1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenFunction.h"
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "TargetInfo.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Basic/Builtins.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/MDBuilder.h"
26 
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getBeginLoc();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
44 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
45   assert(S && "Null statement?");
46   PGO.setCurrentStmt(S);
47 
48   // These statements have their own debug info handling.
49   if (EmitSimpleStmt(S))
50     return;
51 
52   // Check if we are generating unreachable code.
53   if (!HaveInsertPoint()) {
54     // If so, and the statement doesn't contain a label, then we do not need to
55     // generate actual code. This is safe because (1) the current point is
56     // unreachable, so we don't need to execute the code, and (2) we've already
57     // handled the statements which update internal data structures (like the
58     // local variable map) which could be used by subsequent statements.
59     if (!ContainsLabel(S)) {
60       // Verify that any decl statements were handled as simple, they may be in
61       // scope of subsequent reachable statements.
62       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
63       return;
64     }
65 
66     // Otherwise, make a new block to hold the code.
67     EnsureInsertPoint();
68   }
69 
70   // Generate a stoppoint if we are emitting debug info.
71   EmitStopPoint(S);
72 
73   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
74   // enabled.
75   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
76     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
77       EmitSimpleOMPExecutableDirective(*D);
78       return;
79     }
80   }
81 
82   switch (S->getStmtClass()) {
83   case Stmt::NoStmtClass:
84   case Stmt::CXXCatchStmtClass:
85   case Stmt::SEHExceptStmtClass:
86   case Stmt::SEHFinallyStmtClass:
87   case Stmt::MSDependentExistsStmtClass:
88     llvm_unreachable("invalid statement class to emit generically");
89   case Stmt::NullStmtClass:
90   case Stmt::CompoundStmtClass:
91   case Stmt::DeclStmtClass:
92   case Stmt::LabelStmtClass:
93   case Stmt::AttributedStmtClass:
94   case Stmt::GotoStmtClass:
95   case Stmt::BreakStmtClass:
96   case Stmt::ContinueStmtClass:
97   case Stmt::DefaultStmtClass:
98   case Stmt::CaseStmtClass:
99   case Stmt::SEHLeaveStmtClass:
100     llvm_unreachable("should have emitted these statements as simple");
101 
102 #define STMT(Type, Base)
103 #define ABSTRACT_STMT(Op)
104 #define EXPR(Type, Base) \
105   case Stmt::Type##Class:
106 #include "clang/AST/StmtNodes.inc"
107   {
108     // Remember the block we came in on.
109     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
110     assert(incoming && "expression emission must have an insertion point");
111 
112     EmitIgnoredExpr(cast<Expr>(S));
113 
114     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
115     assert(outgoing && "expression emission cleared block!");
116 
117     // The expression emitters assume (reasonably!) that the insertion
118     // point is always set.  To maintain that, the call-emission code
119     // for noreturn functions has to enter a new block with no
120     // predecessors.  We want to kill that block and mark the current
121     // insertion point unreachable in the common case of a call like
122     // "exit();".  Since expression emission doesn't otherwise create
123     // blocks with no predecessors, we can just test for that.
124     // However, we must be careful not to do this to our incoming
125     // block, because *statement* emission does sometimes create
126     // reachable blocks which will have no predecessors until later in
127     // the function.  This occurs with, e.g., labels that are not
128     // reachable by fallthrough.
129     if (incoming != outgoing && outgoing->use_empty()) {
130       outgoing->eraseFromParent();
131       Builder.ClearInsertionPoint();
132     }
133     break;
134   }
135 
136   case Stmt::IndirectGotoStmtClass:
137     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
138 
139   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
140   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
141   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
142   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
143 
144   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
145 
146   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
147   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
148   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
149   case Stmt::CoroutineBodyStmtClass:
150     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
151     break;
152   case Stmt::CoreturnStmtClass:
153     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
154     break;
155   case Stmt::CapturedStmtClass: {
156     const CapturedStmt *CS = cast<CapturedStmt>(S);
157     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
158     }
159     break;
160   case Stmt::ObjCAtTryStmtClass:
161     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
162     break;
163   case Stmt::ObjCAtCatchStmtClass:
164     llvm_unreachable(
165                     "@catch statements should be handled by EmitObjCAtTryStmt");
166   case Stmt::ObjCAtFinallyStmtClass:
167     llvm_unreachable(
168                   "@finally statements should be handled by EmitObjCAtTryStmt");
169   case Stmt::ObjCAtThrowStmtClass:
170     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
171     break;
172   case Stmt::ObjCAtSynchronizedStmtClass:
173     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
174     break;
175   case Stmt::ObjCForCollectionStmtClass:
176     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
177     break;
178   case Stmt::ObjCAutoreleasePoolStmtClass:
179     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
180     break;
181 
182   case Stmt::CXXTryStmtClass:
183     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
184     break;
185   case Stmt::CXXForRangeStmtClass:
186     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
187     break;
188   case Stmt::SEHTryStmtClass:
189     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
190     break;
191   case Stmt::OMPParallelDirectiveClass:
192     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
193     break;
194   case Stmt::OMPSimdDirectiveClass:
195     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
196     break;
197   case Stmt::OMPForDirectiveClass:
198     EmitOMPForDirective(cast<OMPForDirective>(*S));
199     break;
200   case Stmt::OMPForSimdDirectiveClass:
201     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
202     break;
203   case Stmt::OMPSectionsDirectiveClass:
204     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
205     break;
206   case Stmt::OMPSectionDirectiveClass:
207     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
208     break;
209   case Stmt::OMPSingleDirectiveClass:
210     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
211     break;
212   case Stmt::OMPMasterDirectiveClass:
213     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
214     break;
215   case Stmt::OMPCriticalDirectiveClass:
216     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
217     break;
218   case Stmt::OMPParallelForDirectiveClass:
219     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
220     break;
221   case Stmt::OMPParallelForSimdDirectiveClass:
222     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
223     break;
224   case Stmt::OMPParallelSectionsDirectiveClass:
225     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
226     break;
227   case Stmt::OMPTaskDirectiveClass:
228     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
229     break;
230   case Stmt::OMPTaskyieldDirectiveClass:
231     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
232     break;
233   case Stmt::OMPBarrierDirectiveClass:
234     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
235     break;
236   case Stmt::OMPTaskwaitDirectiveClass:
237     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
238     break;
239   case Stmt::OMPTaskgroupDirectiveClass:
240     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
241     break;
242   case Stmt::OMPFlushDirectiveClass:
243     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
244     break;
245   case Stmt::OMPOrderedDirectiveClass:
246     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
247     break;
248   case Stmt::OMPAtomicDirectiveClass:
249     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
250     break;
251   case Stmt::OMPTargetDirectiveClass:
252     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
253     break;
254   case Stmt::OMPTeamsDirectiveClass:
255     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
256     break;
257   case Stmt::OMPCancellationPointDirectiveClass:
258     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
259     break;
260   case Stmt::OMPCancelDirectiveClass:
261     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
262     break;
263   case Stmt::OMPTargetDataDirectiveClass:
264     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
265     break;
266   case Stmt::OMPTargetEnterDataDirectiveClass:
267     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
268     break;
269   case Stmt::OMPTargetExitDataDirectiveClass:
270     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
271     break;
272   case Stmt::OMPTargetParallelDirectiveClass:
273     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
274     break;
275   case Stmt::OMPTargetParallelForDirectiveClass:
276     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
277     break;
278   case Stmt::OMPTaskLoopDirectiveClass:
279     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
280     break;
281   case Stmt::OMPTaskLoopSimdDirectiveClass:
282     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
283     break;
284   case Stmt::OMPDistributeDirectiveClass:
285     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
286     break;
287   case Stmt::OMPTargetUpdateDirectiveClass:
288     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
289     break;
290   case Stmt::OMPDistributeParallelForDirectiveClass:
291     EmitOMPDistributeParallelForDirective(
292         cast<OMPDistributeParallelForDirective>(*S));
293     break;
294   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
295     EmitOMPDistributeParallelForSimdDirective(
296         cast<OMPDistributeParallelForSimdDirective>(*S));
297     break;
298   case Stmt::OMPDistributeSimdDirectiveClass:
299     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
300     break;
301   case Stmt::OMPTargetParallelForSimdDirectiveClass:
302     EmitOMPTargetParallelForSimdDirective(
303         cast<OMPTargetParallelForSimdDirective>(*S));
304     break;
305   case Stmt::OMPTargetSimdDirectiveClass:
306     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
307     break;
308   case Stmt::OMPTeamsDistributeDirectiveClass:
309     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
310     break;
311   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
312     EmitOMPTeamsDistributeSimdDirective(
313         cast<OMPTeamsDistributeSimdDirective>(*S));
314     break;
315   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
316     EmitOMPTeamsDistributeParallelForSimdDirective(
317         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
318     break;
319   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
320     EmitOMPTeamsDistributeParallelForDirective(
321         cast<OMPTeamsDistributeParallelForDirective>(*S));
322     break;
323   case Stmt::OMPTargetTeamsDirectiveClass:
324     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
325     break;
326   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
327     EmitOMPTargetTeamsDistributeDirective(
328         cast<OMPTargetTeamsDistributeDirective>(*S));
329     break;
330   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
331     EmitOMPTargetTeamsDistributeParallelForDirective(
332         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
333     break;
334   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
335     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
336         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
337     break;
338   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
339     EmitOMPTargetTeamsDistributeSimdDirective(
340         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
341     break;
342   }
343 }
344 
345 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
346   switch (S->getStmtClass()) {
347   default: return false;
348   case Stmt::NullStmtClass: break;
349   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
350   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
351   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
352   case Stmt::AttributedStmtClass:
353                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
354   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
355   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
356   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
357   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
358   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
359   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
360   }
361 
362   return true;
363 }
364 
365 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
366 /// this captures the expression result of the last sub-statement and returns it
367 /// (for use by the statement expression extension).
