1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Statement Emission
41 //===----------------------------------------------------------------------===//
42 
43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44   if (CGDebugInfo *DI = getDebugInfo()) {
45     SourceLocation Loc;
46     Loc = S->getBeginLoc();
47     DI->EmitLocation(Builder, Loc);
48 
49     LastStopPoint = Loc;
50   }
51 }
52 
53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54   assert(S && "Null statement?");
55   PGO.setCurrentStmt(S);
56 
57   // These statements have their own debug info handling.
58   if (EmitSimpleStmt(S, Attrs))
59     return;
60 
61   // Check if we are generating unreachable code.
62   if (!HaveInsertPoint()) {
63     // If so, and the statement doesn't contain a label, then we do not need to
64     // generate actual code. This is safe because (1) the current point is
65     // unreachable, so we don't need to execute the code, and (2) we've already
66     // handled the statements which update internal data structures (like the
67     // local variable map) which could be used by subsequent statements.
68     if (!ContainsLabel(S)) {
69       // Verify that any decl statements were handled as simple, they may be in
70       // scope of subsequent reachable statements.
71       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72       return;
73     }
74 
75     // Otherwise, make a new block to hold the code.
76     EnsureInsertPoint();
77   }
78 
79   // Generate a stoppoint if we are emitting debug info.
80   EmitStopPoint(S);
81 
82   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83   // enabled.
84   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86       EmitSimpleOMPExecutableDirective(*D);
87       return;
88     }
89   }
90 
91   switch (S->getStmtClass()) {
92   case Stmt::NoStmtClass:
93   case Stmt::CXXCatchStmtClass:
94   case Stmt::SEHExceptStmtClass:
95   case Stmt::SEHFinallyStmtClass:
96   case Stmt::MSDependentExistsStmtClass:
97     llvm_unreachable("invalid statement class to emit generically");
98   case Stmt::NullStmtClass:
99   case Stmt::CompoundStmtClass:
100   case Stmt::DeclStmtClass:
101   case Stmt::LabelStmtClass:
102   case Stmt::AttributedStmtClass:
103   case Stmt::GotoStmtClass:
104   case Stmt::BreakStmtClass:
105   case Stmt::ContinueStmtClass:
106   case Stmt::DefaultStmtClass:
107   case Stmt::CaseStmtClass:
108   case Stmt::SEHLeaveStmtClass:
109     llvm_unreachable("should have emitted these statements as simple");
110 
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114   case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116   {
117     // Remember the block we came in on.
118     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119     assert(incoming && "expression emission must have an insertion point");
120 
121     EmitIgnoredExpr(cast<Expr>(S));
122 
123     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124     assert(outgoing && "expression emission cleared block!");
125 
126     // The expression emitters assume (reasonably!) that the insertion
127     // point is always set.  To maintain that, the call-emission code
128     // for noreturn functions has to enter a new block with no
129     // predecessors.  We want to kill that block and mark the current
130     // insertion point unreachable in the common case of a call like
131     // "exit();".  Since expression emission doesn't otherwise create
132     // blocks with no predecessors, we can just test for that.
133     // However, we must be careful not to do this to our incoming
134     // block, because *statement* emission does sometimes create
135     // reachable blocks which will have no predecessors until later in
136     // the function.  This occurs with, e.g., labels that are not
137     // reachable by fallthrough.
138     if (incoming != outgoing && outgoing->use_empty()) {
139       outgoing->eraseFromParent();
140       Builder.ClearInsertionPoint();
141     }
142     break;
143   }
144 
145   case Stmt::IndirectGotoStmtClass:
146     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147 
148   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
149   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
151   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
152 
153   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
154 
155   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
156   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
157   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
158   case Stmt::CoroutineBodyStmtClass:
159     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160     break;
161   case Stmt::CoreturnStmtClass:
162     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163     break;
164   case Stmt::CapturedStmtClass: {
165     const CapturedStmt *CS = cast<CapturedStmt>(S);
166     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167     }
168     break;
169   case Stmt::ObjCAtTryStmtClass:
170     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171     break;
172   case Stmt::ObjCAtCatchStmtClass:
173     llvm_unreachable(
174                     "@catch statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtFinallyStmtClass:
176     llvm_unreachable(
177                   "@finally statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtThrowStmtClass:
179     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180     break;
181   case Stmt::ObjCAtSynchronizedStmtClass:
182     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183     break;
184   case Stmt::ObjCForCollectionStmtClass:
185     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186     break;
187   case Stmt::ObjCAutoreleasePoolStmtClass:
188     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189     break;
190 
191   case Stmt::CXXTryStmtClass:
192     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193     break;
194   case Stmt::CXXForRangeStmtClass:
195     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196     break;
197   case Stmt::SEHTryStmtClass:
198     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199     break;
200   case Stmt::OMPMetaDirectiveClass:
201     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202     break;
203   case Stmt::OMPCanonicalLoopClass:
204     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205     break;
206   case Stmt::OMPParallelDirectiveClass:
207     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208     break;
209   case Stmt::OMPSimdDirectiveClass:
210     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211     break;
212   case Stmt::OMPTileDirectiveClass:
213     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214     break;
215   case Stmt::OMPUnrollDirectiveClass:
216     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217     break;
218   case Stmt::OMPForDirectiveClass:
219     EmitOMPForDirective(cast<OMPForDirective>(*S));
220     break;
221   case Stmt::OMPForSimdDirectiveClass:
222     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223     break;
224   case Stmt::OMPSectionsDirectiveClass:
225     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226     break;
227   case Stmt::OMPSectionDirectiveClass:
228     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229     break;
230   case Stmt::OMPSingleDirectiveClass:
231     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232     break;
233   case Stmt::OMPMasterDirectiveClass:
234     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235     break;
236   case Stmt::OMPCriticalDirectiveClass:
237     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238     break;
239   case Stmt::OMPParallelForDirectiveClass:
240     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241     break;
242   case Stmt::OMPParallelForSimdDirectiveClass:
243     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244     break;
245   case Stmt::OMPParallelMasterDirectiveClass:
246     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247     break;
248   case Stmt::OMPParallelSectionsDirectiveClass:
249     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250     break;
251   case Stmt::OMPTaskDirectiveClass:
252     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253     break;
254   case Stmt::OMPTaskyieldDirectiveClass:
255     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256     break;
257   case Stmt::OMPBarrierDirectiveClass:
258     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259     break;
260   case Stmt::OMPTaskwaitDirectiveClass:
261     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262     break;
263   case Stmt::OMPTaskgroupDirectiveClass:
264     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265     break;
266   case Stmt::OMPFlushDirectiveClass:
267     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268     break;
269   case Stmt::OMPDepobjDirectiveClass:
270     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271     break;
272   case Stmt::OMPScanDirectiveClass:
273     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274     break;
275   case Stmt::OMPOrderedDirectiveClass:
276     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277     break;
278   case Stmt::OMPAtomicDirectiveClass:
279     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280     break;
281   case Stmt::OMPTargetDirectiveClass:
282     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283     break;
284   case Stmt::OMPTeamsDirectiveClass:
285     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286     break;
287   case Stmt::OMPCancellationPointDirectiveClass:
288     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289     break;
290   case Stmt::OMPCancelDirectiveClass:
291     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292     break;
293   case Stmt::OMPTargetDataDirectiveClass:
294     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295     break;
296   case Stmt::OMPTargetEnterDataDirectiveClass:
297     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298     break;
299   case Stmt::OMPTargetExitDataDirectiveClass:
300     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetParallelDirectiveClass:
303     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForDirectiveClass:
306     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307     break;
308   case Stmt::OMPTaskLoopDirectiveClass:
309     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310     break;
311   case Stmt::OMPTaskLoopSimdDirectiveClass:
312     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPMasterTaskLoopDirectiveClass:
315     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
318     EmitOMPMasterTaskLoopSimdDirective(
319         cast<OMPMasterTaskLoopSimdDirective>(*S));
320     break;
321   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
322     EmitOMPParallelMasterTaskLoopDirective(
323         cast<OMPParallelMasterTaskLoopDirective>(*S));
324     break;
325   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
326     EmitOMPParallelMasterTaskLoopSimdDirective(
327         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
328     break;
329   case Stmt::OMPDistributeDirectiveClass:
330     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
331     break;
332   case Stmt::OMPTargetUpdateDirectiveClass:
333     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
334     break;
335   case Stmt::OMPDistributeParallelForDirectiveClass:
336     EmitOMPDistributeParallelForDirective(
337         cast<OMPDistributeParallelForDirective>(*S));
338     break;
339   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
340     EmitOMPDistributeParallelForSimdDirective(
341         cast<OMPDistributeParallelForSimdDirective>(*S));
342     break;
343   case Stmt::OMPDistributeSimdDirectiveClass:
344     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
345     break;
346   case Stmt::OMPTargetParallelForSimdDirectiveClass:
347     EmitOMPTargetParallelForSimdDirective(
348         cast<OMPTargetParallelForSimdDirective>(*S));
349     break;
350   case Stmt::OMPTargetSimdDirectiveClass:
351     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
352     break;
353   case Stmt::OMPTeamsDistributeDirectiveClass:
354     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
355     break;
356   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
357     EmitOMPTeamsDistributeSimdDirective(
358         cast<OMPTeamsDistributeSimdDirective>(*S));
359     break;
360   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
361     EmitOMPTeamsDistributeParallelForSimdDirective(
362         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
363     break;
364   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
365     EmitOMPTeamsDistributeParallelForDirective(
366         cast<OMPTeamsDistributeParallelForDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDirectiveClass:
369     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
370     break;
371   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
372     EmitOMPTargetTeamsDistributeDirective(
373         cast<OMPTargetTeamsDistributeDirective>(*S));
374     break;
375   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
376     EmitOMPTargetTeamsDistributeParallelForDirective(
377         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
378     break;
379   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
380     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
381         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
382     break;
383   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
384     EmitOMPTargetTeamsDistributeSimdDirective(
385         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
386     break;
387   case Stmt::OMPInteropDirectiveClass:
388     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
389     break;
390   case Stmt::OMPDispatchDirectiveClass:
391     llvm_unreachable("Dispatch directive not supported yet.");
392     break;
393   case Stmt::OMPMaskedDirectiveClass:
394     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
395     break;
396   case Stmt::OMPGenericLoopDirectiveClass:
397     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
398     break;
399   case Stmt::OMPTeamsGenericLoopDirectiveClass:
400     llvm_unreachable("teams loop directive not supported yet.");
401     break;
402   case Stmt::OMPTargetTeamsGenericLoopDirectiveClass:
403     llvm_unreachable("target teams loop directive not supported yet.");
404     break;
405   case Stmt::OMPParallelGenericLoopDirectiveClass:
406     llvm_unreachable("parallel loop directive not supported yet.");
407     break;
408   }
409 }
410 
411 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
412                                      ArrayRef<const Attr *> Attrs) {
413   switch (S->getStmtClass()) {
414   default:
415     return false;
416   case Stmt::NullStmtClass:
417     break;
418   case Stmt::CompoundStmtClass:
419     EmitCompoundStmt(cast<CompoundStmt>(*S));
420     break;
421   case Stmt::DeclStmtClass:
422     EmitDeclStmt(cast<DeclStmt>(*S));
423     break;
424   case Stmt::LabelStmtClass:
425     EmitLabelStmt(cast<LabelStmt>(*S));
426     break;
427   case Stmt::AttributedStmtClass:
428     EmitAttributedStmt(cast<AttributedStmt>(*S));
429     break;
430   case Stmt::GotoStmtClass:
431     EmitGotoStmt(cast<GotoStmt>(*S));
432     break;
433   case Stmt::BreakStmtClass:
434     EmitBreakStmt(cast<BreakStmt>(*S));
435     break;
436   case Stmt::ContinueStmtClass:
437     EmitContinueStmt(cast<ContinueStmt>(*S));
438     break;
439   case Stmt::DefaultStmtClass:
440     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
441     break;
442   case Stmt::CaseStmtClass:
443     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
444     break;
445   case Stmt::SEHLeaveStmtClass:
446     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
447     break;
448   }
449   return true;
450 }
451 
452 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
453 /// this captures the expression result of the last sub-statement and returns it
454 /// (for use by the statement expression extension).
