1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Builtins.h" 21 #include "clang/Basic/DiagnosticSema.h" 22 #include "clang/Basic/PrettyStackTrace.h" 23 #include "clang/Basic/SourceManager.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/InlineAsm.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/MDBuilder.h" 31 #include "llvm/Support/SaveAndRestore.h" 32 33 using namespace clang; 34 using namespace CodeGen; 35 36 //===----------------------------------------------------------------------===// 37 // Statement Emission 38 //===----------------------------------------------------------------------===// 39 40 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 41 if (CGDebugInfo *DI = getDebugInfo()) { 42 SourceLocation Loc; 43 Loc = S->getBeginLoc(); 44 DI->EmitLocation(Builder, Loc); 45 46 LastStopPoint = Loc; 47 } 48 } 49 50 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 51 assert(S && "Null statement?"); 52 PGO.setCurrentStmt(S); 53 54 // These statements have their own debug info handling. 55 if (EmitSimpleStmt(S, Attrs)) 56 return; 57 58 // Check if we are generating unreachable code. 59 if (!HaveInsertPoint()) { 60 // If so, and the statement doesn't contain a label, then we do not need to 61 // generate actual code. This is safe because (1) the current point is 62 // unreachable, so we don't need to execute the code, and (2) we've already 63 // handled the statements which update internal data structures (like the 64 // local variable map) which could be used by subsequent statements. 65 if (!ContainsLabel(S)) { 66 // Verify that any decl statements were handled as simple, they may be in 67 // scope of subsequent reachable statements. 68 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 69 return; 70 } 71 72 // Otherwise, make a new block to hold the code. 73 EnsureInsertPoint(); 74 } 75 76 // Generate a stoppoint if we are emitting debug info. 77 EmitStopPoint(S); 78 79 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 80 // enabled. 81 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 82 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 83 EmitSimpleOMPExecutableDirective(*D); 84 return; 85 } 86 } 87 88 switch (S->getStmtClass()) { 89 case Stmt::NoStmtClass: 90 case Stmt::CXXCatchStmtClass: 91 case Stmt::SEHExceptStmtClass: 92 case Stmt::SEHFinallyStmtClass: 93 case Stmt::MSDependentExistsStmtClass: 94 llvm_unreachable("invalid statement class to emit generically"); 95 case Stmt::NullStmtClass: 96 case Stmt::CompoundStmtClass: 97 case Stmt::DeclStmtClass: 98 case Stmt::LabelStmtClass: 99 case Stmt::AttributedStmtClass: 100 case Stmt::GotoStmtClass: 101 case Stmt::BreakStmtClass: 102 case Stmt::ContinueStmtClass: 103 case Stmt::DefaultStmtClass: 104 case Stmt::CaseStmtClass: 105 case Stmt::SEHLeaveStmtClass: 106 llvm_unreachable("should have emitted these statements as simple"); 107 108 #define STMT(Type, Base) 109 #define ABSTRACT_STMT(Op) 110 #define EXPR(Type, Base) \ 111 case Stmt::Type##Class: 112 #include "clang/AST/StmtNodes.inc" 113 { 114 // Remember the block we came in on. 115 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 116 assert(incoming && "expression emission must have an insertion point"); 117 118 EmitIgnoredExpr(cast<Expr>(S)); 119 120 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 121 assert(outgoing && "expression emission cleared block!"); 122 123 // The expression emitters assume (reasonably!) that the insertion 124 // point is always set. To maintain that, the call-emission code 125 // for noreturn functions has to enter a new block with no 126 // predecessors. We want to kill that block and mark the current 127 // insertion point unreachable in the common case of a call like 128 // "exit();". Since expression emission doesn't otherwise create 129 // blocks with no predecessors, we can just test for that. 130 // However, we must be careful not to do this to our incoming 131 // block, because *statement* emission does sometimes create 132 // reachable blocks which will have no predecessors until later in 133 // the function. This occurs with, e.g., labels that are not 134 // reachable by fallthrough. 135 if (incoming != outgoing && outgoing->use_empty()) { 136 outgoing->eraseFromParent(); 137 Builder.ClearInsertionPoint(); 138 } 139 break; 140 } 141 142 case Stmt::IndirectGotoStmtClass: 143 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 144 145 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 146 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 147 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 148 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 149 150 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 151 152 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 153 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 154 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 155 case Stmt::CoroutineBodyStmtClass: 156 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 157 break; 158 case Stmt::CoreturnStmtClass: 159 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 160 break; 161 case Stmt::CapturedStmtClass: { 162 const CapturedStmt *CS = cast<CapturedStmt>(S); 163 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 164 } 165 break; 166 case Stmt::ObjCAtTryStmtClass: 167 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 168 break; 169 case Stmt::ObjCAtCatchStmtClass: 170 llvm_unreachable( 171 "@catch statements should be handled by EmitObjCAtTryStmt"); 172 case Stmt::ObjCAtFinallyStmtClass: 173 llvm_unreachable( 174 "@finally statements should be handled by EmitObjCAtTryStmt"); 175 case Stmt::ObjCAtThrowStmtClass: 176 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 177 break; 178 case Stmt::ObjCAtSynchronizedStmtClass: 179 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 180 break; 181 case Stmt::ObjCForCollectionStmtClass: 182 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 183 break; 184 case Stmt::ObjCAutoreleasePoolStmtClass: 185 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 186 break; 187 188 case Stmt::CXXTryStmtClass: 189 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 190 break; 191 case Stmt::CXXForRangeStmtClass: 192 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 193 break; 194 case Stmt::SEHTryStmtClass: 195 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 196 break; 197 case Stmt::OMPCanonicalLoopClass: 198 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 199 break; 200 case Stmt::OMPParallelDirectiveClass: 201 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 202 break; 203 case Stmt::OMPSimdDirectiveClass: 204 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 205 break; 206 case Stmt::OMPTileDirectiveClass: 207 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 208 break; 209 case Stmt::OMPForDirectiveClass: 210 EmitOMPForDirective(cast<OMPForDirective>(*S)); 211 break; 212 case Stmt::OMPForSimdDirectiveClass: 213 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 214 break; 215 case Stmt::OMPSectionsDirectiveClass: 216 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 217 break; 218 case Stmt::OMPSectionDirectiveClass: 219 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 220 break; 221 case Stmt::OMPSingleDirectiveClass: 222 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 223 break; 224 case Stmt::OMPMasterDirectiveClass: 225 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 226 break; 227 case Stmt::OMPCriticalDirectiveClass: 228 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 229 break; 230 case Stmt::OMPParallelForDirectiveClass: 231 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 232 break; 233 case Stmt::OMPParallelForSimdDirectiveClass: 234 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 235 break; 236 case Stmt::OMPParallelMasterDirectiveClass: 237 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 238 break; 239 case Stmt::OMPParallelSectionsDirectiveClass: 240 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 241 break; 242 case Stmt::OMPTaskDirectiveClass: 243 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 244 break; 245 case Stmt::OMPTaskyieldDirectiveClass: 246 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 247 break; 248 case Stmt::OMPBarrierDirectiveClass: 249 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 250 break; 251 case Stmt::OMPTaskwaitDirectiveClass: 252 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 253 break; 254 case Stmt::OMPTaskgroupDirectiveClass: 255 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 256 break; 257 case Stmt::OMPFlushDirectiveClass: 258 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 259 break; 260 case Stmt::OMPDepobjDirectiveClass: 261 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 262 break; 263 case Stmt::OMPScanDirectiveClass: 264 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 265 break; 266 case Stmt::OMPOrderedDirectiveClass: 267 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 268 break; 269 case Stmt::OMPAtomicDirectiveClass: 270 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 271 break; 272 case Stmt::OMPTargetDirectiveClass: 273 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 274 break; 275 case Stmt::OMPTeamsDirectiveClass: 276 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 277 break; 278 case Stmt::OMPCancellationPointDirectiveClass: 279 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 280 break; 281 case Stmt::OMPCancelDirectiveClass: 282 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 283 break; 284 case Stmt::OMPTargetDataDirectiveClass: 285 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 286 break; 287 case Stmt::OMPTargetEnterDataDirectiveClass: 288 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 289 break; 290 case Stmt::OMPTargetExitDataDirectiveClass: 291 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 292 break; 293 case Stmt::OMPTargetParallelDirectiveClass: 294 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForDirectiveClass: 297 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 298 break; 299 case Stmt::OMPTaskLoopDirectiveClass: 300 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 301 break; 302 case Stmt::OMPTaskLoopSimdDirectiveClass: 303 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 304 break; 305 case Stmt::OMPMasterTaskLoopDirectiveClass: 306 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 307 break; 308 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 309 EmitOMPMasterTaskLoopSimdDirective( 310 cast<OMPMasterTaskLoopSimdDirective>(*S)); 311 break; 312 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 313 EmitOMPParallelMasterTaskLoopDirective( 314 cast<OMPParallelMasterTaskLoopDirective>(*S)); 315 break; 316 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 317 EmitOMPParallelMasterTaskLoopSimdDirective( 318 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 319 break; 320 case Stmt::OMPDistributeDirectiveClass: 321 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 322 break; 323 case Stmt::OMPTargetUpdateDirectiveClass: 324 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 325 break; 326 case Stmt::OMPDistributeParallelForDirectiveClass: 327 EmitOMPDistributeParallelForDirective( 328 cast<OMPDistributeParallelForDirective>(*S)); 329 break; 330 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 331 EmitOMPDistributeParallelForSimdDirective( 332 cast<OMPDistributeParallelForSimdDirective>(*S)); 333 break; 334 case Stmt::OMPDistributeSimdDirectiveClass: 335 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 336 break; 337 case Stmt::OMPTargetParallelForSimdDirectiveClass: 338 EmitOMPTargetParallelForSimdDirective( 339 cast<OMPTargetParallelForSimdDirective>(*S)); 340 break; 341 case Stmt::OMPTargetSimdDirectiveClass: 342 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 343 break; 344 case Stmt::OMPTeamsDistributeDirectiveClass: 345 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 346 break; 347 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 348 EmitOMPTeamsDistributeSimdDirective( 349 cast<OMPTeamsDistributeSimdDirective>(*S)); 350 break; 351 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 352 EmitOMPTeamsDistributeParallelForSimdDirective( 353 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 