1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                              Statement Emission
30 //===----------------------------------------------------------------------===//
31 
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33   if (CGDebugInfo *DI = getDebugInfo()) {
34     SourceLocation Loc;
35     if (isa<DeclStmt>(S))
36       Loc = S->getLocEnd();
37     else
38       Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40   }
41 }
42 
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44   assert(S && "Null statement?");
45 
46   // These statements have their own debug info handling.
47   if (EmitSimpleStmt(S))
48     return;
49 
50   // Check if we are generating unreachable code.
51   if (!HaveInsertPoint()) {
52     // If so, and the statement doesn't contain a label, then we do not need to
53     // generate actual code. This is safe because (1) the current point is
54     // unreachable, so we don't need to execute the code, and (2) we've already
55     // handled the statements which update internal data structures (like the
56     // local variable map) which could be used by subsequent statements.
57     if (!ContainsLabel(S)) {
58       // Verify that any decl statements were handled as simple, they may be in
59       // scope of subsequent reachable statements.
60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61       return;
62     }
63 
64     // Otherwise, make a new block to hold the code.
65     EnsureInsertPoint();
66   }
67 
68   // Generate a stoppoint if we are emitting debug info.
69   EmitStopPoint(S);
70 
71   switch (S->getStmtClass()) {
72   case Stmt::NoStmtClass:
73   case Stmt::CXXCatchStmtClass:
74   case Stmt::SEHExceptStmtClass:
75   case Stmt::SEHFinallyStmtClass:
76   case Stmt::MSDependentExistsStmtClass:
77     llvm_unreachable("invalid statement class to emit generically");
78   case Stmt::NullStmtClass:
79   case Stmt::CompoundStmtClass:
80   case Stmt::DeclStmtClass:
81   case Stmt::LabelStmtClass:
82   case Stmt::AttributedStmtClass:
83   case Stmt::GotoStmtClass:
84   case Stmt::BreakStmtClass:
85   case Stmt::ContinueStmtClass:
86   case Stmt::DefaultStmtClass:
87   case Stmt::CaseStmtClass:
88     llvm_unreachable("should have emitted these statements as simple");
89 
90 #define STMT(Type, Base)
91 #define ABSTRACT_STMT(Op)
92 #define EXPR(Type, Base) \
93   case Stmt::Type##Class:
94 #include "clang/AST/StmtNodes.inc"
95   {
96     // Remember the block we came in on.
97     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
98     assert(incoming && "expression emission must have an insertion point");
99 
100     EmitIgnoredExpr(cast<Expr>(S));
101 
102     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
103     assert(outgoing && "expression emission cleared block!");
104 
105     // The expression emitters assume (reasonably!) that the insertion
106     // point is always set.  To maintain that, the call-emission code
107     // for noreturn functions has to enter a new block with no
108     // predecessors.  We want to kill that block and mark the current
109     // insertion point unreachable in the common case of a call like
110     // "exit();".  Since expression emission doesn't otherwise create
111     // blocks with no predecessors, we can just test for that.
112     // However, we must be careful not to do this to our incoming
113     // block, because *statement* emission does sometimes create
114     // reachable blocks which will have no predecessors until later in
115     // the function.  This occurs with, e.g., labels that are not
116     // reachable by fallthrough.
117     if (incoming != outgoing && outgoing->use_empty()) {
118       outgoing->eraseFromParent();
119       Builder.ClearInsertionPoint();
120     }
121     break;
122   }
123 
124   case Stmt::IndirectGotoStmtClass:
125     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
126 
127   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
128   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
129   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
130   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
131 
132   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
133 
134   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
135   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
136   case Stmt::MSAsmStmtClass:    EmitMSAsmStmt(cast<MSAsmStmt>(*S));       break;
137 
138   case Stmt::ObjCAtTryStmtClass:
139     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
140     break;
141   case Stmt::ObjCAtCatchStmtClass:
142     llvm_unreachable(
143                     "@catch statements should be handled by EmitObjCAtTryStmt");
144   case Stmt::ObjCAtFinallyStmtClass:
145     llvm_unreachable(
146                   "@finally statements should be handled by EmitObjCAtTryStmt");
147   case Stmt::ObjCAtThrowStmtClass:
148     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
149     break;
150   case Stmt::ObjCAtSynchronizedStmtClass:
151     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
152     break;
153   case Stmt::ObjCForCollectionStmtClass:
154     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
155     break;
156   case Stmt::ObjCAutoreleasePoolStmtClass:
157     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
158     break;
159 
160   case Stmt::CXXTryStmtClass:
161     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
162     break;
163   case Stmt::CXXForRangeStmtClass:
164     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
165   case Stmt::SEHTryStmtClass:
166     // FIXME Not yet implemented
167     break;
168   }
169 }
170 
171 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
172   switch (S->getStmtClass()) {
173   default: return false;
174   case Stmt::NullStmtClass: break;
175   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
176   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
177   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
178   case Stmt::AttributedStmtClass:
179                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
180   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
181   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
182   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
183   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
184   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
185   }
186 
187   return true;
188 }
189 
190 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
191 /// this captures the expression result of the last sub-statement and returns it
192 /// (for use by the statement expression extension).
193 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
194                                          AggValueSlot AggSlot) {
195   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
196                              "LLVM IR generation of compound statement ('{}')");
197 
198   // Keep track of the current cleanup stack depth, including debug scopes.
199   LexicalScope Scope(*this, S.getSourceRange());
200 
201   for (CompoundStmt::const_body_iterator I = S.body_begin(),
202        E = S.body_end()-GetLast; I != E; ++I)
203     EmitStmt(*I);
204 
205   RValue RV;
206   if (!GetLast)
207     RV = RValue::get(0);
208   else {
209     // We have to special case labels here.  They are statements, but when put
210     // at the end of a statement expression, they yield the value of their
211     // subexpression.  Handle this by walking through all labels we encounter,
212     // emitting them before we evaluate the subexpr.
213     const Stmt *LastStmt = S.body_back();
214     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
215       EmitLabel(LS->getDecl());
216       LastStmt = LS->getSubStmt();
217     }
218 
219     EnsureInsertPoint();
220 
221     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
222   }
223 
224   return RV;
225 }
226 
227 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
228   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
229 
230   // If there is a cleanup stack, then we it isn't worth trying to
231   // simplify this block (we would need to remove it from the scope map
232   // and cleanup entry).
233   if (!EHStack.empty())
234     return;
235 
236   // Can only simplify direct branches.
237   if (!BI || !BI->isUnconditional())
238     return;
239 
240   BB->replaceAllUsesWith(BI->getSuccessor(0));
241   BI->eraseFromParent();
242   BB->eraseFromParent();
243 }
244 
245 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
246   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
247 
248   // Fall out of the current block (if necessary).
