1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/LoopHint.h" 22 #include "clang/Sema/SemaDiagnostic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/InlineAsm.h" 27 #include "llvm/IR/Intrinsics.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getLocStart(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 switch (S->getStmtClass()) { 75 case Stmt::NoStmtClass: 76 case Stmt::CXXCatchStmtClass: 77 case Stmt::SEHExceptStmtClass: 78 case Stmt::SEHFinallyStmtClass: 79 case Stmt::MSDependentExistsStmtClass: 80 llvm_unreachable("invalid statement class to emit generically"); 81 case Stmt::NullStmtClass: 82 case Stmt::CompoundStmtClass: 83 case Stmt::DeclStmtClass: 84 case Stmt::LabelStmtClass: 85 case Stmt::AttributedStmtClass: 86 case Stmt::GotoStmtClass: 87 case Stmt::BreakStmtClass: 88 case Stmt::ContinueStmtClass: 89 case Stmt::DefaultStmtClass: 90 case Stmt::CaseStmtClass: 91 llvm_unreachable("should have emitted these statements as simple"); 92 93 #define STMT(Type, Base) 94 #define ABSTRACT_STMT(Op) 95 #define EXPR(Type, Base) \ 96 case Stmt::Type##Class: 97 #include "clang/AST/StmtNodes.inc" 98 { 99 // Remember the block we came in on. 100 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 101 assert(incoming && "expression emission must have an insertion point"); 102 103 EmitIgnoredExpr(cast<Expr>(S)); 104 105 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 106 assert(outgoing && "expression emission cleared block!"); 107 108 // The expression emitters assume (reasonably!) that the insertion 109 // point is always set. To maintain that, the call-emission code 110 // for noreturn functions has to enter a new block with no 111 // predecessors. We want to kill that block and mark the current 112 // insertion point unreachable in the common case of a call like 113 // "exit();". Since expression emission doesn't otherwise create 114 // blocks with no predecessors, we can just test for that. 115 // However, we must be careful not to do this to our incoming 116 // block, because *statement* emission does sometimes create 117 // reachable blocks which will have no predecessors until later in 118 // the function. This occurs with, e.g., labels that are not 119 // reachable by fallthrough. 120 if (incoming != outgoing && outgoing->use_empty()) { 121 outgoing->eraseFromParent(); 122 Builder.ClearInsertionPoint(); 123 } 124 break; 125 } 126 127 case Stmt::IndirectGotoStmtClass: 128 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 129 130 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 131 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 132 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 133 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 134 135 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 136 137 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 138 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 139 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 140 case Stmt::CapturedStmtClass: { 141 const CapturedStmt *CS = cast<CapturedStmt>(S); 142 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 143 } 144 break; 145 case Stmt::ObjCAtTryStmtClass: 146 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 147 break; 148 case Stmt::ObjCAtCatchStmtClass: 149 llvm_unreachable( 150 "@catch statements should be handled by EmitObjCAtTryStmt"); 151 case Stmt::ObjCAtFinallyStmtClass: 152 llvm_unreachable( 153 "@finally statements should be handled by EmitObjCAtTryStmt"); 154 case Stmt::ObjCAtThrowStmtClass: 155 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 156 break; 157 case Stmt::ObjCAtSynchronizedStmtClass: 158 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 159 break; 160 case Stmt::ObjCForCollectionStmtClass: 161 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 162 break; 163 case Stmt::ObjCAutoreleasePoolStmtClass: 164 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 165 break; 166 167 case Stmt::CXXTryStmtClass: 168 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 169 break; 170 case Stmt::CXXForRangeStmtClass: 171 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 172 break; 173 case Stmt::SEHTryStmtClass: 174 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 175 break; 176 case Stmt::SEHLeaveStmtClass: 177 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 178 break; 179 case Stmt::OMPParallelDirectiveClass: 180 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 181 break; 182 case Stmt::OMPSimdDirectiveClass: 183 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 184 break; 185 case Stmt::OMPForDirectiveClass: 186 EmitOMPForDirective(cast<OMPForDirective>(*S)); 187 break; 188 case Stmt::OMPSectionsDirectiveClass: 189 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 190 break; 191 case Stmt::OMPSectionDirectiveClass: 192 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 193 break; 194 case Stmt::OMPSingleDirectiveClass: 195 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 196 break; 197 case Stmt::OMPMasterDirectiveClass: 198 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 199 break; 200 case Stmt::OMPCriticalDirectiveClass: 201 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 202 break; 203 case Stmt::OMPParallelForDirectiveClass: 204 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 205 break; 206 case Stmt::OMPParallelSectionsDirectiveClass: 207 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 208 break; 209 case Stmt::OMPTaskDirectiveClass: 210 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 211 break; 212 case Stmt::OMPTaskyieldDirectiveClass: 213 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 214 break; 215 case Stmt::OMPBarrierDirectiveClass: 216 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 217 break; 218 case Stmt::OMPTaskwaitDirectiveClass: 219 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 220 break; 221 case Stmt::OMPFlushDirectiveClass: 222 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 223 break; 224 case Stmt::OMPOrderedDirectiveClass: 225 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 226 break; 227 case Stmt::OMPAtomicDirectiveClass: 228 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 229 break; 230 } 231 } 232 233 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 234 switch (S->getStmtClass()) { 235 default: return false; 236 case Stmt::NullStmtClass: break; 237 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 238 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 239 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 240 case Stmt::AttributedStmtClass: 241 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 242 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 243 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 244 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 245 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 246 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 247 } 248 249 return true; 250 } 251 252 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 253 /// this captures the expression result of the last sub-statement and returns it 254 /// (for use by the statement expression extension). 255 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 256 AggValueSlot AggSlot) { 257 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 258 "LLVM IR generation of compound statement ('{}')"); 259 260 // Keep track of the current cleanup stack depth, including debug scopes. 261 LexicalScope Scope(*this, S.getSourceRange()); 262 263 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 264 } 265 266 llvm::Value* 267 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 268 bool GetLast, 269 AggValueSlot AggSlot) { 270 271 for (CompoundStmt::const_body_iterator I = S.body_begin(), 272 E = S.body_end()-GetLast; I != E; ++I) 273 EmitStmt(*I); 274 275 llvm::Value *RetAlloca = nullptr; 276 if (GetLast) { 277 // We have to special case labels here. They are statements, but when put 278 // at the end of a statement expression, they yield the value of their 279 // subexpression. Handle this by walking through all labels we encounter, 280 // emitting them before we evaluate the subexpr. 281 const Stmt *LastStmt = S.body_back(); 282 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 283 EmitLabel(LS->getDecl()); 284 LastStmt = LS->getSubStmt(); 285 } 286 287 EnsureInsertPoint(); 288 289 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 290 if (hasAggregateEvaluationKind(ExprTy)) { 291 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 292 } else { 293 // We can't return an RValue here because there might be cleanups at 294 // the end of the StmtExpr. Because of that, we have to emit the result 295 // here into a temporary alloca. 296 RetAlloca = CreateMemTemp(ExprTy); 297 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 298 /*IsInit*/false); 299 } 300 301 } 302 303 return RetAlloca; 304 } 305 306 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 307 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 308 309 // If there is a cleanup stack, then we it isn't worth trying to 310 // simplify this block (we would need to remove it from the scope map 311 // and cleanup entry). 312 if (!EHStack.empty()) 313 return; 314 315 // Can only simplify direct branches. 316 if (!BI || !BI->isUnconditional()) 317 return; 318 319 // Can only simplify empty blocks. 320 if (BI != BB->begin()) 321 return; 322 323 BB->replaceAllUsesWith(BI->getSuccessor(0)); 324 BI->eraseFromParent(); 325 BB->eraseFromParent(); 326 } 327 328 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 329 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 330 331 // Fall out of the current block (if necessary). 