1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenFunction.h" 14 #include "CGDebugInfo.h" 15 #include "CodeGenModule.h" 16 #include "TargetInfo.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "clang/Basic/Builtins.h" 19 #include "clang/Basic/PrettyStackTrace.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Intrinsics.h" 26 #include "llvm/IR/MDBuilder.h" 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // Statement Emission 33 //===----------------------------------------------------------------------===// 34 35 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 36 if (CGDebugInfo *DI = getDebugInfo()) { 37 SourceLocation Loc; 38 Loc = S->getBeginLoc(); 39 DI->EmitLocation(Builder, Loc); 40 41 LastStopPoint = Loc; 42 } 43 } 44 45 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 46 assert(S && "Null statement?"); 47 PGO.setCurrentStmt(S); 48 49 // These statements have their own debug info handling. 50 if (EmitSimpleStmt(S)) 51 return; 52 53 // Check if we are generating unreachable code. 54 if (!HaveInsertPoint()) { 55 // If so, and the statement doesn't contain a label, then we do not need to 56 // generate actual code. This is safe because (1) the current point is 57 // unreachable, so we don't need to execute the code, and (2) we've already 58 // handled the statements which update internal data structures (like the 59 // local variable map) which could be used by subsequent statements. 60 if (!ContainsLabel(S)) { 61 // Verify that any decl statements were handled as simple, they may be in 62 // scope of subsequent reachable statements. 63 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 64 return; 65 } 66 67 // Otherwise, make a new block to hold the code. 68 EnsureInsertPoint(); 69 } 70 71 // Generate a stoppoint if we are emitting debug info. 72 EmitStopPoint(S); 73 74 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 75 // enabled. 76 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 77 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 78 EmitSimpleOMPExecutableDirective(*D); 79 return; 80 } 81 } 82 83 switch (S->getStmtClass()) { 84 case Stmt::NoStmtClass: 85 case Stmt::CXXCatchStmtClass: 86 case Stmt::SEHExceptStmtClass: 87 case Stmt::SEHFinallyStmtClass: 88 case Stmt::MSDependentExistsStmtClass: 89 llvm_unreachable("invalid statement class to emit generically"); 90 case Stmt::NullStmtClass: 91 case Stmt::CompoundStmtClass: 92 case Stmt::DeclStmtClass: 93 case Stmt::LabelStmtClass: 94 case Stmt::AttributedStmtClass: 95 case Stmt::GotoStmtClass: 96 case Stmt::BreakStmtClass: 97 case Stmt::ContinueStmtClass: 98 case Stmt::DefaultStmtClass: 99 case Stmt::CaseStmtClass: 100 case Stmt::SEHLeaveStmtClass: 101 llvm_unreachable("should have emitted these statements as simple"); 102 103 #define STMT(Type, Base) 104 #define ABSTRACT_STMT(Op) 105 #define EXPR(Type, Base) \ 106 case Stmt::Type##Class: 107 #include "clang/AST/StmtNodes.inc" 108 { 109 // Remember the block we came in on. 110 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 111 assert(incoming && "expression emission must have an insertion point"); 112 113 EmitIgnoredExpr(cast<Expr>(S)); 114 115 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 116 assert(outgoing && "expression emission cleared block!"); 117 118 // The expression emitters assume (reasonably!) that the insertion 119 // point is always set. To maintain that, the call-emission code 120 // for noreturn functions has to enter a new block with no 121 // predecessors. We want to kill that block and mark the current 122 // insertion point unreachable in the common case of a call like 123 // "exit();". Since expression emission doesn't otherwise create 124 // blocks with no predecessors, we can just test for that. 125 // However, we must be careful not to do this to our incoming 126 // block, because *statement* emission does sometimes create 127 // reachable blocks which will have no predecessors until later in 128 // the function. This occurs with, e.g., labels that are not 129 // reachable by fallthrough. 130 if (incoming != outgoing && outgoing->use_empty()) { 131 outgoing->eraseFromParent(); 132 Builder.ClearInsertionPoint(); 133 } 134 break; 135 } 136 137 case Stmt::IndirectGotoStmtClass: 138 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 139 140 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 141 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 142 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 143 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 144 145 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 146 147 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 148 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 149 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 150 case Stmt::CoroutineBodyStmtClass: 151 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 152 break; 153 case Stmt::CoreturnStmtClass: 154 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 155 break; 156 case Stmt::CapturedStmtClass: { 157 const CapturedStmt *CS = cast<CapturedStmt>(S); 158 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 159 } 160 break; 161 case Stmt::ObjCAtTryStmtClass: 162 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 163 break; 164 case Stmt::ObjCAtCatchStmtClass: 165 llvm_unreachable( 166 "@catch statements should be handled by EmitObjCAtTryStmt"); 167 case Stmt::ObjCAtFinallyStmtClass: 168 llvm_unreachable( 169 "@finally statements should be handled by EmitObjCAtTryStmt"); 170 case Stmt::ObjCAtThrowStmtClass: 171 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 172 break; 173 case Stmt::ObjCAtSynchronizedStmtClass: 174 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 175 break; 176 case Stmt::ObjCForCollectionStmtClass: 177 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 178 break; 179 case Stmt::ObjCAutoreleasePoolStmtClass: 180 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 181 break; 182 183 case Stmt::CXXTryStmtClass: 184 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 185 break; 186 case Stmt::CXXForRangeStmtClass: 187 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 188 break; 189 case Stmt::SEHTryStmtClass: 190 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 191 break; 192 case Stmt::OMPParallelDirectiveClass: 193 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 194 break; 195 case Stmt::OMPSimdDirectiveClass: 196 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 197 break; 198 case Stmt::OMPForDirectiveClass: 199 EmitOMPForDirective(cast<OMPForDirective>(*S)); 200 break; 201 case Stmt::OMPForSimdDirectiveClass: 202 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 203 break; 204 case Stmt::OMPSectionsDirectiveClass: 205 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 206 break; 207 case Stmt::OMPSectionDirectiveClass: 208 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 209 break; 210 case Stmt::OMPSingleDirectiveClass: 211 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 212 break; 213 case Stmt::OMPMasterDirectiveClass: 214 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 215 break; 216 case Stmt::OMPCriticalDirectiveClass: 217 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 218 break; 219 case Stmt::OMPParallelForDirectiveClass: 220 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 221 break; 222 case Stmt::OMPParallelForSimdDirectiveClass: 223 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 224 break; 225 case Stmt::OMPParallelSectionsDirectiveClass: 226 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 227 break; 228 case Stmt::OMPTaskDirectiveClass: 229 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 230 break; 231 case Stmt::OMPTaskyieldDirectiveClass: 232 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 233 break; 234 case Stmt::OMPBarrierDirectiveClass: 235 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 236 break; 237 case Stmt::OMPTaskwaitDirectiveClass: 238 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 239 break; 240 case Stmt::OMPTaskgroupDirectiveClass: 241 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 242 break; 243 case Stmt::OMPFlushDirectiveClass: 244 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 245 break; 246 case Stmt::OMPOrderedDirectiveClass: 247 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 248 break; 249 case Stmt::OMPAtomicDirectiveClass: 250 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 251 break; 252 case Stmt::OMPTargetDirectiveClass: 253 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 254 break; 255 case Stmt::OMPTeamsDirectiveClass: 256 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 257 break; 258 case Stmt::OMPCancellationPointDirectiveClass: 259 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 260 break; 261 case Stmt::OMPCancelDirectiveClass: 262 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 263 break; 264 case Stmt::OMPTargetDataDirectiveClass: 265 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 266 break; 267 case Stmt::OMPTargetEnterDataDirectiveClass: 268 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 269 break; 270 case Stmt::OMPTargetExitDataDirectiveClass: 271 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 272 break; 273 case Stmt::OMPTargetParallelDirectiveClass: 274 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 275 break; 276 case Stmt::OMPTargetParallelForDirectiveClass: 277 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 278 break; 279 case Stmt::OMPTaskLoopDirectiveClass: 280 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 281 break; 282 case Stmt::OMPTaskLoopSimdDirectiveClass: 283 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 284 break; 285 case Stmt::OMPDistributeDirectiveClass: 286 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 287 break; 288 case Stmt::OMPTargetUpdateDirectiveClass: 289 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 290 break; 291 case Stmt::OMPDistributeParallelForDirectiveClass: 292 EmitOMPDistributeParallelForDirective( 293 cast<OMPDistributeParallelForDirective>(*S)); 294 break; 295 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 296 EmitOMPDistributeParallelForSimdDirective( 297 cast<OMPDistributeParallelForSimdDirective>(*S)); 298 break; 299 case Stmt::OMPDistributeSimdDirectiveClass: 300 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 301 break; 302 case Stmt::OMPTargetParallelForSimdDirectiveClass: 303 EmitOMPTargetParallelForSimdDirective( 304 cast<OMPTargetParallelForSimdDirective>(*S)); 305 break; 306 case Stmt::OMPTargetSimdDirectiveClass: 307 