354 break; 355 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 356 EmitOMPTeamsDistributeParallelForDirective( 357 cast<OMPTeamsDistributeParallelForDirective>(*S)); 358 break; 359 case Stmt::OMPTargetTeamsDirectiveClass: 360 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 361 break; 362 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 363 EmitOMPTargetTeamsDistributeDirective( 364 cast<OMPTargetTeamsDistributeDirective>(*S)); 365 break; 366 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 367 EmitOMPTargetTeamsDistributeParallelForDirective( 368 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 369 break; 370 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 371 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 372 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 373 break; 374 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 375 EmitOMPTargetTeamsDistributeSimdDirective( 376 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 377 break; 378 } 379 } 380 381 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 382 ArrayRef<const Attr *> Attrs) { 383 switch (S->getStmtClass()) { 384 default: 385 return false; 386 case Stmt::NullStmtClass: 387 break; 388 case Stmt::CompoundStmtClass: 389 EmitCompoundStmt(cast<CompoundStmt>(*S)); 390 break; 391 case Stmt::DeclStmtClass: 392 EmitDeclStmt(cast<DeclStmt>(*S)); 393 break; 394 case Stmt::LabelStmtClass: 395 EmitLabelStmt(cast<LabelStmt>(*S)); 396 break; 397 case Stmt::AttributedStmtClass: 398 EmitAttributedStmt(cast<AttributedStmt>(*S)); 399 break; 400 case Stmt::GotoStmtClass: 401 EmitGotoStmt(cast<GotoStmt>(*S)); 402 break; 403 case Stmt::BreakStmtClass: 404 EmitBreakStmt(cast<BreakStmt>(*S)); 405 break; 406 case Stmt::ContinueStmtClass: 407 EmitContinueStmt(cast<ContinueStmt>(*S)); 408 break; 409 case Stmt::DefaultStmtClass: 410 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 411 break; 412 case Stmt::CaseStmtClass: 413 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 414 break; 415 case Stmt::SEHLeaveStmtClass: 416 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 417 break; 418 } 419 return true; 420 } 421 422 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 423 /// this captures the expression result of the last sub-statement and returns it 424 /// (for use by the statement expression extension). 425 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 426 AggValueSlot AggSlot) { 427 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 428 "LLVM IR generation of compound statement ('{}')"); 429 430 // Keep track of the current cleanup stack depth, including debug scopes. 431 LexicalScope Scope(*this, S.getSourceRange()); 432 433 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 434 } 435 436 Address 437 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 438 bool GetLast, 439 AggValueSlot AggSlot) { 440 441 const Stmt *ExprResult = S.getStmtExprResult(); 442 assert((!GetLast || (GetLast && ExprResult)) && 443 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 444 445 Address RetAlloca = Address::invalid(); 446 447 for (auto *CurStmt : S.body()) { 448 if (GetLast && ExprResult == CurStmt) { 449 // We have to special case labels here. They are statements, but when put 450 // at the end of a statement expression, they yield the value of their 451 // subexpression. Handle this by walking through all labels we encounter, 452 // emitting them before we evaluate the subexpr. 453 // Similar issues arise for attributed statements. 454 while (!isa<Expr>(ExprResult)) { 455 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 456 EmitLabel(LS->getDecl()); 457 ExprResult = LS->getSubStmt(); 458 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 459 // FIXME: Update this if we ever have attributes that affect the 460 // semantics of an expression. 461 ExprResult = AS->getSubStmt(); 462 } else { 463 llvm_unreachable("unknown value statement"); 464 } 465 } 466 467 EnsureInsertPoint(); 468 469 const Expr *E = cast<Expr>(ExprResult); 470 QualType ExprTy = E->getType(); 471 if (hasAggregateEvaluationKind(ExprTy)) { 472 EmitAggExpr(E, AggSlot); 473 } else { 474 // We can't return an RValue here because there might be cleanups at 475 // the end of the StmtExpr. Because of that, we have to emit the result 476 // here into a temporary alloca. 477 RetAlloca = CreateMemTemp(ExprTy); 478 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 479 /*IsInit*/ false); 480 } 481 } else { 482 EmitStmt(CurStmt); 483 } 484 } 485 486 return RetAlloca; 487 } 488 489 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 490 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 491 492 // If there is a cleanup stack, then we it isn't worth trying to 493 // simplify this block (we would need to remove it from the scope map 494 // and cleanup entry). 495 if (!EHStack.empty()) 496 return; 497 498 // Can only simplify direct branches. 499 if (!BI || !BI->isUnconditional()) 500 return; 501 502 // Can only simplify empty blocks. 503 if (BI->getIterator() != BB->begin()) 504 return; 505 506 BB->replaceAllUsesWith(BI->getSuccessor(0)); 507 BI->eraseFromParent(); 508 BB->eraseFromParent(); 509 } 510 511 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 512 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 513 514 // Fall out of the current block (if necessary). 515 EmitBranch(BB); 516 517 if (IsFinished && BB->use_empty()) { 518 delete BB; 519 return; 520 } 521 522 // Place the block after the current block, if possible, or else at 523 // the end of the function. 524 if (CurBB && CurBB->getParent()) 525 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 526 else 527 CurFn->getBasicBlockList().push_back(BB); 528 Builder.SetInsertPoint(BB); 529 } 530 531 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 532 // Emit a branch from the current block to the target one if this 533 // was a real block. If this was just a fall-through block after a 534 // terminator, don't emit it. 535 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 536 537 if (!CurBB || CurBB->getTerminator()) { 538 // If there is no insert point or the previous block is already 539 // terminated, don't touch it. 540 } else { 541 // Otherwise, create a fall-through branch. 542 Builder.CreateBr(Target); 543 } 544 545 Builder.ClearInsertionPoint(); 546 } 547 548 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 549 bool inserted = false; 550 for (llvm::User *u : block->users()) { 551 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 552 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 553 block); 554 inserted = true; 555 break; 556 } 557 } 558 559 if (!inserted) 560 CurFn->getBasicBlockList().push_back(block); 561 562 Builder.SetInsertPoint(block); 563 } 564 565 CodeGenFunction::JumpDest 566 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 567 JumpDest &Dest = LabelMap[D]; 568 if (Dest.isValid()) return Dest; 569 570 // Create, but don't insert, the new block. 571 Dest = JumpDest(createBasicBlock(D->getName()), 572 EHScopeStack::stable_iterator::invalid(), 573 NextCleanupDestIndex++); 574 return Dest; 575 } 576 577 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 578 // Add this label to the current lexical scope if we're within any 579 // normal cleanups. Jumps "in" to this label --- when permitted by 580 // the language --- may need to be routed around such cleanups. 581 if (EHStack.hasNormalCleanups() && CurLexicalScope) 582 CurLexicalScope->addLabel(D); 583 584 JumpDest &Dest = LabelMap[D]; 585 586 // If we didn't need a forward reference to this label, just go 587 // ahead and create a destination at the current scope. 588 if (!Dest.isValid()) { 589 Dest = getJumpDestInCurrentScope(D->getName()); 590 591 // Otherwise, we need to give this label a target depth and remove 592 // it from the branch-fixups list. 593 } else { 594 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 595 Dest.setScopeDepth(EHStack.stable_begin()); 596 ResolveBranchFixups(Dest.getBlock()); 597 } 598 599 EmitBlock(Dest.getBlock()); 600 601 // Emit debug info for labels. 602 if (CGDebugInfo *DI = getDebugInfo()) { 603 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 604 DI->setLocation(D->getLocation()); 605 DI->EmitLabel(D, Builder); 606 } 607 } 608 609 incrementProfileCounter(D->getStmt()); 610 } 611 612 /// Change the cleanup scope of the labels in this lexical scope to 613 /// match the scope of the enclosing context. 614 void CodeGenFunction::LexicalScope::rescopeLabels() { 615 assert(!Labels.empty()); 616 EHScopeStack::stable_iterator innermostScope 617 = CGF.EHStack.getInnermostNormalCleanup(); 618 619 // Change the scope depth of all the labels. 620 for (SmallVectorImpl<const LabelDecl*>::const_iterator 621 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 622 assert(CGF.LabelMap.count(*i)); 623 JumpDest &dest = CGF.LabelMap.find(*i)->second; 624 assert(dest.getScopeDepth().isValid()); 625 assert(innermostScope.encloses(dest.getScopeDepth())); 626 dest.setScopeDepth(innermostScope); 627 } 628 629 // Reparent the labels if the new scope also has cleanups. 630 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 631 ParentScope->Labels.append(Labels.begin(), Labels.end()); 632 } 633 } 634 635 636 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 637 EmitLabel(S.getDecl()); 638 EmitStmt(S.getSubStmt()); 639 } 640 641 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 642 bool nomerge = false; 643 for (const auto *A : S.getAttrs()) 644 if (A->getKind() == attr::NoMerge) { 645 nomerge = true; 646 break; 647 } 648 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 649 EmitStmt(S.getSubStmt(), S.getAttrs()); 650 } 651 652 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 653 // If this code is reachable then emit a stop point (if generating 654 // debug info). We have to do this ourselves because we are on the 655 // "simple" statement path. 656 if (HaveInsertPoint()) 657 EmitStopPoint(&S); 658 659 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 660 } 661 662 663 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 664 if (const LabelDecl *Target = S.getConstantTarget()) { 665 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 666 return; 667 } 668 669 // Ensure that we have an i8* for our PHI node. 670 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 671 Int8PtrTy, "addr"); 672 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 673 674 // Get the basic block for the indirect goto. 675 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 676 677 // The first instruction in the block has to be the PHI for the switch dest, 678 // add an entry for this branch. 679 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 680 681 EmitBranch(IndGotoBB); 682 } 683 684 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 685 // C99 6.8.4.1: The first substatement is executed if the expression compares 686 // unequal to 0. The condition must be a scalar type. 687 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 688 689 if (S.getInit()) 690 EmitStmt(S.getInit()); 691 692 if (S.getConditionVariable()) 693 EmitDecl(*S.getConditionVariable()); 694 695 // If the condition constant folds and can be elided, try to avoid emitting 696 // the condition and the dead arm of the if/else. 697 bool CondConstant; 698 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 699 S.isConstexpr())) { 700 // Figure out which block (then or else) is executed. 701 const Stmt *Executed = S.getThen(); 702 const Stmt *Skipped = S.getElse(); 703 if (!CondConstant) // Condition false? 704 std::swap(Executed, Skipped); 705 706 // If the skipped block has no labels in it, just emit the executed block. 707 // This avoids emitting dead code and simplifies the CFG substantially. 708 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 709 if (CondConstant) 710 incrementProfileCounter(&S); 711 if (Executed) { 712 RunCleanupsScope ExecutedScope(*this); 713 EmitStmt(Executed); 714 } 715 return; 716 } 717 } 718 719 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 720 // the conditional branch. 721 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 722 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 723 llvm::BasicBlock *ElseBlock = ContBlock; 724 if (S.getElse()) 725 ElseBlock = createBasicBlock("if.else"); 726 727 // Prefer the PGO based weights over the likelihood attribute. 