1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Builtins.h"
21 #include "clang/Basic/DiagnosticSema.h"
22 #include "clang/Basic/PrettyStackTrace.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/SaveAndRestore.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===----------------------------------------------------------------------===//
37 //                              Statement Emission
38 //===----------------------------------------------------------------------===//
39 
40 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
41   if (CGDebugInfo *DI = getDebugInfo()) {
42     SourceLocation Loc;
43     Loc = S->getBeginLoc();
44     DI->EmitLocation(Builder, Loc);
45 
46     LastStopPoint = Loc;
47   }
48 }
49 
50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
51   assert(S && "Null statement?");
52   PGO.setCurrentStmt(S);
53 
54   // These statements have their own debug info handling.
55   if (EmitSimpleStmt(S, Attrs))
56     return;
57 
58   // Check if we are generating unreachable code.
59   if (!HaveInsertPoint()) {
60     // If so, and the statement doesn't contain a label, then we do not need to
61     // generate actual code. This is safe because (1) the current point is
62     // unreachable, so we don't need to execute the code, and (2) we've already
63     // handled the statements which update internal data structures (like the
64     // local variable map) which could be used by subsequent statements.
65     if (!ContainsLabel(S)) {
66       // Verify that any decl statements were handled as simple, they may be in
67       // scope of subsequent reachable statements.
68       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
69       return;
70     }
71 
72     // Otherwise, make a new block to hold the code.
73     EnsureInsertPoint();
74   }
75 
76   // Generate a stoppoint if we are emitting debug info.
77   EmitStopPoint(S);
78 
79   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
80   // enabled.
81   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
82     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
83       EmitSimpleOMPExecutableDirective(*D);
84       return;
85     }
86   }
87 
88   switch (S->getStmtClass()) {
89   case Stmt::NoStmtClass:
90   case Stmt::CXXCatchStmtClass:
91   case Stmt::SEHExceptStmtClass:
92   case Stmt::SEHFinallyStmtClass:
93   case Stmt::MSDependentExistsStmtClass:
94     llvm_unreachable("invalid statement class to emit generically");
95   case Stmt::NullStmtClass:
96   case Stmt::CompoundStmtClass:
97   case Stmt::DeclStmtClass:
98   case Stmt::LabelStmtClass:
99   case Stmt::AttributedStmtClass:
100   case Stmt::GotoStmtClass:
101   case Stmt::BreakStmtClass:
102   case Stmt::ContinueStmtClass:
103   case Stmt::DefaultStmtClass:
104   case Stmt::CaseStmtClass:
105   case Stmt::SEHLeaveStmtClass:
106     llvm_unreachable("should have emitted these statements as simple");
107 
108 #define STMT(Type, Base)
109 #define ABSTRACT_STMT(Op)
110 #define EXPR(Type, Base) \
111   case Stmt::Type##Class:
112 #include "clang/AST/StmtNodes.inc"
113   {
114     // Remember the block we came in on.
115     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
116     assert(incoming && "expression emission must have an insertion point");
117 
118     EmitIgnoredExpr(cast<Expr>(S));
119 
120     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
121     assert(outgoing && "expression emission cleared block!");
122 
123     // The expression emitters assume (reasonably!) that the insertion
124     // point is always set.  To maintain that, the call-emission code
125     // for noreturn functions has to enter a new block with no
126     // predecessors.  We want to kill that block and mark the current
127     // insertion point unreachable in the common case of a call like
128     // "exit();".  Since expression emission doesn't otherwise create
129     // blocks with no predecessors, we can just test for that.
130     // However, we must be careful not to do this to our incoming
131     // block, because *statement* emission does sometimes create
132     // reachable blocks which will have no predecessors until later in
133     // the function.  This occurs with, e.g., labels that are not
134     // reachable by fallthrough.
135     if (incoming != outgoing && outgoing->use_empty()) {
136       outgoing->eraseFromParent();
137       Builder.ClearInsertionPoint();
138     }
139     break;
140   }
141 
142   case Stmt::IndirectGotoStmtClass:
143     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
144 
145   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
146   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
147   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
148   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
149 
150   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
151 
152   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
153   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
154   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
155   case Stmt::CoroutineBodyStmtClass:
156     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
157     break;
158   case Stmt::CoreturnStmtClass:
159     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
160     break;
161   case Stmt::CapturedStmtClass: {
162     const CapturedStmt *CS = cast<CapturedStmt>(S);
163     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
164     }
165     break;
166   case Stmt::ObjCAtTryStmtClass:
167     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
168     break;
169   case Stmt::ObjCAtCatchStmtClass:
170     llvm_unreachable(
171                     "@catch statements should be handled by EmitObjCAtTryStmt");
172   case Stmt::ObjCAtFinallyStmtClass:
173     llvm_unreachable(
174                   "@finally statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtThrowStmtClass:
176     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
177     break;
178   case Stmt::ObjCAtSynchronizedStmtClass:
179     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
180     break;
181   case Stmt::ObjCForCollectionStmtClass:
182     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
183     break;
184   case Stmt::ObjCAutoreleasePoolStmtClass:
185     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
186     break;
187 
188   case Stmt::CXXTryStmtClass:
189     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
190     break;
191   case Stmt::CXXForRangeStmtClass:
192     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
193     break;
194   case Stmt::SEHTryStmtClass:
195     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
196     break;
197   case Stmt::OMPCanonicalLoopClass:
198     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
199     break;
200   case Stmt::OMPParallelDirectiveClass:
201     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
202     break;
203   case Stmt::OMPSimdDirectiveClass:
204     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
205     break;
206   case Stmt::OMPTileDirectiveClass:
207     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
208     break;
209   case Stmt::OMPForDirectiveClass:
210     EmitOMPForDirective(cast<OMPForDirective>(*S));
211     break;
212   case Stmt::OMPForSimdDirectiveClass:
213     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
214     break;
215   case Stmt::OMPSectionsDirectiveClass:
216     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
217     break;
218   case Stmt::OMPSectionDirectiveClass:
219     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
220     break;
221   case Stmt::OMPSingleDirectiveClass:
222     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
223     break;
224   case Stmt::OMPMasterDirectiveClass:
225     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
226     break;
227   case Stmt::OMPCriticalDirectiveClass:
228     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
229     break;
230   case Stmt::OMPParallelForDirectiveClass:
231     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
232     break;
233   case Stmt::OMPParallelForSimdDirectiveClass:
234     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
235     break;
236   case Stmt::OMPParallelMasterDirectiveClass:
237     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
238     break;
239   case Stmt::OMPParallelSectionsDirectiveClass:
240     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
241     break;
242   case Stmt::OMPTaskDirectiveClass:
243     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
244     break;
245   case Stmt::OMPTaskyieldDirectiveClass:
246     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
247     break;
248   case Stmt::OMPBarrierDirectiveClass:
249     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
250     break;
251   case Stmt::OMPTaskwaitDirectiveClass:
252     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
253     break;
254   case Stmt::OMPTaskgroupDirectiveClass:
255     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
256     break;
257   case Stmt::OMPFlushDirectiveClass:
258     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
259     break;
260   case Stmt::OMPDepobjDirectiveClass:
261     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
262     break;
263   case Stmt::OMPScanDirectiveClass:
264     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
265     break;
266   case Stmt::OMPOrderedDirectiveClass:
267     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
268     break;
269   case Stmt::OMPAtomicDirectiveClass:
270     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
271     break;
272   case Stmt::OMPTargetDirectiveClass:
273     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
274     break;
275   case Stmt::OMPTeamsDirectiveClass:
276     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
277     break;
278   case Stmt::OMPCancellationPointDirectiveClass:
279     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
280     break;
281   case Stmt::OMPCancelDirectiveClass:
282     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
283     break;
284   case Stmt::OMPTargetDataDirectiveClass:
285     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
286     break;
287   case Stmt::OMPTargetEnterDataDirectiveClass:
288     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
289     break;
290   case Stmt::OMPTargetExitDataDirectiveClass:
291     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
292     break;
293   case Stmt::OMPTargetParallelDirectiveClass:
294     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
295     break;
296   case Stmt::OMPTargetParallelForDirectiveClass:
297     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
298     break;
299   case Stmt::OMPTaskLoopDirectiveClass:
300     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
301     break;
302   case Stmt::OMPTaskLoopSimdDirectiveClass:
303     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
304     break;
305   case Stmt::OMPMasterTaskLoopDirectiveClass:
306     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
307     break;
308   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
309     EmitOMPMasterTaskLoopSimdDirective(
310         cast<OMPMasterTaskLoopSimdDirective>(*S));
311     break;
312   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
313     EmitOMPParallelMasterTaskLoopDirective(
314         cast<OMPParallelMasterTaskLoopDirective>(*S));
315     break;
316   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
317     EmitOMPParallelMasterTaskLoopSimdDirective(
318         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
319     break;
320   case Stmt::OMPDistributeDirectiveClass:
321     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
322     break;
323   case Stmt::OMPTargetUpdateDirectiveClass:
324     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
325     break;
326   case Stmt::OMPDistributeParallelForDirectiveClass:
327     EmitOMPDistributeParallelForDirective(
328         cast<OMPDistributeParallelForDirective>(*S));
329     break;
330   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
331     EmitOMPDistributeParallelForSimdDirective(
332         cast<OMPDistributeParallelForSimdDirective>(*S));
333     break;
334   case Stmt::OMPDistributeSimdDirectiveClass:
335     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
336     break;
337   case Stmt::OMPTargetParallelForSimdDirectiveClass:
338     EmitOMPTargetParallelForSimdDirective(
339         cast<OMPTargetParallelForSimdDirective>(*S));
340     break;
341   case Stmt::OMPTargetSimdDirectiveClass:
342     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
343     break;
344   case Stmt::OMPTeamsDistributeDirectiveClass:
345     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
346     break;
347   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
348     EmitOMPTeamsDistributeSimdDirective(
349         cast<OMPTeamsDistributeSimdDirective>(*S));
350     break;
351   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
352     EmitOMPTeamsDistributeParallelForSimdDirective(
353         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
354     break;
355   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
356     EmitOMPTeamsDistributeParallelForDirective(
357         cast<OMPTeamsDistributeParallelForDirective>(*S));
358     break;
359   case Stmt::OMPTargetTeamsDirectiveClass:
360     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
361     break;
362   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
363     EmitOMPTargetTeamsDistributeDirective(
364         cast<OMPTargetTeamsDistributeDirective>(*S));
365     break;
366   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
367     EmitOMPTargetTeamsDistributeParallelForDirective(
368         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
369     break;
370   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
371     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
372         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
373     break;
374   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
375     EmitOMPTargetTeamsDistributeSimdDirective(
376         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
377     break;
378   case Stmt::OMPInteropDirectiveClass:
379     llvm_unreachable("Interop directive not supported yet.");
380     break;
381   case Stmt::OMPDispatchDirectiveClass:
382     llvm_unreachable("Dispatch directive not supported yet.");
383     break;
384   case Stmt::OMPMaskedDirectiveClass:
385     llvm_unreachable("Masked directive not supported yet.");
386     break;
387   }
388 }
389 
390 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
391                                      ArrayRef<const Attr *> Attrs) {
392   switch (S->getStmtClass()) {
393   default:
394     return false;
395   case Stmt::NullStmtClass:
396     break;
397   case Stmt::CompoundStmtClass:
398     EmitCompoundStmt(cast<CompoundStmt>(*S));
399     break;
400   case Stmt::DeclStmtClass:
401     EmitDeclStmt(cast<DeclStmt>(*S));
402     break;
403   case Stmt::LabelStmtClass:
404     EmitLabelStmt(cast<LabelStmt>(*S));
405     break;
406   case Stmt::AttributedStmtClass:
407     EmitAttributedStmt(cast<AttributedStmt>(*S));
408     break;
409   case Stmt::GotoStmtClass:
410     EmitGotoStmt(cast<GotoStmt>(*S));
411     break;
412   case Stmt::BreakStmtClass:
413     EmitBreakStmt(cast<BreakStmt>(*S));
414     break;
415   case Stmt::ContinueStmtClass:
416     EmitContinueStmt(cast<ContinueStmt>(*S));
417     break;
418   case Stmt::DefaultStmtClass:
419     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
420     break;
421   case Stmt::CaseStmtClass:
422     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
423     break;
424   case Stmt::SEHLeaveStmtClass:
425     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
426     break;
427   }
428   return true;
429 }
430 
431 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
432 /// this captures the expression result of the last sub-statement and returns it
433 /// (for use by the statement expression extension).
