1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 case Stmt::CoreturnStmtClass: 146 CGM.ErrorUnsupported(S, "coroutine"); 147 break; 148 case Stmt::CapturedStmtClass: { 149 const CapturedStmt *CS = cast<CapturedStmt>(S); 150 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 151 } 152 break; 153 case Stmt::ObjCAtTryStmtClass: 154 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 155 break; 156 case Stmt::ObjCAtCatchStmtClass: 157 llvm_unreachable( 158 "@catch statements should be handled by EmitObjCAtTryStmt"); 159 case Stmt::ObjCAtFinallyStmtClass: 160 llvm_unreachable( 161 "@finally statements should be handled by EmitObjCAtTryStmt"); 162 case Stmt::ObjCAtThrowStmtClass: 163 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 164 break; 165 case Stmt::ObjCAtSynchronizedStmtClass: 166 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 167 break; 168 case Stmt::ObjCForCollectionStmtClass: 169 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 170 break; 171 case Stmt::ObjCAutoreleasePoolStmtClass: 172 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 173 break; 174 175 case Stmt::CXXTryStmtClass: 176 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 177 break; 178 case Stmt::CXXForRangeStmtClass: 179 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 180 break; 181 case Stmt::SEHTryStmtClass: 182 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 183 break; 184 case Stmt::OMPParallelDirectiveClass: 185 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 186 break; 187 case Stmt::OMPSimdDirectiveClass: 188 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 189 break; 190 case Stmt::OMPForDirectiveClass: 191 EmitOMPForDirective(cast<OMPForDirective>(*S)); 192 break; 193 case Stmt::OMPForSimdDirectiveClass: 194 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 195 break; 196 case Stmt::OMPSectionsDirectiveClass: 197 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 198 break; 199 case Stmt::OMPSectionDirectiveClass: 200 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 201 break; 202 case Stmt::OMPSingleDirectiveClass: 203 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 204 break; 205 case Stmt::OMPMasterDirectiveClass: 206 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 207 break; 208 case Stmt::OMPCriticalDirectiveClass: 209 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 210 break; 211 case Stmt::OMPParallelForDirectiveClass: 212 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 213 break; 214 case Stmt::OMPParallelForSimdDirectiveClass: 215 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPParallelSectionsDirectiveClass: 218 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPTaskDirectiveClass: 221 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 222 break; 223 case Stmt::OMPTaskyieldDirectiveClass: 224 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 225 break; 226 case Stmt::OMPBarrierDirectiveClass: 227 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 228 break; 229 case Stmt::OMPTaskwaitDirectiveClass: 230 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 231 break; 232 case Stmt::OMPTaskgroupDirectiveClass: 233 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 234 break; 235 case Stmt::OMPFlushDirectiveClass: 236 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 237 break; 238 case Stmt::OMPOrderedDirectiveClass: 239 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 240 break; 241 case Stmt::OMPAtomicDirectiveClass: 242 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 243 break; 244 case Stmt::OMPTargetDirectiveClass: 245 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 246 break; 247 case Stmt::OMPTeamsDirectiveClass: 248 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 249 break; 250 case Stmt::OMPCancellationPointDirectiveClass: 251 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 252 break; 253 case Stmt::OMPCancelDirectiveClass: 254 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 255 break; 256 case Stmt::OMPTargetDataDirectiveClass: 257 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 258 break; 259 case Stmt::OMPTargetEnterDataDirectiveClass: 260 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 261 break; 262 case Stmt::OMPTargetExitDataDirectiveClass: 263 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 264 break; 265 case Stmt::OMPTargetParallelDirectiveClass: 266 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 267 break; 268 case Stmt::OMPTargetParallelForDirectiveClass: 269 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 270 break; 271 case Stmt::OMPTaskLoopDirectiveClass: 272 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 273 break; 274 case Stmt::OMPTaskLoopSimdDirectiveClass: 275 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 276 break; 277 case Stmt::OMPDistributeDirectiveClass: 278 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 279 break; 280 case Stmt::OMPTargetUpdateDirectiveClass: 281 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 282 break; 283 case Stmt::OMPDistributeParallelForDirectiveClass: 284 EmitOMPDistributeParallelForDirective( 285 cast<OMPDistributeParallelForDirective>(*S)); 286 break; 287 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 288 EmitOMPDistributeParallelForSimdDirective( 289 cast<OMPDistributeParallelForSimdDirective>(*S)); 290 break; 291 case Stmt::OMPDistributeSimdDirectiveClass: 292 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 293 break; 294 case Stmt::OMPTargetParallelForSimdDirectiveClass: 295 EmitOMPTargetParallelForSimdDirective( 296 cast<OMPTargetParallelForSimdDirective>(*S)); 297 break; 298 case Stmt::OMPTargetSimdDirectiveClass: 299 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 300 break; 301 } 302 } 303 