1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                              Statement Emission
30 //===----------------------------------------------------------------------===//
31 
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33   if (CGDebugInfo *DI = getDebugInfo()) {
34     SourceLocation Loc;
35     if (isa<DeclStmt>(S))
36       Loc = S->getLocEnd();
37     else
38       Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40   }
41 }
42 
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44   assert(S && "Null statement?");
45 
46   // These statements have their own debug info handling.
47   if (EmitSimpleStmt(S))
48     return;
49 
50   // Check if we are generating unreachable code.
51   if (!HaveInsertPoint()) {
52     // If so, and the statement doesn't contain a label, then we do not need to
53     // generate actual code. This is safe because (1) the current point is
54     // unreachable, so we don't need to execute the code, and (2) we've already
55     // handled the statements which update internal data structures (like the
56     // local variable map) which could be used by subsequent statements.
57     if (!ContainsLabel(S)) {
58       // Verify that any decl statements were handled as simple, they may be in
59       // scope of subsequent reachable statements.
60       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
61       return;
62     }
63 
64     // Otherwise, make a new block to hold the code.
65     EnsureInsertPoint();
66   }
67 
68   // Generate a stoppoint if we are emitting debug info.
69   EmitStopPoint(S);
70 
71   switch (S->getStmtClass()) {
72   case Stmt::NoStmtClass:
73   case Stmt::CXXCatchStmtClass:
74   case Stmt::SEHExceptStmtClass:
75   case Stmt::SEHFinallyStmtClass:
76   case Stmt::MSDependentExistsStmtClass:
77     llvm_unreachable("invalid statement class to emit generically");
78   case Stmt::NullStmtClass:
79   case Stmt::CompoundStmtClass:
80   case Stmt::DeclStmtClass:
81   case Stmt::LabelStmtClass:
82   case Stmt::GotoStmtClass:
83   case Stmt::BreakStmtClass:
84   case Stmt::ContinueStmtClass:
85   case Stmt::DefaultStmtClass:
86   case Stmt::CaseStmtClass:
87     llvm_unreachable("should have emitted these statements as simple");
88 
89 #define STMT(Type, Base)
90 #define ABSTRACT_STMT(Op)
91 #define EXPR(Type, Base) \
92   case Stmt::Type##Class:
93 #include "clang/AST/StmtNodes.inc"
94   {
95     // Remember the block we came in on.
96     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97     assert(incoming && "expression emission must have an insertion point");
98 
99     EmitIgnoredExpr(cast<Expr>(S));
100 
101     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102     assert(outgoing && "expression emission cleared block!");
103 
104     // The expression emitters assume (reasonably!) that the insertion
105     // point is always set.  To maintain that, the call-emission code
106     // for noreturn functions has to enter a new block with no
107     // predecessors.  We want to kill that block and mark the current
108     // insertion point unreachable in the common case of a call like
109     // "exit();".  Since expression emission doesn't otherwise create
110     // blocks with no predecessors, we can just test for that.
111     // However, we must be careful not to do this to our incoming
112     // block, because *statement* emission does sometimes create
113     // reachable blocks which will have no predecessors until later in
114     // the function.  This occurs with, e.g., labels that are not
115     // reachable by fallthrough.
116     if (incoming != outgoing && outgoing->use_empty()) {
117       outgoing->eraseFromParent();
118       Builder.ClearInsertionPoint();
119     }
120     break;
121   }
122 
123   case Stmt::IndirectGotoStmtClass:
124     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125 
126   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130 
131   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132 
133   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135 
136   case Stmt::ObjCAtTryStmtClass:
137     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138     break;
139   case Stmt::ObjCAtCatchStmtClass:
140     llvm_unreachable(
141                     "@catch statements should be handled by EmitObjCAtTryStmt");
142   case Stmt::ObjCAtFinallyStmtClass:
143     llvm_unreachable(
144                   "@finally statements should be handled by EmitObjCAtTryStmt");
145   case Stmt::ObjCAtThrowStmtClass:
146     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147     break;
148   case Stmt::ObjCAtSynchronizedStmtClass:
149     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150     break;
151   case Stmt::ObjCForCollectionStmtClass:
152     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153     break;
154   case Stmt::ObjCAutoreleasePoolStmtClass:
155     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
156     break;
157 
158   case Stmt::CXXTryStmtClass:
159     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
160     break;
161   case Stmt::CXXForRangeStmtClass:
162     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
163   case Stmt::SEHTryStmtClass:
164     // FIXME Not yet implemented
165     break;
166   }
167 }
168 
169 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
170   switch (S->getStmtClass()) {
171   default: return false;
172   case Stmt::NullStmtClass: break;
173   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
174   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
175   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
176   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
177   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
178   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
179   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
180   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
181   }
182 
183   return true;
184 }
185 
186 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
187 /// this captures the expression result of the last sub-statement and returns it
188 /// (for use by the statement expression extension).
189 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
190                                          AggValueSlot AggSlot) {
191   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
192                              "LLVM IR generation of compound statement ('{}')");
193 
194   CGDebugInfo *DI = getDebugInfo();
195   if (DI)
196     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
197 
198   // Keep track of the current cleanup stack depth.
199   RunCleanupsScope Scope(*this);
200 
201   for (CompoundStmt::const_body_iterator I = S.body_begin(),
202        E = S.body_end()-GetLast; I != E; ++I)
203     EmitStmt(*I);
204 
205   if (DI)
206     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
207 
208   RValue RV;
209   if (!GetLast)
210     RV = RValue::get(0);
211   else {
212     // We have to special case labels here.  They are statements, but when put
213     // at the end of a statement expression, they yield the value of their
214     // subexpression.  Handle this by walking through all labels we encounter,
215     // emitting them before we evaluate the subexpr.
216     const Stmt *LastStmt = S.body_back();
217     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
218       EmitLabel(LS->getDecl());
219       LastStmt = LS->getSubStmt();
220     }
221 
222     EnsureInsertPoint();
223 
224     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
225   }
226 
227   return RV;
228 }
229 
230 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
231   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
232 
233   // If there is a cleanup stack, then we it isn't worth trying to
234   // simplify this block (we would need to remove it from the scope map
235   // and cleanup entry).
236   if (!EHStack.empty())
237     return;
238 
239   // Can only simplify direct branches.
240   if (!BI || !BI->isUnconditional())
241     return;
242 
243   BB->replaceAllUsesWith(BI->getSuccessor(0));
244   BI->eraseFromParent();
245   BB->eraseFromParent();
246 }
247 
248 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
249   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
250 
251   // Fall out of the current block (if necessary).
