1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::OMPParallelDirectiveClass: 177 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 178 break; 179 case Stmt::OMPSimdDirectiveClass: 180 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 181 break; 182 case Stmt::OMPForDirectiveClass: 183 EmitOMPForDirective(cast<OMPForDirective>(*S)); 184 break; 185 } 186 } 187 188 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 189 switch (S->getStmtClass()) { 190 default: return false; 191 case Stmt::NullStmtClass: break; 192 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 193 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 194 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 195 case Stmt::AttributedStmtClass: 196 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 197 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 198 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 199 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 200 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 201 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 202 } 203 204 return true; 205 } 206 207 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 208 /// this captures the expression result of the last sub-statement and returns it 209 /// (for use by the statement expression extension). 210 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 211 AggValueSlot AggSlot) { 212 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 213 "LLVM IR generation of compound statement ('{}')"); 214 215 // Keep track of the current cleanup stack depth, including debug scopes. 216 LexicalScope Scope(*this, S.getSourceRange()); 217 218 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 219 } 220 221 llvm::Value* 222 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 223 bool GetLast, 224 AggValueSlot AggSlot) { 225 226 for (CompoundStmt::const_body_iterator I = S.body_begin(), 227 E = S.body_end()-GetLast; I != E; ++I) 228 EmitStmt(*I); 229 230 llvm::Value *RetAlloca = nullptr; 231 if (GetLast) { 232 // We have to special case labels here. They are statements, but when put 233 // at the end of a statement expression, they yield the value of their 234 // subexpression. Handle this by walking through all labels we encounter, 235 // emitting them before we evaluate the subexpr. 236 const Stmt *LastStmt = S.body_back(); 237 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 238 EmitLabel(LS->getDecl()); 239 LastStmt = LS->getSubStmt(); 240 } 241 242 EnsureInsertPoint(); 243 244 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 245 if (hasAggregateEvaluationKind(ExprTy)) { 246 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 247 } else { 248 // We can't return an RValue here because there might be cleanups at 249 // the end of the StmtExpr. Because of that, we have to emit the result 250 // here into a temporary alloca. 251 RetAlloca = CreateMemTemp(ExprTy); 252 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 253 /*IsInit*/false); 254 } 255 256 } 257 258 return RetAlloca; 259 } 260 261 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 262 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 263 264 // If there is a cleanup stack, then we it isn't worth trying to 265 // simplify this block (we would need to remove it from the scope map 266 // and cleanup entry). 267 if (!EHStack.empty()) 268 return; 269 270 // Can only simplify direct branches. 271 if (!BI || !BI->isUnconditional()) 272 return; 273 274 // Can only simplify empty blocks. 275 if (BI != BB->begin()) 276 return; 277 278 BB->replaceAllUsesWith(BI->getSuccessor(0)); 279 BI->eraseFromParent(); 280 BB->eraseFromParent(); 281 } 282 283 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 284 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 285 286 // Fall out of the current block (if necessary). 287 EmitBranch(BB); 288 289 if (IsFinished && BB->use_empty()) { 290 delete BB; 291 return; 292 } 293 294 // Place the block after the current block, if possible, or else at 295 // the end of the function. 296 if (CurBB && CurBB->getParent()) 297 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 298 else 299 CurFn->getBasicBlockList().push_back(BB); 300 Builder.SetInsertPoint(BB); 301 } 302 303 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 304 // Emit a branch from the current block to the target one if this 305 // was a real block. If this was just a fall-through block after a 306 // terminator, don't emit it. 307 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 308 309 if (!CurBB || CurBB->getTerminator()) { 310 // If there is no insert point or the previous block is already 311 // terminated, don't touch it. 312 } else { 313 // Otherwise, create a fall-through branch. 314 Builder.CreateBr(Target); 315 } 316 317 Builder.ClearInsertionPoint(); 318 } 319 320 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 321 bool inserted = false; 322 for (llvm::User *u : block->users()) { 323 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 324 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 325 inserted = true; 326 break; 327 } 328 } 329 330 if (!inserted) 331 CurFn->getBasicBlockList().push_back(block); 332 333 Builder.SetInsertPoint(block); 334 } 335 336 CodeGenFunction::JumpDest 337 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 338 JumpDest &Dest = LabelMap[D]; 339 if (Dest.isValid()) return Dest; 340 341 // Create, but don't insert, the new block. 342 Dest = JumpDest(createBasicBlock(D->getName()), 343 EHScopeStack::stable_iterator::invalid(), 344 NextCleanupDestIndex++); 345 return Dest; 346 } 347 348 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 349 // Add this label to the current lexical scope if we're within any 350 // normal cleanups. Jumps "in" to this label --- when permitted by 351 // the language --- may need to be routed around such cleanups. 352 if (EHStack.hasNormalCleanups() && CurLexicalScope) 353 CurLexicalScope->addLabel(D); 354 355 JumpDest &Dest = LabelMap[D]; 356 357 // If we didn't need a forward reference to this label, just go 358 // ahead and create a destination at the current scope. 359 if (!Dest.isValid()) { 360 Dest = getJumpDestInCurrentScope(D->getName()); 361 362 // Otherwise, we need to give this label a target depth and remove 363 // it from the branch-fixups list. 364 } else { 365 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 366 Dest.setScopeDepth(EHStack.stable_begin()); 367 ResolveBranchFixups(Dest.getBlock()); 368 } 369 370 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 371 EmitBlock(Dest.getBlock()); 372 Cnt.beginRegion(Builder); 373 } 374 375 /// Change the cleanup scope of the labels in this lexical scope to 376 /// match the scope of the enclosing context. 377 void CodeGenFunction::LexicalScope::rescopeLabels() { 378 assert(!Labels.empty()); 379 EHScopeStack::stable_iterator innermostScope 380 = CGF.EHStack.getInnermostNormalCleanup(); 381 382 // Change the scope depth of all the labels. 383 for (SmallVectorImpl<const LabelDecl*>::const_iterator 384 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 385 assert(CGF.LabelMap.count(*i)); 386 JumpDest &dest = CGF.LabelMap.find(*i)->second; 387 assert(dest.getScopeDepth().isValid()); 388 assert(innermostScope.encloses(dest.getScopeDepth())); 389 dest.setScopeDepth(innermostScope); 390 } 391 392 // Reparent the labels if the new scope also has cleanups. 393 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 394 ParentScope->Labels.append(Labels.begin(), Labels.end()); 395 } 396 } 397 398 399 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 400 EmitLabel(S.getDecl()); 401 EmitStmt(S.getSubStmt()); 402 } 403 404 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 405 const Stmt *SubStmt = S.getSubStmt(); 406 switch (SubStmt->getStmtClass()) { 407 case Stmt::DoStmtClass: 408 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 409 break; 410 case Stmt::ForStmtClass: 411 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 412 break; 413 case Stmt::WhileStmtClass: 414 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 415 break; 416 case Stmt::CXXForRangeStmtClass: 417 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 418 break; 419 default: 420 EmitStmt(SubStmt); 421 } 422 } 423 424 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 425 // If this code is reachable then emit a stop point (if generating 426 // debug info). We have to do this ourselves because we are on the 427 // "simple" statement path. 428 if (HaveInsertPoint()) 429 EmitStopPoint(&S); 430 431 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 432 } 433 434 435 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 436 if (const LabelDecl *Target = S.getConstantTarget()) { 437 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 438 return; 439 } 440 441 // Ensure that we have an i8* for our PHI node. 442 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 443 Int8PtrTy, "addr"); 444 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 445 446 // Get the basic block for the indirect goto. 447 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 448 449 // The first instruction in the block has to be the PHI for the switch dest, 450 // add an entry for this branch. 