304 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 305 switch (S->getStmtClass()) { 306 default: return false; 307 case Stmt::NullStmtClass: break; 308 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 309 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 310 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 311 case Stmt::AttributedStmtClass: 312 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 313 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 314 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 315 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 316 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 317 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 318 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 319 } 320 321 return true; 322 } 323 324 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 325 /// this captures the expression result of the last sub-statement and returns it 326 /// (for use by the statement expression extension). 327 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 328 AggValueSlot AggSlot) { 329 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 330 "LLVM IR generation of compound statement ('{}')"); 331 332 // Keep track of the current cleanup stack depth, including debug scopes. 333 LexicalScope Scope(*this, S.getSourceRange()); 334 335 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 336 } 337 338 Address 339 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 340 bool GetLast, 341 AggValueSlot AggSlot) { 342 343 for (CompoundStmt::const_body_iterator I = S.body_begin(), 344 E = S.body_end()-GetLast; I != E; ++I) 345 EmitStmt(*I); 346 347 Address RetAlloca = Address::invalid(); 348 if (GetLast) { 349 // We have to special case labels here. They are statements, but when put 350 // at the end of a statement expression, they yield the value of their 351 // subexpression. Handle this by walking through all labels we encounter, 352 // emitting them before we evaluate the subexpr. 353 const Stmt *LastStmt = S.body_back(); 354 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 355 EmitLabel(LS->getDecl()); 356 LastStmt = LS->getSubStmt(); 357 } 358 359 EnsureInsertPoint(); 360 361 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 362 if (hasAggregateEvaluationKind(ExprTy)) { 363 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 364 } else { 365 // We can't return an RValue here because there might be cleanups at 366 // the end of the StmtExpr. Because of that, we have to emit the result 367 // here into a temporary alloca. 368 RetAlloca = CreateMemTemp(ExprTy); 369 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 370 /*IsInit*/false); 371 } 372 373 } 374 375 return RetAlloca; 376 } 377 378 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 379 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 380 381 // If there is a cleanup stack, then we it isn't worth trying to 382 // simplify this block (we would need to remove it from the scope map 383 // and cleanup entry). 384 if (!EHStack.empty()) 385 return; 386 387 // Can only simplify direct branches. 388 if (!BI || !BI->isUnconditional()) 389 return; 390 391 // Can only simplify empty blocks. 392 if (BI->getIterator() != BB->begin()) 393 return; 394 395 BB->replaceAllUsesWith(BI->getSuccessor(0)); 396 BI->eraseFromParent(); 397 BB->eraseFromParent(); 398 } 399 400 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 401 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 402 403 // Fall out of the current block (if necessary). 404 EmitBranch(BB); 405 406 if (IsFinished && BB->use_empty()) { 407 delete BB; 408 return; 409 } 410 411 // Place the block after the current block, if possible, or else at 412 // the end of the function. 413 if (CurBB && CurBB->getParent()) 414 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 415 else 416 CurFn->getBasicBlockList().push_back(BB); 417 Builder.SetInsertPoint(BB); 418 } 419 420 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 421 // Emit a branch from the current block to the target one if this 422 // was a real block. If this was just a fall-through block after a 423 // terminator, don't emit it. 424 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 425 426 if (!CurBB || CurBB->getTerminator()) { 427 // If there is no insert point or the previous block is already 428 // terminated, don't touch it. 429 } else { 430 // Otherwise, create a fall-through branch. 431 Builder.CreateBr(Target); 432 } 433 434 Builder.ClearInsertionPoint(); 435 } 436 437 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 438 bool inserted = false; 439 for (llvm::User *u : block->users()) { 440 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 441 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 442 block); 443 inserted = true; 444 break; 445 } 446 } 447 448 if (!inserted) 449 CurFn->getBasicBlockList().push_back(block); 450 451 Builder.SetInsertPoint(block); 452 } 453 454 CodeGenFunction::JumpDest 455 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 456 JumpDest &Dest = LabelMap[D]; 457 if (Dest.isValid()) return Dest; 458 459 // Create, but don't insert, the new block. 460 Dest = JumpDest(createBasicBlock(D->getName()), 461 EHScopeStack::stable_iterator::invalid(), 462 NextCleanupDestIndex++); 463 return Dest; 464 } 465 466 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 467 // Add this label to the current lexical scope if we're within any 468 // normal cleanups. Jumps "in" to this label --- when permitted by 469 // the language --- may need to be routed around such cleanups. 470 if (EHStack.hasNormalCleanups() && CurLexicalScope) 471 CurLexicalScope->addLabel(D); 472 473 JumpDest &Dest = LabelMap[D]; 474 475 // If we didn't need a forward reference to this label, just go 476 // ahead and create a destination at the current scope. 