1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/InlineAsm.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 //===----------------------------------------------------------------------===//
29 //                              Statement Emission
30 //===----------------------------------------------------------------------===//
31 
32 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
33   if (CGDebugInfo *DI = getDebugInfo()) {
34     if (isa<DeclStmt>(S))
35       DI->setLocation(S->getLocEnd());
36     else
37       DI->setLocation(S->getLocStart());
38     DI->UpdateLineDirectiveRegion(Builder);
39     DI->EmitStopPoint(Builder);
40   }
41 }
42 
43 void CodeGenFunction::EmitStmt(const Stmt *S) {
44   assert(S && "Null statement?");
45 
46   // Check if we can handle this without bothering to generate an
47   // insert point or debug info.
48   if (EmitSimpleStmt(S))
49     return;
50 
51   // Check if we are generating unreachable code.
52   if (!HaveInsertPoint()) {
53     // If so, and the statement doesn't contain a label, then we do not need to
54     // generate actual code. This is safe because (1) the current point is
55     // unreachable, so we don't need to execute the code, and (2) we've already
56     // handled the statements which update internal data structures (like the
57     // local variable map) which could be used by subsequent statements.
58     if (!ContainsLabel(S)) {
59       // Verify that any decl statements were handled as simple, they may be in
60       // scope of subsequent reachable statements.
61       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62       return;
63     }
64 
65     // Otherwise, make a new block to hold the code.
66     EnsureInsertPoint();
67   }
68 
69   // Generate a stoppoint if we are emitting debug info.
70   EmitStopPoint(S);
71 
72   switch (S->getStmtClass()) {
73   case Stmt::NoStmtClass:
74   case Stmt::CXXCatchStmtClass:
75   case Stmt::SEHExceptStmtClass:
76   case Stmt::SEHFinallyStmtClass:
77     llvm_unreachable("invalid statement class to emit generically");
78   case Stmt::NullStmtClass:
79   case Stmt::CompoundStmtClass:
80   case Stmt::DeclStmtClass:
81   case Stmt::LabelStmtClass:
82   case Stmt::GotoStmtClass:
83   case Stmt::BreakStmtClass:
84   case Stmt::ContinueStmtClass:
85   case Stmt::DefaultStmtClass:
86   case Stmt::CaseStmtClass:
87     llvm_unreachable("should have emitted these statements as simple");
88 
89 #define STMT(Type, Base)
90 #define ABSTRACT_STMT(Op)
91 #define EXPR(Type, Base) \
92   case Stmt::Type##Class:
93 #include "clang/AST/StmtNodes.inc"
94   {
95     // Remember the block we came in on.
96     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
97     assert(incoming && "expression emission must have an insertion point");
98 
99     EmitIgnoredExpr(cast<Expr>(S));
100 
101     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
102     assert(outgoing && "expression emission cleared block!");
103 
104     // The expression emitters assume (reasonably!) that the insertion
105     // point is always set.  To maintain that, the call-emission code
106     // for noreturn functions has to enter a new block with no
107     // predecessors.  We want to kill that block and mark the current
108     // insertion point unreachable in the common case of a call like
109     // "exit();".  Since expression emission doesn't otherwise create
110     // blocks with no predecessors, we can just test for that.
111     // However, we must be careful not to do this to our incoming
112     // block, because *statement* emission does sometimes create
113     // reachable blocks which will have no predecessors until later in
114     // the function.  This occurs with, e.g., labels that are not
115     // reachable by fallthrough.
116     if (incoming != outgoing && outgoing->use_empty()) {
117       outgoing->eraseFromParent();
118       Builder.ClearInsertionPoint();
119     }
120     break;
121   }
122 
123   case Stmt::IndirectGotoStmtClass:
124     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
125 
126   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
127   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
128   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
129   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
130 
131   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
132 
133   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
134   case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
135 
136   case Stmt::ObjCAtTryStmtClass:
137     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
138     break;
139   case Stmt::ObjCAtCatchStmtClass:
140     assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
141     break;
142   case Stmt::ObjCAtFinallyStmtClass:
143     assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
144     break;
145   case Stmt::ObjCAtThrowStmtClass:
146     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
147     break;
148   case Stmt::ObjCAtSynchronizedStmtClass:
149     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
150     break;
151   case Stmt::ObjCForCollectionStmtClass:
152     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
153     break;
154 
155   case Stmt::CXXTryStmtClass:
156     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
157     break;
158   case Stmt::CXXForRangeStmtClass:
159     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
160   case Stmt::SEHTryStmtClass:
161     // FIXME Not yet implemented
162     break;
163   }
164 }
165 
166 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
167   switch (S->getStmtClass()) {
168   default: return false;
169   case Stmt::NullStmtClass: break;
170   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
171   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
172   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
173   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
174   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
175   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
176   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
177   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
178   }
179 
180   return true;
181 }
182 
183 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
184 /// this captures the expression result of the last sub-statement and returns it
185 /// (for use by the statement expression extension).
186 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
187                                          AggValueSlot AggSlot) {
188   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
189                              "LLVM IR generation of compound statement ('{}')");
190 
191   CGDebugInfo *DI = getDebugInfo();
192   if (DI) {
193     DI->setLocation(S.getLBracLoc());
194     DI->EmitRegionStart(Builder);
195   }
196 
197   // Keep track of the current cleanup stack depth.
198   RunCleanupsScope Scope(*this);
199 
200   for (CompoundStmt::const_body_iterator I = S.body_begin(),
201        E = S.body_end()-GetLast; I != E; ++I)
202     EmitStmt(*I);
203 
204   if (DI) {
205     DI->setLocation(S.getRBracLoc());
206     DI->EmitRegionEnd(Builder);
207   }
208 
209   RValue RV;
210   if (!GetLast)
211     RV = RValue::get(0);
212   else {
213     // We have to special case labels here.  They are statements, but when put
214     // at the end of a statement expression, they yield the value of their
215     // subexpression.  Handle this by walking through all labels we encounter,
216     // emitting them before we evaluate the subexpr.
217     const Stmt *LastStmt = S.body_back();
218     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
219       EmitLabel(LS->getDecl());
220       LastStmt = LS->getSubStmt();
221     }
222 
223     EnsureInsertPoint();
224 
225     RV = EmitAnyExpr(cast<Expr>(LastStmt), AggSlot);
226   }
227 
228   return RV;
229 }
230 
231 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
232   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
233 
234   // If there is a cleanup stack, then we it isn't worth trying to
235   // simplify this block (we would need to remove it from the scope map
236   // and cleanup entry).