728 // When the build isn't optimized the metadata isn't used, so don't generate 729 // it. 730 Stmt::Likelihood LH = Stmt::LH_None; 731 uint64_t Count = getProfileCount(S.getThen()); 732 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 733 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 734 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 735 736 // Emit the 'then' code. 737 EmitBlock(ThenBlock); 738 incrementProfileCounter(&S); 739 { 740 RunCleanupsScope ThenScope(*this); 741 EmitStmt(S.getThen()); 742 } 743 EmitBranch(ContBlock); 744 745 // Emit the 'else' code if present. 746 if (const Stmt *Else = S.getElse()) { 747 { 748 // There is no need to emit line number for an unconditional branch. 749 auto NL = ApplyDebugLocation::CreateEmpty(*this); 750 EmitBlock(ElseBlock); 751 } 752 { 753 RunCleanupsScope ElseScope(*this); 754 EmitStmt(Else); 755 } 756 { 757 // There is no need to emit line number for an unconditional branch. 758 auto NL = ApplyDebugLocation::CreateEmpty(*this); 759 EmitBranch(ContBlock); 760 } 761 } 762 763 // Emit the continuation block for code after the if. 764 EmitBlock(ContBlock, true); 765 } 766 767 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 768 ArrayRef<const Attr *> WhileAttrs) { 769 // Emit the header for the loop, which will also become 770 // the continue target. 771 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 772 EmitBlock(LoopHeader.getBlock()); 773 774 // Create an exit block for when the condition fails, which will 775 // also become the break target. 776 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 777 778 // Store the blocks to use for break and continue. 779 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 780 781 // C++ [stmt.while]p2: 782 // When the condition of a while statement is a declaration, the 783 // scope of the variable that is declared extends from its point 784 // of declaration (3.3.2) to the end of the while statement. 785 // [...] 786 // The object created in a condition is destroyed and created 787 // with each iteration of the loop. 788 RunCleanupsScope ConditionScope(*this); 789 790 if (S.getConditionVariable()) 791 EmitDecl(*S.getConditionVariable()); 792 793 // Evaluate the conditional in the while header. C99 6.8.5.1: The 794 // evaluation of the controlling expression takes place before each 795 // execution of the loop body. 796 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 797 798 // while(1) is common, avoid extra exit blocks. Be sure 799 // to correctly handle break/continue though. 800 bool EmitBoolCondBranch = true; 801 bool LoopMustProgress = false; 802 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 803 if (C->isOne()) { 804 EmitBoolCondBranch = false; 805 FnIsMustProgress = false; 806 } 807 } else if (LanguageRequiresProgress()) 808 LoopMustProgress = true; 809 810 const SourceRange &R = S.getSourceRange(); 811 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 812 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 813 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 814 815 // As long as the condition is true, go to the loop body. 816 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 817 if (EmitBoolCondBranch) { 818 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 819 if (ConditionScope.requiresCleanups()) 820 ExitBlock = createBasicBlock("while.exit"); 821 llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop( 822 S.getCond(), getProfileCount(S.getBody()), S.getBody()); 823 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 824 825 if (ExitBlock != LoopExit.getBlock()) { 826 EmitBlock(ExitBlock); 827 EmitBranchThroughCleanup(LoopExit); 828 } 829 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 830 CGM.getDiags().Report(A->getLocation(), 831 diag::warn_attribute_has_no_effect_on_infinite_loop) 832 << A << A->getRange(); 833 CGM.getDiags().Report( 834 S.getWhileLoc(), 835 diag::note_attribute_has_no_effect_on_infinite_loop_here) 836 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 837 } 838 839 // Emit the loop body. We have to emit this in a cleanup scope 840 // because it might be a singleton DeclStmt. 841 { 842 RunCleanupsScope BodyScope(*this); 843 EmitBlock(LoopBody); 844 incrementProfileCounter(&S); 845 EmitStmt(S.getBody()); 846 } 847 848 BreakContinueStack.pop_back(); 849 850 // Immediately force cleanup. 851 ConditionScope.ForceCleanup(); 852 853 EmitStopPoint(&S); 854 // Branch to the loop header again. 855 EmitBranch(LoopHeader.getBlock()); 856 857 LoopStack.pop(); 858 859 // Emit the exit block. 860 EmitBlock(LoopExit.getBlock(), true); 861 862 // The LoopHeader typically is just a branch if we skipped emitting 863 // a branch, try to erase it. 864 if (!EmitBoolCondBranch) 865 SimplifyForwardingBlocks(LoopHeader.getBlock()); 866 } 867 868 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 869 ArrayRef<const Attr *> DoAttrs) { 870 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 871 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 872 873 uint64_t ParentCount = getCurrentProfileCount(); 874 875 // Store the blocks to use for break and continue. 876 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 877 878 // Emit the body of the loop. 879 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 880 881 EmitBlockWithFallThrough(LoopBody, &S); 882 { 883 RunCleanupsScope BodyScope(*this); 884 EmitStmt(S.getBody()); 885 } 886 887 EmitBlock(LoopCond.getBlock()); 888 889 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 890 // after each execution of the loop body." 891 892 // Evaluate the conditional in the while header. 893 // C99 6.8.5p2/p4: The first substatement is executed if the expression 894 // compares unequal to 0. The condition must be a scalar type. 895 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 896 897 BreakContinueStack.pop_back(); 898 899 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 900 // to correctly handle break/continue though. 901 bool EmitBoolCondBranch = true; 902 bool LoopMustProgress = false; 903 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) { 904 if (C->isZero()) 905 EmitBoolCondBranch = false; 906 else if (C->isOne()) 907 FnIsMustProgress = false; 908 } else if (LanguageRequiresProgress()) 909 LoopMustProgress = true; 910 911 const SourceRange &R = S.getSourceRange(); 912 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 913 SourceLocToDebugLoc(R.getBegin()), 914 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 915 916 // As long as the condition is true, iterate the loop. 917 if (EmitBoolCondBranch) { 918 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 919 Builder.CreateCondBr( 920 BoolCondVal, LoopBody, LoopExit.getBlock(), 921 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 922 } 923 924 LoopStack.pop(); 925 926 // Emit the exit block. 927 EmitBlock(LoopExit.getBlock()); 928 929 // The DoCond block typically is just a branch if we skipped 930 // emitting a branch, try to erase it. 931 if (!EmitBoolCondBranch) 932 SimplifyForwardingBlocks(LoopCond.getBlock()); 933 } 934 935 void CodeGenFunction::EmitForStmt(const ForStmt &S, 936 ArrayRef<const Attr *> ForAttrs) { 937 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 938 939 LexicalScope ForScope(*this, S.getSourceRange()); 940 941 // Evaluate the first part before the loop. 942 if (S.getInit()) 943 EmitStmt(S.getInit()); 944 945 // Start the loop with a block that tests the condition. 946 // If there's an increment, the continue scope will be overwritten 947 // later. 948 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 949 llvm::BasicBlock *CondBlock = Continue.getBlock(); 950 EmitBlock(CondBlock); 951 952 bool LoopMustProgress = false; 953 Expr::EvalResult Result; 954 if (LanguageRequiresProgress()) { 955 if (!S.getCond()) { 956 FnIsMustProgress = false; 957 } else if (!S.getCond()->EvaluateAsInt(Result, getContext())) { 958 LoopMustProgress = true; 959 } 960 } 961 962 const SourceRange &R = S.getSourceRange(); 963 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 964 SourceLocToDebugLoc(R.getBegin()), 965 SourceLocToDebugLoc(R.getEnd()), LoopMustProgress); 966 967 // If the for loop doesn't have an increment we can just use the 968 // condition as the continue block. Otherwise we'll need to create 969 // a block for it (in the current scope, i.e. in the scope of the 970 // condition), and that we will become our continue block. 971 if (S.getInc()) 972 Continue = getJumpDestInCurrentScope("for.inc"); 973 974 // Store the blocks to use for break and continue. 975 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 976 977 // Create a cleanup scope for the condition variable cleanups. 978 LexicalScope ConditionScope(*this, S.getSourceRange()); 979 980 if (S.getCond()) { 981 // If the for statement has a condition scope, emit the local variable 982 // declaration. 983 if (S.getConditionVariable()) { 984 EmitDecl(*S.getConditionVariable()); 985 } 986 987 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 988 // If there are any cleanups between here and the loop-exit scope, 989 // create a block to stage a loop exit along. 990 if (ForScope.requiresCleanups()) 991 ExitBlock = createBasicBlock("for.cond.cleanup"); 992 993 // As long as the condition is true, iterate the loop. 994 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 995 996 // C99 6.8.5p2/p4: The first substatement is executed if the expression 997 // compares unequal to 0. The condition must be a scalar type. 998 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 999 llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop( 1000 S.getCond(), getProfileCount(S.getBody()), S.getBody()); 1001 1002 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 1003 if (C->isOne()) 1004 FnIsMustProgress = false; 1005 1006 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1007 1008 if (ExitBlock != LoopExit.getBlock()) { 1009 EmitBlock(ExitBlock); 1010 EmitBranchThroughCleanup(LoopExit); 1011 } 1012 1013 EmitBlock(ForBody); 1014 } else { 1015 // Treat it as a non-zero constant. Don't even create a new block for the 1016 // body, just fall into it. 1017 } 1018 incrementProfileCounter(&S); 1019 1020 { 1021 // Create a separate cleanup scope for the body, in case it is not 1022 // a compound statement. 1023 RunCleanupsScope BodyScope(*this); 1024 EmitStmt(S.getBody()); 1025 } 1026 1027 // If there is an increment, emit it next. 1028 if (S.getInc()) { 1029 EmitBlock(Continue.getBlock()); 1030 EmitStmt(S.getInc()); 1031 } 1032 1033 BreakContinueStack.pop_back(); 1034 1035 ConditionScope.ForceCleanup(); 1036 1037 EmitStopPoint(&S); 1038 EmitBranch(CondBlock); 1039 1040 ForScope.ForceCleanup(); 1041 1042 LoopStack.pop(); 1043 1044 // Emit the fall-through block. 1045 EmitBlock(LoopExit.getBlock(), true); 1046 } 1047 1048 void 1049 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1050 ArrayRef<const Attr *> ForAttrs) { 1051 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1052 1053 LexicalScope ForScope(*this, S.getSourceRange()); 1054 1055 // Evaluate the first pieces before the loop. 1056 if (S.getInit()) 1057 EmitStmt(S.getInit()); 1058 EmitStmt(S.getRangeStmt()); 1059 EmitStmt(S.getBeginStmt()); 1060 EmitStmt(S.getEndStmt()); 1061 1062 // Start the loop with a block that tests the condition. 1063 // If there's an increment, the continue scope will be overwritten 1064 // later. 1065 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1066 EmitBlock(CondBlock); 1067 1068 const SourceRange &R = S.getSourceRange(); 1069 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1070 SourceLocToDebugLoc(R.getBegin()), 1071 SourceLocToDebugLoc(R.getEnd())); 1072 1073 // If there are any cleanups between here and the loop-exit scope, 1074 // create a block to stage a loop exit along. 1075 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1076 if (ForScope.requiresCleanups()) 1077 ExitBlock = createBasicBlock("for.cond.cleanup"); 1078 1079 // The loop body, consisting of the specified body and the loop variable. 