477 if (!Dest.isValid()) { 478 Dest = getJumpDestInCurrentScope(D->getName()); 479 480 // Otherwise, we need to give this label a target depth and remove 481 // it from the branch-fixups list. 482 } else { 483 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 484 Dest.setScopeDepth(EHStack.stable_begin()); 485 ResolveBranchFixups(Dest.getBlock()); 486 } 487 488 EmitBlock(Dest.getBlock()); 489 incrementProfileCounter(D->getStmt()); 490 } 491 492 /// Change the cleanup scope of the labels in this lexical scope to 493 /// match the scope of the enclosing context. 494 void CodeGenFunction::LexicalScope::rescopeLabels() { 495 assert(!Labels.empty()); 496 EHScopeStack::stable_iterator innermostScope 497 = CGF.EHStack.getInnermostNormalCleanup(); 498 499 // Change the scope depth of all the labels. 500 for (SmallVectorImpl<const LabelDecl*>::const_iterator 501 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 502 assert(CGF.LabelMap.count(*i)); 503 JumpDest &dest = CGF.LabelMap.find(*i)->second; 504 assert(dest.getScopeDepth().isValid()); 505 assert(innermostScope.encloses(dest.getScopeDepth())); 506 dest.setScopeDepth(innermostScope); 507 } 508 509 // Reparent the labels if the new scope also has cleanups. 510 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 511 ParentScope->Labels.append(Labels.begin(), Labels.end()); 512 } 513 } 514 515 516 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 517 EmitLabel(S.getDecl()); 518 EmitStmt(S.getSubStmt()); 519 } 520 521 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 522 const Stmt *SubStmt = S.getSubStmt(); 523 switch (SubStmt->getStmtClass()) { 524 case Stmt::DoStmtClass: 525 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 526 break; 527 case Stmt::ForStmtClass: 528 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 529 break; 530 case Stmt::WhileStmtClass: 531 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 532 break; 533 case Stmt::CXXForRangeStmtClass: 534 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 535 break; 536 default: 537 EmitStmt(SubStmt); 538 } 539 } 540 541 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 542 // If this code is reachable then emit a stop point (if generating 543 // debug info). We have to do this ourselves because we are on the 544 // "simple" statement path. 545 if (HaveInsertPoint()) 546 EmitStopPoint(&S); 547 548 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 549 } 550 551 552 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 553 if (const LabelDecl *Target = S.getConstantTarget()) { 554 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 555 return; 556 } 557 558 // Ensure that we have an i8* for our PHI node. 559 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 560 Int8PtrTy, "addr"); 561 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 562 563 // Get the basic block for the indirect goto. 564 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 565 566 // The first instruction in the block has to be the PHI for the switch dest, 567 // add an entry for this branch. 568 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 569 570 EmitBranch(IndGotoBB); 571 } 572 573 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 574 // C99 6.8.4.1: The first substatement is executed if the expression compares 575 // unequal to 0. The condition must be a scalar type. 576 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 577 578 if (S.getInit()) 579 EmitStmt(S.getInit()); 580 581 if (S.getConditionVariable()) 582 EmitAutoVarDecl(*S.getConditionVariable()); 583 584 // If the condition constant folds and can be elided, try to avoid emitting 585 // the condition and the dead arm of the if/else. 586 bool CondConstant; 587 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 588 S.isConstexpr())) { 589 // Figure out which block (then or else) is executed. 590 const Stmt *Executed = S.getThen(); 591 const Stmt *Skipped = S.getElse(); 592 if (!CondConstant) // Condition false? 593 std::swap(Executed, Skipped); 594 595 // If the skipped block has no labels in it, just emit the executed block. 596 // This avoids emitting dead code and simplifies the CFG substantially. 597 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 598 if (CondConstant) 599 incrementProfileCounter(&S); 600 if (Executed) { 601 RunCleanupsScope ExecutedScope(*this); 602 EmitStmt(Executed); 603 } 604 return; 605 } 606 } 607 608 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 609 // the conditional branch. 610 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 611 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 612 llvm::BasicBlock *ElseBlock = ContBlock; 613 if (S.getElse()) 614 ElseBlock = createBasicBlock("if.else"); 615 616 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 617 getProfileCount(S.getThen())); 618 619 // Emit the 'then' code. 620 EmitBlock(ThenBlock); 621 incrementProfileCounter(&S); 622 { 623 RunCleanupsScope ThenScope(*this); 624 EmitStmt(S.getThen()); 625 } 626 EmitBranch(ContBlock); 627 628 // Emit the 'else' code if present. 629 if (const Stmt *Else = S.getElse()) { 630 { 631 // There is no need to emit line number for an unconditional branch. 632 auto NL = ApplyDebugLocation::CreateEmpty(*this); 633 EmitBlock(ElseBlock); 634 } 635 { 636 RunCleanupsScope ElseScope(*this); 637 EmitStmt(Else); 638 } 639 { 640 // There is no need to emit line number for an unconditional branch. 641 auto NL = ApplyDebugLocation::CreateEmpty(*this); 642 EmitBranch(ContBlock); 643 } 644 } 645 646 // Emit the continuation block for code after the if. 647 EmitBlock(ContBlock, true); 648 } 649 650 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 651 ArrayRef<const Attr *> WhileAttrs) { 652 // Emit the header for the loop, which will also become 653 // the continue target. 