434 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
435                                           AggValueSlot AggSlot) {
436   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
437                              "LLVM IR generation of compound statement ('{}')");
438 
439   // Keep track of the current cleanup stack depth, including debug scopes.
440   LexicalScope Scope(*this, S.getSourceRange());
441 
442   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
443 }
444 
445 Address
446 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
447                                               bool GetLast,
448                                               AggValueSlot AggSlot) {
449 
450   const Stmt *ExprResult = S.getStmtExprResult();
451   assert((!GetLast || (GetLast && ExprResult)) &&
452          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
453 
454   Address RetAlloca = Address::invalid();
455 
456   for (auto *CurStmt : S.body()) {
457     if (GetLast && ExprResult == CurStmt) {
458       // We have to special case labels here.  They are statements, but when put
459       // at the end of a statement expression, they yield the value of their
460       // subexpression.  Handle this by walking through all labels we encounter,
461       // emitting them before we evaluate the subexpr.
462       // Similar issues arise for attributed statements.
463       while (!isa<Expr>(ExprResult)) {
464         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
465           EmitLabel(LS->getDecl());
466           ExprResult = LS->getSubStmt();
467         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
468           // FIXME: Update this if we ever have attributes that affect the
469           // semantics of an expression.
470           ExprResult = AS->getSubStmt();
471         } else {
472           llvm_unreachable("unknown value statement");
473         }
474       }
475 
476       EnsureInsertPoint();
477 
478       const Expr *E = cast<Expr>(ExprResult);
479       QualType ExprTy = E->getType();
480       if (hasAggregateEvaluationKind(ExprTy)) {
481         EmitAggExpr(E, AggSlot);
482       } else {
483         // We can't return an RValue here because there might be cleanups at
484         // the end of the StmtExpr.  Because of that, we have to emit the result
485         // here into a temporary alloca.
486         RetAlloca = CreateMemTemp(ExprTy);
487         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
488                          /*IsInit*/ false);
489       }
490     } else {
491       EmitStmt(CurStmt);
492     }
493   }
494 
495   return RetAlloca;
496 }
497 
498 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
499   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
500 
501   // If there is a cleanup stack, then we it isn't worth trying to
502   // simplify this block (we would need to remove it from the scope map
503   // and cleanup entry).
504   if (!EHStack.empty())
505     return;
506 
507   // Can only simplify direct branches.
508   if (!BI || !BI->isUnconditional())
509     return;
510 
511   // Can only simplify empty blocks.
512   if (BI->getIterator() != BB->begin())
513     return;
514 
515   BB->replaceAllUsesWith(BI->getSuccessor(0));
516   BI->eraseFromParent();
517   BB->eraseFromParent();
518 }
519 
520 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
521   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
522 
523   // Fall out of the current block (if necessary).
524   EmitBranch(BB);
525 
526   if (IsFinished && BB->use_empty()) {
527     delete BB;
528     return;
529   }
530 
531   // Place the block after the current block, if possible, or else at
532   // the end of the function.
533   if (CurBB && CurBB->getParent())
534     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
535   else
536     CurFn->getBasicBlockList().push_back(BB);
537   Builder.SetInsertPoint(BB);
538 }
539 
540 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
541   // Emit a branch from the current block to the target one if this
542   // was a real block.  If this was just a fall-through block after a
543   // terminator, don't emit it.
544   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
545 
546   if (!CurBB || CurBB->getTerminator()) {
547     // If there is no insert point or the previous block is already
548     // terminated, don't touch it.
549   } else {
550     // Otherwise, create a fall-through branch.
551     Builder.CreateBr(Target);
552   }
553 
554   Builder.ClearInsertionPoint();
555 }
556 
557 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
558   bool inserted = false;
559   for (llvm::User *u : block->users()) {
560     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
561       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
562                                              block);
563       inserted = true;
564       break;
565     }
566   }
567 
568   if (!inserted)
569     CurFn->getBasicBlockList().push_back(block);
570 
571   Builder.SetInsertPoint(block);
572 }
573 
574 CodeGenFunction::JumpDest
575 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
576   JumpDest &Dest = LabelMap[D];
577   if (Dest.isValid()) return Dest;
578 
579   // Create, but don't insert, the new block.
580   Dest = JumpDest(createBasicBlock(D->getName()),
581                   EHScopeStack::stable_iterator::invalid(),
582                   NextCleanupDestIndex++);
583   return Dest;
584 }
585 
586 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
587   // Add this label to the current lexical scope if we're within any
588   // normal cleanups.  Jumps "in" to this label --- when permitted by
589   // the language --- may need to be routed around such cleanups.
590   if (EHStack.hasNormalCleanups() && CurLexicalScope)
591     CurLexicalScope->addLabel(D);
592 
593   JumpDest &Dest = LabelMap[D];
594 
595   // If we didn't need a forward reference to this label, just go
596   // ahead and create a destination at the current scope.
597   if (!Dest.isValid()) {
598     Dest = getJumpDestInCurrentScope(D->getName());
599 
600   // Otherwise, we need to give this label a target depth and remove
601   // it from the branch-fixups list.
602   } else {
603     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
604     Dest.setScopeDepth(EHStack.stable_begin());
605     ResolveBranchFixups(Dest.getBlock());
606   }
607 
608   EmitBlock(Dest.getBlock());
609 
610   // Emit debug info for labels.
611   if (CGDebugInfo *DI = getDebugInfo()) {
612     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
613       DI->setLocation(D->getLocation());
614       DI->EmitLabel(D, Builder);
615     }
616   }
617 
618   incrementProfileCounter(D->getStmt());
619 }
620 
621 /// Change the cleanup scope of the labels in this lexical scope to
622 /// match the scope of the enclosing context.
623 void CodeGenFunction::LexicalScope::rescopeLabels() {
624   assert(!Labels.empty());
625   EHScopeStack::stable_iterator innermostScope
626     = CGF.EHStack.getInnermostNormalCleanup();
627 
628   // Change the scope depth of all the labels.
629   for (SmallVectorImpl<const LabelDecl*>::const_iterator
630          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
631     assert(CGF.LabelMap.count(*i));
632     JumpDest &dest = CGF.LabelMap.find(*i)->second;
633     assert(dest.getScopeDepth().isValid());
634     assert(innermostScope.encloses(dest.getScopeDepth()));
635     dest.setScopeDepth(innermostScope);
636   }
637 
638   // Reparent the labels if the new scope also has cleanups.
639   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
640     ParentScope->Labels.append(Labels.begin(), Labels.end());
641   }
642 }
643 
644 
645 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
646   EmitLabel(S.getDecl());
647   EmitStmt(S.getSubStmt());
648 }
649 
650 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
651   bool nomerge = false;
652   for (const auto *A : S.getAttrs())
653     if (A->getKind() == attr::NoMerge) {
654       nomerge = true;
655       break;
656     }
657   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
658   EmitStmt(S.getSubStmt(), S.getAttrs());
659 }
660 
661 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
662   // If this code is reachable then emit a stop point (if generating
663   // debug info). We have to do this ourselves because we are on the
664   // "simple" statement path.
665   if (HaveInsertPoint())
666     EmitStopPoint(&S);
667 
668   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
669 }
670 
671 
672 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
673   if (const LabelDecl *Target = S.getConstantTarget()) {
674     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
675     return;
676   }
677 
678   // Ensure that we have an i8* for our PHI node.
679   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
680                                          Int8PtrTy, "addr");
681   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
682 
683   // Get the basic block for the indirect goto.
684   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
685 
686   // The first instruction in the block has to be the PHI for the switch dest,
687   // add an entry for this branch.
688   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
689 
690   EmitBranch(IndGotoBB);
691 }
692 
693 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
694   // C99 6.8.4.1: The first substatement is executed if the expression compares
695   // unequal to 0.  The condition must be a scalar type.
696   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
697 
698   if (S.getInit())
699     EmitStmt(S.getInit());
700 
701   if (S.getConditionVariable())
702     EmitDecl(*S.getConditionVariable());
703 
704   // If the condition constant folds and can be elided, try to avoid emitting
705   // the condition and the dead arm of the if/else.
706   bool CondConstant;
707   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
708                                    S.isConstexpr())) {
709     // Figure out which block (then or else) is executed.
710     const Stmt *Executed = S.getThen();
711     const Stmt *Skipped  = S.getElse();
712     if (!CondConstant)  // Condition false?
713       std::swap(Executed, Skipped);
714 
715     // If the skipped block has no labels in it, just emit the executed block.
716     // This avoids emitting dead code and simplifies the CFG substantially.
717     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
718       if (CondConstant)
719         incrementProfileCounter(&S);
720       if (Executed) {
721         RunCleanupsScope ExecutedScope(*this);
722         EmitStmt(Executed);
723       }
724       return;
725     }
726   }
727 
728   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
729   // the conditional branch.
730   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
731   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
732   llvm::BasicBlock *ElseBlock = ContBlock;
733   if (S.getElse())
734     ElseBlock = createBasicBlock("if.else");
735 
736   // Prefer the PGO based weights over the likelihood attribute.
737   // When the build isn't optimized the metadata isn't used, so don't generate
738   // it.
739   Stmt::Likelihood LH = Stmt::LH_None;
740   uint64_t Count = getProfileCount(S.getThen());
741   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
742     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
743   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
744 
745   // Emit the 'then' code.
746   EmitBlock(ThenBlock);
747   incrementProfileCounter(&S);
748   {
749     RunCleanupsScope ThenScope(*this);
750     EmitStmt(S.getThen());
751   }
752   EmitBranch(ContBlock);
753 
754   // Emit the 'else' code if present.