249   EmitBranch(BB);
250 
251   if (IsFinished && BB->use_empty()) {
252     delete BB;
253     return;
254   }
255 
256   // Place the block after the current block, if possible, or else at
257   // the end of the function.
258   if (CurBB && CurBB->getParent())
259     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
260   else
261     CurFn->getBasicBlockList().push_back(BB);
262   Builder.SetInsertPoint(BB);
263 }
264 
265 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
266   // Emit a branch from the current block to the target one if this
267   // was a real block.  If this was just a fall-through block after a
268   // terminator, don't emit it.
269   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
270 
271   if (!CurBB || CurBB->getTerminator()) {
272     // If there is no insert point or the previous block is already
273     // terminated, don't touch it.
274   } else {
275     // Otherwise, create a fall-through branch.
276     Builder.CreateBr(Target);
277   }
278 
279   Builder.ClearInsertionPoint();
280 }
281 
282 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
283   bool inserted = false;
284   for (llvm::BasicBlock::use_iterator
285          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
286     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
287       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
288       inserted = true;
289       break;
290     }
291   }
292 
293   if (!inserted)
294     CurFn->getBasicBlockList().push_back(block);
295 
296   Builder.SetInsertPoint(block);
297 }
298 
299 CodeGenFunction::JumpDest
300 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
301   JumpDest &Dest = LabelMap[D];
302   if (Dest.isValid()) return Dest;
303 
304   // Create, but don't insert, the new block.
305   Dest = JumpDest(createBasicBlock(D->getName()),
306                   EHScopeStack::stable_iterator::invalid(),
307                   NextCleanupDestIndex++);
308   return Dest;
309 }
310 
311 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
312   JumpDest &Dest = LabelMap[D];
313 
314   // If we didn't need a forward reference to this label, just go
315   // ahead and create a destination at the current scope.
316   if (!Dest.isValid()) {
317     Dest = getJumpDestInCurrentScope(D->getName());
318 
319   // Otherwise, we need to give this label a target depth and remove
320   // it from the branch-fixups list.
321   } else {
322     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
323     Dest = JumpDest(Dest.getBlock(),
324                     EHStack.stable_begin(),
325                     Dest.getDestIndex());
326 
327     ResolveBranchFixups(Dest.getBlock());
328   }
329 
330   EmitBlock(Dest.getBlock());
331 }
332 
333 
334 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
335   EmitLabel(S.getDecl());
336   EmitStmt(S.getSubStmt());
337 }
338 
339 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
340   EmitStmt(S.getSubStmt());
341 }
342 
343 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
344   // If this code is reachable then emit a stop point (if generating
345   // debug info). We have to do this ourselves because we are on the
346   // "simple" statement path.
347   if (HaveInsertPoint())
348     EmitStopPoint(&S);
349 
350   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
351 }
352 
353 
354 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
355   if (const LabelDecl *Target = S.getConstantTarget()) {
356     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
357     return;
358   }
359 
360   // Ensure that we have an i8* for our PHI node.
361   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
362                                          Int8PtrTy, "addr");
363   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
364 
365   // Get the basic block for the indirect goto.
366   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
367 
368   // The first instruction in the block has to be the PHI for the switch dest,
369   // add an entry for this branch.
370   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
371 
372   EmitBranch(IndGotoBB);
373 }
374 
375 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
376   // C99 6.8.4.1: The first substatement is executed if the expression compares
377   // unequal to 0.  The condition must be a scalar type.
378   RunCleanupsScope ConditionScope(*this);
379 
380   if (S.getConditionVariable())
381     EmitAutoVarDecl(*S.getConditionVariable());
382 
383   // If the condition constant folds and can be elided, try to avoid emitting
384   // the condition and the dead arm of the if/else.
385   bool CondConstant;
386   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
387     // Figure out which block (then or else) is executed.
388     const Stmt *Executed = S.getThen();
389     const Stmt *Skipped  = S.getElse();
390     if (!CondConstant)  // Condition false?
391       std::swap(Executed, Skipped);
392 
393     // If the skipped block has no labels in it, just emit the executed block.
394     // This avoids emitting dead code and simplifies the CFG substantially.
395     if (!ContainsLabel(Skipped)) {
396       if (Executed) {
397         RunCleanupsScope ExecutedScope(*this);
398         EmitStmt(Executed);
399       }
400       return;
401     }
402   }
403 
404   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
405   // the conditional branch.
406   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
407   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
408   llvm::BasicBlock *ElseBlock = ContBlock;
409   if (S.getElse())
410     ElseBlock = createBasicBlock("if.else");
411   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
412 
413   // Emit the 'then' code.
414   EmitBlock(ThenBlock);
415   {
416     RunCleanupsScope ThenScope(*this);
417     EmitStmt(S.getThen());
418   }
419   EmitBranch(ContBlock);
420 
421   // Emit the 'else' code if present.
422   if (const Stmt *Else = S.getElse()) {
423     // There is no need to emit line number for unconditional branch.
424     if (getDebugInfo())
425       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
426     EmitBlock(ElseBlock);
427     {
428       RunCleanupsScope ElseScope(*this);
429       EmitStmt(Else);
430     }
431     // There is no need to emit line number for unconditional branch.
432     if (getDebugInfo())
433       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
434     EmitBranch(ContBlock);
435   }
436 
437   // Emit the continuation block for code after the if.
438   EmitBlock(ContBlock, true);
439 }
440 
441 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
442   // Emit the header for the loop, which will also become
443   // the continue target.
444   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
445   EmitBlock(LoopHeader.getBlock());
446 
447   // Create an exit block for when the condition fails, which will
448   // also become the break target.
449   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
450 
451   // Store the blocks to use for break and continue.
452   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
453 
454   // C++ [stmt.while]p2:
455   //   When the condition of a while statement is a declaration, the
456   //   scope of the variable that is declared extends from its point
457   //   of declaration (3.3.2) to the end of the while statement.
458   //   [...]
459   //   The object created in a condition is destroyed and created
460   //   with each iteration of the loop.
461   RunCleanupsScope ConditionScope(*this);
462 
463   if (S.getConditionVariable())
464     EmitAutoVarDecl(*S.getConditionVariable());
465 
466   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
467   // evaluation of the controlling expression takes place before each
468   // execution of the loop body.
469   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
470 
471   // while(1) is common, avoid extra exit blocks.  Be sure
472   // to correctly handle break/continue though.
473   bool EmitBoolCondBranch = true;
474   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
475     if (C->isOne())
476       EmitBoolCondBranch = false;
477 
478   // As long as the condition is true, go to the loop body.