455 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
456                                           AggValueSlot AggSlot) {
457   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
458                              "LLVM IR generation of compound statement ('{}')");
459 
460   // Keep track of the current cleanup stack depth, including debug scopes.
461   LexicalScope Scope(*this, S.getSourceRange());
462 
463   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
464 }
465 
466 Address
467 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
468                                               bool GetLast,
469                                               AggValueSlot AggSlot) {
470 
471   const Stmt *ExprResult = S.getStmtExprResult();
472   assert((!GetLast || (GetLast && ExprResult)) &&
473          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
474 
475   Address RetAlloca = Address::invalid();
476 
477   for (auto *CurStmt : S.body()) {
478     if (GetLast && ExprResult == CurStmt) {
479       // We have to special case labels here.  They are statements, but when put
480       // at the end of a statement expression, they yield the value of their
481       // subexpression.  Handle this by walking through all labels we encounter,
482       // emitting them before we evaluate the subexpr.
483       // Similar issues arise for attributed statements.
484       while (!isa<Expr>(ExprResult)) {
485         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
486           EmitLabel(LS->getDecl());
487           ExprResult = LS->getSubStmt();
488         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
489           // FIXME: Update this if we ever have attributes that affect the
490           // semantics of an expression.
491           ExprResult = AS->getSubStmt();
492         } else {
493           llvm_unreachable("unknown value statement");
494         }
495       }
496 
497       EnsureInsertPoint();
498 
499       const Expr *E = cast<Expr>(ExprResult);
500       QualType ExprTy = E->getType();
501       if (hasAggregateEvaluationKind(ExprTy)) {
502         EmitAggExpr(E, AggSlot);
503       } else {
504         // We can't return an RValue here because there might be cleanups at
505         // the end of the StmtExpr.  Because of that, we have to emit the result
506         // here into a temporary alloca.
507         RetAlloca = CreateMemTemp(ExprTy);
508         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
509                          /*IsInit*/ false);
510       }
511     } else {
512       EmitStmt(CurStmt);
513     }
514   }
515 
516   return RetAlloca;
517 }
518 
519 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
520   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
521 
522   // If there is a cleanup stack, then we it isn't worth trying to
523   // simplify this block (we would need to remove it from the scope map
524   // and cleanup entry).
525   if (!EHStack.empty())
526     return;
527 
528   // Can only simplify direct branches.
529   if (!BI || !BI->isUnconditional())
530     return;
531 
532   // Can only simplify empty blocks.
533   if (BI->getIterator() != BB->begin())
534     return;
535 
536   BB->replaceAllUsesWith(BI->getSuccessor(0));
537   BI->eraseFromParent();
538   BB->eraseFromParent();
539 }
540 
541 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
542   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
543 
544   // Fall out of the current block (if necessary).
545   EmitBranch(BB);
546 
547   if (IsFinished && BB->use_empty()) {
548     delete BB;
549     return;
550   }
551 
552   // Place the block after the current block, if possible, or else at
553   // the end of the function.
554   if (CurBB && CurBB->getParent())
555     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
556   else
557     CurFn->getBasicBlockList().push_back(BB);
558   Builder.SetInsertPoint(BB);
559 }
560 
561 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
562   // Emit a branch from the current block to the target one if this
563   // was a real block.  If this was just a fall-through block after a
564   // terminator, don't emit it.
565   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
566 
567   if (!CurBB || CurBB->getTerminator()) {
568     // If there is no insert point or the previous block is already
569     // terminated, don't touch it.
570   } else {
571     // Otherwise, create a fall-through branch.
572     Builder.CreateBr(Target);
573   }
574 
575   Builder.ClearInsertionPoint();
576 }
577 
578 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
579   bool inserted = false;
580   for (llvm::User *u : block->users()) {
581     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
582       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
583                                              block);
584       inserted = true;
585       break;
586     }
587   }
588 
589   if (!inserted)
590     CurFn->getBasicBlockList().push_back(block);
591 
592   Builder.SetInsertPoint(block);
593 }
594 
595 CodeGenFunction::JumpDest
596 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
597   JumpDest &Dest = LabelMap[D];
598   if (Dest.isValid()) return Dest;
599 
600   // Create, but don't insert, the new block.
601   Dest = JumpDest(createBasicBlock(D->getName()),
602                   EHScopeStack::stable_iterator::invalid(),
603                   NextCleanupDestIndex++);
604   return Dest;
605 }
606 
607 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
608   // Add this label to the current lexical scope if we're within any
609   // normal cleanups.  Jumps "in" to this label --- when permitted by
610   // the language --- may need to be routed around such cleanups.
611   if (EHStack.hasNormalCleanups() && CurLexicalScope)
612     CurLexicalScope->addLabel(D);
613 
614   JumpDest &Dest = LabelMap[D];
615 
616   // If we didn't need a forward reference to this label, just go
617   // ahead and create a destination at the current scope.
618   if (!Dest.isValid()) {
619     Dest = getJumpDestInCurrentScope(D->getName());
620 
621   // Otherwise, we need to give this label a target depth and remove
622   // it from the branch-fixups list.
623   } else {
624     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
625     Dest.setScopeDepth(EHStack.stable_begin());
626     ResolveBranchFixups(Dest.getBlock());
627   }
628 
629   EmitBlock(Dest.getBlock());
630 
631   // Emit debug info for labels.
632   if (CGDebugInfo *DI = getDebugInfo()) {
633     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
634       DI->setLocation(D->getLocation());
635       DI->EmitLabel(D, Builder);
636     }
637   }
638 
639   incrementProfileCounter(D->getStmt());
640 }
641 
642 /// Change the cleanup scope of the labels in this lexical scope to
643 /// match the scope of the enclosing context.
644 void CodeGenFunction::LexicalScope::rescopeLabels() {
645   assert(!Labels.empty());
646   EHScopeStack::stable_iterator innermostScope
647     = CGF.EHStack.getInnermostNormalCleanup();
648 
649   // Change the scope depth of all the labels.
650   for (SmallVectorImpl<const LabelDecl*>::const_iterator
651          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
652     assert(CGF.LabelMap.count(*i));
653     JumpDest &dest = CGF.LabelMap.find(*i)->second;
654     assert(dest.getScopeDepth().isValid());
655     assert(innermostScope.encloses(dest.getScopeDepth()));
656     dest.setScopeDepth(innermostScope);
657   }
658 
659   // Reparent the labels if the new scope also has cleanups.
660   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
661     ParentScope->Labels.append(Labels.begin(), Labels.end());
662   }
663 }
664 
665 
666 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
667   EmitLabel(S.getDecl());
668 
669   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
670   if (getLangOpts().EHAsynch && S.isSideEntry())
671     EmitSehCppScopeBegin();
672 
673   EmitStmt(S.getSubStmt());
674 }
675 
676 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
677   bool nomerge = false;
678   bool noinline = false;
679   bool alwaysinline = false;
680   const CallExpr *musttail = nullptr;
681 
682   for (const auto *A : S.getAttrs()) {
683     switch (A->getKind()) {
684     default:
685       break;
686     case attr::NoMerge:
687       nomerge = true;
688       break;
689     case attr::NoInline:
690       noinline = true;
691       break;
692     case attr::AlwaysInline:
693       alwaysinline = true;
694       break;
695     case attr::MustTail:
696       const Stmt *Sub = S.getSubStmt();
697       const ReturnStmt *R = cast<ReturnStmt>(Sub);
698       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
699       break;
700     }
701   }
702   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
703   SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline);
704   SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt,
705                                          alwaysinline);
706   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
707   EmitStmt(S.getSubStmt(), S.getAttrs());
708 }
709 
710 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
711   // If this code is reachable then emit a stop point (if generating
712   // debug info). We have to do this ourselves because we are on the
713   // "simple" statement path.
714   if (HaveInsertPoint())
715     EmitStopPoint(&S);
716 
717   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
718 }
719 
720 
721 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
722   if (const LabelDecl *Target = S.getConstantTarget()) {
723     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
724     return;
725   }
726 
727   // Ensure that we have an i8* for our PHI node.
728   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
729                                          Int8PtrTy, "addr");
730   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
731 
732   // Get the basic block for the indirect goto.
733   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
734 
735   // The first instruction in the block has to be the PHI for the switch dest,
736   // add an entry for this branch.
737   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
738 
739   EmitBranch(IndGotoBB);
740 }
741 
742 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
743   // The else branch of a consteval if statement is always the only branch that
744   // can be runtime evaluated.
745   if (S.isConsteval()) {
746     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
747     if (Executed) {
748       RunCleanupsScope ExecutedScope(*this);
749       EmitStmt(Executed);
750     }
751     return;
752   }
753 
754   // C99 6.8.4.1: The first substatement is executed if the expression compares
755   // unequal to 0.  The condition must be a scalar type.
756   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
757 
758   if (S.getInit())
759     EmitStmt(S.getInit());
760 
761   if (S.getConditionVariable())
762     EmitDecl(*S.getConditionVariable());
763 
764   // If the condition constant folds and can be elided, try to avoid emitting
765   // the condition and the dead arm of the if/else.
766   bool CondConstant;
767   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
768                                    S.isConstexpr())) {
769     // Figure out which block (then or else) is executed.
770     const Stmt *Executed = S.getThen();
771     const Stmt *Skipped  = S.getElse();
772     if (!CondConstant)  // Condition false?
773       std::swap(Executed, Skipped);
774 
775     // If the skipped block has no labels in it, just emit the executed block.
776     // This avoids emitting dead code and simplifies the CFG substantially.
777     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
778       if (CondConstant)
779         incrementProfileCounter(&S);
780       if (Executed) {
781         RunCleanupsScope ExecutedScope(*this);
782         EmitStmt(Executed);
783       }
784       return;
785     }
786   }
787 
788   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
789   // the conditional branch.
790   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
791   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
792   llvm::BasicBlock *ElseBlock = ContBlock;
793   if (S.getElse())
794     ElseBlock = createBasicBlock("if.else");
795 
796   // Prefer the PGO based weights over the likelihood attribute.
797   // When the build isn't optimized the metadata isn't used, so don't generate
798   // it.
799   Stmt::Likelihood LH = Stmt::LH_None;
800   uint64_t Count = getProfileCount(S.getThen());
801   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
802     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
803   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
804 
805   // Emit the 'then' code.
806   EmitBlock(ThenBlock);
807   incrementProfileCounter(&S);
808   {
809     RunCleanupsScope ThenScope(*this);
810     EmitStmt(S.getThen());
811   }
812   EmitBranch(ContBlock);
813 
814   // Emit the 'else' code if present.