755   if (const Stmt *Else = S.getElse()) {
756     {
757       // There is no need to emit line number for an unconditional branch.
758       auto NL = ApplyDebugLocation::CreateEmpty(*this);
759       EmitBlock(ElseBlock);
760     }
761     {
762       RunCleanupsScope ElseScope(*this);
763       EmitStmt(Else);
764     }
765     {
766       // There is no need to emit line number for an unconditional branch.
767       auto NL = ApplyDebugLocation::CreateEmpty(*this);
768       EmitBranch(ContBlock);
769     }
770   }
771 
772   // Emit the continuation block for code after the if.
773   EmitBlock(ContBlock, true);
774 }
775 
776 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
777                                     ArrayRef<const Attr *> WhileAttrs) {
778   // Emit the header for the loop, which will also become
779   // the continue target.
780   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
781   EmitBlock(LoopHeader.getBlock());
782 
783   // Create an exit block for when the condition fails, which will
784   // also become the break target.
785   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
786 
787   // Store the blocks to use for break and continue.
788   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
789 
790   // C++ [stmt.while]p2:
791   //   When the condition of a while statement is a declaration, the
792   //   scope of the variable that is declared extends from its point
793   //   of declaration (3.3.2) to the end of the while statement.
794   //   [...]
795   //   The object created in a condition is destroyed and created
796   //   with each iteration of the loop.
797   RunCleanupsScope ConditionScope(*this);
798 
799   if (S.getConditionVariable())
800     EmitDecl(*S.getConditionVariable());
801 
802   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
803   // evaluation of the controlling expression takes place before each
804   // execution of the loop body.
805   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
806 
807   // while(1) is common, avoid extra exit blocks.  Be sure
808   // to correctly handle break/continue though.
809   bool EmitBoolCondBranch = true;
810   bool LoopMustProgress = false;
811   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
812     if (C->isOne()) {
813       EmitBoolCondBranch = false;
814       FnIsMustProgress = false;
815     }
816   } else if (LanguageRequiresProgress())
817     LoopMustProgress = true;
818 
819   const SourceRange &R = S.getSourceRange();
820   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
821                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
822                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
823 
824   // As long as the condition is true, go to the loop body.
825   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
826   if (EmitBoolCondBranch) {
827     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
828     if (ConditionScope.requiresCleanups())
829       ExitBlock = createBasicBlock("while.exit");
830     llvm::MDNode *Weights =
831         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
832     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
833       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
834           BoolCondVal, Stmt::getLikelihood(S.getBody()));
835     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
836 
837     if (ExitBlock != LoopExit.getBlock()) {
838       EmitBlock(ExitBlock);
839       EmitBranchThroughCleanup(LoopExit);
840     }
841   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
842     CGM.getDiags().Report(A->getLocation(),
843                           diag::warn_attribute_has_no_effect_on_infinite_loop)
844         << A << A->getRange();
845     CGM.getDiags().Report(
846         S.getWhileLoc(),
847         diag::note_attribute_has_no_effect_on_infinite_loop_here)
848         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
849   }
850 
851   // Emit the loop body.  We have to emit this in a cleanup scope
852   // because it might be a singleton DeclStmt.
853   {
854     RunCleanupsScope BodyScope(*this);
855     EmitBlock(LoopBody);
856     incrementProfileCounter(&S);
857     EmitStmt(S.getBody());
858   }
859 
860   BreakContinueStack.pop_back();
861 
862   // Immediately force cleanup.
863   ConditionScope.ForceCleanup();
864 
865   EmitStopPoint(&S);
866   // Branch to the loop header again.
867   EmitBranch(LoopHeader.getBlock());
868 
869   LoopStack.pop();
870 
871   // Emit the exit block.
872   EmitBlock(LoopExit.getBlock(), true);
873 
874   // The LoopHeader typically is just a branch if we skipped emitting
875   // a branch, try to erase it.
876   if (!EmitBoolCondBranch)
877     SimplifyForwardingBlocks(LoopHeader.getBlock());
878 }
879 
880 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
881                                  ArrayRef<const Attr *> DoAttrs) {
882   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
883   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
884 
885   uint64_t ParentCount = getCurrentProfileCount();
886 
887   // Store the blocks to use for break and continue.
888   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
889 
890   // Emit the body of the loop.
891   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
892 
893   EmitBlockWithFallThrough(LoopBody, &S);
894   {
895     RunCleanupsScope BodyScope(*this);
896     EmitStmt(S.getBody());
897   }
898 
899   EmitBlock(LoopCond.getBlock());
900 
901   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
902   // after each execution of the loop body."
903 
904   // Evaluate the conditional in the while header.
905   // C99 6.8.5p2/p4: The first substatement is executed if the expression
906   // compares unequal to 0.  The condition must be a scalar type.
907   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
908 
909   BreakContinueStack.pop_back();
910 
911   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
912   // to correctly handle break/continue though.
913   bool EmitBoolCondBranch = true;
914   bool LoopMustProgress = false;
915   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) {
916     if (C->isZero())
917       EmitBoolCondBranch = false;
918     else if (C->isOne())
919       FnIsMustProgress = false;
920   } else if (LanguageRequiresProgress())
921     LoopMustProgress = true;
922 
923   const SourceRange &R = S.getSourceRange();
924   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
925                  SourceLocToDebugLoc(R.getBegin()),
926                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
927 
928   // As long as the condition is true, iterate the loop.
929   if (EmitBoolCondBranch) {
930     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
931     Builder.CreateCondBr(
932         BoolCondVal, LoopBody, LoopExit.getBlock(),
933         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
934   }
935 
936   LoopStack.pop();
937 
938   // Emit the exit block.
939   EmitBlock(LoopExit.getBlock());
940 
941   // The DoCond block typically is just a branch if we skipped
942   // emitting a branch, try to erase it.
943   if (!EmitBoolCondBranch)
944     SimplifyForwardingBlocks(LoopCond.getBlock());
945 }
946 
947 void CodeGenFunction::EmitForStmt(const ForStmt &S,
948                                   ArrayRef<const Attr *> ForAttrs) {
949   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
950 
951   LexicalScope ForScope(*this, S.getSourceRange());
952 
953   // Evaluate the first part before the loop.
954   if (S.getInit())
955     EmitStmt(S.getInit());
956 
957   // Start the loop with a block that tests the condition.
958   // If there's an increment, the continue scope will be overwritten
959   // later.
960   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
961   llvm::BasicBlock *CondBlock = CondDest.getBlock();
962   EmitBlock(CondBlock);
963 
964   bool LoopMustProgress = false;
965   Expr::EvalResult Result;
966   if (LanguageRequiresProgress()) {
967     if (!S.getCond()) {
968       FnIsMustProgress = false;
969     } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) {
970       LoopMustProgress = true;
971     }
972   }
973 
974   const SourceRange &R = S.getSourceRange();
975   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
976                  SourceLocToDebugLoc(R.getBegin()),
977                  SourceLocToDebugLoc(R.getEnd()), LoopMustProgress);
978 
979   // Create a cleanup scope for the condition variable cleanups.
980   LexicalScope ConditionScope(*this, S.getSourceRange());
981 
982   // If the for loop doesn't have an increment we can just use the condition as
983   // the continue block. Otherwise, if there is no condition variable, we can
984   // form the continue block now. If there is a condition variable, we can't
985   // form the continue block until after we've emitted the condition, because
986   // the condition is in scope in the increment, but Sema's jump diagnostics
987   // ensure that there are no continues from the condition variable that jump
988   // to the loop increment.
989   JumpDest Continue;
990   if (!S.getInc())
991     Continue = CondDest;
992   else if (!S.getConditionVariable())
993     Continue = getJumpDestInCurrentScope("for.inc");
994   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
995 
996   if (S.getCond()) {
997     // If the for statement has a condition scope, emit the local variable
998     // declaration.
999     if (S.getConditionVariable()) {
1000       EmitDecl(*S.getConditionVariable());
1001 
1002       // We have entered the condition variable's scope, so we're now able to
1003       // jump to the continue block.
1004       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1005       BreakContinueStack.back().ContinueBlock = Continue;
1006     }
1007 
1008     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1009     // If there are any cleanups between here and the loop-exit scope,
1010     // create a block to stage a loop exit along.
1011     if (ForScope.requiresCleanups())
1012       ExitBlock = createBasicBlock("for.cond.cleanup");
1013 
1014     // As long as the condition is true, iterate the loop.
1015     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1016 
1017     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1018     // compares unequal to 0.  The condition must be a scalar type.
1019     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1020     llvm::MDNode *Weights =
1021         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1022     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1023       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1024           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1025 
1026     if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
1027       if (C->isOne())
1028         FnIsMustProgress = false;
1029 
1030     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1031 
1032     if (ExitBlock != LoopExit.getBlock()) {
1033       EmitBlock(ExitBlock);
1034       EmitBranchThroughCleanup(LoopExit);
1035     }
1036 
1037     EmitBlock(ForBody);
1038   } else {
1039     // Treat it as a non-zero constant.  Don't even create a new block for the
1040     // body, just fall into it.
1041   }
1042   incrementProfileCounter(&S);
1043 
1044   {
1045     // Create a separate cleanup scope for the body, in case it is not
1046     // a compound statement.
1047     RunCleanupsScope BodyScope(*this);
1048     EmitStmt(S.getBody());
1049   }
1050 
1051   // If there is an increment, emit it next.
1052   if (S.getInc()) {
1053     EmitBlock(Continue.getBlock());
1054     EmitStmt(S.getInc());
1055   }
1056 
1057   BreakContinueStack.pop_back();
1058 
1059   ConditionScope.ForceCleanup();
1060 
1061   EmitStopPoint(&S);
1062   EmitBranch(CondBlock);
1063 
1064   ForScope.ForceCleanup();
1065 
1066   LoopStack.pop();
1067 
1068   // Emit the fall-through block.
1069   EmitBlock(LoopExit.getBlock(), true);
1070 }
1071 
1072 void
1073 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1074                                      ArrayRef<const Attr *> ForAttrs) {
1075   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1076 
1077   LexicalScope ForScope(*this, S.getSourceRange());
1078 
1079   // Evaluate the first pieces before the loop.
1080   if (S.getInit())
1081     EmitStmt(S.getInit());
1082   EmitStmt(S.getRangeStmt());
1083   EmitStmt(S.getBeginStmt());
1084   EmitStmt(S.getEndStmt());
1085 
1086   // Start the loop with a block that tests the condition.
1087   // If there's an increment, the continue scope will be overwritten
1088   // later.
1089   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1090   EmitBlock(CondBlock);
1091 
1092   const SourceRange &R = S.getSourceRange();
1093   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1094                  SourceLocToDebugLoc(R.getBegin()),
1095                  SourceLocToDebugLoc(R.getEnd()));
1096 
1097   // If there are any cleanups between here and the loop-exit scope,
1098   // create a block to stage a loop exit along.