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 308 break; 309 case Stmt::OMPTeamsDistributeDirectiveClass: 310 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 311 break; 312 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 313 EmitOMPTeamsDistributeSimdDirective( 314 cast<OMPTeamsDistributeSimdDirective>(*S)); 315 break; 316 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 317 EmitOMPTeamsDistributeParallelForSimdDirective( 318 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 319 break; 320 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 321 EmitOMPTeamsDistributeParallelForDirective( 322 cast<OMPTeamsDistributeParallelForDirective>(*S)); 323 break; 324 case Stmt::OMPTargetTeamsDirectiveClass: 325 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 326 break; 327 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 328 EmitOMPTargetTeamsDistributeDirective( 329 cast<OMPTargetTeamsDistributeDirective>(*S)); 330 break; 331 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 332 EmitOMPTargetTeamsDistributeParallelForDirective( 333 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 334 break; 335 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 336 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 337 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 338 break; 339 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 340 EmitOMPTargetTeamsDistributeSimdDirective( 341 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 342 break; 343 } 344 } 345 346 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 347 switch (S->getStmtClass()) { 348 default: return false; 349 case Stmt::NullStmtClass: break; 350 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 351 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 352 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 353 case Stmt::AttributedStmtClass: 354 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 355 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 356 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 357 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 358 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 359 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 360 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 361 } 362 363 return true; 364 } 365 366 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 367 /// this captures the expression result of the last sub-statement and returns it 368 /// (for use by the statement expression extension). 369 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 370 AggValueSlot AggSlot) { 371 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 372 "LLVM IR generation of compound statement ('{}')"); 373 374 // Keep track of the current cleanup stack depth, including debug scopes. 375 LexicalScope Scope(*this, S.getSourceRange()); 376 377 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 378 } 379 380 Address 381 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 382 bool GetLast, 383 AggValueSlot AggSlot) { 384 385 for (CompoundStmt::const_body_iterator I = S.body_begin(), 386 E = S.body_end()-GetLast; I != E; ++I) 387 EmitStmt(*I); 388 389 Address RetAlloca = Address::invalid(); 390 if (GetLast) { 391 // We have to special case labels here. They are statements, but when put 392 // at the end of a statement expression, they yield the value of their 393 // subexpression. Handle this by walking through all labels we encounter, 394 // emitting them before we evaluate the subexpr. 395 const Stmt *LastStmt = S.body_back(); 396 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 397 EmitLabel(LS->getDecl()); 398 LastStmt = LS->getSubStmt(); 399 } 400 401 EnsureInsertPoint(); 402 403 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 404 if (hasAggregateEvaluationKind(ExprTy)) { 405 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 406 } else { 407 // We can't return an RValue here because there might be cleanups at 408 // the end of the StmtExpr. Because of that, we have to emit the result 409 // here into a temporary alloca. 410 RetAlloca = CreateMemTemp(ExprTy); 411 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 412 /*IsInit*/false); 413 } 414 415 } 416 417 return RetAlloca; 418 } 419 420 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 421 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 422 423 // If there is a cleanup stack, then we it isn't worth trying to 424 // simplify this block (we would need to remove it from the scope map 425 // and cleanup entry). 426 if (!EHStack.empty()) 427 return; 428 429 // Can only simplify direct branches. 430 if (!BI || !BI->isUnconditional()) 431 return; 432 433 // Can only simplify empty blocks. 434 if (BI->getIterator() != BB->begin()) 435 return; 436 437 BB->replaceAllUsesWith(BI->getSuccessor(0)); 438 BI->eraseFromParent(); 439 BB->eraseFromParent(); 440 } 441 442 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 443 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 444 445 // Fall out of the current block (if necessary). 446 EmitBranch(BB); 447 448 if (IsFinished && BB->use_empty()) { 449 delete BB; 450 return; 451 } 452 453 // Place the block after the current block, if possible, or else at 454 // the end of the function. 455 if (CurBB && CurBB->getParent()) 456 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 457 else 458 CurFn->getBasicBlockList().push_back(BB); 459 Builder.SetInsertPoint(BB); 460 } 461 462 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 463 // Emit a branch from the current block to the target one if this 464 // was a real block. If this was just a fall-through block after a 465 // terminator, don't emit it. 466 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 467 468 if (!CurBB || CurBB->getTerminator()) { 469 // If there is no insert point or the previous block is already 470 // terminated, don't touch it. 471 } else { 472 // Otherwise, create a fall-through branch. 473 Builder.CreateBr(Target); 474 } 475 476 Builder.ClearInsertionPoint(); 477 } 478 479 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 480 bool inserted = false; 481 for (llvm::User *u : block->users()) { 482 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 483 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 484 block); 485 inserted = true; 486 break; 487 } 488 } 489 490 if (!inserted) 491 CurFn->getBasicBlockList().push_back(block); 492 493 Builder.SetInsertPoint(block); 494 } 495 496 CodeGenFunction::JumpDest 497 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 498 JumpDest &Dest = LabelMap[D]; 499 if (Dest.isValid()) return Dest; 500 501 // Create, but don't insert, the new block. 502 Dest = JumpDest(createBasicBlock(D->getName()), 503 EHScopeStack::stable_iterator::invalid(), 504 NextCleanupDestIndex++); 505 return Dest; 506 } 507 508 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 509 // Add this label to the current lexical scope if we're within any 510 // normal cleanups. Jumps "in" to this label --- when permitted by 511 // the language --- may need to be routed around such cleanups. 512 if (EHStack.hasNormalCleanups() && CurLexicalScope) 513 CurLexicalScope->addLabel(D); 514 515 JumpDest &Dest = LabelMap[D]; 516 517 // If we didn't need a forward reference to this label, just go 518 // ahead and create a destination at the current scope. 519 if (!Dest.isValid()) { 520 Dest = getJumpDestInCurrentScope(D->getName()); 521 522 // Otherwise, we need to give this label a target depth and remove 523 // it from the branch-fixups list. 524 } else { 525 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 526 Dest.setScopeDepth(EHStack.stable_begin()); 527 ResolveBranchFixups(Dest.getBlock()); 528 } 529 530 EmitBlock(Dest.getBlock()); 531 532 // Emit debug info for labels. 533 if (CGDebugInfo *DI = getDebugInfo()) { 534 if (CGM.getCodeGenOpts().getDebugInfo() >= 535 codegenoptions::LimitedDebugInfo) { 536 DI->setLocation(D->getLocation()); 537 DI->EmitLabel(D, Builder); 538 } 539 } 540 541 incrementProfileCounter(D->getStmt()); 542 } 543 544 /// Change the cleanup scope of the labels in this lexical scope to 545 /// match the scope of the enclosing context. 546 void CodeGenFunction::LexicalScope::rescopeLabels() { 547 assert(!Labels.empty()); 548 EHScopeStack::stable_iterator innermostScope 549 = CGF.EHStack.getInnermostNormalCleanup(); 550 551 // Change the scope depth of all the labels. 552 for (SmallVectorImpl<const LabelDecl*>::const_iterator 553 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 554 assert(CGF.LabelMap.count(*i)); 555 JumpDest &dest = CGF.LabelMap.find(*i)->second; 556 assert(dest.getScopeDepth().isValid()); 557 assert(innermostScope.encloses(dest.getScopeDepth())); 558 dest.setScopeDepth(innermostScope); 559 } 560 561 // Reparent the labels if the new scope also has cleanups. 562 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 563 ParentScope->Labels.append(Labels.begin(), Labels.end()); 564 } 565 } 566 567 568 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 569 EmitLabel(S.getDecl()); 570 EmitStmt(S.getSubStmt()); 571 } 572 573 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 574 EmitStmt(S.getSubStmt(), S.getAttrs()); 575 } 576 577 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 578 // If this code is reachable then emit a stop point (if generating 579 // debug info). We have to do this ourselves because we are on the 580 // "simple" statement path. 581 if (HaveInsertPoint()) 582 EmitStopPoint(&S); 583 584 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 585 } 586 587 588 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 589 if (const LabelDecl *Target = S.getConstantTarget()) { 590 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 591 return; 592 } 593 594 // Ensure that we have an i8* for our PHI node. 595 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 596 Int8PtrTy, "addr"); 597 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 598 599 // Get the basic block for the indirect goto. 600 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 601 602 // The first instruction in the block has to be the PHI for the switch dest, 603 // add an entry for this branch. 604 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 605 606 EmitBranch(IndGotoBB); 607 } 608 609 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 610 // C99 6.8.4.1: The first substatement is executed if the expression compares 611 // unequal to 0. The condition must be a scalar type. 612 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 613 614 if (S.getInit()) 615 EmitStmt(S.getInit()); 616 617 if (S.getConditionVariable()) 618 EmitDecl(*S.getConditionVariable()); 619 620 // If the condition constant folds and can be elided, try to avoid emitting 621 // the condition and the dead arm of the if/else. 622 bool CondConstant; 623 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 624 S.isConstexpr())) { 625 // Figure out which block (then or else) is executed. 