451 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 452 453 EmitBranch(IndGotoBB); 454 } 455 456 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 457 // C99 6.8.4.1: The first substatement is executed if the expression compares 458 // unequal to 0. The condition must be a scalar type. 459 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 460 RegionCounter Cnt = getPGORegionCounter(&S); 461 462 if (S.getConditionVariable()) 463 EmitAutoVarDecl(*S.getConditionVariable()); 464 465 // If the condition constant folds and can be elided, try to avoid emitting 466 // the condition and the dead arm of the if/else. 467 bool CondConstant; 468 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 469 // Figure out which block (then or else) is executed. 470 const Stmt *Executed = S.getThen(); 471 const Stmt *Skipped = S.getElse(); 472 if (!CondConstant) // Condition false? 473 std::swap(Executed, Skipped); 474 475 // If the skipped block has no labels in it, just emit the executed block. 476 // This avoids emitting dead code and simplifies the CFG substantially. 477 if (!ContainsLabel(Skipped)) { 478 if (CondConstant) 479 Cnt.beginRegion(Builder); 480 if (Executed) { 481 RunCleanupsScope ExecutedScope(*this); 482 EmitStmt(Executed); 483 } 484 return; 485 } 486 } 487 488 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 489 // the conditional branch. 490 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 491 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 492 llvm::BasicBlock *ElseBlock = ContBlock; 493 if (S.getElse()) 494 ElseBlock = createBasicBlock("if.else"); 495 496 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 497 498 // Emit the 'then' code. 499 EmitBlock(ThenBlock); 500 Cnt.beginRegion(Builder); 501 { 502 RunCleanupsScope ThenScope(*this); 503 EmitStmt(S.getThen()); 504 } 505 EmitBranch(ContBlock); 506 507 // Emit the 'else' code if present. 508 if (const Stmt *Else = S.getElse()) { 509 // There is no need to emit line number for unconditional branch. 510 if (getDebugInfo()) 511 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 512 EmitBlock(ElseBlock); 513 { 514 RunCleanupsScope ElseScope(*this); 515 EmitStmt(Else); 516 } 517 // There is no need to emit line number for unconditional branch. 518 if (getDebugInfo()) 519 Builder.SetCurrentDebugLocation(llvm::DebugLoc()); 520 EmitBranch(ContBlock); 521 } 522 523 // Emit the continuation block for code after the if. 524 EmitBlock(ContBlock, true); 525 } 526 527 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 528 llvm::BranchInst *CondBr, 529 const ArrayRef<const Attr *> &Attrs) { 530 // Return if there are no hints. 531 if (Attrs.empty()) 532 return; 533 534 // Add vectorize hints to the metadata on the conditional branch. 535 SmallVector<llvm::Value *, 2> Metadata(1); 536 for (const auto *Attr : Attrs) { 537 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 538 539 // Skip non loop hint attributes 540 if (!LH) 541 continue; 542 543 LoopHintAttr::OptionType Option = LH->getOption(); 544 int ValueInt = LH->getValue(); 545 546 const char *MetadataName; 547 switch (Option) { 548 case LoopHintAttr::Vectorize: 549 case LoopHintAttr::VectorizeWidth: 550 MetadataName = "llvm.vectorizer.width"; 551 break; 552 case LoopHintAttr::Interleave: 553 case LoopHintAttr::InterleaveCount: 554 MetadataName = "llvm.vectorizer.unroll"; 555 break; 556 case LoopHintAttr::Unroll: 557 MetadataName = "llvm.loopunroll.enable"; 558 break; 559 case LoopHintAttr::UnrollCount: 560 MetadataName = "llvm.loopunroll.count"; 561 break; 562 } 563 564 llvm::Value *Value; 565 llvm::MDString *Name; 566 switch (Option) { 567 case LoopHintAttr::Vectorize: 568 case LoopHintAttr::Interleave: 569 if (ValueInt == 1) { 570 // FIXME: In the future I will modifiy the behavior of the metadata 571 // so we can enable/disable vectorization and interleaving separately. 572 Name = llvm::MDString::get(Context, "llvm.vectorizer.enable"); 573 Value = Builder.getTrue(); 574 break; 575 } 576 // Vectorization/interleaving is disabled, set width/count to 1. 577 ValueInt = 1; 578 // Fallthrough. 579 case LoopHintAttr::VectorizeWidth: 580 case LoopHintAttr::InterleaveCount: 581 Name = llvm::MDString::get(Context, MetadataName); 582 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 583 break; 584 case LoopHintAttr::Unroll: 585 Name = llvm::MDString::get(Context, MetadataName); 586 Value = (ValueInt == 0) ? Builder.getFalse() : Builder.getTrue(); 587 break; 588 case LoopHintAttr::UnrollCount: 589 Name = llvm::MDString::get(Context, MetadataName); 590 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 591 break; 592 } 593 594 SmallVector<llvm::Value *, 2> OpValues; 595 OpValues.push_back(Name); 596 OpValues.push_back(Value); 597 598 // Set or overwrite metadata indicated by Name. 599 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 600 } 601 602 if (!Metadata.empty()) { 603 // Add llvm.loop MDNode to CondBr. 604 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 605 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 606 607 CondBr->setMetadata("llvm.loop", LoopID); 608 } 609 } 610 611 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 612 const ArrayRef<const Attr *> &WhileAttrs) { 613 RegionCounter Cnt = getPGORegionCounter(&S); 614 615 // Emit the header for the loop, which will also become 616 // the continue target. 617 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 618 EmitBlock(LoopHeader.getBlock()); 619 620 LoopStack.push(LoopHeader.getBlock()); 621 622 // Create an exit block for when the condition fails, which will 623 // also become the break target. 624 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 625 626 // Store the blocks to use for break and continue. 627 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 628 629 // C++ [stmt.while]p2: 630 // When the condition of a while statement is a declaration, the 631 // scope of the variable that is declared extends from its point 632 // of declaration (3.3.2) to the end of the while statement. 633 // [...] 634 // The object created in a condition is destroyed and created 635 // with each iteration of the loop. 636 RunCleanupsScope ConditionScope(*this); 637 638 if (S.getConditionVariable()) 639 EmitAutoVarDecl(*S.getConditionVariable()); 640 641 // Evaluate the conditional in the while header. C99 6.8.5.1: The 642 // evaluation of the controlling expression takes place before each 643 // execution of the loop body. 644 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 645 646 // while(1) is common, avoid extra exit blocks. Be sure 647 // to correctly handle break/continue though. 648 bool EmitBoolCondBranch = true; 649 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 650 if (C->isOne()) 651 EmitBoolCondBranch = false; 652 653 // As long as the condition is true, go to the loop body. 654 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 655 if (EmitBoolCondBranch) { 656 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 657 if (ConditionScope.requiresCleanups()) 658 ExitBlock = createBasicBlock("while.exit"); 659 llvm::BranchInst *CondBr = 660 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 661 PGO.createLoopWeights(S.getCond(), Cnt)); 662 663 if (ExitBlock != LoopExit.getBlock()) { 664 EmitBlock(ExitBlock); 665 EmitBranchThroughCleanup(LoopExit); 666 } 667 668 // Attach metadata to loop body conditional branch. 669 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 670 } 671 672 // Emit the loop body. We have to emit this in a cleanup scope 673 // because it might be a singleton DeclStmt. 674 { 675 RunCleanupsScope BodyScope(*this); 676 EmitBlock(LoopBody); 677 Cnt.beginRegion(Builder); 678 EmitStmt(S.getBody()); 679 } 680 681 BreakContinueStack.pop_back(); 682 683 // Immediately force cleanup. 684 ConditionScope.ForceCleanup(); 685 686 // Branch to the loop header again. 687 EmitBranch(LoopHeader.getBlock()); 688 689 LoopStack.pop(); 690 691 // Emit the exit block. 