1099   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1100   if (ForScope.requiresCleanups())
1101     ExitBlock = createBasicBlock("for.cond.cleanup");
1102 
1103   // The loop body, consisting of the specified body and the loop variable.
1104   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1105 
1106   // The body is executed if the expression, contextually converted
1107   // to bool, is true.
1108   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1109   llvm::MDNode *Weights =
1110       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1111   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1112     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1113         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1114   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1115 
1116   if (ExitBlock != LoopExit.getBlock()) {
1117     EmitBlock(ExitBlock);
1118     EmitBranchThroughCleanup(LoopExit);
1119   }
1120 
1121   EmitBlock(ForBody);
1122   incrementProfileCounter(&S);
1123 
1124   // Create a block for the increment. In case of a 'continue', we jump there.
1125   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1126 
1127   // Store the blocks to use for break and continue.
1128   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1129 
1130   {
1131     // Create a separate cleanup scope for the loop variable and body.
1132     LexicalScope BodyScope(*this, S.getSourceRange());
1133     EmitStmt(S.getLoopVarStmt());
1134     EmitStmt(S.getBody());
1135   }
1136 
1137   EmitStopPoint(&S);
1138   // If there is an increment, emit it next.
1139   EmitBlock(Continue.getBlock());
1140   EmitStmt(S.getInc());
1141 
1142   BreakContinueStack.pop_back();
1143 
1144   EmitBranch(CondBlock);
1145 
1146   ForScope.ForceCleanup();
1147 
1148   LoopStack.pop();
1149 
1150   // Emit the fall-through block.
1151   EmitBlock(LoopExit.getBlock(), true);
1152 }
1153 
1154 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1155   if (RV.isScalar()) {
1156     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1157   } else if (RV.isAggregate()) {
1158     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1159     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1160     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1161   } else {
1162     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1163                        /*init*/ true);
1164   }
1165   EmitBranchThroughCleanup(ReturnBlock);
1166 }
1167 
1168 namespace {
1169 // RAII struct used to save and restore a return statment's result expression.
1170 struct SaveRetExprRAII {
1171   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1172       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1173     CGF.RetExpr = RetExpr;
1174   }
1175   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1176   const Expr *OldRetExpr;
1177   CodeGenFunction &CGF;
1178 };
1179 } // namespace
1180 
1181 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1182 /// if the function returns void, or may be missing one if the function returns
1183 /// non-void.  Fun stuff :).
1184 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1185   if (requiresReturnValueCheck()) {
1186     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1187     auto *SLocPtr =
1188         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1189                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1190     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1191     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1192     assert(ReturnLocation.isValid() && "No valid return location");
1193     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1194                         ReturnLocation);
1195   }
1196 
1197   // Returning from an outlined SEH helper is UB, and we already warn on it.
1198   if (IsOutlinedSEHHelper) {
1199     Builder.CreateUnreachable();
1200     Builder.ClearInsertionPoint();
1201   }
1202 
1203   // Emit the result value, even if unused, to evaluate the side effects.
1204   const Expr *RV = S.getRetValue();
1205 
1206   // Record the result expression of the return statement. The recorded
1207   // expression is used to determine whether a block capture's lifetime should
1208   // end at the end of the full expression as opposed to the end of the scope
1209   // enclosing the block expression.
1210   //
1211   // This permits a small, easily-implemented exception to our over-conservative
1212   // rules about not jumping to statements following block literals with
1213   // non-trivial cleanups.
1214   SaveRetExprRAII SaveRetExpr(RV, *this);
1215 
1216   RunCleanupsScope cleanupScope(*this);
1217   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1218     RV = EWC->getSubExpr();
1219   // FIXME: Clean this up by using an LValue for ReturnTemp,
1220   // EmitStoreThroughLValue, and EmitAnyExpr.
1221   // Check if the NRVO candidate was not globalized in OpenMP mode.
1222   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1223       S.getNRVOCandidate()->isNRVOVariable() &&
1224       (!getLangOpts().OpenMP ||
1225        !CGM.getOpenMPRuntime()
1226             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1227             .isValid())) {
1228     // Apply the named return value optimization for this return statement,
1229     // which means doing nothing: the appropriate result has already been
1230     // constructed into the NRVO variable.
1231 
1232     // If there is an NRVO flag for this variable, set it to 1 into indicate
1233     // that the cleanup code should not destroy the variable.
1234     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1235       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1236   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1237     // Make sure not to return anything, but evaluate the expression
1238     // for side effects.
1239     if (RV)
1240       EmitAnyExpr(RV);
1241   } else if (!RV) {
1242     // Do nothing (return value is left uninitialized)
1243   } else if (FnRetTy->isReferenceType()) {
1244     // If this function returns a reference, take the address of the expression
1245     // rather than the value.
1246     RValue Result = EmitReferenceBindingToExpr(RV);
1247     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1248   } else {
1249     switch (getEvaluationKind(RV->getType())) {
1250     case TEK_Scalar:
1251       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1252       break;
1253     case TEK_Complex:
1254       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1255                                 /*isInit*/ true);
1256       break;
1257     case TEK_Aggregate:
1258       EmitAggExpr(RV, AggValueSlot::forAddr(
1259                           ReturnValue, Qualifiers(),
1260                           AggValueSlot::IsDestructed,
1261                           AggValueSlot::DoesNotNeedGCBarriers,
1262                           AggValueSlot::IsNotAliased,
1263                           getOverlapForReturnValue()));
1264       break;
1265     }
1266   }
1267 
1268   ++NumReturnExprs;
1269   if (!RV || RV->isEvaluatable(getContext()))
1270     ++NumSimpleReturnExprs;
1271 
1272   cleanupScope.ForceCleanup();
1273   EmitBranchThroughCleanup(ReturnBlock);
1274 }
1275 
1276 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1277   // As long as debug info is modeled with instructions, we have to ensure we
1278   // have a place to insert here and write the stop point here.
1279   if (HaveInsertPoint())
1280     EmitStopPoint(&S);
1281 
1282   for (const auto *I : S.decls())
1283     EmitDecl(*I);
1284 }
1285 
1286 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1287   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1288 
1289   // If this code is reachable then emit a stop point (if generating
1290   // debug info). We have to do this ourselves because we are on the
1291   // "simple" statement path.
1292   if (HaveInsertPoint())
1293     EmitStopPoint(&S);
1294 
1295   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1296 }
1297 
1298 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1299   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1300 
1301   // If this code is reachable then emit a stop point (if generating
1302   // debug info). We have to do this ourselves because we are on the
1303   // "simple" statement path.
1304   if (HaveInsertPoint())
1305     EmitStopPoint(&S);
1306 
1307   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1308 }
1309 
1310 /// EmitCaseStmtRange - If case statement range is not too big then
1311 /// add multiple cases to switch instruction, one for each value within
1312 /// the range. If range is too big then emit "if" condition check.
1313 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1314                                         ArrayRef<const Attr *> Attrs) {
1315   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1316 
1317   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1318   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1319 
1320   // Emit the code for this case. We do this first to make sure it is
1321   // properly chained from our predecessor before generating the
1322   // switch machinery to enter this block.
1323   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1324   EmitBlockWithFallThrough(CaseDest, &S);
1325   EmitStmt(S.getSubStmt());
1326 
1327   // If range is empty, do nothing.
1328   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1329     return;
1330 
1331   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1332   llvm::APInt Range = RHS - LHS;
1333   // FIXME: parameters such as this should not be hardcoded.
1334   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1335     // Range is small enough to add multiple switch instruction cases.
1336     uint64_t Total = getProfileCount(&S);
1337     unsigned NCases = Range.getZExtValue() + 1;
1338     // We only have one region counter for the entire set of cases here, so we
1339     // need to divide the weights evenly between the generated cases, ensuring
1340     // that the total weight is preserved. E.g., a weight of 5 over three cases
1341     // will be distributed as weights of 2, 2, and 1.
1342     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1343     for (unsigned I = 0; I != NCases; ++I) {
1344       if (SwitchWeights)
1345         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1346       else if (SwitchLikelihood)
1347         SwitchLikelihood->push_back(LH);
1348 
1349       if (Rem)
1350         Rem--;
1351       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1352       ++LHS;
1353     }
1354     return;
1355   }
1356 
1357   // The range is too big. Emit "if" condition into a new block,
1358   // making sure to save and restore the current insertion point.
1359   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1360 
1361   // Push this test onto the chain of range checks (which terminates
1362   // in the default basic block). The switch's default will be changed
1363   // to the top of this chain after switch emission is complete.
1364   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1365   CaseRangeBlock = createBasicBlock("sw.caserange");
1366 
1367   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1368   Builder.SetInsertPoint(CaseRangeBlock);
1369 
1370   // Emit range check.
1371   llvm::Value *Diff =
1372     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1373   llvm::Value *Cond =
1374     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1375 
1376   llvm::MDNode *Weights = nullptr;
1377   if (SwitchWeights) {
1378     uint64_t ThisCount = getProfileCount(&S);
1379     uint64_t DefaultCount = (*SwitchWeights)[0];
1380     Weights = createProfileWeights(ThisCount, DefaultCount);
1381 
1382     // Since we're chaining the switch default through each large case range, we
1383     // need to update the weight for the default, ie, the first case, to include
1384     // this case.
1385     (*SwitchWeights)[0] += ThisCount;
1386   } else if (SwitchLikelihood)
1387     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1388 
1389   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1390 
1391   // Restore the appropriate insertion point.
1392   if (RestoreBB)
1393     Builder.SetInsertPoint(RestoreBB);
1394   else
1395     Builder.ClearInsertionPoint();
1396 }
1397 
1398 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1399                                    ArrayRef<const Attr *> Attrs) {
1400   // If there is no enclosing switch instance that we're aware of, then this
1401   // case statement and its block can be elided.  This situation only happens
1402   // when we've constant-folded the switch, are emitting the constant case,
1403   // and part of the constant case includes another case statement.  For
1404   // instance: switch (4) { case 4: do { case 5: } while (1); }
1405   if (!SwitchInsn) {
1406     EmitStmt(S.getSubStmt());
1407     return;
1408   }
1409 
1410   // Handle case ranges.
1411   if (S.getRHS()) {
1412     EmitCaseStmtRange(S, Attrs);
1413     return;
1414   }
1415 
1416   llvm::ConstantInt *CaseVal =
1417     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1418   if (SwitchLikelihood)
1419     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1420 
1421   // If the body of the case is just a 'break', try to not emit an empty block.
1422   // If we're profiling or we're not optimizing, leave the block in for better
1423   // debug and coverage analysis.
1424   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1425       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1426       isa<BreakStmt>(S.getSubStmt())) {
1427     JumpDest Block = BreakContinueStack.back().BreakBlock;
1428 
1429     // Only do this optimization if there are no cleanups that need emitting.
1430     if (isObviouslyBranchWithoutCleanups(Block)) {
1431       if (SwitchWeights)
1432         SwitchWeights->push_back(getProfileCount(&S));
1433       SwitchInsn->addCase(CaseVal, Block.getBlock());
1434 
1435       // If there was a fallthrough into this case, make sure to redirect it to
1436       // the end of the switch as well.