237   if (!EHStack.empty())
238     return;
239 
240   // Can only simplify direct branches.
241   if (!BI || !BI->isUnconditional())
242     return;
243 
244   BB->replaceAllUsesWith(BI->getSuccessor(0));
245   BI->eraseFromParent();
246   BB->eraseFromParent();
247 }
248 
249 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
250   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
251 
252   // Fall out of the current block (if necessary).
253   EmitBranch(BB);
254 
255   if (IsFinished && BB->use_empty()) {
256     delete BB;
257     return;
258   }
259 
260   // Place the block after the current block, if possible, or else at
261   // the end of the function.
262   if (CurBB && CurBB->getParent())
263     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
264   else
265     CurFn->getBasicBlockList().push_back(BB);
266   Builder.SetInsertPoint(BB);
267 }
268 
269 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
270   // Emit a branch from the current block to the target one if this
271   // was a real block.  If this was just a fall-through block after a
272   // terminator, don't emit it.
273   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
274 
275   if (!CurBB || CurBB->getTerminator()) {
276     // If there is no insert point or the previous block is already
277     // terminated, don't touch it.
278   } else {
279     // Otherwise, create a fall-through branch.
280     Builder.CreateBr(Target);
281   }
282 
283   Builder.ClearInsertionPoint();
284 }
285 
286 CodeGenFunction::JumpDest
287 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
288   JumpDest &Dest = LabelMap[D];
289   if (Dest.isValid()) return Dest;
290 
291   // Create, but don't insert, the new block.
292   Dest = JumpDest(createBasicBlock(D->getName()),
293                   EHScopeStack::stable_iterator::invalid(),
294                   NextCleanupDestIndex++);
295   return Dest;
296 }
297 
298 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
299   JumpDest &Dest = LabelMap[D];
300 
301   // If we didn't need a forward reference to this label, just go
302   // ahead and create a destination at the current scope.
303   if (!Dest.isValid()) {
304     Dest = getJumpDestInCurrentScope(D->getName());
305 
306   // Otherwise, we need to give this label a target depth and remove
307   // it from the branch-fixups list.
308   } else {
309     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
310     Dest = JumpDest(Dest.getBlock(),
311                     EHStack.stable_begin(),
312                     Dest.getDestIndex());
313 
314     ResolveBranchFixups(Dest.getBlock());
315   }
316 
317   EmitBlock(Dest.getBlock());
318 }
319 
320 
321 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
322   EmitLabel(S.getDecl());
323   EmitStmt(S.getSubStmt());
324 }
325 
326 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
327   // If this code is reachable then emit a stop point (if generating
328   // debug info). We have to do this ourselves because we are on the
329   // "simple" statement path.
330   if (HaveInsertPoint())
331     EmitStopPoint(&S);
332 
333   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
334 }
335 
336 
337 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
338   if (const LabelDecl *Target = S.getConstantTarget()) {
339     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
340     return;
341   }
342 
343   // Ensure that we have an i8* for our PHI node.
344   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
345                                          Int8PtrTy, "addr");
346   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
347 
348 
349   // Get the basic block for the indirect goto.
350   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
351 
352   // The first instruction in the block has to be the PHI for the switch dest,
353   // add an entry for this branch.
354   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
355 
356   EmitBranch(IndGotoBB);
357 }
358 
359 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
360   // C99 6.8.4.1: The first substatement is executed if the expression compares
361   // unequal to 0.  The condition must be a scalar type.
362   RunCleanupsScope ConditionScope(*this);
363 
364   if (S.getConditionVariable())
365     EmitAutoVarDecl(*S.getConditionVariable());
366 
367   // If the condition constant folds and can be elided, try to avoid emitting
368   // the condition and the dead arm of the if/else.
369   bool CondConstant;
370   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
371     // Figure out which block (then or else) is executed.
372     const Stmt *Executed = S.getThen();
373     const Stmt *Skipped  = S.getElse();
374     if (!CondConstant)  // Condition false?
375       std::swap(Executed, Skipped);
376 
377     // If the skipped block has no labels in it, just emit the executed block.
378     // This avoids emitting dead code and simplifies the CFG substantially.
379     if (!ContainsLabel(Skipped)) {
380       if (Executed) {
381         RunCleanupsScope ExecutedScope(*this);
382         EmitStmt(Executed);
383       }
384       return;
385     }
386   }
387 
388   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
389   // the conditional branch.
390   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
391   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
392   llvm::BasicBlock *ElseBlock = ContBlock;
393   if (S.getElse())
394     ElseBlock = createBasicBlock("if.else");
395   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
396 
397   // Emit the 'then' code.
398   EmitBlock(ThenBlock);
399   {
400     RunCleanupsScope ThenScope(*this);
401     EmitStmt(S.getThen());
402   }
403   EmitBranch(ContBlock);
404 
405   // Emit the 'else' code if present.
406   if (const Stmt *Else = S.getElse()) {
407     // There is no need to emit line number for unconditional branch.
408     if (getDebugInfo())
409       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
410     EmitBlock(ElseBlock);
411     {
412       RunCleanupsScope ElseScope(*this);
413       EmitStmt(Else);
414     }
415     // There is no need to emit line number for unconditional branch.
416     if (getDebugInfo())
417       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
418     EmitBranch(ContBlock);
419   }
420 
421   // Emit the continuation block for code after the if.
422   EmitBlock(ContBlock, true);
423 }
424 
425 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
426   // Emit the header for the loop, which will also become
427   // the continue target.
428   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
429   EmitBlock(LoopHeader.getBlock());
430 
431   // Create an exit block for when the condition fails, which will
432   // also become the break target.
433   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
434 
435   // Store the blocks to use for break and continue.
436   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
437 
438   // C++ [stmt.while]p2:
439   //   When the condition of a while statement is a declaration, the
440   //   scope of the variable that is declared extends from its point
441   //   of declaration (3.3.2) to the end of the while statement.
442   //   [...]
443   //   The object created in a condition is destroyed and created
444   //   with each iteration of the loop.
445   RunCleanupsScope ConditionScope(*this);
446 
447   if (S.getConditionVariable())
448     EmitAutoVarDecl(*S.getConditionVariable());
449 
450   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
451   // evaluation of the controlling expression takes place before each
452   // execution of the loop body.
453   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
454 
455   // while(1) is common, avoid extra exit blocks.  Be sure
456   // to correctly handle break/continue though.
457   bool EmitBoolCondBranch = true;
458   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
459     if (C->isOne())
460       EmitBoolCondBranch = false;
461 
462   // As long as the condition is true, go to the loop body.
