1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/PrettyStackTrace.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/Support/SaveAndRestore.h"
31 
32 using namespace clang;
33 using namespace CodeGen;
34 
35 //===----------------------------------------------------------------------===//
36 //                              Statement Emission
37 //===----------------------------------------------------------------------===//
38 
39 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
40   if (CGDebugInfo *DI = getDebugInfo()) {
41     SourceLocation Loc;
42     Loc = S->getBeginLoc();
43     DI->EmitLocation(Builder, Loc);
44 
45     LastStopPoint = Loc;
46   }
47 }
48 
49 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
50   assert(S && "Null statement?");
51   PGO.setCurrentStmt(S);
52 
53   // These statements have their own debug info handling.
54   if (EmitSimpleStmt(S, Attrs))
55     return;
56 
57   // Check if we are generating unreachable code.
58   if (!HaveInsertPoint()) {
59     // If so, and the statement doesn't contain a label, then we do not need to
60     // generate actual code. This is safe because (1) the current point is
61     // unreachable, so we don't need to execute the code, and (2) we've already
62     // handled the statements which update internal data structures (like the
63     // local variable map) which could be used by subsequent statements.
64     if (!ContainsLabel(S)) {
65       // Verify that any decl statements were handled as simple, they may be in
66       // scope of subsequent reachable statements.
67       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
68       return;
69     }
70 
71     // Otherwise, make a new block to hold the code.
72     EnsureInsertPoint();
73   }
74 
75   // Generate a stoppoint if we are emitting debug info.
76   EmitStopPoint(S);
77 
78   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
79   // enabled.
80   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
81     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
82       EmitSimpleOMPExecutableDirective(*D);
83       return;
84     }
85   }
86 
87   switch (S->getStmtClass()) {
88   case Stmt::NoStmtClass:
89   case Stmt::CXXCatchStmtClass:
90   case Stmt::SEHExceptStmtClass:
91   case Stmt::SEHFinallyStmtClass:
92   case Stmt::MSDependentExistsStmtClass:
93     llvm_unreachable("invalid statement class to emit generically");
94   case Stmt::NullStmtClass:
95   case Stmt::CompoundStmtClass:
96   case Stmt::DeclStmtClass:
97   case Stmt::LabelStmtClass:
98   case Stmt::AttributedStmtClass:
99   case Stmt::GotoStmtClass:
100   case Stmt::BreakStmtClass:
101   case Stmt::ContinueStmtClass:
102   case Stmt::DefaultStmtClass:
103   case Stmt::CaseStmtClass:
104   case Stmt::SEHLeaveStmtClass:
105     llvm_unreachable("should have emitted these statements as simple");
106 
107 #define STMT(Type, Base)
108 #define ABSTRACT_STMT(Op)
109 #define EXPR(Type, Base) \
110   case Stmt::Type##Class:
111 #include "clang/AST/StmtNodes.inc"
112   {
113     // Remember the block we came in on.
114     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
115     assert(incoming && "expression emission must have an insertion point");
116 
117     EmitIgnoredExpr(cast<Expr>(S));
118 
119     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
120     assert(outgoing && "expression emission cleared block!");
121 
122     // The expression emitters assume (reasonably!) that the insertion
123     // point is always set.  To maintain that, the call-emission code
124     // for noreturn functions has to enter a new block with no
125     // predecessors.  We want to kill that block and mark the current
126     // insertion point unreachable in the common case of a call like
127     // "exit();".  Since expression emission doesn't otherwise create
128     // blocks with no predecessors, we can just test for that.
129     // However, we must be careful not to do this to our incoming
130     // block, because *statement* emission does sometimes create
131     // reachable blocks which will have no predecessors until later in
132     // the function.  This occurs with, e.g., labels that are not
133     // reachable by fallthrough.
134     if (incoming != outgoing && outgoing->use_empty()) {
135       outgoing->eraseFromParent();
136       Builder.ClearInsertionPoint();
137     }
138     break;
139   }
140 
141   case Stmt::IndirectGotoStmtClass:
142     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
143 
144   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
145   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
146   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
147   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
148 
149   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
150 
151   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
152   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
153   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
154   case Stmt::CoroutineBodyStmtClass:
155     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
156     break;
157   case Stmt::CoreturnStmtClass:
158     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
159     break;
160   case Stmt::CapturedStmtClass: {
161     const CapturedStmt *CS = cast<CapturedStmt>(S);
162     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
163     }
164     break;
165   case Stmt::ObjCAtTryStmtClass:
166     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
167     break;
168   case Stmt::ObjCAtCatchStmtClass:
169     llvm_unreachable(
170                     "@catch statements should be handled by EmitObjCAtTryStmt");
171   case Stmt::ObjCAtFinallyStmtClass:
172     llvm_unreachable(
173                   "@finally statements should be handled by EmitObjCAtTryStmt");
174   case Stmt::ObjCAtThrowStmtClass:
175     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
176     break;
177   case Stmt::ObjCAtSynchronizedStmtClass:
178     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
179     break;
180   case Stmt::ObjCForCollectionStmtClass:
181     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
182     break;
183   case Stmt::ObjCAutoreleasePoolStmtClass:
184     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
185     break;
186 
187   case Stmt::CXXTryStmtClass:
188     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
189     break;
190   case Stmt::CXXForRangeStmtClass:
191     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
192     break;
193   case Stmt::SEHTryStmtClass:
194     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
195     break;
196   case Stmt::OMPParallelDirectiveClass:
197     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
198     break;
199   case Stmt::OMPSimdDirectiveClass:
200     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
201     break;
202   case Stmt::OMPForDirectiveClass:
203     EmitOMPForDirective(cast<OMPForDirective>(*S));
204     break;
205   case Stmt::OMPForSimdDirectiveClass:
206     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
207     break;
208   case Stmt::OMPSectionsDirectiveClass:
209     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
210     break;
211   case Stmt::OMPSectionDirectiveClass:
212     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
213     break;
214   case Stmt::OMPSingleDirectiveClass:
215     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
216     break;
217   case Stmt::OMPMasterDirectiveClass:
218     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
219     break;
220   case Stmt::OMPCriticalDirectiveClass:
221     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
222     break;
223   case Stmt::OMPParallelForDirectiveClass:
224     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
225     break;
226   case Stmt::OMPParallelForSimdDirectiveClass:
227     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
228     break;
229   case Stmt::OMPParallelMasterDirectiveClass:
230     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
231     break;
232   case Stmt::OMPParallelSectionsDirectiveClass:
233     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
234     break;
235   case Stmt::OMPTaskDirectiveClass:
236     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
237     break;
238   case Stmt::OMPTaskyieldDirectiveClass:
239     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
240     break;
241   case Stmt::OMPBarrierDirectiveClass:
242     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
243     break;
244   case Stmt::OMPTaskwaitDirectiveClass:
245     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
246     break;
247   case Stmt::OMPTaskgroupDirectiveClass:
248     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
249     break;
250   case Stmt::OMPFlushDirectiveClass:
251     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
252     break;
253   case Stmt::OMPDepobjDirectiveClass:
254     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
255     break;
256   case Stmt::OMPScanDirectiveClass:
257     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
258     break;
259   case Stmt::OMPOrderedDirectiveClass:
260     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
261     break;
262   case Stmt::OMPAtomicDirectiveClass:
263     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
264     break;
265   case Stmt::OMPTargetDirectiveClass:
266     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
267     break;
268   case Stmt::OMPTeamsDirectiveClass:
269     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
270     break;
271   case Stmt::OMPCancellationPointDirectiveClass:
272     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
273     break;
274   case Stmt::OMPCancelDirectiveClass:
275     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
276     break;
277   case Stmt::OMPTargetDataDirectiveClass:
278     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
279     break;
280   case Stmt::OMPTargetEnterDataDirectiveClass:
281     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
282     break;
283   case Stmt::OMPTargetExitDataDirectiveClass:
284     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
285     break;
286   case Stmt::OMPTargetParallelDirectiveClass:
287     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
288     break;
289   case Stmt::OMPTargetParallelForDirectiveClass:
290     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
291     break;
292   case Stmt::OMPTaskLoopDirectiveClass:
293     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
294     break;
295   case Stmt::OMPTaskLoopSimdDirectiveClass:
296     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
297     break;
298   case Stmt::OMPMasterTaskLoopDirectiveClass:
299     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
300     break;
301   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
302     EmitOMPMasterTaskLoopSimdDirective(
303         cast<OMPMasterTaskLoopSimdDirective>(*S));
304     break;
305   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
306     EmitOMPParallelMasterTaskLoopDirective(
307         cast<OMPParallelMasterTaskLoopDirective>(*S));
308     break;
309   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
310     EmitOMPParallelMasterTaskLoopSimdDirective(
311         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
312     break;
313   case Stmt::OMPDistributeDirectiveClass:
314     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
315     break;
316   case Stmt::OMPTargetUpdateDirectiveClass:
317     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
318     break;
319   case Stmt::OMPDistributeParallelForDirectiveClass:
320     EmitOMPDistributeParallelForDirective(
321         cast<OMPDistributeParallelForDirective>(*S));
322     break;
323   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
324     EmitOMPDistributeParallelForSimdDirective(
325         cast<OMPDistributeParallelForSimdDirective>(*S));
326     break;
327   case Stmt::OMPDistributeSimdDirectiveClass:
328     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
329     break;
330   case Stmt::OMPTargetParallelForSimdDirectiveClass:
331     EmitOMPTargetParallelForSimdDirective(
332         cast<OMPTargetParallelForSimdDirective>(*S));
333     break;
334   case Stmt::OMPTargetSimdDirectiveClass:
335     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
336     break;
337   case Stmt::OMPTeamsDistributeDirectiveClass:
338     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
339     break;
340   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
341     EmitOMPTeamsDistributeSimdDirective(
342         cast<OMPTeamsDistributeSimdDirective>(*S));
343     break;
344   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
345     EmitOMPTeamsDistributeParallelForSimdDirective(
346         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
347     break;
348   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
349     EmitOMPTeamsDistributeParallelForDirective(
350         cast<OMPTeamsDistributeParallelForDirective>(*S));
351     break;
352   case Stmt::OMPTargetTeamsDirectiveClass:
353     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
354     break;
355   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
356     EmitOMPTargetTeamsDistributeDirective(
357         cast<OMPTargetTeamsDistributeDirective>(*S));
358     break;
359   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
360     EmitOMPTargetTeamsDistributeParallelForDirective(
361         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
362     break;
363   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
364     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
365         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
366     break;
367   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
368     EmitOMPTargetTeamsDistributeSimdDirective(
369         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
370     break;
371   }
372 }
373 
374 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
375                                      ArrayRef<const Attr *> Attrs) {
376   switch (S->getStmtClass()) {
377   default:
378     return false;
379   case Stmt::NullStmtClass:
380     break;
381   case Stmt::CompoundStmtClass:
382     EmitCompoundStmt(cast<CompoundStmt>(*S));
383     break;
384   case Stmt::DeclStmtClass:
385     EmitDeclStmt(cast<DeclStmt>(*S));
386     break;
387   case Stmt::LabelStmtClass:
388     EmitLabelStmt(cast<LabelStmt>(*S));
389     break;
390   case Stmt::AttributedStmtClass:
391     EmitAttributedStmt(cast<AttributedStmt>(*S));
392     break;
393   case Stmt::GotoStmtClass:
394     EmitGotoStmt(cast<GotoStmt>(*S));
395     break;
396   case Stmt::BreakStmtClass:
397     EmitBreakStmt(cast<BreakStmt>(*S));
398     break;
399   case Stmt::ContinueStmtClass:
400     EmitContinueStmt(cast<ContinueStmt>(*S));
401     break;
402   case Stmt::DefaultStmtClass:
403     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
404     break;
405   case Stmt::CaseStmtClass:
406     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
407     break;
408   case Stmt::SEHLeaveStmtClass:
409     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
410     break;
411   }
412   return true;
413 }
414 
415 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
416 /// this captures the expression result of the last sub-statement and returns it
417 /// (for use by the statement expression extension).