479   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
480   if (EmitBoolCondBranch) {
481     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
482     if (ConditionScope.requiresCleanups())
483       ExitBlock = createBasicBlock("while.exit");
484 
485     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
486 
487     if (ExitBlock != LoopExit.getBlock()) {
488       EmitBlock(ExitBlock);
489       EmitBranchThroughCleanup(LoopExit);
490     }
491   }
492 
493   // Emit the loop body.  We have to emit this in a cleanup scope
494   // because it might be a singleton DeclStmt.
495   {
496     RunCleanupsScope BodyScope(*this);
497     EmitBlock(LoopBody);
498     EmitStmt(S.getBody());
499   }
500 
501   BreakContinueStack.pop_back();
502 
503   // Immediately force cleanup.
504   ConditionScope.ForceCleanup();
505 
506   // Branch to the loop header again.
507   EmitBranch(LoopHeader.getBlock());
508 
509   // Emit the exit block.
510   EmitBlock(LoopExit.getBlock(), true);
511 
512   // The LoopHeader typically is just a branch if we skipped emitting
513   // a branch, try to erase it.
514   if (!EmitBoolCondBranch)
515     SimplifyForwardingBlocks(LoopHeader.getBlock());
516 }
517 
518 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
519   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
520   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
521 
522   // Store the blocks to use for break and continue.
523   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
524 
525   // Emit the body of the loop.
526   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
527   EmitBlock(LoopBody);
528   {
529     RunCleanupsScope BodyScope(*this);
530     EmitStmt(S.getBody());
531   }
532 
533   BreakContinueStack.pop_back();
534 
535   EmitBlock(LoopCond.getBlock());
536 
537   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
538   // after each execution of the loop body."
539 
540   // Evaluate the conditional in the while header.
541   // C99 6.8.5p2/p4: The first substatement is executed if the expression
542   // compares unequal to 0.  The condition must be a scalar type.
543   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
544 
545   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
546   // to correctly handle break/continue though.
547   bool EmitBoolCondBranch = true;
548   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
549     if (C->isZero())
550       EmitBoolCondBranch = false;
551 
552   // As long as the condition is true, iterate the loop.
553   if (EmitBoolCondBranch)
554     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
555 
556   // Emit the exit block.
557   EmitBlock(LoopExit.getBlock());
558 
559   // The DoCond block typically is just a branch if we skipped
560   // emitting a branch, try to erase it.
561   if (!EmitBoolCondBranch)
562     SimplifyForwardingBlocks(LoopCond.getBlock());
563 }
564 
565 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
566   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
567 
568   RunCleanupsScope ForScope(*this);
569 
570   CGDebugInfo *DI = getDebugInfo();
571   if (DI)
572     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
573 
574   // Evaluate the first part before the loop.
575   if (S.getInit())
576     EmitStmt(S.getInit());
577 
578   // Start the loop with a block that tests the condition.
579   // If there's an increment, the continue scope will be overwritten
580   // later.
581   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
582   llvm::BasicBlock *CondBlock = Continue.getBlock();
583   EmitBlock(CondBlock);
584 
585   // Create a cleanup scope for the condition variable cleanups.
586   RunCleanupsScope ConditionScope(*this);
587 
588   llvm::Value *BoolCondVal = 0;
589   if (S.getCond()) {
590     // If the for statement has a condition scope, emit the local variable
591     // declaration.
592     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
593     if (S.getConditionVariable()) {
594       EmitAutoVarDecl(*S.getConditionVariable());
595     }
596 
597     // If there are any cleanups between here and the loop-exit scope,
598     // create a block to stage a loop exit along.
599     if (ForScope.requiresCleanups())
600       ExitBlock = createBasicBlock("for.cond.cleanup");
601 
602     // As long as the condition is true, iterate the loop.
603     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
604 
605     // C99 6.8.5p2/p4: The first substatement is executed if the expression
606     // compares unequal to 0.  The condition must be a scalar type.
607     BoolCondVal = EvaluateExprAsBool(S.getCond());
608     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
609 
610     if (ExitBlock != LoopExit.getBlock()) {
611       EmitBlock(ExitBlock);
612       EmitBranchThroughCleanup(LoopExit);
613     }
614 
615     EmitBlock(ForBody);
616   } else {
617     // Treat it as a non-zero constant.  Don't even create a new block for the
618     // body, just fall into it.
619   }
620 
621   // If the for loop doesn't have an increment we can just use the
622   // condition as the continue block.  Otherwise we'll need to create
623   // a block for it (in the current scope, i.e. in the scope of the
624   // condition), and that we will become our continue block.
625   if (S.getInc())
626     Continue = getJumpDestInCurrentScope("for.inc");
627 
628   // Store the blocks to use for break and continue.
629   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
630 
631   {
632     // Create a separate cleanup scope for the body, in case it is not
633     // a compound statement.
634     RunCleanupsScope BodyScope(*this);
635     EmitStmt(S.getBody());
636   }
637 
638   // If there is an increment, emit it next.
639   if (S.getInc()) {
640     EmitBlock(Continue.getBlock());
641     EmitStmt(S.getInc());
642   }
643 
644   BreakContinueStack.pop_back();
645 
646   ConditionScope.ForceCleanup();
647   EmitBranch(CondBlock);
648 
649   ForScope.ForceCleanup();
650 
651   if (DI)
652     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
653 
654   // Emit the fall-through block.
655   EmitBlock(LoopExit.getBlock(), true);
656 }
657 
658 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
659   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
660 
661   RunCleanupsScope ForScope(*this);
662 
663   CGDebugInfo *DI = getDebugInfo();
664   if (DI)
665     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
666 
667   // Evaluate the first pieces before the loop.
668   EmitStmt(S.getRangeStmt());
669   EmitStmt(S.getBeginEndStmt());
670 
671   // Start the loop with a block that tests the condition.
672   // If there's an increment, the continue scope will be overwritten
673   // later.
674   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
675   EmitBlock(CondBlock);
676 
677   // If there are any cleanups between here and the loop-exit scope,
678   // create a block to stage a loop exit along.
679   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
680   if (ForScope.requiresCleanups())
681     ExitBlock = createBasicBlock("for.cond.cleanup");
682 
683   // The loop body, consisting of the specified body and the loop variable.
684   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685 
686   // The body is executed if the expression, contextually converted
687   // to bool, is true.
688   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
690 
691   if (ExitBlock != LoopExit.getBlock()) {
692     EmitBlock(ExitBlock);
693     EmitBranchThroughCleanup(LoopExit);
694   }
695 
696   EmitBlock(ForBody);
697 
698   // Create a block for the increment. In case of a 'continue', we jump there.
699   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
700 
701   // Store the blocks to use for break and continue.
702   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
703 
704   {
705     // Create a separate cleanup scope for the loop variable and body.