463   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
464   if (EmitBoolCondBranch) {
465     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
466     if (ConditionScope.requiresCleanups())
467       ExitBlock = createBasicBlock("while.exit");
468 
469     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
470 
471     if (ExitBlock != LoopExit.getBlock()) {
472       EmitBlock(ExitBlock);
473       EmitBranchThroughCleanup(LoopExit);
474     }
475   }
476 
477   // Emit the loop body.  We have to emit this in a cleanup scope
478   // because it might be a singleton DeclStmt.
479   {
480     RunCleanupsScope BodyScope(*this);
481     EmitBlock(LoopBody);
482     EmitStmt(S.getBody());
483   }
484 
485   BreakContinueStack.pop_back();
486 
487   // Immediately force cleanup.
488   ConditionScope.ForceCleanup();
489 
490   // Branch to the loop header again.
491   EmitBranch(LoopHeader.getBlock());
492 
493   // Emit the exit block.
494   EmitBlock(LoopExit.getBlock(), true);
495 
496   // The LoopHeader typically is just a branch if we skipped emitting
497   // a branch, try to erase it.
498   if (!EmitBoolCondBranch)
499     SimplifyForwardingBlocks(LoopHeader.getBlock());
500 }
501 
502 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
503   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
504   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
505 
506   // Store the blocks to use for break and continue.
507   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
508 
509   // Emit the body of the loop.
510   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
511   EmitBlock(LoopBody);
512   {
513     RunCleanupsScope BodyScope(*this);
514     EmitStmt(S.getBody());
515   }
516 
517   BreakContinueStack.pop_back();
518 
519   EmitBlock(LoopCond.getBlock());
520 
521   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
522   // after each execution of the loop body."
523 
524   // Evaluate the conditional in the while header.
525   // C99 6.8.5p2/p4: The first substatement is executed if the expression
526   // compares unequal to 0.  The condition must be a scalar type.
527   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
528 
529   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
530   // to correctly handle break/continue though.
531   bool EmitBoolCondBranch = true;
532   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
533     if (C->isZero())
534       EmitBoolCondBranch = false;
535 
536   // As long as the condition is true, iterate the loop.
537   if (EmitBoolCondBranch)
538     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
539 
540   // Emit the exit block.
541   EmitBlock(LoopExit.getBlock());
542 
543   // The DoCond block typically is just a branch if we skipped
544   // emitting a branch, try to erase it.
545   if (!EmitBoolCondBranch)
546     SimplifyForwardingBlocks(LoopCond.getBlock());
547 }
548 
549 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
550   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
551 
552   RunCleanupsScope ForScope(*this);
553 
554   CGDebugInfo *DI = getDebugInfo();
555   if (DI) {
556     DI->setLocation(S.getSourceRange().getBegin());
557     DI->EmitRegionStart(Builder);
558   }
559 
560   // Evaluate the first part before the loop.
561   if (S.getInit())
562     EmitStmt(S.getInit());
563 
564   // Start the loop with a block that tests the condition.
565   // If there's an increment, the continue scope will be overwritten
566   // later.
567   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
568   llvm::BasicBlock *CondBlock = Continue.getBlock();
569   EmitBlock(CondBlock);
570 
571   // Create a cleanup scope for the condition variable cleanups.
572   RunCleanupsScope ConditionScope(*this);
573 
574   llvm::Value *BoolCondVal = 0;
575   if (S.getCond()) {
576     // If the for statement has a condition scope, emit the local variable
577     // declaration.
578     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
579     if (S.getConditionVariable()) {
580       EmitAutoVarDecl(*S.getConditionVariable());
581     }
582 
583     // If there are any cleanups between here and the loop-exit scope,
584     // create a block to stage a loop exit along.
585     if (ForScope.requiresCleanups())
586       ExitBlock = createBasicBlock("for.cond.cleanup");
587 
588     // As long as the condition is true, iterate the loop.
589     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
590 
591     // C99 6.8.5p2/p4: The first substatement is executed if the expression
592     // compares unequal to 0.  The condition must be a scalar type.
593     BoolCondVal = EvaluateExprAsBool(S.getCond());
594     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
595 
596     if (ExitBlock != LoopExit.getBlock()) {
597       EmitBlock(ExitBlock);
598       EmitBranchThroughCleanup(LoopExit);
599     }
600 
601     EmitBlock(ForBody);
602   } else {
603     // Treat it as a non-zero constant.  Don't even create a new block for the
604     // body, just fall into it.
605   }
606 
607   // If the for loop doesn't have an increment we can just use the
608   // condition as the continue block.  Otherwise we'll need to create
609   // a block for it (in the current scope, i.e. in the scope of the
610   // condition), and that we will become our continue block.
611   if (S.getInc())
612     Continue = getJumpDestInCurrentScope("for.inc");
613 
614   // Store the blocks to use for break and continue.
615   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
616 
617   {
618     // Create a separate cleanup scope for the body, in case it is not
619     // a compound statement.
620     RunCleanupsScope BodyScope(*this);
621     EmitStmt(S.getBody());
622   }
623 
624   // If there is an increment, emit it next.
625   if (S.getInc()) {
626     EmitBlock(Continue.getBlock());
627     EmitStmt(S.getInc());
628   }
629 
630   BreakContinueStack.pop_back();
631 
632   ConditionScope.ForceCleanup();
633   EmitBranch(CondBlock);
634 
635   ForScope.ForceCleanup();
636 
637   if (DI) {
638     DI->setLocation(S.getSourceRange().getEnd());
639     DI->EmitRegionEnd(Builder);
640   }
641 
642   // Emit the fall-through block.
643   EmitBlock(LoopExit.getBlock(), true);
644 }
645 
646 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
647   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
648 
649   RunCleanupsScope ForScope(*this);
650 
651   CGDebugInfo *DI = getDebugInfo();
652   if (DI) {
653     DI->setLocation(S.getSourceRange().getBegin());
654     DI->EmitRegionStart(Builder);
655   }
656 
657   // Evaluate the first pieces before the loop.
658   EmitStmt(S.getRangeStmt());
659   EmitStmt(S.getBeginEndStmt());
660 
661   // Start the loop with a block that tests the condition.
662   // If there's an increment, the continue scope will be overwritten
663   // later.
664   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
665   EmitBlock(CondBlock);
666 
667   // If there are any cleanups between here and the loop-exit scope,
668   // create a block to stage a loop exit along.
669   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
670   if (ForScope.requiresCleanups())
671     ExitBlock = createBasicBlock("for.cond.cleanup");
672 
673   // The loop body, consisting of the specified body and the loop variable.