368 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
369                                           AggValueSlot AggSlot) {
370   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
371                              "LLVM IR generation of compound statement ('{}')");
372 
373   // Keep track of the current cleanup stack depth, including debug scopes.
374   LexicalScope Scope(*this, S.getSourceRange());
375 
376   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
377 }
378 
379 Address
380 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
381                                               bool GetLast,
382                                               AggValueSlot AggSlot) {
383 
384   for (CompoundStmt::const_body_iterator I = S.body_begin(),
385        E = S.body_end()-GetLast; I != E; ++I)
386     EmitStmt(*I);
387 
388   Address RetAlloca = Address::invalid();
389   if (GetLast) {
390     // We have to special case labels here.  They are statements, but when put
391     // at the end of a statement expression, they yield the value of their
392     // subexpression.  Handle this by walking through all labels we encounter,
393     // emitting them before we evaluate the subexpr.
394     const Stmt *LastStmt = S.body_back();
395     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
396       EmitLabel(LS->getDecl());
397       LastStmt = LS->getSubStmt();
398     }
399 
400     EnsureInsertPoint();
401 
402     QualType ExprTy = cast<Expr>(LastStmt)->getType();
403     if (hasAggregateEvaluationKind(ExprTy)) {
404       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
405     } else {
406       // We can't return an RValue here because there might be cleanups at
407       // the end of the StmtExpr.  Because of that, we have to emit the result
408       // here into a temporary alloca.
409       RetAlloca = CreateMemTemp(ExprTy);
410       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
411                        /*IsInit*/false);
412     }
413 
414   }
415 
416   return RetAlloca;
417 }
418 
419 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
420   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
421 
422   // If there is a cleanup stack, then we it isn't worth trying to
423   // simplify this block (we would need to remove it from the scope map
424   // and cleanup entry).
425   if (!EHStack.empty())
426     return;
427 
428   // Can only simplify direct branches.
429   if (!BI || !BI->isUnconditional())
430     return;
431 
432   // Can only simplify empty blocks.
433   if (BI->getIterator() != BB->begin())
434     return;
435 
436   BB->replaceAllUsesWith(BI->getSuccessor(0));
437   BI->eraseFromParent();
438   BB->eraseFromParent();
439 }
440 
441 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
442   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
443 
444   // Fall out of the current block (if necessary).
445   EmitBranch(BB);
446 
447   if (IsFinished && BB->use_empty()) {
448     delete BB;
449     return;
450   }
451 
452   // Place the block after the current block, if possible, or else at
453   // the end of the function.
454   if (CurBB && CurBB->getParent())
455     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
456   else
457     CurFn->getBasicBlockList().push_back(BB);
458   Builder.SetInsertPoint(BB);
459 }
460 
461 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
462   // Emit a branch from the current block to the target one if this
463   // was a real block.  If this was just a fall-through block after a
464   // terminator, don't emit it.
465   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
466 
467   if (!CurBB || CurBB->getTerminator()) {
468     // If there is no insert point or the previous block is already
469     // terminated, don't touch it.
470   } else {
471     // Otherwise, create a fall-through branch.
472     Builder.CreateBr(Target);
473   }
474 
475   Builder.ClearInsertionPoint();
476 }
477 
478 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
479   bool inserted = false;
480   for (llvm::User *u : block->users()) {
481     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
482       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
483                                              block);
484       inserted = true;
485       break;
486     }
487   }
488 
489   if (!inserted)
490     CurFn->getBasicBlockList().push_back(block);
491 
492   Builder.SetInsertPoint(block);
493 }
494 
495 CodeGenFunction::JumpDest
496 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
497   JumpDest &Dest = LabelMap[D];
498   if (Dest.isValid()) return Dest;
499 
500   // Create, but don't insert, the new block.
501   Dest = JumpDest(createBasicBlock(D->getName()),
502                   EHScopeStack::stable_iterator::invalid(),
503                   NextCleanupDestIndex++);
504   return Dest;
505 }
506 
507 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
508   // Add this label to the current lexical scope if we're within any
509   // normal cleanups.  Jumps "in" to this label --- when permitted by
510   // the language --- may need to be routed around such cleanups.
511   if (EHStack.hasNormalCleanups() && CurLexicalScope)
512     CurLexicalScope->addLabel(D);
513 
514   JumpDest &Dest = LabelMap[D];
515 
516   // If we didn't need a forward reference to this label, just go
517   // ahead and create a destination at the current scope.
518   if (!Dest.isValid()) {
519     Dest = getJumpDestInCurrentScope(D->getName());
520 
521   // Otherwise, we need to give this label a target depth and remove
522   // it from the branch-fixups list.
523   } else {
524     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
525     Dest.setScopeDepth(EHStack.stable_begin());
526     ResolveBranchFixups(Dest.getBlock());
527   }
528 
529   EmitBlock(Dest.getBlock());
530 
531   // Emit debug info for labels.
532   if (CGDebugInfo *DI = getDebugInfo()) {
533     if (CGM.getCodeGenOpts().getDebugInfo() >=
534         codegenoptions::LimitedDebugInfo) {
535       DI->setLocation(D->getLocation());
536       DI->EmitLabel(D, Builder);
537     }
538   }
539 
540   incrementProfileCounter(D->getStmt());
541 }
542 
543 /// Change the cleanup scope of the labels in this lexical scope to
544 /// match the scope of the enclosing context.
545 void CodeGenFunction::LexicalScope::rescopeLabels() {
546   assert(!Labels.empty());
547   EHScopeStack::stable_iterator innermostScope
548     = CGF.EHStack.getInnermostNormalCleanup();
549 
550   // Change the scope depth of all the labels.
551   for (SmallVectorImpl<const LabelDecl*>::const_iterator
552          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
553     assert(CGF.LabelMap.count(*i));
554     JumpDest &dest = CGF.LabelMap.find(*i)->second;
555     assert(dest.getScopeDepth().isValid());
556     assert(innermostScope.encloses(dest.getScopeDepth()));
557     dest.setScopeDepth(innermostScope);
558   }
559 
560   // Reparent the labels if the new scope also has cleanups.
561   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
562     ParentScope->Labels.append(Labels.begin(), Labels.end());
563   }
564 }
565 
566 
567 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
568   EmitLabel(S.getDecl());
569   EmitStmt(S.getSubStmt());
570 }
571 
572 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
573   EmitStmt(S.getSubStmt(), S.getAttrs());
574 }
575 
576 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
577   // If this code is reachable then emit a stop point (if generating
578   // debug info). We have to do this ourselves because we are on the
579   // "simple" statement path.
580   if (HaveInsertPoint())
581     EmitStopPoint(&S);
582 
583   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
584 }
585 
586 
587 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
588   if (const LabelDecl *Target = S.getConstantTarget()) {
589     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
590     return;
591   }
592 
593   // Ensure that we have an i8* for our PHI node.
594   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
595                                          Int8PtrTy, "addr");
596   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
597 
598   // Get the basic block for the indirect goto.
599   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
600 
601   // The first instruction in the block has to be the PHI for the switch dest,
602   // add an entry for this branch.
603   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
604 
605   EmitBranch(IndGotoBB);
606 }
607 
608 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
609   // C99 6.8.4.1: The first substatement is executed if the expression compares
610   // unequal to 0.  The condition must be a scalar type.
611   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
612 
613   if (S.getInit())
614     EmitStmt(S.getInit());
615 
616   if (S.getConditionVariable())
617     EmitDecl(*S.getConditionVariable());
618 
619   // If the condition constant folds and can be elided, try to avoid emitting
620   // the condition and the dead arm of the if/else.
621   bool CondConstant;
622   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
623                                    S.isConstexpr())) {
624     // Figure out which block (then or else) is executed.
625     const Stmt *Executed = S.getThen();
626     const Stmt *Skipped  = S.getElse();
627     if (!CondConstant)  // Condition false?
628       std::swap(Executed, Skipped);
629 
630     // If the skipped block has no labels in it, just emit the executed block.
631     // This avoids emitting dead code and simplifies the CFG substantially.
632     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
633       if (CondConstant)
634         incrementProfileCounter(&S);
635       if (Executed) {
636         RunCleanupsScope ExecutedScope(*this);
637         EmitStmt(Executed);
638       }
639       return;
640     }
641   }
642 
643   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
644   // the conditional branch.
645   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
646   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
647   llvm::BasicBlock *ElseBlock = ContBlock;
648   if (S.getElse())
649     ElseBlock = createBasicBlock("if.else");
650 
651   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock,
652                        getProfileCount(S.getThen()));
653 
654   // Emit the 'then' code.
655   EmitBlock(ThenBlock);
656   incrementProfileCounter(&S);
657   {
658     RunCleanupsScope ThenScope(*this);
659     EmitStmt(S.getThen());
660   }
661   EmitBranch(ContBlock);
662 
663   // Emit the 'else' code if present.