418 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
419                                           AggValueSlot AggSlot) {
420   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
421                              "LLVM IR generation of compound statement ('{}')");
422 
423   // Keep track of the current cleanup stack depth, including debug scopes.
424   LexicalScope Scope(*this, S.getSourceRange());
425 
426   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
427 }
428 
429 Address
430 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
431                                               bool GetLast,
432                                               AggValueSlot AggSlot) {
433 
434   const Stmt *ExprResult = S.getStmtExprResult();
435   assert((!GetLast || (GetLast && ExprResult)) &&
436          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
437 
438   Address RetAlloca = Address::invalid();
439 
440   for (auto *CurStmt : S.body()) {
441     if (GetLast && ExprResult == CurStmt) {
442       // We have to special case labels here.  They are statements, but when put
443       // at the end of a statement expression, they yield the value of their
444       // subexpression.  Handle this by walking through all labels we encounter,
445       // emitting them before we evaluate the subexpr.
446       // Similar issues arise for attributed statements.
447       while (!isa<Expr>(ExprResult)) {
448         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
449           EmitLabel(LS->getDecl());
450           ExprResult = LS->getSubStmt();
451         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
452           // FIXME: Update this if we ever have attributes that affect the
453           // semantics of an expression.
454           ExprResult = AS->getSubStmt();
455         } else {
456           llvm_unreachable("unknown value statement");
457         }
458       }
459 
460       EnsureInsertPoint();
461 
462       const Expr *E = cast<Expr>(ExprResult);
463       QualType ExprTy = E->getType();
464       if (hasAggregateEvaluationKind(ExprTy)) {
465         EmitAggExpr(E, AggSlot);
466       } else {
467         // We can't return an RValue here because there might be cleanups at
468         // the end of the StmtExpr.  Because of that, we have to emit the result
469         // here into a temporary alloca.
470         RetAlloca = CreateMemTemp(ExprTy);
471         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
472                          /*IsInit*/ false);
473       }
474     } else {
475       EmitStmt(CurStmt);
476     }
477   }
478 
479   return RetAlloca;
480 }
481 
482 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
483   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
484 
485   // If there is a cleanup stack, then we it isn't worth trying to
486   // simplify this block (we would need to remove it from the scope map
487   // and cleanup entry).
488   if (!EHStack.empty())
489     return;
490 
491   // Can only simplify direct branches.
492   if (!BI || !BI->isUnconditional())
493     return;
494 
495   // Can only simplify empty blocks.
496   if (BI->getIterator() != BB->begin())
497     return;
498 
499   BB->replaceAllUsesWith(BI->getSuccessor(0));
500   BI->eraseFromParent();
501   BB->eraseFromParent();
502 }
503 
504 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
505   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
506 
507   // Fall out of the current block (if necessary).
508   EmitBranch(BB);
509 
510   if (IsFinished && BB->use_empty()) {
511     delete BB;
512     return;
513   }
514 
515   // Place the block after the current block, if possible, or else at
516   // the end of the function.
517   if (CurBB && CurBB->getParent())
518     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
519   else
520     CurFn->getBasicBlockList().push_back(BB);
521   Builder.SetInsertPoint(BB);
522 }
523 
524 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
525   // Emit a branch from the current block to the target one if this
526   // was a real block.  If this was just a fall-through block after a
527   // terminator, don't emit it.
528   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
529 
530   if (!CurBB || CurBB->getTerminator()) {
531     // If there is no insert point or the previous block is already
532     // terminated, don't touch it.
533   } else {
534     // Otherwise, create a fall-through branch.
535     Builder.CreateBr(Target);
536   }
537 
538   Builder.ClearInsertionPoint();
539 }
540 
541 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
542   bool inserted = false;
543   for (llvm::User *u : block->users()) {
544     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
545       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
546                                              block);
547       inserted = true;
548       break;
549     }
550   }
551 
552   if (!inserted)
553     CurFn->getBasicBlockList().push_back(block);
554 
555   Builder.SetInsertPoint(block);
556 }
557 
558 CodeGenFunction::JumpDest
559 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
560   JumpDest &Dest = LabelMap[D];
561   if (Dest.isValid()) return Dest;
562 
563   // Create, but don't insert, the new block.
564   Dest = JumpDest(createBasicBlock(D->getName()),
565                   EHScopeStack::stable_iterator::invalid(),
566                   NextCleanupDestIndex++);
567   return Dest;
568 }
569 
570 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
571   // Add this label to the current lexical scope if we're within any
572   // normal cleanups.  Jumps "in" to this label --- when permitted by
573   // the language --- may need to be routed around such cleanups.
574   if (EHStack.hasNormalCleanups() && CurLexicalScope)
575     CurLexicalScope->addLabel(D);
576 
577   JumpDest &Dest = LabelMap[D];
578 
579   // If we didn't need a forward reference to this label, just go
580   // ahead and create a destination at the current scope.
581   if (!Dest.isValid()) {
582     Dest = getJumpDestInCurrentScope(D->getName());
583 
584   // Otherwise, we need to give this label a target depth and remove
585   // it from the branch-fixups list.
586   } else {
587     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
588     Dest.setScopeDepth(EHStack.stable_begin());
589     ResolveBranchFixups(Dest.getBlock());
590   }
591 
592   EmitBlock(Dest.getBlock());
593 
594   // Emit debug info for labels.
595   if (CGDebugInfo *DI = getDebugInfo()) {
596     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
597       DI->setLocation(D->getLocation());
598       DI->EmitLabel(D, Builder);
599     }
600   }
601 
602   incrementProfileCounter(D->getStmt());
603 }
604 
605 /// Change the cleanup scope of the labels in this lexical scope to
606 /// match the scope of the enclosing context.
607 void CodeGenFunction::LexicalScope::rescopeLabels() {
608   assert(!Labels.empty());
609   EHScopeStack::stable_iterator innermostScope
610     = CGF.EHStack.getInnermostNormalCleanup();
611 
612   // Change the scope depth of all the labels.
613   for (SmallVectorImpl<const LabelDecl*>::const_iterator
614          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
615     assert(CGF.LabelMap.count(*i));
616     JumpDest &dest = CGF.LabelMap.find(*i)->second;
617     assert(dest.getScopeDepth().isValid());
618     assert(innermostScope.encloses(dest.getScopeDepth()));
619     dest.setScopeDepth(innermostScope);
620   }
621 
622   // Reparent the labels if the new scope also has cleanups.
623   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
624     ParentScope->Labels.append(Labels.begin(), Labels.end());
625   }
626 }
627 
628 
629 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
630   EmitLabel(S.getDecl());
631   EmitStmt(S.getSubStmt());
632 }
633 
634 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
635   bool nomerge = false;
636   for (const auto *A : S.getAttrs())
637     if (A->getKind() == attr::NoMerge) {
638       nomerge = true;
639       break;
640     }
641   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
642   EmitStmt(S.getSubStmt(), S.getAttrs());
643 }
644 
645 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
646   // If this code is reachable then emit a stop point (if generating
647   // debug info). We have to do this ourselves because we are on the
648   // "simple" statement path.
649   if (HaveInsertPoint())
650     EmitStopPoint(&S);
651 
652   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
653 }
654 
655 
656 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
657   if (const LabelDecl *Target = S.getConstantTarget()) {
658     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
659     return;
660   }
661 
662   // Ensure that we have an i8* for our PHI node.
663   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
664                                          Int8PtrTy, "addr");
665   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
666 
667   // Get the basic block for the indirect goto.
668   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
669 
670   // The first instruction in the block has to be the PHI for the switch dest,
671   // add an entry for this branch.
672   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
673 
674   EmitBranch(IndGotoBB);
675 }
676 
677 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
678   // C99 6.8.4.1: The first substatement is executed if the expression compares
679   // unequal to 0.  The condition must be a scalar type.
680   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
681 
682   if (S.getInit())
683     EmitStmt(S.getInit());
684 
685   if (S.getConditionVariable())
686     EmitDecl(*S.getConditionVariable());
687 
688   // If the condition constant folds and can be elided, try to avoid emitting
689   // the condition and the dead arm of the if/else.
690   bool CondConstant;
691   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
692                                    S.isConstexpr())) {
693     // Figure out which block (then or else) is executed.
694     const Stmt *Executed = S.getThen();
695     const Stmt *Skipped  = S.getElse();
696     if (!CondConstant)  // Condition false?
697       std::swap(Executed, Skipped);
698 
699     // If the skipped block has no labels in it, just emit the executed block.
700     // This avoids emitting dead code and simplifies the CFG substantially.
701     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
702       if (CondConstant)
703         incrementProfileCounter(&S);
704       if (Executed) {
705         RunCleanupsScope ExecutedScope(*this);
706         EmitStmt(Executed);
707       }
708       return;
709     }
710   }
711 
712   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
713   // the conditional branch.
714   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
715   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
716   llvm::BasicBlock *ElseBlock = ContBlock;
717   if (S.getElse())
718     ElseBlock = createBasicBlock("if.else");
719 
720   // Prefer the PGO based weights over the likelihood attribute.
721   // When the build isn't optimized the metadata isn't used, so don't generate
722   // it.