674   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
675 
676   // The body is executed if the expression, contextually converted
677   // to bool, is true.
678   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
679   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
680 
681   if (ExitBlock != LoopExit.getBlock()) {
682     EmitBlock(ExitBlock);
683     EmitBranchThroughCleanup(LoopExit);
684   }
685 
686   EmitBlock(ForBody);
687 
688   // Create a block for the increment. In case of a 'continue', we jump there.
689   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
690 
691   // Store the blocks to use for break and continue.
692   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
693 
694   {
695     // Create a separate cleanup scope for the loop variable and body.
696     RunCleanupsScope BodyScope(*this);
697     EmitStmt(S.getLoopVarStmt());
698     EmitStmt(S.getBody());
699   }
700 
701   // If there is an increment, emit it next.
702   EmitBlock(Continue.getBlock());
703   EmitStmt(S.getInc());
704 
705   BreakContinueStack.pop_back();
706 
707   EmitBranch(CondBlock);
708 
709   ForScope.ForceCleanup();
710 
711   if (DI) {
712     DI->setLocation(S.getSourceRange().getEnd());
713     DI->EmitRegionEnd(Builder);
714   }
715 
716   // Emit the fall-through block.
717   EmitBlock(LoopExit.getBlock(), true);
718 }
719 
720 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
721   if (RV.isScalar()) {
722     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
723   } else if (RV.isAggregate()) {
724     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
725   } else {
726     StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
727   }
728   EmitBranchThroughCleanup(ReturnBlock);
729 }
730 
731 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
732 /// if the function returns void, or may be missing one if the function returns
733 /// non-void.  Fun stuff :).
734 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
735   // Emit the result value, even if unused, to evalute the side effects.
736   const Expr *RV = S.getRetValue();
737 
738   // FIXME: Clean this up by using an LValue for ReturnTemp,
739   // EmitStoreThroughLValue, and EmitAnyExpr.
740   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable() &&
741       !Target.useGlobalsForAutomaticVariables()) {
742     // Apply the named return value optimization for this return statement,
743     // which means doing nothing: the appropriate result has already been
744     // constructed into the NRVO variable.
745 
746     // If there is an NRVO flag for this variable, set it to 1 into indicate
747     // that the cleanup code should not destroy the variable.
748     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
749       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
750   } else if (!ReturnValue) {
751     // Make sure not to return anything, but evaluate the expression
752     // for side effects.
753     if (RV)
754       EmitAnyExpr(RV);
755   } else if (RV == 0) {
756     // Do nothing (return value is left uninitialized)
757   } else if (FnRetTy->isReferenceType()) {
758     // If this function returns a reference, take the address of the expression
759     // rather than the value.
760     RValue Result = EmitReferenceBindingToExpr(RV, /*InitializedDecl=*/0);
761     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
762   } else if (!hasAggregateLLVMType(RV->getType())) {
763     Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
764   } else if (RV->getType()->isAnyComplexType()) {
765     EmitComplexExprIntoAddr(RV, ReturnValue, false);
766   } else {
767     EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, false, true));
768   }
769 
770   EmitBranchThroughCleanup(ReturnBlock);
771 }
772 
773 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
774   // As long as debug info is modeled with instructions, we have to ensure we
775   // have a place to insert here and write the stop point here.
776   if (getDebugInfo()) {
777     EnsureInsertPoint();
778     EmitStopPoint(&S);
779   }
780 
781   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
782        I != E; ++I)
783     EmitDecl(**I);
784 }
785 
786 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
787   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
788 
789   // If this code is reachable then emit a stop point (if generating
790   // debug info). We have to do this ourselves because we are on the
791   // "simple" statement path.
792   if (HaveInsertPoint())
793     EmitStopPoint(&S);
794 
795   JumpDest Block = BreakContinueStack.back().BreakBlock;
796   EmitBranchThroughCleanup(Block);
797 }
798 
799 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
800   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
801 
802   // If this code is reachable then emit a stop point (if generating
803   // debug info). We have to do this ourselves because we are on the
804   // "simple" statement path.
805   if (HaveInsertPoint())
806     EmitStopPoint(&S);
807 
808   JumpDest Block = BreakContinueStack.back().ContinueBlock;
809   EmitBranchThroughCleanup(Block);
810 }
811 
812 /// EmitCaseStmtRange - If case statement range is not too big then
813 /// add multiple cases to switch instruction, one for each value within
814 /// the range. If range is too big then emit "if" condition check.
815 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
816   assert(S.getRHS() && "Expected RHS value in CaseStmt");
817 
818   llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
819   llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
820 
821   // Emit the code for this case. We do this first to make sure it is
822   // properly chained from our predecessor before generating the
823   // switch machinery to enter this block.
824   EmitBlock(createBasicBlock("sw.bb"));
825   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
826   EmitStmt(S.getSubStmt());
827 
828   // If range is empty, do nothing.
829   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
830     return;
831 
832   llvm::APInt Range = RHS - LHS;
833   // FIXME: parameters such as this should not be hardcoded.
834   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
835     // Range is small enough to add multiple switch instruction cases.
836     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
837       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
838       LHS++;
839     }
840     return;
841   }
842 
843   // The range is too big. Emit "if" condition into a new block,
844   // making sure to save and restore the current insertion point.
845   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
846 
847   // Push this test onto the chain of range checks (which terminates
848   // in the default basic block). The switch's default will be changed
849   // to the top of this chain after switch emission is complete.
850   llvm::BasicBlock *FalseDest = CaseRangeBlock;
851   CaseRangeBlock = createBasicBlock("sw.caserange");
852 
853   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
854   Builder.SetInsertPoint(CaseRangeBlock);
855 
856   // Emit range check.
857   llvm::Value *Diff =
858     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS),  "tmp");
859   llvm::Value *Cond =
860     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
861   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
862 
863   // Restore the appropriate insertion point.
864   if (RestoreBB)
865     Builder.SetInsertPoint(RestoreBB);
866   else
867     Builder.ClearInsertionPoint();
868 }
869 
870 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
871   // Handle case ranges.
872   if (S.getRHS()) {
873     EmitCaseStmtRange(S);
874     return;
875   }
876 
877   llvm::ConstantInt *CaseVal =
878     Builder.getInt(S.getLHS()->EvaluateAsInt(getContext()));
879 
880   // If the body of the case is just a 'break', and if there was no fallthrough,
881   // try to not emit an empty block.