664   if (const Stmt *Else = S.getElse()) {
665     {
666       // There is no need to emit line number for an unconditional branch.
667       auto NL = ApplyDebugLocation::CreateEmpty(*this);
668       EmitBlock(ElseBlock);
669     }
670     {
671       RunCleanupsScope ElseScope(*this);
672       EmitStmt(Else);
673     }
674     {
675       // There is no need to emit line number for an unconditional branch.
676       auto NL = ApplyDebugLocation::CreateEmpty(*this);
677       EmitBranch(ContBlock);
678     }
679   }
680 
681   // Emit the continuation block for code after the if.
682   EmitBlock(ContBlock, true);
683 }
684 
685 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
686                                     ArrayRef<const Attr *> WhileAttrs) {
687   // Emit the header for the loop, which will also become
688   // the continue target.
689   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
690   EmitBlock(LoopHeader.getBlock());
691 
692   const SourceRange &R = S.getSourceRange();
693   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs,
694                  SourceLocToDebugLoc(R.getBegin()),
695                  SourceLocToDebugLoc(R.getEnd()));
696 
697   // Create an exit block for when the condition fails, which will
698   // also become the break target.
699   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
700 
701   // Store the blocks to use for break and continue.
702   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
703 
704   // C++ [stmt.while]p2:
705   //   When the condition of a while statement is a declaration, the
706   //   scope of the variable that is declared extends from its point
707   //   of declaration (3.3.2) to the end of the while statement.
708   //   [...]
709   //   The object created in a condition is destroyed and created
710   //   with each iteration of the loop.
711   RunCleanupsScope ConditionScope(*this);
712 
713   if (S.getConditionVariable())
714     EmitDecl(*S.getConditionVariable());
715 
716   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
717   // evaluation of the controlling expression takes place before each
718   // execution of the loop body.
719   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
720 
721   // while(1) is common, avoid extra exit blocks.  Be sure
722   // to correctly handle break/continue though.
723   bool EmitBoolCondBranch = true;
724   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
725     if (C->isOne())
726       EmitBoolCondBranch = false;
727 
728   // As long as the condition is true, go to the loop body.
729   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
730   if (EmitBoolCondBranch) {
731     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
732     if (ConditionScope.requiresCleanups())
733       ExitBlock = createBasicBlock("while.exit");
734     Builder.CreateCondBr(
735         BoolCondVal, LoopBody, ExitBlock,
736         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
737 
738     if (ExitBlock != LoopExit.getBlock()) {
739       EmitBlock(ExitBlock);
740       EmitBranchThroughCleanup(LoopExit);
741     }
742   }
743 
744   // Emit the loop body.  We have to emit this in a cleanup scope
745   // because it might be a singleton DeclStmt.
746   {
747     RunCleanupsScope BodyScope(*this);
748     EmitBlock(LoopBody);
749     incrementProfileCounter(&S);
750     EmitStmt(S.getBody());
751   }
752 
753   BreakContinueStack.pop_back();
754 
755   // Immediately force cleanup.
756   ConditionScope.ForceCleanup();
757 
758   EmitStopPoint(&S);
759   // Branch to the loop header again.
760   EmitBranch(LoopHeader.getBlock());
761 
762   LoopStack.pop();
763 
764   // Emit the exit block.
765   EmitBlock(LoopExit.getBlock(), true);
766 
767   // The LoopHeader typically is just a branch if we skipped emitting
768   // a branch, try to erase it.
769   if (!EmitBoolCondBranch)
770     SimplifyForwardingBlocks(LoopHeader.getBlock());
771 }
772 
773 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
774                                  ArrayRef<const Attr *> DoAttrs) {
775   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
776   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
777 
778   uint64_t ParentCount = getCurrentProfileCount();
779 
780   // Store the blocks to use for break and continue.
781   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
782 
783   // Emit the body of the loop.
784   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
785 
786   EmitBlockWithFallThrough(LoopBody, &S);
787   {
788     RunCleanupsScope BodyScope(*this);
789     EmitStmt(S.getBody());
790   }
791 
792   EmitBlock(LoopCond.getBlock());
793 
794   const SourceRange &R = S.getSourceRange();
795   LoopStack.push(LoopBody, CGM.getContext(), DoAttrs,
796                  SourceLocToDebugLoc(R.getBegin()),
797                  SourceLocToDebugLoc(R.getEnd()));
798 
799   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
800   // after each execution of the loop body."
801 
802   // Evaluate the conditional in the while header.
803   // C99 6.8.5p2/p4: The first substatement is executed if the expression
804   // compares unequal to 0.  The condition must be a scalar type.
805   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
806 
807   BreakContinueStack.pop_back();
808 
809   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
810   // to correctly handle break/continue though.
811   bool EmitBoolCondBranch = true;
812   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
813     if (C->isZero())
814       EmitBoolCondBranch = false;
815 
816   // As long as the condition is true, iterate the loop.
817   if (EmitBoolCondBranch) {
818     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
819     Builder.CreateCondBr(
820         BoolCondVal, LoopBody, LoopExit.getBlock(),
821         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
822   }
823 
824   LoopStack.pop();
825 
826   // Emit the exit block.
827   EmitBlock(LoopExit.getBlock());
828 
829   // The DoCond block typically is just a branch if we skipped
830   // emitting a branch, try to erase it.
831   if (!EmitBoolCondBranch)
832     SimplifyForwardingBlocks(LoopCond.getBlock());
833 }
834 
835 void CodeGenFunction::EmitForStmt(const ForStmt &S,
836                                   ArrayRef<const Attr *> ForAttrs) {
837   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
838 
839   LexicalScope ForScope(*this, S.getSourceRange());
840 
841   // Evaluate the first part before the loop.
842   if (S.getInit())
843     EmitStmt(S.getInit());
844 
845   // Start the loop with a block that tests the condition.
846   // If there's an increment, the continue scope will be overwritten
847   // later.
848   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
849   llvm::BasicBlock *CondBlock = Continue.getBlock();
850   EmitBlock(CondBlock);
851 
852   const SourceRange &R = S.getSourceRange();
853   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
854                  SourceLocToDebugLoc(R.getBegin()),
855                  SourceLocToDebugLoc(R.getEnd()));
856 
857   // If the for loop doesn't have an increment we can just use the
858   // condition as the continue block.  Otherwise we'll need to create
859   // a block for it (in the current scope, i.e. in the scope of the
860   // condition), and that we will become our continue block.
861   if (S.getInc())
862     Continue = getJumpDestInCurrentScope("for.inc");
863 
864   // Store the blocks to use for break and continue.
865   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
866 
867   // Create a cleanup scope for the condition variable cleanups.
868   LexicalScope ConditionScope(*this, S.getSourceRange());
869 
870   if (S.getCond()) {
871     // If the for statement has a condition scope, emit the local variable
872     // declaration.
873     if (S.getConditionVariable()) {
874       EmitDecl(*S.getConditionVariable());
875     }
876 
877     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
878     // If there are any cleanups between here and the loop-exit scope,
879     // create a block to stage a loop exit along.
880     if (ForScope.requiresCleanups())
881       ExitBlock = createBasicBlock("for.cond.cleanup");
882 
883     // As long as the condition is true, iterate the loop.
884     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
885 
886     // C99 6.8.5p2/p4: The first substatement is executed if the expression
887     // compares unequal to 0.  The condition must be a scalar type.
888     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
889     Builder.CreateCondBr(
890         BoolCondVal, ForBody, ExitBlock,
891         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
892 
893     if (ExitBlock != LoopExit.getBlock()) {
894       EmitBlock(ExitBlock);
895       EmitBranchThroughCleanup(LoopExit);
896     }
897 
898     EmitBlock(ForBody);
899   } else {
900     // Treat it as a non-zero constant.  Don't even create a new block for the
901     // body, just fall into it.
902   }
903   incrementProfileCounter(&S);
904 
905   {
906     // Create a separate cleanup scope for the body, in case it is not
907     // a compound statement.
908     RunCleanupsScope BodyScope(*this);
909     EmitStmt(S.getBody());
910   }
911 
912   // If there is an increment, emit it next.
913   if (S.getInc()) {
914     EmitBlock(Continue.getBlock());
915     EmitStmt(S.getInc());
916   }
917 
918   BreakContinueStack.pop_back();
919 
920   ConditionScope.ForceCleanup();
921 
922   EmitStopPoint(&S);
923   EmitBranch(CondBlock);
924 
925   ForScope.ForceCleanup();
926 
927   LoopStack.pop();
928 
929   // Emit the fall-through block.
930   EmitBlock(LoopExit.getBlock(), true);
931 }
932 
933 void
934 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
935                                      ArrayRef<const Attr *> ForAttrs) {
936   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
937 
938   LexicalScope ForScope(*this, S.getSourceRange());
939 
940   // Evaluate the first pieces before the loop.
941   if (S.getInit())
942     EmitStmt(S.getInit());
943   EmitStmt(S.getRangeStmt());
944   EmitStmt(S.getBeginStmt());
945   EmitStmt(S.getEndStmt());
946 
947   // Start the loop with a block that tests the condition.
948   // If there's an increment, the continue scope will be overwritten
949   // later.