692 EmitBlock(LoopExit.getBlock(), true); 693 694 // The LoopHeader typically is just a branch if we skipped emitting 695 // a branch, try to erase it. 696 if (!EmitBoolCondBranch) 697 SimplifyForwardingBlocks(LoopHeader.getBlock()); 698 } 699 700 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 701 const ArrayRef<const Attr *> &DoAttrs) { 702 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 703 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 704 705 RegionCounter Cnt = getPGORegionCounter(&S); 706 707 // Store the blocks to use for break and continue. 708 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 709 710 // Emit the body of the loop. 711 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 712 713 LoopStack.push(LoopBody); 714 715 EmitBlockWithFallThrough(LoopBody, Cnt); 716 { 717 RunCleanupsScope BodyScope(*this); 718 EmitStmt(S.getBody()); 719 } 720 721 EmitBlock(LoopCond.getBlock()); 722 723 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 724 // after each execution of the loop body." 725 726 // Evaluate the conditional in the while header. 727 // C99 6.8.5p2/p4: The first substatement is executed if the expression 728 // compares unequal to 0. The condition must be a scalar type. 729 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 730 731 BreakContinueStack.pop_back(); 732 733 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 734 // to correctly handle break/continue though. 735 bool EmitBoolCondBranch = true; 736 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 737 if (C->isZero()) 738 EmitBoolCondBranch = false; 739 740 // As long as the condition is true, iterate the loop. 741 if (EmitBoolCondBranch) { 742 llvm::BranchInst *CondBr = 743 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 744 PGO.createLoopWeights(S.getCond(), Cnt)); 745 746 // Attach metadata to loop body conditional branch. 747 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 748 } 749 750 LoopStack.pop(); 751 752 // Emit the exit block. 753 EmitBlock(LoopExit.getBlock()); 754 755 // The DoCond block typically is just a branch if we skipped 756 // emitting a branch, try to erase it. 757 if (!EmitBoolCondBranch) 758 SimplifyForwardingBlocks(LoopCond.getBlock()); 759 } 760 761 void CodeGenFunction::EmitForStmt(const ForStmt &S, 762 const ArrayRef<const Attr *> &ForAttrs) { 763 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 764 765 RunCleanupsScope ForScope(*this); 766 767 CGDebugInfo *DI = getDebugInfo(); 768 if (DI) 769 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 770 771 // Evaluate the first part before the loop. 772 if (S.getInit()) 773 EmitStmt(S.getInit()); 774 775 RegionCounter Cnt = getPGORegionCounter(&S); 776 777 // Start the loop with a block that tests the condition. 778 // If there's an increment, the continue scope will be overwritten 779 // later. 780 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 781 llvm::BasicBlock *CondBlock = Continue.getBlock(); 782 EmitBlock(CondBlock); 783 784 LoopStack.push(CondBlock); 785 786 // If the for loop doesn't have an increment we can just use the 787 // condition as the continue block. Otherwise we'll need to create 788 // a block for it (in the current scope, i.e. in the scope of the 789 // condition), and that we will become our continue block. 790 if (S.getInc()) 791 Continue = getJumpDestInCurrentScope("for.inc"); 792 793 // Store the blocks to use for break and continue. 794 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 795 796 // Create a cleanup scope for the condition variable cleanups. 797 RunCleanupsScope ConditionScope(*this); 798 799 if (S.getCond()) { 800 // If the for statement has a condition scope, emit the local variable 801 // declaration. 802 if (S.getConditionVariable()) { 803 EmitAutoVarDecl(*S.getConditionVariable()); 804 } 805 806 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 807 // If there are any cleanups between here and the loop-exit scope, 808 // create a block to stage a loop exit along. 809 if (ForScope.requiresCleanups()) 810 ExitBlock = createBasicBlock("for.cond.cleanup"); 811 812 // As long as the condition is true, iterate the loop. 813 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 814 815 // C99 6.8.5p2/p4: The first substatement is executed if the expression 816 // compares unequal to 0. The condition must be a scalar type. 817 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 818 llvm::BranchInst *CondBr = 819 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 820 PGO.createLoopWeights(S.getCond(), Cnt)); 821 822 // Attach metadata to loop body conditional branch. 823 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 824 825 if (ExitBlock != LoopExit.getBlock()) { 826 EmitBlock(ExitBlock); 827 EmitBranchThroughCleanup(LoopExit); 828 } 829 830 EmitBlock(ForBody); 831 } else { 832 // Treat it as a non-zero constant. Don't even create a new block for the 833 // body, just fall into it. 834 } 835 Cnt.beginRegion(Builder); 836 837 { 838 // Create a separate cleanup scope for the body, in case it is not 839 // a compound statement. 840 RunCleanupsScope BodyScope(*this); 841 EmitStmt(S.getBody()); 842 } 843 844 // If there is an increment, emit it next. 845 if (S.getInc()) { 846 EmitBlock(Continue.getBlock()); 847 EmitStmt(S.getInc()); 848 } 849 850 BreakContinueStack.pop_back(); 851 852 ConditionScope.ForceCleanup(); 853 EmitBranch(CondBlock); 854 855 ForScope.ForceCleanup(); 856 857 if (DI) 858 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 859 860 LoopStack.pop(); 861 862 // Emit the fall-through block. 863 EmitBlock(LoopExit.getBlock(), true); 864 } 865 866 void 867 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 868 const ArrayRef<const Attr *> &ForAttrs) { 869 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 870 871 RunCleanupsScope ForScope(*this); 872 873 CGDebugInfo *DI = getDebugInfo(); 874 if (DI) 875 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 876 877 // Evaluate the first pieces before the loop. 878 EmitStmt(S.getRangeStmt()); 879 EmitStmt(S.getBeginEndStmt()); 880 881 RegionCounter Cnt = getPGORegionCounter(&S); 882 883 // Start the loop with a block that tests the condition. 884 // If there's an increment, the continue scope will be overwritten 885 // later. 886 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 887 EmitBlock(CondBlock); 888 889 LoopStack.push(CondBlock); 890 891 // If there are any cleanups between here and the loop-exit scope, 892 // create a block to stage a loop exit along. 893 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 894 if (ForScope.requiresCleanups()) 895 ExitBlock = createBasicBlock("for.cond.cleanup"); 896 897 // The loop body, consisting of the specified body and the loop variable. 898 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 899 900 // The body is executed if the expression, contextually converted 901 // to bool, is true. 902 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 903 llvm::BranchInst *CondBr = Builder.CreateCondBr( 904 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 905 906 // Attach metadata to loop body conditional branch. 907 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 908 909 if (ExitBlock != LoopExit.getBlock()) { 910 EmitBlock(ExitBlock); 911 EmitBranchThroughCleanup(LoopExit); 912 } 913 914 EmitBlock(ForBody); 915 Cnt.beginRegion(Builder); 916 917 // Create a block for the increment. In case of a 'continue', we jump there. 918 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 919 920 // Store the blocks to use for break and continue. 921 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 922 923 { 924 // Create a separate cleanup scope for the loop variable and body. 925 RunCleanupsScope BodyScope(*this); 926 EmitStmt(S.getLoopVarStmt()); 927 EmitStmt(S.getBody()); 928 } 929 930 // If there is an increment, emit it next. 931 EmitBlock(Continue.getBlock()); 932 EmitStmt(S.getInc()); 933 934 BreakContinueStack.pop_back(); 935 936 EmitBranch(CondBlock); 937 938 ForScope.ForceCleanup(); 939 940 if (DI) 941 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 942 943 LoopStack.pop(); 944 945 // Emit the fall-through block. 946 EmitBlock(LoopExit.getBlock(), true); 947 } 948 949 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 950 if (RV.isScalar()) { 951 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 952 } else if (RV.isAggregate()) { 953 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 954 } else { 955 EmitStoreOfComplex(RV.getComplexVal(), 956 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 957 /*init*/ true); 958 } 959 EmitBranchThroughCleanup(ReturnBlock); 960 } 961 962 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 963 /// if the function returns void, or may be missing one if the function returns 964 /// non-void. Fun stuff :). 965 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 966 // Emit the result value, even if unused, to evalute the side effects. 