723   Stmt::Likelihood LH = Stmt::LH_None;
724   uint64_t Count = getProfileCount(S.getThen());
725   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
726     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
727   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
728 
729   // Emit the 'then' code.
730   EmitBlock(ThenBlock);
731   incrementProfileCounter(&S);
732   {
733     RunCleanupsScope ThenScope(*this);
734     EmitStmt(S.getThen());
735   }
736   EmitBranch(ContBlock);
737 
738   // Emit the 'else' code if present.
739   if (const Stmt *Else = S.getElse()) {
740     {
741       // There is no need to emit line number for an unconditional branch.
742       auto NL = ApplyDebugLocation::CreateEmpty(*this);
743       EmitBlock(ElseBlock);
744     }
745     {
746       RunCleanupsScope ElseScope(*this);
747       EmitStmt(Else);
748     }
749     {
750       // There is no need to emit line number for an unconditional branch.
751       auto NL = ApplyDebugLocation::CreateEmpty(*this);
752       EmitBranch(ContBlock);
753     }
754   }
755 
756   // Emit the continuation block for code after the if.
757   EmitBlock(ContBlock, true);
758 }
759 
760 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
761                                     ArrayRef<const Attr *> WhileAttrs) {
762   // Emit the header for the loop, which will also become
763   // the continue target.
764   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
765   EmitBlock(LoopHeader.getBlock());
766 
767   const SourceRange &R = S.getSourceRange();
768   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
769                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
770                  SourceLocToDebugLoc(R.getEnd()));
771 
772   // Create an exit block for when the condition fails, which will
773   // also become the break target.
774   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
775 
776   // Store the blocks to use for break and continue.
777   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
778 
779   // C++ [stmt.while]p2:
780   //   When the condition of a while statement is a declaration, the
781   //   scope of the variable that is declared extends from its point
782   //   of declaration (3.3.2) to the end of the while statement.
783   //   [...]
784   //   The object created in a condition is destroyed and created
785   //   with each iteration of the loop.
786   RunCleanupsScope ConditionScope(*this);
787 
788   if (S.getConditionVariable())
789     EmitDecl(*S.getConditionVariable());
790 
791   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
792   // evaluation of the controlling expression takes place before each
793   // execution of the loop body.
794   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
795 
796   // while(1) is common, avoid extra exit blocks.  Be sure
797   // to correctly handle break/continue though.
798   bool EmitBoolCondBranch = true;
799   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
800     if (C->isOne())
801       EmitBoolCondBranch = false;
802 
803   // As long as the condition is true, go to the loop body.
804   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
805   if (EmitBoolCondBranch) {
806     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
807     if (ConditionScope.requiresCleanups())
808       ExitBlock = createBasicBlock("while.exit");
809     Builder.CreateCondBr(
810         BoolCondVal, LoopBody, ExitBlock,
811         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
812 
813     if (ExitBlock != LoopExit.getBlock()) {
814       EmitBlock(ExitBlock);
815       EmitBranchThroughCleanup(LoopExit);
816     }
817   }
818 
819   // Emit the loop body.  We have to emit this in a cleanup scope
820   // because it might be a singleton DeclStmt.
821   {
822     RunCleanupsScope BodyScope(*this);
823     EmitBlock(LoopBody);
824     incrementProfileCounter(&S);
825     EmitStmt(S.getBody());
826   }
827 
828   BreakContinueStack.pop_back();
829 
830   // Immediately force cleanup.
831   ConditionScope.ForceCleanup();
832 
833   EmitStopPoint(&S);
834   // Branch to the loop header again.
835   EmitBranch(LoopHeader.getBlock());
836 
837   LoopStack.pop();
838 
839   // Emit the exit block.
840   EmitBlock(LoopExit.getBlock(), true);
841 
842   // The LoopHeader typically is just a branch if we skipped emitting
843   // a branch, try to erase it.
844   if (!EmitBoolCondBranch)
845     SimplifyForwardingBlocks(LoopHeader.getBlock());
846 }
847 
848 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
849                                  ArrayRef<const Attr *> DoAttrs) {
850   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
851   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
852 
853   uint64_t ParentCount = getCurrentProfileCount();
854 
855   // Store the blocks to use for break and continue.
856   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
857 
858   // Emit the body of the loop.
859   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
860 
861   EmitBlockWithFallThrough(LoopBody, &S);
862   {
863     RunCleanupsScope BodyScope(*this);
864     EmitStmt(S.getBody());
865   }
866 
867   EmitBlock(LoopCond.getBlock());
868 
869   const SourceRange &R = S.getSourceRange();
870   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
871                  SourceLocToDebugLoc(R.getBegin()),
872                  SourceLocToDebugLoc(R.getEnd()));
873 
874   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
875   // after each execution of the loop body."
876 
877   // Evaluate the conditional in the while header.
878   // C99 6.8.5p2/p4: The first substatement is executed if the expression
879   // compares unequal to 0.  The condition must be a scalar type.
880   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
881 
882   BreakContinueStack.pop_back();
883 
884   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
885   // to correctly handle break/continue though.
886   bool EmitBoolCondBranch = true;
887   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
888     if (C->isZero())
889       EmitBoolCondBranch = false;
890 
891   // As long as the condition is true, iterate the loop.
892   if (EmitBoolCondBranch) {
893     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
894     Builder.CreateCondBr(
895         BoolCondVal, LoopBody, LoopExit.getBlock(),
896         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
897   }
898 
899   LoopStack.pop();
900 
901   // Emit the exit block.
902   EmitBlock(LoopExit.getBlock());
903 
904   // The DoCond block typically is just a branch if we skipped
905   // emitting a branch, try to erase it.
906   if (!EmitBoolCondBranch)
907     SimplifyForwardingBlocks(LoopCond.getBlock());
908 }
909 
910 void CodeGenFunction::EmitForStmt(const ForStmt &S,
911                                   ArrayRef<const Attr *> ForAttrs) {
912   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
913 
914   LexicalScope ForScope(*this, S.getSourceRange());
915 
916   // Evaluate the first part before the loop.
917   if (S.getInit())
918     EmitStmt(S.getInit());
919 
920   // Start the loop with a block that tests the condition.
921   // If there's an increment, the continue scope will be overwritten
922   // later.
923   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
924   llvm::BasicBlock *CondBlock = Continue.getBlock();
925   EmitBlock(CondBlock);
926 
927   const SourceRange &R = S.getSourceRange();
928   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
929                  SourceLocToDebugLoc(R.getBegin()),
930                  SourceLocToDebugLoc(R.getEnd()));
931 
932   // If the for loop doesn't have an increment we can just use the
933   // condition as the continue block.  Otherwise we'll need to create
934   // a block for it (in the current scope, i.e. in the scope of the
935   // condition), and that we will become our continue block.
936   if (S.getInc())
937     Continue = getJumpDestInCurrentScope("for.inc");
938 
939   // Store the blocks to use for break and continue.
940   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
941 
942   // Create a cleanup scope for the condition variable cleanups.
943   LexicalScope ConditionScope(*this, S.getSourceRange());
944 
945   if (S.getCond()) {
946     // If the for statement has a condition scope, emit the local variable
947     // declaration.
948     if (S.getConditionVariable()) {
949       EmitDecl(*S.getConditionVariable());
950     }
951 
952     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
953     // If there are any cleanups between here and the loop-exit scope,
954     // create a block to stage a loop exit along.
955     if (ForScope.requiresCleanups())
956       ExitBlock = createBasicBlock("for.cond.cleanup");
957 
958     // As long as the condition is true, iterate the loop.
959     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
960 
961     // C99 6.8.5p2/p4: The first substatement is executed if the expression
962     // compares unequal to 0.  The condition must be a scalar type.
963     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
964     Builder.CreateCondBr(
965         BoolCondVal, ForBody, ExitBlock,
966         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
967 
968     if (ExitBlock != LoopExit.getBlock()) {
969       EmitBlock(ExitBlock);
970       EmitBranchThroughCleanup(LoopExit);
971     }
972 
973     EmitBlock(ForBody);
974   } else {
975     // Treat it as a non-zero constant.  Don't even create a new block for the
976     // body, just fall into it.
977   }
978   incrementProfileCounter(&S);
979 
980   {
981     // Create a separate cleanup scope for the body, in case it is not
982     // a compound statement.
983     RunCleanupsScope BodyScope(*this);
984     EmitStmt(S.getBody());
985   }
986 
987   // If there is an increment, emit it next.
988   if (S.getInc()) {
989     EmitBlock(Continue.getBlock());
990     EmitStmt(S.getInc());
991   }
992 
993   BreakContinueStack.pop_back();
994 
995   ConditionScope.ForceCleanup();
996 
997   EmitStopPoint(&S);
998   EmitBranch(CondBlock);
999 
1000   ForScope.ForceCleanup();
1001 
1002   LoopStack.pop();
1003 
1004   // Emit the fall-through block.
1005   EmitBlock(LoopExit.getBlock(), true);
1006 }
1007 
1008 void
1009 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1010                                      ArrayRef<const Attr *> ForAttrs) {
1011   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1012 
1013   LexicalScope ForScope(*this, S.getSourceRange());
1014 
1015   // Evaluate the first pieces before the loop.
1016   if (S.getInit())
1017     EmitStmt(S.getInit());
1018   EmitStmt(S.getRangeStmt());
1019   EmitStmt(S.getBeginStmt());
1020   EmitStmt(S.getEndStmt());
1021 
1022   // Start the loop with a block that tests the condition.
1023   // If there's an increment, the continue scope will be overwritten
1024   // later.
1025   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1026   EmitBlock(CondBlock);
1027 
1028   const SourceRange &R = S.getSourceRange();
1029   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1030                  SourceLocToDebugLoc(R.getBegin()),
1031                  SourceLocToDebugLoc(R.getEnd()));
1032 
1033   // If there are any cleanups between here and the loop-exit scope,
1034   // create a block to stage a loop exit along.
1035   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1036   if (ForScope.requiresCleanups())
1037     ExitBlock = createBasicBlock("for.cond.cleanup");
1038 
1039   // The loop body, consisting of the specified body and the loop variable.
1040   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1041 
1042   // The body is executed if the expression, contextually converted
1043   // to bool, is true.
1044   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1045   Builder.CreateCondBr(
1046       BoolCondVal, ForBody, ExitBlock,
1047       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
1048 
1049   if (ExitBlock != LoopExit.getBlock()) {
1050     EmitBlock(ExitBlock);
1051     EmitBranchThroughCleanup(LoopExit);
1052   }
1053 
1054   EmitBlock(ForBody);
1055   incrementProfileCounter(&S);
1056 
1057   // Create a block for the increment. In case of a 'continue', we jump there.