950   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
951   EmitBlock(CondBlock);
952 
953   const SourceRange &R = S.getSourceRange();
954   LoopStack.push(CondBlock, CGM.getContext(), ForAttrs,
955                  SourceLocToDebugLoc(R.getBegin()),
956                  SourceLocToDebugLoc(R.getEnd()));
957 
958   // If there are any cleanups between here and the loop-exit scope,
959   // create a block to stage a loop exit along.
960   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
961   if (ForScope.requiresCleanups())
962     ExitBlock = createBasicBlock("for.cond.cleanup");
963 
964   // The loop body, consisting of the specified body and the loop variable.
965   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
966 
967   // The body is executed if the expression, contextually converted
968   // to bool, is true.
969   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
970   Builder.CreateCondBr(
971       BoolCondVal, ForBody, ExitBlock,
972       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())));
973 
974   if (ExitBlock != LoopExit.getBlock()) {
975     EmitBlock(ExitBlock);
976     EmitBranchThroughCleanup(LoopExit);
977   }
978 
979   EmitBlock(ForBody);
980   incrementProfileCounter(&S);
981 
982   // Create a block for the increment. In case of a 'continue', we jump there.
983   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
984 
985   // Store the blocks to use for break and continue.
986   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
987 
988   {
989     // Create a separate cleanup scope for the loop variable and body.
990     LexicalScope BodyScope(*this, S.getSourceRange());
991     EmitStmt(S.getLoopVarStmt());
992     EmitStmt(S.getBody());
993   }
994 
995   EmitStopPoint(&S);
996   // If there is an increment, emit it next.
997   EmitBlock(Continue.getBlock());
998   EmitStmt(S.getInc());
999 
1000   BreakContinueStack.pop_back();
1001 
1002   EmitBranch(CondBlock);
1003 
1004   ForScope.ForceCleanup();
1005 
1006   LoopStack.pop();
1007 
1008   // Emit the fall-through block.
1009   EmitBlock(LoopExit.getBlock(), true);
1010 }
1011 
1012 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1013   if (RV.isScalar()) {
1014     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1015   } else if (RV.isAggregate()) {
1016     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1017     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1018     EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue());
1019   } else {
1020     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1021                        /*init*/ true);
1022   }
1023   EmitBranchThroughCleanup(ReturnBlock);
1024 }
1025 
1026 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1027 /// if the function returns void, or may be missing one if the function returns
1028 /// non-void.  Fun stuff :).
1029 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1030   if (requiresReturnValueCheck()) {
1031     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1032     auto *SLocPtr =
1033         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1034                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1035     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1036     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1037     assert(ReturnLocation.isValid() && "No valid return location");
1038     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1039                         ReturnLocation);
1040   }
1041 
1042   // Returning from an outlined SEH helper is UB, and we already warn on it.
1043   if (IsOutlinedSEHHelper) {
1044     Builder.CreateUnreachable();
1045     Builder.ClearInsertionPoint();
1046   }
1047 
1048   // Emit the result value, even if unused, to evaluate the side effects.
1049   const Expr *RV = S.getRetValue();
1050 
1051   // Treat block literals in a return expression as if they appeared
1052   // in their own scope.  This permits a small, easily-implemented
1053   // exception to our over-conservative rules about not jumping to
1054   // statements following block literals with non-trivial cleanups.
1055   RunCleanupsScope cleanupScope(*this);
1056   if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) {
1057     enterFullExpression(fe);
1058     RV = fe->getSubExpr();
1059   }
1060 
1061   // FIXME: Clean this up by using an LValue for ReturnTemp,
1062   // EmitStoreThroughLValue, and EmitAnyExpr.
1063   if (getLangOpts().ElideConstructors &&
1064       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1065     // Apply the named return value optimization for this return statement,
1066     // which means doing nothing: the appropriate result has already been
1067     // constructed into the NRVO variable.
1068 
1069     // If there is an NRVO flag for this variable, set it to 1 into indicate
1070     // that the cleanup code should not destroy the variable.
1071     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1072       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1073   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1074     // Make sure not to return anything, but evaluate the expression
1075     // for side effects.
1076     if (RV)
1077       EmitAnyExpr(RV);
1078   } else if (!RV) {
1079     // Do nothing (return value is left uninitialized)
1080   } else if (FnRetTy->isReferenceType()) {
1081     // If this function returns a reference, take the address of the expression
1082     // rather than the value.
1083     RValue Result = EmitReferenceBindingToExpr(RV);
1084     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1085   } else {
1086     switch (getEvaluationKind(RV->getType())) {
1087     case TEK_Scalar:
1088       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1089       break;
1090     case TEK_Complex:
1091       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1092                                 /*isInit*/ true);
1093       break;
1094     case TEK_Aggregate:
1095       EmitAggExpr(RV, AggValueSlot::forAddr(
1096                           ReturnValue, Qualifiers(),
1097                           AggValueSlot::IsDestructed,
1098                           AggValueSlot::DoesNotNeedGCBarriers,
1099                           AggValueSlot::IsNotAliased,
1100                           overlapForReturnValue()));
1101       break;
1102     }
1103   }
1104 
1105   ++NumReturnExprs;
1106   if (!RV || RV->isEvaluatable(getContext()))
1107     ++NumSimpleReturnExprs;
1108 
1109   cleanupScope.ForceCleanup();
1110   EmitBranchThroughCleanup(ReturnBlock);
1111 }
1112 
1113 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1114   // As long as debug info is modeled with instructions, we have to ensure we
1115   // have a place to insert here and write the stop point here.
1116   if (HaveInsertPoint())
1117     EmitStopPoint(&S);
1118 
1119   for (const auto *I : S.decls())
1120     EmitDecl(*I);
1121 }
1122 
1123 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1124   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1125 
1126   // If this code is reachable then emit a stop point (if generating
1127   // debug info). We have to do this ourselves because we are on the
1128   // "simple" statement path.
1129   if (HaveInsertPoint())
1130     EmitStopPoint(&S);
1131 
1132   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1133 }
1134 
1135 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1136   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1137 
1138   // If this code is reachable then emit a stop point (if generating
1139   // debug info). We have to do this ourselves because we are on the
1140   // "simple" statement path.
1141   if (HaveInsertPoint())
1142     EmitStopPoint(&S);
1143 
1144   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1145 }
1146 
1147 /// EmitCaseStmtRange - If case statement range is not too big then
1148 /// add multiple cases to switch instruction, one for each value within
1149 /// the range. If range is too big then emit "if" condition check.
1150 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1151   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1152 
1153   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1154   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1155 
1156   // Emit the code for this case. We do this first to make sure it is
1157   // properly chained from our predecessor before generating the
1158   // switch machinery to enter this block.
1159   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1160   EmitBlockWithFallThrough(CaseDest, &S);
1161   EmitStmt(S.getSubStmt());
1162 
1163   // If range is empty, do nothing.
1164   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1165     return;
1166 
1167   llvm::APInt Range = RHS - LHS;
1168   // FIXME: parameters such as this should not be hardcoded.
1169   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1170     // Range is small enough to add multiple switch instruction cases.
1171     uint64_t Total = getProfileCount(&S);
1172     unsigned NCases = Range.getZExtValue() + 1;
1173     // We only have one region counter for the entire set of cases here, so we
1174     // need to divide the weights evenly between the generated cases, ensuring
1175     // that the total weight is preserved. E.g., a weight of 5 over three cases
1176     // will be distributed as weights of 2, 2, and 1.
1177     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1178     for (unsigned I = 0; I != NCases; ++I) {
1179       if (SwitchWeights)
1180         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1181       if (Rem)
1182         Rem--;
1183       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1184       ++LHS;
1185     }
1186     return;
1187   }
1188 
1189   // The range is too big. Emit "if" condition into a new block,
1190   // making sure to save and restore the current insertion point.
1191   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1192 
1193   // Push this test onto the chain of range checks (which terminates
1194   // in the default basic block). The switch's default will be changed
1195   // to the top of this chain after switch emission is complete.
1196   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1197   CaseRangeBlock = createBasicBlock("sw.caserange");
1198 
1199   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1200   Builder.SetInsertPoint(CaseRangeBlock);
1201 
1202   // Emit range check.
1203   llvm::Value *Diff =
1204     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1205   llvm::Value *Cond =
1206     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1207 
1208   llvm::MDNode *Weights = nullptr;
1209   if (SwitchWeights) {
1210     uint64_t ThisCount = getProfileCount(&S);
1211     uint64_t DefaultCount = (*SwitchWeights)[0];
1212     Weights = createProfileWeights(ThisCount, DefaultCount);
1213 
1214     // Since we're chaining the switch default through each large case range, we
1215     // need to update the weight for the default, ie, the first case, to include
1216     // this case.
1217     (*SwitchWeights)[0] += ThisCount;
1218   }
1219   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1220 
1221   // Restore the appropriate insertion point.
1222   if (RestoreBB)
1223     Builder.SetInsertPoint(RestoreBB);
1224   else
1225     Builder.ClearInsertionPoint();
1226 }
1227 
1228 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1229   // If there is no enclosing switch instance that we're aware of, then this
1230   // case statement and its block can be elided.  This situation only happens
1231   // when we've constant-folded the switch, are emitting the constant case,
1232   // and part of the constant case includes another case statement.  For
1233   // instance: switch (4) { case 4: do { case 5: } while (1); }
1234   if (!SwitchInsn) {
1235     EmitStmt(S.getSubStmt());
1236     return;
1237   }
1238 
1239   // Handle case ranges.