967 const Expr *RV = S.getRetValue(); 968 969 // Treat block literals in a return expression as if they appeared 970 // in their own scope. This permits a small, easily-implemented 971 // exception to our over-conservative rules about not jumping to 972 // statements following block literals with non-trivial cleanups. 973 RunCleanupsScope cleanupScope(*this); 974 if (const ExprWithCleanups *cleanups = 975 dyn_cast_or_null<ExprWithCleanups>(RV)) { 976 enterFullExpression(cleanups); 977 RV = cleanups->getSubExpr(); 978 } 979 980 // FIXME: Clean this up by using an LValue for ReturnTemp, 981 // EmitStoreThroughLValue, and EmitAnyExpr. 982 if (getLangOpts().ElideConstructors && 983 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 984 // Apply the named return value optimization for this return statement, 985 // which means doing nothing: the appropriate result has already been 986 // constructed into the NRVO variable. 987 988 // If there is an NRVO flag for this variable, set it to 1 into indicate 989 // that the cleanup code should not destroy the variable. 990 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 991 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 992 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 993 // Make sure not to return anything, but evaluate the expression 994 // for side effects. 995 if (RV) 996 EmitAnyExpr(RV); 997 } else if (!RV) { 998 // Do nothing (return value is left uninitialized) 999 } else if (FnRetTy->isReferenceType()) { 1000 // If this function returns a reference, take the address of the expression 1001 // rather than the value. 1002 RValue Result = EmitReferenceBindingToExpr(RV); 1003 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1004 } else { 1005 switch (getEvaluationKind(RV->getType())) { 1006 case TEK_Scalar: 1007 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1008 break; 1009 case TEK_Complex: 1010 EmitComplexExprIntoLValue(RV, 1011 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1012 /*isInit*/ true); 1013 break; 1014 case TEK_Aggregate: { 1015 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1016 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1017 Qualifiers(), 1018 AggValueSlot::IsDestructed, 1019 AggValueSlot::DoesNotNeedGCBarriers, 1020 AggValueSlot::IsNotAliased)); 1021 break; 1022 } 1023 } 1024 } 1025 1026 ++NumReturnExprs; 1027 if (!RV || RV->isEvaluatable(getContext())) 1028 ++NumSimpleReturnExprs; 1029 1030 cleanupScope.ForceCleanup(); 1031 EmitBranchThroughCleanup(ReturnBlock); 1032 } 1033 1034 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1035 // As long as debug info is modeled with instructions, we have to ensure we 1036 // have a place to insert here and write the stop point here. 1037 if (HaveInsertPoint()) 1038 EmitStopPoint(&S); 1039 1040 for (const auto *I : S.decls()) 1041 EmitDecl(*I); 1042 } 1043 1044 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1045 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1046 1047 // If this code is reachable then emit a stop point (if generating 1048 // debug info). We have to do this ourselves because we are on the 1049 // "simple" statement path. 1050 if (HaveInsertPoint()) 1051 EmitStopPoint(&S); 1052 1053 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1054 } 1055 1056 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1057 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1058 1059 // If this code is reachable then emit a stop point (if generating 1060 // debug info). We have to do this ourselves because we are on the 1061 // "simple" statement path. 1062 if (HaveInsertPoint()) 1063 EmitStopPoint(&S); 1064 1065 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1066 } 1067 1068 /// EmitCaseStmtRange - If case statement range is not too big then 1069 /// add multiple cases to switch instruction, one for each value within 1070 /// the range. If range is too big then emit "if" condition check. 1071 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1072 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1073 1074 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1075 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1076 1077 RegionCounter CaseCnt = getPGORegionCounter(&S); 1078 1079 // Emit the code for this case. We do this first to make sure it is 1080 // properly chained from our predecessor before generating the 1081 // switch machinery to enter this block. 1082 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1083 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1084 EmitStmt(S.getSubStmt()); 1085 1086 // If range is empty, do nothing. 1087 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1088 return; 1089 1090 llvm::APInt Range = RHS - LHS; 1091 // FIXME: parameters such as this should not be hardcoded. 1092 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1093 // Range is small enough to add multiple switch instruction cases. 1094 uint64_t Total = CaseCnt.getCount(); 1095 unsigned NCases = Range.getZExtValue() + 1; 1096 // We only have one region counter for the entire set of cases here, so we 1097 // need to divide the weights evenly between the generated cases, ensuring 1098 // that the total weight is preserved. E.g., a weight of 5 over three cases 1099 // will be distributed as weights of 2, 2, and 1. 1100 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1101 for (unsigned I = 0; I != NCases; ++I) { 1102 if (SwitchWeights) 1103 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1104 if (Rem) 1105 Rem--; 1106 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1107 LHS++; 1108 } 1109 return; 1110 } 1111 1112 // The range is too big. Emit "if" condition into a new block, 1113 // making sure to save and restore the current insertion point. 1114 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1115 1116 // Push this test onto the chain of range checks (which terminates 1117 // in the default basic block). The switch's default will be changed 1118 // to the top of this chain after switch emission is complete. 1119 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1120 CaseRangeBlock = createBasicBlock("sw.caserange"); 1121 1122 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1123 Builder.SetInsertPoint(CaseRangeBlock); 1124 1125 // Emit range check. 1126 llvm::Value *Diff = 1127 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1128 llvm::Value *Cond = 1129 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1130 1131 llvm::MDNode *Weights = nullptr; 1132 if (SwitchWeights) { 1133 uint64_t ThisCount = CaseCnt.getCount(); 1134 uint64_t DefaultCount = (*SwitchWeights)[0]; 1135 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1136 1137 // Since we're chaining the switch default through each large case range, we 1138 // need to update the weight for the default, ie, the first case, to include 1139 // this case. 1140 (*SwitchWeights)[0] += ThisCount; 1141 } 1142 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1143 1144 // Restore the appropriate insertion point. 1145 if (RestoreBB) 1146 Builder.SetInsertPoint(RestoreBB); 1147 else 1148 Builder.ClearInsertionPoint(); 1149 } 1150 1151 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1152 // If there is no enclosing switch instance that we're aware of, then this 1153 // case statement and its block can be elided. This situation only happens 1154 // when we've constant-folded the switch, are emitting the constant case, 1155 // and part of the constant case includes another case statement. For 1156 // instance: switch (4) { case 4: do { case 5: } while (1); } 1157 if (!SwitchInsn) { 1158 EmitStmt(S.getSubStmt()); 1159 return; 1160 } 1161 1162 // Handle case ranges. 1163 if (S.getRHS()) { 1164 EmitCaseStmtRange(S); 1165 return; 1166 } 1167 1168 RegionCounter CaseCnt = getPGORegionCounter(&S); 1169 llvm::ConstantInt *CaseVal = 1170 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1171 1172 // If the body of the case is just a 'break', try to not emit an empty block. 1173 // If we're profiling or we're not optimizing, leave the block in for better 1174 // debug and coverage analysis. 1175 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1176 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1177 isa<BreakStmt>(S.getSubStmt())) { 1178 JumpDest Block = BreakContinueStack.back().BreakBlock; 1179 1180 // Only do this optimization if there are no cleanups that need emitting. 