1437       if (Builder.GetInsertBlock()) {
1438         Builder.CreateBr(Block.getBlock());
1439         Builder.ClearInsertionPoint();
1440       }
1441       return;
1442     }
1443   }
1444 
1445   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1446   EmitBlockWithFallThrough(CaseDest, &S);
1447   if (SwitchWeights)
1448     SwitchWeights->push_back(getProfileCount(&S));
1449   SwitchInsn->addCase(CaseVal, CaseDest);
1450 
1451   // Recursively emitting the statement is acceptable, but is not wonderful for
1452   // code where we have many case statements nested together, i.e.:
1453   //  case 1:
1454   //    case 2:
1455   //      case 3: etc.
1456   // Handling this recursively will create a new block for each case statement
1457   // that falls through to the next case which is IR intensive.  It also causes
1458   // deep recursion which can run into stack depth limitations.  Handle
1459   // sequential non-range case statements specially.
1460   //
1461   // TODO When the next case has a likelihood attribute the code returns to the
1462   // recursive algorithm. Maybe improve this case if it becomes common practice
1463   // to use a lot of attributes.
1464   const CaseStmt *CurCase = &S;
1465   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1466 
1467   // Otherwise, iteratively add consecutive cases to this switch stmt.
1468   while (NextCase && NextCase->getRHS() == nullptr) {
1469     CurCase = NextCase;
1470     llvm::ConstantInt *CaseVal =
1471       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1472 
1473     if (SwitchWeights)
1474       SwitchWeights->push_back(getProfileCount(NextCase));
1475     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1476       CaseDest = createBasicBlock("sw.bb");
1477       EmitBlockWithFallThrough(CaseDest, CurCase);
1478     }
1479     // Since this loop is only executed when the CaseStmt has no attributes
1480     // use a hard-coded value.
1481     if (SwitchLikelihood)
1482       SwitchLikelihood->push_back(Stmt::LH_None);
1483 
1484     SwitchInsn->addCase(CaseVal, CaseDest);
1485     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1486   }
1487 
1488   // Normal default recursion for non-cases.
1489   EmitStmt(CurCase->getSubStmt());
1490 }
1491 
1492 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1493                                       ArrayRef<const Attr *> Attrs) {
1494   // If there is no enclosing switch instance that we're aware of, then this
1495   // default statement can be elided. This situation only happens when we've
1496   // constant-folded the switch.
1497   if (!SwitchInsn) {
1498     EmitStmt(S.getSubStmt());
1499     return;
1500   }
1501 
1502   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1503   assert(DefaultBlock->empty() &&
1504          "EmitDefaultStmt: Default block already defined?");
1505 
1506   if (SwitchLikelihood)
1507     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1508 
1509   EmitBlockWithFallThrough(DefaultBlock, &S);
1510 
1511   EmitStmt(S.getSubStmt());
1512 }
1513 
1514 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1515 /// constant value that is being switched on, see if we can dead code eliminate
1516 /// the body of the switch to a simple series of statements to emit.  Basically,
1517 /// on a switch (5) we want to find these statements:
1518 ///    case 5:
1519 ///      printf(...);    <--
1520 ///      ++i;            <--
1521 ///      break;
1522 ///
1523 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1524 /// transformation (for example, one of the elided statements contains a label
1525 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1526 /// should include statements after it (e.g. the printf() line is a substmt of
1527 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1528 /// statement, then return CSFC_Success.
1529 ///
1530 /// If Case is non-null, then we are looking for the specified case, checking
1531 /// that nothing we jump over contains labels.  If Case is null, then we found
1532 /// the case and are looking for the break.
1533 ///
1534 /// If the recursive walk actually finds our Case, then we set FoundCase to
1535 /// true.
1536 ///
1537 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1538 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1539                                             const SwitchCase *Case,
1540                                             bool &FoundCase,
1541                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1542   // If this is a null statement, just succeed.
1543   if (!S)
1544     return Case ? CSFC_Success : CSFC_FallThrough;
1545 
1546   // If this is the switchcase (case 4: or default) that we're looking for, then
1547   // we're in business.  Just add the substatement.
1548   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1549     if (S == Case) {
1550       FoundCase = true;
1551       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1552                                       ResultStmts);
1553     }
1554 
1555     // Otherwise, this is some other case or default statement, just ignore it.
1556     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1557                                     ResultStmts);
1558   }
1559 
1560   // If we are in the live part of the code and we found our break statement,
1561   // return a success!
1562   if (!Case && isa<BreakStmt>(S))
1563     return CSFC_Success;
1564 
1565   // If this is a switch statement, then it might contain the SwitchCase, the
1566   // break, or neither.
1567   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1568     // Handle this as two cases: we might be looking for the SwitchCase (if so
1569     // the skipped statements must be skippable) or we might already have it.
1570     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1571     bool StartedInLiveCode = FoundCase;
1572     unsigned StartSize = ResultStmts.size();
1573 
1574     // If we've not found the case yet, scan through looking for it.
1575     if (Case) {
1576       // Keep track of whether we see a skipped declaration.  The code could be
1577       // using the declaration even if it is skipped, so we can't optimize out
1578       // the decl if the kept statements might refer to it.
1579       bool HadSkippedDecl = false;
1580 
1581       // If we're looking for the case, just see if we can skip each of the
1582       // substatements.
1583       for (; Case && I != E; ++I) {
1584         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1585 
1586         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1587         case CSFC_Failure: return CSFC_Failure;
1588         case CSFC_Success:
1589           // A successful result means that either 1) that the statement doesn't
1590           // have the case and is skippable, or 2) does contain the case value
1591           // and also contains the break to exit the switch.  In the later case,
1592           // we just verify the rest of the statements are elidable.
1593           if (FoundCase) {
1594             // If we found the case and skipped declarations, we can't do the
1595             // optimization.
1596             if (HadSkippedDecl)
1597               return CSFC_Failure;
1598 
1599             for (++I; I != E; ++I)
1600               if (CodeGenFunction::ContainsLabel(*I, true))
1601                 return CSFC_Failure;
1602             return CSFC_Success;
1603           }
1604           break;
1605         case CSFC_FallThrough:
1606           // If we have a fallthrough condition, then we must have found the
1607           // case started to include statements.  Consider the rest of the
1608           // statements in the compound statement as candidates for inclusion.
1609           assert(FoundCase && "Didn't find case but returned fallthrough?");
1610           // We recursively found Case, so we're not looking for it anymore.
1611           Case = nullptr;
1612 
1613           // If we found the case and skipped declarations, we can't do the
1614           // optimization.
1615           if (HadSkippedDecl)
1616             return CSFC_Failure;
1617           break;
1618         }
1619       }
1620 
1621       if (!FoundCase)
1622         return CSFC_Success;
1623 
1624       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1625     }
1626 
1627     // If we have statements in our range, then we know that the statements are
1628     // live and need to be added to the set of statements we're tracking.
1629     bool AnyDecls = false;
1630     for (; I != E; ++I) {
1631       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1632 
1633       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1634       case CSFC_Failure: return CSFC_Failure;
1635       case CSFC_FallThrough:
1636         // A fallthrough result means that the statement was simple and just
1637         // included in ResultStmt, keep adding them afterwards.
1638         break;
1639       case CSFC_Success:
1640         // A successful result means that we found the break statement and
1641         // stopped statement inclusion.  We just ensure that any leftover stmts
1642         // are skippable and return success ourselves.
1643         for (++I; I != E; ++I)
1644           if (CodeGenFunction::ContainsLabel(*I, true))
1645             return CSFC_Failure;
1646         return CSFC_Success;
1647       }
1648     }
1649 
1650     // If we're about to fall out of a scope without hitting a 'break;', we
1651     // can't perform the optimization if there were any decls in that scope
1652     // (we'd lose their end-of-lifetime).
1653     if (AnyDecls) {
1654       // If the entire compound statement was live, there's one more thing we
1655       // can try before giving up: emit the whole thing as a single statement.
1656       // We can do that unless the statement contains a 'break;'.
1657       // FIXME: Such a break must be at the end of a construct within this one.
1658       // We could emit this by just ignoring the BreakStmts entirely.
1659       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1660         ResultStmts.resize(StartSize);
1661         ResultStmts.push_back(S);
1662       } else {
1663         return CSFC_Failure;
1664       }
1665     }
1666 
1667     return CSFC_FallThrough;
1668   }
1669 
1670   // Okay, this is some other statement that we don't handle explicitly, like a
1671   // for statement or increment etc.  If we are skipping over this statement,
1672   // just verify it doesn't have labels, which would make it invalid to elide.
1673   if (Case) {
1674     if (CodeGenFunction::ContainsLabel(S, true))
1675       return CSFC_Failure;
1676     return CSFC_Success;
1677   }
1678 
1679   // Otherwise, we want to include this statement.  Everything is cool with that
1680   // so long as it doesn't contain a break out of the switch we're in.
1681   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1682 
1683   // Otherwise, everything is great.  Include the statement and tell the caller
1684   // that we fall through and include the next statement as well.
1685   ResultStmts.push_back(S);
1686   return CSFC_FallThrough;
1687 }
1688 
1689 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1690 /// then invoke CollectStatementsForCase to find the list of statements to emit
1691 /// for a switch on constant.  See the comment above CollectStatementsForCase
1692 /// for more details.
1693 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1694                                        const llvm::APSInt &ConstantCondValue,
1695                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1696                                        ASTContext &C,
1697                                        const SwitchCase *&ResultCase) {
1698   // First step, find the switch case that is being branched to.  We can do this
1699   // efficiently by scanning the SwitchCase list.
1700   const SwitchCase *Case = S.getSwitchCaseList();
1701   const DefaultStmt *DefaultCase = nullptr;
1702 
1703   for (; Case; Case = Case->getNextSwitchCase()) {
1704     // It's either a default or case.  Just remember the default statement in
1705     // case we're not jumping to any numbered cases.
1706     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1707       DefaultCase = DS;
1708       continue;
1709     }
1710 
1711     // Check to see if this case is the one we're looking for.
1712     const CaseStmt *CS = cast<CaseStmt>(Case);
1713     // Don't handle case ranges yet.
1714     if (CS->getRHS()) return false;
1715 
1716     // If we found our case, remember it as 'case'.
1717     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1718       break;
1719   }
1720 
1721   // If we didn't find a matching case, we use a default if it exists, or we
1722   // elide the whole switch body!
1723   if (!Case) {
1724     // It is safe to elide the body of the switch if it doesn't contain labels
1725     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1726     if (!DefaultCase)
1727       return !CodeGenFunction::ContainsLabel(&S);
1728     Case = DefaultCase;
1729   }
1730 
1731   // Ok, we know which case is being jumped to, try to collect all the
1732   // statements that follow it.  This can fail for a variety of reasons.  Also,
1733   // check to see that the recursive walk actually found our case statement.