626 const Stmt *Executed = S.getThen(); 627 const Stmt *Skipped = S.getElse(); 628 if (!CondConstant) // Condition false? 629 std::swap(Executed, Skipped); 630 631 // If the skipped block has no labels in it, just emit the executed block. 632 // This avoids emitting dead code and simplifies the CFG substantially. 633 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 634 if (CondConstant) 635 incrementProfileCounter(&S); 636 if (Executed) { 637 RunCleanupsScope ExecutedScope(*this); 638 EmitStmt(Executed); 639 } 640 return; 641 } 642 } 643 644 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 645 // the conditional branch. 646 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 647 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 648 llvm::BasicBlock *ElseBlock = ContBlock; 649 if (S.getElse()) 650 ElseBlock = createBasicBlock("if.else"); 651 652 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 653 getProfileCount(S.getThen())); 654 655 // Emit the 'then' code. 656 EmitBlock(ThenBlock); 657 incrementProfileCounter(&S); 658 { 659 RunCleanupsScope ThenScope(*this); 660 EmitStmt(S.getThen()); 661 } 662 EmitBranch(ContBlock); 663 664 // Emit the 'else' code if present. 665 if (const Stmt *Else = S.getElse()) { 666 { 667 // There is no need to emit line number for an unconditional branch. 668 auto NL = ApplyDebugLocation::CreateEmpty(*this); 669 EmitBlock(ElseBlock); 670 } 671 { 672 RunCleanupsScope ElseScope(*this); 673 EmitStmt(Else); 674 } 675 { 676 // There is no need to emit line number for an unconditional branch. 677 auto NL = ApplyDebugLocation::CreateEmpty(*this); 678 EmitBranch(ContBlock); 679 } 680 } 681 682 // Emit the continuation block for code after the if. 683 EmitBlock(ContBlock, true); 684 } 685 686 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 687 ArrayRef<const Attr *> WhileAttrs) { 688 // Emit the header for the loop, which will also become 689 // the continue target. 690 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 691 EmitBlock(LoopHeader.getBlock()); 692 693 const SourceRange &R = S.getSourceRange(); 694 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 695 SourceLocToDebugLoc(R.getBegin()), 696 SourceLocToDebugLoc(R.getEnd())); 697 698 // Create an exit block for when the condition fails, which will 699 // also become the break target. 700 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 701 702 // Store the blocks to use for break and continue. 703 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 704 705 // C++ [stmt.while]p2: 706 // When the condition of a while statement is a declaration, the 707 // scope of the variable that is declared extends from its point 708 // of declaration (3.3.2) to the end of the while statement. 709 // [...] 710 // The object created in a condition is destroyed and created 711 // with each iteration of the loop. 712 RunCleanupsScope ConditionScope(*this); 713 714 if (S.getConditionVariable()) 715 EmitDecl(*S.getConditionVariable()); 716 717 // Evaluate the conditional in the while header. C99 6.8.5.1: The 718 // evaluation of the controlling expression takes place before each 719 // execution of the loop body. 720 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 721 722 // while(1) is common, avoid extra exit blocks. Be sure 723 // to correctly handle break/continue though. 724 bool EmitBoolCondBranch = true; 725 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 726 if (C->isOne()) 727 EmitBoolCondBranch = false; 728 729 // As long as the condition is true, go to the loop body. 730 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 731 if (EmitBoolCondBranch) { 732 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 733 if (ConditionScope.requiresCleanups()) 734 ExitBlock = createBasicBlock("while.exit"); 735 Builder.CreateCondBr( 736 BoolCondVal, LoopBody, ExitBlock, 737 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 738 739 if (ExitBlock != LoopExit.getBlock()) { 740 EmitBlock(ExitBlock); 741 EmitBranchThroughCleanup(LoopExit); 742 } 743 } 744 745 // Emit the loop body. We have to emit this in a cleanup scope 746 // because it might be a singleton DeclStmt. 747 { 748 RunCleanupsScope BodyScope(*this); 749 EmitBlock(LoopBody); 750 incrementProfileCounter(&S); 751 EmitStmt(S.getBody()); 752 } 753 754 BreakContinueStack.pop_back(); 755 756 // Immediately force cleanup. 757 ConditionScope.ForceCleanup(); 758 759 EmitStopPoint(&S); 760 // Branch to the loop header again. 761 EmitBranch(LoopHeader.getBlock()); 762 763 LoopStack.pop(); 764 765 // Emit the exit block. 766 EmitBlock(LoopExit.getBlock(), true); 767 768 // The LoopHeader typically is just a branch if we skipped emitting 769 // a branch, try to erase it. 770 if (!EmitBoolCondBranch) 771 SimplifyForwardingBlocks(LoopHeader.getBlock()); 772 } 773 774 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 775 ArrayRef<const Attr *> DoAttrs) { 776 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 777 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 778 779 uint64_t ParentCount = getCurrentProfileCount(); 780 781 // Store the blocks to use for break and continue. 782 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 783 784 // Emit the body of the loop. 785 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 786 787 EmitBlockWithFallThrough(LoopBody, &S); 788 { 789 RunCleanupsScope BodyScope(*this); 790 EmitStmt(S.getBody()); 791 } 792 793 EmitBlock(LoopCond.getBlock()); 794 795 const SourceRange &R = S.getSourceRange(); 796 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 797 SourceLocToDebugLoc(R.getBegin()), 798 SourceLocToDebugLoc(R.getEnd())); 799 800 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 801 // after each execution of the loop body." 802 803 // Evaluate the conditional in the while header. 804 // C99 6.8.5p2/p4: The first substatement is executed if the expression 805 // compares unequal to 0. The condition must be a scalar type. 806 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 807 808 BreakContinueStack.pop_back(); 809 810 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 811 // to correctly handle break/continue though. 812 bool EmitBoolCondBranch = true; 813 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 814 if (C->isZero()) 815 EmitBoolCondBranch = false; 816 817 // As long as the condition is true, iterate the loop. 818 if (EmitBoolCondBranch) { 819 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 820 Builder.CreateCondBr( 821 BoolCondVal, LoopBody, LoopExit.getBlock(), 822 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 823 } 824 825 LoopStack.pop(); 826 827 // Emit the exit block. 828 EmitBlock(LoopExit.getBlock()); 829 830 // The DoCond block typically is just a branch if we skipped 831 // emitting a branch, try to erase it. 832 if (!EmitBoolCondBranch) 833 SimplifyForwardingBlocks(LoopCond.getBlock()); 834 } 835 836 void CodeGenFunction::EmitForStmt(const ForStmt &S, 837 ArrayRef<const Attr *> ForAttrs) { 838 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 839 840 LexicalScope ForScope(*this, S.getSourceRange()); 841 842 // Evaluate the first part before the loop. 843 if (S.getInit()) 844 EmitStmt(S.getInit()); 845 846 // Start the loop with a block that tests the condition. 847 // If there's an increment, the continue scope will be overwritten 848 // later. 849 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 850 llvm::BasicBlock *CondBlock = Continue.getBlock(); 851 EmitBlock(CondBlock); 852 853 const SourceRange &R = S.getSourceRange(); 854 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 855 SourceLocToDebugLoc(R.getBegin()), 856 SourceLocToDebugLoc(R.getEnd())); 857 858 // If the for loop doesn't have an increment we can just use the 859 // condition as the continue block. Otherwise we'll need to create 860 // a block for it (in the current scope, i.e. in the scope of the 861 // condition), and that we will become our continue block. 862 if (S.getInc()) 863 Continue = getJumpDestInCurrentScope("for.inc"); 864 865 // Store the blocks to use for break and continue. 866 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 867 868 // Create a cleanup scope for the condition variable cleanups. 869 LexicalScope ConditionScope(*this, S.getSourceRange()); 870 871 if (S.getCond()) { 872 // If the for statement has a condition scope, emit the local variable 873 // declaration. 874 if (S.getConditionVariable()) { 875 EmitDecl(*S.getConditionVariable()); 876 } 877 878 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 879 // If there are any cleanups between here and the loop-exit scope, 880 // create a block to stage a loop exit along. 881 if (ForScope.requiresCleanups()) 882 ExitBlock = createBasicBlock("for.cond.cleanup"); 883 884 // As long as the condition is true, iterate the loop. 885 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 886 887 // C99 6.8.5p2/p4: The first substatement is executed if the expression 888 // compares unequal to 0. The condition must be a scalar type. 889 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 890 Builder.CreateCondBr( 891 BoolCondVal, ForBody, ExitBlock, 892 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 893 894 if (ExitBlock != LoopExit.getBlock()) { 895 EmitBlock(ExitBlock); 896 EmitBranchThroughCleanup(LoopExit); 897 } 898 899 EmitBlock(ForBody); 900 } else { 901 // Treat it as a non-zero constant. Don't even create a new block for the 902 // body, just fall into it. 903 } 904 incrementProfileCounter(&S); 905 906 { 907 // Create a separate cleanup scope for the body, in case it is not 908 // a compound statement. 909 RunCleanupsScope BodyScope(*this); 910 EmitStmt(S.getBody()); 911 } 912 913 // If there is an increment, emit it next. 914 if (S.getInc()) { 915 EmitBlock(Continue.getBlock()); 916 EmitStmt(S.getInc()); 917 } 918 919 BreakContinueStack.pop_back(); 920 921 ConditionScope.ForceCleanup(); 922 923 EmitStopPoint(&S); 924 EmitBranch(CondBlock); 925 926 ForScope.ForceCleanup(); 927 928 LoopStack.pop(); 929 930 // Emit the fall-through block. 