1181 if (isObviouslyBranchWithoutCleanups(Block)) { 1182 if (SwitchWeights) 1183 SwitchWeights->push_back(CaseCnt.getCount()); 1184 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1185 1186 // If there was a fallthrough into this case, make sure to redirect it to 1187 // the end of the switch as well. 1188 if (Builder.GetInsertBlock()) { 1189 Builder.CreateBr(Block.getBlock()); 1190 Builder.ClearInsertionPoint(); 1191 } 1192 return; 1193 } 1194 } 1195 1196 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1197 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1198 if (SwitchWeights) 1199 SwitchWeights->push_back(CaseCnt.getCount()); 1200 SwitchInsn->addCase(CaseVal, CaseDest); 1201 1202 // Recursively emitting the statement is acceptable, but is not wonderful for 1203 // code where we have many case statements nested together, i.e.: 1204 // case 1: 1205 // case 2: 1206 // case 3: etc. 1207 // Handling this recursively will create a new block for each case statement 1208 // that falls through to the next case which is IR intensive. It also causes 1209 // deep recursion which can run into stack depth limitations. Handle 1210 // sequential non-range case statements specially. 1211 const CaseStmt *CurCase = &S; 1212 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1213 1214 // Otherwise, iteratively add consecutive cases to this switch stmt. 1215 while (NextCase && NextCase->getRHS() == nullptr) { 1216 CurCase = NextCase; 1217 llvm::ConstantInt *CaseVal = 1218 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1219 1220 CaseCnt = getPGORegionCounter(NextCase); 1221 if (SwitchWeights) 1222 SwitchWeights->push_back(CaseCnt.getCount()); 1223 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1224 CaseDest = createBasicBlock("sw.bb"); 1225 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1226 } 1227 1228 SwitchInsn->addCase(CaseVal, CaseDest); 1229 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1230 } 1231 1232 // Normal default recursion for non-cases. 1233 EmitStmt(CurCase->getSubStmt()); 1234 } 1235 1236 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1237 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1238 assert(DefaultBlock->empty() && 1239 "EmitDefaultStmt: Default block already defined?"); 1240 1241 RegionCounter Cnt = getPGORegionCounter(&S); 1242 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1243 1244 EmitStmt(S.getSubStmt()); 1245 } 1246 1247 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1248 /// constant value that is being switched on, see if we can dead code eliminate 1249 /// the body of the switch to a simple series of statements to emit. Basically, 1250 /// on a switch (5) we want to find these statements: 1251 /// case 5: 1252 /// printf(...); <-- 1253 /// ++i; <-- 1254 /// break; 1255 /// 1256 /// and add them to the ResultStmts vector. If it is unsafe to do this 1257 /// transformation (for example, one of the elided statements contains a label 1258 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1259 /// should include statements after it (e.g. the printf() line is a substmt of 1260 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1261 /// statement, then return CSFC_Success. 1262 /// 1263 /// If Case is non-null, then we are looking for the specified case, checking 1264 /// that nothing we jump over contains labels. If Case is null, then we found 1265 /// the case and are looking for the break. 1266 /// 1267 /// If the recursive walk actually finds our Case, then we set FoundCase to 1268 /// true. 1269 /// 1270 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1271 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1272 const SwitchCase *Case, 1273 bool &FoundCase, 1274 SmallVectorImpl<const Stmt*> &ResultStmts) { 1275 // If this is a null statement, just succeed. 1276 if (!S) 1277 return Case ? CSFC_Success : CSFC_FallThrough; 1278 1279 // If this is the switchcase (case 4: or default) that we're looking for, then 1280 // we're in business. Just add the substatement. 1281 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1282 if (S == Case) { 1283 FoundCase = true; 1284 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1285 ResultStmts); 1286 } 1287 1288 // Otherwise, this is some other case or default statement, just ignore it. 1289 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1290 ResultStmts); 1291 } 1292 1293 // If we are in the live part of the code and we found our break statement, 1294 // return a success! 1295 if (!Case && isa<BreakStmt>(S)) 1296 return CSFC_Success; 1297 1298 // If this is a switch statement, then it might contain the SwitchCase, the 1299 // break, or neither. 1300 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1301 // Handle this as two cases: we might be looking for the SwitchCase (if so 1302 // the skipped statements must be skippable) or we might already have it. 1303 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1304 if (Case) { 1305 // Keep track of whether we see a skipped declaration. The code could be 1306 // using the declaration even if it is skipped, so we can't optimize out 1307 // the decl if the kept statements might refer to it. 1308 bool HadSkippedDecl = false; 1309 1310 // If we're looking for the case, just see if we can skip each of the 1311 // substatements. 1312 for (; Case && I != E; ++I) { 1313 HadSkippedDecl |= isa<DeclStmt>(*I); 1314 1315 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1316 case CSFC_Failure: return CSFC_Failure; 1317 case CSFC_Success: 1318 // A successful result means that either 1) that the statement doesn't 1319 // have the case and is skippable, or 2) does contain the case value 1320 // and also contains the break to exit the switch. In the later case, 1321 // we just verify the rest of the statements are elidable. 1322 if (FoundCase) { 1323 // If we found the case and skipped declarations, we can't do the 1324 // optimization. 1325 if (HadSkippedDecl) 1326 return CSFC_Failure; 1327 1328 for (++I; I != E; ++I) 1329 if (CodeGenFunction::ContainsLabel(*I, true)) 1330 return CSFC_Failure; 1331 return CSFC_Success; 1332 } 1333 break; 1334 case CSFC_FallThrough: 1335 // If we have a fallthrough condition, then we must have found the 1336 // case started to include statements. Consider the rest of the 1337 // statements in the compound statement as candidates for inclusion. 1338 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1339 // We recursively found Case, so we're not looking for it anymore. 1340 Case = nullptr; 1341 1342 // If we found the case and skipped declarations, we can't do the 1343 // optimization. 1344 if (HadSkippedDecl) 1345 return CSFC_Failure; 1346 break; 1347 } 1348 } 1349 } 1350 1351 // If we have statements in our range, then we know that the statements are 1352 // live and need to be added to the set of statements we're tracking. 1353 for (; I != E; ++I) { 1354 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1355 case CSFC_Failure: return CSFC_Failure; 1356 case CSFC_FallThrough: 1357 // A fallthrough result means that the statement was simple and just 1358 // included in ResultStmt, keep adding them afterwards. 1359 break; 1360 case CSFC_Success: 1361 // A successful result means that we found the break statement and 1362 // stopped statement inclusion. We just ensure that any leftover stmts 1363 // are skippable and return success ourselves. 1364 for (++I; I != E; ++I) 1365 if (CodeGenFunction::ContainsLabel(*I, true)) 1366 return CSFC_Failure; 1367 return CSFC_Success; 1368 } 1369 } 1370 1371 return Case ? CSFC_Success : CSFC_FallThrough; 1372 } 1373 1374 // Okay, this is some other statement that we don't handle explicitly, like a 1375 // for statement or increment etc. If we are skipping over this statement, 1376 // just verify it doesn't have labels, which would make it invalid to elide. 1377 if (Case) { 1378 if (CodeGenFunction::ContainsLabel(S, true)) 1379 return CSFC_Failure; 1380 return CSFC_Success; 1381 } 1382 1383 // Otherwise, we want to include this statement. Everything is cool with that 1384 // so long as it doesn't contain a break out of the switch we're in. 1385 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1386 1387 // Otherwise, everything is great. Include the statement and tell the caller 1388 // that we fall through and include the next statement as well. 1389 ResultStmts.push_back(S); 1390 return CSFC_FallThrough; 1391 } 1392 1393 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1394 /// then invoke CollectStatementsForCase to find the list of statements to emit 1395 /// for a switch on constant. See the comment above CollectStatementsForCase 1396 /// for more details. 1397 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1398 const llvm::APSInt &ConstantCondValue, 1399 SmallVectorImpl<const Stmt*> &ResultStmts, 1400 ASTContext &C, 1401 const SwitchCase *&ResultCase) { 1402 // First step, find the switch case that is being branched to. We can do this 1403 // efficiently by scanning the SwitchCase list. 1404 const SwitchCase *Case = S.getSwitchCaseList(); 1405 const DefaultStmt *DefaultCase = nullptr; 1406 1407 for (; Case; Case = Case->getNextSwitchCase()) { 1408 // It's either a default or case. Just remember the default statement in 1409 // case we're not jumping to any numbered cases. 