882   if (isa<BreakStmt>(S.getSubStmt())) {
883     JumpDest Block = BreakContinueStack.back().BreakBlock;
884 
885     // Only do this optimization if there are no cleanups that need emitting.
886     if (isObviouslyBranchWithoutCleanups(Block)) {
887       SwitchInsn->addCase(CaseVal, Block.getBlock());
888 
889       // If there was a fallthrough into this case, make sure to redirect it to
890       // the end of the switch as well.
891       if (Builder.GetInsertBlock()) {
892         Builder.CreateBr(Block.getBlock());
893         Builder.ClearInsertionPoint();
894       }
895       return;
896     }
897   }
898 
899   EmitBlock(createBasicBlock("sw.bb"));
900   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
901   SwitchInsn->addCase(CaseVal, CaseDest);
902 
903   // Recursively emitting the statement is acceptable, but is not wonderful for
904   // code where we have many case statements nested together, i.e.:
905   //  case 1:
906   //    case 2:
907   //      case 3: etc.
908   // Handling this recursively will create a new block for each case statement
909   // that falls through to the next case which is IR intensive.  It also causes
910   // deep recursion which can run into stack depth limitations.  Handle
911   // sequential non-range case statements specially.
912   const CaseStmt *CurCase = &S;
913   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
914 
915   // Otherwise, iteratively add consecutive cases to this switch stmt.
916   while (NextCase && NextCase->getRHS() == 0) {
917     CurCase = NextCase;
918     llvm::ConstantInt *CaseVal =
919       Builder.getInt(CurCase->getLHS()->EvaluateAsInt(getContext()));
920     SwitchInsn->addCase(CaseVal, CaseDest);
921     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
922   }
923 
924   // Normal default recursion for non-cases.
925   EmitStmt(CurCase->getSubStmt());
926 }
927 
928 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
929   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
930   assert(DefaultBlock->empty() &&
931          "EmitDefaultStmt: Default block already defined?");
932   EmitBlock(DefaultBlock);
933   EmitStmt(S.getSubStmt());
934 }
935 
936 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
937 /// constant value that is being switched on, see if we can dead code eliminate
938 /// the body of the switch to a simple series of statements to emit.  Basically,
939 /// on a switch (5) we want to find these statements:
940 ///    case 5:
941 ///      printf(...);    <--
942 ///      ++i;            <--
943 ///      break;
944 ///
945 /// and add them to the ResultStmts vector.  If it is unsafe to do this
946 /// transformation (for example, one of the elided statements contains a label
947 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
948 /// should include statements after it (e.g. the printf() line is a substmt of
949 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
950 /// statement, then return CSFC_Success.
951 ///
952 /// If Case is non-null, then we are looking for the specified case, checking
953 /// that nothing we jump over contains labels.  If Case is null, then we found
954 /// the case and are looking for the break.
955 ///
956 /// If the recursive walk actually finds our Case, then we set FoundCase to
957 /// true.
958 ///
959 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
960 static CSFC_Result CollectStatementsForCase(const Stmt *S,
961                                             const SwitchCase *Case,
962                                             bool &FoundCase,
963                               llvm::SmallVectorImpl<const Stmt*> &ResultStmts) {
964   // If this is a null statement, just succeed.
965   if (S == 0)
966     return Case ? CSFC_Success : CSFC_FallThrough;
967 
968   // If this is the switchcase (case 4: or default) that we're looking for, then
969   // we're in business.  Just add the substatement.
970   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
971     if (S == Case) {
972       FoundCase = true;
973       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
974                                       ResultStmts);
975     }
976 
977     // Otherwise, this is some other case or default statement, just ignore it.
978     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
979                                     ResultStmts);
980   }
981 
982   // If we are in the live part of the code and we found our break statement,
983   // return a success!
984   if (Case == 0 && isa<BreakStmt>(S))
985     return CSFC_Success;
986 
987   // If this is a switch statement, then it might contain the SwitchCase, the
988   // break, or neither.
989   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
990     // Handle this as two cases: we might be looking for the SwitchCase (if so
991     // the skipped statements must be skippable) or we might already have it.
992     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
993     if (Case) {
994       // Keep track of whether we see a skipped declaration.  The code could be
995       // using the declaration even if it is skipped, so we can't optimize out
996       // the decl if the kept statements might refer to it.
997       bool HadSkippedDecl = false;
998 
999       // If we're looking for the case, just see if we can skip each of the
1000       // substatements.
1001       for (; Case && I != E; ++I) {
1002         HadSkippedDecl |= isa<DeclStmt>(*I);
1003 
1004         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1005         case CSFC_Failure: return CSFC_Failure;
1006         case CSFC_Success:
1007           // A successful result means that either 1) that the statement doesn't
1008           // have the case and is skippable, or 2) does contain the case value
1009           // and also contains the break to exit the switch.  In the later case,
1010           // we just verify the rest of the statements are elidable.
1011           if (FoundCase) {
1012             // If we found the case and skipped declarations, we can't do the
1013             // optimization.
1014             if (HadSkippedDecl)
1015               return CSFC_Failure;
1016 
1017             for (++I; I != E; ++I)
1018               if (CodeGenFunction::ContainsLabel(*I, true))
1019                 return CSFC_Failure;
1020             return CSFC_Success;
1021           }
1022           break;
1023         case CSFC_FallThrough:
1024           // If we have a fallthrough condition, then we must have found the
1025           // case started to include statements.  Consider the rest of the
1026           // statements in the compound statement as candidates for inclusion.
1027           assert(FoundCase && "Didn't find case but returned fallthrough?");
1028           // We recursively found Case, so we're not looking for it anymore.
1029           Case = 0;
1030 
1031           // If we found the case and skipped declarations, we can't do the
1032           // optimization.
1033           if (HadSkippedDecl)
1034             return CSFC_Failure;
1035           break;
1036         }
1037       }
1038     }
1039 
1040     // If we have statements in our range, then we know that the statements are
1041     // live and need to be added to the set of statements we're tracking.
1042     for (; I != E; ++I) {
1043       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1044       case CSFC_Failure: return CSFC_Failure;
1045       case CSFC_FallThrough:
1046         // A fallthrough result means that the statement was simple and just
1047         // included in ResultStmt, keep adding them afterwards.
1048         break;
1049       case CSFC_Success:
1050         // A successful result means that we found the break statement and
1051         // stopped statement inclusion.  We just ensure that any leftover stmts
1052         // are skippable and return success ourselves.