654 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 655 EmitBlock(LoopHeader.getBlock()); 656 657 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 658 Builder.getCurrentDebugLocation()); 659 660 // Create an exit block for when the condition fails, which will 661 // also become the break target. 662 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 663 664 // Store the blocks to use for break and continue. 665 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 666 667 // C++ [stmt.while]p2: 668 // When the condition of a while statement is a declaration, the 669 // scope of the variable that is declared extends from its point 670 // of declaration (3.3.2) to the end of the while statement. 671 // [...] 672 // The object created in a condition is destroyed and created 673 // with each iteration of the loop. 674 RunCleanupsScope ConditionScope(*this); 675 676 if (S.getConditionVariable()) 677 EmitAutoVarDecl(*S.getConditionVariable()); 678 679 // Evaluate the conditional in the while header. C99 6.8.5.1: The 680 // evaluation of the controlling expression takes place before each 681 // execution of the loop body. 682 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 683 684 // while(1) is common, avoid extra exit blocks. Be sure 685 // to correctly handle break/continue though. 686 bool EmitBoolCondBranch = true; 687 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 688 if (C->isOne()) 689 EmitBoolCondBranch = false; 690 691 // As long as the condition is true, go to the loop body. 692 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 693 if (EmitBoolCondBranch) { 694 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 695 if (ConditionScope.requiresCleanups()) 696 ExitBlock = createBasicBlock("while.exit"); 697 Builder.CreateCondBr( 698 BoolCondVal, LoopBody, ExitBlock, 699 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 700 701 if (ExitBlock != LoopExit.getBlock()) { 702 EmitBlock(ExitBlock); 703 EmitBranchThroughCleanup(LoopExit); 704 } 705 } 706 707 // Emit the loop body. We have to emit this in a cleanup scope 708 // because it might be a singleton DeclStmt. 709 { 710 RunCleanupsScope BodyScope(*this); 711 EmitBlock(LoopBody); 712 incrementProfileCounter(&S); 713 EmitStmt(S.getBody()); 714 } 715 716 BreakContinueStack.pop_back(); 717 718 // Immediately force cleanup. 719 ConditionScope.ForceCleanup(); 720 721 EmitStopPoint(&S); 722 // Branch to the loop header again. 723 EmitBranch(LoopHeader.getBlock()); 724 725 LoopStack.pop(); 726 727 // Emit the exit block. 728 EmitBlock(LoopExit.getBlock(), true); 729 730 // The LoopHeader typically is just a branch if we skipped emitting 731 // a branch, try to erase it. 732 if (!EmitBoolCondBranch) 733 SimplifyForwardingBlocks(LoopHeader.getBlock()); 734 } 735 736 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 737 ArrayRef<const Attr *> DoAttrs) { 738 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 739 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 740 741 uint64_t ParentCount = getCurrentProfileCount(); 742 743 // Store the blocks to use for break and continue. 744 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 745 746 // Emit the body of the loop. 747 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 748 749 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 750 Builder.getCurrentDebugLocation()); 751 752 EmitBlockWithFallThrough(LoopBody, &S); 753 { 754 RunCleanupsScope BodyScope(*this); 755 EmitStmt(S.getBody()); 756 } 757 758 EmitBlock(LoopCond.getBlock()); 759 760 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 761 // after each execution of the loop body." 762 763 // Evaluate the conditional in the while header. 764 // C99 6.8.5p2/p4: The first substatement is executed if the expression 765 // compares unequal to 0. The condition must be a scalar type. 766 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 767 768 BreakContinueStack.pop_back(); 769 770 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 771 // to correctly handle break/continue though. 772 bool EmitBoolCondBranch = true; 773 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 774 if (C->isZero()) 775 EmitBoolCondBranch = false; 776 777 // As long as the condition is true, iterate the loop. 778 if (EmitBoolCondBranch) { 779 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 780 Builder.CreateCondBr( 781 BoolCondVal, LoopBody, LoopExit.getBlock(), 782 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 783 } 784 785 LoopStack.pop(); 786 787 // Emit the exit block. 788 EmitBlock(LoopExit.getBlock()); 789 790 // The DoCond block typically is just a branch if we skipped 791 // emitting a branch, try to erase it. 792 if (!EmitBoolCondBranch) 793 SimplifyForwardingBlocks(LoopCond.getBlock()); 794 } 795 796 void CodeGenFunction::EmitForStmt(const ForStmt &S, 797 ArrayRef<const Attr *> ForAttrs) { 798 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 799 800 LexicalScope ForScope(*this, S.getSourceRange()); 801 802 llvm::DebugLoc DL = Builder.getCurrentDebugLocation(); 803 804 // Evaluate the first part before the loop. 805 if (S.getInit()) 806 EmitStmt(S.getInit()); 807 808 // Start the loop with a block that tests the condition. 809 // If there's an increment, the continue scope will be overwritten 810 // later. 811 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 812 llvm::BasicBlock *CondBlock = Continue.getBlock(); 813 EmitBlock(CondBlock); 814 815 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL); 816 817 // If the for loop doesn't have an increment we can just use the 818 // condition as the continue block. Otherwise we'll need to create 819 // a block for it (in the current scope, i.e. in the scope of the 820 // condition), and that we will become our continue block. 