtClass:
164     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
165     break;
166 
167   case Stmt::CXXTryStmtClass:
168     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
169     break;
170   case Stmt::CXXForRangeStmtClass:
171     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
172     break;
173   case Stmt::SEHTryStmtClass:
174     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
175     break;
176   case Stmt::OMPParallelDirectiveClass:
177     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
178     break;
179   case Stmt::OMPSimdDirectiveClass:
180     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
181     break;
182   case Stmt::OMPForDirectiveClass:
183     EmitOMPForDirective(cast<OMPForDirective>(*S));
184     break;
185   }
186 }
187 
188 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
189   switch (S->getStmtClass()) {
190   default: return false;
191   case Stmt::NullStmtClass: break;
192   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
193   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
194   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
195   case Stmt::AttributedStmtClass:
196                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
197   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
198   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
199   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
200   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
201   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
202   }
203 
204   return true;
205 }
206 
207 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
208 /// this captures the expression result of the last sub-statement and returns it
209 /// (for use by the statement expression extension).
210 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
211                                                AggValueSlot AggSlot) {
212   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
213                              "LLVM IR generation of compound statement ('{}')");
214 
215   // Keep track of the current cleanup stack depth, including debug scopes.
216   LexicalScope Scope(*this, S.getSourceRange());
217 
218   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
219 }
220 
221 llvm::Value*
222 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
223                                               bool GetLast,
224                                               AggValueSlot AggSlot) {
225 
226   for (CompoundStmt::const_body_iterator I = S.body_begin(),
227        E = S.body_end()-GetLast; I != E; ++I)
228     EmitStmt(*I);
229 
230   llvm::Value *RetAlloca = nullptr;
231   if (GetLast) {
232     // We have to special case labels here.  They are statements, but when put
233     // at the end of a statement expression, they yield the value of their
234     // subexpression.  Handle this by walking through all labels we encounter,
235     // emitting them before we evaluate the subexpr.
236     const Stmt *LastStmt = S.body_back();
237     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
238       EmitLabel(LS->getDecl());
239       LastStmt = LS->getSubStmt();
240     }
241 
242     EnsureInsertPoint();
243 
244     QualType ExprTy = cast<Expr>(LastStmt)->getType();
245     if (hasAggregateEvaluationKind(ExprTy)) {
246       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
247     } else {
248       // We can't return an RValue here because there might be cleanups at
249       // the end of the StmtExpr.  Because of that, we have to emit the result
250       // here into a temporary alloca.
251       RetAlloca = CreateMemTemp(ExprTy);
252       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
253                        /*IsInit*/false);
254     }
255 
256   }
257 
258   return RetAlloca;
259 }
260 
261 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
262   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
263 
264   // If there is a cleanup stack, then we it isn't worth trying to
265   // simplify this block (we would need to remove it from the scope map
266   // and cleanup entry).
267   if (!EHStack.empty())
268     return;
269 
270   // Can only simplify direct branches.
271   if (!BI || !BI->isUnconditional())
272     return;
273 
274   // Can only simplify empty blocks.
275   if (BI != BB->begin())
276     return;
277 
278   BB->replaceAllUsesWith(BI->getSuccessor(0));
279   BI->eraseFromParent();
280   BB->eraseFromParent();
281 }
282 
283 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
284   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
285 
286   // Fall out of the current block (if necessary).
287   EmitBranch(BB);
288 
289   if (IsFinished && BB->use_empty()) {
290     delete BB;
291     return;
292   }
293 
294   // Place the block after the current block, if possible, or else at
295   // the end of the function.
296   if (CurBB && CurBB->getParent())
297     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
298   else
299     CurFn->getBasicBlockList().push_back(BB);
300   Builder.SetInsertPoint(BB);
301 }
302 
303 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
304   // Emit a branch from the current block to the target one if this
305   // was a real block.  If this was just a fall-through block after a
306   // terminator, don't emit it.
307   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
308 
309   if (!CurBB || CurBB->getTerminator()) {
310     // If there is no insert point or the previous block is already
311     // terminated, don't touch it.
312   } else {
313     // Otherwise, create a fall-through branch.
314     Builder.CreateBr(Target);
315   }
316 
317   Builder.ClearInsertionPoint();
318 }
319 
320 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
321   bool inserted = false;
322   for (llvm::User *u : block->users()) {
323     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
324       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
325       inserted = true;
326       break;
327     }
328   }
329 
330   if (!inserted)
331     CurFn->getBasicBlockList().push_back(block);
332 
333   Builder.SetInsertPoint(block);
334 }
335 
336 CodeGenFunction::JumpDest
337 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
338   JumpDest &Dest = LabelMap[D];
339   if (Dest.isValid()) return Dest;
340 
341   // Create, but don't insert, the new block.
342   Dest = JumpDest(createBasicBlock(D->getName()),
343                   EHScopeStack::stable_iterator::invalid(),
344                   NextCleanupDestIndex++);
345   return Dest;
346 }
347 
348 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
349   // Add this label to the current lexical scope if we're within any
350   // normal cleanups.  Jumps "in" to this label --- when permitted by
351   // the language --- may need to be routed around such cleanups.
352   if (EHStack.hasNormalCleanups() && CurLexicalScope)
353     CurLexicalScope->addLabel(D);
354 
355   JumpDest &Dest = LabelMap[D];
356 
357   // If we didn't need a forward reference to this label, just go
358   // ahead and create a destination at the current scope.
359   if (!Dest.isValid()) {
360     Dest = getJumpDestInCurrentScope(D->getName());
361 
362   // Otherwise, we need to give this label a target depth and remove
363   // it from the branch-fixups list.
364   } else {
365     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
366     Dest.setScopeDepth(EHStack.stable_begin());
367     ResolveBranchFixups(Dest.getBlock());
368   }
369 
370   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
371   EmitBlock(Dest.getBlock());
372   Cnt.beginRegion(Builder);
373 }
374 
375 /// Change the cleanup scope of the labels in this lexical scope to
376 /// match the scope of the enclosing context.
377 void CodeGenFunction::LexicalScope::rescopeLabels() {
378   assert(!Labels.empty());
379   EHScopeStack::stable_iterator innermostScope
380     = CGF.EHStack.getInnermostNormalCleanup();
381 
382   // Change the scope depth of all the labels.
383   for (SmallVectorImpl<const LabelDecl*>::const_iterator
384          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
385     assert(CGF.LabelMap.count(*i));
386     JumpDest &dest = CGF.LabelMap.find(*i)->second;
387     assert(dest.getScopeDepth().isValid());
388     assert(innermostScope.encloses(dest.getScopeDepth()));
389     dest.setScopeDepth(innermostScope);
390   }
391 
392   // Reparent the labels if the new scope also has cleanups.
393   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
394     ParentScope->Labels.append(Labels.begin(), Labels.end());
395   }
396 }
397 
398 
399 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
400   EmitLabel(S.getDecl());
401   EmitStmt(S.getSubStmt());
402 }
403 
404 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
405   const Stmt *SubStmt = S.getSubStmt();
406   switch (SubStmt->getStmtClass()) {
407   case Stmt::DoStmtClass:
408     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
409     break;
410   case Stmt::ForStmtClass:
411     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
412     break;
413   case Stmt::WhileStmtClass:
414     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
415     break;
416   case Stmt::CXXForRangeStmtClass:
417     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
418     break;
419   default:
420     EmitStmt(SubStmt);
421   }
422 }
423 
424 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
425   // If this code is reachable then emit a stop point (if generating
426   // debug info). We have to do this ourselves because we are on the
427   // "simple" statement path.
428   if (HaveInsertPoint())
429     EmitStopPoint(&S);
430 
431   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
432 }
433 
434 
435 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
436   if (const LabelDecl *Target = S.getConstantTarget()) {
437     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
438     return;
439   }
440 
441   // Ensure that we have an i8* for our PHI node.