1058   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1059 
1060   // Store the blocks to use for break and continue.
1061   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1062 
1063   {
1064     // Create a separate cleanup scope for the loop variable and body.
1065     LexicalScope BodyScope(*this, S.getSourceRange());
1066     EmitStmt(S.getLoopVarStmt());
1067     EmitStmt(S.getBody());
1068   }
1069 
1070   EmitStopPoint(&S);
1071   // If there is an increment, emit it next.
1072   EmitBlock(Continue.getBlock());
1073   EmitStmt(S.getInc());
1074 
1075   BreakContinueStack.pop_back();
1076 
1077   EmitBranch(CondBlock);
1078 
1079   ForScope.ForceCleanup();
1080 
1081   LoopStack.pop();
1082 
1083   // Emit the fall-through block.
1084   EmitBlock(LoopExit.getBlock(), true);
1085 }
1086 
1087 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1088   if (RV.isScalar()) {
1089     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1090   } else if (RV.isAggregate()) {
1091     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1092     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1093     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1094   } else {
1095     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1096                        /*init*/ true);
1097   }
1098   EmitBranchThroughCleanup(ReturnBlock);
1099 }
1100 
1101 namespace {
1102 // RAII struct used to save and restore a return statment's result expression.
1103 struct SaveRetExprRAII {
1104   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1105       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1106     CGF.RetExpr = RetExpr;
1107   }
1108   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1109   const Expr *OldRetExpr;
1110   CodeGenFunction &CGF;
1111 };
1112 } // namespace
1113 
1114 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1115 /// if the function returns void, or may be missing one if the function returns
1116 /// non-void.  Fun stuff :).
1117 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1118   if (requiresReturnValueCheck()) {
1119     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1120     auto *SLocPtr =
1121         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1122                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1123     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1124     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1125     assert(ReturnLocation.isValid() && "No valid return location");
1126     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1127                         ReturnLocation);
1128   }
1129 
1130   // Returning from an outlined SEH helper is UB, and we already warn on it.
1131   if (IsOutlinedSEHHelper) {
1132     Builder.CreateUnreachable();
1133     Builder.ClearInsertionPoint();
1134   }
1135 
1136   // Emit the result value, even if unused, to evaluate the side effects.
1137   const Expr *RV = S.getRetValue();
1138 
1139   // Record the result expression of the return statement. The recorded
1140   // expression is used to determine whether a block capture's lifetime should
1141   // end at the end of the full expression as opposed to the end of the scope
1142   // enclosing the block expression.
1143   //
1144   // This permits a small, easily-implemented exception to our over-conservative
1145   // rules about not jumping to statements following block literals with
1146   // non-trivial cleanups.
1147   SaveRetExprRAII SaveRetExpr(RV, *this);
1148 
1149   RunCleanupsScope cleanupScope(*this);
1150   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1151     RV = EWC->getSubExpr();
1152   // FIXME: Clean this up by using an LValue for ReturnTemp,
1153   // EmitStoreThroughLValue, and EmitAnyExpr.
1154   // Check if the NRVO candidate was not globalized in OpenMP mode.
1155   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1156       S.getNRVOCandidate()->isNRVOVariable() &&
1157       (!getLangOpts().OpenMP ||
1158        !CGM.getOpenMPRuntime()
1159             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1160             .isValid())) {
1161     // Apply the named return value optimization for this return statement,
1162     // which means doing nothing: the appropriate result has already been
1163     // constructed into the NRVO variable.
1164 
1165     // If there is an NRVO flag for this variable, set it to 1 into indicate
1166     // that the cleanup code should not destroy the variable.
1167     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1168       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1169   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1170     // Make sure not to return anything, but evaluate the expression
1171     // for side effects.
1172     if (RV)
1173       EmitAnyExpr(RV);
1174   } else if (!RV) {
1175     // Do nothing (return value is left uninitialized)
1176   } else if (FnRetTy->isReferenceType()) {
1177     // If this function returns a reference, take the address of the expression
1178     // rather than the value.
1179     RValue Result = EmitReferenceBindingToExpr(RV);
1180     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1181   } else {
1182     switch (getEvaluationKind(RV->getType())) {
1183     case TEK_Scalar:
1184       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1185       break;
1186     case TEK_Complex:
1187       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1188                                 /*isInit*/ true);
1189       break;
1190     case TEK_Aggregate:
1191       EmitAggExpr(RV, AggValueSlot::forAddr(
1192                           ReturnValue, Qualifiers(),
1193                           AggValueSlot::IsDestructed,
1194                           AggValueSlot::DoesNotNeedGCBarriers,
1195                           AggValueSlot::IsNotAliased,
1196                           getOverlapForReturnValue()));
1197       break;
1198     }
1199   }
1200 
1201   ++NumReturnExprs;
1202   if (!RV || RV->isEvaluatable(getContext()))
1203     ++NumSimpleReturnExprs;
1204 
1205   cleanupScope.ForceCleanup();
1206   EmitBranchThroughCleanup(ReturnBlock);
1207 }
1208 
1209 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1210   // As long as debug info is modeled with instructions, we have to ensure we
1211   // have a place to insert here and write the stop point here.
1212   if (HaveInsertPoint())
1213     EmitStopPoint(&S);
1214 
1215   for (const auto *I : S.decls())
1216     EmitDecl(*I);
1217 }
1218 
1219 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1220   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1221 
1222   // If this code is reachable then emit a stop point (if generating
1223   // debug info). We have to do this ourselves because we are on the
1224   // "simple" statement path.
1225   if (HaveInsertPoint())
1226     EmitStopPoint(&S);
1227 
1228   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1229 }
1230 
1231 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1232   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1233 
1234   // If this code is reachable then emit a stop point (if generating
1235   // debug info). We have to do this ourselves because we are on the
1236   // "simple" statement path.
1237   if (HaveInsertPoint())
1238     EmitStopPoint(&S);
1239 
1240   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1241 }
1242 
1243 /// EmitCaseStmtRange - If case statement range is not too big then
1244 /// add multiple cases to switch instruction, one for each value within
1245 /// the range. If range is too big then emit "if" condition check.
1246 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1247                                         ArrayRef<const Attr *> Attrs) {
1248   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1249 
1250   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1251   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1252 
1253   // Emit the code for this case. We do this first to make sure it is
1254   // properly chained from our predecessor before generating the
1255   // switch machinery to enter this block.
1256   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1257   EmitBlockWithFallThrough(CaseDest, &S);
1258   EmitStmt(S.getSubStmt());
1259 
1260   // If range is empty, do nothing.
1261   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1262     return;
1263 
1264   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1265   llvm::APInt Range = RHS - LHS;
1266   // FIXME: parameters such as this should not be hardcoded.
1267   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1268     // Range is small enough to add multiple switch instruction cases.
1269     uint64_t Total = getProfileCount(&S);
1270     unsigned NCases = Range.getZExtValue() + 1;
1271     // We only have one region counter for the entire set of cases here, so we
1272     // need to divide the weights evenly between the generated cases, ensuring
1273     // that the total weight is preserved. E.g., a weight of 5 over three cases
1274     // will be distributed as weights of 2, 2, and 1.
1275     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1276     for (unsigned I = 0; I != NCases; ++I) {
1277       if (SwitchWeights)
1278         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1279       else if (SwitchLikelihood)
1280         SwitchLikelihood->push_back(LH);
1281 
1282       if (Rem)
1283         Rem--;
1284       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1285       ++LHS;
1286     }
1287     return;
1288   }
1289 
1290   // The range is too big. Emit "if" condition into a new block,
1291   // making sure to save and restore the current insertion point.
1292   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1293 
1294   // Push this test onto the chain of range checks (which terminates
1295   // in the default basic block). The switch's default will be changed
1296   // to the top of this chain after switch emission is complete.
1297   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1298   CaseRangeBlock = createBasicBlock("sw.caserange");
1299 
1300   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1301   Builder.SetInsertPoint(CaseRangeBlock);
1302 
1303   // Emit range check.
1304   llvm::Value *Diff =
1305     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1306   llvm::Value *Cond =
1307     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1308 
1309   llvm::MDNode *Weights = nullptr;
1310   if (SwitchWeights) {
1311     uint64_t ThisCount = getProfileCount(&S);
1312     uint64_t DefaultCount = (*SwitchWeights)[0];
1313     Weights = createProfileWeights(ThisCount, DefaultCount);
1314 
1315     // Since we're chaining the switch default through each large case range, we
1316     // need to update the weight for the default, ie, the first case, to include
1317     // this case.
1318     (*SwitchWeights)[0] += ThisCount;
1319   } else if (SwitchLikelihood)
1320     Weights = createBranchWeights(LH);
1321 
1322   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1323 
1324   // Restore the appropriate insertion point.
1325   if (RestoreBB)
1326     Builder.SetInsertPoint(RestoreBB);
1327   else
1328     Builder.ClearInsertionPoint();
1329 }
1330 
1331 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1332                                    ArrayRef<const Attr *> Attrs) {
1333   // If there is no enclosing switch instance that we're aware of, then this
1334   // case statement and its block can be elided.  This situation only happens
1335   // when we've constant-folded the switch, are emitting the constant case,
1336   // and part of the constant case includes another case statement.  For
1337   // instance: switch (4) { case 4: do { case 5: } while (1); }
1338   if (!SwitchInsn) {
1339     EmitStmt(S.getSubStmt());
1340     return;
1341   }
1342 
1343   // Handle case ranges.
1344   if (S.getRHS()) {
1345     EmitCaseStmtRange(S, Attrs);
1346     return;
1347   }
1348 
1349   llvm::ConstantInt *CaseVal =
1350     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1351   if (SwitchLikelihood)
1352     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1353 
1354   // If the body of the case is just a 'break', try to not emit an empty block.
1355   // If we're profiling or we're not optimizing, leave the block in for better
1356   // debug and coverage analysis.
1357   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1358       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1359       isa<BreakStmt>(S.getSubStmt())) {
1360     JumpDest Block = BreakContinueStack.back().BreakBlock;
1361 
1362     // Only do this optimization if there are no cleanups that need emitting.
1363     if (isObviouslyBranchWithoutCleanups(Block)) {
1364       if (SwitchWeights)
1365         SwitchWeights->push_back(getProfileCount(&S));
1366       SwitchInsn->addCase(CaseVal, Block.getBlock());
1367 
1368       // If there was a fallthrough into this case, make sure to redirect it to
1369       // the end of the switch as well.