821 if (S.getInc()) 822 Continue = getJumpDestInCurrentScope("for.inc"); 823 824 // Store the blocks to use for break and continue. 825 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 826 827 // Create a cleanup scope for the condition variable cleanups. 828 LexicalScope ConditionScope(*this, S.getSourceRange()); 829 830 if (S.getCond()) { 831 // If the for statement has a condition scope, emit the local variable 832 // declaration. 833 if (S.getConditionVariable()) { 834 EmitAutoVarDecl(*S.getConditionVariable()); 835 } 836 837 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 838 // If there are any cleanups between here and the loop-exit scope, 839 // create a block to stage a loop exit along. 840 if (ForScope.requiresCleanups()) 841 ExitBlock = createBasicBlock("for.cond.cleanup"); 842 843 // As long as the condition is true, iterate the loop. 844 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 845 846 // C99 6.8.5p2/p4: The first substatement is executed if the expression 847 // compares unequal to 0. The condition must be a scalar type. 848 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 849 Builder.CreateCondBr( 850 BoolCondVal, ForBody, ExitBlock, 851 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 852 853 if (ExitBlock != LoopExit.getBlock()) { 854 EmitBlock(ExitBlock); 855 EmitBranchThroughCleanup(LoopExit); 856 } 857 858 EmitBlock(ForBody); 859 } else { 860 // Treat it as a non-zero constant. Don't even create a new block for the 861 // body, just fall into it. 862 } 863 incrementProfileCounter(&S); 864 865 { 866 // Create a separate cleanup scope for the body, in case it is not 867 // a compound statement. 868 RunCleanupsScope BodyScope(*this); 869 EmitStmt(S.getBody()); 870 } 871 872 // If there is an increment, emit it next. 873 if (S.getInc()) { 874 EmitBlock(Continue.getBlock()); 875 EmitStmt(S.getInc()); 876 } 877 878 BreakContinueStack.pop_back(); 879 880 ConditionScope.ForceCleanup(); 881 882 EmitStopPoint(&S); 883 EmitBranch(CondBlock); 884 885 ForScope.ForceCleanup(); 886 887 LoopStack.pop(); 888 889 // Emit the fall-through block. 890 EmitBlock(LoopExit.getBlock(), true); 891 } 892 893 void 894 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 895 ArrayRef<const Attr *> ForAttrs) { 896 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 897 898 LexicalScope ForScope(*this, S.getSourceRange()); 899 900 llvm::DebugLoc DL = Builder.getCurrentDebugLocation(); 901 902 // Evaluate the first pieces before the loop. 903 EmitStmt(S.getRangeStmt()); 904 EmitStmt(S.getBeginStmt()); 905 EmitStmt(S.getEndStmt()); 906 907 // Start the loop with a block that tests the condition. 908 // If there's an increment, the continue scope will be overwritten 909 // later. 910 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 911 EmitBlock(CondBlock); 912 913 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL); 914 915 // If there are any cleanups between here and the loop-exit scope, 916 // create a block to stage a loop exit along. 917 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 918 if (ForScope.requiresCleanups()) 919 ExitBlock = createBasicBlock("for.cond.cleanup"); 920 921 // The loop body, consisting of the specified body and the loop variable. 922 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 923 924 // The body is executed if the expression, contextually converted 925 // to bool, is true. 926 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 927 Builder.CreateCondBr( 928 BoolCondVal, ForBody, ExitBlock, 929 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 930 931 if (ExitBlock != LoopExit.getBlock()) { 932 EmitBlock(ExitBlock); 933 EmitBranchThroughCleanup(LoopExit); 934 } 935 936 EmitBlock(ForBody); 937 incrementProfileCounter(&S); 938 939 // Create a block for the increment. In case of a 'continue', we jump there. 940 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 941 942 // Store the blocks to use for break and continue. 943 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 944 945 { 946 // Create a separate cleanup scope for the loop variable and body. 947 LexicalScope BodyScope(*this, S.getSourceRange()); 948 EmitStmt(S.getLoopVarStmt()); 949 EmitStmt(S.getBody()); 950 } 951 952 EmitStopPoint(&S); 953 // If there is an increment, emit it next. 954 EmitBlock(Continue.getBlock()); 955 EmitStmt(S.getInc()); 956 957 BreakContinueStack.pop_back(); 958 959 EmitBranch(CondBlock); 960 961 ForScope.ForceCleanup(); 962 963 LoopStack.pop(); 964 965 // Emit the fall-through block. 966 EmitBlock(LoopExit.getBlock(), true); 967 } 968 969 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 970 if (RV.isScalar()) { 971 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 972 } else if (RV.isAggregate()) { 973 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 974 } else { 975 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 976 /*init*/ true); 977 } 978 EmitBranchThroughCleanup(ReturnBlock); 979 } 980 981 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 982 /// if the function returns void, or may be missing one if the function returns 983 /// non-void. Fun stuff :). 984 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 985 // Returning from an outlined SEH helper is UB, and we already warn on it. 986 if (IsOutlinedSEHHelper) { 987 Builder.CreateUnreachable(); 988 Builder.ClearInsertionPoint(); 989 } 990 991 // Emit the result value, even if unused, to evalute the side effects. 992 const Expr *RV = S.getRetValue(); 993 994 // Treat block literals in a return expression as if they appeared 995 // in their own scope. This permits a small, easily-implemented 996 // exception to our over-conservative rules about not jumping to 997 // statements following block literals with non-trivial cleanups. 