442   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
443                                          Int8PtrTy, "addr");
444   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
445 
446   // Get the basic block for the indirect goto.
447   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
448 
449   // The first instruction in the block has to be the PHI for the switch dest,
450   // add an entry for this branch.
451   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
452 
453   EmitBranch(IndGotoBB);
454 }
455 
456 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
457   // C99 6.8.4.1: The first substatement is executed if the expression compares
458   // unequal to 0.  The condition must be a scalar type.
459   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
460   RegionCounter Cnt = getPGORegionCounter(&S);
461 
462   if (S.getConditionVariable())
463     EmitAutoVarDecl(*S.getConditionVariable());
464 
465   // If the condition constant folds and can be elided, try to avoid emitting
466   // the condition and the dead arm of the if/else.
467   bool CondConstant;
468   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
469     // Figure out which block (then or else) is executed.
470     const Stmt *Executed = S.getThen();
471     const Stmt *Skipped  = S.getElse();
472     if (!CondConstant)  // Condition false?
473       std::swap(Executed, Skipped);
474 
475     // If the skipped block has no labels in it, just emit the executed block.
476     // This avoids emitting dead code and simplifies the CFG substantially.
477     if (!ContainsLabel(Skipped)) {
478       if (CondConstant)
479         Cnt.beginRegion(Builder);
480       if (Executed) {
481         RunCleanupsScope ExecutedScope(*this);
482         EmitStmt(Executed);
483       }
484       return;
485     }
486   }
487 
488   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
489   // the conditional branch.
490   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
491   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
492   llvm::BasicBlock *ElseBlock = ContBlock;
493   if (S.getElse())
494     ElseBlock = createBasicBlock("if.else");
495 
496   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
497 
498   // Emit the 'then' code.
499   EmitBlock(ThenBlock);
500   Cnt.beginRegion(Builder);
501   {
502     RunCleanupsScope ThenScope(*this);
503     EmitStmt(S.getThen());
504   }
505   EmitBranch(ContBlock);
506 
507   // Emit the 'else' code if present.
508   if (const Stmt *Else = S.getElse()) {
509     // There is no need to emit line number for unconditional branch.
510     if (getDebugInfo())
511       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
512     EmitBlock(ElseBlock);
513     {
514       RunCleanupsScope ElseScope(*this);
515       EmitStmt(Else);
516     }
517     // There is no need to emit line number for unconditional branch.
518     if (getDebugInfo())
519       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
520     EmitBranch(ContBlock);
521   }
522 
523   // Emit the continuation block for code after the if.
524   EmitBlock(ContBlock, true);
525 }
526 
527 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
528                                       llvm::BranchInst *CondBr,
529                                       const ArrayRef<const Attr *> &Attrs) {
530   // Return if there are no hints.
531   if (Attrs.empty())
532     return;
533 
534   // Add vectorize hints to the metadata on the conditional branch.
535   SmallVector<llvm::Value *, 2> Metadata(1);
536   for (const auto *Attr : Attrs) {
537     const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
538 
539     // Skip non loop hint attributes
540     if (!LH)
541       continue;
542 
543     LoopHintAttr::OptionType Option = LH->getOption();
544     int ValueInt = LH->getValue();
545 
546     const char *MetadataName;
547     switch (Option) {
548     case LoopHintAttr::Vectorize:
549     case LoopHintAttr::VectorizeWidth:
550       MetadataName = "llvm.vectorizer.width";
551       break;
552     case LoopHintAttr::Interleave:
553     case LoopHintAttr::InterleaveCount:
554       MetadataName = "llvm.vectorizer.unroll";
555       break;
556     case LoopHintAttr::Unroll:
557       MetadataName = "llvm.loopunroll.enable";
558       break;
559     case LoopHintAttr::UnrollCount:
560       MetadataName = "llvm.loopunroll.count";
561       break;
562     }
563 
564     llvm::Value *Value;
565     llvm::MDString *Name;
566     switch (Option) {
567     case LoopHintAttr::Vectorize:
568     case LoopHintAttr::Interleave:
569       if (ValueInt == 1) {
570         // FIXME: In the future I will modifiy the behavior of the metadata
571         // so we can enable/disable vectorization and interleaving separately.
572         Name = llvm::MDString::get(Context, "llvm.vectorizer.enable");
573         Value = Builder.getTrue();
574         break;
575       }
576       // Vectorization/interleaving is disabled, set width/count to 1.
577       ValueInt = 1;
578       // Fallthrough.
579     case LoopHintAttr::VectorizeWidth:
580     case LoopHintAttr::InterleaveCount:
581       Name = llvm::MDString::get(Context, MetadataName);
582       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
583       break;
584     case LoopHintAttr::Unroll:
585       Name = llvm::MDString::get(Context, MetadataName);
586       Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue();
587       break;
588     case LoopHintAttr::UnrollCount:
589       Name = llvm::MDString::get(Context, MetadataName);
590       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
591       break;
592     }
593 
594     SmallVector<llvm::Value *, 2> OpValues;
595     OpValues.push_back(Name);
596     OpValues.push_back(Value);
597 
598     // Set or overwrite metadata indicated by Name.
599     Metadata.push_back(llvm::MDNode::get(Context, OpValues));
600   }
601 
602   if (!Metadata.empty()) {
603     // Add llvm.loop MDNode to CondBr.
604     llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
605     LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
606 
607     CondBr->setMetadata("llvm.loop", LoopID);
608   }
609 }
610 
611 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
612                                     const ArrayRef<const Attr *> &WhileAttrs) {
613   RegionCounter Cnt = getPGORegionCounter(&S);
614 
615   // Emit the header for the loop, which will also become
616   // the continue target.
617   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
618   EmitBlock(LoopHeader.getBlock());
619 
620   LoopStack.push(LoopHeader.getBlock());
621 
622   // Create an exit block for when the condition fails, which will
623   // also become the break target.
624   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
625 
626   // Store the blocks to use for break and continue.
627   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
628 
629   // C++ [stmt.while]p2:
630   //   When the condition of a while statement is a declaration, the
631   //   scope of the variable that is declared extends from its point
632   //   of declaration (3.3.2) to the end of the while statement.
633   //   [...]
634   //   The object created in a condition is destroyed and created
635   //   with each iteration of the loop.
636   RunCleanupsScope ConditionScope(*this);
637 
638   if (S.getConditionVariable())
639     EmitAutoVarDecl(*S.getConditionVariable());
640 
641   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
642   // evaluation of the controlling expression takes place before each
643   // execution of the loop body.
644   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
645 
646   // while(1) is common, avoid extra exit blocks.  Be sure
647   // to correctly handle break/continue though.
648   bool EmitBoolCondBranch = true;
649   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
650     if (C->isOne())
651       EmitBoolCondBranch = false;
652 
653   // As long as the condition is true, go to the loop body.
654   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
655   if (EmitBoolCondBranch) {
656     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
657     if (ConditionScope.requiresCleanups())
658       ExitBlock = createBasicBlock("while.exit");
659     llvm::BranchInst *CondBr =
660         Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
661                              PGO.createLoopWeights(S.getCond(), Cnt));
662 
663     if (ExitBlock != LoopExit.getBlock()) {
664       EmitBlock(ExitBlock);
665       EmitBranchThroughCleanup(LoopExit);
666     }
667 
668     // Attach metadata to loop body conditional branch.
669     EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
670   }
671 
672   // Emit the loop body.  We have to emit this in a cleanup scope
673   // because it might be a singleton DeclStmt.
674   {
675     RunCleanupsScope BodyScope(*this);
676     EmitBlock(LoopBody);
677     Cnt.beginRegion(Builder);
678     EmitStmt(S.getBody());
679   }
680 
681   BreakContinueStack.pop_back();
682 
683   // Immediately force cleanup.
684   ConditionScope.ForceCleanup();
685 
686   // Branch to the loop header again.