252   EmitBranch(BB);
253 
254   if (IsFinished && BB->use_empty()) {
255     delete BB;
256     return;
257   }
258 
259   // Place the block after the current block, if possible, or else at
260   // the end of the function.
261   if (CurBB && CurBB->getParent())
262     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
263   else
264     CurFn->getBasicBlockList().push_back(BB);
265   Builder.SetInsertPoint(BB);
266 }
267 
268 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
269   // Emit a branch from the current block to the target one if this
270   // was a real block.  If this was just a fall-through block after a
271   // terminator, don't emit it.
272   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
273 
274   if (!CurBB || CurBB->getTerminator()) {
275     // If there is no insert point or the previous block is already
276     // terminated, don't touch it.
277   } else {
278     // Otherwise, create a fall-through branch.
279     Builder.CreateBr(Target);
280   }
281 
282   Builder.ClearInsertionPoint();
283 }
284 
285 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
286   bool inserted = false;
287   for (llvm::BasicBlock::use_iterator
288          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
289     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
290       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
291       inserted = true;
292       break;
293     }
294   }
295 
296   if (!inserted)
297     CurFn->getBasicBlockList().push_back(block);
298 
299   Builder.SetInsertPoint(block);
300 }
301 
302 CodeGenFunction::JumpDest
303 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
304   JumpDest &Dest = LabelMap[D];
305   if (Dest.isValid()) return Dest;
306 
307   // Create, but don't insert, the new block.
308   Dest = JumpDest(createBasicBlock(D->getName()),
309                   EHScopeStack::stable_iterator::invalid(),
310                   NextCleanupDestIndex++);
311   return Dest;
312 }
313 
314 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
315   JumpDest &Dest = LabelMap[D];
316 
317   // If we didn't need a forward reference to this label, just go
318   // ahead and create a destination at the current scope.
319   if (!Dest.isValid()) {
320     Dest = getJumpDestInCurrentScope(D->getName());
321 
322   // Otherwise, we need to give this label a target depth and remove
323   // it from the branch-fixups list.
324   } else {
325     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
326     Dest = JumpDest(Dest.getBlock(),
327                     EHStack.stable_begin(),
328                     Dest.getDestIndex());
329 
330     ResolveBranchFixups(Dest.getBlock());
331   }
332 
333   EmitBlock(Dest.getBlock());
334 }
335 
336 
337 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
338   EmitLabel(S.getDecl());
339   EmitStmt(S.getSubStmt());
340 }
341 
342 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
343   // If this code is reachable then emit a stop point (if generating
344   // debug info). We have to do this ourselves because we are on the
345   // "simple" statement path.
346   if (HaveInsertPoint())
347     EmitStopPoint(&S);
348 
349   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
350 }
351 
352 
353 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
354   if (const LabelDecl *Target = S.getConstantTarget()) {
355     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
356     return;
357   }
358 
359   // Ensure that we have an i8* for our PHI node.
360   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
361                                          Int8PtrTy, "addr");
362   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
363 
364 
365   // Get the basic block for the indirect goto.
366   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
367 
368   // The first instruction in the block has to be the PHI for the switch dest,
369   // add an entry for this branch.
370   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
371 
372   EmitBranch(IndGotoBB);
373 }
374 
375 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
376   // C99 6.8.4.1: The first substatement is executed if the expression compares
377   // unequal to 0.  The condition must be a scalar type.
378   RunCleanupsScope ConditionScope(*this);
379 
380   if (S.getConditionVariable())
381     EmitAutoVarDecl(*S.getConditionVariable());
382 
383   // If the condition constant folds and can be elided, try to avoid emitting
384   // the condition and the dead arm of the if/else.
385   bool CondConstant;
386   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
387     // Figure out which block (then or else) is executed.
388     const Stmt *Executed = S.getThen();
389     const Stmt *Skipped  = S.getElse();
390     if (!CondConstant)  // Condition false?
391       std::swap(Executed, Skipped);
392 
393     // If the skipped block has no labels in it, just emit the executed block.
394     // This avoids emitting dead code and simplifies the CFG substantially.
395     if (!ContainsLabel(Skipped)) {
396       if (Executed) {
397         RunCleanupsScope ExecutedScope(*this);
398         EmitStmt(Executed);
399       }
400       return;
401     }
402   }
403 
404   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
405   // the conditional branch.
406   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
407   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
408   llvm::BasicBlock *ElseBlock = ContBlock;
409   if (S.getElse())
410     ElseBlock = createBasicBlock("if.else");
411   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
412 
413   // Emit the 'then' code.
414   EmitBlock(ThenBlock);
415   {
416     RunCleanupsScope ThenScope(*this);
417     EmitStmt(S.getThen());
418   }
419   EmitBranch(ContBlock);
420 
421   // Emit the 'else' code if present.
422   if (const Stmt *Else = S.getElse()) {
423     // There is no need to emit line number for unconditional branch.
424     if (getDebugInfo())
425       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
426     EmitBlock(ElseBlock);
427     {
428       RunCleanupsScope ElseScope(*this);
429       EmitStmt(Else);
430     }
431     // There is no need to emit line number for unconditional branch.
432     if (getDebugInfo())
433       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
434     EmitBranch(ContBlock);
435   }
436 
437   // Emit the continuation block for code after the if.
438   EmitBlock(ContBlock, true);
439 }
440 
441 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
442   // Emit the header for the loop, which will also become
443   // the continue target.
444   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
445   EmitBlock(LoopHeader.getBlock());
446 
447   // Create an exit block for when the condition fails, which will
448   // also become the break target.
449   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
450 
451   // Store the blocks to use for break and continue.
452   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
453 
454   // C++ [stmt.while]p2:
455   //   When the condition of a while statement is a declaration, the
456   //   scope of the variable that is declared extends from its point
457   //   of declaration (3.3.2) to the end of the while statement.
458   //   [...]
459   //   The object created in a condition is destroyed and created
460   //   with each iteration of the loop.
461   RunCleanupsScope ConditionScope(*this);
462 
463   if (S.getConditionVariable())
464     EmitAutoVarDecl(*S.getConditionVariable());
465 
466   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
467   // evaluation of the controlling expression takes place before each
468   // execution of the loop body.
469   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
470 
471   // while(1) is common, avoid extra exit blocks.  Be sure
472   // to correctly handle break/continue though.