998 RunCleanupsScope cleanupScope(*this); 999 if (const ExprWithCleanups *cleanups = 1000 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1001 enterFullExpression(cleanups); 1002 RV = cleanups->getSubExpr(); 1003 } 1004 1005 // FIXME: Clean this up by using an LValue for ReturnTemp, 1006 // EmitStoreThroughLValue, and EmitAnyExpr. 1007 if (getLangOpts().ElideConstructors && 1008 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1009 // Apply the named return value optimization for this return statement, 1010 // which means doing nothing: the appropriate result has already been 1011 // constructed into the NRVO variable. 1012 1013 // If there is an NRVO flag for this variable, set it to 1 into indicate 1014 // that the cleanup code should not destroy the variable. 1015 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1016 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1017 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1018 // Make sure not to return anything, but evaluate the expression 1019 // for side effects. 1020 if (RV) 1021 EmitAnyExpr(RV); 1022 } else if (!RV) { 1023 // Do nothing (return value is left uninitialized) 1024 } else if (FnRetTy->isReferenceType()) { 1025 // If this function returns a reference, take the address of the expression 1026 // rather than the value. 1027 RValue Result = EmitReferenceBindingToExpr(RV); 1028 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1029 } else { 1030 switch (getEvaluationKind(RV->getType())) { 1031 case TEK_Scalar: 1032 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1033 break; 1034 case TEK_Complex: 1035 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1036 /*isInit*/ true); 1037 break; 1038 case TEK_Aggregate: 1039 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1040 Qualifiers(), 1041 AggValueSlot::IsDestructed, 1042 AggValueSlot::DoesNotNeedGCBarriers, 1043 AggValueSlot::IsNotAliased)); 1044 break; 1045 } 1046 } 1047 1048 ++NumReturnExprs; 1049 if (!RV || RV->isEvaluatable(getContext())) 1050 ++NumSimpleReturnExprs; 1051 1052 cleanupScope.ForceCleanup(); 1053 EmitBranchThroughCleanup(ReturnBlock); 1054 } 1055 1056 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1057 // As long as debug info is modeled with instructions, we have to ensure we 1058 // have a place to insert here and write the stop point here. 1059 if (HaveInsertPoint()) 1060 EmitStopPoint(&S); 1061 1062 for (const auto *I : S.decls()) 1063 EmitDecl(*I); 1064 } 1065 1066 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1067 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1068 1069 // If this code is reachable then emit a stop point (if generating 1070 // debug info). We have to do this ourselves because we are on the 1071 // "simple" statement path. 1072 if (HaveInsertPoint()) 1073 EmitStopPoint(&S); 1074 1075 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1076 } 1077 1078 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1079 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1080 1081 // If this code is reachable then emit a stop point (if generating 1082 // debug info). We have to do this ourselves because we are on the 1083 // "simple" statement path. 1084 if (HaveInsertPoint()) 1085 EmitStopPoint(&S); 1086 1087 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1088 } 1089 1090 /// EmitCaseStmtRange - If case statement range is not too big then 1091 /// add multiple cases to switch instruction, one for each value within 1092 /// the range. If range is too big then emit "if" condition check. 1093 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1094 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1095 1096 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1097 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1098 1099 // Emit the code for this case. We do this first to make sure it is 1100 // properly chained from our predecessor before generating the 1101 // switch machinery to enter this block. 1102 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1103 EmitBlockWithFallThrough(CaseDest, &S); 1104 EmitStmt(S.getSubStmt()); 1105 1106 // If range is empty, do nothing. 1107 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1108 return; 1109 1110 llvm::APInt Range = RHS - LHS; 1111 // FIXME: parameters such as this should not be hardcoded. 1112 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1113 // Range is small enough to add multiple switch instruction cases. 1114 uint64_t Total = getProfileCount(&S); 1115 unsigned NCases = Range.getZExtValue() + 1; 1116 // We only have one region counter for the entire set of cases here, so we 1117 // need to divide the weights evenly between the generated cases, ensuring 1118 // that the total weight is preserved. E.g., a weight of 5 over three cases 1119 // will be distributed as weights of 2, 2, and 1. 1120 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1121 for (unsigned I = 0; I != NCases; ++I) { 1122 if (SwitchWeights) 1123 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1124 if (Rem) 1125 Rem--; 1126 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1127 LHS++; 1128 } 1129 return; 1130 } 1131 1132 // The range is too big. Emit "if" condition into a new block, 1133 // making sure to save and restore the current insertion point. 1134 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1135 1136 // Push this test onto the chain of range checks (which terminates 1137 // in the default basic block). The switch's default will be changed 1138 // to the top of this chain after switch emission is complete. 