931 EmitBlock(LoopExit.getBlock(), true); 932 } 933 934 void 935 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 936 ArrayRef<const Attr *> ForAttrs) { 937 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 938 939 LexicalScope ForScope(*this, S.getSourceRange()); 940 941 // Evaluate the first pieces before the loop. 942 if (S.getInit()) 943 EmitStmt(S.getInit()); 944 EmitStmt(S.getRangeStmt()); 945 EmitStmt(S.getBeginStmt()); 946 EmitStmt(S.getEndStmt()); 947 948 // Start the loop with a block that tests the condition. 949 // If there's an increment, the continue scope will be overwritten 950 // later. 951 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 952 EmitBlock(CondBlock); 953 954 const SourceRange &R = S.getSourceRange(); 955 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 956 SourceLocToDebugLoc(R.getBegin()), 957 SourceLocToDebugLoc(R.getEnd())); 958 959 // If there are any cleanups between here and the loop-exit scope, 960 // create a block to stage a loop exit along. 961 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 962 if (ForScope.requiresCleanups()) 963 ExitBlock = createBasicBlock("for.cond.cleanup"); 964 965 // The loop body, consisting of the specified body and the loop variable. 966 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 967 968 // The body is executed if the expression, contextually converted 969 // to bool, is true. 970 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 971 Builder.CreateCondBr( 972 BoolCondVal, ForBody, ExitBlock, 973 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 974 975 if (ExitBlock != LoopExit.getBlock()) { 976 EmitBlock(ExitBlock); 977 EmitBranchThroughCleanup(LoopExit); 978 } 979 980 EmitBlock(ForBody); 981 incrementProfileCounter(&S); 982 983 // Create a block for the increment. In case of a 'continue', we jump there. 984 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 985 986 // Store the blocks to use for break and continue. 987 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 988 989 { 990 // Create a separate cleanup scope for the loop variable and body. 991 LexicalScope BodyScope(*this, S.getSourceRange()); 992 EmitStmt(S.getLoopVarStmt()); 993 EmitStmt(S.getBody()); 994 } 995 996 EmitStopPoint(&S); 997 // If there is an increment, emit it next. 998 EmitBlock(Continue.getBlock()); 999 EmitStmt(S.getInc()); 1000 1001 BreakContinueStack.pop_back(); 1002 1003 EmitBranch(CondBlock); 1004 1005 ForScope.ForceCleanup(); 1006 1007 LoopStack.pop(); 1008 1009 // Emit the fall-through block. 1010 EmitBlock(LoopExit.getBlock(), true); 1011 } 1012 1013 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1014 if (RV.isScalar()) { 1015 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1016 } else if (RV.isAggregate()) { 1017 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1018 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1019 EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue()); 1020 } else { 1021 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1022 /*init*/ true); 1023 } 1024 EmitBranchThroughCleanup(ReturnBlock); 1025 } 1026 1027 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1028 /// if the function returns void, or may be missing one if the function returns 1029 /// non-void. Fun stuff :). 1030 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1031 if (requiresReturnValueCheck()) { 1032 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1033 auto *SLocPtr = 1034 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1035 llvm::GlobalVariable::PrivateLinkage, SLoc); 1036 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1037 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1038 assert(ReturnLocation.isValid() && "No valid return location"); 1039 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1040 ReturnLocation); 1041 } 1042 1043 // Returning from an outlined SEH helper is UB, and we already warn on it. 1044 if (IsOutlinedSEHHelper) { 1045 Builder.CreateUnreachable(); 1046 Builder.ClearInsertionPoint(); 1047 } 1048 1049 // Emit the result value, even if unused, to evaluate the side effects. 1050 const Expr *RV = S.getRetValue(); 1051 1052 // Treat block literals in a return expression as if they appeared 1053 // in their own scope. This permits a small, easily-implemented 1054 // exception to our over-conservative rules about not jumping to 1055 // statements following block literals with non-trivial cleanups. 1056 RunCleanupsScope cleanupScope(*this); 1057 if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { 1058 enterFullExpression(fe); 1059 RV = fe->getSubExpr(); 1060 } 1061 1062 // FIXME: Clean this up by using an LValue for ReturnTemp, 1063 // EmitStoreThroughLValue, and EmitAnyExpr. 1064 if (getLangOpts().ElideConstructors && 1065 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1066 // Apply the named return value optimization for this return statement, 1067 // which means doing nothing: the appropriate result has already been 1068 // constructed into the NRVO variable. 1069 1070 // If there is an NRVO flag for this variable, set it to 1 into indicate 1071 // that the cleanup code should not destroy the variable. 1072 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1073 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1074 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1075 // Make sure not to return anything, but evaluate the expression 1076 // for side effects. 1077 if (RV) 1078 EmitAnyExpr(RV); 1079 } else if (!RV) { 1080 // Do nothing (return value is left uninitialized) 1081 } else if (FnRetTy->isReferenceType()) { 1082 // If this function returns a reference, take the address of the expression 1083 // rather than the value. 1084 RValue Result = EmitReferenceBindingToExpr(RV); 1085 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1086 } else { 1087 switch (getEvaluationKind(RV->getType())) { 1088 case TEK_Scalar: 1089 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1090 break; 1091 case TEK_Complex: 1092 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1093 /*isInit*/ true); 1094 break; 1095 case TEK_Aggregate: 1096 EmitAggExpr(RV, AggValueSlot::forAddr( 1097 ReturnValue, Qualifiers(), 1098 AggValueSlot::IsDestructed, 1099 AggValueSlot::DoesNotNeedGCBarriers, 1100 AggValueSlot::IsNotAliased, 1101 overlapForReturnValue())); 1102 break; 1103 } 1104 } 1105 1106 ++NumReturnExprs; 1107 if (!RV || RV->isEvaluatable(getContext())) 1108 ++NumSimpleReturnExprs; 1109 1110 cleanupScope.ForceCleanup(); 1111 EmitBranchThroughCleanup(ReturnBlock); 1112 } 1113 1114 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1115 // As long as debug info is modeled with instructions, we have to ensure we 1116 // have a place to insert here and write the stop point here. 1117 if (HaveInsertPoint()) 1118 EmitStopPoint(&S); 1119 1120 for (const auto *I : S.decls()) 1121 EmitDecl(*I); 1122 } 1123 1124 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1125 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1126 1127 // If this code is reachable then emit a stop point (if generating 1128 // debug info). We have to do this ourselves because we are on the 1129 // "simple" statement path. 1130 if (HaveInsertPoint()) 1131 EmitStopPoint(&S); 1132 1133 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1134 } 1135 1136 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1137 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1138 1139 // If this code is reachable then emit a stop point (if generating 1140 // debug info). We have to do this ourselves because we are on the 1141 // "simple" statement path. 1142 if (HaveInsertPoint()) 1143 EmitStopPoint(&S); 1144 1145 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1146 } 1147 1148 /// EmitCaseStmtRange - If case statement range is not too big then 1149 /// add multiple cases to switch instruction, one for each value within 1150 /// the range. If range is too big then emit "if" condition check. 1151 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1152 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1153 1154 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1155 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1156 1157 // Emit the code for this case. We do this first to make sure it is 1158 // properly chained from our predecessor before generating the 1159 // switch machinery to enter this block. 1160 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1161 EmitBlockWithFallThrough(CaseDest, &S); 1162 EmitStmt(S.getSubStmt()); 1163 1164 // If range is empty, do nothing. 1165 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1166 return; 1167 1168 llvm::APInt Range = RHS - LHS; 1169 // FIXME: parameters such as this should not be hardcoded. 1170 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1171 // Range is small enough to add multiple switch instruction cases. 1172 uint64_t Total = getProfileCount(&S); 1173 unsigned NCases = Range.getZExtValue() + 1; 1174 // We only have one region counter for the entire set of cases here, so we 1175 // need to divide the weights evenly between the generated cases, ensuring 1176 // that the total weight is preserved. E.g., a weight of 5 over three cases 1177 // will be distributed as weights of 2, 2, and 1. 1178 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1179 for (unsigned I = 0; I != NCases; ++I) { 1180 if (SwitchWeights) 1181 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1182 if (Rem) 1183 Rem--; 1184 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1185 ++LHS; 1186 } 1187 return; 1188 } 1189 1190 // The range is too big. Emit "if" condition into a new block, 1191 // making sure to save and restore the current insertion point. 1192 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1193 1194 // Push this test onto the chain of range checks (which terminates 1195 // in the default basic block). The switch's default will be changed 1196 // to the top of this chain after switch emission is complete. 1197 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1198 CaseRangeBlock = createBasicBlock("sw.caserange"); 1199 1200 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1201 Builder.SetInsertPoint(CaseRangeBlock); 1202 1203 // Emit range check. 1204 llvm::Value *Diff = 1205 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1206 llvm::Value *Cond = 1207 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1208 1209 llvm::MDNode *Weights = nullptr; 1210 if (SwitchWeights) { 1211 uint64_t ThisCount = getProfileCount(&S); 1212 uint64_t DefaultCount = (*SwitchWeights)[0]; 1213 Weights = createProfileWeights(ThisCount, DefaultCount); 1214 1215 // Since we're chaining the switch default through each large case range, we 1216 // need to update the weight for the default, ie, the first case, to include 1217 // this case. 1218 (*SwitchWeights)[0] += ThisCount; 1219 } 1220 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1221 1222 // Restore the appropriate insertion point. 