1080 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1081 1082 // The body is executed if the expression, contextually converted 1083 // to bool, is true. 1084 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1085 llvm::MDNode *Weights = createProfileOrBranchWeightsForLoop( 1086 S.getCond(), getProfileCount(S.getBody()), S.getBody()); 1087 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1088 1089 if (ExitBlock != LoopExit.getBlock()) { 1090 EmitBlock(ExitBlock); 1091 EmitBranchThroughCleanup(LoopExit); 1092 } 1093 1094 EmitBlock(ForBody); 1095 incrementProfileCounter(&S); 1096 1097 // Create a block for the increment. In case of a 'continue', we jump there. 1098 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1099 1100 // Store the blocks to use for break and continue. 1101 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1102 1103 { 1104 // Create a separate cleanup scope for the loop variable and body. 1105 LexicalScope BodyScope(*this, S.getSourceRange()); 1106 EmitStmt(S.getLoopVarStmt()); 1107 EmitStmt(S.getBody()); 1108 } 1109 1110 EmitStopPoint(&S); 1111 // If there is an increment, emit it next. 1112 EmitBlock(Continue.getBlock()); 1113 EmitStmt(S.getInc()); 1114 1115 BreakContinueStack.pop_back(); 1116 1117 EmitBranch(CondBlock); 1118 1119 ForScope.ForceCleanup(); 1120 1121 LoopStack.pop(); 1122 1123 // Emit the fall-through block. 1124 EmitBlock(LoopExit.getBlock(), true); 1125 } 1126 1127 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1128 if (RV.isScalar()) { 1129 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1130 } else if (RV.isAggregate()) { 1131 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1132 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1133 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1134 } else { 1135 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1136 /*init*/ true); 1137 } 1138 EmitBranchThroughCleanup(ReturnBlock); 1139 } 1140 1141 namespace { 1142 // RAII struct used to save and restore a return statment's result expression. 1143 struct SaveRetExprRAII { 1144 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1145 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1146 CGF.RetExpr = RetExpr; 1147 } 1148 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1149 const Expr *OldRetExpr; 1150 CodeGenFunction &CGF; 1151 }; 1152 } // namespace 1153 1154 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1155 /// if the function returns void, or may be missing one if the function returns 1156 /// non-void. Fun stuff :). 1157 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1158 if (requiresReturnValueCheck()) { 1159 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1160 auto *SLocPtr = 1161 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1162 llvm::GlobalVariable::PrivateLinkage, SLoc); 1163 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1164 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1165 assert(ReturnLocation.isValid() && "No valid return location"); 1166 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1167 ReturnLocation); 1168 } 1169 1170 // Returning from an outlined SEH helper is UB, and we already warn on it. 1171 if (IsOutlinedSEHHelper) { 1172 Builder.CreateUnreachable(); 1173 Builder.ClearInsertionPoint(); 1174 } 1175 1176 // Emit the result value, even if unused, to evaluate the side effects. 1177 const Expr *RV = S.getRetValue(); 1178 1179 // Record the result expression of the return statement. The recorded 1180 // expression is used to determine whether a block capture's lifetime should 1181 // end at the end of the full expression as opposed to the end of the scope 1182 // enclosing the block expression. 1183 // 1184 // This permits a small, easily-implemented exception to our over-conservative 1185 // rules about not jumping to statements following block literals with 1186 // non-trivial cleanups. 1187 SaveRetExprRAII SaveRetExpr(RV, *this); 1188 1189 RunCleanupsScope cleanupScope(*this); 1190 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1191 RV = EWC->getSubExpr(); 1192 // FIXME: Clean this up by using an LValue for ReturnTemp, 1193 // EmitStoreThroughLValue, and EmitAnyExpr. 1194 // Check if the NRVO candidate was not globalized in OpenMP mode. 1195 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1196 S.getNRVOCandidate()->isNRVOVariable() && 1197 (!getLangOpts().OpenMP || 1198 !CGM.getOpenMPRuntime() 1199 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1200 .isValid())) { 1201 // Apply the named return value optimization for this return statement, 1202 // which means doing nothing: the appropriate result has already been 1203 // constructed into the NRVO variable. 1204 1205 // If there is an NRVO flag for this variable, set it to 1 into indicate 1206 // that the cleanup code should not destroy the variable. 1207 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1208 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1209 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1210 // Make sure not to return anything, but evaluate the expression 1211 // for side effects. 1212 if (RV) 1213 EmitAnyExpr(RV); 1214 } else if (!RV) { 1215 // Do nothing (return value is left uninitialized) 1216 } else if (FnRetTy->isReferenceType()) { 1217 // If this function returns a reference, take the address of the expression 1218 // rather than the value. 1219 RValue Result = EmitReferenceBindingToExpr(RV); 1220 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1221 } else { 1222 switch (getEvaluationKind(RV->getType())) { 1223 case TEK_Scalar: 1224 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1225 break; 1226 case TEK_Complex: 1227 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1228 /*isInit*/ true); 1229 break; 1230 case TEK_Aggregate: 1231 EmitAggExpr(RV, AggValueSlot::forAddr( 1232 ReturnValue, Qualifiers(), 1233 AggValueSlot::IsDestructed, 1234 AggValueSlot::DoesNotNeedGCBarriers, 1235 AggValueSlot::IsNotAliased, 1236 getOverlapForReturnValue())); 1237 break; 1238 } 1239 } 1240 1241 ++NumReturnExprs; 1242 if (!RV || RV->isEvaluatable(getContext())) 1243 ++NumSimpleReturnExprs; 1244 1245 cleanupScope.ForceCleanup(); 1246 EmitBranchThroughCleanup(ReturnBlock); 1247 } 1248 1249 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1250 // As long as debug info is modeled with instructions, we have to ensure we 1251 // have a place to insert here and write the stop point here. 1252 if (HaveInsertPoint()) 1253 EmitStopPoint(&S); 1254 1255 for (const auto *I : S.decls()) 1256 EmitDecl(*I); 1257 } 1258 1259 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1260 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1261 1262 // If this code is reachable then emit a stop point (if generating 1263 // debug info). We have to do this ourselves because we are on the 1264 // "simple" statement path. 1265 if (HaveInsertPoint()) 1266 EmitStopPoint(&S); 1267 1268 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1269 } 1270 1271 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1272 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1273 1274 // If this code is reachable then emit a stop point (if generating 1275 // debug info). We have to do this ourselves because we are on the 1276 // "simple" statement path. 1277 if (HaveInsertPoint()) 1278 EmitStopPoint(&S); 1279 1280 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1281 } 1282 1283 /// EmitCaseStmtRange - If case statement range is not too big then 1284 /// add multiple cases to switch instruction, one for each value within 1285 /// the range. If range is too big then emit "if" condition check. 1286 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1287 ArrayRef<const Attr *> Attrs) { 1288 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1289 1290 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1291 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1292 1293 // Emit the code for this case. We do this first to make sure it is 1294 // properly chained from our predecessor before generating the 1295 // switch machinery to enter this block. 1296 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1297 EmitBlockWithFallThrough(CaseDest, &S); 1298 EmitStmt(S.getSubStmt()); 1299 1300 // If range is empty, do nothing. 1301 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1302 return; 1303 1304 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1305 llvm::APInt Range = RHS - LHS; 1306 // FIXME: parameters such as this should not be hardcoded. 1307 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1308 // Range is small enough to add multiple switch instruction cases. 1309 uint64_t Total = getProfileCount(&S); 1310 unsigned NCases = Range.getZExtValue() + 1; 1311 // We only have one region counter for the entire set of cases here, so we 1312 // need to divide the weights evenly between the generated cases, ensuring 1313 // that the total weight is preserved. E.g., a weight of 5 over three cases 1314 // will be distributed as weights of 2, 2, and 1. 1315 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1316 for (unsigned I = 0; I != NCases; ++I) { 1317 if (SwitchWeights) 1318 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1319 else if (SwitchLikelihood) 1320 SwitchLikelihood->push_back(LH); 1321 1322 if (Rem) 1323 Rem--; 1324 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1325 ++LHS; 1326 } 1327 return; 1328 } 1329 1330 // The range is too big. Emit "if" condition into a new block, 1331 // making sure to save and restore the current insertion point. 1332 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1333 1334 // Push this test onto the chain of range checks (which terminates 1335 // in the default basic block). The switch's default will be changed 1336 // to the top of this chain after switch emission is complete. 1337 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1338 CaseRangeBlock = createBasicBlock("sw.caserange"); 1339 1340 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1341 Builder.SetInsertPoint(CaseRangeBlock); 1342 1343 // Emit range check. 1344 llvm::Value *Diff = 1345 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1346 llvm::Value *Cond = 1347 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1348 1349 llvm::MDNode *Weights = nullptr; 1350 if (SwitchWeights) { 1351 uint64_t ThisCount = getProfileCount(&S); 1352 uint64_t DefaultCount = (*SwitchWeights)[0]; 1353 Weights = createProfileWeights(ThisCount, DefaultCount); 1354 1355 // Since we're chaining the switch default through each large case range, we 1356 // need to update the weight for the default, ie, the first case, to include 1357 // this case. 1358 (*SwitchWeights)[0] += ThisCount; 1359 } else if (SwitchLikelihood) 1360 Weights = createBranchWeights(LH); 1361 1362 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1363 1364 // Restore the appropriate insertion point. 1365 if (RestoreBB) 1366 Builder.SetInsertPoint(RestoreBB); 1367 else 1368 Builder.ClearInsertionPoint(); 1369 } 1370 1371 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1372 ArrayRef<const Attr *> Attrs) { 1373 // If there is no enclosing switch instance that we're aware of, then this 1374 // case statement and its block can be elided. This situation only happens 1375 // when we've constant-folded the switch, are emitting the constant case, 1376 // and part of the constant case includes another case statement. For 1377 // instance: switch (4) { case 4: do { case 5: } while (1); } 1378 if (!SwitchInsn) { 1379 EmitStmt(S.getSubStmt()); 1380 return; 1381 } 1382 1383 // Handle case ranges. 1384 if (S.getRHS()) { 1385 EmitCaseStmtRange(S, Attrs); 1386 return; 1387 } 1388 1389 llvm::ConstantInt *CaseVal = 1390 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1391 if (SwitchLikelihood) 1392 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1393 1394 // If the body of the case is just a 'break', try to not emit an empty block. 1395 // If we're profiling or we're not optimizing, leave the block in for better 1396 // debug and coverage analysis. 1397 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1398 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1399 isa<BreakStmt>(S.getSubStmt())) { 1400 JumpDest Block = BreakContinueStack.back().BreakBlock; 1401 1402 // Only do this optimization if there are no cleanups that need emitting. 