473   bool EmitBoolCondBranch = true;
474   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
475     if (C->isOne())
476       EmitBoolCondBranch = false;
477 
478   // As long as the condition is true, go to the loop body.
479   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
480   if (EmitBoolCondBranch) {
481     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
482     if (ConditionScope.requiresCleanups())
483       ExitBlock = createBasicBlock("while.exit");
484 
485     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
486 
487     if (ExitBlock != LoopExit.getBlock()) {
488       EmitBlock(ExitBlock);
489       EmitBranchThroughCleanup(LoopExit);
490     }
491   }
492 
493   // Emit the loop body.  We have to emit this in a cleanup scope
494   // because it might be a singleton DeclStmt.
495   {
496     RunCleanupsScope BodyScope(*this);
497     EmitBlock(LoopBody);
498     EmitStmt(S.getBody());
499   }
500 
501   BreakContinueStack.pop_back();
502 
503   // Immediately force cleanup.
504   ConditionScope.ForceCleanup();
505 
506   // Branch to the loop header again.
507   EmitBranch(LoopHeader.getBlock());
508 
509   // Emit the exit block.
510   EmitBlock(LoopExit.getBlock(), true);
511 
512   // The LoopHeader typically is just a branch if we skipped emitting
513   // a branch, try to erase it.
514   if (!EmitBoolCondBranch)
515     SimplifyForwardingBlocks(LoopHeader.getBlock());
516 }
517 
518 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
519   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
520   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
521 
522   // Store the blocks to use for break and continue.
523   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
524 
525   // Emit the body of the loop.
526   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
527   EmitBlock(LoopBody);
528   {
529     RunCleanupsScope BodyScope(*this);
530     EmitStmt(S.getBody());
531   }
532 
533   BreakContinueStack.pop_back();
534 
535   EmitBlock(LoopCond.getBlock());
536 
537   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
538   // after each execution of the loop body."
539 
540   // Evaluate the conditional in the while header.
541   // C99 6.8.5p2/p4: The first substatement is executed if the expression
542   // compares unequal to 0.  The condition must be a scalar type.
543   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
544 
545   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
546   // to correctly handle break/continue though.
547   bool EmitBoolCondBranch = true;
548   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
549     if (C->isZero())
550       EmitBoolCondBranch = false;
551 
552   // As long as the condition is true, iterate the loop.
553   if (EmitBoolCondBranch)
554     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
555 
556   // Emit the exit block.
557   EmitBlock(LoopExit.getBlock());
558 
559   // The DoCond block typically is just a branch if we skipped
560   // emitting a branch, try to erase it.
561   if (!EmitBoolCondBranch)
562     SimplifyForwardingBlocks(LoopCond.getBlock());
563 }
564 
565 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
566   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
567 
568   RunCleanupsScope ForScope(*this);
569 
570   CGDebugInfo *DI = getDebugInfo();
571   if (DI)
572     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
573 
574   // Evaluate the first part before the loop.
575   if (S.getInit())
576     EmitStmt(S.getInit());
577 
578   // Start the loop with a block that tests the condition.
579   // If there's an increment, the continue scope will be overwritten
580   // later.
581   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
582   llvm::BasicBlock *CondBlock = Continue.getBlock();
583   EmitBlock(CondBlock);
584 
585   // Create a cleanup scope for the condition variable cleanups.
586   RunCleanupsScope ConditionScope(*this);
587 
588   llvm::Value *BoolCondVal = 0;
589   if (S.getCond()) {
590     // If the for statement has a condition scope, emit the local variable
591     // declaration.
592     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
593     if (S.getConditionVariable()) {
594       EmitAutoVarDecl(*S.getConditionVariable());
595     }
596 
597     // If there are any cleanups between here and the loop-exit scope,
598     // create a block to stage a loop exit along.
599     if (ForScope.requiresCleanups())
600       ExitBlock = createBasicBlock("for.cond.cleanup");
601 
602     // As long as the condition is true, iterate the loop.
603     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
604 
605     // C99 6.8.5p2/p4: The first substatement is executed if the expression
606     // compares unequal to 0.  The condition must be a scalar type.
607     BoolCondVal = EvaluateExprAsBool(S.getCond());
608     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
609 
610     if (ExitBlock != LoopExit.getBlock()) {
611       EmitBlock(ExitBlock);
612       EmitBranchThroughCleanup(LoopExit);
613     }
614 
615     EmitBlock(ForBody);
616   } else {
617     // Treat it as a non-zero constant.  Don't even create a new block for the
618     // body, just fall into it.
619   }
620 
621   // If the for loop doesn't have an increment we can just use the
622   // condition as the continue block.  Otherwise we'll need to create
623   // a block for it (in the current scope, i.e. in the scope of the
624   // condition), and that we will become our continue block.
625   if (S.getInc())
626     Continue = getJumpDestInCurrentScope("for.inc");
627 
628   // Store the blocks to use for break and continue.
629   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
630 
631   {
632     // Create a separate cleanup scope for the body, in case it is not
633     // a compound statement.
634     RunCleanupsScope BodyScope(*this);
635     EmitStmt(S.getBody());
636   }
637 
638   // If there is an increment, emit it next.
639   if (S.getInc()) {
640     EmitBlock(Continue.getBlock());
641     EmitStmt(S.getInc());
642   }
643 
644   BreakContinueStack.pop_back();
645 
646   ConditionScope.ForceCleanup();
647   EmitBranch(CondBlock);
648 
649   ForScope.ForceCleanup();
650 
651   if (DI)
652     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
653 
654   // Emit the fall-through block.
655   EmitBlock(LoopExit.getBlock(), true);
656 }
657 
658 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
659   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
660 
661   RunCleanupsScope ForScope(*this);
662 
663   CGDebugInfo *DI = getDebugInfo();
664   if (DI)
665     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
666 
667   // Evaluate the first pieces before the loop.
668   EmitStmt(S.getRangeStmt());
669   EmitStmt(S.getBeginEndStmt());
670 
671   // Start the loop with a block that tests the condition.
672   // If there's an increment, the continue scope will be overwritten
673   // later.
674   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
675   EmitBlock(CondBlock);
676 
677   // If there are any cleanups between here and the loop-exit scope,
678   // create a block to stage a loop exit along.
679   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
680   if (ForScope.requiresCleanups())
681     ExitBlock = createBasicBlock("for.cond.cleanup");
682 
683   // The loop body, consisting of the specified body and the loop variable.