1223 if (RestoreBB) 1224 Builder.SetInsertPoint(RestoreBB); 1225 else 1226 Builder.ClearInsertionPoint(); 1227 } 1228 1229 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1230 // If there is no enclosing switch instance that we're aware of, then this 1231 // case statement and its block can be elided. This situation only happens 1232 // when we've constant-folded the switch, are emitting the constant case, 1233 // and part of the constant case includes another case statement. For 1234 // instance: switch (4) { case 4: do { case 5: } while (1); } 1235 if (!SwitchInsn) { 1236 EmitStmt(S.getSubStmt()); 1237 return; 1238 } 1239 1240 // Handle case ranges. 1241 if (S.getRHS()) { 1242 EmitCaseStmtRange(S); 1243 return; 1244 } 1245 1246 llvm::ConstantInt *CaseVal = 1247 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1248 1249 // If the body of the case is just a 'break', try to not emit an empty block. 1250 // If we're profiling or we're not optimizing, leave the block in for better 1251 // debug and coverage analysis. 1252 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1253 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1254 isa<BreakStmt>(S.getSubStmt())) { 1255 JumpDest Block = BreakContinueStack.back().BreakBlock; 1256 1257 // Only do this optimization if there are no cleanups that need emitting. 1258 if (isObviouslyBranchWithoutCleanups(Block)) { 1259 if (SwitchWeights) 1260 SwitchWeights->push_back(getProfileCount(&S)); 1261 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1262 1263 // If there was a fallthrough into this case, make sure to redirect it to 1264 // the end of the switch as well. 1265 if (Builder.GetInsertBlock()) { 1266 Builder.CreateBr(Block.getBlock()); 1267 Builder.ClearInsertionPoint(); 1268 } 1269 return; 1270 } 1271 } 1272 1273 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1274 EmitBlockWithFallThrough(CaseDest, &S); 1275 if (SwitchWeights) 1276 SwitchWeights->push_back(getProfileCount(&S)); 1277 SwitchInsn->addCase(CaseVal, CaseDest); 1278 1279 // Recursively emitting the statement is acceptable, but is not wonderful for 1280 // code where we have many case statements nested together, i.e.: 1281 // case 1: 1282 // case 2: 1283 // case 3: etc. 1284 // Handling this recursively will create a new block for each case statement 1285 // that falls through to the next case which is IR intensive. It also causes 1286 // deep recursion which can run into stack depth limitations. Handle 1287 // sequential non-range case statements specially. 1288 const CaseStmt *CurCase = &S; 1289 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1290 1291 // Otherwise, iteratively add consecutive cases to this switch stmt. 1292 while (NextCase && NextCase->getRHS() == nullptr) { 1293 CurCase = NextCase; 1294 llvm::ConstantInt *CaseVal = 1295 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1296 1297 if (SwitchWeights) 1298 SwitchWeights->push_back(getProfileCount(NextCase)); 1299 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1300 CaseDest = createBasicBlock("sw.bb"); 1301 EmitBlockWithFallThrough(CaseDest, &S); 1302 } 1303 1304 SwitchInsn->addCase(CaseVal, CaseDest); 1305 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1306 } 1307 1308 // Normal default recursion for non-cases. 1309 EmitStmt(CurCase->getSubStmt()); 1310 } 1311 1312 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1313 // If there is no enclosing switch instance that we're aware of, then this 1314 // default statement can be elided. This situation only happens when we've 1315 // constant-folded the switch. 1316 if (!SwitchInsn) { 1317 EmitStmt(S.getSubStmt()); 1318 return; 1319 } 1320 1321 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1322 assert(DefaultBlock->empty() && 1323 "EmitDefaultStmt: Default block already defined?"); 1324 1325 EmitBlockWithFallThrough(DefaultBlock, &S); 1326 1327 EmitStmt(S.getSubStmt()); 1328 } 1329 1330 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1331 /// constant value that is being switched on, see if we can dead code eliminate 1332 /// the body of the switch to a simple series of statements to emit. Basically, 1333 /// on a switch (5) we want to find these statements: 1334 /// case 5: 1335 /// printf(...); <-- 1336 /// ++i; <-- 1337 /// break; 1338 /// 1339 /// and add them to the ResultStmts vector. If it is unsafe to do this 1340 /// transformation (for example, one of the elided statements contains a label 1341 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1342 /// should include statements after it (e.g. the printf() line is a substmt of 1343 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1344 /// statement, then return CSFC_Success. 1345 /// 1346 /// If Case is non-null, then we are looking for the specified case, checking 1347 /// that nothing we jump over contains labels. If Case is null, then we found 1348 /// the case and are looking for the break. 1349 /// 1350 /// If the recursive walk actually finds our Case, then we set FoundCase to 1351 /// true. 1352 /// 1353 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1354 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1355 const SwitchCase *Case, 1356 bool &FoundCase, 1357 SmallVectorImpl<const Stmt*> &ResultStmts) { 1358 // If this is a null statement, just succeed. 1359 if (!S) 1360 return Case ? CSFC_Success : CSFC_FallThrough; 1361 1362 // If this is the switchcase (case 4: or default) that we're looking for, then 1363 // we're in business. Just add the substatement. 1364 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1365 if (S == Case) { 1366 FoundCase = true; 1367 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1368 ResultStmts); 1369 } 1370 1371 // Otherwise, this is some other case or default statement, just ignore it. 1372 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1373 ResultStmts); 1374 } 1375 1376 // If we are in the live part of the code and we found our break statement, 1377 // return a success! 1378 if (!Case && isa<BreakStmt>(S)) 1379 return CSFC_Success; 1380 1381 // If this is a switch statement, then it might contain the SwitchCase, the 1382 // break, or neither. 1383 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1384 // Handle this as two cases: we might be looking for the SwitchCase (if so 1385 // the skipped statements must be skippable) or we might already have it. 1386 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1387 bool StartedInLiveCode = FoundCase; 1388 unsigned StartSize = ResultStmts.size(); 1389 1390 // If we've not found the case yet, scan through looking for it. 1391 if (Case) { 1392 // Keep track of whether we see a skipped declaration. The code could be 1393 // using the declaration even if it is skipped, so we can't optimize out 1394 // the decl if the kept statements might refer to it. 1395 bool HadSkippedDecl = false; 1396 1397 // If we're looking for the case, just see if we can skip each of the 1398 // substatements. 1399 for (; Case && I != E; ++I) { 1400 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1401 1402 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1403 case CSFC_Failure: return CSFC_Failure; 1404 case CSFC_Success: 1405 // A successful result means that either 1) that the statement doesn't 1406 // have the case and is skippable, or 2) does contain the case value 1407 // and also contains the break to exit the switch. In the later case, 1408 // we just verify the rest of the statements are elidable. 1409 if (FoundCase) { 1410 // If we found the case and skipped declarations, we can't do the 1411 // optimization. 1412 if (HadSkippedDecl) 1413 return CSFC_Failure; 1414 1415 for (++I; I != E; ++I) 1416 if (CodeGenFunction::ContainsLabel(*I, true)) 1417 return CSFC_Failure; 1418 return CSFC_Success; 1419 } 1420 break; 1421 case CSFC_FallThrough: 1422 // If we have a fallthrough condition, then we must have found the 1423 // case started to include statements. Consider the rest of the 1424 // statements in the compound statement as candidates for inclusion. 1425 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1426 // We recursively found Case, so we're not looking for it anymore. 1427 Case = nullptr; 1428 1429 // If we found the case and skipped declarations, we can't do the 1430 // optimization. 1431 if (HadSkippedDecl) 1432 return CSFC_Failure; 1433 break; 1434 } 1435 } 1436 1437 if (!FoundCase) 1438 return CSFC_Success; 1439 1440 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1441 } 1442 1443 // If we have statements in our range, then we know that the statements are 1444 // live and need to be added to the set of statements we're tracking. 1445 bool AnyDecls = false; 1446 for (; I != E; ++I) { 1447 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1448 1449 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1450 case CSFC_Failure: return CSFC_Failure; 1451 case CSFC_FallThrough: 1452 // A fallthrough result means that the statement was simple and just 1453 // included in ResultStmt, keep adding them afterwards. 1454 break; 1455 case CSFC_Success: 1456 // A successful result means that we found the break statement and 1457 // stopped statement inclusion. We just ensure that any leftover stmts 1458 // are skippable and return success ourselves. 1459 for (++I; I != E; ++I) 1460 if (CodeGenFunction::ContainsLabel(*I, true)) 1461 return CSFC_Failure; 1462 return CSFC_Success; 1463 } 1464 } 1465 1466 // If we're about to fall out of a scope without hitting a 'break;', we 1467 // can't perform the optimization if there were any decls in that scope 1468 // (we'd lose their end-of-lifetime). 1469 if (AnyDecls) { 1470 // If the entire compound statement was live, there's one more thing we 1471 // can try before giving up: emit the whole thing as a single statement. 1472 // We can do that unless the statement contains a 'break;'. 1473 // FIXME: Such a break must be at the end of a construct within this one. 1474 // We could emit this by just ignoring the BreakStmts entirely. 1475 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1476 ResultStmts.resize(StartSize); 1477 ResultStmts.push_back(S); 1478 } else { 1479 return CSFC_Failure; 1480 } 1481 } 1482 1483 return CSFC_FallThrough; 1484 } 1485 1486 // Okay, this is some other statement that we don't handle explicitly, like a 1487 // for statement or increment etc. If we are skipping over this statement, 1488 // just verify it doesn't have labels, which would make it invalid to elide. 