815   if (const Stmt *Else = S.getElse()) {
816     {
817       // There is no need to emit line number for an unconditional branch.
818       auto NL = ApplyDebugLocation::CreateEmpty(*this);
819       EmitBlock(ElseBlock);
820     }
821     {
822       RunCleanupsScope ElseScope(*this);
823       EmitStmt(Else);
824     }
825     {
826       // There is no need to emit line number for an unconditional branch.
827       auto NL = ApplyDebugLocation::CreateEmpty(*this);
828       EmitBranch(ContBlock);
829     }
830   }
831 
832   // Emit the continuation block for code after the if.
833   EmitBlock(ContBlock, true);
834 }
835 
836 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
837                                     ArrayRef<const Attr *> WhileAttrs) {
838   // Emit the header for the loop, which will also become
839   // the continue target.
840   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
841   EmitBlock(LoopHeader.getBlock());
842 
843   // Create an exit block for when the condition fails, which will
844   // also become the break target.
845   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
846 
847   // Store the blocks to use for break and continue.
848   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
849 
850   // C++ [stmt.while]p2:
851   //   When the condition of a while statement is a declaration, the
852   //   scope of the variable that is declared extends from its point
853   //   of declaration (3.3.2) to the end of the while statement.
854   //   [...]
855   //   The object created in a condition is destroyed and created
856   //   with each iteration of the loop.
857   RunCleanupsScope ConditionScope(*this);
858 
859   if (S.getConditionVariable())
860     EmitDecl(*S.getConditionVariable());
861 
862   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
863   // evaluation of the controlling expression takes place before each
864   // execution of the loop body.
865   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
866 
867   // while(1) is common, avoid extra exit blocks.  Be sure
868   // to correctly handle break/continue though.
869   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
870   bool CondIsConstInt = C != nullptr;
871   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
872   const SourceRange &R = S.getSourceRange();
873   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
874                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
875                  SourceLocToDebugLoc(R.getEnd()),
876                  checkIfLoopMustProgress(CondIsConstInt));
877 
878   // As long as the condition is true, go to the loop body.
879   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
880   if (EmitBoolCondBranch) {
881     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
882     if (ConditionScope.requiresCleanups())
883       ExitBlock = createBasicBlock("while.exit");
884     llvm::MDNode *Weights =
885         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
886     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
887       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
888           BoolCondVal, Stmt::getLikelihood(S.getBody()));
889     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
890 
891     if (ExitBlock != LoopExit.getBlock()) {
892       EmitBlock(ExitBlock);
893       EmitBranchThroughCleanup(LoopExit);
894     }
895   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
896     CGM.getDiags().Report(A->getLocation(),
897                           diag::warn_attribute_has_no_effect_on_infinite_loop)
898         << A << A->getRange();
899     CGM.getDiags().Report(
900         S.getWhileLoc(),
901         diag::note_attribute_has_no_effect_on_infinite_loop_here)
902         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
903   }
904 
905   // Emit the loop body.  We have to emit this in a cleanup scope
906   // because it might be a singleton DeclStmt.
907   {
908     RunCleanupsScope BodyScope(*this);
909     EmitBlock(LoopBody);
910     incrementProfileCounter(&S);
911     EmitStmt(S.getBody());
912   }
913 
914   BreakContinueStack.pop_back();
915 
916   // Immediately force cleanup.
917   ConditionScope.ForceCleanup();
918 
919   EmitStopPoint(&S);
920   // Branch to the loop header again.
921   EmitBranch(LoopHeader.getBlock());
922 
923   LoopStack.pop();
924 
925   // Emit the exit block.
926   EmitBlock(LoopExit.getBlock(), true);
927 
928   // The LoopHeader typically is just a branch if we skipped emitting
929   // a branch, try to erase it.
930   if (!EmitBoolCondBranch)
931     SimplifyForwardingBlocks(LoopHeader.getBlock());
932 }
933 
934 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
935                                  ArrayRef<const Attr *> DoAttrs) {
936   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
937   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
938 
939   uint64_t ParentCount = getCurrentProfileCount();
940 
941   // Store the blocks to use for break and continue.
942   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
943 
944   // Emit the body of the loop.
945   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
946 
947   EmitBlockWithFallThrough(LoopBody, &S);
948   {
949     RunCleanupsScope BodyScope(*this);
950     EmitStmt(S.getBody());
951   }
952 
953   EmitBlock(LoopCond.getBlock());
954 
955   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
956   // after each execution of the loop body."
957 
958   // Evaluate the conditional in the while header.
959   // C99 6.8.5p2/p4: The first substatement is executed if the expression
960   // compares unequal to 0.  The condition must be a scalar type.
961   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
962 
963   BreakContinueStack.pop_back();
964 
965   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
966   // to correctly handle break/continue though.
967   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
968   bool CondIsConstInt = C;
969   bool EmitBoolCondBranch = !C || !C->isZero();
970 
971   const SourceRange &R = S.getSourceRange();
972   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
973                  SourceLocToDebugLoc(R.getBegin()),
974                  SourceLocToDebugLoc(R.getEnd()),
975                  checkIfLoopMustProgress(CondIsConstInt));
976 
977   // As long as the condition is true, iterate the loop.
978   if (EmitBoolCondBranch) {
979     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
980     Builder.CreateCondBr(
981         BoolCondVal, LoopBody, LoopExit.getBlock(),
982         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
983   }
984 
985   LoopStack.pop();
986 
987   // Emit the exit block.
988   EmitBlock(LoopExit.getBlock());
989 
990   // The DoCond block typically is just a branch if we skipped
991   // emitting a branch, try to erase it.
992   if (!EmitBoolCondBranch)
993     SimplifyForwardingBlocks(LoopCond.getBlock());
994 }
995 
996 void CodeGenFunction::EmitForStmt(const ForStmt &S,
997                                   ArrayRef<const Attr *> ForAttrs) {
998   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
999 
1000   LexicalScope ForScope(*this, S.getSourceRange());
1001 
1002   // Evaluate the first part before the loop.
1003   if (S.getInit())
1004     EmitStmt(S.getInit());
1005 
1006   // Start the loop with a block that tests the condition.
1007   // If there's an increment, the continue scope will be overwritten
1008   // later.
1009   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1010   llvm::BasicBlock *CondBlock = CondDest.getBlock();
1011   EmitBlock(CondBlock);
1012 
1013   Expr::EvalResult Result;
1014   bool CondIsConstInt =
1015       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1016 
1017   const SourceRange &R = S.getSourceRange();
1018   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1019                  SourceLocToDebugLoc(R.getBegin()),
1020                  SourceLocToDebugLoc(R.getEnd()),
1021                  checkIfLoopMustProgress(CondIsConstInt));
1022 
1023   // Create a cleanup scope for the condition variable cleanups.
1024   LexicalScope ConditionScope(*this, S.getSourceRange());
1025 
1026   // If the for loop doesn't have an increment we can just use the condition as
1027   // the continue block. Otherwise, if there is no condition variable, we can
1028   // form the continue block now. If there is a condition variable, we can't
1029   // form the continue block until after we've emitted the condition, because
1030   // the condition is in scope in the increment, but Sema's jump diagnostics
1031   // ensure that there are no continues from the condition variable that jump
1032   // to the loop increment.
1033   JumpDest Continue;
1034   if (!S.getInc())
1035     Continue = CondDest;
1036   else if (!S.getConditionVariable())
1037     Continue = getJumpDestInCurrentScope("for.inc");
1038   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1039 
1040   if (S.getCond()) {
1041     // If the for statement has a condition scope, emit the local variable
1042     // declaration.
1043     if (S.getConditionVariable()) {
1044       EmitDecl(*S.getConditionVariable());
1045 
1046       // We have entered the condition variable's scope, so we're now able to
1047       // jump to the continue block.
1048       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1049       BreakContinueStack.back().ContinueBlock = Continue;
1050     }
1051 
1052     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1053     // If there are any cleanups between here and the loop-exit scope,
1054     // create a block to stage a loop exit along.
1055     if (ForScope.requiresCleanups())
1056       ExitBlock = createBasicBlock("for.cond.cleanup");
1057 
1058     // As long as the condition is true, iterate the loop.
1059     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1060 
1061     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1062     // compares unequal to 0.  The condition must be a scalar type.
1063     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1064     llvm::MDNode *Weights =
1065         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1066     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1067       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1068           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1069 
1070     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1071 
1072     if (ExitBlock != LoopExit.getBlock()) {
1073       EmitBlock(ExitBlock);
1074       EmitBranchThroughCleanup(LoopExit);
1075     }
1076 
1077     EmitBlock(ForBody);
1078   } else {
1079     // Treat it as a non-zero constant.  Don't even create a new block for the
1080     // body, just fall into it.
1081   }
1082   incrementProfileCounter(&S);
1083 
1084   {
1085     // Create a separate cleanup scope for the body, in case it is not
1086     // a compound statement.
1087     RunCleanupsScope BodyScope(*this);
1088     EmitStmt(S.getBody());
1089   }
1090 
1091   // If there is an increment, emit it next.
1092   if (S.getInc()) {
1093     EmitBlock(Continue.getBlock());
1094     EmitStmt(S.getInc());
1095   }
1096 
1097   BreakContinueStack.pop_back();
1098 
1099   ConditionScope.ForceCleanup();
1100 
1101   EmitStopPoint(&S);
1102   EmitBranch(CondBlock);
1103 
1104   ForScope.ForceCleanup();
1105 
1106   LoopStack.pop();
1107 
1108   // Emit the fall-through block.
1109   EmitBlock(LoopExit.getBlock(), true);
1110 }
1111 
1112 void
1113 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1114                                      ArrayRef<const Attr *> ForAttrs) {
1115   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1116 
1117   LexicalScope ForScope(*this, S.getSourceRange());
1118 
1119   // Evaluate the first pieces before the loop.
1120   if (S.getInit())
1121     EmitStmt(S.getInit());
1122   EmitStmt(S.getRangeStmt());
1123   EmitStmt(S.getBeginStmt());
1124   EmitStmt(S.getEndStmt());
1125 
1126   // Start the loop with a block that tests the condition.
1127   // If there's an increment, the continue scope will be overwritten
1128   // later.
1129   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1130   EmitBlock(CondBlock);
1131 
1132   const SourceRange &R = S.getSourceRange();
1133   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1134                  SourceLocToDebugLoc(R.getBegin()),
1135                  SourceLocToDebugLoc(R.getEnd()));
1136 
1137   // If there are any cleanups between here and the loop-exit scope,
1138   // create a block to stage a loop exit along.
1139   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1140   if (ForScope.requiresCleanups())
1141     ExitBlock = createBasicBlock("for.cond.cleanup");
1142 
1143   // The loop body, consisting of the specified body and the loop variable.
1144   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1145 
1146   // The body is executed if the expression, contextually converted
1147   // to bool, is true.
1148   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1149   llvm::MDNode *Weights =
1150       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1151   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1152     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1153         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1154   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1155 
1156   if (ExitBlock != LoopExit.getBlock()) {
1157     EmitBlock(ExitBlock);
1158     EmitBranchThroughCleanup(LoopExit);
1159   }
1160 
1161   EmitBlock(ForBody);
1162   incrementProfileCounter(&S);
1163 
1164   // Create a block for the increment. In case of a 'continue', we jump there.