684   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
685 
686   // The body is executed if the expression, contextually converted
687   // to bool, is true.
688   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
689   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
690 
691   if (ExitBlock != LoopExit.getBlock()) {
692     EmitBlock(ExitBlock);
693     EmitBranchThroughCleanup(LoopExit);
694   }
695 
696   EmitBlock(ForBody);
697 
698   // Create a block for the increment. In case of a 'continue', we jump there.
699   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
700 
701   // Store the blocks to use for break and continue.
702   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
703 
704   {
705     // Create a separate cleanup scope for the loop variable and body.
706     RunCleanupsScope BodyScope(*this);
707     EmitStmt(S.getLoopVarStmt());
708     EmitStmt(S.getBody());
709   }
710 
711   // If there is an increment, emit it next.
712   EmitBlock(Continue.getBlock());
713   EmitStmt(S.getInc());
714 
715   BreakContinueStack.pop_back();
716 
717   EmitBranch(CondBlock);
718 
719   ForScope.ForceCleanup();
720 
721   if (DI)
722     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
723 
724   // Emit the fall-through block.
725   EmitBlock(LoopExit.getBlock(), true);
726 }
727 
728 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
729   if (RV.isScalar()) {
730     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
731   } else if (RV.isAggregate()) {
732     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
733   } else {
734     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
735   }
736   EmitBranchThroughCleanup(ReturnBlock);
737 }
738 
739 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
740 /// if the function returns void, or may be missing one if the function returns
741 /// non-void.  Fun stuff :).
742 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
743   // Emit the result value, even if unused, to evalute the side effects.
744   const Expr *RV = S.getRetValue();
745 
746   // FIXME: Clean this up by using an LValue for ReturnTemp,
747   // EmitStoreThroughLValue, and EmitAnyExpr.
748   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
749       !Target.useGlobalsForAutomaticVariables()) {
750     // Apply the named return value optimization for this return statement,
751     // which means doing nothing: the appropriate result has already been
752     // constructed into the NRVO variable.
753 
754     // If there is an NRVO flag for this variable, set it to 1 into indicate
755     // that the cleanup code should not destroy the variable.
756     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
757       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
758   } else if (!ReturnValue) {
759     // Make sure not to return anything, but evaluate the expression
760     // for side effects.
761     if (RV)
762       EmitAnyExpr(RV);
763   } else if (RV == 0) {
764     // Do nothing (return value is left uninitialized)
765   } else if (FnRetTy->isReferenceType()) {
766     // If this function returns a reference, take the address of the expression
767     // rather than the value.
768     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
769     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
770   } else if (!hasAggregateLLVMType(RV->getType())) {
771     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
772   } else if (RV->getType()->isAnyComplexType()) {
773     EmitComplexExprIntoAddr(RV, ReturnValue, false);
774   } else {
775     CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
776     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment, Qualifiers(),
777                                           AggValueSlot::IsDestructed,
778                                           AggValueSlot::DoesNotNeedGCBarriers,
779                                           AggValueSlot::IsNotAliased));
780   }
781 
782   EmitBranchThroughCleanup(ReturnBlock);
783 }
784 
785 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
786   // As long as debug info is modeled with instructions, we have to ensure we
787   // have a place to insert here and write the stop point here.
788   if (getDebugInfo() && HaveInsertPoint())
789     EmitStopPoint(&S);
790 
791   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
792        I != E; ++I)
793     EmitDecl(**I);
794 }
795 
796 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
797   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
798 
799   // If this code is reachable then emit a stop point (if generating
800   // debug info). We have to do this ourselves because we are on the
801   // "simple" statement path.
802   if (HaveInsertPoint())
803     EmitStopPoint(&S);
804 
805   JumpDest Block = BreakContinueStack.back().BreakBlock;
806   EmitBranchThroughCleanup(Block);
807 }
808 
809 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
810   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
811 
812   // If this code is reachable then emit a stop point (if generating
813   // debug info). We have to do this ourselves because we are on the
814   // "simple" statement path.
815   if (HaveInsertPoint())
816     EmitStopPoint(&S);
817 
818   JumpDest Block = BreakContinueStack.back().ContinueBlock;
819   EmitBranchThroughCleanup(Block);
820 }
821 
822 /// EmitCaseStmtRange - If case statement range is not too big then
823 /// add multiple cases to switch instruction, one for each value within
824 /// the range. If range is too big then emit "if" condition check.
825 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
826   assert(S.getRHS() && "Expected RHS value in CaseStmt");
827 
828   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
829   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
830 
831   // Emit the code for this case. We do this first to make sure it is
832   // properly chained from our predecessor before generating the
833   // switch machinery to enter this block.
834   EmitBlock(createBasicBlock("sw.bb"));
835   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
836   EmitStmt(S.getSubStmt());
837 
838   // If range is empty, do nothing.
839   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
840     return;
841 
842   llvm::APInt Range = RHS - LHS;
843   // FIXME: parameters such as this should not be hardcoded.
844   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
845     // Range is small enough to add multiple switch instruction cases.
846     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
847       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
848       LHS++;
849     }
850     return;
851   }
852 
853   // The range is too big. Emit "if" condition into a new block,
854   // making sure to save and restore the current insertion point.
855   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
856 
857   // Push this test onto the chain of range checks (which terminates
858   // in the default basic block). The switch's default will be changed
859   // to the top of this chain after switch emission is complete.
860   llvm::BasicBlock *FalseDest = CaseRangeBlock;
861   CaseRangeBlock = createBasicBlock("sw.caserange");
862 
863   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
864   Builder.SetInsertPoint(CaseRangeBlock);
865 
866   // Emit range check.
867   llvm::Value *Diff =
868     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
869   llvm::Value *Cond =
870     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
871   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
872 
873   // Restore the appropriate insertion point.
874   if (RestoreBB)
875     Builder.SetInsertPoint(RestoreBB);
876   else
877     Builder.ClearInsertionPoint();
878 }
879 
880 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
881   // If there is no enclosing switch instance that we're aware of, then this
882   // case statement and its block can be elided.  This situation only happens
883   // when we've constant-folded the switch, are emitting the constant case,
884   // and part of the constant case includes another case statement.  For
885   // instance: switch (4) { case 4: do { case 5: } while (1); }
886   if (!SwitchInsn) {
887     EmitStmt(S.getSubStmt());
888     return;
889   }
890 
891   // Handle case ranges.