1240   if (S.getRHS()) {
1241     EmitCaseStmtRange(S);
1242     return;
1243   }
1244 
1245   llvm::ConstantInt *CaseVal =
1246     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1247 
1248   // If the body of the case is just a 'break', try to not emit an empty block.
1249   // If we're profiling or we're not optimizing, leave the block in for better
1250   // debug and coverage analysis.
1251   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1252       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1253       isa<BreakStmt>(S.getSubStmt())) {
1254     JumpDest Block = BreakContinueStack.back().BreakBlock;
1255 
1256     // Only do this optimization if there are no cleanups that need emitting.
1257     if (isObviouslyBranchWithoutCleanups(Block)) {
1258       if (SwitchWeights)
1259         SwitchWeights->push_back(getProfileCount(&S));
1260       SwitchInsn->addCase(CaseVal, Block.getBlock());
1261 
1262       // If there was a fallthrough into this case, make sure to redirect it to
1263       // the end of the switch as well.
1264       if (Builder.GetInsertBlock()) {
1265         Builder.CreateBr(Block.getBlock());
1266         Builder.ClearInsertionPoint();
1267       }
1268       return;
1269     }
1270   }
1271 
1272   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1273   EmitBlockWithFallThrough(CaseDest, &S);
1274   if (SwitchWeights)
1275     SwitchWeights->push_back(getProfileCount(&S));
1276   SwitchInsn->addCase(CaseVal, CaseDest);
1277 
1278   // Recursively emitting the statement is acceptable, but is not wonderful for
1279   // code where we have many case statements nested together, i.e.:
1280   //  case 1:
1281   //    case 2:
1282   //      case 3: etc.
1283   // Handling this recursively will create a new block for each case statement
1284   // that falls through to the next case which is IR intensive.  It also causes
1285   // deep recursion which can run into stack depth limitations.  Handle
1286   // sequential non-range case statements specially.
1287   const CaseStmt *CurCase = &S;
1288   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1289 
1290   // Otherwise, iteratively add consecutive cases to this switch stmt.
1291   while (NextCase && NextCase->getRHS() == nullptr) {
1292     CurCase = NextCase;
1293     llvm::ConstantInt *CaseVal =
1294       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1295 
1296     if (SwitchWeights)
1297       SwitchWeights->push_back(getProfileCount(NextCase));
1298     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1299       CaseDest = createBasicBlock("sw.bb");
1300       EmitBlockWithFallThrough(CaseDest, &S);
1301     }
1302 
1303     SwitchInsn->addCase(CaseVal, CaseDest);
1304     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1305   }
1306 
1307   // Normal default recursion for non-cases.
1308   EmitStmt(CurCase->getSubStmt());
1309 }
1310 
1311 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1312   // If there is no enclosing switch instance that we're aware of, then this
1313   // default statement can be elided. This situation only happens when we've
1314   // constant-folded the switch.
1315   if (!SwitchInsn) {
1316     EmitStmt(S.getSubStmt());
1317     return;
1318   }
1319 
1320   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1321   assert(DefaultBlock->empty() &&
1322          "EmitDefaultStmt: Default block already defined?");
1323 
1324   EmitBlockWithFallThrough(DefaultBlock, &S);
1325 
1326   EmitStmt(S.getSubStmt());
1327 }
1328 
1329 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1330 /// constant value that is being switched on, see if we can dead code eliminate
1331 /// the body of the switch to a simple series of statements to emit.  Basically,
1332 /// on a switch (5) we want to find these statements:
1333 ///    case 5:
1334 ///      printf(...);    <--
1335 ///      ++i;            <--
1336 ///      break;
1337 ///
1338 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1339 /// transformation (for example, one of the elided statements contains a label
1340 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1341 /// should include statements after it (e.g. the printf() line is a substmt of
1342 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1343 /// statement, then return CSFC_Success.
1344 ///
1345 /// If Case is non-null, then we are looking for the specified case, checking
1346 /// that nothing we jump over contains labels.  If Case is null, then we found
1347 /// the case and are looking for the break.
1348 ///
1349 /// If the recursive walk actually finds our Case, then we set FoundCase to
1350 /// true.
1351 ///
1352 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1353 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1354                                             const SwitchCase *Case,
1355                                             bool &FoundCase,
1356                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1357   // If this is a null statement, just succeed.
1358   if (!S)
1359     return Case ? CSFC_Success : CSFC_FallThrough;
1360 
1361   // If this is the switchcase (case 4: or default) that we're looking for, then
1362   // we're in business.  Just add the substatement.
1363   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1364     if (S == Case) {
1365       FoundCase = true;
1366       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1367                                       ResultStmts);
1368     }
1369 
1370     // Otherwise, this is some other case or default statement, just ignore it.
1371     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1372                                     ResultStmts);
1373   }
1374 
1375   // If we are in the live part of the code and we found our break statement,
1376   // return a success!
1377   if (!Case && isa<BreakStmt>(S))
1378     return CSFC_Success;
1379 
1380   // If this is a switch statement, then it might contain the SwitchCase, the
1381   // break, or neither.
1382   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1383     // Handle this as two cases: we might be looking for the SwitchCase (if so
1384     // the skipped statements must be skippable) or we might already have it.
1385     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1386     bool StartedInLiveCode = FoundCase;
1387     unsigned StartSize = ResultStmts.size();
1388 
1389     // If we've not found the case yet, scan through looking for it.
1390     if (Case) {
1391       // Keep track of whether we see a skipped declaration.  The code could be
1392       // using the declaration even if it is skipped, so we can't optimize out
1393       // the decl if the kept statements might refer to it.
1394       bool HadSkippedDecl = false;
1395 
1396       // If we're looking for the case, just see if we can skip each of the
1397       // substatements.
1398       for (; Case && I != E; ++I) {
1399         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1400 
1401         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1402         case CSFC_Failure: return CSFC_Failure;
1403         case CSFC_Success:
1404           // A successful result means that either 1) that the statement doesn't
1405           // have the case and is skippable, or 2) does contain the case value
1406           // and also contains the break to exit the switch.  In the later case,
1407           // we just verify the rest of the statements are elidable.
1408           if (FoundCase) {
1409             // If we found the case and skipped declarations, we can't do the
1410             // optimization.
1411             if (HadSkippedDecl)
1412               return CSFC_Failure;
1413 
1414             for (++I; I != E; ++I)
1415               if (CodeGenFunction::ContainsLabel(*I, true))
1416                 return CSFC_Failure;
1417             return CSFC_Success;
1418           }
1419           break;
1420         case CSFC_FallThrough:
1421           // If we have a fallthrough condition, then we must have found the
1422           // case started to include statements.  Consider the rest of the
1423           // statements in the compound statement as candidates for inclusion.
1424           assert(FoundCase && "Didn't find case but returned fallthrough?");
1425           // We recursively found Case, so we're not looking for it anymore.
1426           Case = nullptr;
1427 
1428           // If we found the case and skipped declarations, we can't do the
1429           // optimization.
1430           if (HadSkippedDecl)
1431             return CSFC_Failure;
1432           break;
1433         }
1434       }
1435 
1436       if (!FoundCase)
1437         return CSFC_Success;
1438 
1439       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1440     }
1441 
1442     // If we have statements in our range, then we know that the statements are
1443     // live and need to be added to the set of statements we're tracking.
1444     bool AnyDecls = false;
1445     for (; I != E; ++I) {
1446       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1447 
1448       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1449       case CSFC_Failure: return CSFC_Failure;
1450       case CSFC_FallThrough:
1451         // A fallthrough result means that the statement was simple and just
1452         // included in ResultStmt, keep adding them afterwards.
1453         break;
1454       case CSFC_Success:
1455         // A successful result means that we found the break statement and
1456         // stopped statement inclusion.  We just ensure that any leftover stmts
1457         // are skippable and return success ourselves.
1458         for (++I; I != E; ++I)
1459           if (CodeGenFunction::ContainsLabel(*I, true))
1460             return CSFC_Failure;
1461         return CSFC_Success;
1462       }
1463     }
1464 
1465     // If we're about to fall out of a scope without hitting a 'break;', we
1466     // can't perform the optimization if there were any decls in that scope
1467     // (we'd lose their end-of-lifetime).
1468     if (AnyDecls) {
1469       // If the entire compound statement was live, there's one more thing we
1470       // can try before giving up: emit the whole thing as a single statement.
1471       // We can do that unless the statement contains a 'break;'.
1472       // FIXME: Such a break must be at the end of a construct within this one.
1473       // We could emit this by just ignoring the BreakStmts entirely.
1474       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1475         ResultStmts.resize(StartSize);
1476         ResultStmts.push_back(S);
1477       } else {
1478         return CSFC_Failure;
1479       }
1480     }
1481 
1482     return CSFC_FallThrough;
1483   }
1484 
1485   // Okay, this is some other statement that we don't handle explicitly, like a
1486   // for statement or increment etc.  If we are skipping over this statement,
1487   // just verify it doesn't have labels, which would make it invalid to elide.
1488   if (Case) {
1489     if (CodeGenFunction::ContainsLabel(S, true))
1490       return CSFC_Failure;
1491     return CSFC_Success;
1492   }
1493 
1494   // Otherwise, we want to include this statement.  Everything is cool with that
1495   // so long as it doesn't contain a break out of the switch we're in.
1496   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1497 
1498   // Otherwise, everything is great.  Include the statement and tell the caller
1499   // that we fall through and include the next statement as well.