1489 if (Case) { 1490 if (CodeGenFunction::ContainsLabel(S, true)) 1491 return CSFC_Failure; 1492 return CSFC_Success; 1493 } 1494 1495 // Otherwise, we want to include this statement. Everything is cool with that 1496 // so long as it doesn't contain a break out of the switch we're in. 1497 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1498 1499 // Otherwise, everything is great. Include the statement and tell the caller 1500 // that we fall through and include the next statement as well. 1501 ResultStmts.push_back(S); 1502 return CSFC_FallThrough; 1503 } 1504 1505 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1506 /// then invoke CollectStatementsForCase to find the list of statements to emit 1507 /// for a switch on constant. See the comment above CollectStatementsForCase 1508 /// for more details. 1509 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1510 const llvm::APSInt &ConstantCondValue, 1511 SmallVectorImpl<const Stmt*> &ResultStmts, 1512 ASTContext &C, 1513 const SwitchCase *&ResultCase) { 1514 // First step, find the switch case that is being branched to. We can do this 1515 // efficiently by scanning the SwitchCase list. 1516 const SwitchCase *Case = S.getSwitchCaseList(); 1517 const DefaultStmt *DefaultCase = nullptr; 1518 1519 for (; Case; Case = Case->getNextSwitchCase()) { 1520 // It's either a default or case. Just remember the default statement in 1521 // case we're not jumping to any numbered cases. 1522 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1523 DefaultCase = DS; 1524 continue; 1525 } 1526 1527 // Check to see if this case is the one we're looking for. 1528 const CaseStmt *CS = cast<CaseStmt>(Case); 1529 // Don't handle case ranges yet. 1530 if (CS->getRHS()) return false; 1531 1532 // If we found our case, remember it as 'case'. 1533 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1534 break; 1535 } 1536 1537 // If we didn't find a matching case, we use a default if it exists, or we 1538 // elide the whole switch body! 1539 if (!Case) { 1540 // It is safe to elide the body of the switch if it doesn't contain labels 1541 // etc. If it is safe, return successfully with an empty ResultStmts list. 1542 if (!DefaultCase) 1543 return !CodeGenFunction::ContainsLabel(&S); 1544 Case = DefaultCase; 1545 } 1546 1547 // Ok, we know which case is being jumped to, try to collect all the 1548 // statements that follow it. This can fail for a variety of reasons. Also, 1549 // check to see that the recursive walk actually found our case statement. 1550 // Insane cases like this can fail to find it in the recursive walk since we 1551 // don't handle every stmt kind: 1552 // switch (4) { 1553 // while (1) { 1554 // case 4: ... 1555 bool FoundCase = false; 1556 ResultCase = Case; 1557 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1558 ResultStmts) != CSFC_Failure && 1559 FoundCase; 1560 } 1561 1562 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1563 // Handle nested switch statements. 1564 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1565 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1566 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1567 1568 // See if we can constant fold the condition of the switch and therefore only 1569 // emit the live case statement (if any) of the switch. 1570 llvm::APSInt ConstantCondValue; 1571 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1572 SmallVector<const Stmt*, 4> CaseStmts; 1573 const SwitchCase *Case = nullptr; 1574 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1575 getContext(), Case)) { 1576 if (Case) 1577 incrementProfileCounter(Case); 1578 RunCleanupsScope ExecutedScope(*this); 1579 1580 if (S.getInit()) 1581 EmitStmt(S.getInit()); 1582 1583 // Emit the condition variable if needed inside the entire cleanup scope 1584 // used by this special case for constant folded switches. 1585 if (S.getConditionVariable()) 1586 EmitDecl(*S.getConditionVariable()); 1587 1588 // At this point, we are no longer "within" a switch instance, so 1589 // we can temporarily enforce this to ensure that any embedded case 1590 // statements are not emitted. 1591 SwitchInsn = nullptr; 1592 1593 // Okay, we can dead code eliminate everything except this case. Emit the 1594 // specified series of statements and we're good. 1595 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1596 EmitStmt(CaseStmts[i]); 1597 incrementProfileCounter(&S); 1598 1599 // Now we want to restore the saved switch instance so that nested 1600 // switches continue to function properly 1601 SwitchInsn = SavedSwitchInsn; 1602 1603 return; 1604 } 1605 } 1606 1607 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1608 1609 RunCleanupsScope ConditionScope(*this); 1610 1611 if (S.getInit()) 1612 EmitStmt(S.getInit()); 1613 1614 if (S.getConditionVariable()) 1615 EmitDecl(*S.getConditionVariable()); 1616 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1617 1618 // Create basic block to hold stuff that comes after switch 1619 // statement. We also need to create a default block now so that 1620 // explicit case ranges tests can have a place to jump to on 1621 // failure. 1622 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1623 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1624 if (PGO.haveRegionCounts()) { 1625 // Walk the SwitchCase list to find how many there are. 1626 uint64_t DefaultCount = 0; 1627 unsigned NumCases = 0; 1628 for (const SwitchCase *Case = S.getSwitchCaseList(); 1629 Case; 1630 Case = Case->getNextSwitchCase()) { 1631 if (isa<DefaultStmt>(Case)) 1632 DefaultCount = getProfileCount(Case); 1633 NumCases += 1; 1634 } 1635 SwitchWeights = new SmallVector<uint64_t, 16>(); 1636 SwitchWeights->reserve(NumCases); 1637 // The default needs to be first. We store the edge count, so we already 1638 // know the right weight. 1639 SwitchWeights->push_back(DefaultCount); 1640 } 1641 CaseRangeBlock = DefaultBlock; 1642 1643 // Clear the insertion point to indicate we are in unreachable code. 1644 Builder.ClearInsertionPoint(); 1645 1646 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1647 // then reuse last ContinueBlock. 1648 JumpDest OuterContinue; 1649 if (!BreakContinueStack.empty()) 1650 OuterContinue = BreakContinueStack.back().ContinueBlock; 1651 1652 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1653 1654 // Emit switch body. 1655 EmitStmt(S.getBody()); 1656 1657 BreakContinueStack.pop_back(); 1658 1659 // Update the default block in case explicit case range tests have 1660 // been chained on top. 1661 SwitchInsn->setDefaultDest(CaseRangeBlock); 1662 1663 // If a default was never emitted: 1664 if (!DefaultBlock->getParent()) { 1665 // If we have cleanups, emit the default block so that there's a 1666 // place to jump through the cleanups from. 1667 if (ConditionScope.requiresCleanups()) { 1668 EmitBlock(DefaultBlock); 1669 1670 // Otherwise, just forward the default block to the switch end. 1671 } else { 1672 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1673 delete DefaultBlock; 1674 } 1675 } 1676 1677 ConditionScope.ForceCleanup(); 1678 1679 // Emit continuation. 1680 EmitBlock(SwitchExit.getBlock(), true); 1681 incrementProfileCounter(&S); 1682 1683 // If the switch has a condition wrapped by __builtin_unpredictable, 1684 // create metadata that specifies that the switch is unpredictable. 1685 // Don't bother if not optimizing because that metadata would not be used. 1686 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1687 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1688 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1689 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1690 llvm::MDBuilder MDHelper(getLLVMContext()); 1691 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1692 MDHelper.createUnpredictable()); 1693 } 1694 } 1695 1696 if (SwitchWeights) { 1697 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1698 "switch weights do not match switch cases"); 1699 // If there's only one jump destination there's no sense weighting it. 1700 if (SwitchWeights->size() > 1) 1701 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1702 createProfileWeights(*SwitchWeights)); 1703 delete SwitchWeights; 1704 } 1705 SwitchInsn = SavedSwitchInsn; 1706 SwitchWeights = SavedSwitchWeights; 1707 CaseRangeBlock = SavedCRBlock; 1708 } 1709 1710 static std::string 1711 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1712 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1713 std::string Result; 1714 1715 while (*Constraint) { 1716 switch (*Constraint) { 1717 default: 1718 Result += Target.convertConstraint(Constraint); 1719 break; 1720 // Ignore these 1721 case '*': 1722 case '?': 1723 case '!': 1724 case '=': // Will see this and the following in mult-alt constraints. 1725 case '+': 1726 break; 1727 case '#': // Ignore the rest of the constraint alternative. 1728 while (Constraint[1] && Constraint[1] != ',') 1729 Constraint++; 1730 break; 1731 case '&': 1732 case '%': 1733 Result += *Constraint; 1734 while (Constraint[1] && Constraint[1] == *Constraint) 1735 Constraint++; 1736 break; 1737 case ',': 1738 Result += "|"; 1739 break; 1740 case 'g': 1741 Result += "imr"; 1742 break; 1743 case '[': { 1744 assert(OutCons && 1745 "Must pass output names to constraints with a symbolic name"); 1746 unsigned Index; 1747 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1748 assert(result && "Could not resolve symbolic name"); (void)result; 1749 Result += llvm::utostr(Index); 1750 break; 1751 } 1752 } 1753 1754 Constraint++; 1755 } 1756 1757 return Result; 1758 } 1759 1760 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1761 /// as using a particular register add that as a constraint that will be used 1762 /// in this asm stmt. 1763 static std::string 1764 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1765 const TargetInfo &Target, CodeGenModule &CGM, 1766 const AsmStmt &Stmt, const bool EarlyClobber) { 1767 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1768 if (!AsmDeclRef) 1769 return Constraint; 1770 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1771 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1772 if (!Variable) 1773 return Constraint; 1774 if (Variable->getStorageClass() != SC_Register) 1775 return Constraint; 1776 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1777 if (!Attr) 1778 return Constraint; 1779 StringRef Register = Attr->getLabel(); 1780 assert(Target.isValidGCCRegisterName(Register)); 1781 // We're using validateOutputConstraint here because we only care if 1782 // this is a register constraint. 