1370       if (Builder.GetInsertBlock()) {
1371         Builder.CreateBr(Block.getBlock());
1372         Builder.ClearInsertionPoint();
1373       }
1374       return;
1375     }
1376   }
1377 
1378   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1379   EmitBlockWithFallThrough(CaseDest, &S);
1380   if (SwitchWeights)
1381     SwitchWeights->push_back(getProfileCount(&S));
1382   SwitchInsn->addCase(CaseVal, CaseDest);
1383 
1384   // Recursively emitting the statement is acceptable, but is not wonderful for
1385   // code where we have many case statements nested together, i.e.:
1386   //  case 1:
1387   //    case 2:
1388   //      case 3: etc.
1389   // Handling this recursively will create a new block for each case statement
1390   // that falls through to the next case which is IR intensive.  It also causes
1391   // deep recursion which can run into stack depth limitations.  Handle
1392   // sequential non-range case statements specially.
1393   //
1394   // TODO When the next case has a likelihood attribute the code returns to the
1395   // recursive algorithm. Maybe improve this case if it becomes common practice
1396   // to use a lot of attributes.
1397   const CaseStmt *CurCase = &S;
1398   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1399 
1400   // Otherwise, iteratively add consecutive cases to this switch stmt.
1401   while (NextCase && NextCase->getRHS() == nullptr) {
1402     CurCase = NextCase;
1403     llvm::ConstantInt *CaseVal =
1404       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1405 
1406     if (SwitchWeights)
1407       SwitchWeights->push_back(getProfileCount(NextCase));
1408     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1409       CaseDest = createBasicBlock("sw.bb");
1410       EmitBlockWithFallThrough(CaseDest, &S);
1411     }
1412     // Since this loop is only executed when the CaseStmt has no attributes
1413     // use a hard-coded value.
1414     if (SwitchLikelihood)
1415       SwitchLikelihood->push_back(Stmt::LH_None);
1416 
1417     SwitchInsn->addCase(CaseVal, CaseDest);
1418     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1419   }
1420 
1421   // Normal default recursion for non-cases.
1422   EmitStmt(CurCase->getSubStmt());
1423 }
1424 
1425 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1426                                       ArrayRef<const Attr *> Attrs) {
1427   // If there is no enclosing switch instance that we're aware of, then this
1428   // default statement can be elided. This situation only happens when we've
1429   // constant-folded the switch.
1430   if (!SwitchInsn) {
1431     EmitStmt(S.getSubStmt());
1432     return;
1433   }
1434 
1435   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1436   assert(DefaultBlock->empty() &&
1437          "EmitDefaultStmt: Default block already defined?");
1438 
1439   if (SwitchLikelihood)
1440     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1441 
1442   EmitBlockWithFallThrough(DefaultBlock, &S);
1443 
1444   EmitStmt(S.getSubStmt());
1445 }
1446 
1447 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1448 /// constant value that is being switched on, see if we can dead code eliminate
1449 /// the body of the switch to a simple series of statements to emit.  Basically,
1450 /// on a switch (5) we want to find these statements:
1451 ///    case 5:
1452 ///      printf(...);    <--
1453 ///      ++i;            <--
1454 ///      break;
1455 ///
1456 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1457 /// transformation (for example, one of the elided statements contains a label
1458 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1459 /// should include statements after it (e.g. the printf() line is a substmt of
1460 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1461 /// statement, then return CSFC_Success.
1462 ///
1463 /// If Case is non-null, then we are looking for the specified case, checking
1464 /// that nothing we jump over contains labels.  If Case is null, then we found
1465 /// the case and are looking for the break.
1466 ///
1467 /// If the recursive walk actually finds our Case, then we set FoundCase to
1468 /// true.
1469 ///
1470 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1471 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1472                                             const SwitchCase *Case,
1473                                             bool &FoundCase,
1474                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1475   // If this is a null statement, just succeed.
1476   if (!S)
1477     return Case ? CSFC_Success : CSFC_FallThrough;
1478 
1479   // If this is the switchcase (case 4: or default) that we're looking for, then
1480   // we're in business.  Just add the substatement.
1481   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1482     if (S == Case) {
1483       FoundCase = true;
1484       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1485                                       ResultStmts);
1486     }
1487 
1488     // Otherwise, this is some other case or default statement, just ignore it.
1489     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1490                                     ResultStmts);
1491   }
1492 
1493   // If we are in the live part of the code and we found our break statement,
1494   // return a success!
1495   if (!Case && isa<BreakStmt>(S))
1496     return CSFC_Success;
1497 
1498   // If this is a switch statement, then it might contain the SwitchCase, the
1499   // break, or neither.
1500   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1501     // Handle this as two cases: we might be looking for the SwitchCase (if so
1502     // the skipped statements must be skippable) or we might already have it.
1503     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1504     bool StartedInLiveCode = FoundCase;
1505     unsigned StartSize = ResultStmts.size();
1506 
1507     // If we've not found the case yet, scan through looking for it.
1508     if (Case) {
1509       // Keep track of whether we see a skipped declaration.  The code could be
1510       // using the declaration even if it is skipped, so we can't optimize out
1511       // the decl if the kept statements might refer to it.
1512       bool HadSkippedDecl = false;
1513 
1514       // If we're looking for the case, just see if we can skip each of the
1515       // substatements.
1516       for (; Case && I != E; ++I) {
1517         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1518 
1519         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1520         case CSFC_Failure: return CSFC_Failure;
1521         case CSFC_Success:
1522           // A successful result means that either 1) that the statement doesn't
1523           // have the case and is skippable, or 2) does contain the case value
1524           // and also contains the break to exit the switch.  In the later case,
1525           // we just verify the rest of the statements are elidable.
1526           if (FoundCase) {
1527             // If we found the case and skipped declarations, we can't do the
1528             // optimization.
1529             if (HadSkippedDecl)
1530               return CSFC_Failure;
1531 
1532             for (++I; I != E; ++I)
1533               if (CodeGenFunction::ContainsLabel(*I, true))
1534                 return CSFC_Failure;
1535             return CSFC_Success;
1536           }
1537           break;
1538         case CSFC_FallThrough:
1539           // If we have a fallthrough condition, then we must have found the
1540           // case started to include statements.  Consider the rest of the
1541           // statements in the compound statement as candidates for inclusion.
1542           assert(FoundCase && "Didn't find case but returned fallthrough?");
1543           // We recursively found Case, so we're not looking for it anymore.
1544           Case = nullptr;
1545 
1546           // If we found the case and skipped declarations, we can't do the
1547           // optimization.
1548           if (HadSkippedDecl)
1549             return CSFC_Failure;
1550           break;
1551         }
1552       }
1553 
1554       if (!FoundCase)
1555         return CSFC_Success;
1556 
1557       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1558     }
1559 
1560     // If we have statements in our range, then we know that the statements are
1561     // live and need to be added to the set of statements we're tracking.
1562     bool AnyDecls = false;
1563     for (; I != E; ++I) {
1564       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1565 
1566       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1567       case CSFC_Failure: return CSFC_Failure;
1568       case CSFC_FallThrough:
1569         // A fallthrough result means that the statement was simple and just
1570         // included in ResultStmt, keep adding them afterwards.
1571         break;
1572       case CSFC_Success:
1573         // A successful result means that we found the break statement and
1574         // stopped statement inclusion.  We just ensure that any leftover stmts
1575         // are skippable and return success ourselves.
1576         for (++I; I != E; ++I)
1577           if (CodeGenFunction::ContainsLabel(*I, true))
1578             return CSFC_Failure;
1579         return CSFC_Success;
1580       }
1581     }
1582 
1583     // If we're about to fall out of a scope without hitting a 'break;', we
1584     // can't perform the optimization if there were any decls in that scope
1585     // (we'd lose their end-of-lifetime).
1586     if (AnyDecls) {
1587       // If the entire compound statement was live, there's one more thing we
1588       // can try before giving up: emit the whole thing as a single statement.
1589       // We can do that unless the statement contains a 'break;'.
1590       // FIXME: Such a break must be at the end of a construct within this one.
1591       // We could emit this by just ignoring the BreakStmts entirely.
1592       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1593         ResultStmts.resize(StartSize);
1594         ResultStmts.push_back(S);
1595       } else {
1596         return CSFC_Failure;
1597       }
1598     }
1599 
1600     return CSFC_FallThrough;
1601   }
1602 
1603   // Okay, this is some other statement that we don't handle explicitly, like a
1604   // for statement or increment etc.  If we are skipping over this statement,
1605   // just verify it doesn't have labels, which would make it invalid to elide.
1606   if (Case) {
1607     if (CodeGenFunction::ContainsLabel(S, true))
1608       return CSFC_Failure;
1609     return CSFC_Success;
1610   }
1611 
1612   // Otherwise, we want to include this statement.  Everything is cool with that
1613   // so long as it doesn't contain a break out of the switch we're in.
1614   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1615 
1616   // Otherwise, everything is great.  Include the statement and tell the caller
1617   // that we fall through and include the next statement as well.
1618   ResultStmts.push_back(S);
1619   return CSFC_FallThrough;
1620 }
1621 
1622 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1623 /// then invoke CollectStatementsForCase to find the list of statements to emit
1624 /// for a switch on constant.  See the comment above CollectStatementsForCase
1625 /// for more details.
1626 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1627                                        const llvm::APSInt &ConstantCondValue,
1628                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1629                                        ASTContext &C,
1630                                        const SwitchCase *&ResultCase) {
1631   // First step, find the switch case that is being branched to.  We can do this
1632   // efficiently by scanning the SwitchCase list.
1633   const SwitchCase *Case = S.getSwitchCaseList();
1634   const DefaultStmt *DefaultCase = nullptr;
1635 
1636   for (; Case; Case = Case->getNextSwitchCase()) {
1637     // It's either a default or case.  Just remember the default statement in
1638     // case we're not jumping to any numbered cases.
1639     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1640       DefaultCase = DS;
1641       continue;
1642     }
1643 
1644     // Check to see if this case is the one we're looking for.
1645     const CaseStmt *CS = cast<CaseStmt>(Case);
1646     // Don't handle case ranges yet.
1647     if (CS->getRHS()) return false;
1648 
1649     // If we found our case, remember it as 'case'.
1650     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1651       break;
1652   }
1653 
1654   // If we didn't find a matching case, we use a default if it exists, or we
1655   // elide the whole switch body!
1656   if (!Case) {
1657     // It is safe to elide the body of the switch if it doesn't contain labels
1658     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1659     if (!DefaultCase)
1660       return !CodeGenFunction::ContainsLabel(&S);
1661     Case = DefaultCase;
1662   }
1663 
1664   // Ok, we know which case is being jumped to, try to collect all the
1665   // statements that follow it.  This can fail for a variety of reasons.  Also,
1666   // check to see that the recursive walk actually found our case statement.