332 EmitBranch(BB); 333 334 if (IsFinished && BB->use_empty()) { 335 delete BB; 336 return; 337 } 338 339 // Place the block after the current block, if possible, or else at 340 // the end of the function. 341 if (CurBB && CurBB->getParent()) 342 CurFn->getBasicBlockList().insertAfter(CurBB, BB); 343 else 344 CurFn->getBasicBlockList().push_back(BB); 345 Builder.SetInsertPoint(BB); 346 } 347 348 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 349 // Emit a branch from the current block to the target one if this 350 // was a real block. If this was just a fall-through block after a 351 // terminator, don't emit it. 352 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 353 354 if (!CurBB || CurBB->getTerminator()) { 355 // If there is no insert point or the previous block is already 356 // terminated, don't touch it. 357 } else { 358 // Otherwise, create a fall-through branch. 359 Builder.CreateBr(Target); 360 } 361 362 Builder.ClearInsertionPoint(); 363 } 364 365 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 366 bool inserted = false; 367 for (llvm::User *u : block->users()) { 368 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 369 CurFn->getBasicBlockList().insertAfter(insn->getParent(), block); 370 inserted = true; 371 break; 372 } 373 } 374 375 if (!inserted) 376 CurFn->getBasicBlockList().push_back(block); 377 378 Builder.SetInsertPoint(block); 379 } 380 381 CodeGenFunction::JumpDest 382 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 383 JumpDest &Dest = LabelMap[D]; 384 if (Dest.isValid()) return Dest; 385 386 // Create, but don't insert, the new block. 387 Dest = JumpDest(createBasicBlock(D->getName()), 388 EHScopeStack::stable_iterator::invalid(), 389 NextCleanupDestIndex++); 390 return Dest; 391 } 392 393 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 394 // Add this label to the current lexical scope if we're within any 395 // normal cleanups. Jumps "in" to this label --- when permitted by 396 // the language --- may need to be routed around such cleanups. 397 if (EHStack.hasNormalCleanups() && CurLexicalScope) 398 CurLexicalScope->addLabel(D); 399 400 JumpDest &Dest = LabelMap[D]; 401 402 // If we didn't need a forward reference to this label, just go 403 // ahead and create a destination at the current scope. 404 if (!Dest.isValid()) { 405 Dest = getJumpDestInCurrentScope(D->getName()); 406 407 // Otherwise, we need to give this label a target depth and remove 408 // it from the branch-fixups list. 409 } else { 410 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 411 Dest.setScopeDepth(EHStack.stable_begin()); 412 ResolveBranchFixups(Dest.getBlock()); 413 } 414 415 RegionCounter Cnt = getPGORegionCounter(D->getStmt()); 416 EmitBlock(Dest.getBlock()); 417 Cnt.beginRegion(Builder); 418 } 419 420 /// Change the cleanup scope of the labels in this lexical scope to 421 /// match the scope of the enclosing context. 422 void CodeGenFunction::LexicalScope::rescopeLabels() { 423 assert(!Labels.empty()); 424 EHScopeStack::stable_iterator innermostScope 425 = CGF.EHStack.getInnermostNormalCleanup(); 426 427 // Change the scope depth of all the labels. 428 for (SmallVectorImpl<const LabelDecl*>::const_iterator 429 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 430 assert(CGF.LabelMap.count(*i)); 431 JumpDest &dest = CGF.LabelMap.find(*i)->second; 432 assert(dest.getScopeDepth().isValid()); 433 assert(innermostScope.encloses(dest.getScopeDepth())); 434 dest.setScopeDepth(innermostScope); 435 } 436 437 // Reparent the labels if the new scope also has cleanups. 438 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 439 ParentScope->Labels.append(Labels.begin(), Labels.end()); 440 } 441 } 442 443 444 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 445 EmitLabel(S.getDecl()); 446 EmitStmt(S.getSubStmt()); 447 } 448 449 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 450 const Stmt *SubStmt = S.getSubStmt(); 451 switch (SubStmt->getStmtClass()) { 452 case Stmt::DoStmtClass: 453 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 454 break; 455 case Stmt::ForStmtClass: 456 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 457 break; 458 case Stmt::WhileStmtClass: 459 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 460 break; 461 case Stmt::CXXForRangeStmtClass: 462 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 463 break; 464 default: 465 EmitStmt(SubStmt); 466 } 467 } 468 469 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 470 // If this code is reachable then emit a stop point (if generating 471 // debug info). We have to do this ourselves because we are on the 472 // "simple" statement path. 473 if (HaveInsertPoint()) 474 EmitStopPoint(&S); 475 476 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 477 } 478 479 480 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 481 if (const LabelDecl *Target = S.getConstantTarget()) { 482 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 483 return; 484 } 485 486 // Ensure that we have an i8* for our PHI node. 487 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 488 Int8PtrTy, "addr"); 489 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 490 491 // Get the basic block for the indirect goto. 492 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 493 494 // The first instruction in the block has to be the PHI for the switch dest, 495 // add an entry for this branch. 496 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 497 498 EmitBranch(IndGotoBB); 499 } 500 501 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 502 // C99 6.8.4.1: The first substatement is executed if the expression compares 503 // unequal to 0. The condition must be a scalar type. 504 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 505 RegionCounter Cnt = getPGORegionCounter(&S); 506 507 if (S.getConditionVariable()) 508 EmitAutoVarDecl(*S.getConditionVariable()); 509 510 // If the condition constant folds and can be elided, try to avoid emitting 511 // the condition and the dead arm of the if/else. 512 bool CondConstant; 513 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) { 514 // Figure out which block (then or else) is executed. 515 const Stmt *Executed = S.getThen(); 516 const Stmt *Skipped = S.getElse(); 517 if (!CondConstant) // Condition false? 518 std::swap(Executed, Skipped); 519 520 // If the skipped block has no labels in it, just emit the executed block. 521 // This avoids emitting dead code and simplifies the CFG substantially. 522 if (!ContainsLabel(Skipped)) { 523 if (CondConstant) 524 Cnt.beginRegion(Builder); 525 if (Executed) { 526 RunCleanupsScope ExecutedScope(*this); 527 EmitStmt(Executed); 528 } 529 return; 530 } 531 } 532 533 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 534 // the conditional branch. 535 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 536 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 537 llvm::BasicBlock *ElseBlock = ContBlock; 538 if (S.getElse()) 539 ElseBlock = createBasicBlock("if.else"); 540 541 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount()); 542 543 // Emit the 'then' code. 544 EmitBlock(ThenBlock); 545 Cnt.beginRegion(Builder); 546 { 547 RunCleanupsScope ThenScope(*this); 548 EmitStmt(S.getThen()); 549 } 550 EmitBranch(ContBlock); 551 552 // Emit the 'else' code if present. 553 if (const Stmt *Else = S.getElse()) { 554 { 555 // There is no need to emit line number for unconditional branch. 556 SuppressDebugLocation S(Builder); 557 EmitBlock(ElseBlock); 558 } 559 { 560 RunCleanupsScope ElseScope(*this); 561 EmitStmt(Else); 562 } 563 { 564 // There is no need to emit line number for unconditional branch. 565 SuppressDebugLocation S(Builder); 566 EmitBranch(ContBlock); 567 } 568 } 569 570 // Emit the continuation block for code after the if. 571 EmitBlock(ContBlock, true); 572 } 573 574 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context, 575 llvm::BranchInst *CondBr, 576 const ArrayRef<const Attr *> &Attrs) { 577 // Return if there are no hints. 578 if (Attrs.empty()) 579 return; 580 581 // Add vectorize and unroll hints to the metadata on the conditional branch. 582 SmallVector<llvm::Value *, 2> Metadata(1); 583 for (const auto *Attr : Attrs) { 584 const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr); 585 586 // Skip non loop hint attributes 587 if (!LH) 588 continue; 589 590 LoopHintAttr::OptionType Option = LH->getOption(); 591 LoopHintAttr::LoopHintState State = LH->getState(); 592 int ValueInt = LH->getValue(); 593 594 const char *MetadataName; 595 switch (Option) { 596 case LoopHintAttr::Vectorize: 597 case LoopHintAttr::VectorizeWidth: 598 MetadataName = "llvm.loop.vectorize.width"; 599 break; 600 case LoopHintAttr::Interleave: 601 case LoopHintAttr::InterleaveCount: 602 MetadataName = "llvm.loop.interleave.count"; 603 break; 604 case LoopHintAttr::Unroll: 605 // With the unroll loop hint, a non-zero value indicates full unrolling. 606 MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable" 607 : "llvm.loop.unroll.full"; 608 break; 609 case LoopHintAttr::UnrollCount: 610 MetadataName = "llvm.loop.unroll.count"; 611 break; 612 } 613 llvm::Value *Value; 614 llvm::MDString *Name; 615 switch (Option) { 616 case LoopHintAttr::Vectorize: 617 case LoopHintAttr::Interleave: 618 if (State != LoopHintAttr::Disable) { 619 // FIXME: In the future I will modifiy the behavior of the metadata 620 // so we can enable/disable vectorization and interleaving separately. 