687   EmitBranch(LoopHeader.getBlock());
688 
689   LoopStack.pop();
690 
691   // Emit the exit block.
692   EmitBlock(LoopExit.getBlock(), true);
693 
694   // The LoopHeader typically is just a branch if we skipped emitting
695   // a branch, try to erase it.
696   if (!EmitBoolCondBranch)
697     SimplifyForwardingBlocks(LoopHeader.getBlock());
698 }
699 
700 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
701                                  const ArrayRef<const Attr *> &DoAttrs) {
702   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
703   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
704 
705   RegionCounter Cnt = getPGORegionCounter(&S);
706 
707   // Store the blocks to use for break and continue.
708   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
709 
710   // Emit the body of the loop.
711   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
712 
713   LoopStack.push(LoopBody);
714 
715   EmitBlockWithFallThrough(LoopBody, Cnt);
716   {
717     RunCleanupsScope BodyScope(*this);
718     EmitStmt(S.getBody());
719   }
720 
721   EmitBlock(LoopCond.getBlock());
722 
723   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
724   // after each execution of the loop body."
725 
726   // Evaluate the conditional in the while header.
727   // C99 6.8.5p2/p4: The first substatement is executed if the expression
728   // compares unequal to 0.  The condition must be a scalar type.
729   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
730 
731   BreakContinueStack.pop_back();
732 
733   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
734   // to correctly handle break/continue though.
735   bool EmitBoolCondBranch = true;
736   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
737     if (C->isZero())
738       EmitBoolCondBranch = false;
739 
740   // As long as the condition is true, iterate the loop.
741   if (EmitBoolCondBranch) {
742     llvm::BranchInst *CondBr =
743         Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
744                              PGO.createLoopWeights(S.getCond(), Cnt));
745 
746     // Attach metadata to loop body conditional branch.
747     EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
748   }
749 
750   LoopStack.pop();
751 
752   // Emit the exit block.
753   EmitBlock(LoopExit.getBlock());
754 
755   // The DoCond block typically is just a branch if we skipped
756   // emitting a branch, try to erase it.
757   if (!EmitBoolCondBranch)
758     SimplifyForwardingBlocks(LoopCond.getBlock());
759 }
760 
761 void CodeGenFunction::EmitForStmt(const ForStmt &S,
762                                   const ArrayRef<const Attr *> &ForAttrs) {
763   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
764 
765   RunCleanupsScope ForScope(*this);
766 
767   CGDebugInfo *DI = getDebugInfo();
768   if (DI)
769     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
770 
771   // Evaluate the first part before the loop.
772   if (S.getInit())
773     EmitStmt(S.getInit());
774 
775   RegionCounter Cnt = getPGORegionCounter(&S);
776 
777   // Start the loop with a block that tests the condition.
778   // If there's an increment, the continue scope will be overwritten
779   // later.
780   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
781   llvm::BasicBlock *CondBlock = Continue.getBlock();
782   EmitBlock(CondBlock);
783 
784   LoopStack.push(CondBlock);
785 
786   // If the for loop doesn't have an increment we can just use the
787   // condition as the continue block.  Otherwise we'll need to create
788   // a block for it (in the current scope, i.e. in the scope of the
789   // condition), and that we will become our continue block.
790   if (S.getInc())
791     Continue = getJumpDestInCurrentScope("for.inc");
792 
793   // Store the blocks to use for break and continue.
794   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
795 
796   // Create a cleanup scope for the condition variable cleanups.
797   RunCleanupsScope ConditionScope(*this);
798 
799   if (S.getCond()) {
800     // If the for statement has a condition scope, emit the local variable
801     // declaration.
802     if (S.getConditionVariable()) {
803       EmitAutoVarDecl(*S.getConditionVariable());
804     }
805 
806     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
807     // If there are any cleanups between here and the loop-exit scope,
808     // create a block to stage a loop exit along.
809     if (ForScope.requiresCleanups())
810       ExitBlock = createBasicBlock("for.cond.cleanup");
811 
812     // As long as the condition is true, iterate the loop.
813     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
814 
815     // C99 6.8.5p2/p4: The first substatement is executed if the expression
816     // compares unequal to 0.  The condition must be a scalar type.
817     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
818     llvm::BranchInst *CondBr =
819         Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
820                              PGO.createLoopWeights(S.getCond(), Cnt));
821 
822     // Attach metadata to loop body conditional branch.
823     EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
824 
825     if (ExitBlock != LoopExit.getBlock()) {
826       EmitBlock(ExitBlock);
827       EmitBranchThroughCleanup(LoopExit);
828     }
829 
830     EmitBlock(ForBody);
831   } else {
832     // Treat it as a non-zero constant.  Don't even create a new block for the
833     // body, just fall into it.
834   }
835   Cnt.beginRegion(Builder);
836 
837   {
838     // Create a separate cleanup scope for the body, in case it is not
839     // a compound statement.
840     RunCleanupsScope BodyScope(*this);
841     EmitStmt(S.getBody());
842   }
843 
844   // If there is an increment, emit it next.
845   if (S.getInc()) {
846     EmitBlock(Continue.getBlock());
847     EmitStmt(S.getInc());
848   }
849 
850   BreakContinueStack.pop_back();
851 
852   ConditionScope.ForceCleanup();
853   EmitBranch(CondBlock);
854 
855   ForScope.ForceCleanup();
856 
857   if (DI)
858     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
859 
860   LoopStack.pop();
861 
862   // Emit the fall-through block.
863   EmitBlock(LoopExit.getBlock(), true);
864 }
865 
866 void
867 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
868                                      const ArrayRef<const Attr *> &ForAttrs) {
869   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
870 
871   RunCleanupsScope ForScope(*this);
872 
873   CGDebugInfo *DI = getDebugInfo();
874   if (DI)
875     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
876 
877   // Evaluate the first pieces before the loop.
878   EmitStmt(S.getRangeStmt());
879   EmitStmt(S.getBeginEndStmt());
880 
881   RegionCounter Cnt = getPGORegionCounter(&S);
882 
883   // Start the loop with a block that tests the condition.
884   // If there's an increment, the continue scope will be overwritten
885   // later.
886   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
887   EmitBlock(CondBlock);
888 
889   LoopStack.push(CondBlock);
890 
891   // If there are any cleanups between here and the loop-exit scope,
892   // create a block to stage a loop exit along.
893   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
894   if (ForScope.requiresCleanups())
895     ExitBlock = createBasicBlock("for.cond.cleanup");
896 
897   // The loop body, consisting of the specified body and the loop variable.
898   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
899 
900   // The body is executed if the expression, contextually converted
901   // to bool, is true.
902   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
903   llvm::BranchInst *CondBr = Builder.CreateCondBr(
904       BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
905 
906   // Attach metadata to loop body conditional branch.
907   EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
908 
909   if (ExitBlock != LoopExit.getBlock()) {
910     EmitBlock(ExitBlock);
911     EmitBranchThroughCleanup(LoopExit);
912   }
913 
914   EmitBlock(ForBody);
915   Cnt.beginRegion(Builder);
916 
917   // Create a block for the increment. In case of a 'continue', we jump there.
918   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
919 
920   // Store the blocks to use for break and continue.
921   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
922 
923   {
924     // Create a separate cleanup scope for the loop variable and body.
925     RunCleanupsScope BodyScope(*this);
926     EmitStmt(S.getLoopVarStmt());
927     EmitStmt(S.getBody());
928   }
929 
930   // If there is an increment, emit it next.
931   EmitBlock(Continue.getBlock());
932   EmitStmt(S.getInc());
933 
934   BreakContinueStack.pop_back();
935 
936   EmitBranch(CondBlock);
937 
938   ForScope.ForceCleanup();
939 
940   if (DI)
941     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
942 
943   LoopStack.pop();
944 
945   // Emit the fall-through block.