1500   ResultStmts.push_back(S);
1501   return CSFC_FallThrough;
1502 }
1503 
1504 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1505 /// then invoke CollectStatementsForCase to find the list of statements to emit
1506 /// for a switch on constant.  See the comment above CollectStatementsForCase
1507 /// for more details.
1508 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1509                                        const llvm::APSInt &ConstantCondValue,
1510                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1511                                        ASTContext &C,
1512                                        const SwitchCase *&ResultCase) {
1513   // First step, find the switch case that is being branched to.  We can do this
1514   // efficiently by scanning the SwitchCase list.
1515   const SwitchCase *Case = S.getSwitchCaseList();
1516   const DefaultStmt *DefaultCase = nullptr;
1517 
1518   for (; Case; Case = Case->getNextSwitchCase()) {
1519     // It's either a default or case.  Just remember the default statement in
1520     // case we're not jumping to any numbered cases.
1521     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1522       DefaultCase = DS;
1523       continue;
1524     }
1525 
1526     // Check to see if this case is the one we're looking for.
1527     const CaseStmt *CS = cast<CaseStmt>(Case);
1528     // Don't handle case ranges yet.
1529     if (CS->getRHS()) return false;
1530 
1531     // If we found our case, remember it as 'case'.
1532     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1533       break;
1534   }
1535 
1536   // If we didn't find a matching case, we use a default if it exists, or we
1537   // elide the whole switch body!
1538   if (!Case) {
1539     // It is safe to elide the body of the switch if it doesn't contain labels
1540     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1541     if (!DefaultCase)
1542       return !CodeGenFunction::ContainsLabel(&S);
1543     Case = DefaultCase;
1544   }
1545 
1546   // Ok, we know which case is being jumped to, try to collect all the
1547   // statements that follow it.  This can fail for a variety of reasons.  Also,
1548   // check to see that the recursive walk actually found our case statement.
1549   // Insane cases like this can fail to find it in the recursive walk since we
1550   // don't handle every stmt kind:
1551   // switch (4) {
1552   //   while (1) {
1553   //     case 4: ...
1554   bool FoundCase = false;
1555   ResultCase = Case;
1556   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1557                                   ResultStmts) != CSFC_Failure &&
1558          FoundCase;
1559 }
1560 
1561 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1562   // Handle nested switch statements.
1563   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1564   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1565   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1566 
1567   // See if we can constant fold the condition of the switch and therefore only
1568   // emit the live case statement (if any) of the switch.
1569   llvm::APSInt ConstantCondValue;
1570   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1571     SmallVector<const Stmt*, 4> CaseStmts;
1572     const SwitchCase *Case = nullptr;
1573     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1574                                    getContext(), Case)) {
1575       if (Case)
1576         incrementProfileCounter(Case);
1577       RunCleanupsScope ExecutedScope(*this);
1578 
1579       if (S.getInit())
1580         EmitStmt(S.getInit());
1581 
1582       // Emit the condition variable if needed inside the entire cleanup scope
1583       // used by this special case for constant folded switches.
1584       if (S.getConditionVariable())
1585         EmitDecl(*S.getConditionVariable());
1586 
1587       // At this point, we are no longer "within" a switch instance, so
1588       // we can temporarily enforce this to ensure that any embedded case
1589       // statements are not emitted.
1590       SwitchInsn = nullptr;
1591 
1592       // Okay, we can dead code eliminate everything except this case.  Emit the
1593       // specified series of statements and we're good.
1594       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1595         EmitStmt(CaseStmts[i]);
1596       incrementProfileCounter(&S);
1597 
1598       // Now we want to restore the saved switch instance so that nested
1599       // switches continue to function properly
1600       SwitchInsn = SavedSwitchInsn;
1601 
1602       return;
1603     }
1604   }
1605 
1606   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1607 
1608   RunCleanupsScope ConditionScope(*this);
1609 
1610   if (S.getInit())
1611     EmitStmt(S.getInit());
1612 
1613   if (S.getConditionVariable())
1614     EmitDecl(*S.getConditionVariable());
1615   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1616 
1617   // Create basic block to hold stuff that comes after switch
1618   // statement. We also need to create a default block now so that
1619   // explicit case ranges tests can have a place to jump to on
1620   // failure.
1621   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1622   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1623   if (PGO.haveRegionCounts()) {
1624     // Walk the SwitchCase list to find how many there are.
1625     uint64_t DefaultCount = 0;
1626     unsigned NumCases = 0;
1627     for (const SwitchCase *Case = S.getSwitchCaseList();
1628          Case;
1629          Case = Case->getNextSwitchCase()) {
1630       if (isa<DefaultStmt>(Case))
1631         DefaultCount = getProfileCount(Case);
1632       NumCases += 1;
1633     }
1634     SwitchWeights = new SmallVector<uint64_t, 16>();
1635     SwitchWeights->reserve(NumCases);
1636     // The default needs to be first. We store the edge count, so we already
1637     // know the right weight.
1638     SwitchWeights->push_back(DefaultCount);
1639   }
1640   CaseRangeBlock = DefaultBlock;
1641 
1642   // Clear the insertion point to indicate we are in unreachable code.
1643   Builder.ClearInsertionPoint();
1644 
1645   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1646   // then reuse last ContinueBlock.
1647   JumpDest OuterContinue;
1648   if (!BreakContinueStack.empty())
1649     OuterContinue = BreakContinueStack.back().ContinueBlock;
1650 
1651   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1652 
1653   // Emit switch body.
1654   EmitStmt(S.getBody());
1655 
1656   BreakContinueStack.pop_back();
1657 
1658   // Update the default block in case explicit case range tests have
1659   // been chained on top.
1660   SwitchInsn->setDefaultDest(CaseRangeBlock);
1661 
1662   // If a default was never emitted:
1663   if (!DefaultBlock->getParent()) {
1664     // If we have cleanups, emit the default block so that there's a
1665     // place to jump through the cleanups from.
1666     if (ConditionScope.requiresCleanups()) {
1667       EmitBlock(DefaultBlock);
1668 
1669     // Otherwise, just forward the default block to the switch end.
1670     } else {
1671       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1672       delete DefaultBlock;
1673     }
1674   }
1675 
1676   ConditionScope.ForceCleanup();
1677 
1678   // Emit continuation.
1679   EmitBlock(SwitchExit.getBlock(), true);
1680   incrementProfileCounter(&S);
1681 
1682   // If the switch has a condition wrapped by __builtin_unpredictable,
1683   // create metadata that specifies that the switch is unpredictable.
1684   // Don't bother if not optimizing because that metadata would not be used.
1685   auto *Call = dyn_cast<CallExpr>(S.getCond());
1686   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1687     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1688     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1689       llvm::MDBuilder MDHelper(getLLVMContext());
1690       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1691                               MDHelper.createUnpredictable());
1692     }
1693   }
1694 
1695   if (SwitchWeights) {
1696     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1697            "switch weights do not match switch cases");
1698     // If there's only one jump destination there's no sense weighting it.
1699     if (SwitchWeights->size() > 1)
1700       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1701                               createProfileWeights(*SwitchWeights));
1702     delete SwitchWeights;
1703   }
1704   SwitchInsn = SavedSwitchInsn;
1705   SwitchWeights = SavedSwitchWeights;
1706   CaseRangeBlock = SavedCRBlock;
1707 }
1708 
1709 static std::string
1710 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1711                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1712   std::string Result;
1713 
1714   while (*Constraint) {
1715     switch (*Constraint) {
1716     default:
1717       Result += Target.convertConstraint(Constraint);
1718       break;
1719     // Ignore these
1720     case '*':
1721     case '?':
1722     case '!':
1723     case '=': // Will see this and the following in mult-alt constraints.
1724     case '+':
1725       break;
1726     case '#': // Ignore the rest of the constraint alternative.
1727       while (Constraint[1] && Constraint[1] != ',')
1728         Constraint++;
1729       break;
1730     case '&':
1731     case '%':
1732       Result += *Constraint;
1733       while (Constraint[1] && Constraint[1] == *Constraint)
1734         Constraint++;
1735       break;
1736     case ',':
1737       Result += "|";
1738       break;
1739     case 'g':
1740       Result += "imr";
1741       break;
1742     case '[': {
1743       assert(OutCons &&
1744              "Must pass output names to constraints with a symbolic name");
1745       unsigned Index;
1746       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1747       assert(result && "Could not resolve symbolic name"); (void)result;
1748       Result += llvm::utostr(Index);
1749       break;
1750     }
1751     }
1752 
1753     Constraint++;
1754   }
1755 
1756   return Result;
1757 }
1758 
1759 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1760 /// as using a particular register add that as a constraint that will be used
1761 /// in this asm stmt.
1762 static std::string
1763 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1764                        const TargetInfo &Target, CodeGenModule &CGM,
1765                        const AsmStmt &Stmt, const bool EarlyClobber) {
1766   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1767   if (!AsmDeclRef)
1768     return Constraint;
1769   const ValueDecl &Value = *AsmDeclRef->getDecl();
1770   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1771   if (!Variable)
1772     return Constraint;
1773   if (Variable->getStorageClass() != SC_Register)
1774     return Constraint;
1775   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1776   if (!Attr)
1777     return Constraint;
1778   StringRef Register = Attr->getLabel();
1779   assert(Target.isValidGCCRegisterName(Register));
1780   // We're using validateOutputConstraint here because we only care if
1781   // this is a register constraint.