892   if (S.getRHS()) {
893     EmitCaseStmtRange(S);
894     return;
895   }
896 
897   llvm::ConstantInt *CaseVal =
898     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
899 
900   // If the body of the case is just a 'break', and if there was no fallthrough,
901   // try to not emit an empty block.
902   if (isa<BreakStmt>(S.getSubStmt())) {
903     JumpDest Block = BreakContinueStack.back().BreakBlock;
904 
905     // Only do this optimization if there are no cleanups that need emitting.
906     if (isObviouslyBranchWithoutCleanups(Block)) {
907       SwitchInsn->addCase(CaseVal, Block.getBlock());
908 
909       // If there was a fallthrough into this case, make sure to redirect it to
910       // the end of the switch as well.
911       if (Builder.GetInsertBlock()) {
912         Builder.CreateBr(Block.getBlock());
913         Builder.ClearInsertionPoint();
914       }
915       return;
916     }
917   }
918 
919   EmitBlock(createBasicBlock("sw.bb"));
920   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
921   SwitchInsn->addCase(CaseVal, CaseDest);
922 
923   // Recursively emitting the statement is acceptable, but is not wonderful for
924   // code where we have many case statements nested together, i.e.:
925   //  case 1:
926   //    case 2:
927   //      case 3: etc.
928   // Handling this recursively will create a new block for each case statement
929   // that falls through to the next case which is IR intensive.  It also causes
930   // deep recursion which can run into stack depth limitations.  Handle
931   // sequential non-range case statements specially.
932   const CaseStmt *CurCase = &S;
933   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
934 
935   // Otherwise, iteratively add consecutive cases to this switch stmt.
936   while (NextCase && NextCase->getRHS() == 0) {
937     CurCase = NextCase;
938     llvm::ConstantInt *CaseVal =
939       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
940     SwitchInsn->addCase(CaseVal, CaseDest);
941     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
942   }
943 
944   // Normal default recursion for non-cases.
945   EmitStmt(CurCase->getSubStmt());
946 }
947 
948 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
949   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
950   assert(DefaultBlock->empty() &&
951          "EmitDefaultStmt: Default block already defined?");
952   EmitBlock(DefaultBlock);
953   EmitStmt(S.getSubStmt());
954 }
955 
956 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
957 /// constant value that is being switched on, see if we can dead code eliminate
958 /// the body of the switch to a simple series of statements to emit.  Basically,
959 /// on a switch (5) we want to find these statements:
960 ///    case 5:
961 ///      printf(...);    <--
962 ///      ++i;            <--
963 ///      break;
964 ///
965 /// and add them to the ResultStmts vector.  If it is unsafe to do this
966 /// transformation (for example, one of the elided statements contains a label
967 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
968 /// should include statements after it (e.g. the printf() line is a substmt of
969 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
970 /// statement, then return CSFC_Success.
971 ///
972 /// If Case is non-null, then we are looking for the specified case, checking
973 /// that nothing we jump over contains labels.  If Case is null, then we found
974 /// the case and are looking for the break.
975 ///
976 /// If the recursive walk actually finds our Case, then we set FoundCase to
977 /// true.
978 ///
979 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
980 static CSFC_Result CollectStatementsForCase(const Stmt *S,
981                                             const SwitchCase *Case,
982                                             bool &FoundCase,
983                               SmallVectorImpl<const Stmt*> &ResultStmts) {
984   // If this is a null statement, just succeed.
985   if (S == 0)
986     return Case ? CSFC_Success : CSFC_FallThrough;
987 
988   // If this is the switchcase (case 4: or default) that we're looking for, then
989   // we're in business.  Just add the substatement.
990   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
991     if (S == Case) {
992       FoundCase = true;
993       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
994                                       ResultStmts);
995     }
996 
997     // Otherwise, this is some other case or default statement, just ignore it.
998     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
999                                     ResultStmts);
1000   }
1001 
1002   // If we are in the live part of the code and we found our break statement,
1003   // return a success!
1004   if (Case == 0 && isa<BreakStmt>(S))
1005     return CSFC_Success;
1006 
1007   // If this is a switch statement, then it might contain the SwitchCase, the
1008   // break, or neither.
1009   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1010     // Handle this as two cases: we might be looking for the SwitchCase (if so
1011     // the skipped statements must be skippable) or we might already have it.
1012     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1013     if (Case) {
1014       // Keep track of whether we see a skipped declaration.  The code could be
1015       // using the declaration even if it is skipped, so we can't optimize out
1016       // the decl if the kept statements might refer to it.
1017       bool HadSkippedDecl = false;
1018 
1019       // If we're looking for the case, just see if we can skip each of the
1020       // substatements.
1021       for (; Case && I != E; ++I) {
1022         HadSkippedDecl |= isa<DeclStmt>(*I);
1023 
1024         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1025         case CSFC_Failure: return CSFC_Failure;
1026         case CSFC_Success:
1027           // A successful result means that either 1) that the statement doesn't
1028           // have the case and is skippable, or 2) does contain the case value
1029           // and also contains the break to exit the switch.  In the later case,
1030           // we just verify the rest of the statements are elidable.
1031           if (FoundCase) {
1032             // If we found the case and skipped declarations, we can't do the
1033             // optimization.
1034             if (HadSkippedDecl)
1035               return CSFC_Failure;
1036 
1037             for (++I; I != E; ++I)
1038               if (CodeGenFunction::ContainsLabel(*I, true))
1039                 return CSFC_Failure;
1040             return CSFC_Success;
1041           }
1042           break;
1043         case CSFC_FallThrough:
1044           // If we have a fallthrough condition, then we must have found the
1045           // case started to include statements.  Consider the rest of the
1046           // statements in the compound statement as candidates for inclusion.
1047           assert(FoundCase && "Didn't find case but returned fallthrough?");
1048           // We recursively found Case, so we're not looking for it anymore.
1049           Case = 0;
1050 
1051           // If we found the case and skipped declarations, we can't do the
1052           // optimization.
1053           if (HadSkippedDecl)
1054             return CSFC_Failure;
1055           break;
1056         }
1057       }
1058     }
1059 
1060     // If we have statements in our range, then we know that the statements are
1061     // live and need to be added to the set of statements we're tracking.
1062     for (; I != E; ++I) {
1063       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1064       case CSFC_Failure: return CSFC_Failure;
1065       case CSFC_FallThrough:
1066         // A fallthrough result means that the statement was simple and just
1067         // included in ResultStmt, keep adding them afterwards.