946   EmitBlock(LoopExit.getBlock(), true);
947 }
948 
949 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
950   if (RV.isScalar()) {
951     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
952   } else if (RV.isAggregate()) {
953     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
954   } else {
955     EmitStoreOfComplex(RV.getComplexVal(),
956                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
957                        /*init*/ true);
958   }
959   EmitBranchThroughCleanup(ReturnBlock);
960 }
961 
962 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
963 /// if the function returns void, or may be missing one if the function returns
964 /// non-void.  Fun stuff :).
965 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
966   // Emit the result value, even if unused, to evalute the side effects.
967   const Expr *RV = S.getRetValue();
968 
969   // Treat block literals in a return expression as if they appeared
970   // in their own scope.  This permits a small, easily-implemented
971   // exception to our over-conservative rules about not jumping to
972   // statements following block literals with non-trivial cleanups.
973   RunCleanupsScope cleanupScope(*this);
974   if (const ExprWithCleanups *cleanups =
975         dyn_cast_or_null<ExprWithCleanups>(RV)) {
976     enterFullExpression(cleanups);
977     RV = cleanups->getSubExpr();
978   }
979 
980   // FIXME: Clean this up by using an LValue for ReturnTemp,
981   // EmitStoreThroughLValue, and EmitAnyExpr.
982   if (getLangOpts().ElideConstructors &&
983       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
984     // Apply the named return value optimization for this return statement,
985     // which means doing nothing: the appropriate result has already been
986     // constructed into the NRVO variable.
987 
988     // If there is an NRVO flag for this variable, set it to 1 into indicate
989     // that the cleanup code should not destroy the variable.
990     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
991       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
992   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
993     // Make sure not to return anything, but evaluate the expression
994     // for side effects.
995     if (RV)
996       EmitAnyExpr(RV);
997   } else if (!RV) {
998     // Do nothing (return value is left uninitialized)
999   } else if (FnRetTy->isReferenceType()) {
1000     // If this function returns a reference, take the address of the expression
1001     // rather than the value.
1002     RValue Result = EmitReferenceBindingToExpr(RV);
1003     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1004   } else {
1005     switch (getEvaluationKind(RV->getType())) {
1006     case TEK_Scalar:
1007       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1008       break;
1009     case TEK_Complex:
1010       EmitComplexExprIntoLValue(RV,
1011                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1012                                 /*isInit*/ true);
1013       break;
1014     case TEK_Aggregate: {
1015       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1016       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1017                                             Qualifiers(),
1018                                             AggValueSlot::IsDestructed,
1019                                             AggValueSlot::DoesNotNeedGCBarriers,
1020                                             AggValueSlot::IsNotAliased));
1021       break;
1022     }
1023     }
1024   }
1025 
1026   ++NumReturnExprs;
1027   if (!RV || RV->isEvaluatable(getContext()))
1028     ++NumSimpleReturnExprs;
1029 
1030   cleanupScope.ForceCleanup();
1031   EmitBranchThroughCleanup(ReturnBlock);
1032 }
1033 
1034 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1035   // As long as debug info is modeled with instructions, we have to ensure we
1036   // have a place to insert here and write the stop point here.
1037   if (HaveInsertPoint())
1038     EmitStopPoint(&S);
1039 
1040   for (const auto *I : S.decls())
1041     EmitDecl(*I);
1042 }
1043 
1044 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1045   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1046 
1047   // If this code is reachable then emit a stop point (if generating
1048   // debug info). We have to do this ourselves because we are on the
1049   // "simple" statement path.
1050   if (HaveInsertPoint())
1051     EmitStopPoint(&S);
1052 
1053   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1054 }
1055 
1056 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1057   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1058 
1059   // If this code is reachable then emit a stop point (if generating
1060   // debug info). We have to do this ourselves because we are on the
1061   // "simple" statement path.
1062   if (HaveInsertPoint())
1063     EmitStopPoint(&S);
1064 
1065   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1066 }
1067 
1068 /// EmitCaseStmtRange - If case statement range is not too big then
1069 /// add multiple cases to switch instruction, one for each value within
1070 /// the range. If range is too big then emit "if" condition check.
1071 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1072   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1073 
1074   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1075   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1076 
1077   RegionCounter CaseCnt = getPGORegionCounter(&S);
1078 
1079   // Emit the code for this case. We do this first to make sure it is
1080   // properly chained from our predecessor before generating the
1081   // switch machinery to enter this block.
1082   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1083   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1084   EmitStmt(S.getSubStmt());
1085 
1086   // If range is empty, do nothing.
1087   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1088     return;
1089 
1090   llvm::APInt Range = RHS - LHS;
1091   // FIXME: parameters such as this should not be hardcoded.
1092   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1093     // Range is small enough to add multiple switch instruction cases.
1094     uint64_t Total = CaseCnt.getCount();
1095     unsigned NCases = Range.getZExtValue() + 1;
1096     // We only have one region counter for the entire set of cases here, so we
1097     // need to divide the weights evenly between the generated cases, ensuring
1098     // that the total weight is preserved. E.g., a weight of 5 over three cases
1099     // will be distributed as weights of 2, 2, and 1.
1100     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1101     for (unsigned I = 0; I != NCases; ++I) {
1102       if (SwitchWeights)
1103         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1104       if (Rem)
1105         Rem--;
1106       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1107       LHS++;
1108     }
1109     return;
1110   }
1111 
1112   // The range is too big. Emit "if" condition into a new block,
1113   // making sure to save and restore the current insertion point.
1114   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1115 
1116   // Push this test onto the chain of range checks (which terminates
1117   // in the default basic block). The switch's default will be changed
1118   // to the top of this chain after switch emission is complete.
1119   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1120   CaseRangeBlock = createBasicBlock("sw.caserange");
1121 
1122   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1123   Builder.SetInsertPoint(CaseRangeBlock);
1124 
1125   // Emit range check.
1126   llvm::Value *Diff =
1127     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1128   llvm::Value *Cond =
1129     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1130 
1131   llvm::MDNode *Weights = nullptr;
1132   if (SwitchWeights) {
1133     uint64_t ThisCount = CaseCnt.getCount();
1134     uint64_t DefaultCount = (*SwitchWeights)[0];
1135     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1136 
1137     // Since we're chaining the switch default through each large case range, we
1138     // need to update the weight for the default, ie, the first case, to include
1139     // this case.
1140     (*SwitchWeights)[0] += ThisCount;
1141   }
1142   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1143 
1144   // Restore the appropriate insertion point.
1145   if (RestoreBB)
1146     Builder.SetInsertPoint(RestoreBB);
1147   else
1148     Builder.ClearInsertionPoint();
1149 }
1150 
1151 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1152   // If there is no enclosing switch instance that we're aware of, then this
1153   // case statement and its block can be elided.  This situation only happens
1154   // when we've constant-folded the switch, are emitting the constant case,
1155   // and part of the constant case includes another case statement.  For
1156   // instance: switch (4) { case 4: do { case 5: } while (1); }
1157   if (!SwitchInsn) {
1158     EmitStmt(S.getSubStmt());
1159     return;
1160   }
1161 
1162   // Handle case ranges.
1163   if (S.getRHS()) {
1164     EmitCaseStmtRange(S);
1165     return;
1166   }
1167 
1168   RegionCounter CaseCnt = getPGORegionCounter(&S);
1169   llvm::ConstantInt *CaseVal =
1170     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1171 
1172   // If the body of the case is just a 'break', try to not emit an empty block.
1173   // If we're profiling or we're not optimizing, leave the block in for better
1174   // debug and coverage analysis.
1175   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1176       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1177       isa<BreakStmt>(S.getSubStmt())) {
1178     JumpDest Block = BreakContinueStack.back().BreakBlock;
1179 
1180     // Only do this optimization if there are no cleanups that need emitting.