621 Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable"); 622 Value = Builder.getTrue(); 623 break; 624 } 625 // Vectorization/interleaving is disabled, set width/count to 1. 626 ValueInt = 1; 627 // Fallthrough. 628 case LoopHintAttr::VectorizeWidth: 629 case LoopHintAttr::InterleaveCount: 630 case LoopHintAttr::UnrollCount: 631 Name = llvm::MDString::get(Context, MetadataName); 632 Value = llvm::ConstantInt::get(Int32Ty, ValueInt); 633 break; 634 case LoopHintAttr::Unroll: 635 Name = llvm::MDString::get(Context, MetadataName); 636 Value = nullptr; 637 break; 638 } 639 640 SmallVector<llvm::Value *, 2> OpValues; 641 OpValues.push_back(Name); 642 if (Value) 643 OpValues.push_back(Value); 644 645 // Set or overwrite metadata indicated by Name. 646 Metadata.push_back(llvm::MDNode::get(Context, OpValues)); 647 } 648 649 if (!Metadata.empty()) { 650 // Add llvm.loop MDNode to CondBr. 651 llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata); 652 LoopID->replaceOperandWith(0, LoopID); // First op points to itself. 653 654 CondBr->setMetadata("llvm.loop", LoopID); 655 } 656 } 657 658 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 659 const ArrayRef<const Attr *> &WhileAttrs) { 660 RegionCounter Cnt = getPGORegionCounter(&S); 661 662 // Emit the header for the loop, which will also become 663 // the continue target. 664 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 665 EmitBlock(LoopHeader.getBlock()); 666 667 LoopStack.push(LoopHeader.getBlock()); 668 669 // Create an exit block for when the condition fails, which will 670 // also become the break target. 671 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 672 673 // Store the blocks to use for break and continue. 674 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 675 676 // C++ [stmt.while]p2: 677 // When the condition of a while statement is a declaration, the 678 // scope of the variable that is declared extends from its point 679 // of declaration (3.3.2) to the end of the while statement. 680 // [...] 681 // The object created in a condition is destroyed and created 682 // with each iteration of the loop. 683 RunCleanupsScope ConditionScope(*this); 684 685 if (S.getConditionVariable()) 686 EmitAutoVarDecl(*S.getConditionVariable()); 687 688 // Evaluate the conditional in the while header. C99 6.8.5.1: The 689 // evaluation of the controlling expression takes place before each 690 // execution of the loop body. 691 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 692 693 // while(1) is common, avoid extra exit blocks. Be sure 694 // to correctly handle break/continue though. 695 bool EmitBoolCondBranch = true; 696 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 697 if (C->isOne()) 698 EmitBoolCondBranch = false; 699 700 // As long as the condition is true, go to the loop body. 701 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 702 if (EmitBoolCondBranch) { 703 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 704 if (ConditionScope.requiresCleanups()) 705 ExitBlock = createBasicBlock("while.exit"); 706 llvm::BranchInst *CondBr = 707 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, 708 PGO.createLoopWeights(S.getCond(), Cnt)); 709 710 if (ExitBlock != LoopExit.getBlock()) { 711 EmitBlock(ExitBlock); 712 EmitBranchThroughCleanup(LoopExit); 713 } 714 715 // Attach metadata to loop body conditional branch. 716 EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs); 717 } 718 719 // Emit the loop body. We have to emit this in a cleanup scope 720 // because it might be a singleton DeclStmt. 721 { 722 RunCleanupsScope BodyScope(*this); 723 EmitBlock(LoopBody); 724 Cnt.beginRegion(Builder); 725 EmitStmt(S.getBody()); 726 } 727 728 BreakContinueStack.pop_back(); 729 730 // Immediately force cleanup. 731 ConditionScope.ForceCleanup(); 732 733 // Branch to the loop header again. 734 EmitBranch(LoopHeader.getBlock()); 735 736 LoopStack.pop(); 737 738 // Emit the exit block. 739 EmitBlock(LoopExit.getBlock(), true); 740 741 // The LoopHeader typically is just a branch if we skipped emitting 742 // a branch, try to erase it. 743 if (!EmitBoolCondBranch) 744 SimplifyForwardingBlocks(LoopHeader.getBlock()); 745 } 746 747 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 748 const ArrayRef<const Attr *> &DoAttrs) { 749 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 750 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 751 752 RegionCounter Cnt = getPGORegionCounter(&S); 753 754 // Store the blocks to use for break and continue. 755 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 756 757 // Emit the body of the loop. 758 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 759 760 LoopStack.push(LoopBody); 761 762 EmitBlockWithFallThrough(LoopBody, Cnt); 763 { 764 RunCleanupsScope BodyScope(*this); 765 EmitStmt(S.getBody()); 766 } 767 768 EmitBlock(LoopCond.getBlock()); 769 770 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 771 // after each execution of the loop body." 772 773 // Evaluate the conditional in the while header. 774 // C99 6.8.5p2/p4: The first substatement is executed if the expression 775 // compares unequal to 0. The condition must be a scalar type. 776 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 777 778 BreakContinueStack.pop_back(); 779 780 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 781 // to correctly handle break/continue though. 782 bool EmitBoolCondBranch = true; 783 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 784 if (C->isZero()) 785 EmitBoolCondBranch = false; 786 787 // As long as the condition is true, iterate the loop. 788 if (EmitBoolCondBranch) { 789 llvm::BranchInst *CondBr = 790 Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(), 791 PGO.createLoopWeights(S.getCond(), Cnt)); 792 793 // Attach metadata to loop body conditional branch. 794 EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs); 795 } 796 797 LoopStack.pop(); 798 799 // Emit the exit block. 800 EmitBlock(LoopExit.getBlock()); 801 802 // The DoCond block typically is just a branch if we skipped 803 // emitting a branch, try to erase it. 804 if (!EmitBoolCondBranch) 805 SimplifyForwardingBlocks(LoopCond.getBlock()); 806 } 807 808 void CodeGenFunction::EmitForStmt(const ForStmt &S, 809 const ArrayRef<const Attr *> &ForAttrs) { 810 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 811 812 RunCleanupsScope ForScope(*this); 813 814 CGDebugInfo *DI = getDebugInfo(); 815 if (DI) 816 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 817 818 // Evaluate the first part before the loop. 819 if (S.getInit()) 820 EmitStmt(S.getInit()); 821 822 RegionCounter Cnt = getPGORegionCounter(&S); 823 824 // Start the loop with a block that tests the condition. 825 // If there's an increment, the continue scope will be overwritten 826 // later. 827 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 828 llvm::BasicBlock *CondBlock = Continue.getBlock(); 829 EmitBlock(CondBlock); 830 831 LoopStack.push(CondBlock); 832 833 // If the for loop doesn't have an increment we can just use the 834 // condition as the continue block. Otherwise we'll need to create 835 // a block for it (in the current scope, i.e. in the scope of the 836 // condition), and that we will become our continue block. 837 if (S.getInc()) 838 Continue = getJumpDestInCurrentScope("for.inc"); 839 840 // Store the blocks to use for break and continue. 841 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 842 843 // Create a cleanup scope for the condition variable cleanups. 844 RunCleanupsScope ConditionScope(*this); 845 846 if (S.getCond()) { 847 // If the for statement has a condition scope, emit the local variable 848 // declaration. 849 if (S.getConditionVariable()) { 850 EmitAutoVarDecl(*S.getConditionVariable()); 851 } 852 853 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 854 // If there are any cleanups between here and the loop-exit scope, 855 // create a block to stage a loop exit along. 856 if (ForScope.requiresCleanups()) 857 ExitBlock = createBasicBlock("for.cond.cleanup"); 858 859 // As long as the condition is true, iterate the loop. 860 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 861 862 // C99 6.8.5p2/p4: The first substatement is executed if the expression 863 // compares unequal to 0. The condition must be a scalar type. 864 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 865 llvm::BranchInst *CondBr = 866 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, 867 PGO.createLoopWeights(S.getCond(), Cnt)); 868 869 // Attach metadata to loop body conditional branch. 870 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 871 872 if (ExitBlock != LoopExit.getBlock()) { 873 EmitBlock(ExitBlock); 874 EmitBranchThroughCleanup(LoopExit); 875 } 876 877 EmitBlock(ForBody); 878 } else { 879 // Treat it as a non-zero constant. Don't even create a new block for the 880 // body, just fall into it. 881 } 882 Cnt.beginRegion(Builder); 883 884 { 885 // Create a separate cleanup scope for the body, in case it is not 886 // a compound statement. 887 RunCleanupsScope BodyScope(*this); 888 EmitStmt(S.getBody()); 889 } 890 891 // If there is an increment, emit it next. 892 if (S.getInc()) { 893 EmitBlock(Continue.getBlock()); 894 EmitStmt(S.getInc()); 895 } 896 897 BreakContinueStack.pop_back(); 898 899 ConditionScope.ForceCleanup(); 900 EmitBranch(CondBlock); 901 902 ForScope.ForceCleanup(); 903 904 if (DI) 905 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 906 907 LoopStack.pop(); 908 909 // Emit the fall-through block. 