1068         break;
1069       case CSFC_Success:
1070         // A successful result means that we found the break statement and
1071         // stopped statement inclusion.  We just ensure that any leftover stmts
1072         // are skippable and return success ourselves.
1073         for (++I; I != E; ++I)
1074           if (CodeGenFunction::ContainsLabel(*I, true))
1075             return CSFC_Failure;
1076         return CSFC_Success;
1077       }
1078     }
1079 
1080     return Case ? CSFC_Success : CSFC_FallThrough;
1081   }
1082 
1083   // Okay, this is some other statement that we don't handle explicitly, like a
1084   // for statement or increment etc.  If we are skipping over this statement,
1085   // just verify it doesn't have labels, which would make it invalid to elide.
1086   if (Case) {
1087     if (CodeGenFunction::ContainsLabel(S, true))
1088       return CSFC_Failure;
1089     return CSFC_Success;
1090   }
1091 
1092   // Otherwise, we want to include this statement.  Everything is cool with that
1093   // so long as it doesn't contain a break out of the switch we're in.
1094   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1095 
1096   // Otherwise, everything is great.  Include the statement and tell the caller
1097   // that we fall through and include the next statement as well.
1098   ResultStmts.push_back(S);
1099   return CSFC_FallThrough;
1100 }
1101 
1102 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1103 /// then invoke CollectStatementsForCase to find the list of statements to emit
1104 /// for a switch on constant.  See the comment above CollectStatementsForCase
1105 /// for more details.
1106 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1107                                        const llvm::APInt &ConstantCondValue,
1108                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1109                                        ASTContext &C) {
1110   // First step, find the switch case that is being branched to.  We can do this
1111   // efficiently by scanning the SwitchCase list.
1112   const SwitchCase *Case = S.getSwitchCaseList();
1113   const DefaultStmt *DefaultCase = 0;
1114 
1115   for (; Case; Case = Case->getNextSwitchCase()) {
1116     // It's either a default or case.  Just remember the default statement in
1117     // case we're not jumping to any numbered cases.
1118     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1119       DefaultCase = DS;
1120       continue;
1121     }
1122 
1123     // Check to see if this case is the one we're looking for.
1124     const CaseStmt *CS = cast<CaseStmt>(Case);
1125     // Don't handle case ranges yet.
1126     if (CS->getRHS()) return false;
1127 
1128     // If we found our case, remember it as 'case'.
1129     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1130       break;
1131   }
1132 
1133   // If we didn't find a matching case, we use a default if it exists, or we
1134   // elide the whole switch body!
1135   if (Case == 0) {
1136     // It is safe to elide the body of the switch if it doesn't contain labels
1137     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1138     if (DefaultCase == 0)
1139       return !CodeGenFunction::ContainsLabel(&S);
1140     Case = DefaultCase;
1141   }
1142 
1143   // Ok, we know which case is being jumped to, try to collect all the
1144   // statements that follow it.  This can fail for a variety of reasons.  Also,
1145   // check to see that the recursive walk actually found our case statement.
1146   // Insane cases like this can fail to find it in the recursive walk since we
1147   // don't handle every stmt kind:
1148   // switch (4) {
1149   //   while (1) {
1150   //     case 4: ...
1151   bool FoundCase = false;
1152   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1153                                   ResultStmts) != CSFC_Failure &&
1154          FoundCase;
1155 }
1156 
1157 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1158   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1159 
1160   RunCleanupsScope ConditionScope(*this);
1161 
1162   if (S.getConditionVariable())
1163     EmitAutoVarDecl(*S.getConditionVariable());
1164 
1165   // Handle nested switch statements.
1166   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1167   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1168 
1169   // See if we can constant fold the condition of the switch and therefore only
1170   // emit the live case statement (if any) of the switch.
1171   llvm::APInt ConstantCondValue;
1172   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1173     SmallVector<const Stmt*, 4> CaseStmts;
1174     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1175                                    getContext())) {
1176       RunCleanupsScope ExecutedScope(*this);
1177 
1178       // At this point, we are no longer "within" a switch instance, so
1179       // we can temporarily enforce this to ensure that any embedded case
1180       // statements are not emitted.
1181       SwitchInsn = 0;
1182 
1183       // Okay, we can dead code eliminate everything except this case.  Emit the
1184       // specified series of statements and we're good.
1185       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1186         EmitStmt(CaseStmts[i]);
1187 
1188       // Now we want to restore the saved switch instance so that nested switches
1189       // continue to function properly
1190       SwitchInsn = SavedSwitchInsn;
1191 
1192       return;
1193     }
1194   }
1195 
1196   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1197 
1198   // Create basic block to hold stuff that comes after switch
1199   // statement. We also need to create a default block now so that
1200   // explicit case ranges tests can have a place to jump to on
1201   // failure.
1202   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1203   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1204   CaseRangeBlock = DefaultBlock;
1205 
1206   // Clear the insertion point to indicate we are in unreachable code.
1207   Builder.ClearInsertionPoint();
1208 
1209   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1210   // then reuse last ContinueBlock.
1211   JumpDest OuterContinue;
1212   if (!BreakContinueStack.empty())
1213     OuterContinue = BreakContinueStack.back().ContinueBlock;
1214 
1215   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1216 
1217   // Emit switch body.
1218   EmitStmt(S.getBody());
1219 
1220   BreakContinueStack.pop_back();
1221 
1222   // Update the default block in case explicit case range tests have
1223   // been chained on top.
1224   SwitchInsn->setDefaultDest(CaseRangeBlock);
1225 
1226   // If a default was never emitted:
1227   if (!DefaultBlock->getParent()) {
1228     // If we have cleanups, emit the default block so that there's a
1229     // place to jump through the cleanups from.
1230     if (ConditionScope.requiresCleanups()) {
1231       EmitBlock(DefaultBlock);
1232 
1233     // Otherwise, just forward the default block to the switch end.
1234     } else {
1235       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1236       delete DefaultBlock;
1237     }
1238   }
1239 
1240   ConditionScope.ForceCleanup();
1241 
1242   // Emit continuation.
1243   EmitBlock(SwitchExit.getBlock(), true);
1244 
1245   SwitchInsn = SavedSwitchInsn;
1246   CaseRangeBlock = SavedCRBlock;
1247 }
1248 
1249 static std::string
1250 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1251                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1252   std::string Result;
1253 
1254   while (*Constraint) {
1255     switch (*Constraint) {
1256     default:
1257       Result += Target.convertConstraint(Constraint);
1258       break;
1259     // Ignore these
1260     case '*':
1261     case '?':
1262     case '!':
1263     case '=': // Will see this and the following in mult-alt constraints.