706     RunCleanupsScope BodyScope(*this);
707     EmitStmt(S.getLoopVarStmt());
708     EmitStmt(S.getBody());
709   }
710 
711   // If there is an increment, emit it next.
712   EmitBlock(Continue.getBlock());
713   EmitStmt(S.getInc());
714 
715   BreakContinueStack.pop_back();
716 
717   EmitBranch(CondBlock);
718 
719   ForScope.ForceCleanup();
720 
721   if (DI)
722     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
723 
724   // Emit the fall-through block.
725   EmitBlock(LoopExit.getBlock(), true);
726 }
727 
728 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
729   if (RV.isScalar()) {
730     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
731   } else if (RV.isAggregate()) {
732     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
733   } else {
734     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
735   }
736   EmitBranchThroughCleanup(ReturnBlock);
737 }
738 
739 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
740 /// if the function returns void, or may be missing one if the function returns
741 /// non-void.  Fun stuff :).
742 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
743   // Emit the result value, even if unused, to evalute the side effects.
744   const Expr *RV = S.getRetValue();
745 
746   // FIXME: Clean this up by using an LValue for ReturnTemp,
747   // EmitStoreThroughLValue, and EmitAnyExpr.
748   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
749       !Target.useGlobalsForAutomaticVariables()) {
750     // Apply the named return value optimization for this return statement,
751     // which means doing nothing: the appropriate result has already been
752     // constructed into the NRVO variable.
753 
754     // If there is an NRVO flag for this variable, set it to 1 into indicate
755     // that the cleanup code should not destroy the variable.
756     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
757       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
758   } else if (!ReturnValue) {
759     // Make sure not to return anything, but evaluate the expression
760     // for side effects.
761     if (RV)
762       EmitAnyExpr(RV);
763   } else if (RV == 0) {
764     // Do nothing (return value is left uninitialized)
765   } else if (FnRetTy->isReferenceType()) {
766     // If this function returns a reference, take the address of the expression
767     // rather than the value.
768     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
769     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
770   } else if (!hasAggregateLLVMType(RV->getType())) {
771     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
772   } else if (RV->getType()->isAnyComplexType()) {
773     EmitComplexExprIntoAddr(RV, ReturnValue, false);
774   } else {
775     CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
776     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
777                                           AggValueSlot::IsDestructed,
778                                           AggValueSlot::DoesNotNeedGCBarriers,
779                                           AggValueSlot::IsNotAliased));
780   }
781 
782   EmitBranchThroughCleanup(ReturnBlock);
783 }
784 
785 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
786   // As long as debug info is modeled with instructions, we have to ensure we
787   // have a place to insert here and write the stop point here.
788   if (HaveInsertPoint())
789     EmitStopPoint(&S);
790 
791   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
792        I != E; ++I)
793     EmitDecl(**I);
794 }
795 
796 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
797   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
798 
799   // If this code is reachable then emit a stop point (if generating
800   // debug info). We have to do this ourselves because we are on the
801   // "simple" statement path.
802   if (HaveInsertPoint())
803     EmitStopPoint(&S);
804 
805   JumpDest Block = BreakContinueStack.back().BreakBlock;
806   EmitBranchThroughCleanup(Block);
807 }
808 
809 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
810   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
811 
812   // If this code is reachable then emit a stop point (if generating
813   // debug info). We have to do this ourselves because we are on the
814   // "simple" statement path.
815   if (HaveInsertPoint())
816     EmitStopPoint(&S);
817 
818   JumpDest Block = BreakContinueStack.back().ContinueBlock;
819   EmitBranchThroughCleanup(Block);
820 }
821 
822 /// EmitCaseStmtRange - If case statement range is not too big then
823 /// add multiple cases to switch instruction, one for each value within
824 /// the range. If range is too big then emit "if" condition check.
825 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
826   assert(S.getRHS() && "Expected RHS value in CaseStmt");
827 
828   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
829   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
830 
831   // Emit the code for this case. We do this first to make sure it is
832   // properly chained from our predecessor before generating the
833   // switch machinery to enter this block.
834   EmitBlock(createBasicBlock("sw.bb"));
835   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
836   EmitStmt(S.getSubStmt());
837 
838   // If range is empty, do nothing.
839   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
840     return;
841 
842   llvm::APInt Range = RHS - LHS;
843   // FIXME: parameters such as this should not be hardcoded.
844   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
845     // Range is small enough to add multiple switch instruction cases.
846     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
847       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
848       LHS++;
849     }
850     return;
851   }
852 
853   // The range is too big. Emit "if" condition into a new block,
854   // making sure to save and restore the current insertion point.
855   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
856 
857   // Push this test onto the chain of range checks (which terminates
858   // in the default basic block). The switch's default will be changed
859   // to the top of this chain after switch emission is complete.
860   llvm::BasicBlock *FalseDest = CaseRangeBlock;
861   CaseRangeBlock = createBasicBlock("sw.caserange");
862 
863   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
864   Builder.SetInsertPoint(CaseRangeBlock);
865 
866   // Emit range check.
867   llvm::Value *Diff =
868     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
869   llvm::Value *Cond =
870     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
871   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
872 
873   // Restore the appropriate insertion point.
874   if (RestoreBB)
875     Builder.SetInsertPoint(RestoreBB);
876   else
877     Builder.ClearInsertionPoint();
878 }
879 
880 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
881   // If there is no enclosing switch instance that we're aware of, then this
882   // case statement and its block can be elided.  This situation only happens
883   // when we've constant-folded the switch, are emitting the constant case,
884   // and part of the constant case includes another case statement.  For
885   // instance: switch (4) { case 4: do { case 5: } while (1); }
886   if (!SwitchInsn) {
887     EmitStmt(S.getSubStmt());
888     return;
889   }
890 
891   // Handle case ranges.
892   if (S.getRHS()) {
893     EmitCaseStmtRange(S);
894     return;
895   }
896 
897   llvm::ConstantInt *CaseVal =
898     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
899 
900   // If the body of the case is just a 'break', and if there was no fallthrough,
901   // try to not emit an empty block.
902   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) && isa<BreakStmt>(S.getSubStmt())) {
903     JumpDest Block = BreakContinueStack.back().BreakBlock;
904 
905     // Only do this optimization if there are no cleanups that need emitting.
906     if (isObviouslyBranchWithoutCleanups(Block)) {
907       SwitchInsn->addCase(CaseVal, Block.getBlock());
908 
909       // If there was a fallthrough into this case, make sure to redirect it to
910       // the end of the switch as well.