1734   // Insane cases like this can fail to find it in the recursive walk since we
1735   // don't handle every stmt kind:
1736   // switch (4) {
1737   //   while (1) {
1738   //     case 4: ...
1739   bool FoundCase = false;
1740   ResultCase = Case;
1741   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1742                                   ResultStmts) != CSFC_Failure &&
1743          FoundCase;
1744 }
1745 
1746 static Optional<SmallVector<uint64_t, 16>>
1747 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1748   // Are there enough branches to weight them?
1749   if (Likelihoods.size() <= 1)
1750     return None;
1751 
1752   uint64_t NumUnlikely = 0;
1753   uint64_t NumNone = 0;
1754   uint64_t NumLikely = 0;
1755   for (const auto LH : Likelihoods) {
1756     switch (LH) {
1757     case Stmt::LH_Unlikely:
1758       ++NumUnlikely;
1759       break;
1760     case Stmt::LH_None:
1761       ++NumNone;
1762       break;
1763     case Stmt::LH_Likely:
1764       ++NumLikely;
1765       break;
1766     }
1767   }
1768 
1769   // Is there a likelihood attribute used?
1770   if (NumUnlikely == 0 && NumLikely == 0)
1771     return None;
1772 
1773   // When multiple cases share the same code they can be combined during
1774   // optimization. In that case the weights of the branch will be the sum of
1775   // the individual weights. Make sure the combined sum of all neutral cases
1776   // doesn't exceed the value of a single likely attribute.
1777   // The additions both avoid divisions by 0 and make sure the weights of None
1778   // don't exceed the weight of Likely.
1779   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1780   const uint64_t None = Likely / (NumNone + 1);
1781   const uint64_t Unlikely = 0;
1782 
1783   SmallVector<uint64_t, 16> Result;
1784   Result.reserve(Likelihoods.size());
1785   for (const auto LH : Likelihoods) {
1786     switch (LH) {
1787     case Stmt::LH_Unlikely:
1788       Result.push_back(Unlikely);
1789       break;
1790     case Stmt::LH_None:
1791       Result.push_back(None);
1792       break;
1793     case Stmt::LH_Likely:
1794       Result.push_back(Likely);
1795       break;
1796     }
1797   }
1798 
1799   return Result;
1800 }
1801 
1802 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1803   // Handle nested switch statements.
1804   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1805   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1806   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1807   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1808 
1809   // See if we can constant fold the condition of the switch and therefore only
1810   // emit the live case statement (if any) of the switch.
1811   llvm::APSInt ConstantCondValue;
1812   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1813     SmallVector<const Stmt*, 4> CaseStmts;
1814     const SwitchCase *Case = nullptr;
1815     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1816                                    getContext(), Case)) {
1817       if (Case)
1818         incrementProfileCounter(Case);
1819       RunCleanupsScope ExecutedScope(*this);
1820 
1821       if (S.getInit())
1822         EmitStmt(S.getInit());
1823 
1824       // Emit the condition variable if needed inside the entire cleanup scope
1825       // used by this special case for constant folded switches.
1826       if (S.getConditionVariable())
1827         EmitDecl(*S.getConditionVariable());
1828 
1829       // At this point, we are no longer "within" a switch instance, so
1830       // we can temporarily enforce this to ensure that any embedded case
1831       // statements are not emitted.
1832       SwitchInsn = nullptr;
1833 
1834       // Okay, we can dead code eliminate everything except this case.  Emit the
1835       // specified series of statements and we're good.
1836       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1837         EmitStmt(CaseStmts[i]);
1838       incrementProfileCounter(&S);
1839 
1840       // Now we want to restore the saved switch instance so that nested
1841       // switches continue to function properly
1842       SwitchInsn = SavedSwitchInsn;
1843 
1844       return;
1845     }
1846   }
1847 
1848   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1849 
1850   RunCleanupsScope ConditionScope(*this);
1851 
1852   if (S.getInit())
1853     EmitStmt(S.getInit());
1854 
1855   if (S.getConditionVariable())
1856     EmitDecl(*S.getConditionVariable());
1857   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1858 
1859   // Create basic block to hold stuff that comes after switch
1860   // statement. We also need to create a default block now so that
1861   // explicit case ranges tests can have a place to jump to on
1862   // failure.
1863   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1864   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1865   if (PGO.haveRegionCounts()) {
1866     // Walk the SwitchCase list to find how many there are.
1867     uint64_t DefaultCount = 0;
1868     unsigned NumCases = 0;
1869     for (const SwitchCase *Case = S.getSwitchCaseList();
1870          Case;
1871          Case = Case->getNextSwitchCase()) {
1872       if (isa<DefaultStmt>(Case))
1873         DefaultCount = getProfileCount(Case);
1874       NumCases += 1;
1875     }
1876     SwitchWeights = new SmallVector<uint64_t, 16>();
1877     SwitchWeights->reserve(NumCases);
1878     // The default needs to be first. We store the edge count, so we already
1879     // know the right weight.
1880     SwitchWeights->push_back(DefaultCount);
1881   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1882     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1883     // Initialize the default case.
1884     SwitchLikelihood->push_back(Stmt::LH_None);
1885   }
1886 
1887   CaseRangeBlock = DefaultBlock;
1888 
1889   // Clear the insertion point to indicate we are in unreachable code.
1890   Builder.ClearInsertionPoint();
1891 
1892   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1893   // then reuse last ContinueBlock.
1894   JumpDest OuterContinue;
1895   if (!BreakContinueStack.empty())
1896     OuterContinue = BreakContinueStack.back().ContinueBlock;
1897 
1898   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1899 
1900   // Emit switch body.
1901   EmitStmt(S.getBody());
1902 
1903   BreakContinueStack.pop_back();
1904 
1905   // Update the default block in case explicit case range tests have
1906   // been chained on top.
1907   SwitchInsn->setDefaultDest(CaseRangeBlock);
1908 
1909   // If a default was never emitted:
1910   if (!DefaultBlock->getParent()) {
1911     // If we have cleanups, emit the default block so that there's a
1912     // place to jump through the cleanups from.
1913     if (ConditionScope.requiresCleanups()) {
1914       EmitBlock(DefaultBlock);
1915 
1916     // Otherwise, just forward the default block to the switch end.
1917     } else {
1918       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1919       delete DefaultBlock;
1920     }
1921   }
1922 
1923   ConditionScope.ForceCleanup();
1924 
1925   // Emit continuation.
1926   EmitBlock(SwitchExit.getBlock(), true);
1927   incrementProfileCounter(&S);
1928 
1929   // If the switch has a condition wrapped by __builtin_unpredictable,
1930   // create metadata that specifies that the switch is unpredictable.
1931   // Don't bother if not optimizing because that metadata would not be used.
1932   auto *Call = dyn_cast<CallExpr>(S.getCond());
1933   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1934     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1935     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1936       llvm::MDBuilder MDHelper(getLLVMContext());
1937       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1938                               MDHelper.createUnpredictable());
1939     }
1940   }
1941 
1942   if (SwitchWeights) {
1943     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1944            "switch weights do not match switch cases");
1945     // If there's only one jump destination there's no sense weighting it.
1946     if (SwitchWeights->size() > 1)
1947       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1948                               createProfileWeights(*SwitchWeights));
1949     delete SwitchWeights;
1950   } else if (SwitchLikelihood) {
1951     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1952            "switch likelihoods do not match switch cases");
1953     Optional<SmallVector<uint64_t, 16>> LHW =
1954         getLikelihoodWeights(*SwitchLikelihood);
1955     if (LHW) {
1956       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
1957       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1958                               createProfileWeights(*LHW));
1959     }
1960     delete SwitchLikelihood;
1961   }
1962   SwitchInsn = SavedSwitchInsn;
1963   SwitchWeights = SavedSwitchWeights;
1964   SwitchLikelihood = SavedSwitchLikelihood;
1965   CaseRangeBlock = SavedCRBlock;
1966 }
1967 
1968 static std::string
1969 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1970                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1971   std::string Result;
1972 
1973   while (*Constraint) {
1974     switch (*Constraint) {
1975     default:
1976       Result += Target.convertConstraint(Constraint);
1977       break;
1978     // Ignore these
1979     case '*':
1980     case '?':
1981     case '!':
1982     case '=': // Will see this and the following in mult-alt constraints.
1983     case '+':
1984       break;
1985     case '#': // Ignore the rest of the constraint alternative.
1986       while (Constraint[1] && Constraint[1] != ',')
1987         Constraint++;
1988       break;
1989     case '&':
1990     case '%':
1991       Result += *Constraint;
1992       while (Constraint[1] && Constraint[1] == *Constraint)
1993         Constraint++;
1994       break;
1995     case ',':
1996       Result += "|";
1997       break;
1998     case 'g':
1999       Result += "imr";
2000       break;
2001     case '[': {
2002       assert(OutCons &&
2003              "Must pass output names to constraints with a symbolic name");
2004       unsigned Index;
2005       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2006       assert(result && "Could not resolve symbolic name"); (void)result;
2007       Result += llvm::utostr(Index);
2008       break;
2009     }
2010     }
2011 
2012     Constraint++;
2013   }
2014 
2015   return Result;
2016 }
2017 
2018 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2019 /// as using a particular register add that as a constraint that will be used
2020 /// in this asm stmt.
2021 static std::string
2022 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2023                        const TargetInfo &Target, CodeGenModule &CGM,
2024                        const AsmStmt &Stmt, const bool EarlyClobber,
2025                        std::string *GCCReg = nullptr) {
2026   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2027   if (!AsmDeclRef)
2028     return Constraint;
2029   const ValueDecl &Value = *AsmDeclRef->getDecl();
2030   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2031   if (!Variable)
2032     return Constraint;
2033   if (Variable->getStorageClass() != SC_Register)
2034     return Constraint;
2035   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2036   if (!Attr)
2037     return Constraint;
2038   StringRef Register = Attr->getLabel();
2039   assert(Target.isValidGCCRegisterName(Register));
2040   // We're using validateOutputConstraint here because we only care if
2041   // this is a register constraint.
2042   TargetInfo::ConstraintInfo Info(Constraint, "");
2043   if (Target.validateOutputConstraint(Info) &&
2044       !Info.allowsRegister()) {
2045     CGM.ErrorUnsupported(&Stmt, "__asm__");
2046     return Constraint;
2047   }
2048   // Canonicalize the register here before returning it.