910 EmitBlock(LoopExit.getBlock(), true); 911 } 912 913 void 914 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 915 const ArrayRef<const Attr *> &ForAttrs) { 916 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 917 918 RunCleanupsScope ForScope(*this); 919 920 CGDebugInfo *DI = getDebugInfo(); 921 if (DI) 922 DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin()); 923 924 // Evaluate the first pieces before the loop. 925 EmitStmt(S.getRangeStmt()); 926 EmitStmt(S.getBeginEndStmt()); 927 928 RegionCounter Cnt = getPGORegionCounter(&S); 929 930 // Start the loop with a block that tests the condition. 931 // If there's an increment, the continue scope will be overwritten 932 // later. 933 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 934 EmitBlock(CondBlock); 935 936 LoopStack.push(CondBlock); 937 938 // If there are any cleanups between here and the loop-exit scope, 939 // create a block to stage a loop exit along. 940 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 941 if (ForScope.requiresCleanups()) 942 ExitBlock = createBasicBlock("for.cond.cleanup"); 943 944 // The loop body, consisting of the specified body and the loop variable. 945 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 946 947 // The body is executed if the expression, contextually converted 948 // to bool, is true. 949 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 950 llvm::BranchInst *CondBr = Builder.CreateCondBr( 951 BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt)); 952 953 // Attach metadata to loop body conditional branch. 954 EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs); 955 956 if (ExitBlock != LoopExit.getBlock()) { 957 EmitBlock(ExitBlock); 958 EmitBranchThroughCleanup(LoopExit); 959 } 960 961 EmitBlock(ForBody); 962 Cnt.beginRegion(Builder); 963 964 // Create a block for the increment. In case of a 'continue', we jump there. 965 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 966 967 // Store the blocks to use for break and continue. 968 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 969 970 { 971 // Create a separate cleanup scope for the loop variable and body. 972 RunCleanupsScope BodyScope(*this); 973 EmitStmt(S.getLoopVarStmt()); 974 EmitStmt(S.getBody()); 975 } 976 977 // If there is an increment, emit it next. 978 EmitBlock(Continue.getBlock()); 979 EmitStmt(S.getInc()); 980 981 BreakContinueStack.pop_back(); 982 983 EmitBranch(CondBlock); 984 985 ForScope.ForceCleanup(); 986 987 if (DI) 988 DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd()); 989 990 LoopStack.pop(); 991 992 // Emit the fall-through block. 993 EmitBlock(LoopExit.getBlock(), true); 994 } 995 996 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 997 if (RV.isScalar()) { 998 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 999 } else if (RV.isAggregate()) { 1000 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty); 1001 } else { 1002 EmitStoreOfComplex(RV.getComplexVal(), 1003 MakeNaturalAlignAddrLValue(ReturnValue, Ty), 1004 /*init*/ true); 1005 } 1006 EmitBranchThroughCleanup(ReturnBlock); 1007 } 1008 1009 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1010 /// if the function returns void, or may be missing one if the function returns 1011 /// non-void. Fun stuff :). 1012 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1013 // Emit the result value, even if unused, to evalute the side effects. 1014 const Expr *RV = S.getRetValue(); 1015 1016 // Treat block literals in a return expression as if they appeared 1017 // in their own scope. This permits a small, easily-implemented 1018 // exception to our over-conservative rules about not jumping to 1019 // statements following block literals with non-trivial cleanups. 1020 RunCleanupsScope cleanupScope(*this); 1021 if (const ExprWithCleanups *cleanups = 1022 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1023 enterFullExpression(cleanups); 1024 RV = cleanups->getSubExpr(); 1025 } 1026 1027 // FIXME: Clean this up by using an LValue for ReturnTemp, 1028 // EmitStoreThroughLValue, and EmitAnyExpr. 1029 if (getLangOpts().ElideConstructors && 1030 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1031 // Apply the named return value optimization for this return statement, 1032 // which means doing nothing: the appropriate result has already been 1033 // constructed into the NRVO variable. 1034 1035 // If there is an NRVO flag for this variable, set it to 1 into indicate 1036 // that the cleanup code should not destroy the variable. 1037 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1038 Builder.CreateStore(Builder.getTrue(), NRVOFlag); 1039 } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) { 1040 // Make sure not to return anything, but evaluate the expression 1041 // for side effects. 1042 if (RV) 1043 EmitAnyExpr(RV); 1044 } else if (!RV) { 1045 // Do nothing (return value is left uninitialized) 1046 } else if (FnRetTy->isReferenceType()) { 1047 // If this function returns a reference, take the address of the expression 1048 // rather than the value. 1049 RValue Result = EmitReferenceBindingToExpr(RV); 1050 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1051 } else { 1052 switch (getEvaluationKind(RV->getType())) { 1053 case TEK_Scalar: 1054 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1055 break; 1056 case TEK_Complex: 1057 EmitComplexExprIntoLValue(RV, 1058 MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()), 1059 /*isInit*/ true); 1060 break; 1061 case TEK_Aggregate: { 1062 CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType()); 1063 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, 1064 Qualifiers(), 1065 AggValueSlot::IsDestructed, 1066 AggValueSlot::DoesNotNeedGCBarriers, 1067 AggValueSlot::IsNotAliased)); 1068 break; 1069 } 1070 } 1071 } 1072 1073 ++NumReturnExprs; 1074 if (!RV || RV->isEvaluatable(getContext())) 1075 ++NumSimpleReturnExprs; 1076 1077 cleanupScope.ForceCleanup(); 1078 EmitBranchThroughCleanup(ReturnBlock); 1079 } 1080 1081 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1082 // As long as debug info is modeled with instructions, we have to ensure we 1083 // have a place to insert here and write the stop point here. 1084 if (HaveInsertPoint()) 1085 EmitStopPoint(&S); 1086 1087 for (const auto *I : S.decls()) 1088 EmitDecl(*I); 1089 } 1090 1091 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1092 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1093 1094 // If this code is reachable then emit a stop point (if generating 1095 // debug info). We have to do this ourselves because we are on the 1096 // "simple" statement path. 1097 if (HaveInsertPoint()) 1098 EmitStopPoint(&S); 1099 1100 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1101 } 1102 1103 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1104 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1105 1106 // If this code is reachable then emit a stop point (if generating 1107 // debug info). We have to do this ourselves because we are on the 1108 // "simple" statement path. 1109 if (HaveInsertPoint()) 1110 EmitStopPoint(&S); 1111 1112 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1113 } 1114 1115 /// EmitCaseStmtRange - If case statement range is not too big then 1116 /// add multiple cases to switch instruction, one for each value within 1117 /// the range. If range is too big then emit "if" condition check. 1118 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1119 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1120 1121 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1122 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1123 1124 RegionCounter CaseCnt = getPGORegionCounter(&S); 1125 1126 // Emit the code for this case. We do this first to make sure it is 1127 // properly chained from our predecessor before generating the 1128 // switch machinery to enter this block. 1129 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1130 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1131 EmitStmt(S.getSubStmt()); 1132 1133 // If range is empty, do nothing. 1134 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1135 return; 1136 1137 llvm::APInt Range = RHS - LHS; 1138 // FIXME: parameters such as this should not be hardcoded. 1139 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1140 // Range is small enough to add multiple switch instruction cases. 1141 uint64_t Total = CaseCnt.getCount(); 1142 unsigned NCases = Range.getZExtValue() + 1; 1143 // We only have one region counter for the entire set of cases here, so we 1144 // need to divide the weights evenly between the generated cases, ensuring 1145 // that the total weight is preserved. E.g., a weight of 5 over three cases 1146 // will be distributed as weights of 2, 2, and 1. 1147 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1148 for (unsigned I = 0; I != NCases; ++I) { 1149 if (SwitchWeights) 1150 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1151 if (Rem) 1152 Rem--; 1153 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1154 LHS++; 1155 } 1156 return; 1157 } 1158 1159 // The range is too big. Emit "if" condition into a new block, 1160 // making sure to save and restore the current insertion point. 1161 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1162 1163 // Push this test onto the chain of range checks (which terminates 1164 // in the default basic block). The switch's default will be changed 1165 // to the top of this chain after switch emission is complete. 