1139 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1140 CaseRangeBlock = createBasicBlock("sw.caserange"); 1141 1142 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1143 Builder.SetInsertPoint(CaseRangeBlock); 1144 1145 // Emit range check. 1146 llvm::Value *Diff = 1147 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1148 llvm::Value *Cond = 1149 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1150 1151 llvm::MDNode *Weights = nullptr; 1152 if (SwitchWeights) { 1153 uint64_t ThisCount = getProfileCount(&S); 1154 uint64_t DefaultCount = (*SwitchWeights)[0]; 1155 Weights = createProfileWeights(ThisCount, DefaultCount); 1156 1157 // Since we're chaining the switch default through each large case range, we 1158 // need to update the weight for the default, ie, the first case, to include 1159 // this case. 1160 (*SwitchWeights)[0] += ThisCount; 1161 } 1162 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1163 1164 // Restore the appropriate insertion point. 1165 if (RestoreBB) 1166 Builder.SetInsertPoint(RestoreBB); 1167 else 1168 Builder.ClearInsertionPoint(); 1169 } 1170 1171 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1172 // If there is no enclosing switch instance that we're aware of, then this 1173 // case statement and its block can be elided. This situation only happens 1174 // when we've constant-folded the switch, are emitting the constant case, 1175 // and part of the constant case includes another case statement. For 1176 // instance: switch (4) { case 4: do { case 5: } while (1); } 1177 if (!SwitchInsn) { 1178 EmitStmt(S.getSubStmt()); 1179 return; 1180 } 1181 1182 // Handle case ranges. 1183 if (S.getRHS()) { 1184 EmitCaseStmtRange(S); 1185 return; 1186 } 1187 1188 llvm::ConstantInt *CaseVal = 1189 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1190 1191 // If the body of the case is just a 'break', try to not emit an empty block. 1192 // If we're profiling or we're not optimizing, leave the block in for better 1193 // debug and coverage analysis. 1194 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1195 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1196 isa<BreakStmt>(S.getSubStmt())) { 1197 JumpDest Block = BreakContinueStack.back().BreakBlock; 1198 1199 // Only do this optimization if there are no cleanups that need emitting. 1200 if (isObviouslyBranchWithoutCleanups(Block)) { 1201 if (SwitchWeights) 1202 SwitchWeights->push_back(getProfileCount(&S)); 1203 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1204 1205 // If there was a fallthrough into this case, make sure to redirect it to 1206 // the end of the switch as well. 1207 if (Builder.GetInsertBlock()) { 1208 Builder.CreateBr(Block.getBlock()); 1209 Builder.ClearInsertionPoint(); 1210 } 1211 return; 1212 } 1213 } 1214 1215 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1216 EmitBlockWithFallThrough(CaseDest, &S); 1217 if (SwitchWeights) 1218 SwitchWeights->push_back(getProfileCount(&S)); 1219 SwitchInsn->addCase(CaseVal, CaseDest); 1220 1221 // Recursively emitting the statement is acceptable, but is not wonderful for 1222 // code where we have many case statements nested together, i.e.: 1223 // case 1: 1224 // case 2: 1225 // case 3: etc. 1226 // Handling this recursively will create a new block for each case statement 1227 // that falls through to the next case which is IR intensive. It also causes 1228 // deep recursion which can run into stack depth limitations. Handle 1229 // sequential non-range case statements specially. 1230 const CaseStmt *CurCase = &S; 1231 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1232 1233 // Otherwise, iteratively add consecutive cases to this switch stmt. 1234 while (NextCase && NextCase->getRHS() == nullptr) { 1235 CurCase = NextCase; 1236 llvm::ConstantInt *CaseVal = 1237 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1238 1239 if (SwitchWeights) 1240 SwitchWeights->push_back(getProfileCount(NextCase)); 1241 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1242 CaseDest = createBasicBlock("sw.bb"); 1243 EmitBlockWithFallThrough(CaseDest, &S); 1244 } 1245 1246 SwitchInsn->addCase(CaseVal, CaseDest); 1247 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1248 } 1249 1250 // Normal default recursion for non-cases. 1251 EmitStmt(CurCase->getSubStmt()); 1252 } 1253 1254 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1255 // If there is no enclosing switch instance that we're aware of, then this 1256 // default statement can be elided. This situation only happens when we've 1257 // constant-folded the switch. 1258 if (!SwitchInsn) { 1259 EmitStmt(S.getSubStmt()); 1260 return; 1261 } 1262 1263 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1264 assert(DefaultBlock->empty() && 1265 "EmitDefaultStmt: Default block already defined?"); 1266 1267 EmitBlockWithFallThrough(DefaultBlock, &S); 1268 1269 EmitStmt(S.getSubStmt()); 1270 } 1271 1272 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1273 /// constant value that is being switched on, see if we can dead code eliminate 1274 /// the body of the switch to a simple series of statements to emit. Basically, 1275 /// on a switch (5) we want to find these statements: 1276 /// case 5: 1277 /// printf(...); <-- 1278 /// ++i; <-- 1279 /// break; 1280 /// 1281 /// and add them to the ResultStmts vector. If it is unsafe to do this 1282 /// transformation (for example, one of the elided statements contains a label 1283 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1284 /// should include statements after it (e.g. the printf() line is a substmt of 1285 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1286 /// statement, then return CSFC_Success. 1287 /// 1288 /// If Case is non-null, then we are looking for the specified case, checking 1289 /// that nothing we jump over contains labels. If Case is null, then we found 1290 /// the case and are looking for the break. 