1410 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1411 DefaultCase = DS; 1412 continue; 1413 } 1414 1415 // Check to see if this case is the one we're looking for. 1416 const CaseStmt *CS = cast<CaseStmt>(Case); 1417 // Don't handle case ranges yet. 1418 if (CS->getRHS()) return false; 1419 1420 // If we found our case, remember it as 'case'. 1421 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1422 break; 1423 } 1424 1425 // If we didn't find a matching case, we use a default if it exists, or we 1426 // elide the whole switch body! 1427 if (!Case) { 1428 // It is safe to elide the body of the switch if it doesn't contain labels 1429 // etc. If it is safe, return successfully with an empty ResultStmts list. 1430 if (!DefaultCase) 1431 return !CodeGenFunction::ContainsLabel(&S); 1432 Case = DefaultCase; 1433 } 1434 1435 // Ok, we know which case is being jumped to, try to collect all the 1436 // statements that follow it. This can fail for a variety of reasons. Also, 1437 // check to see that the recursive walk actually found our case statement. 1438 // Insane cases like this can fail to find it in the recursive walk since we 1439 // don't handle every stmt kind: 1440 // switch (4) { 1441 // while (1) { 1442 // case 4: ... 1443 bool FoundCase = false; 1444 ResultCase = Case; 1445 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1446 ResultStmts) != CSFC_Failure && 1447 FoundCase; 1448 } 1449 1450 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1451 // Handle nested switch statements. 1452 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1453 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1454 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1455 1456 // See if we can constant fold the condition of the switch and therefore only 1457 // emit the live case statement (if any) of the switch. 1458 llvm::APSInt ConstantCondValue; 1459 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1460 SmallVector<const Stmt*, 4> CaseStmts; 1461 const SwitchCase *Case = nullptr; 1462 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1463 getContext(), Case)) { 1464 if (Case) { 1465 RegionCounter CaseCnt = getPGORegionCounter(Case); 1466 CaseCnt.beginRegion(Builder); 1467 } 1468 RunCleanupsScope ExecutedScope(*this); 1469 1470 // Emit the condition variable if needed inside the entire cleanup scope 1471 // used by this special case for constant folded switches. 1472 if (S.getConditionVariable()) 1473 EmitAutoVarDecl(*S.getConditionVariable()); 1474 1475 // At this point, we are no longer "within" a switch instance, so 1476 // we can temporarily enforce this to ensure that any embedded case 1477 // statements are not emitted. 1478 SwitchInsn = nullptr; 1479 1480 // Okay, we can dead code eliminate everything except this case. Emit the 1481 // specified series of statements and we're good. 1482 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1483 EmitStmt(CaseStmts[i]); 1484 RegionCounter ExitCnt = getPGORegionCounter(&S); 1485 ExitCnt.beginRegion(Builder); 1486 1487 // Now we want to restore the saved switch instance so that nested 1488 // switches continue to function properly 1489 SwitchInsn = SavedSwitchInsn; 1490 1491 return; 1492 } 1493 } 1494 1495 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1496 1497 RunCleanupsScope ConditionScope(*this); 1498 if (S.getConditionVariable()) 1499 EmitAutoVarDecl(*S.getConditionVariable()); 1500 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1501 1502 // Create basic block to hold stuff that comes after switch 1503 // statement. We also need to create a default block now so that 1504 // explicit case ranges tests can have a place to jump to on 1505 // failure. 1506 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1507 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1508 if (PGO.haveRegionCounts()) { 1509 // Walk the SwitchCase list to find how many there are. 1510 uint64_t DefaultCount = 0; 1511 unsigned NumCases = 0; 1512 for (const SwitchCase *Case = S.getSwitchCaseList(); 1513 Case; 1514 Case = Case->getNextSwitchCase()) { 1515 if (isa<DefaultStmt>(Case)) 1516 DefaultCount = getPGORegionCounter(Case).getCount(); 1517 NumCases += 1; 1518 } 1519 SwitchWeights = new SmallVector<uint64_t, 16>(); 1520 SwitchWeights->reserve(NumCases); 1521 // The default needs to be first. We store the edge count, so we already 1522 // know the right weight. 1523 SwitchWeights->push_back(DefaultCount); 1524 } 1525 CaseRangeBlock = DefaultBlock; 1526 1527 // Clear the insertion point to indicate we are in unreachable code. 1528 Builder.ClearInsertionPoint(); 1529 1530 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1531 // then reuse last ContinueBlock. 1532 JumpDest OuterContinue; 1533 if (!BreakContinueStack.empty()) 1534 OuterContinue = BreakContinueStack.back().ContinueBlock; 1535 1536 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1537 1538 // Emit switch body. 1539 EmitStmt(S.getBody()); 1540 1541 BreakContinueStack.pop_back(); 1542 1543 // Update the default block in case explicit case range tests have 1544 // been chained on top. 1545 SwitchInsn->setDefaultDest(CaseRangeBlock); 1546 1547 // If a default was never emitted: 1548 if (!DefaultBlock->getParent()) { 1549 // If we have cleanups, emit the default block so that there's a 1550 // place to jump through the cleanups from. 1551 if (ConditionScope.requiresCleanups()) { 1552 EmitBlock(DefaultBlock); 1553 1554 // Otherwise, just forward the default block to the switch end. 1555 } else { 1556 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1557 delete DefaultBlock; 1558 } 1559 } 1560 1561 ConditionScope.ForceCleanup(); 1562 1563 // Emit continuation. 1564 EmitBlock(SwitchExit.getBlock(), true); 1565 RegionCounter ExitCnt = getPGORegionCounter(&S); 1566 ExitCnt.beginRegion(Builder); 1567 1568 if (SwitchWeights) { 1569 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1570 "switch weights do not match switch cases"); 1571 // If there's only one jump destination there's no sense weighting it. 1572 if (SwitchWeights->size() > 1) 1573 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1574 PGO.createBranchWeights(*SwitchWeights)); 1575 delete SwitchWeights; 1576 } 1577 SwitchInsn = SavedSwitchInsn; 1578 SwitchWeights = SavedSwitchWeights; 1579 CaseRangeBlock = SavedCRBlock; 1580 } 1581 1582 static std::string 1583 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1584 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1585 std::string Result; 1586 1587 while (*Constraint) { 1588 switch (*Constraint) { 1589 default: 1590 Result += Target.convertConstraint(Constraint); 1591 break; 1592 // Ignore these 1593 case '*': 1594 case '?': 1595 case '!': 1596 case '=': // Will see this and the following in mult-alt constraints. 1597 case '+': 1598 break; 1599 case '#': // Ignore the rest of the constraint alternative. 1600 while (Constraint[1] && Constraint[1] != ',') 1601 Constraint++; 1602 break; 1603 case ',': 1604 Result += "|"; 1605 break; 1606 case 'g': 1607 Result += "imr"; 1608 break; 1609 case '[': { 1610 assert(OutCons && 1611 "Must pass output names to constraints with a symbolic name"); 1612 unsigned Index; 1613 bool result = Target.resolveSymbolicName(Constraint, 1614 &(*OutCons)[0], 1615 OutCons->size(), Index); 1616 assert(result && "Could not resolve symbolic name"); (void)result; 1617 Result += llvm::utostr(Index); 1618 break; 1619 } 1620 } 1621 1622 Constraint++; 1623 } 1624 1625 return Result; 1626 } 1627 1628 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1629 /// as using a particular register add that as a constraint that will be used 1630 /// in this asm stmt. 1631 static std::string 1632 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1633 const TargetInfo &Target, CodeGenModule &CGM, 1634 const AsmStmt &Stmt) { 1635 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1636 if (!AsmDeclRef) 1637 return Constraint; 1638 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1639 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1640 if (!Variable) 1641 return Constraint; 1642 if (Variable->getStorageClass() != SC_Register) 1643 return Constraint; 1644 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1645 if (!Attr) 1646 return Constraint; 1647 StringRef Register = Attr->getLabel(); 1648 assert(Target.isValidGCCRegisterName(Register)); 1649 // We're using validateOutputConstraint here because we only care if 1650 // this is a register constraint. 