1166 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1167 CaseRangeBlock = createBasicBlock("sw.caserange"); 1168 1169 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1170 Builder.SetInsertPoint(CaseRangeBlock); 1171 1172 // Emit range check. 1173 llvm::Value *Diff = 1174 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1175 llvm::Value *Cond = 1176 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1177 1178 llvm::MDNode *Weights = nullptr; 1179 if (SwitchWeights) { 1180 uint64_t ThisCount = CaseCnt.getCount(); 1181 uint64_t DefaultCount = (*SwitchWeights)[0]; 1182 Weights = PGO.createBranchWeights(ThisCount, DefaultCount); 1183 1184 // Since we're chaining the switch default through each large case range, we 1185 // need to update the weight for the default, ie, the first case, to include 1186 // this case. 1187 (*SwitchWeights)[0] += ThisCount; 1188 } 1189 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1190 1191 // Restore the appropriate insertion point. 1192 if (RestoreBB) 1193 Builder.SetInsertPoint(RestoreBB); 1194 else 1195 Builder.ClearInsertionPoint(); 1196 } 1197 1198 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1199 // If there is no enclosing switch instance that we're aware of, then this 1200 // case statement and its block can be elided. This situation only happens 1201 // when we've constant-folded the switch, are emitting the constant case, 1202 // and part of the constant case includes another case statement. For 1203 // instance: switch (4) { case 4: do { case 5: } while (1); } 1204 if (!SwitchInsn) { 1205 EmitStmt(S.getSubStmt()); 1206 return; 1207 } 1208 1209 // Handle case ranges. 1210 if (S.getRHS()) { 1211 EmitCaseStmtRange(S); 1212 return; 1213 } 1214 1215 RegionCounter CaseCnt = getPGORegionCounter(&S); 1216 llvm::ConstantInt *CaseVal = 1217 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1218 1219 // If the body of the case is just a 'break', try to not emit an empty block. 1220 // If we're profiling or we're not optimizing, leave the block in for better 1221 // debug and coverage analysis. 1222 if (!CGM.getCodeGenOpts().ProfileInstrGenerate && 1223 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1224 isa<BreakStmt>(S.getSubStmt())) { 1225 JumpDest Block = BreakContinueStack.back().BreakBlock; 1226 1227 // Only do this optimization if there are no cleanups that need emitting. 1228 if (isObviouslyBranchWithoutCleanups(Block)) { 1229 if (SwitchWeights) 1230 SwitchWeights->push_back(CaseCnt.getCount()); 1231 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1232 1233 // If there was a fallthrough into this case, make sure to redirect it to 1234 // the end of the switch as well. 1235 if (Builder.GetInsertBlock()) { 1236 Builder.CreateBr(Block.getBlock()); 1237 Builder.ClearInsertionPoint(); 1238 } 1239 return; 1240 } 1241 } 1242 1243 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1244 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1245 if (SwitchWeights) 1246 SwitchWeights->push_back(CaseCnt.getCount()); 1247 SwitchInsn->addCase(CaseVal, CaseDest); 1248 1249 // Recursively emitting the statement is acceptable, but is not wonderful for 1250 // code where we have many case statements nested together, i.e.: 1251 // case 1: 1252 // case 2: 1253 // case 3: etc. 1254 // Handling this recursively will create a new block for each case statement 1255 // that falls through to the next case which is IR intensive. It also causes 1256 // deep recursion which can run into stack depth limitations. Handle 1257 // sequential non-range case statements specially. 1258 const CaseStmt *CurCase = &S; 1259 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1260 1261 // Otherwise, iteratively add consecutive cases to this switch stmt. 1262 while (NextCase && NextCase->getRHS() == nullptr) { 1263 CurCase = NextCase; 1264 llvm::ConstantInt *CaseVal = 1265 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1266 1267 CaseCnt = getPGORegionCounter(NextCase); 1268 if (SwitchWeights) 1269 SwitchWeights->push_back(CaseCnt.getCount()); 1270 if (CGM.getCodeGenOpts().ProfileInstrGenerate) { 1271 CaseDest = createBasicBlock("sw.bb"); 1272 EmitBlockWithFallThrough(CaseDest, CaseCnt); 1273 } 1274 1275 SwitchInsn->addCase(CaseVal, CaseDest); 1276 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1277 } 1278 1279 // Normal default recursion for non-cases. 1280 EmitStmt(CurCase->getSubStmt()); 1281 } 1282 1283 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1284 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1285 assert(DefaultBlock->empty() && 1286 "EmitDefaultStmt: Default block already defined?"); 1287 1288 RegionCounter Cnt = getPGORegionCounter(&S); 1289 EmitBlockWithFallThrough(DefaultBlock, Cnt); 1290 1291 EmitStmt(S.getSubStmt()); 1292 } 1293 1294 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1295 /// constant value that is being switched on, see if we can dead code eliminate 1296 /// the body of the switch to a simple series of statements to emit. Basically, 1297 /// on a switch (5) we want to find these statements: 1298 /// case 5: 1299 /// printf(...); <-- 1300 /// ++i; <-- 1301 /// break; 1302 /// 1303 /// and add them to the ResultStmts vector. If it is unsafe to do this 1304 /// transformation (for example, one of the elided statements contains a label 1305 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1306 /// should include statements after it (e.g. the printf() line is a substmt of 1307 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1308 /// statement, then return CSFC_Success. 1309 /// 1310 /// If Case is non-null, then we are looking for the specified case, checking 1311 /// that nothing we jump over contains labels. If Case is null, then we found 1312 /// the case and are looking for the break. 1313 /// 1314 /// If the recursive walk actually finds our Case, then we set FoundCase to 1315 /// true. 1316 /// 1317 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1318 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1319 const SwitchCase *Case, 1320 bool &FoundCase, 1321 SmallVectorImpl<const Stmt*> &ResultStmts) { 1322 // If this is a null statement, just succeed. 1323 if (!S) 1324 return Case ? CSFC_Success : CSFC_FallThrough; 1325 1326 // If this is the switchcase (case 4: or default) that we're looking for, then 1327 // we're in business. Just add the substatement. 1328 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1329 if (S == Case) { 1330 FoundCase = true; 1331 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1332 ResultStmts); 1333 } 1334 1335 // Otherwise, this is some other case or default statement, just ignore it. 1336 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1337 ResultStmts); 1338 } 1339 1340 // If we are in the live part of the code and we found our break statement, 1341 // return a success! 1342 if (!Case && isa<BreakStmt>(S)) 1343 return CSFC_Success; 1344 1345 // If this is a switch statement, then it might contain the SwitchCase, the 1346 // break, or neither. 1347 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1348 // Handle this as two cases: we might be looking for the SwitchCase (if so 1349 // the skipped statements must be skippable) or we might already have it. 1350 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1351 if (Case) { 1352 // Keep track of whether we see a skipped declaration. The code could be 1353 // using the declaration even if it is skipped, so we can't optimize out 1354 // the decl if the kept statements might refer to it. 1355 bool HadSkippedDecl = false; 1356 1357 // If we're looking for the case, just see if we can skip each of the 1358 // substatements. 1359 for (; Case && I != E; ++I) { 1360 HadSkippedDecl |= isa<DeclStmt>(*I); 1361 1362 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1363 case CSFC_Failure: return CSFC_Failure; 1364 case CSFC_Success: 1365 // A successful result means that either 1) that the statement doesn't 1366 // have the case and is skippable, or 2) does contain the case value 1367 // and also contains the break to exit the switch. In the later case, 1368 // we just verify the rest of the statements are elidable. 1369 if (FoundCase) { 1370 // If we found the case and skipped declarations, we can't do the 1371 // optimization. 1372 if (HadSkippedDecl) 1373 return CSFC_Failure; 1374 1375 for (++I; I != E; ++I) 1376 if (CodeGenFunction::ContainsLabel(*I, true)) 1377 return CSFC_Failure; 1378 return CSFC_Success; 1379 } 1380 break; 1381 case CSFC_FallThrough: 1382 // If we have a fallthrough condition, then we must have found the 1383 // case started to include statements. Consider the rest of the 1384 // statements in the compound statement as candidates for inclusion. 1385 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1386 // We recursively found Case, so we're not looking for it anymore. 1387 Case = nullptr; 1388 1389 // If we found the case and skipped declarations, we can't do the 1390 // optimization. 1391 if (HadSkippedDecl) 1392 return CSFC_Failure; 1393 break; 1394 } 1395 } 1396 } 1397 1398 // If we have statements in our range, then we know that the statements are 1399 // live and need to be added to the set of statements we're tracking. 1400 for (; I != E; ++I) { 1401 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1402 case CSFC_Failure: return CSFC_Failure; 1403 case CSFC_FallThrough: 1404 // A fallthrough result means that the statement was simple and just 1405 // included in ResultStmt, keep adding them afterwards. 