1667   // Insane cases like this can fail to find it in the recursive walk since we
1668   // don't handle every stmt kind:
1669   // switch (4) {
1670   //   while (1) {
1671   //     case 4: ...
1672   bool FoundCase = false;
1673   ResultCase = Case;
1674   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1675                                   ResultStmts) != CSFC_Failure &&
1676          FoundCase;
1677 }
1678 
1679 static Optional<SmallVector<uint64_t, 16>>
1680 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1681   // Are there enough branches to weight them?
1682   if (Likelihoods.size() <= 1)
1683     return None;
1684 
1685   uint64_t NumUnlikely = 0;
1686   uint64_t NumNone = 0;
1687   uint64_t NumLikely = 0;
1688   for (const auto LH : Likelihoods) {
1689     switch (LH) {
1690     case Stmt::LH_Unlikely:
1691       ++NumUnlikely;
1692       break;
1693     case Stmt::LH_None:
1694       ++NumNone;
1695       break;
1696     case Stmt::LH_Likely:
1697       ++NumLikely;
1698       break;
1699     }
1700   }
1701 
1702   // Is there a likelihood attribute used?
1703   if (NumUnlikely == 0 && NumLikely == 0)
1704     return None;
1705 
1706   // When multiple cases share the same code they can be combined during
1707   // optimization. In that case the weights of the branch will be the sum of
1708   // the individual weights. Make sure the combined sum of all neutral cases
1709   // doesn't exceed the value of a single likely attribute.
1710   // The additions both avoid divisions by 0 and make sure the weights of None
1711   // don't exceed the weight of Likely.
1712   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1713   const uint64_t None = Likely / (NumNone + 1);
1714   const uint64_t Unlikely = 0;
1715 
1716   SmallVector<uint64_t, 16> Result;
1717   Result.reserve(Likelihoods.size());
1718   for (const auto LH : Likelihoods) {
1719     switch (LH) {
1720     case Stmt::LH_Unlikely:
1721       Result.push_back(Unlikely);
1722       break;
1723     case Stmt::LH_None:
1724       Result.push_back(None);
1725       break;
1726     case Stmt::LH_Likely:
1727       Result.push_back(Likely);
1728       break;
1729     }
1730   }
1731 
1732   return Result;
1733 }
1734 
1735 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1736   // Handle nested switch statements.
1737   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1738   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1739   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1740   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1741 
1742   // See if we can constant fold the condition of the switch and therefore only
1743   // emit the live case statement (if any) of the switch.
1744   llvm::APSInt ConstantCondValue;
1745   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1746     SmallVector<const Stmt*, 4> CaseStmts;
1747     const SwitchCase *Case = nullptr;
1748     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1749                                    getContext(), Case)) {
1750       if (Case)
1751         incrementProfileCounter(Case);
1752       RunCleanupsScope ExecutedScope(*this);
1753 
1754       if (S.getInit())
1755         EmitStmt(S.getInit());
1756 
1757       // Emit the condition variable if needed inside the entire cleanup scope
1758       // used by this special case for constant folded switches.
1759       if (S.getConditionVariable())
1760         EmitDecl(*S.getConditionVariable());
1761 
1762       // At this point, we are no longer "within" a switch instance, so
1763       // we can temporarily enforce this to ensure that any embedded case
1764       // statements are not emitted.
1765       SwitchInsn = nullptr;
1766 
1767       // Okay, we can dead code eliminate everything except this case.  Emit the
1768       // specified series of statements and we're good.
1769       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1770         EmitStmt(CaseStmts[i]);
1771       incrementProfileCounter(&S);
1772 
1773       // Now we want to restore the saved switch instance so that nested
1774       // switches continue to function properly
1775       SwitchInsn = SavedSwitchInsn;
1776 
1777       return;
1778     }
1779   }
1780 
1781   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1782 
1783   RunCleanupsScope ConditionScope(*this);
1784 
1785   if (S.getInit())
1786     EmitStmt(S.getInit());
1787 
1788   if (S.getConditionVariable())
1789     EmitDecl(*S.getConditionVariable());
1790   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1791 
1792   // Create basic block to hold stuff that comes after switch
1793   // statement. We also need to create a default block now so that
1794   // explicit case ranges tests can have a place to jump to on
1795   // failure.
1796   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1797   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1798   if (PGO.haveRegionCounts()) {
1799     // Walk the SwitchCase list to find how many there are.
1800     uint64_t DefaultCount = 0;
1801     unsigned NumCases = 0;
1802     for (const SwitchCase *Case = S.getSwitchCaseList();
1803          Case;
1804          Case = Case->getNextSwitchCase()) {
1805       if (isa<DefaultStmt>(Case))
1806         DefaultCount = getProfileCount(Case);
1807       NumCases += 1;
1808     }
1809     SwitchWeights = new SmallVector<uint64_t, 16>();
1810     SwitchWeights->reserve(NumCases);
1811     // The default needs to be first. We store the edge count, so we already
1812     // know the right weight.
1813     SwitchWeights->push_back(DefaultCount);
1814   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1815     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1816     // Initialize the default case.
1817     SwitchLikelihood->push_back(Stmt::LH_None);
1818   }
1819 
1820   CaseRangeBlock = DefaultBlock;
1821 
1822   // Clear the insertion point to indicate we are in unreachable code.
1823   Builder.ClearInsertionPoint();
1824 
1825   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1826   // then reuse last ContinueBlock.
1827   JumpDest OuterContinue;
1828   if (!BreakContinueStack.empty())
1829     OuterContinue = BreakContinueStack.back().ContinueBlock;
1830 
1831   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1832 
1833   // Emit switch body.
1834   EmitStmt(S.getBody());
1835 
1836   BreakContinueStack.pop_back();
1837 
1838   // Update the default block in case explicit case range tests have
1839   // been chained on top.
1840   SwitchInsn->setDefaultDest(CaseRangeBlock);
1841 
1842   // If a default was never emitted:
1843   if (!DefaultBlock->getParent()) {
1844     // If we have cleanups, emit the default block so that there's a
1845     // place to jump through the cleanups from.
1846     if (ConditionScope.requiresCleanups()) {
1847       EmitBlock(DefaultBlock);
1848 
1849     // Otherwise, just forward the default block to the switch end.
1850     } else {
1851       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1852       delete DefaultBlock;
1853     }
1854   }
1855 
1856   ConditionScope.ForceCleanup();
1857 
1858   // Emit continuation.
1859   EmitBlock(SwitchExit.getBlock(), true);
1860   incrementProfileCounter(&S);
1861 
1862   // If the switch has a condition wrapped by __builtin_unpredictable,
1863   // create metadata that specifies that the switch is unpredictable.
1864   // Don't bother if not optimizing because that metadata would not be used.
1865   auto *Call = dyn_cast<CallExpr>(S.getCond());
1866   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1867     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1868     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1869       llvm::MDBuilder MDHelper(getLLVMContext());
1870       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1871                               MDHelper.createUnpredictable());
1872     }
1873   }
1874 
1875   if (SwitchWeights) {
1876     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1877            "switch weights do not match switch cases");
1878     // If there's only one jump destination there's no sense weighting it.
1879     if (SwitchWeights->size() > 1)
1880       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1881                               createProfileWeights(*SwitchWeights));
1882     delete SwitchWeights;
1883   } else if (SwitchLikelihood) {
1884     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1885            "switch likelihoods do not match switch cases");
1886     Optional<SmallVector<uint64_t, 16>> LHW =
1887         getLikelihoodWeights(*SwitchLikelihood);
1888     if (LHW) {
1889       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
1890       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1891                               createProfileWeights(*LHW));
1892     }
1893     delete SwitchLikelihood;
1894   }
1895   SwitchInsn = SavedSwitchInsn;
1896   SwitchWeights = SavedSwitchWeights;
1897   SwitchLikelihood = SavedSwitchLikelihood;
1898   CaseRangeBlock = SavedCRBlock;
1899 }
1900 
1901 static std::string
1902 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1903                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1904   std::string Result;
1905 
1906   while (*Constraint) {
1907     switch (*Constraint) {
1908     default:
1909       Result += Target.convertConstraint(Constraint);
1910       break;
1911     // Ignore these
1912     case '*':
1913     case '?':
1914     case '!':
1915     case '=': // Will see this and the following in mult-alt constraints.
1916     case '+':
1917       break;
1918     case '#': // Ignore the rest of the constraint alternative.
1919       while (Constraint[1] && Constraint[1] != ',')
1920         Constraint++;
1921       break;
1922     case '&':
1923     case '%':
1924       Result += *Constraint;
1925       while (Constraint[1] && Constraint[1] == *Constraint)
1926         Constraint++;
1927       break;
1928     case ',':
1929       Result += "|";
1930       break;
1931     case 'g':
1932       Result += "imr";
1933       break;
1934     case '[': {
1935       assert(OutCons &&
1936              "Must pass output names to constraints with a symbolic name");
1937       unsigned Index;
1938       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1939       assert(result && "Could not resolve symbolic name"); (void)result;
1940       Result += llvm::utostr(Index);
1941       break;
1942     }
1943     }
1944 
1945     Constraint++;
1946   }
1947 
1948   return Result;
1949 }
1950 
1951 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1952 /// as using a particular register add that as a constraint that will be used
1953 /// in this asm stmt.
1954 static std::string
1955 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1956                        const TargetInfo &Target, CodeGenModule &CGM,
1957                        const AsmStmt &Stmt, const bool EarlyClobber,
1958                        std::string *GCCReg = nullptr) {
1959   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1960   if (!AsmDeclRef)
1961     return Constraint;
1962   const ValueDecl &Value = *AsmDeclRef->getDecl();
1963   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1964   if (!Variable)
1965     return Constraint;
1966   if (Variable->getStorageClass() != SC_Register)
1967     return Constraint;
1968   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1969   if (!Attr)
1970     return Constraint;
1971   StringRef Register = Attr->getLabel();
1972   assert(Target.isValidGCCRegisterName(Register));
1973   // We're using validateOutputConstraint here because we only care if
1974   // this is a register constraint.
1975   TargetInfo::ConstraintInfo Info(Constraint, "");
1976   if (Target.validateOutputConstraint(Info) &&
1977       !Info.allowsRegister()) {
1978     CGM.ErrorUnsupported(&Stmt, "__asm__");
1979     return Constraint;
1980   }
1981   // Canonicalize the register here before returning it.