1403 if (isObviouslyBranchWithoutCleanups(Block)) { 1404 if (SwitchWeights) 1405 SwitchWeights->push_back(getProfileCount(&S)); 1406 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1407 1408 // If there was a fallthrough into this case, make sure to redirect it to 1409 // the end of the switch as well. 1410 if (Builder.GetInsertBlock()) { 1411 Builder.CreateBr(Block.getBlock()); 1412 Builder.ClearInsertionPoint(); 1413 } 1414 return; 1415 } 1416 } 1417 1418 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1419 EmitBlockWithFallThrough(CaseDest, &S); 1420 if (SwitchWeights) 1421 SwitchWeights->push_back(getProfileCount(&S)); 1422 SwitchInsn->addCase(CaseVal, CaseDest); 1423 1424 // Recursively emitting the statement is acceptable, but is not wonderful for 1425 // code where we have many case statements nested together, i.e.: 1426 // case 1: 1427 // case 2: 1428 // case 3: etc. 1429 // Handling this recursively will create a new block for each case statement 1430 // that falls through to the next case which is IR intensive. It also causes 1431 // deep recursion which can run into stack depth limitations. Handle 1432 // sequential non-range case statements specially. 1433 // 1434 // TODO When the next case has a likelihood attribute the code returns to the 1435 // recursive algorithm. Maybe improve this case if it becomes common practice 1436 // to use a lot of attributes. 1437 const CaseStmt *CurCase = &S; 1438 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1439 1440 // Otherwise, iteratively add consecutive cases to this switch stmt. 1441 while (NextCase && NextCase->getRHS() == nullptr) { 1442 CurCase = NextCase; 1443 llvm::ConstantInt *CaseVal = 1444 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1445 1446 if (SwitchWeights) 1447 SwitchWeights->push_back(getProfileCount(NextCase)); 1448 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1449 CaseDest = createBasicBlock("sw.bb"); 1450 EmitBlockWithFallThrough(CaseDest, CurCase); 1451 } 1452 // Since this loop is only executed when the CaseStmt has no attributes 1453 // use a hard-coded value. 1454 if (SwitchLikelihood) 1455 SwitchLikelihood->push_back(Stmt::LH_None); 1456 1457 SwitchInsn->addCase(CaseVal, CaseDest); 1458 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1459 } 1460 1461 // Normal default recursion for non-cases. 1462 EmitStmt(CurCase->getSubStmt()); 1463 } 1464 1465 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1466 ArrayRef<const Attr *> Attrs) { 1467 // If there is no enclosing switch instance that we're aware of, then this 1468 // default statement can be elided. This situation only happens when we've 1469 // constant-folded the switch. 1470 if (!SwitchInsn) { 1471 EmitStmt(S.getSubStmt()); 1472 return; 1473 } 1474 1475 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1476 assert(DefaultBlock->empty() && 1477 "EmitDefaultStmt: Default block already defined?"); 1478 1479 if (SwitchLikelihood) 1480 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1481 1482 EmitBlockWithFallThrough(DefaultBlock, &S); 1483 1484 EmitStmt(S.getSubStmt()); 1485 } 1486 1487 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1488 /// constant value that is being switched on, see if we can dead code eliminate 1489 /// the body of the switch to a simple series of statements to emit. Basically, 1490 /// on a switch (5) we want to find these statements: 1491 /// case 5: 1492 /// printf(...); <-- 1493 /// ++i; <-- 1494 /// break; 1495 /// 1496 /// and add them to the ResultStmts vector. If it is unsafe to do this 1497 /// transformation (for example, one of the elided statements contains a label 1498 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1499 /// should include statements after it (e.g. the printf() line is a substmt of 1500 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1501 /// statement, then return CSFC_Success. 1502 /// 1503 /// If Case is non-null, then we are looking for the specified case, checking 1504 /// that nothing we jump over contains labels. If Case is null, then we found 1505 /// the case and are looking for the break. 1506 /// 1507 /// If the recursive walk actually finds our Case, then we set FoundCase to 1508 /// true. 1509 /// 1510 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1511 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1512 const SwitchCase *Case, 1513 bool &FoundCase, 1514 SmallVectorImpl<const Stmt*> &ResultStmts) { 1515 // If this is a null statement, just succeed. 1516 if (!S) 1517 return Case ? CSFC_Success : CSFC_FallThrough; 1518 1519 // If this is the switchcase (case 4: or default) that we're looking for, then 1520 // we're in business. Just add the substatement. 1521 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1522 if (S == Case) { 1523 FoundCase = true; 1524 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1525 ResultStmts); 1526 } 1527 1528 // Otherwise, this is some other case or default statement, just ignore it. 1529 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1530 ResultStmts); 1531 } 1532 1533 // If we are in the live part of the code and we found our break statement, 1534 // return a success! 1535 if (!Case && isa<BreakStmt>(S)) 1536 return CSFC_Success; 1537 1538 // If this is a switch statement, then it might contain the SwitchCase, the 1539 // break, or neither. 1540 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1541 // Handle this as two cases: we might be looking for the SwitchCase (if so 1542 // the skipped statements must be skippable) or we might already have it. 1543 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1544 bool StartedInLiveCode = FoundCase; 1545 unsigned StartSize = ResultStmts.size(); 1546 1547 // If we've not found the case yet, scan through looking for it. 1548 if (Case) { 1549 // Keep track of whether we see a skipped declaration. The code could be 1550 // using the declaration even if it is skipped, so we can't optimize out 1551 // the decl if the kept statements might refer to it. 1552 bool HadSkippedDecl = false; 1553 1554 // If we're looking for the case, just see if we can skip each of the 1555 // substatements. 1556 for (; Case && I != E; ++I) { 1557 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1558 1559 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1560 case CSFC_Failure: return CSFC_Failure; 1561 case CSFC_Success: 1562 // A successful result means that either 1) that the statement doesn't 1563 // have the case and is skippable, or 2) does contain the case value 1564 // and also contains the break to exit the switch. In the later case, 1565 // we just verify the rest of the statements are elidable. 1566 if (FoundCase) { 1567 // If we found the case and skipped declarations, we can't do the 1568 // optimization. 1569 if (HadSkippedDecl) 1570 return CSFC_Failure; 1571 1572 for (++I; I != E; ++I) 1573 if (CodeGenFunction::ContainsLabel(*I, true)) 1574 return CSFC_Failure; 1575 return CSFC_Success; 1576 } 1577 break; 1578 case CSFC_FallThrough: 1579 // If we have a fallthrough condition, then we must have found the 1580 // case started to include statements. Consider the rest of the 1581 // statements in the compound statement as candidates for inclusion. 1582 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1583 // We recursively found Case, so we're not looking for it anymore. 1584 Case = nullptr; 1585 1586 // If we found the case and skipped declarations, we can't do the 1587 // optimization. 1588 if (HadSkippedDecl) 1589 return CSFC_Failure; 1590 break; 1591 } 1592 } 1593 1594 if (!FoundCase) 1595 return CSFC_Success; 1596 1597 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1598 } 1599 1600 // If we have statements in our range, then we know that the statements are 1601 // live and need to be added to the set of statements we're tracking. 1602 bool AnyDecls = false; 1603 for (; I != E; ++I) { 1604 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1605 1606 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1607 case CSFC_Failure: return CSFC_Failure; 1608 case CSFC_FallThrough: 1609 // A fallthrough result means that the statement was simple and just 1610 // included in ResultStmt, keep adding them afterwards. 1611 break; 1612 case CSFC_Success: 1613 // A successful result means that we found the break statement and 1614 // stopped statement inclusion. We just ensure that any leftover stmts 1615 // are skippable and return success ourselves. 1616 for (++I; I != E; ++I) 1617 if (CodeGenFunction::ContainsLabel(*I, true)) 1618 return CSFC_Failure; 1619 return CSFC_Success; 1620 } 1621 } 1622 1623 // If we're about to fall out of a scope without hitting a 'break;', we 1624 // can't perform the optimization if there were any decls in that scope 1625 // (we'd lose their end-of-lifetime). 1626 if (AnyDecls) { 1627 // If the entire compound statement was live, there's one more thing we 1628 // can try before giving up: emit the whole thing as a single statement. 1629 // We can do that unless the statement contains a 'break;'. 1630 // FIXME: Such a break must be at the end of a construct within this one. 1631 // We could emit this by just ignoring the BreakStmts entirely. 1632 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1633 ResultStmts.resize(StartSize); 1634 ResultStmts.push_back(S); 1635 } else { 1636 return CSFC_Failure; 1637 } 1638 } 1639 1640 return CSFC_FallThrough; 1641 } 1642 1643 // Okay, this is some other statement that we don't handle explicitly, like a 1644 // for statement or increment etc. If we are skipping over this statement, 1645 // just verify it doesn't have labels, which would make it invalid to elide. 1646 if (Case) { 1647 if (CodeGenFunction::ContainsLabel(S, true)) 1648 return CSFC_Failure; 1649 return CSFC_Success; 1650 } 1651 1652 // Otherwise, we want to include this statement. Everything is cool with that 1653 // so long as it doesn't contain a break out of the switch we're in. 1654 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1655 1656 // Otherwise, everything is great. Include the statement and tell the caller 1657 // that we fall through and include the next statement as well. 1658 ResultStmts.push_back(S); 1659 return CSFC_FallThrough; 1660 } 1661 1662 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1663 /// then invoke CollectStatementsForCase to find the list of statements to emit 1664 /// for a switch on constant. See the comment above CollectStatementsForCase 1665 /// for more details. 1666 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1667 const llvm::APSInt &ConstantCondValue, 1668 SmallVectorImpl<const Stmt*> &ResultStmts, 1669 ASTContext &C, 1670 const SwitchCase *&ResultCase) { 1671 // First step, find the switch case that is being branched to. We can do this 1672 // efficiently by scanning the SwitchCase list. 1673 const SwitchCase *Case = S.getSwitchCaseList(); 1674 const DefaultStmt *DefaultCase = nullptr; 1675 1676 for (; Case; Case = Case->getNextSwitchCase()) { 1677 // It's either a default or case. Just remember the default statement in 1678 // case we're not jumping to any numbered cases. 1679 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1680 DefaultCase = DS; 1681 continue; 1682 } 1683 1684 // Check to see if this case is the one we're looking for. 1685 const CaseStmt *CS = cast<CaseStmt>(Case); 1686 // Don't handle case ranges yet. 1687 if (CS->getRHS()) return false; 1688 1689 // If we found our case, remember it as 'case'. 1690 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1691 break; 1692 } 1693 1694 // If we didn't find a matching case, we use a default if it exists, or we 1695 // elide the whole switch body! 1696 if (!Case) { 1697 // It is safe to elide the body of the switch if it doesn't contain labels 1698 // etc. If it is safe, return successfully with an empty ResultStmts list. 1699 if (!DefaultCase) 1700 return !CodeGenFunction::ContainsLabel(&S); 1701 Case = DefaultCase; 1702 } 1703 1704 // Ok, we know which case is being jumped to, try to collect all the 1705 // statements that follow it. This can fail for a variety of reasons. Also, 1706 // check to see that the recursive walk actually found our case statement. 1707 // Insane cases like this can fail to find it in the recursive walk since we 1708 // don't handle every stmt kind: 1709 // switch (4) { 1710 // while (1) { 1711 // case 4: ... 