1264     case '+':
1265       break;
1266     case ',':
1267       Result += "|";
1268       break;
1269     case 'g':
1270       Result += "imr";
1271       break;
1272     case '[': {
1273       assert(OutCons &&
1274              "Must pass output names to constraints with a symbolic name");
1275       unsigned Index;
1276       bool result = Target.resolveSymbolicName(Constraint,
1277                                                &(*OutCons)[0],
1278                                                OutCons->size(), Index);
1279       assert(result && "Could not resolve symbolic name"); (void)result;
1280       Result += llvm::utostr(Index);
1281       break;
1282     }
1283     }
1284 
1285     Constraint++;
1286   }
1287 
1288   return Result;
1289 }
1290 
1291 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1292 /// as using a particular register add that as a constraint that will be used
1293 /// in this asm stmt.
1294 static std::string
1295 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1296                        const TargetInfo &Target, CodeGenModule &CGM,
1297                        const AsmStmt &Stmt) {
1298   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1299   if (!AsmDeclRef)
1300     return Constraint;
1301   const ValueDecl &Value = *AsmDeclRef->getDecl();
1302   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1303   if (!Variable)
1304     return Constraint;
1305   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1306   if (!Attr)
1307     return Constraint;
1308   StringRef Register = Attr->getLabel();
1309   assert(Target.isValidGCCRegisterName(Register));
1310   // We're using validateOutputConstraint here because we only care if
1311   // this is a register constraint.
1312   TargetInfo::ConstraintInfo Info(Constraint, "");
1313   if (Target.validateOutputConstraint(Info) &&
1314       !Info.allowsRegister()) {
1315     CGM.ErrorUnsupported(&Stmt, "__asm__");
1316     return Constraint;
1317   }
1318   // Canonicalize the register here before returning it.
1319   Register = Target.getNormalizedGCCRegisterName(Register);
1320   return "{" + Register.str() + "}";
1321 }
1322 
1323 llvm::Value*
1324 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1325                                     const TargetInfo::ConstraintInfo &Info,
1326                                     LValue InputValue, QualType InputType,
1327                                     std::string &ConstraintStr) {
1328   llvm::Value *Arg;
1329   if (Info.allowsRegister() || !Info.allowsMemory()) {
1330     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1331       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1332     } else {
1333       llvm::Type *Ty = ConvertType(InputType);
1334       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1335       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1336         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1337         Ty = llvm::PointerType::getUnqual(Ty);
1338 
1339         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1340                                                        Ty));
1341       } else {
1342         Arg = InputValue.getAddress();
1343         ConstraintStr += '*';
1344       }
1345     }
1346   } else {
1347     Arg = InputValue.getAddress();
1348     ConstraintStr += '*';
1349   }
1350 
1351   return Arg;
1352 }
1353 
1354 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1355                                          const TargetInfo::ConstraintInfo &Info,
1356                                            const Expr *InputExpr,
1357                                            std::string &ConstraintStr) {
1358   if (Info.allowsRegister() || !Info.allowsMemory())
1359     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1360       return EmitScalarExpr(InputExpr);
1361 
1362   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1363   LValue Dest = EmitLValue(InputExpr);
1364   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1365 }
1366 
1367 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1368 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1369 /// integers which are the source locations of the start of each line in the
1370 /// asm.
1371 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1372                                       CodeGenFunction &CGF) {
1373   SmallVector<llvm::Value *, 8> Locs;
1374   // Add the location of the first line to the MDNode.
1375   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1376                                         Str->getLocStart().getRawEncoding()));
1377   StringRef StrVal = Str->getString();
1378   if (!StrVal.empty()) {
1379     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1380     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1381 
1382     // Add the location of the start of each subsequent line of the asm to the
1383     // MDNode.
1384     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1385       if (StrVal[i] != '\n') continue;
1386       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1387                                                       CGF.Target);
1388       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1389                                             LineLoc.getRawEncoding()));
1390     }
1391   }
1392 
1393   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1394 }
1395 
1396 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1397   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1398   // has already done this, so it is guaranteed to be successful.
1399   SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1400   unsigned DiagOffs;
1401   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1402 
1403   // Assemble the pieces into the final asm string.
1404   std::string AsmString;
1405   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1406     if (Pieces[i].isString())
1407       AsmString += Pieces[i].getString();
1408     else if (Pieces[i].getModifier() == '\0')
1409       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1410     else
1411       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1412                    Pieces[i].getModifier() + '}';
1413   }
1414 
1415   // Get all the output and input constraints together.
1416   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1417   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1418 
1419   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1420     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1421                                     S.getOutputName(i));
1422     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1423     assert(IsValid && "Failed to parse output constraint");
1424     OutputConstraintInfos.push_back(Info);
1425   }
1426 
1427   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1428     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1429                                     S.getInputName(i));
1430     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1431                                                   S.getNumOutputs(), Info);
1432     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1433     InputConstraintInfos.push_back(Info);
1434   }
1435 
1436   std::string Constraints;
1437 
1438   std::vector<LValue> ResultRegDests;
1439   std::vector<QualType> ResultRegQualTys;
1440   std::vector<llvm::Type *> ResultRegTypes;
1441   std::vector<llvm::Type *> ResultTruncRegTypes;
1442   std::vector<llvm::Type*> ArgTypes;
1443   std::vector<llvm::Value*> Args;
1444 
1445   // Keep track of inout constraints.
1446   std::string InOutConstraints;
1447   std::vector<llvm::Value*> InOutArgs;
1448   std::vector<llvm::Type*> InOutArgTypes;
1449 
1450   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1451     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1452 
1453     // Simplify the output constraint.
1454     std::string OutputConstraint(S.getOutputConstraint(i));
1455     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1456 
1457     const Expr *OutExpr = S.getOutputExpr(i);
1458     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1459 
1460     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1461                                               Target, CGM, S);
1462 
1463     LValue Dest = EmitLValue(OutExpr);
1464     if (!Constraints.empty())
1465       Constraints += ',';
1466 
1467     // If this is a register output, then make the inline asm return it
1468     // by-value.  If this is a memory result, return the value by-reference.
1469     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1470       Constraints += "=" + OutputConstraint;
1471       ResultRegQualTys.push_back(OutExpr->getType());
1472       ResultRegDests.push_back(Dest);
1473       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1474       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1475 
1476       // If this output is tied to an input, and if the input is larger, then
1477       // we need to set the actual result type of the inline asm node to be the
1478       // same as the input type.