911       if (Builder.GetInsertBlock()) {
912         Builder.CreateBr(Block.getBlock());
913         Builder.ClearInsertionPoint();
914       }
915       return;
916     }
917   }
918 
919   EmitBlock(createBasicBlock("sw.bb"));
920   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
921   SwitchInsn->addCase(CaseVal, CaseDest);
922 
923   // Recursively emitting the statement is acceptable, but is not wonderful for
924   // code where we have many case statements nested together, i.e.:
925   //  case 1:
926   //    case 2:
927   //      case 3: etc.
928   // Handling this recursively will create a new block for each case statement
929   // that falls through to the next case which is IR intensive.  It also causes
930   // deep recursion which can run into stack depth limitations.  Handle
931   // sequential non-range case statements specially.
932   const CaseStmt *CurCase = &S;
933   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
934 
935   // Otherwise, iteratively add consecutive cases to this switch stmt.
936   while (NextCase && NextCase->getRHS() == 0) {
937     CurCase = NextCase;
938     llvm::ConstantInt *CaseVal =
939       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
940     SwitchInsn->addCase(CaseVal, CaseDest);
941     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
942   }
943 
944   // Normal default recursion for non-cases.
945   EmitStmt(CurCase->getSubStmt());
946 }
947 
948 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
949   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
950   assert(DefaultBlock->empty() &&
951          "EmitDefaultStmt: Default block already defined?");
952   EmitBlock(DefaultBlock);
953   EmitStmt(S.getSubStmt());
954 }
955 
956 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
957 /// constant value that is being switched on, see if we can dead code eliminate
958 /// the body of the switch to a simple series of statements to emit.  Basically,
959 /// on a switch (5) we want to find these statements:
960 ///    case 5:
961 ///      printf(...);    <--
962 ///      ++i;            <--
963 ///      break;
964 ///
965 /// and add them to the ResultStmts vector.  If it is unsafe to do this
966 /// transformation (for example, one of the elided statements contains a label
967 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
968 /// should include statements after it (e.g. the printf() line is a substmt of
969 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
970 /// statement, then return CSFC_Success.
971 ///
972 /// If Case is non-null, then we are looking for the specified case, checking
973 /// that nothing we jump over contains labels.  If Case is null, then we found
974 /// the case and are looking for the break.
975 ///
976 /// If the recursive walk actually finds our Case, then we set FoundCase to
977 /// true.
978 ///
979 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
980 static CSFC_Result CollectStatementsForCase(const Stmt *S,
981                                             const SwitchCase *Case,
982                                             bool &FoundCase,
983                               SmallVectorImpl<const Stmt*> &ResultStmts) {
984   // If this is a null statement, just succeed.
985   if (S == 0)
986     return Case ? CSFC_Success : CSFC_FallThrough;
987 
988   // If this is the switchcase (case 4: or default) that we're looking for, then
989   // we're in business.  Just add the substatement.
990   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
991     if (S == Case) {
992       FoundCase = true;
993       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
994                                       ResultStmts);
995     }
996 
997     // Otherwise, this is some other case or default statement, just ignore it.
998     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
999                                     ResultStmts);
1000   }
1001 
1002   // If we are in the live part of the code and we found our break statement,
1003   // return a success!
1004   if (Case == 0 && isa<BreakStmt>(S))
1005     return CSFC_Success;
1006 
1007   // If this is a switch statement, then it might contain the SwitchCase, the
1008   // break, or neither.
1009   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1010     // Handle this as two cases: we might be looking for the SwitchCase (if so
1011     // the skipped statements must be skippable) or we might already have it.
1012     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1013     if (Case) {
1014       // Keep track of whether we see a skipped declaration.  The code could be
1015       // using the declaration even if it is skipped, so we can't optimize out
1016       // the decl if the kept statements might refer to it.
1017       bool HadSkippedDecl = false;
1018 
1019       // If we're looking for the case, just see if we can skip each of the
1020       // substatements.
1021       for (; Case && I != E; ++I) {
1022         HadSkippedDecl |= isa<DeclStmt>(*I);
1023 
1024         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1025         case CSFC_Failure: return CSFC_Failure;
1026         case CSFC_Success:
1027           // A successful result means that either 1) that the statement doesn't
1028           // have the case and is skippable, or 2) does contain the case value
1029           // and also contains the break to exit the switch.  In the later case,
1030           // we just verify the rest of the statements are elidable.
1031           if (FoundCase) {
1032             // If we found the case and skipped declarations, we can't do the
1033             // optimization.
1034             if (HadSkippedDecl)
1035               return CSFC_Failure;
1036 
1037             for (++I; I != E; ++I)
1038               if (CodeGenFunction::ContainsLabel(*I, true))
1039                 return CSFC_Failure;
1040             return CSFC_Success;
1041           }
1042           break;
1043         case CSFC_FallThrough:
1044           // If we have a fallthrough condition, then we must have found the
1045           // case started to include statements.  Consider the rest of the
1046           // statements in the compound statement as candidates for inclusion.
1047           assert(FoundCase && "Didn't find case but returned fallthrough?");
1048           // We recursively found Case, so we're not looking for it anymore.
1049           Case = 0;
1050 
1051           // If we found the case and skipped declarations, we can't do the
1052           // optimization.
1053           if (HadSkippedDecl)
1054             return CSFC_Failure;
1055           break;
1056         }
1057       }
1058     }
1059 
1060     // If we have statements in our range, then we know that the statements are
1061     // live and need to be added to the set of statements we're tracking.
1062     for (; I != E; ++I) {
1063       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1064       case CSFC_Failure: return CSFC_Failure;
1065       case CSFC_FallThrough:
1066         // A fallthrough result means that the statement was simple and just
1067         // included in ResultStmt, keep adding them afterwards.
1068         break;
1069       case CSFC_Success:
1070         // A successful result means that we found the break statement and
1071         // stopped statement inclusion.  We just ensure that any leftover stmts
1072         // are skippable and return success ourselves.
1073         for (++I; I != E; ++I)
1074           if (CodeGenFunction::ContainsLabel(*I, true))
1075             return CSFC_Failure;
1076         return CSFC_Success;
1077       }
1078     }
1079 
1080     return Case ? CSFC_Success : CSFC_FallThrough;
1081   }
1082 
1083   // Okay, this is some other statement that we don't handle explicitly, like a
1084   // for statement or increment etc.  If we are skipping over this statement,
1085   // just verify it doesn't have labels, which would make it invalid to elide.
1086   if (Case) {
1087     if (CodeGenFunction::ContainsLabel(S, true))
1088       return CSFC_Failure;
1089     return CSFC_Success;
1090   }
1091 
1092   // Otherwise, we want to include this statement.  Everything is cool with that
1093   // so long as it doesn't contain a break out of the switch we're in.
1094   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1095 
1096   // Otherwise, everything is great.  Include the statement and tell the caller
1097   // that we fall through and include the next statement as well.