1712 bool FoundCase = false; 1713 ResultCase = Case; 1714 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1715 ResultStmts) != CSFC_Failure && 1716 FoundCase; 1717 } 1718 1719 static Optional<SmallVector<uint64_t, 16>> 1720 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1721 // Are there enough branches to weight them? 1722 if (Likelihoods.size() <= 1) 1723 return None; 1724 1725 uint64_t NumUnlikely = 0; 1726 uint64_t NumNone = 0; 1727 uint64_t NumLikely = 0; 1728 for (const auto LH : Likelihoods) { 1729 switch (LH) { 1730 case Stmt::LH_Unlikely: 1731 ++NumUnlikely; 1732 break; 1733 case Stmt::LH_None: 1734 ++NumNone; 1735 break; 1736 case Stmt::LH_Likely: 1737 ++NumLikely; 1738 break; 1739 } 1740 } 1741 1742 // Is there a likelihood attribute used? 1743 if (NumUnlikely == 0 && NumLikely == 0) 1744 return None; 1745 1746 // When multiple cases share the same code they can be combined during 1747 // optimization. In that case the weights of the branch will be the sum of 1748 // the individual weights. Make sure the combined sum of all neutral cases 1749 // doesn't exceed the value of a single likely attribute. 1750 // The additions both avoid divisions by 0 and make sure the weights of None 1751 // don't exceed the weight of Likely. 1752 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1753 const uint64_t None = Likely / (NumNone + 1); 1754 const uint64_t Unlikely = 0; 1755 1756 SmallVector<uint64_t, 16> Result; 1757 Result.reserve(Likelihoods.size()); 1758 for (const auto LH : Likelihoods) { 1759 switch (LH) { 1760 case Stmt::LH_Unlikely: 1761 Result.push_back(Unlikely); 1762 break; 1763 case Stmt::LH_None: 1764 Result.push_back(None); 1765 break; 1766 case Stmt::LH_Likely: 1767 Result.push_back(Likely); 1768 break; 1769 } 1770 } 1771 1772 return Result; 1773 } 1774 1775 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1776 // Handle nested switch statements. 1777 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1778 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1779 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1780 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1781 1782 // See if we can constant fold the condition of the switch and therefore only 1783 // emit the live case statement (if any) of the switch. 1784 llvm::APSInt ConstantCondValue; 1785 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1786 SmallVector<const Stmt*, 4> CaseStmts; 1787 const SwitchCase *Case = nullptr; 1788 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1789 getContext(), Case)) { 1790 if (Case) 1791 incrementProfileCounter(Case); 1792 RunCleanupsScope ExecutedScope(*this); 1793 1794 if (S.getInit()) 1795 EmitStmt(S.getInit()); 1796 1797 // Emit the condition variable if needed inside the entire cleanup scope 1798 // used by this special case for constant folded switches. 1799 if (S.getConditionVariable()) 1800 EmitDecl(*S.getConditionVariable()); 1801 1802 // At this point, we are no longer "within" a switch instance, so 1803 // we can temporarily enforce this to ensure that any embedded case 1804 // statements are not emitted. 1805 SwitchInsn = nullptr; 1806 1807 // Okay, we can dead code eliminate everything except this case. Emit the 1808 // specified series of statements and we're good. 1809 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1810 EmitStmt(CaseStmts[i]); 1811 incrementProfileCounter(&S); 1812 1813 // Now we want to restore the saved switch instance so that nested 1814 // switches continue to function properly 1815 SwitchInsn = SavedSwitchInsn; 1816 1817 return; 1818 } 1819 } 1820 1821 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1822 1823 RunCleanupsScope ConditionScope(*this); 1824 1825 if (S.getInit()) 1826 EmitStmt(S.getInit()); 1827 1828 if (S.getConditionVariable()) 1829 EmitDecl(*S.getConditionVariable()); 1830 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1831 1832 // Create basic block to hold stuff that comes after switch 1833 // statement. We also need to create a default block now so that 1834 // explicit case ranges tests can have a place to jump to on 1835 // failure. 1836 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1837 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1838 if (PGO.haveRegionCounts()) { 1839 // Walk the SwitchCase list to find how many there are. 1840 uint64_t DefaultCount = 0; 1841 unsigned NumCases = 0; 1842 for (const SwitchCase *Case = S.getSwitchCaseList(); 1843 Case; 1844 Case = Case->getNextSwitchCase()) { 1845 if (isa<DefaultStmt>(Case)) 1846 DefaultCount = getProfileCount(Case); 1847 NumCases += 1; 1848 } 1849 SwitchWeights = new SmallVector<uint64_t, 16>(); 1850 SwitchWeights->reserve(NumCases); 1851 // The default needs to be first. We store the edge count, so we already 1852 // know the right weight. 1853 SwitchWeights->push_back(DefaultCount); 1854 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1855 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1856 // Initialize the default case. 1857 SwitchLikelihood->push_back(Stmt::LH_None); 1858 } 1859 1860 CaseRangeBlock = DefaultBlock; 1861 1862 // Clear the insertion point to indicate we are in unreachable code. 1863 Builder.ClearInsertionPoint(); 1864 1865 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1866 // then reuse last ContinueBlock. 1867 JumpDest OuterContinue; 1868 if (!BreakContinueStack.empty()) 1869 OuterContinue = BreakContinueStack.back().ContinueBlock; 1870 1871 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1872 1873 // Emit switch body. 1874 EmitStmt(S.getBody()); 1875 1876 BreakContinueStack.pop_back(); 1877 1878 // Update the default block in case explicit case range tests have 1879 // been chained on top. 1880 SwitchInsn->setDefaultDest(CaseRangeBlock); 1881 1882 // If a default was never emitted: 1883 if (!DefaultBlock->getParent()) { 1884 // If we have cleanups, emit the default block so that there's a 1885 // place to jump through the cleanups from. 1886 if (ConditionScope.requiresCleanups()) { 1887 EmitBlock(DefaultBlock); 1888 1889 // Otherwise, just forward the default block to the switch end. 1890 } else { 1891 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1892 delete DefaultBlock; 1893 } 1894 } 1895 1896 ConditionScope.ForceCleanup(); 1897 1898 // Emit continuation. 1899 EmitBlock(SwitchExit.getBlock(), true); 1900 incrementProfileCounter(&S); 1901 1902 // If the switch has a condition wrapped by __builtin_unpredictable, 1903 // create metadata that specifies that the switch is unpredictable. 1904 // Don't bother if not optimizing because that metadata would not be used. 1905 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1906 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1907 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1908 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1909 llvm::MDBuilder MDHelper(getLLVMContext()); 1910 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1911 MDHelper.createUnpredictable()); 1912 } 1913 } 1914 1915 if (SwitchWeights) { 1916 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1917 "switch weights do not match switch cases"); 1918 // If there's only one jump destination there's no sense weighting it. 1919 if (SwitchWeights->size() > 1) 1920 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1921 createProfileWeights(*SwitchWeights)); 1922 delete SwitchWeights; 1923 } else if (SwitchLikelihood) { 1924 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1925 "switch likelihoods do not match switch cases"); 1926 Optional<SmallVector<uint64_t, 16>> LHW = 1927 getLikelihoodWeights(*SwitchLikelihood); 1928 if (LHW) { 1929 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1930 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1931 createProfileWeights(*LHW)); 1932 } 1933 delete SwitchLikelihood; 1934 } 1935 SwitchInsn = SavedSwitchInsn; 1936 SwitchWeights = SavedSwitchWeights; 1937 SwitchLikelihood = SavedSwitchLikelihood; 1938 CaseRangeBlock = SavedCRBlock; 1939 } 1940 1941 static std::string 1942 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1943 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1944 std::string Result; 1945 1946 while (*Constraint) { 1947 switch (*Constraint) { 1948 default: 1949 Result += Target.convertConstraint(Constraint); 1950 break; 1951 // Ignore these 1952 case '*': 1953 case '?': 1954 case '!': 1955 case '=': // Will see this and the following in mult-alt constraints. 1956 case '+': 1957 break; 1958 case '#': // Ignore the rest of the constraint alternative. 1959 while (Constraint[1] && Constraint[1] != ',') 1960 Constraint++; 1961 break; 1962 case '&': 1963 case '%': 1964 Result += *Constraint; 1965 while (Constraint[1] && Constraint[1] == *Constraint) 1966 Constraint++; 1967 break; 1968 case ',': 1969 Result += "|"; 1970 break; 1971 case 'g': 1972 Result += "imr"; 1973 break; 1974 case '[': { 1975 assert(OutCons && 1976 "Must pass output names to constraints with a symbolic name"); 1977 unsigned Index; 1978 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1979 assert(result && "Could not resolve symbolic name"); (void)result; 1980 Result += llvm::utostr(Index); 1981 break; 1982 } 1983 } 1984 1985 Constraint++; 1986 } 1987 1988 return Result; 1989 } 1990 1991 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1992 /// as using a particular register add that as a constraint that will be used 1993 /// in this asm stmt. 1994 static std::string 1995 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1996 const TargetInfo &Target, CodeGenModule &CGM, 1997 const AsmStmt &Stmt, const bool EarlyClobber, 1998 std::string *GCCReg = nullptr) { 1999 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2000 if (!AsmDeclRef) 2001 return Constraint; 2002 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2003 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2004 if (!Variable) 2005 return Constraint; 2006 if (Variable->getStorageClass() != SC_Register) 2007 return Constraint; 2008 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2009 if (!Attr) 2010 return Constraint; 2011 StringRef Register = Attr->getLabel(); 2012 assert(Target.isValidGCCRegisterName(Register)); 2013 // We're using validateOutputConstraint here because we only care if 2014 // this is a register constraint. 2015 TargetInfo::ConstraintInfo Info(Constraint, ""); 2016 if (Target.validateOutputConstraint(Info) && 2017 !Info.allowsRegister()) { 2018 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2019 return Constraint; 2020 } 2021 // Canonicalize the register here before returning it. 2022 Register = Target.getNormalizedGCCRegisterName(Register); 2023 if (GCCReg != nullptr) 2024 *GCCReg = Register.str(); 2025 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2026 } 2027 2028 llvm::Value* 2029 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2030 LValue InputValue, QualType InputType, 2031 std::string &ConstraintStr, 2032 SourceLocation Loc) { 2033 llvm::Value *Arg; 2034 if (Info.allowsRegister() || !Info.allowsMemory()) { 2035 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2036 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2037 } else { 2038 llvm::Type *Ty = ConvertType(InputType); 2039 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2040 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 2041 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2042 Ty = llvm::PointerType::getUnqual(Ty); 2043 2044 Arg = Builder.CreateLoad( 2045 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2046 } else { 2047 Arg = InputValue.getPointer(*this); 2048 ConstraintStr += '*'; 2049 } 2050 } 2051 } else { 2052 Arg = InputValue.getPointer(*this); 2053 ConstraintStr += '*'; 2054 } 2055 2056 return Arg; 2057 } 2058 2059 llvm::Value* CodeGenFunction::EmitAsmInput( 2060 const TargetInfo::ConstraintInfo &Info, 2061 const Expr *InputExpr, 2062 std::string &ConstraintStr) { 2063 // If this can't be a register or memory, i.e., has to be a constant 2064 // (immediate or symbolic), try to emit it as such. 2065 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2066 if (Info.requiresImmediateConstant()) { 2067 Expr::EvalResult EVResult; 2068 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2069 2070 llvm::APSInt IntResult; 2071 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2072 getContext())) 2073 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2074 } 2075 2076 Expr::EvalResult Result; 2077 if (InputExpr->EvaluateAsInt(Result, getContext())) 2078 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2079 } 2080 2081 if (Info.allowsRegister() || !Info.allowsMemory()) 2082 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2083 return EmitScalarExpr(InputExpr); 2084 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2085 return EmitScalarExpr(InputExpr); 2086 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2087 LValue Dest = EmitLValue(InputExpr); 2088 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2089 InputExpr->getExprLoc()); 2090 } 2091 2092 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2093 /// asm call instruction. The !srcloc MDNode contains a list of constant 2094 /// integers which are the source locations of the start of each line in the 2095 /// asm. 2096 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2097 CodeGenFunction &CGF) { 2098 SmallVector<llvm::Metadata *, 8> Locs; 2099 // Add the location of the first line to the MDNode. 