1783 TargetInfo::ConstraintInfo Info(Constraint, ""); 1784 if (Target.validateOutputConstraint(Info) && 1785 !Info.allowsRegister()) { 1786 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1787 return Constraint; 1788 } 1789 // Canonicalize the register here before returning it. 1790 Register = Target.getNormalizedGCCRegisterName(Register); 1791 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1792 } 1793 1794 llvm::Value* 1795 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1796 LValue InputValue, QualType InputType, 1797 std::string &ConstraintStr, 1798 SourceLocation Loc) { 1799 llvm::Value *Arg; 1800 if (Info.allowsRegister() || !Info.allowsMemory()) { 1801 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1802 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1803 } else { 1804 llvm::Type *Ty = ConvertType(InputType); 1805 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1806 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1807 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1808 Ty = llvm::PointerType::getUnqual(Ty); 1809 1810 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1811 Ty)); 1812 } else { 1813 Arg = InputValue.getPointer(); 1814 ConstraintStr += '*'; 1815 } 1816 } 1817 } else { 1818 Arg = InputValue.getPointer(); 1819 ConstraintStr += '*'; 1820 } 1821 1822 return Arg; 1823 } 1824 1825 llvm::Value* CodeGenFunction::EmitAsmInput( 1826 const TargetInfo::ConstraintInfo &Info, 1827 const Expr *InputExpr, 1828 std::string &ConstraintStr) { 1829 // If this can't be a register or memory, i.e., has to be a constant 1830 // (immediate or symbolic), try to emit it as such. 1831 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1832 if (Info.requiresImmediateConstant()) { 1833 llvm::APSInt AsmConst = InputExpr->EvaluateKnownConstInt(getContext()); 1834 return llvm::ConstantInt::get(getLLVMContext(), AsmConst); 1835 } 1836 1837 Expr::EvalResult Result; 1838 if (InputExpr->EvaluateAsInt(Result, getContext())) 1839 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 1840 } 1841 1842 if (Info.allowsRegister() || !Info.allowsMemory()) 1843 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1844 return EmitScalarExpr(InputExpr); 1845 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1846 return EmitScalarExpr(InputExpr); 1847 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1848 LValue Dest = EmitLValue(InputExpr); 1849 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1850 InputExpr->getExprLoc()); 1851 } 1852 1853 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1854 /// asm call instruction. The !srcloc MDNode contains a list of constant 1855 /// integers which are the source locations of the start of each line in the 1856 /// asm. 1857 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1858 CodeGenFunction &CGF) { 1859 SmallVector<llvm::Metadata *, 8> Locs; 1860 // Add the location of the first line to the MDNode. 1861 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1862 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1863 StringRef StrVal = Str->getString(); 1864 if (!StrVal.empty()) { 1865 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1866 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1867 unsigned StartToken = 0; 1868 unsigned ByteOffset = 0; 1869 1870 // Add the location of the start of each subsequent line of the asm to the 1871 // MDNode. 1872 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1873 if (StrVal[i] != '\n') continue; 1874 SourceLocation LineLoc = Str->getLocationOfByte( 1875 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1876 Locs.push_back(llvm::ConstantAsMetadata::get( 1877 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1878 } 1879 } 1880 1881 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1882 } 1883 1884 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1885 // Assemble the final asm string. 1886 std::string AsmString = S.generateAsmString(getContext()); 1887 1888 // Get all the output and input constraints together. 1889 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1890 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1891 1892 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1893 StringRef Name; 1894 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1895 Name = GAS->getOutputName(i); 1896 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1897 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1898 assert(IsValid && "Failed to parse output constraint"); 1899 OutputConstraintInfos.push_back(Info); 1900 } 1901 1902 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1903 StringRef Name; 1904 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1905 Name = GAS->getInputName(i); 1906 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1907 bool IsValid = 1908 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1909 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1910 InputConstraintInfos.push_back(Info); 1911 } 1912 1913 std::string Constraints; 1914 1915 std::vector<LValue> ResultRegDests; 1916 std::vector<QualType> ResultRegQualTys; 1917 std::vector<llvm::Type *> ResultRegTypes; 1918 std::vector<llvm::Type *> ResultTruncRegTypes; 1919 std::vector<llvm::Type *> ArgTypes; 1920 std::vector<llvm::Value*> Args; 1921 1922 // Keep track of inout constraints. 1923 std::string InOutConstraints; 1924 std::vector<llvm::Value*> InOutArgs; 1925 std::vector<llvm::Type*> InOutArgTypes; 1926 1927 // An inline asm can be marked readonly if it meets the following conditions: 1928 // - it doesn't have any sideeffects 1929 // - it doesn't clobber memory 1930 // - it doesn't return a value by-reference 1931 // It can be marked readnone if it doesn't have any input memory constraints 1932 // in addition to meeting the conditions listed above. 1933 bool ReadOnly = true, ReadNone = true; 1934 1935 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1936 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1937 1938 // Simplify the output constraint. 1939 std::string OutputConstraint(S.getOutputConstraint(i)); 1940 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1941 getTarget(), &OutputConstraintInfos); 1942 1943 const Expr *OutExpr = S.getOutputExpr(i); 1944 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1945 1946 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1947 getTarget(), CGM, S, 1948 Info.earlyClobber()); 1949 1950 LValue Dest = EmitLValue(OutExpr); 1951 if (!Constraints.empty()) 1952 Constraints += ','; 1953 1954 // If this is a register output, then make the inline asm return it 1955 // by-value. If this is a memory result, return the value by-reference. 1956 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1957 Constraints += "=" + OutputConstraint; 1958 ResultRegQualTys.push_back(OutExpr->getType()); 1959 ResultRegDests.push_back(Dest); 1960 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1961 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1962 1963 // If this output is tied to an input, and if the input is larger, then 1964 // we need to set the actual result type of the inline asm node to be the 1965 // same as the input type. 1966 if (Info.hasMatchingInput()) { 1967 unsigned InputNo; 1968 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1969 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1970 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1971 break; 1972 } 1973 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1974 1975 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1976 QualType OutputType = OutExpr->getType(); 1977 1978 uint64_t InputSize = getContext().getTypeSize(InputTy); 1979 if (getContext().getTypeSize(OutputType) < InputSize) { 1980 // Form the asm to return the value as a larger integer or fp type. 1981 ResultRegTypes.back() = ConvertType(InputTy); 1982 } 1983 } 1984 if (llvm::Type* AdjTy = 1985 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1986 ResultRegTypes.back())) 1987 ResultRegTypes.back() = AdjTy; 1988 else { 1989 CGM.getDiags().Report(S.getAsmLoc(), 1990 diag::err_asm_invalid_type_in_input) 1991 << OutExpr->getType() << OutputConstraint; 1992 } 1993 1994 // Update largest vector width for any vector types. 1995 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 1996 LargestVectorWidth = std::max(LargestVectorWidth, 1997 VT->getPrimitiveSizeInBits()); 1998 } else { 1999 ArgTypes.push_back(Dest.getAddress().getType()); 2000 Args.push_back(Dest.getPointer()); 2001 Constraints += "=*"; 2002 Constraints += OutputConstraint; 2003 ReadOnly = ReadNone = false; 2004 } 2005 2006 if (Info.isReadWrite()) { 2007 InOutConstraints += ','; 2008 2009 const Expr *InputExpr = S.getOutputExpr(i); 2010 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2011 InOutConstraints, 2012 InputExpr->getExprLoc()); 2013 2014 if (llvm::Type* AdjTy = 2015 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2016 Arg->getType())) 2017 Arg = Builder.CreateBitCast(Arg, AdjTy); 2018 2019 // Update largest vector width for any vector types. 2020 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2021 LargestVectorWidth = std::max(LargestVectorWidth, 2022 VT->getPrimitiveSizeInBits()); 2023 if (Info.allowsRegister()) 2024 InOutConstraints += llvm::utostr(i); 2025 else 2026 InOutConstraints += OutputConstraint; 2027 2028 InOutArgTypes.push_back(Arg->getType()); 2029 InOutArgs.push_back(Arg); 2030 } 2031 } 2032 2033 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2034 // to the return value slot. Only do this when returning in registers. 2035 if (isa<MSAsmStmt>(&S)) { 2036 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2037 if (RetAI.isDirect() || RetAI.isExtend()) { 2038 // Make a fake lvalue for the return value slot. 2039 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2040 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2041 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2042 ResultRegDests, AsmString, S.getNumOutputs()); 2043 SawAsmBlock = true; 2044 } 2045 } 2046 2047 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2048 const Expr *InputExpr = S.getInputExpr(i); 2049 2050 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2051 2052 if (Info.allowsMemory()) 2053 ReadNone = false; 2054 2055 if (!Constraints.empty()) 2056 Constraints += ','; 2057 2058 // Simplify the input constraint. 