1098   ResultStmts.push_back(S);
1099   return CSFC_FallThrough;
1100 }
1101 
1102 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1103 /// then invoke CollectStatementsForCase to find the list of statements to emit
1104 /// for a switch on constant.  See the comment above CollectStatementsForCase
1105 /// for more details.
1106 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1107                                        const llvm::APSInt &ConstantCondValue,
1108                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1109                                        ASTContext &C) {
1110   // First step, find the switch case that is being branched to.  We can do this
1111   // efficiently by scanning the SwitchCase list.
1112   const SwitchCase *Case = S.getSwitchCaseList();
1113   const DefaultStmt *DefaultCase = 0;
1114 
1115   for (; Case; Case = Case->getNextSwitchCase()) {
1116     // It's either a default or case.  Just remember the default statement in
1117     // case we're not jumping to any numbered cases.
1118     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1119       DefaultCase = DS;
1120       continue;
1121     }
1122 
1123     // Check to see if this case is the one we're looking for.
1124     const CaseStmt *CS = cast<CaseStmt>(Case);
1125     // Don't handle case ranges yet.
1126     if (CS->getRHS()) return false;
1127 
1128     // If we found our case, remember it as 'case'.
1129     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1130       break;
1131   }
1132 
1133   // If we didn't find a matching case, we use a default if it exists, or we
1134   // elide the whole switch body!
1135   if (Case == 0) {
1136     // It is safe to elide the body of the switch if it doesn't contain labels
1137     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1138     if (DefaultCase == 0)
1139       return !CodeGenFunction::ContainsLabel(&S);
1140     Case = DefaultCase;
1141   }
1142 
1143   // Ok, we know which case is being jumped to, try to collect all the
1144   // statements that follow it.  This can fail for a variety of reasons.  Also,
1145   // check to see that the recursive walk actually found our case statement.
1146   // Insane cases like this can fail to find it in the recursive walk since we
1147   // don't handle every stmt kind:
1148   // switch (4) {
1149   //   while (1) {
1150   //     case 4: ...
1151   bool FoundCase = false;
1152   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1153                                   ResultStmts) != CSFC_Failure &&
1154          FoundCase;
1155 }
1156 
1157 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1158   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1159 
1160   RunCleanupsScope ConditionScope(*this);
1161 
1162   if (S.getConditionVariable())
1163     EmitAutoVarDecl(*S.getConditionVariable());
1164 
1165   // Handle nested switch statements.
1166   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1167   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1168 
1169   // See if we can constant fold the condition of the switch and therefore only
1170   // emit the live case statement (if any) of the switch.
1171   llvm::APSInt ConstantCondValue;
1172   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1173     SmallVector<const Stmt*, 4> CaseStmts;
1174     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1175                                    getContext())) {
1176       RunCleanupsScope ExecutedScope(*this);
1177 
1178       // At this point, we are no longer "within" a switch instance, so
1179       // we can temporarily enforce this to ensure that any embedded case
1180       // statements are not emitted.
1181       SwitchInsn = 0;
1182 
1183       // Okay, we can dead code eliminate everything except this case.  Emit the
1184       // specified series of statements and we're good.
1185       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1186         EmitStmt(CaseStmts[i]);
1187 
1188       // Now we want to restore the saved switch instance so that nested
1189       // switches continue to function properly
1190       SwitchInsn = SavedSwitchInsn;
1191 
1192       return;
1193     }
1194   }
1195 
1196   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1197 
1198   // Create basic block to hold stuff that comes after switch
1199   // statement. We also need to create a default block now so that
1200   // explicit case ranges tests can have a place to jump to on
1201   // failure.
1202   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1203   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1204   CaseRangeBlock = DefaultBlock;
1205 
1206   // Clear the insertion point to indicate we are in unreachable code.
1207   Builder.ClearInsertionPoint();
1208 
1209   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1210   // then reuse last ContinueBlock.
1211   JumpDest OuterContinue;
1212   if (!BreakContinueStack.empty())
1213     OuterContinue = BreakContinueStack.back().ContinueBlock;
1214 
1215   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1216 
1217   // Emit switch body.
1218   EmitStmt(S.getBody());
1219 
1220   BreakContinueStack.pop_back();
1221 
1222   // Update the default block in case explicit case range tests have
1223   // been chained on top.
1224   SwitchInsn->setDefaultDest(CaseRangeBlock);
1225 
1226   // If a default was never emitted:
1227   if (!DefaultBlock->getParent()) {
1228     // If we have cleanups, emit the default block so that there's a
1229     // place to jump through the cleanups from.
1230     if (ConditionScope.requiresCleanups()) {
1231       EmitBlock(DefaultBlock);
1232 
1233     // Otherwise, just forward the default block to the switch end.
1234     } else {
1235       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1236       delete DefaultBlock;
1237     }
1238   }
1239 
1240   ConditionScope.ForceCleanup();
1241 
1242   // Emit continuation.
1243   EmitBlock(SwitchExit.getBlock(), true);
1244 
1245   SwitchInsn = SavedSwitchInsn;
1246   CaseRangeBlock = SavedCRBlock;
1247 }
1248 
1249 static std::string
1250 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1251                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1252   std::string Result;
1253 
1254   while (*Constraint) {
1255     switch (*Constraint) {
1256     default:
1257       Result += Target.convertConstraint(Constraint);
1258       break;
1259     // Ignore these
1260     case '*':
1261     case '?':
1262     case '!':
1263     case '=': // Will see this and the following in mult-alt constraints.
1264     case '+':
1265       break;
1266     case ',':
1267       Result += "|";
1268       break;
1269     case 'g':
1270       Result += "imr";
1271       break;
1272     case '[': {
1273       assert(OutCons &&
1274              "Must pass output names to constraints with a symbolic name");
1275       unsigned Index;
1276       bool result = Target.resolveSymbolicName(Constraint,
1277                                                &(*OutCons)[0],
1278                                                OutCons->size(), Index);
1279       assert(result && "Could not resolve symbolic name"); (void)result;
1280       Result += llvm::utostr(Index);
1281       break;
1282     }
1283     }
1284 
1285     Constraint++;
1286   }
1287 
1288   return Result;
1289 }
1290 
1291 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1292 /// as using a particular register add that as a constraint that will be used
1293 /// in this asm stmt.
1294 static std::string
1295 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1296                        const TargetInfo &Target, CodeGenModule &CGM,
1297                        const AsmStmt &Stmt) {
1298   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1299   if (!AsmDeclRef)
1300     return Constraint;
1301   const ValueDecl &Value = *AsmDeclRef->getDecl();
1302   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1303   if (!Variable)
1304     return Constraint;
1305   if (Variable->getStorageClass() != SC_Register)
1306     return Constraint;
1307   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1308   if (!Attr)
1309     return Constraint;
1310   StringRef Register = Attr->getLabel();
1311   assert(Target.isValidGCCRegisterName(Register));
1312   // We're using validateOutputConstraint here because we only care if
1313   // this is a register constraint.