2049   Register = Target.getNormalizedGCCRegisterName(Register);
2050   if (GCCReg != nullptr)
2051     *GCCReg = Register.str();
2052   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2053 }
2054 
2055 llvm::Value*
2056 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2057                                     LValue InputValue, QualType InputType,
2058                                     std::string &ConstraintStr,
2059                                     SourceLocation Loc) {
2060   llvm::Value *Arg;
2061   if (Info.allowsRegister() || !Info.allowsMemory()) {
2062     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
2063       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
2064     } else {
2065       llvm::Type *Ty = ConvertType(InputType);
2066       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2067       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
2068         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2069         Ty = llvm::PointerType::getUnqual(Ty);
2070 
2071         Arg = Builder.CreateLoad(
2072             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2073       } else {
2074         Arg = InputValue.getPointer(*this);
2075         ConstraintStr += '*';
2076       }
2077     }
2078   } else {
2079     Arg = InputValue.getPointer(*this);
2080     ConstraintStr += '*';
2081   }
2082 
2083   return Arg;
2084 }
2085 
2086 llvm::Value* CodeGenFunction::EmitAsmInput(
2087                                          const TargetInfo::ConstraintInfo &Info,
2088                                            const Expr *InputExpr,
2089                                            std::string &ConstraintStr) {
2090   // If this can't be a register or memory, i.e., has to be a constant
2091   // (immediate or symbolic), try to emit it as such.
2092   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2093     if (Info.requiresImmediateConstant()) {
2094       Expr::EvalResult EVResult;
2095       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2096 
2097       llvm::APSInt IntResult;
2098       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2099                                           getContext()))
2100         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2101     }
2102 
2103     Expr::EvalResult Result;
2104     if (InputExpr->EvaluateAsInt(Result, getContext()))
2105       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2106   }
2107 
2108   if (Info.allowsRegister() || !Info.allowsMemory())
2109     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2110       return EmitScalarExpr(InputExpr);
2111   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2112     return EmitScalarExpr(InputExpr);
2113   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2114   LValue Dest = EmitLValue(InputExpr);
2115   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2116                             InputExpr->getExprLoc());
2117 }
2118 
2119 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2120 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2121 /// integers which are the source locations of the start of each line in the
2122 /// asm.
2123 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2124                                       CodeGenFunction &CGF) {
2125   SmallVector<llvm::Metadata *, 8> Locs;
2126   // Add the location of the first line to the MDNode.
2127   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2128       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
2129   StringRef StrVal = Str->getString();
2130   if (!StrVal.empty()) {
2131     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2132     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2133     unsigned StartToken = 0;
2134     unsigned ByteOffset = 0;
2135 
2136     // Add the location of the start of each subsequent line of the asm to the
2137     // MDNode.
2138     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2139       if (StrVal[i] != '\n') continue;
2140       SourceLocation LineLoc = Str->getLocationOfByte(
2141           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2142       Locs.push_back(llvm::ConstantAsMetadata::get(
2143           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
2144     }
2145   }
2146 
2147   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2148 }
2149 
2150 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2151                               bool ReadOnly, bool ReadNone, bool NoMerge,
2152                               const AsmStmt &S,
2153                               const std::vector<llvm::Type *> &ResultRegTypes,
2154                               CodeGenFunction &CGF,
2155                               std::vector<llvm::Value *> &RegResults) {
2156   Result.addAttribute(llvm::AttributeList::FunctionIndex,
2157                       llvm::Attribute::NoUnwind);
2158   if (NoMerge)
2159     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2160                         llvm::Attribute::NoMerge);
2161   // Attach readnone and readonly attributes.
2162   if (!HasSideEffect) {
2163     if (ReadNone)
2164       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2165                           llvm::Attribute::ReadNone);
2166     else if (ReadOnly)
2167       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2168                           llvm::Attribute::ReadOnly);
2169   }
2170 
2171   // Slap the source location of the inline asm into a !srcloc metadata on the
2172   // call.
2173   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2174     Result.setMetadata("srcloc",
2175                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2176   else {
2177     // At least put the line number on MS inline asm blobs.
2178     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2179                                         S.getAsmLoc().getRawEncoding());
2180     Result.setMetadata("srcloc",
2181                        llvm::MDNode::get(CGF.getLLVMContext(),
2182                                          llvm::ConstantAsMetadata::get(Loc)));
2183   }
2184 
2185   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2186     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2187     // convergent (meaning, they may call an intrinsically convergent op, such
2188     // as bar.sync, and so can't have certain optimizations applied around
2189     // them).
2190     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2191                         llvm::Attribute::Convergent);
2192   // Extract all of the register value results from the asm.
2193   if (ResultRegTypes.size() == 1) {
2194     RegResults.push_back(&Result);
2195   } else {
2196     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2197       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2198       RegResults.push_back(Tmp);
2199     }
2200   }
2201 }
2202 
2203 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2204   // Assemble the final asm string.
2205   std::string AsmString = S.generateAsmString(getContext());
2206 
2207   // Get all the output and input constraints together.
2208   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2209   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2210 
2211   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2212     StringRef Name;
2213     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2214       Name = GAS->getOutputName(i);
2215     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2216     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2217     assert(IsValid && "Failed to parse output constraint");
2218     OutputConstraintInfos.push_back(Info);
2219   }
2220 
2221   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2222     StringRef Name;
2223     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2224       Name = GAS->getInputName(i);
2225     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2226     bool IsValid =
2227       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2228     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2229     InputConstraintInfos.push_back(Info);
2230   }
2231 
2232   std::string Constraints;
2233 
2234   std::vector<LValue> ResultRegDests;
2235   std::vector<QualType> ResultRegQualTys;
2236   std::vector<llvm::Type *> ResultRegTypes;
2237   std::vector<llvm::Type *> ResultTruncRegTypes;
2238   std::vector<llvm::Type *> ArgTypes;
2239   std::vector<llvm::Value*> Args;
2240   llvm::BitVector ResultTypeRequiresCast;
2241 
2242   // Keep track of inout constraints.
2243   std::string InOutConstraints;
2244   std::vector<llvm::Value*> InOutArgs;
2245   std::vector<llvm::Type*> InOutArgTypes;
2246 
2247   // Keep track of out constraints for tied input operand.
2248   std::vector<std::string> OutputConstraints;
2249 
2250   // Keep track of defined physregs.
2251   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2252 
2253   // An inline asm can be marked readonly if it meets the following conditions:
2254   //  - it doesn't have any sideeffects
2255   //  - it doesn't clobber memory
2256   //  - it doesn't return a value by-reference
2257   // It can be marked readnone if it doesn't have any input memory constraints
2258   // in addition to meeting the conditions listed above.
2259   bool ReadOnly = true, ReadNone = true;
2260 
2261   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2262     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2263 
2264     // Simplify the output constraint.
2265     std::string OutputConstraint(S.getOutputConstraint(i));
2266     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2267                                           getTarget(), &OutputConstraintInfos);
2268 
2269     const Expr *OutExpr = S.getOutputExpr(i);
2270     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2271 
2272     std::string GCCReg;
2273     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2274                                               getTarget(), CGM, S,
2275                                               Info.earlyClobber(),
2276                                               &GCCReg);
2277     // Give an error on multiple outputs to same physreg.
2278     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2279       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2280 
2281     OutputConstraints.push_back(OutputConstraint);
2282     LValue Dest = EmitLValue(OutExpr);
2283     if (!Constraints.empty())
2284       Constraints += ',';
2285 
2286     // If this is a register output, then make the inline asm return it
2287     // by-value.  If this is a memory result, return the value by-reference.
2288     bool isScalarizableAggregate =
2289         hasAggregateEvaluationKind(OutExpr->getType());
2290     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2291                                  isScalarizableAggregate)) {
2292       Constraints += "=" + OutputConstraint;
2293       ResultRegQualTys.push_back(OutExpr->getType());
2294       ResultRegDests.push_back(Dest);
2295       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2296       if (Info.allowsRegister() && isScalarizableAggregate) {
2297         ResultTypeRequiresCast.push_back(true);
2298         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2299         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2300         ResultRegTypes.push_back(ConvTy);
2301       } else {
2302         ResultTypeRequiresCast.push_back(false);
2303         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2304       }
2305       // If this output is tied to an input, and if the input is larger, then
2306       // we need to set the actual result type of the inline asm node to be the
2307       // same as the input type.
2308       if (Info.hasMatchingInput()) {
2309         unsigned InputNo;
2310         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2311           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2312           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2313             break;
2314         }
2315         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2316 
2317         QualType InputTy = S.getInputExpr(InputNo)->getType();
2318         QualType OutputType = OutExpr->getType();
2319 
2320         uint64_t InputSize = getContext().getTypeSize(InputTy);
2321         if (getContext().getTypeSize(OutputType) < InputSize) {
2322           // Form the asm to return the value as a larger integer or fp type.
2323           ResultRegTypes.back() = ConvertType(InputTy);
2324         }
2325       }
2326       if (llvm::Type* AdjTy =
2327             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2328                                                  ResultRegTypes.back()))
2329         ResultRegTypes.back() = AdjTy;
2330       else {
2331         CGM.getDiags().Report(S.getAsmLoc(),
2332                               diag::err_asm_invalid_type_in_input)
2333             << OutExpr->getType() << OutputConstraint;
2334       }
2335 
2336       // Update largest vector width for any vector types.
2337       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2338         LargestVectorWidth =
2339             std::max((uint64_t)LargestVectorWidth,
2340                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2341     } else {
2342       llvm::Type *DestAddrTy = Dest.getAddress(*this).getType();
2343       llvm::Value *DestPtr = Dest.getPointer(*this);
2344       // Matrix types in memory are represented by arrays, but accessed through
2345       // vector pointers, with the alignment specified on the access operation.
2346       // For inline assembly, update pointer arguments to use vector pointers.
2347       // Otherwise there will be a mis-match if the matrix is also an
2348       // input-argument which is represented as vector.
2349       if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) {
2350         DestAddrTy = llvm::PointerType::get(
2351             ConvertType(OutExpr->getType()),
2352             cast<llvm::PointerType>(DestAddrTy)->getAddressSpace());
2353         DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy);
2354       }
2355       ArgTypes.push_back(DestAddrTy);
2356       Args.push_back(DestPtr);
2357       Constraints += "=*";
2358       Constraints += OutputConstraint;
2359       ReadOnly = ReadNone = false;
2360     }
2361 
2362     if (Info.isReadWrite()) {
2363       InOutConstraints += ',';
2364 
2365       const Expr *InputExpr = S.getOutputExpr(i);
2366       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2367                                             InOutConstraints,
2368                                             InputExpr->getExprLoc());
2369 
2370       if (llvm::Type* AdjTy =
2371           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2372                                                Arg->getType()))
2373         Arg = Builder.CreateBitCast(Arg, AdjTy);
2374 
2375       // Update largest vector width for any vector types.
2376       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2377         LargestVectorWidth =
2378             std::max((uint64_t)LargestVectorWidth,
2379                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2380       // Only tie earlyclobber physregs.
2381       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2382         InOutConstraints += llvm::utostr(i);
2383       else
2384         InOutConstraints += OutputConstraint;
2385 
2386       InOutArgTypes.push_back(Arg->getType());
2387       InOutArgs.push_back(Arg);
2388     }
2389   }
2390 
2391   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2392   // to the return value slot. Only do this when returning in registers.
2393   if (isa<MSAsmStmt>(&S)) {
2394     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2395     if (RetAI.isDirect() || RetAI.isExtend()) {
2396       // Make a fake lvalue for the return value slot.