2059 std::string InputConstraint(S.getInputConstraint(i)); 2060 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2061 &OutputConstraintInfos); 2062 2063 InputConstraint = AddVariableConstraints( 2064 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2065 getTarget(), CGM, S, false /* No EarlyClobber */); 2066 2067 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2068 2069 // If this input argument is tied to a larger output result, extend the 2070 // input to be the same size as the output. The LLVM backend wants to see 2071 // the input and output of a matching constraint be the same size. Note 2072 // that GCC does not define what the top bits are here. We use zext because 2073 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2074 if (Info.hasTiedOperand()) { 2075 unsigned Output = Info.getTiedOperand(); 2076 QualType OutputType = S.getOutputExpr(Output)->getType(); 2077 QualType InputTy = InputExpr->getType(); 2078 2079 if (getContext().getTypeSize(OutputType) > 2080 getContext().getTypeSize(InputTy)) { 2081 // Use ptrtoint as appropriate so that we can do our extension. 2082 if (isa<llvm::PointerType>(Arg->getType())) 2083 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2084 llvm::Type *OutputTy = ConvertType(OutputType); 2085 if (isa<llvm::IntegerType>(OutputTy)) 2086 Arg = Builder.CreateZExt(Arg, OutputTy); 2087 else if (isa<llvm::PointerType>(OutputTy)) 2088 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2089 else { 2090 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2091 Arg = Builder.CreateFPExt(Arg, OutputTy); 2092 } 2093 } 2094 } 2095 if (llvm::Type* AdjTy = 2096 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2097 Arg->getType())) 2098 Arg = Builder.CreateBitCast(Arg, AdjTy); 2099 else 2100 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2101 << InputExpr->getType() << InputConstraint; 2102 2103 // Update largest vector width for any vector types. 2104 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2105 LargestVectorWidth = std::max(LargestVectorWidth, 2106 VT->getPrimitiveSizeInBits()); 2107 2108 ArgTypes.push_back(Arg->getType()); 2109 Args.push_back(Arg); 2110 Constraints += InputConstraint; 2111 } 2112 2113 // Append the "input" part of inout constraints last. 2114 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2115 ArgTypes.push_back(InOutArgTypes[i]); 2116 Args.push_back(InOutArgs[i]); 2117 } 2118 Constraints += InOutConstraints; 2119 2120 // Clobbers 2121 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2122 StringRef Clobber = S.getClobber(i); 2123 2124 if (Clobber == "memory") 2125 ReadOnly = ReadNone = false; 2126 else if (Clobber != "cc") 2127 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2128 2129 if (!Constraints.empty()) 2130 Constraints += ','; 2131 2132 Constraints += "~{"; 2133 Constraints += Clobber; 2134 Constraints += '}'; 2135 } 2136 2137 // Add machine specific clobbers 2138 std::string MachineClobbers = getTarget().getClobbers(); 2139 if (!MachineClobbers.empty()) { 2140 if (!Constraints.empty()) 2141 Constraints += ','; 2142 Constraints += MachineClobbers; 2143 } 2144 2145 llvm::Type *ResultType; 2146 if (ResultRegTypes.empty()) 2147 ResultType = VoidTy; 2148 else if (ResultRegTypes.size() == 1) 2149 ResultType = ResultRegTypes[0]; 2150 else 2151 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2152 2153 llvm::FunctionType *FTy = 2154 llvm::FunctionType::get(ResultType, ArgTypes, false); 2155 2156 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2157 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2158 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2159 llvm::InlineAsm *IA = 2160 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2161 /* IsAlignStack */ false, AsmDialect); 2162 llvm::CallInst *Result = 2163 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2164 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2165 llvm::Attribute::NoUnwind); 2166 2167 // Attach readnone and readonly attributes. 2168 if (!HasSideEffect) { 2169 if (ReadNone) 2170 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2171 llvm::Attribute::ReadNone); 2172 else if (ReadOnly) 2173 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2174 llvm::Attribute::ReadOnly); 2175 } 2176 2177 // Slap the source location of the inline asm into a !srcloc metadata on the 2178 // call. 2179 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2180 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2181 *this)); 2182 } else { 2183 // At least put the line number on MS inline asm blobs. 2184 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2185 Result->setMetadata("srcloc", 2186 llvm::MDNode::get(getLLVMContext(), 2187 llvm::ConstantAsMetadata::get(Loc))); 2188 } 2189 2190 if (getLangOpts().assumeFunctionsAreConvergent()) { 2191 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2192 // convergent (meaning, they may call an intrinsically convergent op, such 2193 // as bar.sync, and so can't have certain optimizations applied around 2194 // them). 2195 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2196 llvm::Attribute::Convergent); 2197 } 2198 2199 // Extract all of the register value results from the asm. 2200 std::vector<llvm::Value*> RegResults; 2201 if (ResultRegTypes.size() == 1) { 2202 RegResults.push_back(Result); 2203 } else { 2204 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2205 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2206 RegResults.push_back(Tmp); 2207 } 2208 } 2209 2210 assert(RegResults.size() == ResultRegTypes.size()); 2211 assert(RegResults.size() == ResultTruncRegTypes.size()); 2212 assert(RegResults.size() == ResultRegDests.size()); 2213 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2214 llvm::Value *Tmp = RegResults[i]; 2215 2216 // If the result type of the LLVM IR asm doesn't match the result type of 2217 // the expression, do the conversion. 2218 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2219 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2220 2221 // Truncate the integer result to the right size, note that TruncTy can be 2222 // a pointer. 2223 if (TruncTy->isFloatingPointTy()) 2224 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2225 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2226 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2227 Tmp = Builder.CreateTrunc(Tmp, 2228 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2229 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2230 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2231 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2232 Tmp = Builder.CreatePtrToInt(Tmp, 2233 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2234 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2235 } else if (TruncTy->isIntegerTy()) { 2236 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2237 } else if (TruncTy->isVectorTy()) { 2238 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2239 } 2240 } 2241 2242 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2243 } 2244 } 2245 2246 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2247 const RecordDecl *RD = S.getCapturedRecordDecl(); 2248 QualType RecordTy = getContext().getRecordType(RD); 2249 2250 // Initialize the captured struct. 2251 LValue SlotLV = 2252 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2253 2254 RecordDecl::field_iterator CurField = RD->field_begin(); 2255 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2256 E = S.capture_init_end(); 2257 I != E; ++I, ++CurField) { 2258 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2259 if (CurField->hasCapturedVLAType()) { 2260 auto VAT = CurField->getCapturedVLAType(); 2261 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2262 } else { 2263 EmitInitializerForField(*CurField, LV, *I); 2264 } 2265 } 2266 2267 return SlotLV; 2268 } 2269 2270 /// Generate an outlined function for the body of a CapturedStmt, store any 2271 /// captured variables into the captured struct, and call the outlined function. 2272 llvm::Function * 2273 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2274 LValue CapStruct = InitCapturedStruct(S); 2275 2276 // Emit the CapturedDecl 2277 CodeGenFunction CGF(CGM, true); 2278 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2279 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2280 delete CGF.CapturedStmtInfo; 2281 2282 // Emit call to the helper function. 2283 EmitCallOrInvoke(F, CapStruct.getPointer()); 2284 2285 return F; 2286 } 2287 2288 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2289 LValue CapStruct = InitCapturedStruct(S); 2290 return CapStruct.getAddress(); 2291 } 2292 2293 /// Creates the outlined function for a CapturedStmt. 2294 llvm::Function * 2295 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2296 assert(CapturedStmtInfo && 2297 "CapturedStmtInfo should be set when generating the captured function"); 2298 const CapturedDecl *CD = S.getCapturedDecl(); 2299 const RecordDecl *RD = S.getCapturedRecordDecl(); 2300 SourceLocation Loc = S.getBeginLoc(); 2301 assert(CD->hasBody() && "missing CapturedDecl body"); 2302 2303 // Build the argument list. 2304 ASTContext &Ctx = CGM.getContext(); 2305 FunctionArgList Args; 2306 Args.append(CD->param_begin(), CD->param_end()); 2307 2308 // Create the function declaration. 2309 const CGFunctionInfo &FuncInfo = 2310 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2311 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2312 2313 llvm::Function *F = 2314 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2315 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2316 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2317 if (CD->isNothrow()) 2318 F->addFnAttr(llvm::Attribute::NoUnwind); 2319 2320 // Generate the function. 2321 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2322 CD->getBody()->getBeginLoc()); 2323 // Set the context parameter in CapturedStmtInfo. 2324 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2325 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2326 2327 // Initialize variable-length arrays. 2328 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2329 Ctx.getTagDeclType(RD)); 2330 for (auto *FD : RD->fields()) { 2331 if (FD->hasCapturedVLAType()) { 2332 auto *ExprArg = 2333 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2334 .getScalarVal(); 2335 auto VAT = FD->getCapturedVLAType(); 2336 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2337 } 2338 } 2339 2340 // If 'this' is captured, load it into CXXThisValue. 2341 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2342 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2343 LValue ThisLValue = EmitLValueForField(Base, FD); 2344 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2345 } 2346 2347 PGO.assignRegionCounters(GlobalDecl(CD), F); 2348 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2349 FinishFunction(CD->getBodyRBrace()); 2350 2351 return F; 2352 } 2353