2100 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2101 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 2102 StringRef StrVal = Str->getString(); 2103 if (!StrVal.empty()) { 2104 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2105 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2106 unsigned StartToken = 0; 2107 unsigned ByteOffset = 0; 2108 2109 // Add the location of the start of each subsequent line of the asm to the 2110 // MDNode. 2111 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2112 if (StrVal[i] != '\n') continue; 2113 SourceLocation LineLoc = Str->getLocationOfByte( 2114 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2115 Locs.push_back(llvm::ConstantAsMetadata::get( 2116 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 2117 } 2118 } 2119 2120 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2121 } 2122 2123 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2124 bool ReadOnly, bool ReadNone, bool NoMerge, 2125 const AsmStmt &S, 2126 const std::vector<llvm::Type *> &ResultRegTypes, 2127 CodeGenFunction &CGF, 2128 std::vector<llvm::Value *> &RegResults) { 2129 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2130 llvm::Attribute::NoUnwind); 2131 if (NoMerge) 2132 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2133 llvm::Attribute::NoMerge); 2134 // Attach readnone and readonly attributes. 2135 if (!HasSideEffect) { 2136 if (ReadNone) 2137 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2138 llvm::Attribute::ReadNone); 2139 else if (ReadOnly) 2140 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2141 llvm::Attribute::ReadOnly); 2142 } 2143 2144 // Slap the source location of the inline asm into a !srcloc metadata on the 2145 // call. 2146 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2147 Result.setMetadata("srcloc", 2148 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2149 else { 2150 // At least put the line number on MS inline asm blobs. 2151 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 2152 S.getAsmLoc().getRawEncoding()); 2153 Result.setMetadata("srcloc", 2154 llvm::MDNode::get(CGF.getLLVMContext(), 2155 llvm::ConstantAsMetadata::get(Loc))); 2156 } 2157 2158 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2159 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2160 // convergent (meaning, they may call an intrinsically convergent op, such 2161 // as bar.sync, and so can't have certain optimizations applied around 2162 // them). 2163 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2164 llvm::Attribute::Convergent); 2165 // Extract all of the register value results from the asm. 2166 if (ResultRegTypes.size() == 1) { 2167 RegResults.push_back(&Result); 2168 } else { 2169 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2170 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2171 RegResults.push_back(Tmp); 2172 } 2173 } 2174 } 2175 2176 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2177 // Assemble the final asm string. 2178 std::string AsmString = S.generateAsmString(getContext()); 2179 2180 // Get all the output and input constraints together. 2181 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2182 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2183 2184 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2185 StringRef Name; 2186 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2187 Name = GAS->getOutputName(i); 2188 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2189 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2190 assert(IsValid && "Failed to parse output constraint"); 2191 OutputConstraintInfos.push_back(Info); 2192 } 2193 2194 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2195 StringRef Name; 2196 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2197 Name = GAS->getInputName(i); 2198 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2199 bool IsValid = 2200 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2201 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2202 InputConstraintInfos.push_back(Info); 2203 } 2204 2205 std::string Constraints; 2206 2207 std::vector<LValue> ResultRegDests; 2208 std::vector<QualType> ResultRegQualTys; 2209 std::vector<llvm::Type *> ResultRegTypes; 2210 std::vector<llvm::Type *> ResultTruncRegTypes; 2211 std::vector<llvm::Type *> ArgTypes; 2212 std::vector<llvm::Value*> Args; 2213 llvm::BitVector ResultTypeRequiresCast; 2214 2215 // Keep track of inout constraints. 2216 std::string InOutConstraints; 2217 std::vector<llvm::Value*> InOutArgs; 2218 std::vector<llvm::Type*> InOutArgTypes; 2219 2220 // Keep track of out constraints for tied input operand. 2221 std::vector<std::string> OutputConstraints; 2222 2223 // Keep track of defined physregs. 2224 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2225 2226 // An inline asm can be marked readonly if it meets the following conditions: 2227 // - it doesn't have any sideeffects 2228 // - it doesn't clobber memory 2229 // - it doesn't return a value by-reference 2230 // It can be marked readnone if it doesn't have any input memory constraints 2231 // in addition to meeting the conditions listed above. 2232 bool ReadOnly = true, ReadNone = true; 2233 2234 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2235 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2236 2237 // Simplify the output constraint. 2238 std::string OutputConstraint(S.getOutputConstraint(i)); 2239 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2240 getTarget(), &OutputConstraintInfos); 2241 2242 const Expr *OutExpr = S.getOutputExpr(i); 2243 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2244 2245 std::string GCCReg; 2246 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2247 getTarget(), CGM, S, 2248 Info.earlyClobber(), 2249 &GCCReg); 2250 // Give an error on multiple outputs to same physreg. 2251 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2252 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2253 2254 OutputConstraints.push_back(OutputConstraint); 2255 LValue Dest = EmitLValue(OutExpr); 2256 if (!Constraints.empty()) 2257 Constraints += ','; 2258 2259 // If this is a register output, then make the inline asm return it 2260 // by-value. If this is a memory result, return the value by-reference. 2261 bool isScalarizableAggregate = 2262 hasAggregateEvaluationKind(OutExpr->getType()); 2263 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2264 isScalarizableAggregate)) { 2265 Constraints += "=" + OutputConstraint; 2266 ResultRegQualTys.push_back(OutExpr->getType()); 2267 ResultRegDests.push_back(Dest); 2268 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2269 if (Info.allowsRegister() && isScalarizableAggregate) { 2270 ResultTypeRequiresCast.push_back(true); 2271 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2272 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2273 ResultRegTypes.push_back(ConvTy); 2274 } else { 2275 ResultTypeRequiresCast.push_back(false); 2276 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2277 } 2278 // If this output is tied to an input, and if the input is larger, then 2279 // we need to set the actual result type of the inline asm node to be the 2280 // same as the input type. 2281 if (Info.hasMatchingInput()) { 2282 unsigned InputNo; 2283 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2284 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2285 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2286 break; 2287 } 2288 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2289 2290 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2291 QualType OutputType = OutExpr->getType(); 2292 2293 uint64_t InputSize = getContext().getTypeSize(InputTy); 2294 if (getContext().getTypeSize(OutputType) < InputSize) { 2295 // Form the asm to return the value as a larger integer or fp type. 2296 ResultRegTypes.back() = ConvertType(InputTy); 2297 } 2298 } 2299 if (llvm::Type* AdjTy = 2300 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2301 ResultRegTypes.back())) 2302 ResultRegTypes.back() = AdjTy; 2303 else { 2304 CGM.getDiags().Report(S.getAsmLoc(), 2305 diag::err_asm_invalid_type_in_input) 2306 << OutExpr->getType() << OutputConstraint; 2307 } 2308 2309 // Update largest vector width for any vector types. 2310 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2311 LargestVectorWidth = 2312 std::max((uint64_t)LargestVectorWidth, 2313 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2314 } else { 2315 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2316 llvm::Value *DestPtr = Dest.getPointer(*this); 2317 // Matrix types in memory are represented by arrays, but accessed through 2318 // vector pointers, with the alignment specified on the access operation. 2319 // For inline assembly, update pointer arguments to use vector pointers. 2320 // Otherwise there will be a mis-match if the matrix is also an 2321 // input-argument which is represented as vector. 2322 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2323 DestAddrTy = llvm::PointerType::get( 2324 ConvertType(OutExpr->getType()), 2325 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2326 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2327 } 2328 ArgTypes.push_back(DestAddrTy); 2329 Args.push_back(DestPtr); 2330 Constraints += "=*"; 2331 Constraints += OutputConstraint; 2332 ReadOnly = ReadNone = false; 2333 } 2334 2335 if (Info.isReadWrite()) { 2336 InOutConstraints += ','; 2337 2338 const Expr *InputExpr = S.getOutputExpr(i); 2339 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2340 InOutConstraints, 2341 InputExpr->getExprLoc()); 2342 2343 if (llvm::Type* AdjTy = 2344 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2345 Arg->getType())) 2346 Arg = Builder.CreateBitCast(Arg, AdjTy); 2347 2348 // Update largest vector width for any vector types. 2349 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2350 LargestVectorWidth = 2351 std::max((uint64_t)LargestVectorWidth, 2352 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2353 // Only tie earlyclobber physregs. 2354 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2355 InOutConstraints += llvm::utostr(i); 2356 else 2357 InOutConstraints += OutputConstraint; 2358 2359 InOutArgTypes.push_back(Arg->getType()); 2360 InOutArgs.push_back(Arg); 2361 } 2362 } 2363 2364 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2365 // to the return value slot. Only do this when returning in registers. 2366 if (isa<MSAsmStmt>(&S)) { 2367 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2368 if (RetAI.isDirect() || RetAI.isExtend()) { 2369 // Make a fake lvalue for the return value slot. 2370 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2371 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2372 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2373 ResultRegDests, AsmString, S.getNumOutputs()); 2374 SawAsmBlock = true; 2375 } 2376 } 2377 2378 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2379 const Expr *InputExpr = S.getInputExpr(i); 2380 2381 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2382 2383 if (Info.allowsMemory()) 2384 ReadNone = false; 2385 2386 if (!Constraints.empty()) 2387 Constraints += ','; 2388 2389 // Simplify the input constraint. 