1314   TargetInfo::ConstraintInfo Info(Constraint, "");
1315   if (Target.validateOutputConstraint(Info) &&
1316       !Info.allowsRegister()) {
1317     CGM.ErrorUnsupported(&Stmt, "__asm__");
1318     return Constraint;
1319   }
1320   // Canonicalize the register here before returning it.
1321   Register = Target.getNormalizedGCCRegisterName(Register);
1322   return "{" + Register.str() + "}";
1323 }
1324 
1325 llvm::Value*
1326 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1327                                     const TargetInfo::ConstraintInfo &Info,
1328                                     LValue InputValue, QualType InputType,
1329                                     std::string &ConstraintStr) {
1330   llvm::Value *Arg;
1331   if (Info.allowsRegister() || !Info.allowsMemory()) {
1332     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1333       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1334     } else {
1335       llvm::Type *Ty = ConvertType(InputType);
1336       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1337       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1338         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1339         Ty = llvm::PointerType::getUnqual(Ty);
1340 
1341         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1342                                                        Ty));
1343       } else {
1344         Arg = InputValue.getAddress();
1345         ConstraintStr += '*';
1346       }
1347     }
1348   } else {
1349     Arg = InputValue.getAddress();
1350     ConstraintStr += '*';
1351   }
1352 
1353   return Arg;
1354 }
1355 
1356 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1357                                          const TargetInfo::ConstraintInfo &Info,
1358                                            const Expr *InputExpr,
1359                                            std::string &ConstraintStr) {
1360   if (Info.allowsRegister() || !Info.allowsMemory())
1361     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1362       return EmitScalarExpr(InputExpr);
1363 
1364   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1365   LValue Dest = EmitLValue(InputExpr);
1366   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1367 }
1368 
1369 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1370 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1371 /// integers which are the source locations of the start of each line in the
1372 /// asm.
1373 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1374                                       CodeGenFunction &CGF) {
1375   SmallVector<llvm::Value *, 8> Locs;
1376   // Add the location of the first line to the MDNode.
1377   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1378                                         Str->getLocStart().getRawEncoding()));
1379   StringRef StrVal = Str->getString();
1380   if (!StrVal.empty()) {
1381     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1382     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1383 
1384     // Add the location of the start of each subsequent line of the asm to the
1385     // MDNode.
1386     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1387       if (StrVal[i] != '\n') continue;
1388       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1389                                                       CGF.Target);
1390       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1391                                             LineLoc.getRawEncoding()));
1392     }
1393   }
1394 
1395   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1396 }
1397 
1398 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1399   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1400   // has already done this, so it is guaranteed to be successful.
1401   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1402   unsigned DiagOffs;
1403   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1404 
1405   // Assemble the pieces into the final asm string.
1406   std::string AsmString;
1407   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1408     if (Pieces[i].isString())
1409       AsmString += Pieces[i].getString();
1410     else if (Pieces[i].getModifier() == '\0')
1411       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1412     else
1413       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1414                    Pieces[i].getModifier() + '}';
1415   }
1416 
1417   // Get all the output and input constraints together.
1418   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1419   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1420 
1421   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1422     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1423                                     S.getOutputName(i));
1424     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1425     assert(IsValid && "Failed to parse output constraint");
1426     OutputConstraintInfos.push_back(Info);
1427   }
1428 
1429   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1430     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1431                                     S.getInputName(i));
1432     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1433                                                   S.getNumOutputs(), Info);
1434     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1435     InputConstraintInfos.push_back(Info);
1436   }
1437 
1438   std::string Constraints;
1439 
1440   std::vector<LValue> ResultRegDests;
1441   std::vector<QualType> ResultRegQualTys;
1442   std::vector<llvm::Type *> ResultRegTypes;
1443   std::vector<llvm::Type *> ResultTruncRegTypes;
1444   std::vector<llvm::Type *> ArgTypes;
1445   std::vector<llvm::Value*> Args;
1446 
1447   // Keep track of inout constraints.
1448   std::string InOutConstraints;
1449   std::vector<llvm::Value*> InOutArgs;
1450   std::vector<llvm::Type*> InOutArgTypes;
1451 
1452   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1453     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1454 
1455     // Simplify the output constraint.
1456     std::string OutputConstraint(S.getOutputConstraint(i));
1457     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1458 
1459     const Expr *OutExpr = S.getOutputExpr(i);
1460     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1461 
1462     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1463                                               Target, CGM, S);
1464 
1465     LValue Dest = EmitLValue(OutExpr);
1466     if (!Constraints.empty())
1467       Constraints += ',';
1468 
1469     // If this is a register output, then make the inline asm return it
1470     // by-value.  If this is a memory result, return the value by-reference.
1471     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1472       Constraints += "=" + OutputConstraint;
1473       ResultRegQualTys.push_back(OutExpr->getType());
1474       ResultRegDests.push_back(Dest);
1475       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1476       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1477 
1478       // If this output is tied to an input, and if the input is larger, then
1479       // we need to set the actual result type of the inline asm node to be the
1480       // same as the input type.
1481       if (Info.hasMatchingInput()) {
1482         unsigned InputNo;
1483         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1484           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1485           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1486             break;
1487         }
1488         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1489 
1490         QualType InputTy = S.getInputExpr(InputNo)->getType();
1491         QualType OutputType = OutExpr->getType();
1492 
1493         uint64_t InputSize = getContext().getTypeSize(InputTy);
1494         if (getContext().getTypeSize(OutputType) < InputSize) {
1495           // Form the asm to return the value as a larger integer or fp type.
1496           ResultRegTypes.back() = ConvertType(InputTy);
1497         }
1498       }
1499       if (llvm::Type* AdjTy =
1500             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1501                                                  ResultRegTypes.back()))
1502         ResultRegTypes.back() = AdjTy;
1503     } else {
1504       ArgTypes.push_back(Dest.getAddress()->getType());
1505       Args.push_back(Dest.getAddress());
1506       Constraints += "=*";
1507       Constraints += OutputConstraint;
1508     }
1509 
1510     if (Info.isReadWrite()) {
1511       InOutConstraints += ',';
1512 
1513       const Expr *InputExpr = S.getOutputExpr(i);
1514       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1515                                             InOutConstraints);
1516 
1517       if (llvm::Type* AdjTy =
1518             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1519                                                  Arg->getType()))
1520         Arg = Builder.CreateBitCast(Arg, AdjTy);
1521 
1522       if (Info.allowsRegister())
1523         InOutConstraints += llvm::utostr(i);
1524       else
1525         InOutConstraints += OutputConstraint;
1526 
1527       InOutArgTypes.push_back(Arg->getType());
1528       InOutArgs.push_back(Arg);
1529     }
1530   }
1531 
1532   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1533 
1534   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1535     const Expr *InputExpr = S.getInputExpr(i);
1536 
1537     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1538 
1539     if (!Constraints.empty())
1540       Constraints += ',';
1541 
1542     // Simplify the input constraint.