1181     if (isObviouslyBranchWithoutCleanups(Block)) {
1182       if (SwitchWeights)
1183         SwitchWeights->push_back(CaseCnt.getCount());
1184       SwitchInsn->addCase(CaseVal, Block.getBlock());
1185 
1186       // If there was a fallthrough into this case, make sure to redirect it to
1187       // the end of the switch as well.
1188       if (Builder.GetInsertBlock()) {
1189         Builder.CreateBr(Block.getBlock());
1190         Builder.ClearInsertionPoint();
1191       }
1192       return;
1193     }
1194   }
1195 
1196   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1197   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1198   if (SwitchWeights)
1199     SwitchWeights->push_back(CaseCnt.getCount());
1200   SwitchInsn->addCase(CaseVal, CaseDest);
1201 
1202   // Recursively emitting the statement is acceptable, but is not wonderful for
1203   // code where we have many case statements nested together, i.e.:
1204   //  case 1:
1205   //    case 2:
1206   //      case 3: etc.
1207   // Handling this recursively will create a new block for each case statement
1208   // that falls through to the next case which is IR intensive.  It also causes
1209   // deep recursion which can run into stack depth limitations.  Handle
1210   // sequential non-range case statements specially.
1211   const CaseStmt *CurCase = &S;
1212   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1213 
1214   // Otherwise, iteratively add consecutive cases to this switch stmt.
1215   while (NextCase && NextCase->getRHS() == nullptr) {
1216     CurCase = NextCase;
1217     llvm::ConstantInt *CaseVal =
1218       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1219 
1220     CaseCnt = getPGORegionCounter(NextCase);
1221     if (SwitchWeights)
1222       SwitchWeights->push_back(CaseCnt.getCount());
1223     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1224       CaseDest = createBasicBlock("sw.bb");
1225       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1226     }
1227 
1228     SwitchInsn->addCase(CaseVal, CaseDest);
1229     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1230   }
1231 
1232   // Normal default recursion for non-cases.
1233   EmitStmt(CurCase->getSubStmt());
1234 }
1235 
1236 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1237   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1238   assert(DefaultBlock->empty() &&
1239          "EmitDefaultStmt: Default block already defined?");
1240 
1241   RegionCounter Cnt = getPGORegionCounter(&S);
1242   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1243 
1244   EmitStmt(S.getSubStmt());
1245 }
1246 
1247 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1248 /// constant value that is being switched on, see if we can dead code eliminate
1249 /// the body of the switch to a simple series of statements to emit.  Basically,
1250 /// on a switch (5) we want to find these statements:
1251 ///    case 5:
1252 ///      printf(...);    <--
1253 ///      ++i;            <--
1254 ///      break;
1255 ///
1256 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1257 /// transformation (for example, one of the elided statements contains a label
1258 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1259 /// should include statements after it (e.g. the printf() line is a substmt of
1260 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1261 /// statement, then return CSFC_Success.
1262 ///
1263 /// If Case is non-null, then we are looking for the specified case, checking
1264 /// that nothing we jump over contains labels.  If Case is null, then we found
1265 /// the case and are looking for the break.
1266 ///
1267 /// If the recursive walk actually finds our Case, then we set FoundCase to
1268 /// true.
1269 ///
1270 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1271 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1272                                             const SwitchCase *Case,
1273                                             bool &FoundCase,
1274                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1275   // If this is a null statement, just succeed.
1276   if (!S)
1277     return Case ? CSFC_Success : CSFC_FallThrough;
1278 
1279   // If this is the switchcase (case 4: or default) that we're looking for, then
1280   // we're in business.  Just add the substatement.
1281   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1282     if (S == Case) {
1283       FoundCase = true;
1284       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1285                                       ResultStmts);
1286     }
1287 
1288     // Otherwise, this is some other case or default statement, just ignore it.
1289     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1290                                     ResultStmts);
1291   }
1292 
1293   // If we are in the live part of the code and we found our break statement,
1294   // return a success!
1295   if (!Case && isa<BreakStmt>(S))
1296     return CSFC_Success;
1297 
1298   // If this is a switch statement, then it might contain the SwitchCase, the
1299   // break, or neither.
1300   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1301     // Handle this as two cases: we might be looking for the SwitchCase (if so
1302     // the skipped statements must be skippable) or we might already have it.
1303     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1304     if (Case) {
1305       // Keep track of whether we see a skipped declaration.  The code could be
1306       // using the declaration even if it is skipped, so we can't optimize out
1307       // the decl if the kept statements might refer to it.
1308       bool HadSkippedDecl = false;
1309 
1310       // If we're looking for the case, just see if we can skip each of the
1311       // substatements.
1312       for (; Case && I != E; ++I) {
1313         HadSkippedDecl |= isa<DeclStmt>(*I);
1314 
1315         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1316         case CSFC_Failure: return CSFC_Failure;
1317         case CSFC_Success:
1318           // A successful result means that either 1) that the statement doesn't
1319           // have the case and is skippable, or 2) does contain the case value
1320           // and also contains the break to exit the switch.  In the later case,
1321           // we just verify the rest of the statements are elidable.
1322           if (FoundCase) {
1323             // If we found the case and skipped declarations, we can't do the
1324             // optimization.
1325             if (HadSkippedDecl)
1326               return CSFC_Failure;
1327 
1328             for (++I; I != E; ++I)
1329               if (CodeGenFunction::ContainsLabel(*I, true))
1330                 return CSFC_Failure;
1331             return CSFC_Success;
1332           }
1333           break;
1334         case CSFC_FallThrough:
1335           // If we have a fallthrough condition, then we must have found the
1336           // case started to include statements.  Consider the rest of the
1337           // statements in the compound statement as candidates for inclusion.
1338           assert(FoundCase && "Didn't find case but returned fallthrough?");
1339           // We recursively found Case, so we're not looking for it anymore.
1340           Case = nullptr;
1341 
1342           // If we found the case and skipped declarations, we can't do the
1343           // optimization.
1344           if (HadSkippedDecl)
1345             return CSFC_Failure;
1346           break;
1347         }
1348       }
1349     }
1350 
1351     // If we have statements in our range, then we know that the statements are
1352     // live and need to be added to the set of statements we're tracking.
1353     for (; I != E; ++I) {
1354       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1355       case CSFC_Failure: return CSFC_Failure;
1356       case CSFC_FallThrough:
1357         // A fallthrough result means that the statement was simple and just
1358         // included in ResultStmt, keep adding them afterwards.
1359         break;
1360       case CSFC_Success:
1361         // A successful result means that we found the break statement and
1362         // stopped statement inclusion.  We just ensure that any leftover stmts
1363         // are skippable and return success ourselves.
1364         for (++I; I != E; ++I)
1365           if (CodeGenFunction::ContainsLabel(*I, true))
1366             return CSFC_Failure;
1367         return CSFC_Success;
1368       }
1369     }
1370 
1371     return Case ? CSFC_Success : CSFC_FallThrough;
1372   }
1373 
1374   // Okay, this is some other statement that we don't handle explicitly, like a
1375   // for statement or increment etc.  If we are skipping over this statement,
1376   // just verify it doesn't have labels, which would make it invalid to elide.
1377   if (Case) {
1378     if (CodeGenFunction::ContainsLabel(S, true))
1379       return CSFC_Failure;
1380     return CSFC_Success;
1381   }
1382 
1383   // Otherwise, we want to include this statement.  Everything is cool with that
1384   // so long as it doesn't contain a break out of the switch we're in.
1385   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1386 
1387   // Otherwise, everything is great.  Include the statement and tell the caller
1388   // that we fall through and include the next statement as well.
1389   ResultStmts.push_back(S);
1390   return CSFC_FallThrough;
1391 }
1392 
1393 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1394 /// then invoke CollectStatementsForCase to find the list of statements to emit
1395 /// for a switch on constant.  See the comment above CollectStatementsForCase
1396 /// for more details.