1982   Register = Target.getNormalizedGCCRegisterName(Register);
1983   if (GCCReg != nullptr)
1984     *GCCReg = Register.str();
1985   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1986 }
1987 
1988 llvm::Value*
1989 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1990                                     LValue InputValue, QualType InputType,
1991                                     std::string &ConstraintStr,
1992                                     SourceLocation Loc) {
1993   llvm::Value *Arg;
1994   if (Info.allowsRegister() || !Info.allowsMemory()) {
1995     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1996       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1997     } else {
1998       llvm::Type *Ty = ConvertType(InputType);
1999       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2000       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
2001         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2002         Ty = llvm::PointerType::getUnqual(Ty);
2003 
2004         Arg = Builder.CreateLoad(
2005             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2006       } else {
2007         Arg = InputValue.getPointer(*this);
2008         ConstraintStr += '*';
2009       }
2010     }
2011   } else {
2012     Arg = InputValue.getPointer(*this);
2013     ConstraintStr += '*';
2014   }
2015 
2016   return Arg;
2017 }
2018 
2019 llvm::Value* CodeGenFunction::EmitAsmInput(
2020                                          const TargetInfo::ConstraintInfo &Info,
2021                                            const Expr *InputExpr,
2022                                            std::string &ConstraintStr) {
2023   // If this can't be a register or memory, i.e., has to be a constant
2024   // (immediate or symbolic), try to emit it as such.
2025   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2026     if (Info.requiresImmediateConstant()) {
2027       Expr::EvalResult EVResult;
2028       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2029 
2030       llvm::APSInt IntResult;
2031       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2032                                           getContext()))
2033         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2034     }
2035 
2036     Expr::EvalResult Result;
2037     if (InputExpr->EvaluateAsInt(Result, getContext()))
2038       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2039   }
2040 
2041   if (Info.allowsRegister() || !Info.allowsMemory())
2042     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2043       return EmitScalarExpr(InputExpr);
2044   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2045     return EmitScalarExpr(InputExpr);
2046   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2047   LValue Dest = EmitLValue(InputExpr);
2048   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2049                             InputExpr->getExprLoc());
2050 }
2051 
2052 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2053 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2054 /// integers which are the source locations of the start of each line in the
2055 /// asm.
2056 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2057                                       CodeGenFunction &CGF) {
2058   SmallVector<llvm::Metadata *, 8> Locs;
2059   // Add the location of the first line to the MDNode.
2060   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2061       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
2062   StringRef StrVal = Str->getString();
2063   if (!StrVal.empty()) {
2064     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2065     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2066     unsigned StartToken = 0;
2067     unsigned ByteOffset = 0;
2068 
2069     // Add the location of the start of each subsequent line of the asm to the
2070     // MDNode.
2071     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2072       if (StrVal[i] != '\n') continue;
2073       SourceLocation LineLoc = Str->getLocationOfByte(
2074           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2075       Locs.push_back(llvm::ConstantAsMetadata::get(
2076           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
2077     }
2078   }
2079 
2080   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2081 }
2082 
2083 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2084                               bool ReadOnly, bool ReadNone, bool NoMerge,
2085                               const AsmStmt &S,
2086                               const std::vector<llvm::Type *> &ResultRegTypes,
2087                               CodeGenFunction &CGF,
2088                               std::vector<llvm::Value *> &RegResults) {
2089   Result.addAttribute(llvm::AttributeList::FunctionIndex,
2090                       llvm::Attribute::NoUnwind);
2091   if (NoMerge)
2092     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2093                         llvm::Attribute::NoMerge);
2094   // Attach readnone and readonly attributes.
2095   if (!HasSideEffect) {
2096     if (ReadNone)
2097       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2098                           llvm::Attribute::ReadNone);
2099     else if (ReadOnly)
2100       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2101                           llvm::Attribute::ReadOnly);
2102   }
2103 
2104   // Slap the source location of the inline asm into a !srcloc metadata on the
2105   // call.
2106   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2107     Result.setMetadata("srcloc",
2108                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2109   else {
2110     // At least put the line number on MS inline asm blobs.
2111     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2112                                         S.getAsmLoc().getRawEncoding());
2113     Result.setMetadata("srcloc",
2114                        llvm::MDNode::get(CGF.getLLVMContext(),
2115                                          llvm::ConstantAsMetadata::get(Loc)));
2116   }
2117 
2118   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2119     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2120     // convergent (meaning, they may call an intrinsically convergent op, such
2121     // as bar.sync, and so can't have certain optimizations applied around
2122     // them).
2123     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2124                         llvm::Attribute::Convergent);
2125   // Extract all of the register value results from the asm.
2126   if (ResultRegTypes.size() == 1) {
2127     RegResults.push_back(&Result);
2128   } else {
2129     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2130       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2131       RegResults.push_back(Tmp);
2132     }
2133   }
2134 }
2135 
2136 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2137   // Assemble the final asm string.
2138   std::string AsmString = S.generateAsmString(getContext());
2139 
2140   // Get all the output and input constraints together.
2141   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2142   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2143 
2144   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2145     StringRef Name;
2146     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2147       Name = GAS->getOutputName(i);
2148     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2149     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2150     assert(IsValid && "Failed to parse output constraint");
2151     OutputConstraintInfos.push_back(Info);
2152   }
2153 
2154   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2155     StringRef Name;
2156     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2157       Name = GAS->getInputName(i);
2158     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2159     bool IsValid =
2160       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2161     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2162     InputConstraintInfos.push_back(Info);
2163   }
2164 
2165   std::string Constraints;
2166 
2167   std::vector<LValue> ResultRegDests;
2168   std::vector<QualType> ResultRegQualTys;
2169   std::vector<llvm::Type *> ResultRegTypes;
2170   std::vector<llvm::Type *> ResultTruncRegTypes;
2171   std::vector<llvm::Type *> ArgTypes;
2172   std::vector<llvm::Value*> Args;
2173   llvm::BitVector ResultTypeRequiresCast;
2174 
2175   // Keep track of inout constraints.
2176   std::string InOutConstraints;
2177   std::vector<llvm::Value*> InOutArgs;
2178   std::vector<llvm::Type*> InOutArgTypes;
2179 
2180   // Keep track of out constraints for tied input operand.
2181   std::vector<std::string> OutputConstraints;
2182 
2183   // Keep track of defined physregs.
2184   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2185 
2186   // An inline asm can be marked readonly if it meets the following conditions:
2187   //  - it doesn't have any sideeffects
2188   //  - it doesn't clobber memory
2189   //  - it doesn't return a value by-reference
2190   // It can be marked readnone if it doesn't have any input memory constraints
2191   // in addition to meeting the conditions listed above.
2192   bool ReadOnly = true, ReadNone = true;
2193 
2194   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2195     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2196 
2197     // Simplify the output constraint.
2198     std::string OutputConstraint(S.getOutputConstraint(i));
2199     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2200                                           getTarget(), &OutputConstraintInfos);
2201 
2202     const Expr *OutExpr = S.getOutputExpr(i);
2203     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2204 
2205     std::string GCCReg;
2206     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2207                                               getTarget(), CGM, S,
2208                                               Info.earlyClobber(),
2209                                               &GCCReg);
2210     // Give an error on multiple outputs to same physreg.
2211     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2212       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2213 
2214     OutputConstraints.push_back(OutputConstraint);
2215     LValue Dest = EmitLValue(OutExpr);
2216     if (!Constraints.empty())
2217       Constraints += ',';
2218 
2219     // If this is a register output, then make the inline asm return it
2220     // by-value.  If this is a memory result, return the value by-reference.
2221     bool isScalarizableAggregate =
2222         hasAggregateEvaluationKind(OutExpr->getType());
2223     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2224                                  isScalarizableAggregate)) {
2225       Constraints += "=" + OutputConstraint;
2226       ResultRegQualTys.push_back(OutExpr->getType());
2227       ResultRegDests.push_back(Dest);
2228       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2229       if (Info.allowsRegister() && isScalarizableAggregate) {
2230         ResultTypeRequiresCast.push_back(true);
2231         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2232         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2233         ResultRegTypes.push_back(ConvTy);
2234       } else {
2235         ResultTypeRequiresCast.push_back(false);
2236         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2237       }
2238       // If this output is tied to an input, and if the input is larger, then
2239       // we need to set the actual result type of the inline asm node to be the
2240       // same as the input type.
2241       if (Info.hasMatchingInput()) {
2242         unsigned InputNo;
2243         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2244           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2245           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2246             break;
2247         }
2248         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2249 
2250         QualType InputTy = S.getInputExpr(InputNo)->getType();
2251         QualType OutputType = OutExpr->getType();
2252 
2253         uint64_t InputSize = getContext().getTypeSize(InputTy);
2254         if (getContext().getTypeSize(OutputType) < InputSize) {
2255           // Form the asm to return the value as a larger integer or fp type.
2256           ResultRegTypes.back() = ConvertType(InputTy);
2257         }
2258       }
2259       if (llvm::Type* AdjTy =
2260             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2261                                                  ResultRegTypes.back()))
2262         ResultRegTypes.back() = AdjTy;
2263       else {
2264         CGM.getDiags().Report(S.getAsmLoc(),
2265                               diag::err_asm_invalid_type_in_input)
2266             << OutExpr->getType() << OutputConstraint;
2267       }
2268 
2269       // Update largest vector width for any vector types.
2270       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2271         LargestVectorWidth =
2272             std::max((uint64_t)LargestVectorWidth,
2273                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2274     } else {
2275       ArgTypes.push_back(Dest.getAddress(*this).getType());
2276       Args.push_back(Dest.getPointer(*this));
2277       Constraints += "=*";
2278       Constraints += OutputConstraint;
2279       ReadOnly = ReadNone = false;
2280     }
2281 
2282     if (Info.isReadWrite()) {
2283       InOutConstraints += ',';
2284 
2285       const Expr *InputExpr = S.getOutputExpr(i);
2286       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2287                                             InOutConstraints,
2288                                             InputExpr->getExprLoc());
2289 
2290       if (llvm::Type* AdjTy =
2291           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2292                                                Arg->getType()))
2293         Arg = Builder.CreateBitCast(Arg, AdjTy);
2294 
2295       // Update largest vector width for any vector types.
2296       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2297         LargestVectorWidth =
2298             std::max((uint64_t)LargestVectorWidth,
2299                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2300       // Only tie earlyclobber physregs.
2301       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2302         InOutConstraints += llvm::utostr(i);
2303       else
2304         InOutConstraints += OutputConstraint;
2305 
2306       InOutArgTypes.push_back(Arg->getType());
2307       InOutArgs.push_back(Arg);
2308     }
2309   }
2310 
2311   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2312   // to the return value slot. Only do this when returning in registers.