1406 break; 1407 case CSFC_Success: 1408 // A successful result means that we found the break statement and 1409 // stopped statement inclusion. We just ensure that any leftover stmts 1410 // are skippable and return success ourselves. 1411 for (++I; I != E; ++I) 1412 if (CodeGenFunction::ContainsLabel(*I, true)) 1413 return CSFC_Failure; 1414 return CSFC_Success; 1415 } 1416 } 1417 1418 return Case ? CSFC_Success : CSFC_FallThrough; 1419 } 1420 1421 // Okay, this is some other statement that we don't handle explicitly, like a 1422 // for statement or increment etc. If we are skipping over this statement, 1423 // just verify it doesn't have labels, which would make it invalid to elide. 1424 if (Case) { 1425 if (CodeGenFunction::ContainsLabel(S, true)) 1426 return CSFC_Failure; 1427 return CSFC_Success; 1428 } 1429 1430 // Otherwise, we want to include this statement. Everything is cool with that 1431 // so long as it doesn't contain a break out of the switch we're in. 1432 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1433 1434 // Otherwise, everything is great. Include the statement and tell the caller 1435 // that we fall through and include the next statement as well. 1436 ResultStmts.push_back(S); 1437 return CSFC_FallThrough; 1438 } 1439 1440 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1441 /// then invoke CollectStatementsForCase to find the list of statements to emit 1442 /// for a switch on constant. See the comment above CollectStatementsForCase 1443 /// for more details. 1444 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1445 const llvm::APSInt &ConstantCondValue, 1446 SmallVectorImpl<const Stmt*> &ResultStmts, 1447 ASTContext &C, 1448 const SwitchCase *&ResultCase) { 1449 // First step, find the switch case that is being branched to. We can do this 1450 // efficiently by scanning the SwitchCase list. 1451 const SwitchCase *Case = S.getSwitchCaseList(); 1452 const DefaultStmt *DefaultCase = nullptr; 1453 1454 for (; Case; Case = Case->getNextSwitchCase()) { 1455 // It's either a default or case. Just remember the default statement in 1456 // case we're not jumping to any numbered cases. 1457 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1458 DefaultCase = DS; 1459 continue; 1460 } 1461 1462 // Check to see if this case is the one we're looking for. 1463 const CaseStmt *CS = cast<CaseStmt>(Case); 1464 // Don't handle case ranges yet. 1465 if (CS->getRHS()) return false; 1466 1467 // If we found our case, remember it as 'case'. 1468 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1469 break; 1470 } 1471 1472 // If we didn't find a matching case, we use a default if it exists, or we 1473 // elide the whole switch body! 1474 if (!Case) { 1475 // It is safe to elide the body of the switch if it doesn't contain labels 1476 // etc. If it is safe, return successfully with an empty ResultStmts list. 1477 if (!DefaultCase) 1478 return !CodeGenFunction::ContainsLabel(&S); 1479 Case = DefaultCase; 1480 } 1481 1482 // Ok, we know which case is being jumped to, try to collect all the 1483 // statements that follow it. This can fail for a variety of reasons. Also, 1484 // check to see that the recursive walk actually found our case statement. 1485 // Insane cases like this can fail to find it in the recursive walk since we 1486 // don't handle every stmt kind: 1487 // switch (4) { 1488 // while (1) { 1489 // case 4: ... 1490 bool FoundCase = false; 1491 ResultCase = Case; 1492 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1493 ResultStmts) != CSFC_Failure && 1494 FoundCase; 1495 } 1496 1497 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1498 // Handle nested switch statements. 1499 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1500 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1501 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1502 1503 // See if we can constant fold the condition of the switch and therefore only 1504 // emit the live case statement (if any) of the switch. 1505 llvm::APSInt ConstantCondValue; 1506 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1507 SmallVector<const Stmt*, 4> CaseStmts; 1508 const SwitchCase *Case = nullptr; 1509 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1510 getContext(), Case)) { 1511 if (Case) { 1512 RegionCounter CaseCnt = getPGORegionCounter(Case); 1513 CaseCnt.beginRegion(Builder); 1514 } 1515 RunCleanupsScope ExecutedScope(*this); 1516 1517 // Emit the condition variable if needed inside the entire cleanup scope 1518 // used by this special case for constant folded switches. 1519 if (S.getConditionVariable()) 1520 EmitAutoVarDecl(*S.getConditionVariable()); 1521 1522 // At this point, we are no longer "within" a switch instance, so 1523 // we can temporarily enforce this to ensure that any embedded case 1524 // statements are not emitted. 1525 SwitchInsn = nullptr; 1526 1527 // Okay, we can dead code eliminate everything except this case. Emit the 1528 // specified series of statements and we're good. 1529 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1530 EmitStmt(CaseStmts[i]); 1531 RegionCounter ExitCnt = getPGORegionCounter(&S); 1532 ExitCnt.beginRegion(Builder); 1533 1534 // Now we want to restore the saved switch instance so that nested 1535 // switches continue to function properly 1536 SwitchInsn = SavedSwitchInsn; 1537 1538 return; 1539 } 1540 } 1541 1542 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1543 1544 RunCleanupsScope ConditionScope(*this); 1545 if (S.getConditionVariable()) 1546 EmitAutoVarDecl(*S.getConditionVariable()); 1547 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1548 1549 // Create basic block to hold stuff that comes after switch 1550 // statement. We also need to create a default block now so that 1551 // explicit case ranges tests can have a place to jump to on 1552 // failure. 1553 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1554 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1555 if (PGO.haveRegionCounts()) { 1556 // Walk the SwitchCase list to find how many there are. 1557 uint64_t DefaultCount = 0; 1558 unsigned NumCases = 0; 1559 for (const SwitchCase *Case = S.getSwitchCaseList(); 1560 Case; 1561 Case = Case->getNextSwitchCase()) { 1562 if (isa<DefaultStmt>(Case)) 1563 DefaultCount = getPGORegionCounter(Case).getCount(); 1564 NumCases += 1; 1565 } 1566 SwitchWeights = new SmallVector<uint64_t, 16>(); 1567 SwitchWeights->reserve(NumCases); 1568 // The default needs to be first. We store the edge count, so we already 1569 // know the right weight. 1570 SwitchWeights->push_back(DefaultCount); 1571 } 1572 CaseRangeBlock = DefaultBlock; 1573 1574 // Clear the insertion point to indicate we are in unreachable code. 1575 Builder.ClearInsertionPoint(); 1576 1577 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1578 // then reuse last ContinueBlock. 1579 JumpDest OuterContinue; 1580 if (!BreakContinueStack.empty()) 1581 OuterContinue = BreakContinueStack.back().ContinueBlock; 1582 1583 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1584 1585 // Emit switch body. 1586 EmitStmt(S.getBody()); 1587 1588 BreakContinueStack.pop_back(); 1589 1590 // Update the default block in case explicit case range tests have 1591 // been chained on top. 1592 SwitchInsn->setDefaultDest(CaseRangeBlock); 1593 1594 // If a default was never emitted: 1595 if (!DefaultBlock->getParent()) { 1596 // If we have cleanups, emit the default block so that there's a 1597 // place to jump through the cleanups from. 1598 if (ConditionScope.requiresCleanups()) { 1599 EmitBlock(DefaultBlock); 1600 1601 // Otherwise, just forward the default block to the switch end. 1602 } else { 1603 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1604 delete DefaultBlock; 1605 } 1606 } 1607 1608 ConditionScope.ForceCleanup(); 1609 1610 // Emit continuation. 1611 EmitBlock(SwitchExit.getBlock(), true); 1612 RegionCounter ExitCnt = getPGORegionCounter(&S); 1613 ExitCnt.beginRegion(Builder); 1614 1615 if (SwitchWeights) { 1616 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1617 "switch weights do not match switch cases"); 1618 // If there's only one jump destination there's no sense weighting it. 1619 if (SwitchWeights->size() > 1) 1620 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1621 PGO.createBranchWeights(*SwitchWeights)); 1622 delete SwitchWeights; 1623 } 1624 SwitchInsn = SavedSwitchInsn; 1625 SwitchWeights = SavedSwitchWeights; 1626 CaseRangeBlock = SavedCRBlock; 1627 } 1628 1629 static std::string 1630 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1631 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1632 std::string Result; 1633 1634 while (*Constraint) { 1635 switch (*Constraint) { 1636 default: 1637 Result += Target.convertConstraint(Constraint); 1638 break; 1639 // Ignore these 1640 case '*': 1641 case '?': 1642 case '!': 1643 case '=': // Will see this and the following in mult-alt constraints. 1644 case '+': 1645 break; 1646 case '#': // Ignore the rest of the constraint alternative. 