1053         for (++I; I != E; ++I)
1054           if (CodeGenFunction::ContainsLabel(*I, true))
1055             return CSFC_Failure;
1056         return CSFC_Success;
1057       }
1058     }
1059 
1060     return Case ? CSFC_Success : CSFC_FallThrough;
1061   }
1062 
1063   // Okay, this is some other statement that we don't handle explicitly, like a
1064   // for statement or increment etc.  If we are skipping over this statement,
1065   // just verify it doesn't have labels, which would make it invalid to elide.
1066   if (Case) {
1067     if (CodeGenFunction::ContainsLabel(S, true))
1068       return CSFC_Failure;
1069     return CSFC_Success;
1070   }
1071 
1072   // Otherwise, we want to include this statement.  Everything is cool with that
1073   // so long as it doesn't contain a break out of the switch we're in.
1074   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1075 
1076   // Otherwise, everything is great.  Include the statement and tell the caller
1077   // that we fall through and include the next statement as well.
1078   ResultStmts.push_back(S);
1079   return CSFC_FallThrough;
1080 }
1081 
1082 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1083 /// then invoke CollectStatementsForCase to find the list of statements to emit
1084 /// for a switch on constant.  See the comment above CollectStatementsForCase
1085 /// for more details.
1086 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1087                                        const llvm::APInt &ConstantCondValue,
1088                                 llvm::SmallVectorImpl<const Stmt*> &ResultStmts,
1089                                        ASTContext &C) {
1090   // First step, find the switch case that is being branched to.  We can do this
1091   // efficiently by scanning the SwitchCase list.
1092   const SwitchCase *Case = S.getSwitchCaseList();
1093   const DefaultStmt *DefaultCase = 0;
1094 
1095   for (; Case; Case = Case->getNextSwitchCase()) {
1096     // It's either a default or case.  Just remember the default statement in
1097     // case we're not jumping to any numbered cases.
1098     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1099       DefaultCase = DS;
1100       continue;
1101     }
1102 
1103     // Check to see if this case is the one we're looking for.
1104     const CaseStmt *CS = cast<CaseStmt>(Case);
1105     // Don't handle case ranges yet.
1106     if (CS->getRHS()) return false;
1107 
1108     // If we found our case, remember it as 'case'.
1109     if (CS->getLHS()->EvaluateAsInt(C) == ConstantCondValue)
1110       break;
1111   }
1112 
1113   // If we didn't find a matching case, we use a default if it exists, or we
1114   // elide the whole switch body!
1115   if (Case == 0) {
1116     // It is safe to elide the body of the switch if it doesn't contain labels
1117     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1118     if (DefaultCase == 0)
1119       return !CodeGenFunction::ContainsLabel(&S);
1120     Case = DefaultCase;
1121   }
1122 
1123   // Ok, we know which case is being jumped to, try to collect all the
1124   // statements that follow it.  This can fail for a variety of reasons.  Also,
1125   // check to see that the recursive walk actually found our case statement.
1126   // Insane cases like this can fail to find it in the recursive walk since we
1127   // don't handle every stmt kind:
1128   // switch (4) {
1129   //   while (1) {
1130   //     case 4: ...
1131   bool FoundCase = false;
1132   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1133                                   ResultStmts) != CSFC_Failure &&
1134          FoundCase;
1135 }
1136 
1137 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1138   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1139 
1140   RunCleanupsScope ConditionScope(*this);
1141 
1142   if (S.getConditionVariable())
1143     EmitAutoVarDecl(*S.getConditionVariable());
1144 
1145   // See if we can constant fold the condition of the switch and therefore only
1146   // emit the live case statement (if any) of the switch.
1147   llvm::APInt ConstantCondValue;
1148   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1149     llvm::SmallVector<const Stmt*, 4> CaseStmts;
1150     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1151                                    getContext())) {
1152       RunCleanupsScope ExecutedScope(*this);
1153 
1154       // Okay, we can dead code eliminate everything except this case.  Emit the
1155       // specified series of statements and we're good.
1156       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1157         EmitStmt(CaseStmts[i]);
1158       return;
1159     }
1160   }
1161 
1162   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1163 
1164   // Handle nested switch statements.
1165   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1166   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1167 
1168   // Create basic block to hold stuff that comes after switch
1169   // statement. We also need to create a default block now so that
1170   // explicit case ranges tests can have a place to jump to on
1171   // failure.
1172   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1173   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1174   CaseRangeBlock = DefaultBlock;
1175 
1176   // Clear the insertion point to indicate we are in unreachable code.
1177   Builder.ClearInsertionPoint();
1178 
1179   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1180   // then reuse last ContinueBlock.
1181   JumpDest OuterContinue;
1182   if (!BreakContinueStack.empty())
1183     OuterContinue = BreakContinueStack.back().ContinueBlock;
1184 
1185   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1186 
1187   // Emit switch body.
1188   EmitStmt(S.getBody());
1189 
1190   BreakContinueStack.pop_back();
1191 
1192   // Update the default block in case explicit case range tests have
1193   // been chained on top.
1194   SwitchInsn->setSuccessor(0, CaseRangeBlock);
1195 
1196   // If a default was never emitted:
1197   if (!DefaultBlock->getParent()) {
1198     // If we have cleanups, emit the default block so that there's a
1199     // place to jump through the cleanups from.
1200     if (ConditionScope.requiresCleanups()) {
1201       EmitBlock(DefaultBlock);
1202 
1203     // Otherwise, just forward the default block to the switch end.
1204     } else {
1205       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1206       delete DefaultBlock;
1207     }
1208   }
1209 
1210   ConditionScope.ForceCleanup();
1211 
1212   // Emit continuation.
1213   EmitBlock(SwitchExit.getBlock(), true);
1214 
1215   SwitchInsn = SavedSwitchInsn;
1216   CaseRangeBlock = SavedCRBlock;
1217 }
1218 
1219 static std::string
1220 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1221                  llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1222   std::string Result;
1223 
1224   while (*Constraint) {
1225     switch (*Constraint) {
1226     default:
1227       Result += Target.convertConstraint(*Constraint);
1228       break;
1229     // Ignore these
1230     case '*':
1231     case '?':
1232     case '!':
1233     case '=': // Will see this and the following in mult-alt constraints.
1234     case '+':
1235       break;
1236     case ',':
1237       Result += "|";
1238       break;
1239     case 'g':
1240       Result += "imr";
1241       break;
1242     case '[': {
1243       assert(OutCons &&
1244              "Must pass output names to constraints with a symbolic name");
1245       unsigned Index;
1246       bool result = Target.resolveSymbolicName(Constraint,
1247                                                &(*OutCons)[0],
1248                                                OutCons->size(), Index);
1249       assert(result && "Could not resolve symbolic name"); (void)result;
1250       Result += llvm::utostr(Index);
1251       break;
1252     }
1253     }
1254 
1255     Constraint++;
1256   }
1257 
1258   return Result;
1259 }
1260 
1261 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1262 /// as using a particular register add that as a constraint that will be used
1263 /// in this asm stmt.