1651 TargetInfo::ConstraintInfo Info(Constraint, ""); 1652 if (Target.validateOutputConstraint(Info) && 1653 !Info.allowsRegister()) { 1654 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1655 return Constraint; 1656 } 1657 // Canonicalize the register here before returning it. 1658 Register = Target.getNormalizedGCCRegisterName(Register); 1659 return "{" + Register.str() + "}"; 1660 } 1661 1662 llvm::Value* 1663 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1664 LValue InputValue, QualType InputType, 1665 std::string &ConstraintStr, 1666 SourceLocation Loc) { 1667 llvm::Value *Arg; 1668 if (Info.allowsRegister() || !Info.allowsMemory()) { 1669 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1670 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1671 } else { 1672 llvm::Type *Ty = ConvertType(InputType); 1673 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1674 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1675 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1676 Ty = llvm::PointerType::getUnqual(Ty); 1677 1678 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1679 Ty)); 1680 } else { 1681 Arg = InputValue.getAddress(); 1682 ConstraintStr += '*'; 1683 } 1684 } 1685 } else { 1686 Arg = InputValue.getAddress(); 1687 ConstraintStr += '*'; 1688 } 1689 1690 return Arg; 1691 } 1692 1693 llvm::Value* CodeGenFunction::EmitAsmInput( 1694 const TargetInfo::ConstraintInfo &Info, 1695 const Expr *InputExpr, 1696 std::string &ConstraintStr) { 1697 if (Info.allowsRegister() || !Info.allowsMemory()) 1698 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1699 return EmitScalarExpr(InputExpr); 1700 1701 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1702 LValue Dest = EmitLValue(InputExpr); 1703 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1704 InputExpr->getExprLoc()); 1705 } 1706 1707 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1708 /// asm call instruction. The !srcloc MDNode contains a list of constant 1709 /// integers which are the source locations of the start of each line in the 1710 /// asm. 1711 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1712 CodeGenFunction &CGF) { 1713 SmallVector<llvm::Value *, 8> Locs; 1714 // Add the location of the first line to the MDNode. 1715 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1716 Str->getLocStart().getRawEncoding())); 1717 StringRef StrVal = Str->getString(); 1718 if (!StrVal.empty()) { 1719 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1720 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1721 1722 // Add the location of the start of each subsequent line of the asm to the 1723 // MDNode. 1724 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1725 if (StrVal[i] != '\n') continue; 1726 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1727 CGF.getTarget()); 1728 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1729 LineLoc.getRawEncoding())); 1730 } 1731 } 1732 1733 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1734 } 1735 1736 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1737 // Assemble the final asm string. 1738 std::string AsmString = S.generateAsmString(getContext()); 1739 1740 // Get all the output and input constraints together. 1741 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1742 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1743 1744 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1745 StringRef Name; 1746 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1747 Name = GAS->getOutputName(i); 1748 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1749 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1750 assert(IsValid && "Failed to parse output constraint"); 1751 OutputConstraintInfos.push_back(Info); 1752 } 1753 1754 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1755 StringRef Name; 1756 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1757 Name = GAS->getInputName(i); 1758 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1759 bool IsValid = 1760 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1761 S.getNumOutputs(), Info); 1762 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1763 InputConstraintInfos.push_back(Info); 1764 } 1765 1766 std::string Constraints; 1767 1768 std::vector<LValue> ResultRegDests; 1769 std::vector<QualType> ResultRegQualTys; 1770 std::vector<llvm::Type *> ResultRegTypes; 1771 std::vector<llvm::Type *> ResultTruncRegTypes; 1772 std::vector<llvm::Type *> ArgTypes; 1773 std::vector<llvm::Value*> Args; 1774 1775 // Keep track of inout constraints. 1776 std::string InOutConstraints; 1777 std::vector<llvm::Value*> InOutArgs; 1778 std::vector<llvm::Type*> InOutArgTypes; 1779 1780 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1781 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1782 1783 // Simplify the output constraint. 1784 std::string OutputConstraint(S.getOutputConstraint(i)); 1785 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1786 getTarget()); 1787 1788 const Expr *OutExpr = S.getOutputExpr(i); 1789 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1790 1791 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1792 getTarget(), CGM, S); 1793 1794 LValue Dest = EmitLValue(OutExpr); 1795 if (!Constraints.empty()) 1796 Constraints += ','; 1797 1798 // If this is a register output, then make the inline asm return it 1799 // by-value. If this is a memory result, return the value by-reference. 1800 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1801 Constraints += "=" + OutputConstraint; 1802 ResultRegQualTys.push_back(OutExpr->getType()); 1803 ResultRegDests.push_back(Dest); 1804 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1805 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1806 1807 // If this output is tied to an input, and if the input is larger, then 1808 // we need to set the actual result type of the inline asm node to be the 1809 // same as the input type. 1810 if (Info.hasMatchingInput()) { 1811 unsigned InputNo; 1812 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1813 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1814 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1815 break; 1816 } 1817 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1818 1819 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1820 QualType OutputType = OutExpr->getType(); 1821 1822 uint64_t InputSize = getContext().getTypeSize(InputTy); 1823 if (getContext().getTypeSize(OutputType) < InputSize) { 1824 // Form the asm to return the value as a larger integer or fp type. 1825 ResultRegTypes.back() = ConvertType(InputTy); 1826 } 1827 } 1828 if (llvm::Type* AdjTy = 1829 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1830 ResultRegTypes.back())) 1831 ResultRegTypes.back() = AdjTy; 1832 else { 1833 CGM.getDiags().Report(S.getAsmLoc(), 1834 diag::err_asm_invalid_type_in_input) 1835 << OutExpr->getType() << OutputConstraint; 1836 } 1837 } else { 1838 ArgTypes.push_back(Dest.getAddress()->getType()); 1839 Args.push_back(Dest.getAddress()); 1840 Constraints += "=*"; 1841 Constraints += OutputConstraint; 1842 } 1843 1844 if (Info.isReadWrite()) { 1845 InOutConstraints += ','; 1846 1847 const Expr *InputExpr = S.getOutputExpr(i); 1848 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1849 InOutConstraints, 1850 InputExpr->getExprLoc()); 1851 1852 if (llvm::Type* AdjTy = 1853 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1854 Arg->getType())) 1855 Arg = Builder.CreateBitCast(Arg, AdjTy); 1856 1857 if (Info.allowsRegister()) 1858 InOutConstraints += llvm::utostr(i); 1859 else 1860 InOutConstraints += OutputConstraint; 1861 1862 InOutArgTypes.push_back(Arg->getType()); 1863 InOutArgs.push_back(Arg); 1864 } 1865 } 1866 1867 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1868 1869 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1870 const Expr *InputExpr = S.getInputExpr(i); 1871 1872 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1873 1874 if (!Constraints.empty()) 1875 Constraints += ','; 1876 1877 // Simplify the input constraint. 1878 std::string InputConstraint(S.getInputConstraint(i)); 1879 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1880 &OutputConstraintInfos); 1881 1882 InputConstraint = 1883 AddVariableConstraints(InputConstraint, 1884 *InputExpr->IgnoreParenNoopCasts(getContext()), 1885 getTarget(), CGM, S); 1886 1887 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1888 1889 // If this input argument is tied to a larger output result, extend the 1890 // input to be the same size as the output. The LLVM backend wants to see 1891 // the input and output of a matching constraint be the same size. Note 1892 // that GCC does not define what the top bits are here. We use zext because 1893 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1894 if (Info.hasTiedOperand()) { 1895 unsigned Output = Info.getTiedOperand(); 1896 QualType OutputType = S.getOutputExpr(Output)->getType(); 1897 QualType InputTy = InputExpr->getType(); 1898 1899 if (getContext().getTypeSize(OutputType) > 1900 getContext().getTypeSize(InputTy)) { 1901 // Use ptrtoint as appropriate so that we can do our extension. 