1397 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1398                                        const llvm::APSInt &ConstantCondValue,
1399                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1400                                        ASTContext &C,
1401                                        const SwitchCase *&ResultCase) {
1402   // First step, find the switch case that is being branched to.  We can do this
1403   // efficiently by scanning the SwitchCase list.
1404   const SwitchCase *Case = S.getSwitchCaseList();
1405   const DefaultStmt *DefaultCase = nullptr;
1406 
1407   for (; Case; Case = Case->getNextSwitchCase()) {
1408     // It's either a default or case.  Just remember the default statement in
1409     // case we're not jumping to any numbered cases.
1410     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1411       DefaultCase = DS;
1412       continue;
1413     }
1414 
1415     // Check to see if this case is the one we're looking for.
1416     const CaseStmt *CS = cast<CaseStmt>(Case);
1417     // Don't handle case ranges yet.
1418     if (CS->getRHS()) return false;
1419 
1420     // If we found our case, remember it as 'case'.
1421     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1422       break;
1423   }
1424 
1425   // If we didn't find a matching case, we use a default if it exists, or we
1426   // elide the whole switch body!
1427   if (!Case) {
1428     // It is safe to elide the body of the switch if it doesn't contain labels
1429     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1430     if (!DefaultCase)
1431       return !CodeGenFunction::ContainsLabel(&S);
1432     Case = DefaultCase;
1433   }
1434 
1435   // Ok, we know which case is being jumped to, try to collect all the
1436   // statements that follow it.  This can fail for a variety of reasons.  Also,
1437   // check to see that the recursive walk actually found our case statement.
1438   // Insane cases like this can fail to find it in the recursive walk since we
1439   // don't handle every stmt kind:
1440   // switch (4) {
1441   //   while (1) {
1442   //     case 4: ...
1443   bool FoundCase = false;
1444   ResultCase = Case;
1445   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1446                                   ResultStmts) != CSFC_Failure &&
1447          FoundCase;
1448 }
1449 
1450 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1451   // Handle nested switch statements.
1452   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1453   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1454   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1455 
1456   // See if we can constant fold the condition of the switch and therefore only
1457   // emit the live case statement (if any) of the switch.
1458   llvm::APSInt ConstantCondValue;
1459   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1460     SmallVector<const Stmt*, 4> CaseStmts;
1461     const SwitchCase *Case = nullptr;
1462     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1463                                    getContext(), Case)) {
1464       if (Case) {
1465         RegionCounter CaseCnt = getPGORegionCounter(Case);
1466         CaseCnt.beginRegion(Builder);
1467       }
1468       RunCleanupsScope ExecutedScope(*this);
1469 
1470       // Emit the condition variable if needed inside the entire cleanup scope
1471       // used by this special case for constant folded switches.
1472       if (S.getConditionVariable())
1473         EmitAutoVarDecl(*S.getConditionVariable());
1474 
1475       // At this point, we are no longer "within" a switch instance, so
1476       // we can temporarily enforce this to ensure that any embedded case
1477       // statements are not emitted.
1478       SwitchInsn = nullptr;
1479 
1480       // Okay, we can dead code eliminate everything except this case.  Emit the
1481       // specified series of statements and we're good.
1482       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1483         EmitStmt(CaseStmts[i]);
1484       RegionCounter ExitCnt = getPGORegionCounter(&S);
1485       ExitCnt.beginRegion(Builder);
1486 
1487       // Now we want to restore the saved switch instance so that nested
1488       // switches continue to function properly
1489       SwitchInsn = SavedSwitchInsn;
1490 
1491       return;
1492     }
1493   }
1494 
1495   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1496 
1497   RunCleanupsScope ConditionScope(*this);
1498   if (S.getConditionVariable())
1499     EmitAutoVarDecl(*S.getConditionVariable());
1500   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1501 
1502   // Create basic block to hold stuff that comes after switch
1503   // statement. We also need to create a default block now so that
1504   // explicit case ranges tests can have a place to jump to on
1505   // failure.
1506   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1507   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1508   if (PGO.haveRegionCounts()) {
1509     // Walk the SwitchCase list to find how many there are.
1510     uint64_t DefaultCount = 0;
1511     unsigned NumCases = 0;
1512     for (const SwitchCase *Case = S.getSwitchCaseList();
1513          Case;
1514          Case = Case->getNextSwitchCase()) {
1515       if (isa<DefaultStmt>(Case))
1516         DefaultCount = getPGORegionCounter(Case).getCount();
1517       NumCases += 1;
1518     }
1519     SwitchWeights = new SmallVector<uint64_t, 16>();
1520     SwitchWeights->reserve(NumCases);
1521     // The default needs to be first. We store the edge count, so we already
1522     // know the right weight.
1523     SwitchWeights->push_back(DefaultCount);
1524   }
1525   CaseRangeBlock = DefaultBlock;
1526 
1527   // Clear the insertion point to indicate we are in unreachable code.
1528   Builder.ClearInsertionPoint();
1529 
1530   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1531   // then reuse last ContinueBlock.
1532   JumpDest OuterContinue;
1533   if (!BreakContinueStack.empty())
1534     OuterContinue = BreakContinueStack.back().ContinueBlock;
1535 
1536   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1537 
1538   // Emit switch body.
1539   EmitStmt(S.getBody());
1540 
1541   BreakContinueStack.pop_back();
1542 
1543   // Update the default block in case explicit case range tests have
1544   // been chained on top.
1545   SwitchInsn->setDefaultDest(CaseRangeBlock);
1546 
1547   // If a default was never emitted:
1548   if (!DefaultBlock->getParent()) {
1549     // If we have cleanups, emit the default block so that there's a
1550     // place to jump through the cleanups from.
1551     if (ConditionScope.requiresCleanups()) {
1552       EmitBlock(DefaultBlock);
1553 
1554     // Otherwise, just forward the default block to the switch end.
1555     } else {
1556       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1557       delete DefaultBlock;
1558     }
1559   }
1560 
1561   ConditionScope.ForceCleanup();
1562 
1563   // Emit continuation.
1564   EmitBlock(SwitchExit.getBlock(), true);
1565   RegionCounter ExitCnt = getPGORegionCounter(&S);
1566   ExitCnt.beginRegion(Builder);
1567 
1568   if (SwitchWeights) {
1569     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1570            "switch weights do not match switch cases");
1571     // If there's only one jump destination there's no sense weighting it.
1572     if (SwitchWeights->size() > 1)
1573       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1574                               PGO.createBranchWeights(*SwitchWeights));
1575     delete SwitchWeights;
1576   }
1577   SwitchInsn = SavedSwitchInsn;
1578   SwitchWeights = SavedSwitchWeights;
1579   CaseRangeBlock = SavedCRBlock;
1580 }
1581 
1582 static std::string
1583 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1584                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1585   std::string Result;
1586 
1587   while (*Constraint) {
1588     switch (*Constraint) {
1589     default:
1590       Result += Target.convertConstraint(Constraint);
1591       break;
1592     // Ignore these
1593     case '*':
1594     case '?':
1595     case '!':
1596     case '=': // Will see this and the following in mult-alt constraints.
1597     case '+':
1598       break;
1599     case '#': // Ignore the rest of the constraint alternative.
1600       while (Constraint[1] && Constraint[1] != ',')
1601         Constraint++;
1602       break;
1603     case ',':
1604       Result += "|";
1605       break;
1606     case 'g':
1607       Result += "imr";
1608       break;
1609     case '[': {
1610       assert(OutCons &&
1611              "Must pass output names to constraints with a symbolic name");
1612       unsigned Index;
1613       bool result = Target.resolveSymbolicName(Constraint,
1614                                                &(*OutCons)[0],
1615                                                OutCons->size(), Index);
1616       assert(result && "Could not resolve symbolic name"); (void)result;
1617       Result += llvm::utostr(Index);
1618       break;
1619     }
1620     }
1621 
1622     Constraint++;
1623   }
1624 
1625   return Result;
1626 }
1627 
1628 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1629 /// as using a particular register add that as a constraint that will be used
1630 /// in this asm stmt.