1264 static std::string
1265 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1266                        const TargetInfo &Target, CodeGenModule &CGM,
1267                        const AsmStmt &Stmt) {
1268   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1269   if (!AsmDeclRef)
1270     return Constraint;
1271   const ValueDecl &Value = *AsmDeclRef->getDecl();
1272   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1273   if (!Variable)
1274     return Constraint;
1275   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1276   if (!Attr)
1277     return Constraint;
1278   llvm::StringRef Register = Attr->getLabel();
1279   assert(Target.isValidGCCRegisterName(Register));
1280   // FIXME: We should check which registers are compatible with "r" or "x".
1281   if (Constraint != "r" && Constraint != "x") {
1282     CGM.ErrorUnsupported(&Stmt, "__asm__");
1283     return Constraint;
1284   }
1285   return "{" + Register.str() + "}";
1286 }
1287 
1288 llvm::Value*
1289 CodeGenFunction::EmitAsmInputLValue(const AsmStmt &S,
1290                                     const TargetInfo::ConstraintInfo &Info,
1291                                     LValue InputValue, QualType InputType,
1292                                     std::string &ConstraintStr) {
1293   llvm::Value *Arg;
1294   if (Info.allowsRegister() || !Info.allowsMemory()) {
1295     if (!CodeGenFunction::hasAggregateLLVMType(InputType)) {
1296       Arg = EmitLoadOfLValue(InputValue, InputType).getScalarVal();
1297     } else {
1298       const llvm::Type *Ty = ConvertType(InputType);
1299       uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
1300       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1301         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1302         Ty = llvm::PointerType::getUnqual(Ty);
1303 
1304         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1305                                                        Ty));
1306       } else {
1307         Arg = InputValue.getAddress();
1308         ConstraintStr += '*';
1309       }
1310     }
1311   } else {
1312     Arg = InputValue.getAddress();
1313     ConstraintStr += '*';
1314   }
1315 
1316   return Arg;
1317 }
1318 
1319 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
1320                                          const TargetInfo::ConstraintInfo &Info,
1321                                            const Expr *InputExpr,
1322                                            std::string &ConstraintStr) {
1323   if (Info.allowsRegister() || !Info.allowsMemory())
1324     if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType()))
1325       return EmitScalarExpr(InputExpr);
1326 
1327   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1328   LValue Dest = EmitLValue(InputExpr);
1329   return EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(), ConstraintStr);
1330 }
1331 
1332 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1333 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1334 /// integers which are the source locations of the start of each line in the
1335 /// asm.
1336 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1337                                       CodeGenFunction &CGF) {
1338   llvm::SmallVector<llvm::Value *, 8> Locs;
1339   // Add the location of the first line to the MDNode.
1340   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1341                                         Str->getLocStart().getRawEncoding()));
1342   llvm::StringRef StrVal = Str->getString();
1343   if (!StrVal.empty()) {
1344     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1345     const LangOptions &LangOpts = CGF.CGM.getLangOptions();
1346 
1347     // Add the location of the start of each subsequent line of the asm to the
1348     // MDNode.
1349     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1350       if (StrVal[i] != '\n') continue;
1351       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1352                                                       CGF.Target);
1353       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1354                                             LineLoc.getRawEncoding()));
1355     }
1356   }
1357 
1358   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1359 }
1360 
1361 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1362   // Analyze the asm string to decompose it into its pieces.  We know that Sema
1363   // has already done this, so it is guaranteed to be successful.
1364   llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
1365   unsigned DiagOffs;
1366   S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
1367 
1368   // Assemble the pieces into the final asm string.
1369   std::string AsmString;
1370   for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
1371     if (Pieces[i].isString())
1372       AsmString += Pieces[i].getString();
1373     else if (Pieces[i].getModifier() == '\0')
1374       AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
1375     else
1376       AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
1377                    Pieces[i].getModifier() + '}';
1378   }
1379 
1380   // Get all the output and input constraints together.
1381   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1382   llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1383 
1384   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1385     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
1386                                     S.getOutputName(i));
1387     bool IsValid = Target.validateOutputConstraint(Info); (void)IsValid;
1388     assert(IsValid && "Failed to parse output constraint");
1389     OutputConstraintInfos.push_back(Info);
1390   }
1391 
1392   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1393     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
1394                                     S.getInputName(i));
1395     bool IsValid = Target.validateInputConstraint(OutputConstraintInfos.data(),
1396                                                   S.getNumOutputs(), Info);
1397     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1398     InputConstraintInfos.push_back(Info);
1399   }
1400 
1401   std::string Constraints;
1402 
1403   std::vector<LValue> ResultRegDests;
1404   std::vector<QualType> ResultRegQualTys;
1405   std::vector<const llvm::Type *> ResultRegTypes;
1406   std::vector<const llvm::Type *> ResultTruncRegTypes;
1407   std::vector<const llvm::Type*> ArgTypes;
1408   std::vector<llvm::Value*> Args;
1409 
1410   // Keep track of inout constraints.
1411   std::string InOutConstraints;
1412   std::vector<llvm::Value*> InOutArgs;
1413   std::vector<const llvm::Type*> InOutArgTypes;
1414 
1415   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1416     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1417 
1418     // Simplify the output constraint.
1419     std::string OutputConstraint(S.getOutputConstraint(i));
1420     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
1421 
1422     const Expr *OutExpr = S.getOutputExpr(i);
1423     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1424 
1425     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, Target,
1426                                              CGM, S);
1427 
1428     LValue Dest = EmitLValue(OutExpr);
1429     if (!Constraints.empty())
1430       Constraints += ',';
1431 
1432     // If this is a register output, then make the inline asm return it
1433     // by-value.  If this is a memory result, return the value by-reference.
1434     if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
1435       Constraints += "=" + OutputConstraint;
1436       ResultRegQualTys.push_back(OutExpr->getType());
1437       ResultRegDests.push_back(Dest);
1438       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1439       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1440 
1441       // If this output is tied to an input, and if the input is larger, then
1442       // we need to set the actual result type of the inline asm node to be the
1443       // same as the input type.