1479       if (Info.hasMatchingInput()) {
1480         unsigned InputNo;
1481         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1482           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1483           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1484             break;
1485         }
1486         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1487 
1488         QualType InputTy = S.getInputExpr(InputNo)->getType();
1489         QualType OutputType = OutExpr->getType();
1490 
1491         uint64_t InputSize = getContext().getTypeSize(InputTy);
1492         if (getContext().getTypeSize(OutputType) < InputSize) {
1493           // Form the asm to return the value as a larger integer or fp type.
1494           ResultRegTypes.back() = ConvertType(InputTy);
1495         }
1496       }
1497       if (llvm::Type* AdjTy =
1498             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1499                                                  ResultRegTypes.back()))
1500         ResultRegTypes.back() = AdjTy;
1501     } else {
1502       ArgTypes.push_back(Dest.getAddress()->getType());
1503       Args.push_back(Dest.getAddress());
1504       Constraints += "=*";
1505       Constraints += OutputConstraint;
1506     }
1507 
1508     if (Info.isReadWrite()) {
1509       InOutConstraints += ',';
1510 
1511       const Expr *InputExpr = S.getOutputExpr(i);
1512       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1513                                             InOutConstraints);
1514 
1515       if (Info.allowsRegister())
1516         InOutConstraints += llvm::utostr(i);
1517       else
1518         InOutConstraints += OutputConstraint;
1519 
1520       InOutArgTypes.push_back(Arg->getType());
1521       InOutArgs.push_back(Arg);
1522     }
1523   }
1524 
1525   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1526 
1527   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1528     const Expr *InputExpr = S.getInputExpr(i);
1529 
1530     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1531 
1532     if (!Constraints.empty())
1533       Constraints += ',';
1534 
1535     // Simplify the input constraint.
1536     std::string InputConstraint(S.getInputConstraint(i));
1537     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1538                                          &OutputConstraintInfos);
1539 
1540     InputConstraint =
1541       AddVariableConstraints(InputConstraint,
1542                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1543                             Target, CGM, S);
1544 
1545     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1546 
1547     // If this input argument is tied to a larger output result, extend the
1548     // input to be the same size as the output.  The LLVM backend wants to see
1549     // the input and output of a matching constraint be the same size.  Note
1550     // that GCC does not define what the top bits are here.  We use zext because
1551     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1552     if (Info.hasTiedOperand()) {
1553       unsigned Output = Info.getTiedOperand();
1554       QualType OutputType = S.getOutputExpr(Output)->getType();
1555       QualType InputTy = InputExpr->getType();
1556 
1557       if (getContext().getTypeSize(OutputType) >
1558           getContext().getTypeSize(InputTy)) {
1559         // Use ptrtoint as appropriate so that we can do our extension.
1560         if (isa<llvm::PointerType>(Arg->getType()))
1561           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1562         llvm::Type *OutputTy = ConvertType(OutputType);
1563         if (isa<llvm::IntegerType>(OutputTy))
1564           Arg = Builder.CreateZExt(Arg, OutputTy);
1565         else if (isa<llvm::PointerType>(OutputTy))
1566           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1567         else {
1568           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1569           Arg = Builder.CreateFPExt(Arg, OutputTy);
1570         }
1571       }
1572     }
1573     if (llvm::Type* AdjTy =
1574               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1575                                                    Arg->getType()))
1576       Arg = Builder.CreateBitCast(Arg, AdjTy);
1577 
1578     ArgTypes.push_back(Arg->getType());
1579     Args.push_back(Arg);
1580     Constraints += InputConstraint;
1581   }
1582 
1583   // Append the "input" part of inout constraints last.
1584   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1585     ArgTypes.push_back(InOutArgTypes[i]);
1586     Args.push_back(InOutArgs[i]);
1587   }
1588   Constraints += InOutConstraints;
1589 
1590   // Clobbers
1591   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1592     StringRef Clobber = S.getClobber(i)->getString();
1593 
1594     if (Clobber != "memory" && Clobber != "cc")
1595     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1596 
1597     if (i != 0 || NumConstraints != 0)
1598       Constraints += ',';
1599 
1600     Constraints += "~{";
1601     Constraints += Clobber;
1602     Constraints += '}';
1603   }
1604 
1605   // Add machine specific clobbers
1606   std::string MachineClobbers = Target.getClobbers();
1607   if (!MachineClobbers.empty()) {
1608     if (!Constraints.empty())
1609       Constraints += ',';
1610     Constraints += MachineClobbers;
1611   }
1612 
1613   llvm::Type *ResultType;
1614   if (ResultRegTypes.empty())
1615     ResultType = llvm::Type::getVoidTy(getLLVMContext());
1616   else if (ResultRegTypes.size() == 1)
1617     ResultType = ResultRegTypes[0];
1618   else
1619     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1620 
1621   llvm::FunctionType *FTy =
1622     llvm::FunctionType::get(ResultType, ArgTypes, false);
1623 
1624   llvm::InlineAsm *IA =
1625     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1626                          S.isVolatile() || S.getNumOutputs() == 0);
1627   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1628   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1629 
1630   // Slap the source location of the inline asm into a !srcloc metadata on the
1631   // call.
1632   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1633 
1634   // Extract all of the register value results from the asm.
1635   std::vector<llvm::Value*> RegResults;
1636   if (ResultRegTypes.size() == 1) {
1637     RegResults.push_back(Result);
1638   } else {
1639     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1640       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1641       RegResults.push_back(Tmp);
1642     }
1643   }
1644 
1645   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1646     llvm::Value *Tmp = RegResults[i];
1647 
1648     // If the result type of the LLVM IR asm doesn't match the result type of
1649     // the expression, do the conversion.
1650     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1651       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1652 
1653       // Truncate the integer result to the right size, note that TruncTy can be
1654       // a pointer.
1655       if (TruncTy->isFloatingPointTy())
1656         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1657       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1658         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1659         Tmp = Builder.CreateTrunc(Tmp,
1660                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1661         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1662       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1663         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1664         Tmp = Builder.CreatePtrToInt(Tmp,
1665                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1666         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1667       } else if (TruncTy->isIntegerTy()) {
1668         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1669       } else if (TruncTy->isVectorTy()) {
1670         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1671       }
1672     }
1673 
1674     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1675   }
1676 }
1677