1631 static std::string
1632 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1633                        const TargetInfo &Target, CodeGenModule &CGM,
1634                        const AsmStmt &Stmt) {
1635   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1636   if (!AsmDeclRef)
1637     return Constraint;
1638   const ValueDecl &Value = *AsmDeclRef->getDecl();
1639   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1640   if (!Variable)
1641     return Constraint;
1642   if (Variable->getStorageClass() != SC_Register)
1643     return Constraint;
1644   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1645   if (!Attr)
1646     return Constraint;
1647   StringRef Register = Attr->getLabel();
1648   assert(Target.isValidGCCRegisterName(Register));
1649   // We're using validateOutputConstraint here because we only care if
1650   // this is a register constraint.
1651   TargetInfo::ConstraintInfo Info(Constraint, "");
1652   if (Target.validateOutputConstraint(Info) &&
1653       !Info.allowsRegister()) {
1654     CGM.ErrorUnsupported(&Stmt, "__asm__");
1655     return Constraint;
1656   }
1657   // Canonicalize the register here before returning it.
1658   Register = Target.getNormalizedGCCRegisterName(Register);
1659   return "{" + Register.str() + "}";
1660 }
1661 
1662 llvm::Value*
1663 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1664                                     LValue InputValue, QualType InputType,
1665                                     std::string &ConstraintStr,
1666                                     SourceLocation Loc) {
1667   llvm::Value *Arg;
1668   if (Info.allowsRegister() || !Info.allowsMemory()) {
1669     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1670       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1671     } else {
1672       llvm::Type *Ty = ConvertType(InputType);
1673       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1674       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1675         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1676         Ty = llvm::PointerType::getUnqual(Ty);
1677 
1678         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1679                                                        Ty));
1680       } else {
1681         Arg = InputValue.getAddress();
1682         ConstraintStr += '*';
1683       }
1684     }
1685   } else {
1686     Arg = InputValue.getAddress();
1687     ConstraintStr += '*';
1688   }
1689 
1690   return Arg;
1691 }
1692 
1693 llvm::Value* CodeGenFunction::EmitAsmInput(
1694                                          const TargetInfo::ConstraintInfo &Info,
1695                                            const Expr *InputExpr,
1696                                            std::string &ConstraintStr) {
1697   if (Info.allowsRegister() || !Info.allowsMemory())
1698     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1699       return EmitScalarExpr(InputExpr);
1700 
1701   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1702   LValue Dest = EmitLValue(InputExpr);
1703   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1704                             InputExpr->getExprLoc());
1705 }
1706 
1707 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1708 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1709 /// integers which are the source locations of the start of each line in the
1710 /// asm.
1711 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1712                                       CodeGenFunction &CGF) {
1713   SmallVector<llvm::Value *, 8> Locs;
1714   // Add the location of the first line to the MDNode.
1715   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1716                                         Str->getLocStart().getRawEncoding()));
1717   StringRef StrVal = Str->getString();
1718   if (!StrVal.empty()) {
1719     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1720     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1721 
1722     // Add the location of the start of each subsequent line of the asm to the
1723     // MDNode.
1724     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1725       if (StrVal[i] != '\n') continue;
1726       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1727                                                       CGF.getTarget());
1728       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1729                                             LineLoc.getRawEncoding()));
1730     }
1731   }
1732 
1733   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1734 }
1735 
1736 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1737   // Assemble the final asm string.
1738   std::string AsmString = S.generateAsmString(getContext());
1739 
1740   // Get all the output and input constraints together.
1741   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1742   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1743 
1744   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1745     StringRef Name;
1746     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1747       Name = GAS->getOutputName(i);
1748     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1749     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1750     assert(IsValid && "Failed to parse output constraint");
1751     OutputConstraintInfos.push_back(Info);
1752   }
1753 
1754   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1755     StringRef Name;
1756     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1757       Name = GAS->getInputName(i);
1758     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1759     bool IsValid =
1760       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1761                                           S.getNumOutputs(), Info);
1762     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1763     InputConstraintInfos.push_back(Info);
1764   }
1765 
1766   std::string Constraints;
1767 
1768   std::vector<LValue> ResultRegDests;
1769   std::vector<QualType> ResultRegQualTys;
1770   std::vector<llvm::Type *> ResultRegTypes;
1771   std::vector<llvm::Type *> ResultTruncRegTypes;
1772   std::vector<llvm::Type *> ArgTypes;
1773   std::vector<llvm::Value*> Args;
1774 
1775   // Keep track of inout constraints.
1776   std::string InOutConstraints;
1777   std::vector<llvm::Value*> InOutArgs;
1778   std::vector<llvm::Type*> InOutArgTypes;
1779 
1780   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1781     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1782 
1783     // Simplify the output constraint.
1784     std::string OutputConstraint(S.getOutputConstraint(i));
1785     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1786                                           getTarget());
1787 
1788     const Expr *OutExpr = S.getOutputExpr(i);
1789     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1790 
1791     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1792                                               getTarget(), CGM, S);
1793 
1794     LValue Dest = EmitLValue(OutExpr);
1795     if (!Constraints.empty())
1796       Constraints += ',';
1797 
1798     // If this is a register output, then make the inline asm return it
1799     // by-value.  If this is a memory result, return the value by-reference.
1800     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1801       Constraints += "=" + OutputConstraint;
1802       ResultRegQualTys.push_back(OutExpr->getType());
1803       ResultRegDests.push_back(Dest);
1804       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1805       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1806 
1807       // If this output is tied to an input, and if the input is larger, then
1808       // we need to set the actual result type of the inline asm node to be the
1809       // same as the input type.
1810       if (Info.hasMatchingInput()) {
1811         unsigned InputNo;
1812         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1813           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1814           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1815             break;
1816         }
1817         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1818 
1819         QualType InputTy = S.getInputExpr(InputNo)->getType();
1820         QualType OutputType = OutExpr->getType();
1821 
1822         uint64_t InputSize = getContext().getTypeSize(InputTy);
1823         if (getContext().getTypeSize(OutputType) < InputSize) {
1824           // Form the asm to return the value as a larger integer or fp type.
1825           ResultRegTypes.back() = ConvertType(InputTy);
1826         }
1827       }
1828       if (llvm::Type* AdjTy =
1829             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1830                                                  ResultRegTypes.back()))
1831         ResultRegTypes.back() = AdjTy;
1832       else {
1833         CGM.getDiags().Report(S.getAsmLoc(),
1834                               diag::err_asm_invalid_type_in_input)
1835             << OutExpr->getType() << OutputConstraint;
1836       }
1837     } else {
1838       ArgTypes.push_back(Dest.getAddress()->getType());
1839       Args.push_back(Dest.getAddress());
1840       Constraints += "=*";
1841       Constraints += OutputConstraint;
1842     }
1843 
1844     if (Info.isReadWrite()) {
1845       InOutConstraints += ',';
1846 
1847       const Expr *InputExpr = S.getOutputExpr(i);
1848       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1849                                             InOutConstraints,
1850                                             InputExpr->getExprLoc());
1851 
1852       if (llvm::Type* AdjTy =
1853           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1854                                                Arg->getType()))
1855         Arg = Builder.CreateBitCast(Arg, AdjTy);
1856 
1857       if (Info.allowsRegister())
1858         InOutConstraints += llvm::utostr(i);
1859       else
1860         InOutConstraints += OutputConstraint;
1861 
1862       InOutArgTypes.push_back(Arg->getType());
1863       InOutArgs.push_back(Arg);
1864     }
1865   }
1866 
1867   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1868 
1869   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1870     const Expr *InputExpr = S.getInputExpr(i);
1871 
1872     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1873 
1874     if (!Constraints.empty())
1875       Constraints += ',';
1876 
1877     // Simplify the input constraint.