1444       if (Info.hasMatchingInput()) {
1445         unsigned InputNo;
1446         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1447           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1448           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1449             break;
1450         }
1451         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1452 
1453         QualType InputTy = S.getInputExpr(InputNo)->getType();
1454         QualType OutputType = OutExpr->getType();
1455 
1456         uint64_t InputSize = getContext().getTypeSize(InputTy);
1457         if (getContext().getTypeSize(OutputType) < InputSize) {
1458           // Form the asm to return the value as a larger integer or fp type.
1459           ResultRegTypes.back() = ConvertType(InputTy);
1460         }
1461       }
1462       if (const llvm::Type* AdjTy =
1463             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1464                                                  ResultRegTypes.back()))
1465         ResultRegTypes.back() = AdjTy;
1466     } else {
1467       ArgTypes.push_back(Dest.getAddress()->getType());
1468       Args.push_back(Dest.getAddress());
1469       Constraints += "=*";
1470       Constraints += OutputConstraint;
1471     }
1472 
1473     if (Info.isReadWrite()) {
1474       InOutConstraints += ',';
1475 
1476       const Expr *InputExpr = S.getOutputExpr(i);
1477       llvm::Value *Arg = EmitAsmInputLValue(S, Info, Dest, InputExpr->getType(),
1478                                             InOutConstraints);
1479 
1480       if (Info.allowsRegister())
1481         InOutConstraints += llvm::utostr(i);
1482       else
1483         InOutConstraints += OutputConstraint;
1484 
1485       InOutArgTypes.push_back(Arg->getType());
1486       InOutArgs.push_back(Arg);
1487     }
1488   }
1489 
1490   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1491 
1492   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1493     const Expr *InputExpr = S.getInputExpr(i);
1494 
1495     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1496 
1497     if (!Constraints.empty())
1498       Constraints += ',';
1499 
1500     // Simplify the input constraint.
1501     std::string InputConstraint(S.getInputConstraint(i));
1502     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
1503                                          &OutputConstraintInfos);
1504 
1505     InputConstraint =
1506       AddVariableConstraints(InputConstraint,
1507                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1508                             Target, CGM, S);
1509 
1510     llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
1511 
1512     // If this input argument is tied to a larger output result, extend the
1513     // input to be the same size as the output.  The LLVM backend wants to see
1514     // the input and output of a matching constraint be the same size.  Note
1515     // that GCC does not define what the top bits are here.  We use zext because
1516     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1517     if (Info.hasTiedOperand()) {
1518       unsigned Output = Info.getTiedOperand();
1519       QualType OutputType = S.getOutputExpr(Output)->getType();
1520       QualType InputTy = InputExpr->getType();
1521 
1522       if (getContext().getTypeSize(OutputType) >
1523           getContext().getTypeSize(InputTy)) {
1524         // Use ptrtoint as appropriate so that we can do our extension.
1525         if (isa<llvm::PointerType>(Arg->getType()))
1526           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1527         const llvm::Type *OutputTy = ConvertType(OutputType);
1528         if (isa<llvm::IntegerType>(OutputTy))
1529           Arg = Builder.CreateZExt(Arg, OutputTy);
1530         else
1531           Arg = Builder.CreateFPExt(Arg, OutputTy);
1532       }
1533     }
1534     if (const llvm::Type* AdjTy =
1535               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1536                                                    Arg->getType()))
1537       Arg = Builder.CreateBitCast(Arg, AdjTy);
1538 
1539     ArgTypes.push_back(Arg->getType());
1540     Args.push_back(Arg);
1541     Constraints += InputConstraint;
1542   }
1543 
1544   // Append the "input" part of inout constraints last.
1545   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1546     ArgTypes.push_back(InOutArgTypes[i]);
1547     Args.push_back(InOutArgs[i]);
1548   }
1549   Constraints += InOutConstraints;
1550 
1551   // Clobbers
1552   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1553     llvm::StringRef Clobber = S.getClobber(i)->getString();
1554 
1555     Clobber = Target.getNormalizedGCCRegisterName(Clobber);
1556 
1557     if (i != 0 || NumConstraints != 0)
1558       Constraints += ',';
1559 
1560     Constraints += "~{";
1561     Constraints += Clobber;
1562     Constraints += '}';
1563   }
1564 
1565   // Add machine specific clobbers
1566   std::string MachineClobbers = Target.getClobbers();
1567   if (!MachineClobbers.empty()) {
1568     if (!Constraints.empty())
1569       Constraints += ',';
1570     Constraints += MachineClobbers;
1571   }
1572 
1573   const llvm::Type *ResultType;
1574   if (ResultRegTypes.empty())
1575     ResultType = llvm::Type::getVoidTy(getLLVMContext());
1576   else if (ResultRegTypes.size() == 1)
1577     ResultType = ResultRegTypes[0];
1578   else
1579     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1580 
1581   const llvm::FunctionType *FTy =
1582     llvm::FunctionType::get(ResultType, ArgTypes, false);
1583 
1584   llvm::InlineAsm *IA =
1585     llvm::InlineAsm::get(FTy, AsmString, Constraints,
1586                          S.isVolatile() || S.getNumOutputs() == 0);
1587   llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1588   Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1589 
1590   // Slap the source location of the inline asm into a !srcloc metadata on the
1591   // call.
1592   Result->setMetadata("srcloc", getAsmSrcLocInfo(S.getAsmString(), *this));
1593 
1594   // Extract all of the register value results from the asm.
1595   std::vector<llvm::Value*> RegResults;
1596   if (ResultRegTypes.size() == 1) {
1597     RegResults.push_back(Result);
1598   } else {
1599     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1600       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1601       RegResults.push_back(Tmp);
1602     }
1603   }
1604 
1605   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1606     llvm::Value *Tmp = RegResults[i];
1607 
1608     // If the result type of the LLVM IR asm doesn't match the result type of
1609     // the expression, do the conversion.
1610     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1611       const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1612 
1613       // Truncate the integer result to the right size, note that TruncTy can be
1614       // a pointer.
1615       if (TruncTy->isFloatingPointTy())
1616         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1617       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1618         uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1619         Tmp = Builder.CreateTrunc(Tmp,
1620                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1621         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1622       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1623         uint64_t TmpSize =CGM.getTargetData().getTypeSizeInBits(Tmp->getType());
1624         Tmp = Builder.CreatePtrToInt(Tmp,
1625                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1626         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1627       } else if (TruncTy->isIntegerTy()) {
1628         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1629       } else if (TruncTy->isVectorTy()) {
1630         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1631       }
1632     }
1633 
1634     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1635                            ResultRegQualTys[i]);
1636   }
1637 }
1638