1543     std::string InputConstraint(S.getInputConstraint(i));
1544     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1545                                          &OutputConstraintInfos);
1546 
1547     InputConstraint =
1548       AddVariableConstraints(InputConstraint,
1549                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1550                             Target, CGM, S);
1551 
1552     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1553 
1554     // If this input argument is tied to a larger output result, extend the
1555     // input to be the same size as the output.  The LLVM backend wants to see
1556     // the input and output of a matching constraint be the same size.  Note
1557     // that GCC does not define what the top bits are here.  We use zext because
1558     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1559     if (Info.hasTiedOperand()) {
1560       unsigned Output = Info.getTiedOperand();
1561       QualType OutputType = S.getOutputExpr(Output)->getType();
1562       QualType InputTy = InputExpr->getType();
1563 
1564       if (getContext().getTypeSize(OutputType) >
1565           getContext().getTypeSize(InputTy)) {
1566         // Use ptrtoint as appropriate so that we can do our extension.
1567         if (isa<llvm::PointerType>(Arg->getType()))
1568           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1569         llvm::Type *OutputTy = ConvertType(OutputType);
1570         if (isa<llvm::IntegerType>(OutputTy))
1571           Arg = Builder.CreateZExt(Arg, OutputTy);
1572         else if (isa<llvm::PointerType>(OutputTy))
1573           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1574         else {
1575           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1576           Arg = Builder.CreateFPExt(Arg, OutputTy);
1577         }
1578       }
1579     }
1580     if (llvm::Type* AdjTy =
1581               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1582                                                    Arg->getType()))
1583       Arg = Builder.CreateBitCast(Arg, AdjTy);
1584 
1585     ArgTypes.push_back(Arg->getType());
1586     Args.push_back(Arg);
1587     Constraints += InputConstraint;
1588   }
1589 
1590   // Append the "input" part of inout constraints last.
1591   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1592     ArgTypes.push_back(InOutArgTypes[i]);
1593     Args.push_back(InOutArgs[i]);
1594   }
1595   Constraints += InOutConstraints;
1596 
1597   // Clobbers
1598   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1599     StringRef Clobber = S.getClobber(i)->getString();
1600 
1601     if (Clobber != "memory" && Clobber != "cc")
1602     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1603 
1604     if (i != 0 || NumConstraints != 0)
1605       Constraints += ',';
1606 
1607     Constraints += "~{";
1608     Constraints += Clobber;
1609     Constraints += '}';
1610   }
1611 
1612   // Add machine specific clobbers
1613   std::string MachineClobbers = Target.getClobbers();
1614   if (!MachineClobbers.empty()) {
1615     if (!Constraints.empty())
1616       Constraints += ',';
1617     Constraints += MachineClobbers;
1618   }
1619 
1620   llvm::Type *ResultType;
1621   if (ResultRegTypes.empty())
1622     ResultType = VoidTy;
1623   else if (ResultRegTypes.size() == 1)
1624     ResultType = ResultRegTypes[0];
1625   else
1626     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1627 
1628   llvm::FunctionType *FTy =
1629     llvm::FunctionType::get(ResultType, ArgTypes, false);
1630 
1631   llvm::InlineAsm *IA =
1632     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1633                          S.isVolatile() || S.getNumOutputs() == 0);
1634   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1635   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1636 
1637   // Slap the source location of the inline asm into a !srcloc metadata on the
1638   // call.
1639   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1640 
1641   // Extract all of the register value results from the asm.
1642   std::vector<llvm::Value*> RegResults;
1643   if (ResultRegTypes.size() == 1) {
1644     RegResults.push_back(Result);
1645   } else {
1646     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1647       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1648       RegResults.push_back(Tmp);
1649     }
1650   }
1651 
1652   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1653     llvm::Value *Tmp = RegResults[i];
1654 
1655     // If the result type of the LLVM IR asm doesn't match the result type of
1656     // the expression, do the conversion.
1657     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1658       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1659 
1660       // Truncate the integer result to the right size, note that TruncTy can be
1661       // a pointer.
1662       if (TruncTy->isFloatingPointTy())
1663         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1664       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1665         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1666         Tmp = Builder.CreateTrunc(Tmp,
1667                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1668         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1669       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1670         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1671         Tmp = Builder.CreatePtrToInt(Tmp,
1672                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1673         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1674       } else if (TruncTy->isIntegerTy()) {
1675         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1676       } else if (TruncTy->isVectorTy()) {
1677         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1678       }
1679     }
1680 
1681     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1682   }
1683 }
1684 
1685 void CodeGenFunction::EmitMSAsmStmt(const MSAsmStmt &S) {
1686   // MS-style inline assembly is not fully supported, so sema emits a warning.
1687   if (!CGM.getCodeGenOpts().EmitMicrosoftInlineAsm)
1688     return;
1689 
1690   assert (S.isSimple() && "CodeGen can only handle simple MSAsmStmts.");
1691 
1692   std::vector<llvm::Value*> Args;
1693   std::vector<llvm::Type *> ArgTypes;
1694   std::string Constraints;
1695 
1696   // Clobbers
1697   for (unsigned i = 0, e = S.getNumClobbers(); i != e; ++i) {
1698     StringRef Clobber = S.getClobber(i);
1699 
1700     if (Clobber != "memory" && Clobber != "cc")
1701       Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1702 
1703     if (i != 0)
1704       Constraints += ',';
1705 
1706     Constraints += "~{";
1707     Constraints += Clobber;
1708     Constraints += '}';
1709   }
1710 
1711   // Add machine specific clobbers
1712   std::string MachineClobbers = Target.getClobbers();
1713   if (!MachineClobbers.empty()) {
1714     if (!Constraints.empty())
1715       Constraints += ',';
1716     Constraints += MachineClobbers;
1717   }
1718 
1719   llvm::FunctionType *FTy =
1720     llvm::FunctionType::get(VoidTy, ArgTypes, false);
1721 
1722   llvm::InlineAsm *IA =
1723     llvm::InlineAsm::get(FTy, *S.getAsmString(), Constraints, true);
1724   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1725   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1726   Result->addAttribute(~0, llvm::Attribute::IANSDialect);
1727 }
1728