1165   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1166 
1167   // Store the blocks to use for break and continue.
1168   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1169 
1170   {
1171     // Create a separate cleanup scope for the loop variable and body.
1172     LexicalScope BodyScope(*this, S.getSourceRange());
1173     EmitStmt(S.getLoopVarStmt());
1174     EmitStmt(S.getBody());
1175   }
1176 
1177   EmitStopPoint(&S);
1178   // If there is an increment, emit it next.
1179   EmitBlock(Continue.getBlock());
1180   EmitStmt(S.getInc());
1181 
1182   BreakContinueStack.pop_back();
1183 
1184   EmitBranch(CondBlock);
1185 
1186   ForScope.ForceCleanup();
1187 
1188   LoopStack.pop();
1189 
1190   // Emit the fall-through block.
1191   EmitBlock(LoopExit.getBlock(), true);
1192 }
1193 
1194 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1195   if (RV.isScalar()) {
1196     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1197   } else if (RV.isAggregate()) {
1198     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1199     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1200     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1201   } else {
1202     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1203                        /*init*/ true);
1204   }
1205   EmitBranchThroughCleanup(ReturnBlock);
1206 }
1207 
1208 namespace {
1209 // RAII struct used to save and restore a return statment's result expression.
1210 struct SaveRetExprRAII {
1211   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1212       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1213     CGF.RetExpr = RetExpr;
1214   }
1215   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1216   const Expr *OldRetExpr;
1217   CodeGenFunction &CGF;
1218 };
1219 } // namespace
1220 
1221 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1222 /// codegen it as 'tail call ...; ret void;'.
1223 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1224                                      const CGFunctionInfo *CurFnInfo) {
1225   auto calleeQualType = CE->getCallee()->getType();
1226   const FunctionType *calleeType = nullptr;
1227   if (calleeQualType->isFunctionPointerType() ||
1228       calleeQualType->isFunctionReferenceType() ||
1229       calleeQualType->isBlockPointerType() ||
1230       calleeQualType->isMemberFunctionPointerType()) {
1231     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1232   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1233     calleeType = ty;
1234   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1235     if (auto methodDecl = CMCE->getMethodDecl()) {
1236       // getMethodDecl() doesn't handle member pointers at the moment.
1237       calleeType = methodDecl->getType()->castAs<FunctionType>();
1238     } else {
1239       return;
1240     }
1241   } else {
1242     return;
1243   }
1244   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1245       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1246     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1247     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1248     Builder.CreateRetVoid();
1249     Builder.ClearInsertionPoint();
1250   }
1251 }
1252 
1253 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1254 /// if the function returns void, or may be missing one if the function returns
1255 /// non-void.  Fun stuff :).
1256 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1257   if (requiresReturnValueCheck()) {
1258     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1259     auto *SLocPtr =
1260         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1261                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1262     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1263     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1264     assert(ReturnLocation.isValid() && "No valid return location");
1265     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1266                         ReturnLocation);
1267   }
1268 
1269   // Returning from an outlined SEH helper is UB, and we already warn on it.
1270   if (IsOutlinedSEHHelper) {
1271     Builder.CreateUnreachable();
1272     Builder.ClearInsertionPoint();
1273   }
1274 
1275   // Emit the result value, even if unused, to evaluate the side effects.
1276   const Expr *RV = S.getRetValue();
1277 
1278   // Record the result expression of the return statement. The recorded
1279   // expression is used to determine whether a block capture's lifetime should
1280   // end at the end of the full expression as opposed to the end of the scope
1281   // enclosing the block expression.
1282   //
1283   // This permits a small, easily-implemented exception to our over-conservative
1284   // rules about not jumping to statements following block literals with
1285   // non-trivial cleanups.
1286   SaveRetExprRAII SaveRetExpr(RV, *this);
1287 
1288   RunCleanupsScope cleanupScope(*this);
1289   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1290     RV = EWC->getSubExpr();
1291   // FIXME: Clean this up by using an LValue for ReturnTemp,
1292   // EmitStoreThroughLValue, and EmitAnyExpr.
1293   // Check if the NRVO candidate was not globalized in OpenMP mode.
1294   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1295       S.getNRVOCandidate()->isNRVOVariable() &&
1296       (!getLangOpts().OpenMP ||
1297        !CGM.getOpenMPRuntime()
1298             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1299             .isValid())) {
1300     // Apply the named return value optimization for this return statement,
1301     // which means doing nothing: the appropriate result has already been
1302     // constructed into the NRVO variable.
1303 
1304     // If there is an NRVO flag for this variable, set it to 1 into indicate
1305     // that the cleanup code should not destroy the variable.
1306     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1307       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1308   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1309     // Make sure not to return anything, but evaluate the expression
1310     // for side effects.
1311     if (RV) {
1312       EmitAnyExpr(RV);
1313       if (auto *CE = dyn_cast<CallExpr>(RV))
1314         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1315     }
1316   } else if (!RV) {
1317     // Do nothing (return value is left uninitialized)
1318   } else if (FnRetTy->isReferenceType()) {
1319     // If this function returns a reference, take the address of the expression
1320     // rather than the value.
1321     RValue Result = EmitReferenceBindingToExpr(RV);
1322     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1323   } else {
1324     switch (getEvaluationKind(RV->getType())) {
1325     case TEK_Scalar:
1326       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1327       break;
1328     case TEK_Complex:
1329       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1330                                 /*isInit*/ true);
1331       break;
1332     case TEK_Aggregate:
1333       EmitAggExpr(RV, AggValueSlot::forAddr(
1334                           ReturnValue, Qualifiers(),
1335                           AggValueSlot::IsDestructed,
1336                           AggValueSlot::DoesNotNeedGCBarriers,
1337                           AggValueSlot::IsNotAliased,
1338                           getOverlapForReturnValue()));
1339       break;
1340     }
1341   }
1342 
1343   ++NumReturnExprs;
1344   if (!RV || RV->isEvaluatable(getContext()))
1345     ++NumSimpleReturnExprs;
1346 
1347   cleanupScope.ForceCleanup();
1348   EmitBranchThroughCleanup(ReturnBlock);
1349 }
1350 
1351 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1352   // As long as debug info is modeled with instructions, we have to ensure we
1353   // have a place to insert here and write the stop point here.
1354   if (HaveInsertPoint())
1355     EmitStopPoint(&S);
1356 
1357   for (const auto *I : S.decls())
1358     EmitDecl(*I);
1359 }
1360 
1361 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1362   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1363 
1364   // If this code is reachable then emit a stop point (if generating
1365   // debug info). We have to do this ourselves because we are on the
1366   // "simple" statement path.
1367   if (HaveInsertPoint())
1368     EmitStopPoint(&S);
1369 
1370   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1371 }
1372 
1373 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1374   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1375 
1376   // If this code is reachable then emit a stop point (if generating
1377   // debug info). We have to do this ourselves because we are on the
1378   // "simple" statement path.
1379   if (HaveInsertPoint())
1380     EmitStopPoint(&S);
1381 
1382   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1383 }
1384 
1385 /// EmitCaseStmtRange - If case statement range is not too big then
1386 /// add multiple cases to switch instruction, one for each value within
1387 /// the range. If range is too big then emit "if" condition check.
1388 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1389                                         ArrayRef<const Attr *> Attrs) {
1390   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1391 
1392   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1393   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1394 
1395   // Emit the code for this case. We do this first to make sure it is
1396   // properly chained from our predecessor before generating the
1397   // switch machinery to enter this block.
1398   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1399   EmitBlockWithFallThrough(CaseDest, &S);
1400   EmitStmt(S.getSubStmt());
1401 
1402   // If range is empty, do nothing.
1403   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1404     return;
1405 
1406   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1407   llvm::APInt Range = RHS - LHS;
1408   // FIXME: parameters such as this should not be hardcoded.
1409   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1410     // Range is small enough to add multiple switch instruction cases.
1411     uint64_t Total = getProfileCount(&S);
1412     unsigned NCases = Range.getZExtValue() + 1;
1413     // We only have one region counter for the entire set of cases here, so we
1414     // need to divide the weights evenly between the generated cases, ensuring
1415     // that the total weight is preserved. E.g., a weight of 5 over three cases
1416     // will be distributed as weights of 2, 2, and 1.
1417     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1418     for (unsigned I = 0; I != NCases; ++I) {
1419       if (SwitchWeights)
1420         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1421       else if (SwitchLikelihood)
1422         SwitchLikelihood->push_back(LH);
1423 
1424       if (Rem)
1425         Rem--;
1426       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1427       ++LHS;
1428     }
1429     return;
1430   }
1431 
1432   // The range is too big. Emit "if" condition into a new block,
1433   // making sure to save and restore the current insertion point.
1434   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1435 
1436   // Push this test onto the chain of range checks (which terminates
1437   // in the default basic block). The switch's default will be changed
1438   // to the top of this chain after switch emission is complete.
1439   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1440   CaseRangeBlock = createBasicBlock("sw.caserange");
1441 
1442   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1443   Builder.SetInsertPoint(CaseRangeBlock);
1444 
1445   // Emit range check.
1446   llvm::Value *Diff =
1447     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1448   llvm::Value *Cond =
1449     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1450 
1451   llvm::MDNode *Weights = nullptr;
1452   if (SwitchWeights) {
1453     uint64_t ThisCount = getProfileCount(&S);
1454     uint64_t DefaultCount = (*SwitchWeights)[0];
1455     Weights = createProfileWeights(ThisCount, DefaultCount);
1456 
1457     // Since we're chaining the switch default through each large case range, we
1458     // need to update the weight for the default, ie, the first case, to include
1459     // this case.
1460     (*SwitchWeights)[0] += ThisCount;
1461   } else if (SwitchLikelihood)
1462     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1463 
1464   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1465 
1466   // Restore the appropriate insertion point.
1467   if (RestoreBB)
1468     Builder.SetInsertPoint(RestoreBB);
1469   else
1470     Builder.ClearInsertionPoint();
1471 }
1472 
1473 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1474                                    ArrayRef<const Attr *> Attrs) {
1475   // If there is no enclosing switch instance that we're aware of, then this
1476   // case statement and its block can be elided.  This situation only happens
1477   // when we've constant-folded the switch, are emitting the constant case,
1478   // and part of the constant case includes another case statement.  For
1479   // instance: switch (4) { case 4: do { case 5: } while (1); }
1480   if (!SwitchInsn) {
1481     EmitStmt(S.getSubStmt());
1482     return;
1483   }
1484 
1485   // Handle case ranges.
1486   if (S.getRHS()) {
1487     EmitCaseStmtRange(S, Attrs);
1488     return;
1489   }
1490 
1491   llvm::ConstantInt *CaseVal =
1492     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1493   if (SwitchLikelihood)
1494     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1495 
1496   // If the body of the case is just a 'break', try to not emit an empty block.
1497   // If we're profiling or we're not optimizing, leave the block in for better
1498   // debug and coverage analysis.
1499   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1500       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1501       isa<BreakStmt>(S.getSubStmt())) {
1502     JumpDest Block = BreakContinueStack.back().BreakBlock;
1503 
1504     // Only do this optimization if there are no cleanups that need emitting.