1647 while (Constraint[1] && Constraint[1] != ',') 1648 Constraint++; 1649 break; 1650 case ',': 1651 Result += "|"; 1652 break; 1653 case 'g': 1654 Result += "imr"; 1655 break; 1656 case '[': { 1657 assert(OutCons && 1658 "Must pass output names to constraints with a symbolic name"); 1659 unsigned Index; 1660 bool result = Target.resolveSymbolicName(Constraint, 1661 &(*OutCons)[0], 1662 OutCons->size(), Index); 1663 assert(result && "Could not resolve symbolic name"); (void)result; 1664 Result += llvm::utostr(Index); 1665 break; 1666 } 1667 } 1668 1669 Constraint++; 1670 } 1671 1672 return Result; 1673 } 1674 1675 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1676 /// as using a particular register add that as a constraint that will be used 1677 /// in this asm stmt. 1678 static std::string 1679 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1680 const TargetInfo &Target, CodeGenModule &CGM, 1681 const AsmStmt &Stmt) { 1682 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1683 if (!AsmDeclRef) 1684 return Constraint; 1685 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1686 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1687 if (!Variable) 1688 return Constraint; 1689 if (Variable->getStorageClass() != SC_Register) 1690 return Constraint; 1691 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1692 if (!Attr) 1693 return Constraint; 1694 StringRef Register = Attr->getLabel(); 1695 assert(Target.isValidGCCRegisterName(Register)); 1696 // We're using validateOutputConstraint here because we only care if 1697 // this is a register constraint. 1698 TargetInfo::ConstraintInfo Info(Constraint, ""); 1699 if (Target.validateOutputConstraint(Info) && 1700 !Info.allowsRegister()) { 1701 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1702 return Constraint; 1703 } 1704 // Canonicalize the register here before returning it. 1705 Register = Target.getNormalizedGCCRegisterName(Register); 1706 return "{" + Register.str() + "}"; 1707 } 1708 1709 llvm::Value* 1710 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1711 LValue InputValue, QualType InputType, 1712 std::string &ConstraintStr, 1713 SourceLocation Loc) { 1714 llvm::Value *Arg; 1715 if (Info.allowsRegister() || !Info.allowsMemory()) { 1716 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1717 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1718 } else { 1719 llvm::Type *Ty = ConvertType(InputType); 1720 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1721 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1722 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1723 Ty = llvm::PointerType::getUnqual(Ty); 1724 1725 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1726 Ty)); 1727 } else { 1728 Arg = InputValue.getAddress(); 1729 ConstraintStr += '*'; 1730 } 1731 } 1732 } else { 1733 Arg = InputValue.getAddress(); 1734 ConstraintStr += '*'; 1735 } 1736 1737 return Arg; 1738 } 1739 1740 llvm::Value* CodeGenFunction::EmitAsmInput( 1741 const TargetInfo::ConstraintInfo &Info, 1742 const Expr *InputExpr, 1743 std::string &ConstraintStr) { 1744 if (Info.allowsRegister() || !Info.allowsMemory()) 1745 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1746 return EmitScalarExpr(InputExpr); 1747 1748 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1749 LValue Dest = EmitLValue(InputExpr); 1750 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1751 InputExpr->getExprLoc()); 1752 } 1753 1754 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1755 /// asm call instruction. The !srcloc MDNode contains a list of constant 1756 /// integers which are the source locations of the start of each line in the 1757 /// asm. 1758 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1759 CodeGenFunction &CGF) { 1760 SmallVector<llvm::Value *, 8> Locs; 1761 // Add the location of the first line to the MDNode. 1762 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1763 Str->getLocStart().getRawEncoding())); 1764 StringRef StrVal = Str->getString(); 1765 if (!StrVal.empty()) { 1766 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1767 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1768 1769 // Add the location of the start of each subsequent line of the asm to the 1770 // MDNode. 1771 for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) { 1772 if (StrVal[i] != '\n') continue; 1773 SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts, 1774 CGF.getTarget()); 1775 Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1776 LineLoc.getRawEncoding())); 1777 } 1778 } 1779 1780 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1781 } 1782 1783 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1784 // Assemble the final asm string. 1785 std::string AsmString = S.generateAsmString(getContext()); 1786 1787 // Get all the output and input constraints together. 1788 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1789 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1790 1791 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1792 StringRef Name; 1793 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1794 Name = GAS->getOutputName(i); 1795 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1796 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1797 assert(IsValid && "Failed to parse output constraint"); 1798 OutputConstraintInfos.push_back(Info); 1799 } 1800 1801 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1802 StringRef Name; 1803 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1804 Name = GAS->getInputName(i); 1805 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1806 bool IsValid = 1807 getTarget().validateInputConstraint(OutputConstraintInfos.data(), 1808 S.getNumOutputs(), Info); 1809 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1810 InputConstraintInfos.push_back(Info); 1811 } 1812 1813 std::string Constraints; 1814 1815 std::vector<LValue> ResultRegDests; 1816 std::vector<QualType> ResultRegQualTys; 1817 std::vector<llvm::Type *> ResultRegTypes; 1818 std::vector<llvm::Type *> ResultTruncRegTypes; 1819 std::vector<llvm::Type *> ArgTypes; 1820 std::vector<llvm::Value*> Args; 1821 1822 // Keep track of inout constraints. 1823 std::string InOutConstraints; 1824 std::vector<llvm::Value*> InOutArgs; 1825 std::vector<llvm::Type*> InOutArgTypes; 1826 1827 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1828 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1829 1830 // Simplify the output constraint. 1831 std::string OutputConstraint(S.getOutputConstraint(i)); 1832 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1833 getTarget()); 1834 1835 const Expr *OutExpr = S.getOutputExpr(i); 1836 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1837 1838 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1839 getTarget(), CGM, S); 1840 1841 LValue Dest = EmitLValue(OutExpr); 1842 if (!Constraints.empty()) 1843 Constraints += ','; 1844 1845 // If this is a register output, then make the inline asm return it 1846 // by-value. If this is a memory result, return the value by-reference. 1847 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1848 Constraints += "=" + OutputConstraint; 1849 ResultRegQualTys.push_back(OutExpr->getType()); 1850 ResultRegDests.push_back(Dest); 1851 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1852 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1853 1854 // If this output is tied to an input, and if the input is larger, then 1855 // we need to set the actual result type of the inline asm node to be the 1856 // same as the input type. 1857 if (Info.hasMatchingInput()) { 1858 unsigned InputNo; 1859 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1860 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1861 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1862 break; 1863 } 1864 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1865 1866 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1867 QualType OutputType = OutExpr->getType(); 1868 1869 uint64_t InputSize = getContext().getTypeSize(InputTy); 1870 if (getContext().getTypeSize(OutputType) < InputSize) { 1871 // Form the asm to return the value as a larger integer or fp type. 1872 ResultRegTypes.back() = ConvertType(InputTy); 1873 } 1874 } 1875 if (llvm::Type* AdjTy = 1876 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1877 ResultRegTypes.back())) 1878 ResultRegTypes.back() = AdjTy; 1879 else { 1880 CGM.getDiags().Report(S.getAsmLoc(), 1881 diag::err_asm_invalid_type_in_input) 1882 << OutExpr->getType() << OutputConstraint; 1883 } 1884 } else { 1885 ArgTypes.push_back(Dest.getAddress()->getType()); 1886 Args.push_back(Dest.getAddress()); 1887 Constraints += "=*"; 1888 Constraints += OutputConstraint; 1889 } 1890 1891 if (Info.isReadWrite()) { 1892 InOutConstraints += ','; 1893 1894 const Expr *InputExpr = S.getOutputExpr(i); 1895 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1896 InOutConstraints, 1897 InputExpr->getExprLoc()); 1898 1899 if (llvm::Type* AdjTy = 1900 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1901 Arg->getType())) 1902 Arg = Builder.CreateBitCast(Arg, AdjTy); 1903 1904 if (Info.allowsRegister()) 1905 InOutConstraints += llvm::utostr(i); 1906 else 1907 InOutConstraints += OutputConstraint; 1908 1909 InOutArgTypes.push_back(Arg->getType()); 1910 InOutArgs.push_back(Arg); 1911 } 1912 } 1913 1914 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs(); 1915 1916 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1917 const Expr *InputExpr = S.getInputExpr(i); 1918 1919 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1920 1921 if (!Constraints.empty()) 1922 Constraints += ','; 1923 1924 // Simplify the input constraint. 