1902 if (isa<llvm::PointerType>(Arg->getType())) 1903 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1904 llvm::Type *OutputTy = ConvertType(OutputType); 1905 if (isa<llvm::IntegerType>(OutputTy)) 1906 Arg = Builder.CreateZExt(Arg, OutputTy); 1907 else if (isa<llvm::PointerType>(OutputTy)) 1908 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1909 else { 1910 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1911 Arg = Builder.CreateFPExt(Arg, OutputTy); 1912 } 1913 } 1914 } 1915 if (llvm::Type* AdjTy = 1916 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1917 Arg->getType())) 1918 Arg = Builder.CreateBitCast(Arg, AdjTy); 1919 else 1920 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1921 << InputExpr->getType() << InputConstraint; 1922 1923 ArgTypes.push_back(Arg->getType()); 1924 Args.push_back(Arg); 1925 Constraints += InputConstraint; 1926 } 1927 1928 // Append the "input" part of inout constraints last. 1929 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1930 ArgTypes.push_back(InOutArgTypes[i]); 1931 Args.push_back(InOutArgs[i]); 1932 } 1933 Constraints += InOutConstraints; 1934 1935 // Clobbers 1936 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1937 StringRef Clobber = S.getClobber(i); 1938 1939 if (Clobber != "memory" && Clobber != "cc") 1940 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1941 1942 if (i != 0 || NumConstraints != 0) 1943 Constraints += ','; 1944 1945 Constraints += "~{"; 1946 Constraints += Clobber; 1947 Constraints += '}'; 1948 } 1949 1950 // Add machine specific clobbers 1951 std::string MachineClobbers = getTarget().getClobbers(); 1952 if (!MachineClobbers.empty()) { 1953 if (!Constraints.empty()) 1954 Constraints += ','; 1955 Constraints += MachineClobbers; 1956 } 1957 1958 llvm::Type *ResultType; 1959 if (ResultRegTypes.empty()) 1960 ResultType = VoidTy; 1961 else if (ResultRegTypes.size() == 1) 1962 ResultType = ResultRegTypes[0]; 1963 else 1964 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 1965 1966 llvm::FunctionType *FTy = 1967 llvm::FunctionType::get(ResultType, ArgTypes, false); 1968 1969 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 1970 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 1971 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 1972 llvm::InlineAsm *IA = 1973 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 1974 /* IsAlignStack */ false, AsmDialect); 1975 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 1976 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 1977 llvm::Attribute::NoUnwind); 1978 1979 // Slap the source location of the inline asm into a !srcloc metadata on the 1980 // call. FIXME: Handle metadata for MS-style inline asms. 1981 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 1982 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 1983 *this)); 1984 1985 // Extract all of the register value results from the asm. 1986 std::vector<llvm::Value*> RegResults; 1987 if (ResultRegTypes.size() == 1) { 1988 RegResults.push_back(Result); 1989 } else { 1990 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 1991 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 1992 RegResults.push_back(Tmp); 1993 } 1994 } 1995 1996 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 1997 llvm::Value *Tmp = RegResults[i]; 1998 1999 // If the result type of the LLVM IR asm doesn't match the result type of 2000 // the expression, do the conversion. 2001 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2002 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2003 2004 // Truncate the integer result to the right size, note that TruncTy can be 2005 // a pointer. 2006 if (TruncTy->isFloatingPointTy()) 2007 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2008 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2009 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2010 Tmp = Builder.CreateTrunc(Tmp, 2011 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2012 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2013 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2014 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2015 Tmp = Builder.CreatePtrToInt(Tmp, 2016 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2017 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2018 } else if (TruncTy->isIntegerTy()) { 2019 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2020 } else if (TruncTy->isVectorTy()) { 2021 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2022 } 2023 } 2024 2025 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2026 } 2027 } 2028 2029 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2030 const RecordDecl *RD = S.getCapturedRecordDecl(); 2031 QualType RecordTy = CGF.getContext().getRecordType(RD); 2032 2033 // Initialize the captured struct. 2034 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2035 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2036 2037 RecordDecl::field_iterator CurField = RD->field_begin(); 2038 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2039 E = S.capture_init_end(); 2040 I != E; ++I, ++CurField) { 2041 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2042 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2043 } 2044 2045 return SlotLV; 2046 } 2047 2048 /// Generate an outlined function for the body of a CapturedStmt, store any 2049 /// captured variables into the captured struct, and call the outlined function. 2050 llvm::Function * 2051 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2052 const CapturedDecl *CD = S.getCapturedDecl(); 2053 const RecordDecl *RD = S.getCapturedRecordDecl(); 2054 assert(CD->hasBody() && "missing CapturedDecl body"); 2055 2056 LValue CapStruct = InitCapturedStruct(*this, S); 2057 2058 // Emit the CapturedDecl 2059 CodeGenFunction CGF(CGM, true); 2060 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2061 llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD, S.getLocStart()); 2062 delete CGF.CapturedStmtInfo; 2063 2064 // Emit call to the helper function. 2065 EmitCallOrInvoke(F, CapStruct.getAddress()); 2066 2067 return F; 2068 } 2069 2070 llvm::Value * 2071 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2072 LValue CapStruct = InitCapturedStruct(*this, S); 2073 return CapStruct.getAddress(); 2074 } 2075 2076 /// Creates the outlined function for a CapturedStmt. 2077 llvm::Function * 2078 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD, 2079 const RecordDecl *RD, 2080 SourceLocation Loc) { 2081 assert(CapturedStmtInfo && 2082 "CapturedStmtInfo should be set when generating the captured function"); 2083 2084 // Build the argument list. 2085 ASTContext &Ctx = CGM.getContext(); 2086 FunctionArgList Args; 2087 Args.append(CD->param_begin(), CD->param_end()); 2088 2089 // Create the function declaration. 2090 FunctionType::ExtInfo ExtInfo; 2091 const CGFunctionInfo &FuncInfo = 2092 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2093 /*IsVariadic=*/false); 2094 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2095 2096 llvm::Function *F = 2097 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2098 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2099 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2100 2101 // Generate the function. 2102 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2103 CD->getLocation(), 2104 CD->getBody()->getLocStart()); 2105 2106 // Set the context parameter in CapturedStmtInfo. 2107 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2108 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2109 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2110 2111 // If 'this' is captured, load it into CXXThisValue. 2112 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2113 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2114 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2115 Ctx.getTagDeclType(RD)); 2116 LValue ThisLValue = EmitLValueForField(LV, FD); 2117 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2118 } 2119 2120 PGO.assignRegionCounters(CD, F); 2121 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2122 FinishFunction(CD->getBodyRBrace()); 2123 PGO.emitInstrumentationData(); 2124 PGO.destroyRegionCounters(); 2125 2126 return F; 2127 } 2128