1505     if (isObviouslyBranchWithoutCleanups(Block)) {
1506       if (SwitchWeights)
1507         SwitchWeights->push_back(getProfileCount(&S));
1508       SwitchInsn->addCase(CaseVal, Block.getBlock());
1509 
1510       // If there was a fallthrough into this case, make sure to redirect it to
1511       // the end of the switch as well.
1512       if (Builder.GetInsertBlock()) {
1513         Builder.CreateBr(Block.getBlock());
1514         Builder.ClearInsertionPoint();
1515       }
1516       return;
1517     }
1518   }
1519 
1520   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1521   EmitBlockWithFallThrough(CaseDest, &S);
1522   if (SwitchWeights)
1523     SwitchWeights->push_back(getProfileCount(&S));
1524   SwitchInsn->addCase(CaseVal, CaseDest);
1525 
1526   // Recursively emitting the statement is acceptable, but is not wonderful for
1527   // code where we have many case statements nested together, i.e.:
1528   //  case 1:
1529   //    case 2:
1530   //      case 3: etc.
1531   // Handling this recursively will create a new block for each case statement
1532   // that falls through to the next case which is IR intensive.  It also causes
1533   // deep recursion which can run into stack depth limitations.  Handle
1534   // sequential non-range case statements specially.
1535   //
1536   // TODO When the next case has a likelihood attribute the code returns to the
1537   // recursive algorithm. Maybe improve this case if it becomes common practice
1538   // to use a lot of attributes.
1539   const CaseStmt *CurCase = &S;
1540   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1541 
1542   // Otherwise, iteratively add consecutive cases to this switch stmt.
1543   while (NextCase && NextCase->getRHS() == nullptr) {
1544     CurCase = NextCase;
1545     llvm::ConstantInt *CaseVal =
1546       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1547 
1548     if (SwitchWeights)
1549       SwitchWeights->push_back(getProfileCount(NextCase));
1550     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1551       CaseDest = createBasicBlock("sw.bb");
1552       EmitBlockWithFallThrough(CaseDest, CurCase);
1553     }
1554     // Since this loop is only executed when the CaseStmt has no attributes
1555     // use a hard-coded value.
1556     if (SwitchLikelihood)
1557       SwitchLikelihood->push_back(Stmt::LH_None);
1558 
1559     SwitchInsn->addCase(CaseVal, CaseDest);
1560     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1561   }
1562 
1563   // Generate a stop point for debug info if the case statement is
1564   // followed by a default statement. A fallthrough case before a
1565   // default case gets its own branch target.
1566   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1567     EmitStopPoint(CurCase);
1568 
1569   // Normal default recursion for non-cases.
1570   EmitStmt(CurCase->getSubStmt());
1571 }
1572 
1573 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1574                                       ArrayRef<const Attr *> Attrs) {
1575   // If there is no enclosing switch instance that we're aware of, then this
1576   // default statement can be elided. This situation only happens when we've
1577   // constant-folded the switch.
1578   if (!SwitchInsn) {
1579     EmitStmt(S.getSubStmt());
1580     return;
1581   }
1582 
1583   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1584   assert(DefaultBlock->empty() &&
1585          "EmitDefaultStmt: Default block already defined?");
1586 
1587   if (SwitchLikelihood)
1588     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1589 
1590   EmitBlockWithFallThrough(DefaultBlock, &S);
1591 
1592   EmitStmt(S.getSubStmt());
1593 }
1594 
1595 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1596 /// constant value that is being switched on, see if we can dead code eliminate
1597 /// the body of the switch to a simple series of statements to emit.  Basically,
1598 /// on a switch (5) we want to find these statements:
1599 ///    case 5:
1600 ///      printf(...);    <--
1601 ///      ++i;            <--
1602 ///      break;
1603 ///
1604 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1605 /// transformation (for example, one of the elided statements contains a label
1606 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1607 /// should include statements after it (e.g. the printf() line is a substmt of
1608 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1609 /// statement, then return CSFC_Success.
1610 ///
1611 /// If Case is non-null, then we are looking for the specified case, checking
1612 /// that nothing we jump over contains labels.  If Case is null, then we found
1613 /// the case and are looking for the break.
1614 ///
1615 /// If the recursive walk actually finds our Case, then we set FoundCase to
1616 /// true.
1617 ///
1618 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1619 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1620                                             const SwitchCase *Case,
1621                                             bool &FoundCase,
1622                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1623   // If this is a null statement, just succeed.
1624   if (!S)
1625     return Case ? CSFC_Success : CSFC_FallThrough;
1626 
1627   // If this is the switchcase (case 4: or default) that we're looking for, then
1628   // we're in business.  Just add the substatement.
1629   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1630     if (S == Case) {
1631       FoundCase = true;
1632       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1633                                       ResultStmts);
1634     }
1635 
1636     // Otherwise, this is some other case or default statement, just ignore it.
1637     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1638                                     ResultStmts);
1639   }
1640 
1641   // If we are in the live part of the code and we found our break statement,
1642   // return a success!
1643   if (!Case && isa<BreakStmt>(S))
1644     return CSFC_Success;
1645 
1646   // If this is a switch statement, then it might contain the SwitchCase, the
1647   // break, or neither.
1648   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1649     // Handle this as two cases: we might be looking for the SwitchCase (if so
1650     // the skipped statements must be skippable) or we might already have it.
1651     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1652     bool StartedInLiveCode = FoundCase;
1653     unsigned StartSize = ResultStmts.size();
1654 
1655     // If we've not found the case yet, scan through looking for it.
1656     if (Case) {
1657       // Keep track of whether we see a skipped declaration.  The code could be
1658       // using the declaration even if it is skipped, so we can't optimize out
1659       // the decl if the kept statements might refer to it.
1660       bool HadSkippedDecl = false;
1661 
1662       // If we're looking for the case, just see if we can skip each of the
1663       // substatements.
1664       for (; Case && I != E; ++I) {
1665         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1666 
1667         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1668         case CSFC_Failure: return CSFC_Failure;
1669         case CSFC_Success:
1670           // A successful result means that either 1) that the statement doesn't
1671           // have the case and is skippable, or 2) does contain the case value
1672           // and also contains the break to exit the switch.  In the later case,
1673           // we just verify the rest of the statements are elidable.
1674           if (FoundCase) {
1675             // If we found the case and skipped declarations, we can't do the
1676             // optimization.
1677             if (HadSkippedDecl)
1678               return CSFC_Failure;
1679 
1680             for (++I; I != E; ++I)
1681               if (CodeGenFunction::ContainsLabel(*I, true))
1682                 return CSFC_Failure;
1683             return CSFC_Success;
1684           }
1685           break;
1686         case CSFC_FallThrough:
1687           // If we have a fallthrough condition, then we must have found the
1688           // case started to include statements.  Consider the rest of the
1689           // statements in the compound statement as candidates for inclusion.
1690           assert(FoundCase && "Didn't find case but returned fallthrough?");
1691           // We recursively found Case, so we're not looking for it anymore.
1692           Case = nullptr;
1693 
1694           // If we found the case and skipped declarations, we can't do the
1695           // optimization.
1696           if (HadSkippedDecl)
1697             return CSFC_Failure;
1698           break;
1699         }
1700       }
1701 
1702       if (!FoundCase)
1703         return CSFC_Success;
1704 
1705       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1706     }
1707 
1708     // If we have statements in our range, then we know that the statements are
1709     // live and need to be added to the set of statements we're tracking.
1710     bool AnyDecls = false;
1711     for (; I != E; ++I) {
1712       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1713 
1714       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1715       case CSFC_Failure: return CSFC_Failure;
1716       case CSFC_FallThrough:
1717         // A fallthrough result means that the statement was simple and just
1718         // included in ResultStmt, keep adding them afterwards.
1719         break;
1720       case CSFC_Success:
1721         // A successful result means that we found the break statement and
1722         // stopped statement inclusion.  We just ensure that any leftover stmts
1723         // are skippable and return success ourselves.
1724         for (++I; I != E; ++I)
1725           if (CodeGenFunction::ContainsLabel(*I, true))
1726             return CSFC_Failure;
1727         return CSFC_Success;
1728       }
1729     }
1730 
1731     // If we're about to fall out of a scope without hitting a 'break;', we
1732     // can't perform the optimization if there were any decls in that scope
1733     // (we'd lose their end-of-lifetime).
1734     if (AnyDecls) {
1735       // If the entire compound statement was live, there's one more thing we
1736       // can try before giving up: emit the whole thing as a single statement.
1737       // We can do that unless the statement contains a 'break;'.
1738       // FIXME: Such a break must be at the end of a construct within this one.
1739       // We could emit this by just ignoring the BreakStmts entirely.
1740       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1741         ResultStmts.resize(StartSize);
1742         ResultStmts.push_back(S);
1743       } else {
1744         return CSFC_Failure;
1745       }
1746     }
1747 
1748     return CSFC_FallThrough;
1749   }
1750 
1751   // Okay, this is some other statement that we don't handle explicitly, like a
1752   // for statement or increment etc.  If we are skipping over this statement,
1753   // just verify it doesn't have labels, which would make it invalid to elide.
1754   if (Case) {
1755     if (CodeGenFunction::ContainsLabel(S, true))
1756       return CSFC_Failure;
1757     return CSFC_Success;
1758   }
1759 
1760   // Otherwise, we want to include this statement.  Everything is cool with that
1761   // so long as it doesn't contain a break out of the switch we're in.
1762   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1763 
1764   // Otherwise, everything is great.  Include the statement and tell the caller
1765   // that we fall through and include the next statement as well.
1766   ResultStmts.push_back(S);
1767   return CSFC_FallThrough;
1768 }
1769 
1770 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1771 /// then invoke CollectStatementsForCase to find the list of statements to emit
1772 /// for a switch on constant.  See the comment above CollectStatementsForCase
1773 /// for more details.
1774 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1775                                        const llvm::APSInt &ConstantCondValue,
1776                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1777                                        ASTContext &C,
1778                                        const SwitchCase *&ResultCase) {
1779   // First step, find the switch case that is being branched to.  We can do this
1780   // efficiently by scanning the SwitchCase list.
1781   const SwitchCase *Case = S.getSwitchCaseList();
1782   const DefaultStmt *DefaultCase = nullptr;
1783 
1784   for (; Case; Case = Case->getNextSwitchCase()) {
1785     // It's either a default or case.  Just remember the default statement in
1786     // case we're not jumping to any numbered cases.
1787     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1788       DefaultCase = DS;
1789       continue;
1790     }
1791 
1792     // Check to see if this case is the one we're looking for.
1793     const CaseStmt *CS = cast<CaseStmt>(Case);
1794     // Don't handle case ranges yet.
1795     if (CS->getRHS()) return false;
1796 
1797     // If we found our case, remember it as 'case'.
1798     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1799       break;
1800   }
1801 
1802   // If we didn't find a matching case, we use a default if it exists, or we
1803   // elide the whole switch body!
1804   if (!Case) {
1805     // It is safe to elide the body of the switch if it doesn't contain labels
1806     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1807     if (!DefaultCase)
1808       return !CodeGenFunction::ContainsLabel(&S);
1809     Case = DefaultCase;
1810   }
1811 
1812   // Ok, we know which case is being jumped to, try to collect all the
1813   // statements that follow it.  This can fail for a variety of reasons.  Also,
1814   // check to see that the recursive walk actually found our case statement.
1815   // Insane cases like this can fail to find it in the recursive walk since we
1816   // don't handle every stmt kind:
1817   // switch (4) {
1818   //   while (1) {
1819   //     case 4: ...