2397       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2398       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2399           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2400           ResultRegDests, AsmString, S.getNumOutputs());
2401       SawAsmBlock = true;
2402     }
2403   }
2404 
2405   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2406     const Expr *InputExpr = S.getInputExpr(i);
2407 
2408     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2409 
2410     if (Info.allowsMemory())
2411       ReadNone = false;
2412 
2413     if (!Constraints.empty())
2414       Constraints += ',';
2415 
2416     // Simplify the input constraint.
2417     std::string InputConstraint(S.getInputConstraint(i));
2418     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2419                                          &OutputConstraintInfos);
2420 
2421     InputConstraint = AddVariableConstraints(
2422         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2423         getTarget(), CGM, S, false /* No EarlyClobber */);
2424 
2425     std::string ReplaceConstraint (InputConstraint);
2426     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2427 
2428     // If this input argument is tied to a larger output result, extend the
2429     // input to be the same size as the output.  The LLVM backend wants to see
2430     // the input and output of a matching constraint be the same size.  Note
2431     // that GCC does not define what the top bits are here.  We use zext because
2432     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2433     if (Info.hasTiedOperand()) {
2434       unsigned Output = Info.getTiedOperand();
2435       QualType OutputType = S.getOutputExpr(Output)->getType();
2436       QualType InputTy = InputExpr->getType();
2437 
2438       if (getContext().getTypeSize(OutputType) >
2439           getContext().getTypeSize(InputTy)) {
2440         // Use ptrtoint as appropriate so that we can do our extension.
2441         if (isa<llvm::PointerType>(Arg->getType()))
2442           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2443         llvm::Type *OutputTy = ConvertType(OutputType);
2444         if (isa<llvm::IntegerType>(OutputTy))
2445           Arg = Builder.CreateZExt(Arg, OutputTy);
2446         else if (isa<llvm::PointerType>(OutputTy))
2447           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2448         else {
2449           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2450           Arg = Builder.CreateFPExt(Arg, OutputTy);
2451         }
2452       }
2453       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2454       ReplaceConstraint = OutputConstraints[Output];
2455     }
2456     if (llvm::Type* AdjTy =
2457           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2458                                                    Arg->getType()))
2459       Arg = Builder.CreateBitCast(Arg, AdjTy);
2460     else
2461       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2462           << InputExpr->getType() << InputConstraint;
2463 
2464     // Update largest vector width for any vector types.
2465     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2466       LargestVectorWidth =
2467           std::max((uint64_t)LargestVectorWidth,
2468                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2469 
2470     ArgTypes.push_back(Arg->getType());
2471     Args.push_back(Arg);
2472     Constraints += InputConstraint;
2473   }
2474 
2475   // Labels
2476   SmallVector<llvm::BasicBlock *, 16> Transfer;
2477   llvm::BasicBlock *Fallthrough = nullptr;
2478   bool IsGCCAsmGoto = false;
2479   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2480     IsGCCAsmGoto = GS->isAsmGoto();
2481     if (IsGCCAsmGoto) {
2482       for (const auto *E : GS->labels()) {
2483         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2484         Transfer.push_back(Dest.getBlock());
2485         llvm::BlockAddress *BA =
2486             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2487         Args.push_back(BA);
2488         ArgTypes.push_back(BA->getType());
2489         if (!Constraints.empty())
2490           Constraints += ',';
2491         Constraints += 'X';
2492       }
2493       Fallthrough = createBasicBlock("asm.fallthrough");
2494     }
2495   }
2496 
2497   // Append the "input" part of inout constraints last.
2498   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2499     ArgTypes.push_back(InOutArgTypes[i]);
2500     Args.push_back(InOutArgs[i]);
2501   }
2502   Constraints += InOutConstraints;
2503 
2504   // Clobbers
2505   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2506     StringRef Clobber = S.getClobber(i);
2507 
2508     if (Clobber == "memory")
2509       ReadOnly = ReadNone = false;
2510     else if (Clobber != "cc") {
2511       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2512       if (CGM.getCodeGenOpts().StackClashProtector &&
2513           getTarget().isSPRegName(Clobber)) {
2514         CGM.getDiags().Report(S.getAsmLoc(),
2515                               diag::warn_stack_clash_protection_inline_asm);
2516       }
2517     }
2518 
2519     if (isa<MSAsmStmt>(&S)) {
2520       if (Clobber == "eax" || Clobber == "edx") {
2521         if (Constraints.find("=&A") != std::string::npos)
2522           continue;
2523         std::string::size_type position1 =
2524             Constraints.find("={" + Clobber.str() + "}");
2525         if (position1 != std::string::npos) {
2526           Constraints.insert(position1 + 1, "&");
2527           continue;
2528         }
2529         std::string::size_type position2 = Constraints.find("=A");
2530         if (position2 != std::string::npos) {
2531           Constraints.insert(position2 + 1, "&");
2532           continue;
2533         }
2534       }
2535     }
2536     if (!Constraints.empty())
2537       Constraints += ',';
2538 
2539     Constraints += "~{";
2540     Constraints += Clobber;
2541     Constraints += '}';
2542   }
2543 
2544   // Add machine specific clobbers
2545   std::string MachineClobbers = getTarget().getClobbers();
2546   if (!MachineClobbers.empty()) {
2547     if (!Constraints.empty())
2548       Constraints += ',';
2549     Constraints += MachineClobbers;
2550   }
2551 
2552   llvm::Type *ResultType;
2553   if (ResultRegTypes.empty())
2554     ResultType = VoidTy;
2555   else if (ResultRegTypes.size() == 1)
2556     ResultType = ResultRegTypes[0];
2557   else
2558     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2559 
2560   llvm::FunctionType *FTy =
2561     llvm::FunctionType::get(ResultType, ArgTypes, false);
2562 
2563   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2564   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2565     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2566   llvm::InlineAsm *IA =
2567     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2568                          /* IsAlignStack */ false, AsmDialect);
2569   std::vector<llvm::Value*> RegResults;
2570   if (IsGCCAsmGoto) {
2571     llvm::CallBrInst *Result =
2572         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2573     EmitBlock(Fallthrough);
2574     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2575                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2576                       *this, RegResults);
2577   } else {
2578     llvm::CallInst *Result =
2579         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2580     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly,
2581                       ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes,
2582                       *this, RegResults);
2583   }
2584 
2585   assert(RegResults.size() == ResultRegTypes.size());
2586   assert(RegResults.size() == ResultTruncRegTypes.size());
2587   assert(RegResults.size() == ResultRegDests.size());
2588   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2589   // in which case its size may grow.
2590   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2591   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2592     llvm::Value *Tmp = RegResults[i];
2593 
2594     // If the result type of the LLVM IR asm doesn't match the result type of
2595     // the expression, do the conversion.
2596     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2597       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2598 
2599       // Truncate the integer result to the right size, note that TruncTy can be
2600       // a pointer.
2601       if (TruncTy->isFloatingPointTy())
2602         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2603       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2604         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2605         Tmp = Builder.CreateTrunc(Tmp,
2606                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2607         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2608       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2609         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2610         Tmp = Builder.CreatePtrToInt(Tmp,
2611                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2612         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2613       } else if (TruncTy->isIntegerTy()) {
2614         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2615       } else if (TruncTy->isVectorTy()) {
2616         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2617       }
2618     }
2619 
2620     LValue Dest = ResultRegDests[i];
2621     // ResultTypeRequiresCast elements correspond to the first
2622     // ResultTypeRequiresCast.size() elements of RegResults.
2623     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2624       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2625       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2626                                         ResultRegTypes[i]->getPointerTo());
2627       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2628       if (Ty.isNull()) {
2629         const Expr *OutExpr = S.getOutputExpr(i);
2630         CGM.Error(
2631             OutExpr->getExprLoc(),
2632             "impossible constraint in asm: can't store value into a register");
2633         return;
2634       }
2635       Dest = MakeAddrLValue(A, Ty);
2636     }
2637     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2638   }
2639 }
2640 
2641 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2642   const RecordDecl *RD = S.getCapturedRecordDecl();
2643   QualType RecordTy = getContext().getRecordType(RD);
2644 
2645   // Initialize the captured struct.
2646   LValue SlotLV =
2647     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2648 
2649   RecordDecl::field_iterator CurField = RD->field_begin();
2650   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2651                                                  E = S.capture_init_end();
2652        I != E; ++I, ++CurField) {
2653     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2654     if (CurField->hasCapturedVLAType()) {
2655       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2656     } else {
2657       EmitInitializerForField(*CurField, LV, *I);
2658     }
2659   }
2660 
2661   return SlotLV;
2662 }
2663 
2664 /// Generate an outlined function for the body of a CapturedStmt, store any
2665 /// captured variables into the captured struct, and call the outlined function.
2666 llvm::Function *
2667 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2668   LValue CapStruct = InitCapturedStruct(S);
2669 
2670   // Emit the CapturedDecl
2671   CodeGenFunction CGF(CGM, true);
2672   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2673   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2674   delete CGF.CapturedStmtInfo;
2675 
2676   // Emit call to the helper function.
2677   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2678 
2679   return F;
2680 }
2681 
2682 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2683   LValue CapStruct = InitCapturedStruct(S);
2684   return CapStruct.getAddress(*this);
2685 }
2686 
2687 /// Creates the outlined function for a CapturedStmt.
2688 llvm::Function *
2689 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2690   assert(CapturedStmtInfo &&
2691     "CapturedStmtInfo should be set when generating the captured function");
2692   const CapturedDecl *CD = S.getCapturedDecl();
2693   const RecordDecl *RD = S.getCapturedRecordDecl();
2694   SourceLocation Loc = S.getBeginLoc();
2695   assert(CD->hasBody() && "missing CapturedDecl body");
2696 
2697   // Build the argument list.
2698   ASTContext &Ctx = CGM.getContext();
2699   FunctionArgList Args;
2700   Args.append(CD->param_begin(), CD->param_end());
2701 
2702   // Create the function declaration.
2703   const CGFunctionInfo &FuncInfo =
2704     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2705   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2706 
2707   llvm::Function *F =
2708     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2709                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2710   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2711   if (CD->isNothrow())
2712     F->addFnAttr(llvm::Attribute::NoUnwind);
2713 
2714   // Generate the function.
2715   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2716                 CD->getBody()->getBeginLoc());
2717   // Set the context parameter in CapturedStmtInfo.
2718   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2719   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2720 
2721   // Initialize variable-length arrays.
2722   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2723                                            Ctx.getTagDeclType(RD));
2724   for (auto *FD : RD->fields()) {
2725     if (FD->hasCapturedVLAType()) {
2726       auto *ExprArg =
2727           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2728               .getScalarVal();
2729       auto VAT = FD->getCapturedVLAType();
2730       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2731     }
2732   }
2733 
2734   // If 'this' is captured, load it into CXXThisValue.
2735   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2736     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2737     LValue ThisLValue = EmitLValueForField(Base, FD);
2738     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2739   }
2740 
2741   PGO.assignRegionCounters(GlobalDecl(CD), F);
2742   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2743   FinishFunction(CD->getBodyRBrace());
2744 
2745   return F;
2746 }
2747