1782   TargetInfo::ConstraintInfo Info(Constraint, "");
1783   if (Target.validateOutputConstraint(Info) &&
1784       !Info.allowsRegister()) {
1785     CGM.ErrorUnsupported(&Stmt, "__asm__");
1786     return Constraint;
1787   }
1788   // Canonicalize the register here before returning it.
1789   Register = Target.getNormalizedGCCRegisterName(Register);
1790   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1791 }
1792 
1793 llvm::Value*
1794 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1795                                     LValue InputValue, QualType InputType,
1796                                     std::string &ConstraintStr,
1797                                     SourceLocation Loc) {
1798   llvm::Value *Arg;
1799   if (Info.allowsRegister() || !Info.allowsMemory()) {
1800     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1801       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1802     } else {
1803       llvm::Type *Ty = ConvertType(InputType);
1804       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1805       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1806         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1807         Ty = llvm::PointerType::getUnqual(Ty);
1808 
1809         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1810                                                        Ty));
1811       } else {
1812         Arg = InputValue.getPointer();
1813         ConstraintStr += '*';
1814       }
1815     }
1816   } else {
1817     Arg = InputValue.getPointer();
1818     ConstraintStr += '*';
1819   }
1820 
1821   return Arg;
1822 }
1823 
1824 llvm::Value* CodeGenFunction::EmitAsmInput(
1825                                          const TargetInfo::ConstraintInfo &Info,
1826                                            const Expr *InputExpr,
1827                                            std::string &ConstraintStr) {
1828   // If this can't be a register or memory, i.e., has to be a constant
1829   // (immediate or symbolic), try to emit it as such.
1830   if (!Info.allowsRegister() && !Info.allowsMemory()) {
1831     if (Info.requiresImmediateConstant()) {
1832       llvm::APSInt AsmConst = InputExpr->EvaluateKnownConstInt(getContext());
1833       return llvm::ConstantInt::get(getLLVMContext(), AsmConst);
1834     }
1835 
1836     Expr::EvalResult Result;
1837     if (InputExpr->EvaluateAsInt(Result, getContext()))
1838       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
1839   }
1840 
1841   if (Info.allowsRegister() || !Info.allowsMemory())
1842     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1843       return EmitScalarExpr(InputExpr);
1844   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
1845     return EmitScalarExpr(InputExpr);
1846   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1847   LValue Dest = EmitLValue(InputExpr);
1848   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1849                             InputExpr->getExprLoc());
1850 }
1851 
1852 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1853 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1854 /// integers which are the source locations of the start of each line in the
1855 /// asm.
1856 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1857                                       CodeGenFunction &CGF) {
1858   SmallVector<llvm::Metadata *, 8> Locs;
1859   // Add the location of the first line to the MDNode.
1860   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1861       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
1862   StringRef StrVal = Str->getString();
1863   if (!StrVal.empty()) {
1864     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1865     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1866     unsigned StartToken = 0;
1867     unsigned ByteOffset = 0;
1868 
1869     // Add the location of the start of each subsequent line of the asm to the
1870     // MDNode.
1871     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
1872       if (StrVal[i] != '\n') continue;
1873       SourceLocation LineLoc = Str->getLocationOfByte(
1874           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
1875       Locs.push_back(llvm::ConstantAsMetadata::get(
1876           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1877     }
1878   }
1879 
1880   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1881 }
1882 
1883 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1884   // Assemble the final asm string.
1885   std::string AsmString = S.generateAsmString(getContext());
1886 
1887   // Get all the output and input constraints together.
1888   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1889   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1890 
1891   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1892     StringRef Name;
1893     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1894       Name = GAS->getOutputName(i);
1895     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1896     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1897     assert(IsValid && "Failed to parse output constraint");
1898     OutputConstraintInfos.push_back(Info);
1899   }
1900 
1901   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1902     StringRef Name;
1903     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1904       Name = GAS->getInputName(i);
1905     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1906     bool IsValid =
1907       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
1908     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1909     InputConstraintInfos.push_back(Info);
1910   }
1911 
1912   std::string Constraints;
1913 
1914   std::vector<LValue> ResultRegDests;
1915   std::vector<QualType> ResultRegQualTys;
1916   std::vector<llvm::Type *> ResultRegTypes;
1917   std::vector<llvm::Type *> ResultTruncRegTypes;
1918   std::vector<llvm::Type *> ArgTypes;
1919   std::vector<llvm::Value*> Args;
1920 
1921   // Keep track of inout constraints.
1922   std::string InOutConstraints;
1923   std::vector<llvm::Value*> InOutArgs;
1924   std::vector<llvm::Type*> InOutArgTypes;
1925 
1926   // An inline asm can be marked readonly if it meets the following conditions:
1927   //  - it doesn't have any sideeffects
1928   //  - it doesn't clobber memory
1929   //  - it doesn't return a value by-reference
1930   // It can be marked readnone if it doesn't have any input memory constraints
1931   // in addition to meeting the conditions listed above.
1932   bool ReadOnly = true, ReadNone = true;
1933 
1934   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1935     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1936 
1937     // Simplify the output constraint.
1938     std::string OutputConstraint(S.getOutputConstraint(i));
1939     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1940                                           getTarget(), &OutputConstraintInfos);
1941 
1942     const Expr *OutExpr = S.getOutputExpr(i);
1943     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1944 
1945     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1946                                               getTarget(), CGM, S,
1947                                               Info.earlyClobber());
1948 
1949     LValue Dest = EmitLValue(OutExpr);
1950     if (!Constraints.empty())
1951       Constraints += ',';
1952 
1953     // If this is a register output, then make the inline asm return it
1954     // by-value.  If this is a memory result, return the value by-reference.
1955     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1956       Constraints += "=" + OutputConstraint;
1957       ResultRegQualTys.push_back(OutExpr->getType());
1958       ResultRegDests.push_back(Dest);
1959       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1960       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1961 
1962       // If this output is tied to an input, and if the input is larger, then
1963       // we need to set the actual result type of the inline asm node to be the
1964       // same as the input type.
1965       if (Info.hasMatchingInput()) {
1966         unsigned InputNo;
1967         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1968           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1969           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1970             break;
1971         }
1972         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1973 
1974         QualType InputTy = S.getInputExpr(InputNo)->getType();
1975         QualType OutputType = OutExpr->getType();
1976 
1977         uint64_t InputSize = getContext().getTypeSize(InputTy);
1978         if (getContext().getTypeSize(OutputType) < InputSize) {
1979           // Form the asm to return the value as a larger integer or fp type.
1980           ResultRegTypes.back() = ConvertType(InputTy);
1981         }
1982       }
1983       if (llvm::Type* AdjTy =
1984             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1985                                                  ResultRegTypes.back()))
1986         ResultRegTypes.back() = AdjTy;
1987       else {
1988         CGM.getDiags().Report(S.getAsmLoc(),
1989                               diag::err_asm_invalid_type_in_input)
1990             << OutExpr->getType() << OutputConstraint;
1991       }
1992 
1993       // Update largest vector width for any vector types.
1994       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
1995         LargestVectorWidth = std::max(LargestVectorWidth,
1996                                       VT->getPrimitiveSizeInBits());
1997     } else {
1998       ArgTypes.push_back(Dest.getAddress().getType());
1999       Args.push_back(Dest.getPointer());
2000       Constraints += "=*";
2001       Constraints += OutputConstraint;
2002       ReadOnly = ReadNone = false;
2003     }
2004 
2005     if (Info.isReadWrite()) {
2006       InOutConstraints += ',';
2007 
2008       const Expr *InputExpr = S.getOutputExpr(i);
2009       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2010                                             InOutConstraints,
2011                                             InputExpr->getExprLoc());
2012 
2013       if (llvm::Type* AdjTy =
2014           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2015                                                Arg->getType()))
2016         Arg = Builder.CreateBitCast(Arg, AdjTy);
2017 
2018       // Update largest vector width for any vector types.
2019       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2020         LargestVectorWidth = std::max(LargestVectorWidth,
2021                                       VT->getPrimitiveSizeInBits());
2022       if (Info.allowsRegister())
2023         InOutConstraints += llvm::utostr(i);
2024       else
2025         InOutConstraints += OutputConstraint;
2026 
2027       InOutArgTypes.push_back(Arg->getType());
2028       InOutArgs.push_back(Arg);
2029     }
2030   }
2031 
2032   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2033   // to the return value slot. Only do this when returning in registers.
2034   if (isa<MSAsmStmt>(&S)) {
2035     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2036     if (RetAI.isDirect() || RetAI.isExtend()) {
2037       // Make a fake lvalue for the return value slot.
2038       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2039       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2040           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2041           ResultRegDests, AsmString, S.getNumOutputs());
2042       SawAsmBlock = true;
2043     }
2044   }
2045 
2046   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2047     const Expr *InputExpr = S.getInputExpr(i);
2048 
2049     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2050 
2051     if (Info.allowsMemory())
2052       ReadNone = false;
2053 
2054     if (!Constraints.empty())
2055       Constraints += ',';
2056 
2057     // Simplify the input constraint.