1820   bool FoundCase = false;
1821   ResultCase = Case;
1822   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1823                                   ResultStmts) != CSFC_Failure &&
1824          FoundCase;
1825 }
1826 
1827 static Optional<SmallVector<uint64_t, 16>>
1828 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1829   // Are there enough branches to weight them?
1830   if (Likelihoods.size() <= 1)
1831     return None;
1832 
1833   uint64_t NumUnlikely = 0;
1834   uint64_t NumNone = 0;
1835   uint64_t NumLikely = 0;
1836   for (const auto LH : Likelihoods) {
1837     switch (LH) {
1838     case Stmt::LH_Unlikely:
1839       ++NumUnlikely;
1840       break;
1841     case Stmt::LH_None:
1842       ++NumNone;
1843       break;
1844     case Stmt::LH_Likely:
1845       ++NumLikely;
1846       break;
1847     }
1848   }
1849 
1850   // Is there a likelihood attribute used?
1851   if (NumUnlikely == 0 && NumLikely == 0)
1852     return None;
1853 
1854   // When multiple cases share the same code they can be combined during
1855   // optimization. In that case the weights of the branch will be the sum of
1856   // the individual weights. Make sure the combined sum of all neutral cases
1857   // doesn't exceed the value of a single likely attribute.
1858   // The additions both avoid divisions by 0 and make sure the weights of None
1859   // don't exceed the weight of Likely.
1860   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1861   const uint64_t None = Likely / (NumNone + 1);
1862   const uint64_t Unlikely = 0;
1863 
1864   SmallVector<uint64_t, 16> Result;
1865   Result.reserve(Likelihoods.size());
1866   for (const auto LH : Likelihoods) {
1867     switch (LH) {
1868     case Stmt::LH_Unlikely:
1869       Result.push_back(Unlikely);
1870       break;
1871     case Stmt::LH_None:
1872       Result.push_back(None);
1873       break;
1874     case Stmt::LH_Likely:
1875       Result.push_back(Likely);
1876       break;
1877     }
1878   }
1879 
1880   return Result;
1881 }
1882 
1883 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1884   // Handle nested switch statements.
1885   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1886   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1887   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1888   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1889 
1890   // See if we can constant fold the condition of the switch and therefore only
1891   // emit the live case statement (if any) of the switch.
1892   llvm::APSInt ConstantCondValue;
1893   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1894     SmallVector<const Stmt*, 4> CaseStmts;
1895     const SwitchCase *Case = nullptr;
1896     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1897                                    getContext(), Case)) {
1898       if (Case)
1899         incrementProfileCounter(Case);
1900       RunCleanupsScope ExecutedScope(*this);
1901 
1902       if (S.getInit())
1903         EmitStmt(S.getInit());
1904 
1905       // Emit the condition variable if needed inside the entire cleanup scope
1906       // used by this special case for constant folded switches.
1907       if (S.getConditionVariable())
1908         EmitDecl(*S.getConditionVariable());
1909 
1910       // At this point, we are no longer "within" a switch instance, so
1911       // we can temporarily enforce this to ensure that any embedded case
1912       // statements are not emitted.
1913       SwitchInsn = nullptr;
1914 
1915       // Okay, we can dead code eliminate everything except this case.  Emit the
1916       // specified series of statements and we're good.
1917       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1918         EmitStmt(CaseStmts[i]);
1919       incrementProfileCounter(&S);
1920 
1921       // Now we want to restore the saved switch instance so that nested
1922       // switches continue to function properly
1923       SwitchInsn = SavedSwitchInsn;
1924 
1925       return;
1926     }
1927   }
1928 
1929   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1930 
1931   RunCleanupsScope ConditionScope(*this);
1932 
1933   if (S.getInit())
1934     EmitStmt(S.getInit());
1935 
1936   if (S.getConditionVariable())
1937     EmitDecl(*S.getConditionVariable());
1938   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1939 
1940   // Create basic block to hold stuff that comes after switch
1941   // statement. We also need to create a default block now so that
1942   // explicit case ranges tests can have a place to jump to on
1943   // failure.
1944   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1945   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1946   if (PGO.haveRegionCounts()) {
1947     // Walk the SwitchCase list to find how many there are.
1948     uint64_t DefaultCount = 0;
1949     unsigned NumCases = 0;
1950     for (const SwitchCase *Case = S.getSwitchCaseList();
1951          Case;
1952          Case = Case->getNextSwitchCase()) {
1953       if (isa<DefaultStmt>(Case))
1954         DefaultCount = getProfileCount(Case);
1955       NumCases += 1;
1956     }
1957     SwitchWeights = new SmallVector<uint64_t, 16>();
1958     SwitchWeights->reserve(NumCases);
1959     // The default needs to be first. We store the edge count, so we already
1960     // know the right weight.
1961     SwitchWeights->push_back(DefaultCount);
1962   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1963     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1964     // Initialize the default case.
1965     SwitchLikelihood->push_back(Stmt::LH_None);
1966   }
1967 
1968   CaseRangeBlock = DefaultBlock;
1969 
1970   // Clear the insertion point to indicate we are in unreachable code.
1971   Builder.ClearInsertionPoint();
1972 
1973   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1974   // then reuse last ContinueBlock.
1975   JumpDest OuterContinue;
1976   if (!BreakContinueStack.empty())
1977     OuterContinue = BreakContinueStack.back().ContinueBlock;
1978 
1979   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1980 
1981   // Emit switch body.
1982   EmitStmt(S.getBody());
1983 
1984   BreakContinueStack.pop_back();
1985 
1986   // Update the default block in case explicit case range tests have
1987   // been chained on top.
1988   SwitchInsn->setDefaultDest(CaseRangeBlock);
1989 
1990   // If a default was never emitted:
1991   if (!DefaultBlock->getParent()) {
1992     // If we have cleanups, emit the default block so that there's a
1993     // place to jump through the cleanups from.
1994     if (ConditionScope.requiresCleanups()) {
1995       EmitBlock(DefaultBlock);
1996 
1997     // Otherwise, just forward the default block to the switch end.
1998     } else {
1999       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
2000       delete DefaultBlock;
2001     }
2002   }
2003 
2004   ConditionScope.ForceCleanup();
2005 
2006   // Emit continuation.
2007   EmitBlock(SwitchExit.getBlock(), true);
2008   incrementProfileCounter(&S);
2009 
2010   // If the switch has a condition wrapped by __builtin_unpredictable,
2011   // create metadata that specifies that the switch is unpredictable.
2012   // Don't bother if not optimizing because that metadata would not be used.
2013   auto *Call = dyn_cast<CallExpr>(S.getCond());
2014   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2015     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2016     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2017       llvm::MDBuilder MDHelper(getLLVMContext());
2018       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2019                               MDHelper.createUnpredictable());
2020     }
2021   }
2022 
2023   if (SwitchWeights) {
2024     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2025            "switch weights do not match switch cases");
2026     // If there's only one jump destination there's no sense weighting it.
2027     if (SwitchWeights->size() > 1)
2028       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2029                               createProfileWeights(*SwitchWeights));
2030     delete SwitchWeights;
2031   } else if (SwitchLikelihood) {
2032     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2033            "switch likelihoods do not match switch cases");
2034     Optional<SmallVector<uint64_t, 16>> LHW =
2035         getLikelihoodWeights(*SwitchLikelihood);
2036     if (LHW) {
2037       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2038       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2039                               createProfileWeights(*LHW));
2040     }
2041     delete SwitchLikelihood;
2042   }
2043   SwitchInsn = SavedSwitchInsn;
2044   SwitchWeights = SavedSwitchWeights;
2045   SwitchLikelihood = SavedSwitchLikelihood;
2046   CaseRangeBlock = SavedCRBlock;
2047 }
2048 
2049 static std::string
2050 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2051                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2052   std::string Result;
2053 
2054   while (*Constraint) {
2055     switch (*Constraint) {
2056     default:
2057       Result += Target.convertConstraint(Constraint);
2058       break;
2059     // Ignore these
2060     case '*':
2061     case '?':
2062     case '!':
2063     case '=': // Will see this and the following in mult-alt constraints.
2064     case '+':
2065       break;
2066     case '#': // Ignore the rest of the constraint alternative.
2067       while (Constraint[1] && Constraint[1] != ',')
2068         Constraint++;
2069       break;
2070     case '&':
2071     case '%':
2072       Result += *Constraint;
2073       while (Constraint[1] && Constraint[1] == *Constraint)
2074         Constraint++;
2075       break;
2076     case ',':
2077       Result += "|";
2078       break;
2079     case 'g':
2080       Result += "imr";
2081       break;
2082     case '[': {
2083       assert(OutCons &&
2084              "Must pass output names to constraints with a symbolic name");
2085       unsigned Index;
2086       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2087       assert(result && "Could not resolve symbolic name"); (void)result;
2088       Result += llvm::utostr(Index);
2089       break;
2090     }
2091     }
2092 
2093     Constraint++;
2094   }
2095 
2096   return Result;
2097 }
2098 
2099 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2100 /// as using a particular register add that as a constraint that will be used
2101 /// in this asm stmt.
2102 static std::string
2103 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2104                        const TargetInfo &Target, CodeGenModule &CGM,
2105                        const AsmStmt &Stmt, const bool EarlyClobber,
2106                        std::string *GCCReg = nullptr) {
2107   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2108   if (!AsmDeclRef)
2109     return Constraint;
2110   const ValueDecl &Value = *AsmDeclRef->getDecl();
2111   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2112   if (!Variable)
2113     return Constraint;
2114   if (Variable->getStorageClass() != SC_Register)
2115     return Constraint;
2116   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2117   if (!Attr)
2118     return Constraint;
2119   StringRef Register = Attr->getLabel();
2120   assert(Target.isValidGCCRegisterName(Register));
2121   // We're using validateOutputConstraint here because we only care if
2122   // this is a register constraint.
2123   TargetInfo::ConstraintInfo Info(Constraint, "");
2124   if (Target.validateOutputConstraint(Info) &&
2125       !Info.allowsRegister()) {
2126     CGM.ErrorUnsupported(&Stmt, "__asm__");
2127     return Constraint;
2128   }
2129   // Canonicalize the register here before returning it.
2130   Register = Target.getNormalizedGCCRegisterName(Register);
2131   if (GCCReg != nullptr)
2132     *GCCReg = Register.str();
2133   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2134 }
2135 
2136 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2137     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2138     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2139   if (Info.allowsRegister() || !Info.allowsMemory()) {
2140     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2141       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2142 
2143     llvm::Type *Ty = ConvertType(InputType);
2144     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2145     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2146         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2147       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2148 
2149       return {Builder.CreateLoad(Builder.CreateElementBitCast(
2150                   InputValue.getAddress(*this), Ty)),
2151               nullptr};
2152     }
2153   }
2154 
2155   Address Addr = InputValue.getAddress(*this);
2156   ConstraintStr += '*';
2157   return {Addr.getPointer(), Addr.getElementType()};
2158 }
2159 
2160 std::pair<llvm::Value *, llvm::Type *>
2161 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2162                               const Expr *InputExpr,
2163                               std::string &ConstraintStr) {
2164   // If this can't be a register or memory, i.e., has to be a constant
2165   // (immediate or symbolic), try to emit it as such.