2390 std::string InputConstraint(S.getInputConstraint(i)); 2391 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2392 &OutputConstraintInfos); 2393 2394 InputConstraint = AddVariableConstraints( 2395 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2396 getTarget(), CGM, S, false /* No EarlyClobber */); 2397 2398 std::string ReplaceConstraint (InputConstraint); 2399 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2400 2401 // If this input argument is tied to a larger output result, extend the 2402 // input to be the same size as the output. The LLVM backend wants to see 2403 // the input and output of a matching constraint be the same size. Note 2404 // that GCC does not define what the top bits are here. We use zext because 2405 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2406 if (Info.hasTiedOperand()) { 2407 unsigned Output = Info.getTiedOperand(); 2408 QualType OutputType = S.getOutputExpr(Output)->getType(); 2409 QualType InputTy = InputExpr->getType(); 2410 2411 if (getContext().getTypeSize(OutputType) > 2412 getContext().getTypeSize(InputTy)) { 2413 // Use ptrtoint as appropriate so that we can do our extension. 2414 if (isa<llvm::PointerType>(Arg->getType())) 2415 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2416 llvm::Type *OutputTy = ConvertType(OutputType); 2417 if (isa<llvm::IntegerType>(OutputTy)) 2418 Arg = Builder.CreateZExt(Arg, OutputTy); 2419 else if (isa<llvm::PointerType>(OutputTy)) 2420 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2421 else { 2422 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2423 Arg = Builder.CreateFPExt(Arg, OutputTy); 2424 } 2425 } 2426 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2427 ReplaceConstraint = OutputConstraints[Output]; 2428 } 2429 if (llvm::Type* AdjTy = 2430 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2431 Arg->getType())) 2432 Arg = Builder.CreateBitCast(Arg, AdjTy); 2433 else 2434 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2435 << InputExpr->getType() << InputConstraint; 2436 2437 // Update largest vector width for any vector types. 2438 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2439 LargestVectorWidth = 2440 std::max((uint64_t)LargestVectorWidth, 2441 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2442 2443 ArgTypes.push_back(Arg->getType()); 2444 Args.push_back(Arg); 2445 Constraints += InputConstraint; 2446 } 2447 2448 // Labels 2449 SmallVector<llvm::BasicBlock *, 16> Transfer; 2450 llvm::BasicBlock *Fallthrough = nullptr; 2451 bool IsGCCAsmGoto = false; 2452 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2453 IsGCCAsmGoto = GS->isAsmGoto(); 2454 if (IsGCCAsmGoto) { 2455 for (const auto *E : GS->labels()) { 2456 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2457 Transfer.push_back(Dest.getBlock()); 2458 llvm::BlockAddress *BA = 2459 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2460 Args.push_back(BA); 2461 ArgTypes.push_back(BA->getType()); 2462 if (!Constraints.empty()) 2463 Constraints += ','; 2464 Constraints += 'X'; 2465 } 2466 Fallthrough = createBasicBlock("asm.fallthrough"); 2467 } 2468 } 2469 2470 // Append the "input" part of inout constraints last. 2471 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2472 ArgTypes.push_back(InOutArgTypes[i]); 2473 Args.push_back(InOutArgs[i]); 2474 } 2475 Constraints += InOutConstraints; 2476 2477 // Clobbers 2478 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2479 StringRef Clobber = S.getClobber(i); 2480 2481 if (Clobber == "memory") 2482 ReadOnly = ReadNone = false; 2483 else if (Clobber != "cc") { 2484 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2485 if (CGM.getCodeGenOpts().StackClashProtector && 2486 getTarget().isSPRegName(Clobber)) { 2487 CGM.getDiags().Report(S.getAsmLoc(), 2488 diag::warn_stack_clash_protection_inline_asm); 2489 } 2490 } 2491 2492 if (isa<MSAsmStmt>(&S)) { 2493 if (Clobber == "eax" || Clobber == "edx") { 2494 if (Constraints.find("=&A") != std::string::npos) 2495 continue; 2496 std::string::size_type position1 = 2497 Constraints.find("={" + Clobber.str() + "}"); 2498 if (position1 != std::string::npos) { 2499 Constraints.insert(position1 + 1, "&"); 2500 continue; 2501 } 2502 std::string::size_type position2 = Constraints.find("=A"); 2503 if (position2 != std::string::npos) { 2504 Constraints.insert(position2 + 1, "&"); 2505 continue; 2506 } 2507 } 2508 } 2509 if (!Constraints.empty()) 2510 Constraints += ','; 2511 2512 Constraints += "~{"; 2513 Constraints += Clobber; 2514 Constraints += '}'; 2515 } 2516 2517 // Add machine specific clobbers 2518 std::string MachineClobbers = getTarget().getClobbers(); 2519 if (!MachineClobbers.empty()) { 2520 if (!Constraints.empty()) 2521 Constraints += ','; 2522 Constraints += MachineClobbers; 2523 } 2524 2525 llvm::Type *ResultType; 2526 if (ResultRegTypes.empty()) 2527 ResultType = VoidTy; 2528 else if (ResultRegTypes.size() == 1) 2529 ResultType = ResultRegTypes[0]; 2530 else 2531 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2532 2533 llvm::FunctionType *FTy = 2534 llvm::FunctionType::get(ResultType, ArgTypes, false); 2535 2536 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2537 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2538 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2539 llvm::InlineAsm *IA = 2540 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2541 /* IsAlignStack */ false, AsmDialect); 2542 std::vector<llvm::Value*> RegResults; 2543 if (IsGCCAsmGoto) { 2544 llvm::CallBrInst *Result = 2545 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2546 EmitBlock(Fallthrough); 2547 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2548 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2549 *this, RegResults); 2550 } else { 2551 llvm::CallInst *Result = 2552 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2553 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, ReadOnly, 2554 ReadNone, InNoMergeAttributedStmt, S, ResultRegTypes, 2555 *this, RegResults); 2556 } 2557 2558 assert(RegResults.size() == ResultRegTypes.size()); 2559 assert(RegResults.size() == ResultTruncRegTypes.size()); 2560 assert(RegResults.size() == ResultRegDests.size()); 2561 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2562 // in which case its size may grow. 2563 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2564 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2565 llvm::Value *Tmp = RegResults[i]; 2566 2567 // If the result type of the LLVM IR asm doesn't match the result type of 2568 // the expression, do the conversion. 2569 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2570 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2571 2572 // Truncate the integer result to the right size, note that TruncTy can be 2573 // a pointer. 2574 if (TruncTy->isFloatingPointTy()) 2575 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2576 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2577 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2578 Tmp = Builder.CreateTrunc(Tmp, 2579 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2580 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2581 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2582 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2583 Tmp = Builder.CreatePtrToInt(Tmp, 2584 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2585 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2586 } else if (TruncTy->isIntegerTy()) { 2587 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2588 } else if (TruncTy->isVectorTy()) { 2589 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2590 } 2591 } 2592 2593 LValue Dest = ResultRegDests[i]; 2594 // ResultTypeRequiresCast elements correspond to the first 2595 // ResultTypeRequiresCast.size() elements of RegResults. 2596 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2597 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2598 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2599 ResultRegTypes[i]->getPointerTo()); 2600 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2601 if (Ty.isNull()) { 2602 const Expr *OutExpr = S.getOutputExpr(i); 2603 CGM.Error( 2604 OutExpr->getExprLoc(), 2605 "impossible constraint in asm: can't store value into a register"); 2606 return; 2607 } 2608 Dest = MakeAddrLValue(A, Ty); 2609 } 2610 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2611 } 2612 } 2613 2614 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2615 const RecordDecl *RD = S.getCapturedRecordDecl(); 2616 QualType RecordTy = getContext().getRecordType(RD); 2617 2618 // Initialize the captured struct. 2619 LValue SlotLV = 2620 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2621 2622 RecordDecl::field_iterator CurField = RD->field_begin(); 2623 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2624 E = S.capture_init_end(); 2625 I != E; ++I, ++CurField) { 2626 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2627 if (CurField->hasCapturedVLAType()) { 2628 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2629 } else { 2630 EmitInitializerForField(*CurField, LV, *I); 2631 } 2632 } 2633 2634 return SlotLV; 2635 } 2636 2637 /// Generate an outlined function for the body of a CapturedStmt, store any 2638 /// captured variables into the captured struct, and call the outlined function. 2639 llvm::Function * 2640 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2641 LValue CapStruct = InitCapturedStruct(S); 2642 2643 // Emit the CapturedDecl 2644 CodeGenFunction CGF(CGM, true); 2645 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2646 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2647 delete CGF.CapturedStmtInfo; 2648 2649 // Emit call to the helper function. 2650 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2651 2652 return F; 2653 } 2654 2655 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2656 LValue CapStruct = InitCapturedStruct(S); 2657 return CapStruct.getAddress(*this); 2658 } 2659 2660 /// Creates the outlined function for a CapturedStmt. 2661 llvm::Function * 2662 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2663 assert(CapturedStmtInfo && 2664 "CapturedStmtInfo should be set when generating the captured function"); 2665 const CapturedDecl *CD = S.getCapturedDecl(); 2666 const RecordDecl *RD = S.getCapturedRecordDecl(); 2667 SourceLocation Loc = S.getBeginLoc(); 2668 assert(CD->hasBody() && "missing CapturedDecl body"); 2669 2670 // Build the argument list. 2671 ASTContext &Ctx = CGM.getContext(); 2672 FunctionArgList Args; 2673 Args.append(CD->param_begin(), CD->param_end()); 2674 2675 // Create the function declaration. 2676 const CGFunctionInfo &FuncInfo = 2677 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2678 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2679 2680 llvm::Function *F = 2681 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2682 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2683 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2684 if (CD->isNothrow()) 2685 F->addFnAttr(llvm::Attribute::NoUnwind); 2686 2687 // Generate the function. 2688 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2689 CD->getBody()->getBeginLoc()); 2690 // Set the context parameter in CapturedStmtInfo. 2691 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2692 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2693 2694 // Initialize variable-length arrays. 2695 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2696 Ctx.getTagDeclType(RD)); 2697 for (auto *FD : RD->fields()) { 2698 if (FD->hasCapturedVLAType()) { 2699 auto *ExprArg = 2700 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2701 .getScalarVal(); 2702 auto VAT = FD->getCapturedVLAType(); 2703 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2704 } 2705 } 2706 2707 // If 'this' is captured, load it into CXXThisValue. 2708 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2709 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2710 LValue ThisLValue = EmitLValueForField(Base, FD); 2711 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2712 } 2713 2714 PGO.assignRegionCounters(GlobalDecl(CD), F); 2715 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2716 FinishFunction(CD->getBodyRBrace()); 2717 2718 return F; 2719 } 2720