2058     std::string InputConstraint(S.getInputConstraint(i));
2059     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2060                                          &OutputConstraintInfos);
2061 
2062     InputConstraint = AddVariableConstraints(
2063         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2064         getTarget(), CGM, S, false /* No EarlyClobber */);
2065 
2066     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2067 
2068     // If this input argument is tied to a larger output result, extend the
2069     // input to be the same size as the output.  The LLVM backend wants to see
2070     // the input and output of a matching constraint be the same size.  Note
2071     // that GCC does not define what the top bits are here.  We use zext because
2072     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2073     if (Info.hasTiedOperand()) {
2074       unsigned Output = Info.getTiedOperand();
2075       QualType OutputType = S.getOutputExpr(Output)->getType();
2076       QualType InputTy = InputExpr->getType();
2077 
2078       if (getContext().getTypeSize(OutputType) >
2079           getContext().getTypeSize(InputTy)) {
2080         // Use ptrtoint as appropriate so that we can do our extension.
2081         if (isa<llvm::PointerType>(Arg->getType()))
2082           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2083         llvm::Type *OutputTy = ConvertType(OutputType);
2084         if (isa<llvm::IntegerType>(OutputTy))
2085           Arg = Builder.CreateZExt(Arg, OutputTy);
2086         else if (isa<llvm::PointerType>(OutputTy))
2087           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2088         else {
2089           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2090           Arg = Builder.CreateFPExt(Arg, OutputTy);
2091         }
2092       }
2093     }
2094     if (llvm::Type* AdjTy =
2095               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
2096                                                    Arg->getType()))
2097       Arg = Builder.CreateBitCast(Arg, AdjTy);
2098     else
2099       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2100           << InputExpr->getType() << InputConstraint;
2101 
2102     // Update largest vector width for any vector types.
2103     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2104       LargestVectorWidth = std::max(LargestVectorWidth,
2105                                     VT->getPrimitiveSizeInBits());
2106 
2107     ArgTypes.push_back(Arg->getType());
2108     Args.push_back(Arg);
2109     Constraints += InputConstraint;
2110   }
2111 
2112   // Append the "input" part of inout constraints last.
2113   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2114     ArgTypes.push_back(InOutArgTypes[i]);
2115     Args.push_back(InOutArgs[i]);
2116   }
2117   Constraints += InOutConstraints;
2118 
2119   // Clobbers
2120   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2121     StringRef Clobber = S.getClobber(i);
2122 
2123     if (Clobber == "memory")
2124       ReadOnly = ReadNone = false;
2125     else if (Clobber != "cc")
2126       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2127 
2128     if (!Constraints.empty())
2129       Constraints += ',';
2130 
2131     Constraints += "~{";
2132     Constraints += Clobber;
2133     Constraints += '}';
2134   }
2135 
2136   // Add machine specific clobbers
2137   std::string MachineClobbers = getTarget().getClobbers();
2138   if (!MachineClobbers.empty()) {
2139     if (!Constraints.empty())
2140       Constraints += ',';
2141     Constraints += MachineClobbers;
2142   }
2143 
2144   llvm::Type *ResultType;
2145   if (ResultRegTypes.empty())
2146     ResultType = VoidTy;
2147   else if (ResultRegTypes.size() == 1)
2148     ResultType = ResultRegTypes[0];
2149   else
2150     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2151 
2152   llvm::FunctionType *FTy =
2153     llvm::FunctionType::get(ResultType, ArgTypes, false);
2154 
2155   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2156   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2157     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2158   llvm::InlineAsm *IA =
2159     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2160                          /* IsAlignStack */ false, AsmDialect);
2161   llvm::CallInst *Result =
2162       Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2163   Result->addAttribute(llvm::AttributeList::FunctionIndex,
2164                        llvm::Attribute::NoUnwind);
2165 
2166   // Attach readnone and readonly attributes.
2167   if (!HasSideEffect) {
2168     if (ReadNone)
2169       Result->addAttribute(llvm::AttributeList::FunctionIndex,
2170                            llvm::Attribute::ReadNone);
2171     else if (ReadOnly)
2172       Result->addAttribute(llvm::AttributeList::FunctionIndex,
2173                            llvm::Attribute::ReadOnly);
2174   }
2175 
2176   // Slap the source location of the inline asm into a !srcloc metadata on the
2177   // call.
2178   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2179     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2180                                                    *this));
2181   } else {
2182     // At least put the line number on MS inline asm blobs.
2183     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2184     Result->setMetadata("srcloc",
2185                         llvm::MDNode::get(getLLVMContext(),
2186                                           llvm::ConstantAsMetadata::get(Loc)));
2187   }
2188 
2189   if (getLangOpts().assumeFunctionsAreConvergent()) {
2190     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2191     // convergent (meaning, they may call an intrinsically convergent op, such
2192     // as bar.sync, and so can't have certain optimizations applied around
2193     // them).
2194     Result->addAttribute(llvm::AttributeList::FunctionIndex,
2195                          llvm::Attribute::Convergent);
2196   }
2197 
2198   // Extract all of the register value results from the asm.
2199   std::vector<llvm::Value*> RegResults;
2200   if (ResultRegTypes.size() == 1) {
2201     RegResults.push_back(Result);
2202   } else {
2203     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2204       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2205       RegResults.push_back(Tmp);
2206     }
2207   }
2208 
2209   assert(RegResults.size() == ResultRegTypes.size());
2210   assert(RegResults.size() == ResultTruncRegTypes.size());
2211   assert(RegResults.size() == ResultRegDests.size());
2212   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2213     llvm::Value *Tmp = RegResults[i];
2214 
2215     // If the result type of the LLVM IR asm doesn't match the result type of
2216     // the expression, do the conversion.
2217     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2218       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2219 
2220       // Truncate the integer result to the right size, note that TruncTy can be
2221       // a pointer.
2222       if (TruncTy->isFloatingPointTy())
2223         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2224       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2225         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2226         Tmp = Builder.CreateTrunc(Tmp,
2227                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2228         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2229       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2230         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2231         Tmp = Builder.CreatePtrToInt(Tmp,
2232                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2233         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2234       } else if (TruncTy->isIntegerTy()) {
2235         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2236       } else if (TruncTy->isVectorTy()) {
2237         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2238       }
2239     }
2240 
2241     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2242   }
2243 }
2244 
2245 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2246   const RecordDecl *RD = S.getCapturedRecordDecl();
2247   QualType RecordTy = getContext().getRecordType(RD);
2248 
2249   // Initialize the captured struct.
2250   LValue SlotLV =
2251     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2252 
2253   RecordDecl::field_iterator CurField = RD->field_begin();
2254   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2255                                                  E = S.capture_init_end();
2256        I != E; ++I, ++CurField) {
2257     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2258     if (CurField->hasCapturedVLAType()) {
2259       auto VAT = CurField->getCapturedVLAType();
2260       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2261     } else {
2262       EmitInitializerForField(*CurField, LV, *I);
2263     }
2264   }
2265 
2266   return SlotLV;
2267 }
2268 
2269 /// Generate an outlined function for the body of a CapturedStmt, store any
2270 /// captured variables into the captured struct, and call the outlined function.
2271 llvm::Function *
2272 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2273   LValue CapStruct = InitCapturedStruct(S);
2274 
2275   // Emit the CapturedDecl
2276   CodeGenFunction CGF(CGM, true);
2277   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2278   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2279   delete CGF.CapturedStmtInfo;
2280 
2281   // Emit call to the helper function.
2282   EmitCallOrInvoke(F, CapStruct.getPointer());
2283 
2284   return F;
2285 }
2286 
2287 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2288   LValue CapStruct = InitCapturedStruct(S);
2289   return CapStruct.getAddress();
2290 }
2291 
2292 /// Creates the outlined function for a CapturedStmt.
2293 llvm::Function *
2294 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2295   assert(CapturedStmtInfo &&
2296     "CapturedStmtInfo should be set when generating the captured function");
2297   const CapturedDecl *CD = S.getCapturedDecl();
2298   const RecordDecl *RD = S.getCapturedRecordDecl();
2299   SourceLocation Loc = S.getBeginLoc();
2300   assert(CD->hasBody() && "missing CapturedDecl body");
2301 
2302   // Build the argument list.
2303   ASTContext &Ctx = CGM.getContext();
2304   FunctionArgList Args;
2305   Args.append(CD->param_begin(), CD->param_end());
2306 
2307   // Create the function declaration.
2308   const CGFunctionInfo &FuncInfo =
2309     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2310   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2311 
2312   llvm::Function *F =
2313     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2314                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2315   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2316   if (CD->isNothrow())
2317     F->addFnAttr(llvm::Attribute::NoUnwind);
2318 
2319   // Generate the function.
2320   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2321                 CD->getBody()->getBeginLoc());
2322   // Set the context parameter in CapturedStmtInfo.
2323   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2324   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2325 
2326   // Initialize variable-length arrays.
2327   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2328                                            Ctx.getTagDeclType(RD));
2329   for (auto *FD : RD->fields()) {
2330     if (FD->hasCapturedVLAType()) {
2331       auto *ExprArg =
2332           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2333               .getScalarVal();
2334       auto VAT = FD->getCapturedVLAType();
2335       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2336     }
2337   }
2338 
2339   // If 'this' is captured, load it into CXXThisValue.
2340   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2341     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2342     LValue ThisLValue = EmitLValueForField(Base, FD);
2343     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2344   }
2345 
2346   PGO.assignRegionCounters(GlobalDecl(CD), F);
2347   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2348   FinishFunction(CD->getBodyRBrace());
2349 
2350   return F;
2351 }
2352