1925 std::string InputConstraint(S.getInputConstraint(i)); 1926 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1927 &OutputConstraintInfos); 1928 1929 InputConstraint = 1930 AddVariableConstraints(InputConstraint, 1931 *InputExpr->IgnoreParenNoopCasts(getContext()), 1932 getTarget(), CGM, S); 1933 1934 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1935 1936 // If this input argument is tied to a larger output result, extend the 1937 // input to be the same size as the output. The LLVM backend wants to see 1938 // the input and output of a matching constraint be the same size. Note 1939 // that GCC does not define what the top bits are here. We use zext because 1940 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1941 if (Info.hasTiedOperand()) { 1942 unsigned Output = Info.getTiedOperand(); 1943 QualType OutputType = S.getOutputExpr(Output)->getType(); 1944 QualType InputTy = InputExpr->getType(); 1945 1946 if (getContext().getTypeSize(OutputType) > 1947 getContext().getTypeSize(InputTy)) { 1948 // Use ptrtoint as appropriate so that we can do our extension. 1949 if (isa<llvm::PointerType>(Arg->getType())) 1950 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1951 llvm::Type *OutputTy = ConvertType(OutputType); 1952 if (isa<llvm::IntegerType>(OutputTy)) 1953 Arg = Builder.CreateZExt(Arg, OutputTy); 1954 else if (isa<llvm::PointerType>(OutputTy)) 1955 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1956 else { 1957 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1958 Arg = Builder.CreateFPExt(Arg, OutputTy); 1959 } 1960 } 1961 } 1962 if (llvm::Type* AdjTy = 1963 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1964 Arg->getType())) 1965 Arg = Builder.CreateBitCast(Arg, AdjTy); 1966 else 1967 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 1968 << InputExpr->getType() << InputConstraint; 1969 1970 ArgTypes.push_back(Arg->getType()); 1971 Args.push_back(Arg); 1972 Constraints += InputConstraint; 1973 } 1974 1975 // Append the "input" part of inout constraints last. 1976 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 1977 ArgTypes.push_back(InOutArgTypes[i]); 1978 Args.push_back(InOutArgs[i]); 1979 } 1980 Constraints += InOutConstraints; 1981 1982 // Clobbers 1983 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 1984 StringRef Clobber = S.getClobber(i); 1985 1986 if (Clobber != "memory" && Clobber != "cc") 1987 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 1988 1989 if (i != 0 || NumConstraints != 0) 1990 Constraints += ','; 1991 1992 Constraints += "~{"; 1993 Constraints += Clobber; 1994 Constraints += '}'; 1995 } 1996 1997 // Add machine specific clobbers 1998 std::string MachineClobbers = getTarget().getClobbers(); 1999 if (!MachineClobbers.empty()) { 2000 if (!Constraints.empty()) 2001 Constraints += ','; 2002 Constraints += MachineClobbers; 2003 } 2004 2005 llvm::Type *ResultType; 2006 if (ResultRegTypes.empty()) 2007 ResultType = VoidTy; 2008 else if (ResultRegTypes.size() == 1) 2009 ResultType = ResultRegTypes[0]; 2010 else 2011 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2012 2013 llvm::FunctionType *FTy = 2014 llvm::FunctionType::get(ResultType, ArgTypes, false); 2015 2016 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2017 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2018 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2019 llvm::InlineAsm *IA = 2020 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2021 /* IsAlignStack */ false, AsmDialect); 2022 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2023 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2024 llvm::Attribute::NoUnwind); 2025 2026 // Slap the source location of the inline asm into a !srcloc metadata on the 2027 // call. 2028 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2029 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2030 *this)); 2031 } else { 2032 // At least put the line number on MS inline asm blobs. 2033 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2034 Result->setMetadata("srcloc", llvm::MDNode::get(getLLVMContext(), Loc)); 2035 } 2036 2037 // Extract all of the register value results from the asm. 2038 std::vector<llvm::Value*> RegResults; 2039 if (ResultRegTypes.size() == 1) { 2040 RegResults.push_back(Result); 2041 } else { 2042 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2043 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2044 RegResults.push_back(Tmp); 2045 } 2046 } 2047 2048 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2049 llvm::Value *Tmp = RegResults[i]; 2050 2051 // If the result type of the LLVM IR asm doesn't match the result type of 2052 // the expression, do the conversion. 2053 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2054 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2055 2056 // Truncate the integer result to the right size, note that TruncTy can be 2057 // a pointer. 2058 if (TruncTy->isFloatingPointTy()) 2059 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2060 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2061 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2062 Tmp = Builder.CreateTrunc(Tmp, 2063 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2064 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2065 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2066 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2067 Tmp = Builder.CreatePtrToInt(Tmp, 2068 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2069 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2070 } else if (TruncTy->isIntegerTy()) { 2071 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2072 } else if (TruncTy->isVectorTy()) { 2073 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2074 } 2075 } 2076 2077 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2078 } 2079 } 2080 2081 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) { 2082 const RecordDecl *RD = S.getCapturedRecordDecl(); 2083 QualType RecordTy = CGF.getContext().getRecordType(RD); 2084 2085 // Initialize the captured struct. 2086 LValue SlotLV = CGF.MakeNaturalAlignAddrLValue( 2087 CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2088 2089 RecordDecl::field_iterator CurField = RD->field_begin(); 2090 for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(), 2091 E = S.capture_init_end(); 2092 I != E; ++I, ++CurField) { 2093 LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField); 2094 CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>()); 2095 } 2096 2097 return SlotLV; 2098 } 2099 2100 static void InitVLACaptures(CodeGenFunction &CGF, const CapturedStmt &S) { 2101 for (auto &C : S.captures()) { 2102 if (C.capturesVariable()) { 2103 QualType QTy; 2104 auto VD = C.getCapturedVar(); 2105 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 2106 QTy = PVD->getOriginalType(); 2107 else 2108 QTy = VD->getType(); 2109 if (QTy->isVariablyModifiedType()) { 2110 CGF.EmitVariablyModifiedType(QTy); 2111 } 2112 } 2113 } 2114 } 2115 2116 /// Generate an outlined function for the body of a CapturedStmt, store any 2117 /// captured variables into the captured struct, and call the outlined function. 2118 llvm::Function * 2119 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2120 LValue CapStruct = InitCapturedStruct(*this, S); 2121 2122 // Emit the CapturedDecl 2123 CodeGenFunction CGF(CGM, true); 2124 CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K); 2125 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2126 delete CGF.CapturedStmtInfo; 2127 2128 // Emit call to the helper function. 2129 EmitCallOrInvoke(F, CapStruct.getAddress()); 2130 2131 return F; 2132 } 2133 2134 llvm::Value * 2135 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2136 LValue CapStruct = InitCapturedStruct(*this, S); 2137 return CapStruct.getAddress(); 2138 } 2139 2140 /// Creates the outlined function for a CapturedStmt. 2141 llvm::Function * 2142 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2143 assert(CapturedStmtInfo && 2144 "CapturedStmtInfo should be set when generating the captured function"); 2145 const CapturedDecl *CD = S.getCapturedDecl(); 2146 const RecordDecl *RD = S.getCapturedRecordDecl(); 2147 SourceLocation Loc = S.getLocStart(); 2148 assert(CD->hasBody() && "missing CapturedDecl body"); 2149 2150 // Build the argument list. 2151 ASTContext &Ctx = CGM.getContext(); 2152 FunctionArgList Args; 2153 Args.append(CD->param_begin(), CD->param_end()); 2154 2155 // Create the function declaration. 2156 FunctionType::ExtInfo ExtInfo; 2157 const CGFunctionInfo &FuncInfo = 2158 CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo, 2159 /*IsVariadic=*/false); 2160 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2161 2162 llvm::Function *F = 2163 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2164 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2165 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2166 2167 // Generate the function. 2168 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2169 CD->getLocation(), 2170 CD->getBody()->getLocStart()); 2171 // Set the context parameter in CapturedStmtInfo. 2172 llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()]; 2173 assert(DeclPtr && "missing context parameter for CapturedStmt"); 2174 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2175 2176 // Initialize variable-length arrays. 2177 InitVLACaptures(*this, S); 2178 2179 // If 'this' is captured, load it into CXXThisValue. 2180 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2181 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2182 LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2183 Ctx.getTagDeclType(RD)); 2184 LValue ThisLValue = EmitLValueForField(LV, FD); 2185 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2186 } 2187 2188 PGO.assignRegionCounters(CD, F); 2189 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2190 FinishFunction(CD->getBodyRBrace()); 2191 PGO.emitInstrumentationData(); 2192 PGO.destroyRegionCounters(); 2193 2194 return F; 2195 } 2196