2166   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2167     if (Info.requiresImmediateConstant()) {
2168       Expr::EvalResult EVResult;
2169       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2170 
2171       llvm::APSInt IntResult;
2172       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2173                                           getContext()))
2174         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2175     }
2176 
2177     Expr::EvalResult Result;
2178     if (InputExpr->EvaluateAsInt(Result, getContext()))
2179       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2180               nullptr};
2181   }
2182 
2183   if (Info.allowsRegister() || !Info.allowsMemory())
2184     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2185       return {EmitScalarExpr(InputExpr), nullptr};
2186   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2187     return {EmitScalarExpr(InputExpr), nullptr};
2188   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2189   LValue Dest = EmitLValue(InputExpr);
2190   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2191                             InputExpr->getExprLoc());
2192 }
2193 
2194 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2195 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2196 /// integers which are the source locations of the start of each line in the
2197 /// asm.
2198 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2199                                       CodeGenFunction &CGF) {
2200   SmallVector<llvm::Metadata *, 8> Locs;
2201   // Add the location of the first line to the MDNode.
2202   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2203       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2204   StringRef StrVal = Str->getString();
2205   if (!StrVal.empty()) {
2206     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2207     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2208     unsigned StartToken = 0;
2209     unsigned ByteOffset = 0;
2210 
2211     // Add the location of the start of each subsequent line of the asm to the
2212     // MDNode.
2213     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2214       if (StrVal[i] != '\n') continue;
2215       SourceLocation LineLoc = Str->getLocationOfByte(
2216           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2217       Locs.push_back(llvm::ConstantAsMetadata::get(
2218           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2219     }
2220   }
2221 
2222   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2223 }
2224 
2225 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2226                               bool HasUnwindClobber, bool ReadOnly,
2227                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2228                               const std::vector<llvm::Type *> &ResultRegTypes,
2229                               const std::vector<llvm::Type *> &ArgElemTypes,
2230                               CodeGenFunction &CGF,
2231                               std::vector<llvm::Value *> &RegResults) {
2232   if (!HasUnwindClobber)
2233     Result.addFnAttr(llvm::Attribute::NoUnwind);
2234 
2235   if (NoMerge)
2236     Result.addFnAttr(llvm::Attribute::NoMerge);
2237   // Attach readnone and readonly attributes.
2238   if (!HasSideEffect) {
2239     if (ReadNone)
2240       Result.addFnAttr(llvm::Attribute::ReadNone);
2241     else if (ReadOnly)
2242       Result.addFnAttr(llvm::Attribute::ReadOnly);
2243   }
2244 
2245   // Add elementtype attribute for indirect constraints.
2246   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2247     if (Pair.value()) {
2248       auto Attr = llvm::Attribute::get(
2249           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2250       Result.addParamAttr(Pair.index(), Attr);
2251     }
2252   }
2253 
2254   // Slap the source location of the inline asm into a !srcloc metadata on the
2255   // call.
2256   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2257     Result.setMetadata("srcloc",
2258                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2259   else {
2260     // At least put the line number on MS inline asm blobs.
2261     llvm::Constant *Loc =
2262         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2263     Result.setMetadata("srcloc",
2264                        llvm::MDNode::get(CGF.getLLVMContext(),
2265                                          llvm::ConstantAsMetadata::get(Loc)));
2266   }
2267 
2268   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2269     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2270     // convergent (meaning, they may call an intrinsically convergent op, such
2271     // as bar.sync, and so can't have certain optimizations applied around
2272     // them).
2273     Result.addFnAttr(llvm::Attribute::Convergent);
2274   // Extract all of the register value results from the asm.
2275   if (ResultRegTypes.size() == 1) {
2276     RegResults.push_back(&Result);
2277   } else {
2278     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2279       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2280       RegResults.push_back(Tmp);
2281     }
2282   }
2283 }
2284 
2285 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2286   // Assemble the final asm string.
2287   std::string AsmString = S.generateAsmString(getContext());
2288 
2289   // Get all the output and input constraints together.
2290   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2291   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2292 
2293   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2294     StringRef Name;
2295     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2296       Name = GAS->getOutputName(i);
2297     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2298     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2299     assert(IsValid && "Failed to parse output constraint");
2300     OutputConstraintInfos.push_back(Info);
2301   }
2302 
2303   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2304     StringRef Name;
2305     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2306       Name = GAS->getInputName(i);
2307     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2308     bool IsValid =
2309       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2310     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2311     InputConstraintInfos.push_back(Info);
2312   }
2313 
2314   std::string Constraints;
2315 
2316   std::vector<LValue> ResultRegDests;
2317   std::vector<QualType> ResultRegQualTys;
2318   std::vector<llvm::Type *> ResultRegTypes;
2319   std::vector<llvm::Type *> ResultTruncRegTypes;
2320   std::vector<llvm::Type *> ArgTypes;
2321   std::vector<llvm::Type *> ArgElemTypes;
2322   std::vector<llvm::Value*> Args;
2323   llvm::BitVector ResultTypeRequiresCast;
2324 
2325   // Keep track of inout constraints.
2326   std::string InOutConstraints;
2327   std::vector<llvm::Value*> InOutArgs;
2328   std::vector<llvm::Type*> InOutArgTypes;
2329   std::vector<llvm::Type*> InOutArgElemTypes;
2330 
2331   // Keep track of out constraints for tied input operand.
2332   std::vector<std::string> OutputConstraints;
2333 
2334   // Keep track of defined physregs.
2335   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2336 
2337   // An inline asm can be marked readonly if it meets the following conditions:
2338   //  - it doesn't have any sideeffects
2339   //  - it doesn't clobber memory
2340   //  - it doesn't return a value by-reference
2341   // It can be marked readnone if it doesn't have any input memory constraints
2342   // in addition to meeting the conditions listed above.
2343   bool ReadOnly = true, ReadNone = true;
2344 
2345   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2346     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2347 
2348     // Simplify the output constraint.
2349     std::string OutputConstraint(S.getOutputConstraint(i));
2350     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2351                                           getTarget(), &OutputConstraintInfos);
2352 
2353     const Expr *OutExpr = S.getOutputExpr(i);
2354     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2355 
2356     std::string GCCReg;
2357     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2358                                               getTarget(), CGM, S,
2359                                               Info.earlyClobber(),
2360                                               &GCCReg);
2361     // Give an error on multiple outputs to same physreg.
2362     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2363       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2364 
2365     OutputConstraints.push_back(OutputConstraint);
2366     LValue Dest = EmitLValue(OutExpr);
2367     if (!Constraints.empty())
2368       Constraints += ',';
2369 
2370     // If this is a register output, then make the inline asm return it
2371     // by-value.  If this is a memory result, return the value by-reference.
2372     QualType QTy = OutExpr->getType();
2373     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2374                                      hasAggregateEvaluationKind(QTy);
2375     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2376 
2377       Constraints += "=" + OutputConstraint;
2378       ResultRegQualTys.push_back(QTy);
2379       ResultRegDests.push_back(Dest);
2380 
2381       llvm::Type *Ty = ConvertTypeForMem(QTy);
2382       const bool RequiresCast = Info.allowsRegister() &&
2383           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2384            Ty->isAggregateType());
2385 
2386       ResultTruncRegTypes.push_back(Ty);
2387       ResultTypeRequiresCast.push_back(RequiresCast);
2388 
2389       if (RequiresCast) {
2390         unsigned Size = getContext().getTypeSize(QTy);
2391         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2392       }
2393       ResultRegTypes.push_back(Ty);
2394       // If this output is tied to an input, and if the input is larger, then
2395       // we need to set the actual result type of the inline asm node to be the
2396       // same as the input type.
2397       if (Info.hasMatchingInput()) {
2398         unsigned InputNo;
2399         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2400           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2401           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2402             break;
2403         }
2404         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2405 
2406         QualType InputTy = S.getInputExpr(InputNo)->getType();
2407         QualType OutputType = OutExpr->getType();
2408 
2409         uint64_t InputSize = getContext().getTypeSize(InputTy);
2410         if (getContext().getTypeSize(OutputType) < InputSize) {
2411           // Form the asm to return the value as a larger integer or fp type.
2412           ResultRegTypes.back() = ConvertType(InputTy);
2413         }
2414       }
2415       if (llvm::Type* AdjTy =
2416             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2417                                                  ResultRegTypes.back()))
2418         ResultRegTypes.back() = AdjTy;
2419       else {
2420         CGM.getDiags().Report(S.getAsmLoc(),
2421                               diag::err_asm_invalid_type_in_input)
2422             << OutExpr->getType() << OutputConstraint;
2423       }
2424 
2425       // Update largest vector width for any vector types.
2426       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2427         LargestVectorWidth =
2428             std::max((uint64_t)LargestVectorWidth,
2429                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2430     } else {
2431       Address DestAddr = Dest.getAddress(*this);
2432       // Matrix types in memory are represented by arrays, but accessed through
2433       // vector pointers, with the alignment specified on the access operation.
2434       // For inline assembly, update pointer arguments to use vector pointers.
2435       // Otherwise there will be a mis-match if the matrix is also an
2436       // input-argument which is represented as vector.
2437       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2438         DestAddr = Builder.CreateElementBitCast(
2439             DestAddr, ConvertType(OutExpr->getType()));
2440 
2441       ArgTypes.push_back(DestAddr.getType());
2442       ArgElemTypes.push_back(DestAddr.getElementType());
2443       Args.push_back(DestAddr.getPointer());
2444       Constraints += "=*";
2445       Constraints += OutputConstraint;
2446       ReadOnly = ReadNone = false;
2447     }
2448 
2449     if (Info.isReadWrite()) {
2450       InOutConstraints += ',';
2451 
2452       const Expr *InputExpr = S.getOutputExpr(i);
2453       llvm::Value *Arg;
2454       llvm::Type *ArgElemType;
2455       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2456           Info, Dest, InputExpr->getType(), InOutConstraints,
2457           InputExpr->getExprLoc());
2458 
2459       if (llvm::Type* AdjTy =
2460           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2461                                                Arg->getType()))
2462         Arg = Builder.CreateBitCast(Arg, AdjTy);
2463 
2464       // Update largest vector width for any vector types.
2465       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2466         LargestVectorWidth =
2467             std::max((uint64_t)LargestVectorWidth,
2468                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2469       // Only tie earlyclobber physregs.
2470       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2471         InOutConstraints += llvm::utostr(i);
2472       else
2473         InOutConstraints += OutputConstraint;
2474 
2475       InOutArgTypes.push_back(Arg->getType());
2476       InOutArgElemTypes.push_back(ArgElemType);
2477       InOutArgs.push_back(Arg);
2478     }
2479   }
2480 
2481   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2482   // to the return value slot. Only do this when returning in registers.
2483   if (isa<MSAsmStmt>(&S)) {
2484     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2485     if (RetAI.isDirect() || RetAI.isExtend()) {
2486       // Make a fake lvalue for the return value slot.
2487       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2488       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2489           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2490           ResultRegDests, AsmString, S.getNumOutputs());
2491       SawAsmBlock = true;
2492     }
2493   }
2494 
2495   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2496     const Expr *InputExpr = S.getInputExpr(i);
2497 
2498     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2499 
2500     if (Info.allowsMemory())
2501       ReadNone = false;
2502 
2503     if (!Constraints.empty())
2504       Constraints += ',';
2505 
2506     // Simplify the input constraint.