1878     std::string InputConstraint(S.getInputConstraint(i));
1879     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1880                                          &OutputConstraintInfos);
1881 
1882     InputConstraint =
1883       AddVariableConstraints(InputConstraint,
1884                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1885                             getTarget(), CGM, S);
1886 
1887     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1888 
1889     // If this input argument is tied to a larger output result, extend the
1890     // input to be the same size as the output.  The LLVM backend wants to see
1891     // the input and output of a matching constraint be the same size.  Note
1892     // that GCC does not define what the top bits are here.  We use zext because
1893     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1894     if (Info.hasTiedOperand()) {
1895       unsigned Output = Info.getTiedOperand();
1896       QualType OutputType = S.getOutputExpr(Output)->getType();
1897       QualType InputTy = InputExpr->getType();
1898 
1899       if (getContext().getTypeSize(OutputType) >
1900           getContext().getTypeSize(InputTy)) {
1901         // Use ptrtoint as appropriate so that we can do our extension.
1902         if (isa<llvm::PointerType>(Arg->getType()))
1903           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1904         llvm::Type *OutputTy = ConvertType(OutputType);
1905         if (isa<llvm::IntegerType>(OutputTy))
1906           Arg = Builder.CreateZExt(Arg, OutputTy);
1907         else if (isa<llvm::PointerType>(OutputTy))
1908           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1909         else {
1910           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1911           Arg = Builder.CreateFPExt(Arg, OutputTy);
1912         }
1913       }
1914     }
1915     if (llvm::Type* AdjTy =
1916               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1917                                                    Arg->getType()))
1918       Arg = Builder.CreateBitCast(Arg, AdjTy);
1919     else
1920       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1921           << InputExpr->getType() << InputConstraint;
1922 
1923     ArgTypes.push_back(Arg->getType());
1924     Args.push_back(Arg);
1925     Constraints += InputConstraint;
1926   }
1927 
1928   // Append the "input" part of inout constraints last.
1929   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1930     ArgTypes.push_back(InOutArgTypes[i]);
1931     Args.push_back(InOutArgs[i]);
1932   }
1933   Constraints += InOutConstraints;
1934 
1935   // Clobbers
1936   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1937     StringRef Clobber = S.getClobber(i);
1938 
1939     if (Clobber != "memory" && Clobber != "cc")
1940     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1941 
1942     if (i != 0 || NumConstraints != 0)
1943       Constraints += ',';
1944 
1945     Constraints += "~{";
1946     Constraints += Clobber;
1947     Constraints += '}';
1948   }
1949 
1950   // Add machine specific clobbers
1951   std::string MachineClobbers = getTarget().getClobbers();
1952   if (!MachineClobbers.empty()) {
1953     if (!Constraints.empty())
1954       Constraints += ',';
1955     Constraints += MachineClobbers;
1956   }
1957 
1958   llvm::Type *ResultType;
1959   if (ResultRegTypes.empty())
1960     ResultType = VoidTy;
1961   else if (ResultRegTypes.size() == 1)
1962     ResultType = ResultRegTypes[0];
1963   else
1964     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1965 
1966   llvm::FunctionType *FTy =
1967     llvm::FunctionType::get(ResultType, ArgTypes, false);
1968 
1969   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1970   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1971     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1972   llvm::InlineAsm *IA =
1973     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1974                          /* IsAlignStack */ false, AsmDialect);
1975   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1976   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1977                        llvm::Attribute::NoUnwind);
1978 
1979   // Slap the source location of the inline asm into a !srcloc metadata on the
1980   // call.  FIXME: Handle metadata for MS-style inline asms.
1981   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1982     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1983                                                    *this));
1984 
1985   // Extract all of the register value results from the asm.
1986   std::vector<llvm::Value*> RegResults;
1987   if (ResultRegTypes.size() == 1) {
1988     RegResults.push_back(Result);
1989   } else {
1990     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1991       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1992       RegResults.push_back(Tmp);
1993     }
1994   }
1995 
1996   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1997     llvm::Value *Tmp = RegResults[i];
1998 
1999     // If the result type of the LLVM IR asm doesn't match the result type of
2000     // the expression, do the conversion.
2001     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2002       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2003 
2004       // Truncate the integer result to the right size, note that TruncTy can be
2005       // a pointer.
2006       if (TruncTy->isFloatingPointTy())
2007         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2008       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2009         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2010         Tmp = Builder.CreateTrunc(Tmp,
2011                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2012         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2013       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2014         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2015         Tmp = Builder.CreatePtrToInt(Tmp,
2016                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2017         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2018       } else if (TruncTy->isIntegerTy()) {
2019         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2020       } else if (TruncTy->isVectorTy()) {
2021         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2022       }
2023     }
2024 
2025     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2026   }
2027 }
2028 
2029 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
2030   const RecordDecl *RD = S.getCapturedRecordDecl();
2031   QualType RecordTy = CGF.getContext().getRecordType(RD);
2032 
2033   // Initialize the captured struct.
2034   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
2035                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2036 
2037   RecordDecl::field_iterator CurField = RD->field_begin();
2038   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2039                                            E = S.capture_init_end();
2040        I != E; ++I, ++CurField) {
2041     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
2042     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
2043   }
2044 
2045   return SlotLV;
2046 }
2047 
2048 /// Generate an outlined function for the body of a CapturedStmt, store any
2049 /// captured variables into the captured struct, and call the outlined function.
2050 llvm::Function *
2051 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2052   const CapturedDecl *CD = S.getCapturedDecl();
2053   const RecordDecl *RD = S.getCapturedRecordDecl();
2054   assert(CD->hasBody() && "missing CapturedDecl body");
2055 
2056   LValue CapStruct = InitCapturedStruct(*this, S);
2057 
2058   // Emit the CapturedDecl
2059   CodeGenFunction CGF(CGM, true);
2060   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2061   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart());
2062   delete CGF.CapturedStmtInfo;
2063 
2064   // Emit call to the helper function.
2065   EmitCallOrInvoke(F, CapStruct.getAddress());
2066 
2067   return F;
2068 }
2069 
2070 llvm::Value *
2071 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2072   LValue CapStruct = InitCapturedStruct(*this, S);
2073   return CapStruct.getAddress();
2074 }
2075 
2076 /// Creates the outlined function for a CapturedStmt.
2077 llvm::Function *
2078 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
2079                                               const RecordDecl *RD,
2080                                               SourceLocation Loc) {
2081   assert(CapturedStmtInfo &&
2082     "CapturedStmtInfo should be set when generating the captured function");
2083 
2084   // Build the argument list.
2085   ASTContext &Ctx = CGM.getContext();
2086   FunctionArgList Args;
2087   Args.append(CD->param_begin(), CD->param_end());
2088 
2089   // Create the function declaration.
2090   FunctionType::ExtInfo ExtInfo;
2091   const CGFunctionInfo &FuncInfo =
2092       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2093                                                     /*IsVariadic=*/false);
2094   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2095 
2096   llvm::Function *F =
2097     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2098                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2099   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2100 
2101   // Generate the function.
2102   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2103                 CD->getLocation(),
2104                 CD->getBody()->getLocStart());
2105 
2106   // Set the context parameter in CapturedStmtInfo.
2107   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2108   assert(DeclPtr && "missing context parameter for CapturedStmt");
2109   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2110 
2111   // If 'this' is captured, load it into CXXThisValue.
2112   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2113     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2114     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2115                                            Ctx.getTagDeclType(RD));
2116     LValue ThisLValue = EmitLValueForField(LV, FD);
2117     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2118   }
2119 
2120   PGO.assignRegionCounters(CD, F);
2121   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2122   FinishFunction(CD->getBodyRBrace());
2123   PGO.emitInstrumentationData();
2124   PGO.destroyRegionCounters();
2125 
2126   return F;
2127 }
2128