2313   if (isa<MSAsmStmt>(&S)) {
2314     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2315     if (RetAI.isDirect() || RetAI.isExtend()) {
2316       // Make a fake lvalue for the return value slot.
2317       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2318       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2319           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2320           ResultRegDests, AsmString, S.getNumOutputs());
2321       SawAsmBlock = true;
2322     }
2323   }
2324 
2325   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2326     const Expr *InputExpr = S.getInputExpr(i);
2327 
2328     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2329 
2330     if (Info.allowsMemory())
2331       ReadNone = false;
2332 
2333     if (!Constraints.empty())
2334       Constraints += ',';
2335 
2336     // Simplify the input constraint.
2337     std::string InputConstraint(S.getInputConstraint(i));
2338     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2339                                          &OutputConstraintInfos);
2340 
2341     InputConstraint = AddVariableConstraints(
2342         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2343         getTarget(), CGM, S, false /* No EarlyClobber */);
2344 
2345     std::string ReplaceConstraint (InputConstraint);
2346     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2347 
2348     // If this input argument is tied to a larger output result, extend the
2349     // input to be the same size as the output.  The LLVM backend wants to see
2350     // the input and output of a matching constraint be the same size.  Note
2351     // that GCC does not define what the top bits are here.  We use zext because
2352     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2353     if (Info.hasTiedOperand()) {
2354       unsigned Output = Info.getTiedOperand();
2355       QualType OutputType = S.getOutputExpr(Output)->getType();
2356       QualType InputTy = InputExpr->getType();
2357 
2358       if (getContext().getTypeSize(OutputType) >
2359           getContext().getTypeSize(InputTy)) {
2360         // Use ptrtoint as appropriate so that we can do our extension.
2361         if (isa<llvm::PointerType>(Arg->getType()))
2362           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2363         llvm::Type *OutputTy = ConvertType(OutputType);
2364         if (isa<llvm::IntegerType>(OutputTy))
2365           Arg = Builder.CreateZExt(Arg, OutputTy);
2366         else if (isa<llvm::PointerType>(OutputTy))
2367           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2368         else {
2369           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2370           Arg = Builder.CreateFPExt(Arg, OutputTy);
2371         }
2372       }
2373       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2374       ReplaceConstraint = OutputConstraints[Output];
2375     }
2376     if (llvm::Type* AdjTy =
2377           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2378                                                    Arg->getType()))
2379       Arg = Builder.CreateBitCast(Arg, AdjTy);
2380     else
2381       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2382           << InputExpr->getType() << InputConstraint;
2383 
2384     // Update largest vector width for any vector types.
2385     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2386       LargestVectorWidth =
2387           std::max((uint64_t)LargestVectorWidth,
2388                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2389 
2390     ArgTypes.push_back(Arg->getType());
2391     Args.push_back(Arg);
2392     Constraints += InputConstraint;
2393   }
2394 
2395   // Labels
2396   SmallVector<llvm::BasicBlock *, 16> Transfer;
2397   llvm::BasicBlock *Fallthrough = nullptr;
2398   bool IsGCCAsmGoto = false;
2399   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2400     IsGCCAsmGoto = GS->isAsmGoto();
2401     if (IsGCCAsmGoto) {
2402       for (const auto *E : GS->labels()) {
2403         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2404         Transfer.push_back(Dest.getBlock());
2405         llvm::BlockAddress *BA =
2406             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2407         Args.push_back(BA);
2408         ArgTypes.push_back(BA->getType());
2409         if (!Constraints.empty())
2410           Constraints += ',';
2411         Constraints += 'X';
2412       }
2413       Fallthrough = createBasicBlock("asm.fallthrough");
2414     }
2415   }
2416 
2417   // Append the "input" part of inout constraints last.
2418   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2419     ArgTypes.push_back(InOutArgTypes[i]);
2420     Args.push_back(InOutArgs[i]);
2421   }
2422   Constraints += InOutConstraints;
2423 
2424   // Clobbers
2425   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2426     StringRef Clobber = S.getClobber(i);
2427 
2428     if (Clobber == "memory")
2429       ReadOnly = ReadNone = false;
2430     else if (Clobber != "cc") {
2431       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2432       if (CGM.getCodeGenOpts().StackClashProtector &&
2433           getTarget().isSPRegName(Clobber)) {
2434         CGM.getDiags().Report(S.getAsmLoc(),
2435                               diag::warn_stack_clash_protection_inline_asm);
2436       }
2437     }
2438 
2439     if (!Constraints.empty())
2440       Constraints += ',';
2441 
2442     Constraints += "~{";
2443     Constraints += Clobber;
2444     Constraints += '}';
2445   }
2446 
2447   // Add machine specific clobbers
2448   std::string MachineClobbers = getTarget().getClobbers();
2449   if (!MachineClobbers.empty()) {
2450     if (!Constraints.empty())
2451       Constraints += ',';
2452     Constraints += MachineClobbers;
2453   }
2454 
2455   llvm::Type *ResultType;
2456   if (ResultRegTypes.empty())
2457     ResultType = VoidTy;
2458   else if (ResultRegTypes.size() == 1)
2459     ResultType = ResultRegTypes[0];
2460   else
2461     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2462 
2463   llvm::FunctionType *FTy =
2464     llvm::FunctionType::get(ResultType, ArgTypes, false);
2465 
2466   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2467   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2468     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2469   llvm::InlineAsm *IA =
2470     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2471                          /* IsAlignStack */ false, AsmDialect);
2472   std::vector<llvm::Value*> RegResults;
2473   if (IsGCCAsmGoto) {
2474     llvm::CallBrInst *Result =
2475         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2476     EmitBlock(Fallthrough);
2477     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2478                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2479                       *this, RegResults);
2480   } else {
2481     llvm::CallInst *Result =
2482         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2483     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2484                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2485                       *this, RegResults);
2486   }
2487 
2488   assert(RegResults.size() == ResultRegTypes.size());
2489   assert(RegResults.size() == ResultTruncRegTypes.size());
2490   assert(RegResults.size() == ResultRegDests.size());
2491   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2492   // in which case its size may grow.
2493   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2494   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2495     llvm::Value *Tmp = RegResults[i];
2496 
2497     // If the result type of the LLVM IR asm doesn't match the result type of
2498     // the expression, do the conversion.
2499     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2500       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2501 
2502       // Truncate the integer result to the right size, note that TruncTy can be
2503       // a pointer.
2504       if (TruncTy->isFloatingPointTy())
2505         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2506       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2507         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2508         Tmp = Builder.CreateTrunc(Tmp,
2509                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2510         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2511       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2512         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2513         Tmp = Builder.CreatePtrToInt(Tmp,
2514                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2515         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2516       } else if (TruncTy->isIntegerTy()) {
2517         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2518       } else if (TruncTy->isVectorTy()) {
2519         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2520       }
2521     }
2522 
2523     LValue Dest = ResultRegDests[i];
2524     // ResultTypeRequiresCast elements correspond to the first
2525     // ResultTypeRequiresCast.size() elements of RegResults.
2526     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2527       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2528       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2529                                         ResultRegTypes[i]->getPointerTo());
2530       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2531       if (Ty.isNull()) {
2532         const Expr *OutExpr = S.getOutputExpr(i);
2533         CGM.Error(
2534             OutExpr->getExprLoc(),
2535             "impossible constraint in asm: can't store value into a register");
2536         return;
2537       }
2538       Dest = MakeAddrLValue(A, Ty);
2539     }
2540     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2541   }
2542 }
2543 
2544 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2545   const RecordDecl *RD = S.getCapturedRecordDecl();
2546   QualType RecordTy = getContext().getRecordType(RD);
2547 
2548   // Initialize the captured struct.
2549   LValue SlotLV =
2550     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2551 
2552   RecordDecl::field_iterator CurField = RD->field_begin();
2553   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2554                                                  E = S.capture_init_end();
2555        I != E; ++I, ++CurField) {
2556     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2557     if (CurField->hasCapturedVLAType()) {
2558       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2559     } else {
2560       EmitInitializerForField(*CurField, LV, *I);
2561     }
2562   }
2563 
2564   return SlotLV;
2565 }
2566 
2567 /// Generate an outlined function for the body of a CapturedStmt, store any
2568 /// captured variables into the captured struct, and call the outlined function.
2569 llvm::Function *
2570 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2571   LValue CapStruct = InitCapturedStruct(S);
2572 
2573   // Emit the CapturedDecl
2574   CodeGenFunction CGF(CGM, true);
2575   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2576   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2577   delete CGF.CapturedStmtInfo;
2578 
2579   // Emit call to the helper function.
2580   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2581 
2582   return F;
2583 }
2584 
2585 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2586   LValue CapStruct = InitCapturedStruct(S);
2587   return CapStruct.getAddress(*this);
2588 }
2589 
2590 /// Creates the outlined function for a CapturedStmt.
2591 llvm::Function *
2592 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2593   assert(CapturedStmtInfo &&
2594     "CapturedStmtInfo should be set when generating the captured function");
2595   const CapturedDecl *CD = S.getCapturedDecl();
2596   const RecordDecl *RD = S.getCapturedRecordDecl();
2597   SourceLocation Loc = S.getBeginLoc();
2598   assert(CD->hasBody() && "missing CapturedDecl body");
2599 
2600   // Build the argument list.
2601   ASTContext &Ctx = CGM.getContext();
2602   FunctionArgList Args;
2603   Args.append(CD->param_begin(), CD->param_end());
2604 
2605   // Create the function declaration.
2606   const CGFunctionInfo &FuncInfo =
2607     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2608   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2609 
2610   llvm::Function *F =
2611     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2612                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2613   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2614   if (CD->isNothrow())
2615     F->addFnAttr(llvm::Attribute::NoUnwind);
2616 
2617   // Generate the function.
2618   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2619                 CD->getBody()->getBeginLoc());
2620   // Set the context parameter in CapturedStmtInfo.
2621   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2622   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2623 
2624   // Initialize variable-length arrays.
2625   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2626                                            Ctx.getTagDeclType(RD));
2627   for (auto *FD : RD->fields()) {
2628     if (FD->hasCapturedVLAType()) {
2629       auto *ExprArg =
2630           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2631               .getScalarVal();
2632       auto VAT = FD->getCapturedVLAType();
2633       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2634     }
2635   }
2636 
2637   // If 'this' is captured, load it into CXXThisValue.
2638   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2639     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2640     LValue ThisLValue = EmitLValueForField(Base, FD);
2641     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2642   }
2643 
2644   PGO.assignRegionCounters(GlobalDecl(CD), F);
2645   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2646   FinishFunction(CD->getBodyRBrace());
2647 
2648   return F;
2649 }
2650