2507     std::string InputConstraint(S.getInputConstraint(i));
2508     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2509                                          &OutputConstraintInfos);
2510 
2511     InputConstraint = AddVariableConstraints(
2512         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2513         getTarget(), CGM, S, false /* No EarlyClobber */);
2514 
2515     std::string ReplaceConstraint (InputConstraint);
2516     llvm::Value *Arg;
2517     llvm::Type *ArgElemType;
2518     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2519 
2520     // If this input argument is tied to a larger output result, extend the
2521     // input to be the same size as the output.  The LLVM backend wants to see
2522     // the input and output of a matching constraint be the same size.  Note
2523     // that GCC does not define what the top bits are here.  We use zext because
2524     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2525     if (Info.hasTiedOperand()) {
2526       unsigned Output = Info.getTiedOperand();
2527       QualType OutputType = S.getOutputExpr(Output)->getType();
2528       QualType InputTy = InputExpr->getType();
2529 
2530       if (getContext().getTypeSize(OutputType) >
2531           getContext().getTypeSize(InputTy)) {
2532         // Use ptrtoint as appropriate so that we can do our extension.
2533         if (isa<llvm::PointerType>(Arg->getType()))
2534           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2535         llvm::Type *OutputTy = ConvertType(OutputType);
2536         if (isa<llvm::IntegerType>(OutputTy))
2537           Arg = Builder.CreateZExt(Arg, OutputTy);
2538         else if (isa<llvm::PointerType>(OutputTy))
2539           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2540         else if (OutputTy->isFloatingPointTy())
2541           Arg = Builder.CreateFPExt(Arg, OutputTy);
2542       }
2543       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2544       ReplaceConstraint = OutputConstraints[Output];
2545     }
2546     if (llvm::Type* AdjTy =
2547           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2548                                                    Arg->getType()))
2549       Arg = Builder.CreateBitCast(Arg, AdjTy);
2550     else
2551       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2552           << InputExpr->getType() << InputConstraint;
2553 
2554     // Update largest vector width for any vector types.
2555     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2556       LargestVectorWidth =
2557           std::max((uint64_t)LargestVectorWidth,
2558                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2559 
2560     ArgTypes.push_back(Arg->getType());
2561     ArgElemTypes.push_back(ArgElemType);
2562     Args.push_back(Arg);
2563     Constraints += InputConstraint;
2564   }
2565 
2566   // Append the "input" part of inout constraints.
2567   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2568     ArgTypes.push_back(InOutArgTypes[i]);
2569     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2570     Args.push_back(InOutArgs[i]);
2571   }
2572   Constraints += InOutConstraints;
2573 
2574   // Labels
2575   SmallVector<llvm::BasicBlock *, 16> Transfer;
2576   llvm::BasicBlock *Fallthrough = nullptr;
2577   bool IsGCCAsmGoto = false;
2578   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2579     IsGCCAsmGoto = GS->isAsmGoto();
2580     if (IsGCCAsmGoto) {
2581       for (const auto *E : GS->labels()) {
2582         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2583         Transfer.push_back(Dest.getBlock());
2584         llvm::BlockAddress *BA =
2585             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2586         Args.push_back(BA);
2587         ArgTypes.push_back(BA->getType());
2588         ArgElemTypes.push_back(nullptr);
2589         if (!Constraints.empty())
2590           Constraints += ',';
2591         Constraints += 'i';
2592       }
2593       Fallthrough = createBasicBlock("asm.fallthrough");
2594     }
2595   }
2596 
2597   bool HasUnwindClobber = false;
2598 
2599   // Clobbers
2600   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2601     StringRef Clobber = S.getClobber(i);
2602 
2603     if (Clobber == "memory")
2604       ReadOnly = ReadNone = false;
2605     else if (Clobber == "unwind") {
2606       HasUnwindClobber = true;
2607       continue;
2608     } else if (Clobber != "cc") {
2609       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2610       if (CGM.getCodeGenOpts().StackClashProtector &&
2611           getTarget().isSPRegName(Clobber)) {
2612         CGM.getDiags().Report(S.getAsmLoc(),
2613                               diag::warn_stack_clash_protection_inline_asm);
2614       }
2615     }
2616 
2617     if (isa<MSAsmStmt>(&S)) {
2618       if (Clobber == "eax" || Clobber == "edx") {
2619         if (Constraints.find("=&A") != std::string::npos)
2620           continue;
2621         std::string::size_type position1 =
2622             Constraints.find("={" + Clobber.str() + "}");
2623         if (position1 != std::string::npos) {
2624           Constraints.insert(position1 + 1, "&");
2625           continue;
2626         }
2627         std::string::size_type position2 = Constraints.find("=A");
2628         if (position2 != std::string::npos) {
2629           Constraints.insert(position2 + 1, "&");
2630           continue;
2631         }
2632       }
2633     }
2634     if (!Constraints.empty())
2635       Constraints += ',';
2636 
2637     Constraints += "~{";
2638     Constraints += Clobber;
2639     Constraints += '}';
2640   }
2641 
2642   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2643          "unwind clobber can't be used with asm goto");
2644 
2645   // Add machine specific clobbers
2646   std::string MachineClobbers = getTarget().getClobbers();
2647   if (!MachineClobbers.empty()) {
2648     if (!Constraints.empty())
2649       Constraints += ',';
2650     Constraints += MachineClobbers;
2651   }
2652 
2653   llvm::Type *ResultType;
2654   if (ResultRegTypes.empty())
2655     ResultType = VoidTy;
2656   else if (ResultRegTypes.size() == 1)
2657     ResultType = ResultRegTypes[0];
2658   else
2659     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2660 
2661   llvm::FunctionType *FTy =
2662     llvm::FunctionType::get(ResultType, ArgTypes, false);
2663 
2664   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2665 
2666   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2667       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2668           ? llvm::InlineAsm::AD_ATT
2669           : llvm::InlineAsm::AD_Intel;
2670   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2671     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2672 
2673   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2674       FTy, AsmString, Constraints, HasSideEffect,
2675       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2676   std::vector<llvm::Value*> RegResults;
2677   if (IsGCCAsmGoto) {
2678     llvm::CallBrInst *Result =
2679         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2680     EmitBlock(Fallthrough);
2681     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2682                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2683                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2684   } else if (HasUnwindClobber) {
2685     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2686     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2687                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2688                       *this, RegResults);
2689   } else {
2690     llvm::CallInst *Result =
2691         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2692     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2693                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2694                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2695   }
2696 
2697   assert(RegResults.size() == ResultRegTypes.size());
2698   assert(RegResults.size() == ResultTruncRegTypes.size());
2699   assert(RegResults.size() == ResultRegDests.size());
2700   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2701   // in which case its size may grow.
2702   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2703   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2704     llvm::Value *Tmp = RegResults[i];
2705     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2706 
2707     // If the result type of the LLVM IR asm doesn't match the result type of
2708     // the expression, do the conversion.
2709     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2710 
2711       // Truncate the integer result to the right size, note that TruncTy can be
2712       // a pointer.
2713       if (TruncTy->isFloatingPointTy())
2714         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2715       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2716         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2717         Tmp = Builder.CreateTrunc(Tmp,
2718                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2719         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2720       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2721         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2722         Tmp = Builder.CreatePtrToInt(Tmp,
2723                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2724         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2725       } else if (TruncTy->isIntegerTy()) {
2726         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2727       } else if (TruncTy->isVectorTy()) {
2728         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2729       }
2730     }
2731 
2732     LValue Dest = ResultRegDests[i];
2733     // ResultTypeRequiresCast elements correspond to the first
2734     // ResultTypeRequiresCast.size() elements of RegResults.
2735     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2736       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2737       Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2738                                                ResultRegTypes[i]);
2739       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2740         Builder.CreateStore(Tmp, A);
2741         continue;
2742       }
2743 
2744       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2745       if (Ty.isNull()) {
2746         const Expr *OutExpr = S.getOutputExpr(i);
2747         CGM.Error(
2748             OutExpr->getExprLoc(),
2749             "impossible constraint in asm: can't store value into a register");
2750         return;
2751       }
2752       Dest = MakeAddrLValue(A, Ty);
2753     }
2754     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2755   }
2756 }
2757 
2758 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2759   const RecordDecl *RD = S.getCapturedRecordDecl();
2760   QualType RecordTy = getContext().getRecordType(RD);
2761 
2762   // Initialize the captured struct.
2763   LValue SlotLV =
2764     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2765 
2766   RecordDecl::field_iterator CurField = RD->field_begin();
2767   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2768                                                  E = S.capture_init_end();
2769        I != E; ++I, ++CurField) {
2770     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2771     if (CurField->hasCapturedVLAType()) {
2772       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2773     } else {
2774       EmitInitializerForField(*CurField, LV, *I);
2775     }
2776   }
2777 
2778   return SlotLV;
2779 }
2780 
2781 /// Generate an outlined function for the body of a CapturedStmt, store any
2782 /// captured variables into the captured struct, and call the outlined function.
2783 llvm::Function *
2784 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2785   LValue CapStruct = InitCapturedStruct(S);
2786 
2787   // Emit the CapturedDecl
2788   CodeGenFunction CGF(CGM, true);
2789   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2790   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2791   delete CGF.CapturedStmtInfo;
2792 
2793   // Emit call to the helper function.
2794   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2795 
2796   return F;
2797 }
2798 
2799 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2800   LValue CapStruct = InitCapturedStruct(S);
2801   return CapStruct.getAddress(*this);
2802 }
2803 
2804 /// Creates the outlined function for a CapturedStmt.
2805 llvm::Function *
2806 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2807   assert(CapturedStmtInfo &&
2808     "CapturedStmtInfo should be set when generating the captured function");
2809   const CapturedDecl *CD = S.getCapturedDecl();
2810   const RecordDecl *RD = S.getCapturedRecordDecl();
2811   SourceLocation Loc = S.getBeginLoc();
2812   assert(CD->hasBody() && "missing CapturedDecl body");
2813 
2814   // Build the argument list.
2815   ASTContext &Ctx = CGM.getContext();
2816   FunctionArgList Args;
2817   Args.append(CD->param_begin(), CD->param_end());
2818 
2819   // Create the function declaration.
2820   const CGFunctionInfo &FuncInfo =
2821     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2822   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2823 
2824   llvm::Function *F =
2825     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2826                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2827   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2828   if (CD->isNothrow())
2829     F->addFnAttr(llvm::Attribute::NoUnwind);
2830 
2831   // Generate the function.
2832   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2833                 CD->getBody()->getBeginLoc());
2834   // Set the context parameter in CapturedStmtInfo.
2835   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2836   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2837 
2838   // Initialize variable-length arrays.
2839   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2840                                            Ctx.getTagDeclType(RD));
2841   for (auto *FD : RD->fields()) {
2842     if (FD->hasCapturedVLAType()) {
2843       auto *ExprArg =
2844           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2845               .getScalarVal();
2846       auto VAT = FD->getCapturedVLAType();
2847       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2848     }
2849   }
2850 
2851   // If 'this' is captured, load it into CXXThisValue.
2852   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2853     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2854     LValue ThisLValue = EmitLValueForField(Base, FD);
2855     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2856   }
2857 
2858   PGO.assignRegionCounters(GlobalDecl(CD), F);
2859   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2860   FinishFunction(CD->getBodyRBrace());
2861 
2862   return F;
2863 }
2864