1291 /// 1292 /// If the recursive walk actually finds our Case, then we set FoundCase to 1293 /// true. 1294 /// 1295 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1296 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1297 const SwitchCase *Case, 1298 bool &FoundCase, 1299 SmallVectorImpl<const Stmt*> &ResultStmts) { 1300 // If this is a null statement, just succeed. 1301 if (!S) 1302 return Case ? CSFC_Success : CSFC_FallThrough; 1303 1304 // If this is the switchcase (case 4: or default) that we're looking for, then 1305 // we're in business. Just add the substatement. 1306 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1307 if (S == Case) { 1308 FoundCase = true; 1309 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1310 ResultStmts); 1311 } 1312 1313 // Otherwise, this is some other case or default statement, just ignore it. 1314 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1315 ResultStmts); 1316 } 1317 1318 // If we are in the live part of the code and we found our break statement, 1319 // return a success! 1320 if (!Case && isa<BreakStmt>(S)) 1321 return CSFC_Success; 1322 1323 // If this is a switch statement, then it might contain the SwitchCase, the 1324 // break, or neither. 1325 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1326 // Handle this as two cases: we might be looking for the SwitchCase (if so 1327 // the skipped statements must be skippable) or we might already have it. 1328 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1329 if (Case) { 1330 // Keep track of whether we see a skipped declaration. The code could be 1331 // using the declaration even if it is skipped, so we can't optimize out 1332 // the decl if the kept statements might refer to it. 1333 bool HadSkippedDecl = false; 1334 1335 // If we're looking for the case, just see if we can skip each of the 1336 // substatements. 1337 for (; Case && I != E; ++I) { 1338 HadSkippedDecl |= isa<DeclStmt>(*I); 1339 1340 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1341 case CSFC_Failure: return CSFC_Failure; 1342 case CSFC_Success: 1343 // A successful result means that either 1) that the statement doesn't 1344 // have the case and is skippable, or 2) does contain the case value 1345 // and also contains the break to exit the switch. In the later case, 1346 // we just verify the rest of the statements are elidable. 1347 if (FoundCase) { 1348 // If we found the case and skipped declarations, we can't do the 1349 // optimization. 1350 if (HadSkippedDecl) 1351 return CSFC_Failure; 1352 1353 for (++I; I != E; ++I) 1354 if (CodeGenFunction::ContainsLabel(*I, true)) 1355 return CSFC_Failure; 1356 return CSFC_Success; 1357 } 1358 break; 1359 case CSFC_FallThrough: 1360 // If we have a fallthrough condition, then we must have found the 1361 // case started to include statements. Consider the rest of the 1362 // statements in the compound statement as candidates for inclusion. 1363 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1364 // We recursively found Case, so we're not looking for it anymore. 1365 Case = nullptr; 1366 1367 // If we found the case and skipped declarations, we can't do the 1368 // optimization. 1369 if (HadSkippedDecl) 1370 return CSFC_Failure; 1371 break; 1372 } 1373 } 1374 } 1375 1376 // If we have statements in our range, then we know that the statements are 1377 // live and need to be added to the set of statements we're tracking. 1378 for (; I != E; ++I) { 1379 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1380 case CSFC_Failure: return CSFC_Failure; 1381 case CSFC_FallThrough: 1382 // A fallthrough result means that the statement was simple and just 1383 // included in ResultStmt, keep adding them afterwards. 1384 break; 1385 case CSFC_Success: 1386 // A successful result means that we found the break statement and 1387 // stopped statement inclusion. We just ensure that any leftover stmts 1388 // are skippable and return success ourselves. 1389 for (++I; I != E; ++I) 1390 if (CodeGenFunction::ContainsLabel(*I, true)) 1391 return CSFC_Failure; 1392 return CSFC_Success; 1393 } 1394 } 1395 1396 return Case ? CSFC_Success : CSFC_FallThrough; 1397 } 1398 1399 // Okay, this is some other statement that we don't handle explicitly, like a 1400 // for statement or increment etc. If we are skipping over this statement, 1401 // just verify it doesn't have labels, which would make it invalid to elide. 1402 if (Case) { 1403 if (CodeGenFunction::ContainsLabel(S, true)) 1404 return CSFC_Failure; 1405 return CSFC_Success; 1406 } 1407 1408 // Otherwise, we want to include this statement. Everything is cool with that 1409 // so long as it doesn't contain a break out of the switch we're in. 1410 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1411 1412 // Otherwise, everything is great. Include the statement and tell the caller 1413 // that we fall through and include the next statement as well. 1414 ResultStmts.push_back(S); 1415 return CSFC_FallThrough; 1416 } 1417 1418 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1419 /// then invoke CollectStatementsForCase to find the list of statements to emit 1420 /// for a switch on constant. See the comment above CollectStatementsForCase 1421 /// for more details. 1422 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1423 const llvm::APSInt &ConstantCondValue, 1424 SmallVectorImpl<const Stmt*> &ResultStmts, 1425 ASTContext &C, 1426 const SwitchCase *&ResultCase) { 1427 // First step, find the switch case that is being branched to. We can do this 1428 // efficiently by scanning the SwitchCase list. 1429 const SwitchCase *Case = S.getSwitchCaseList(); 1430 const DefaultStmt *DefaultCase = nullptr; 1431 1432 for (; Case; Case = Case->getNextSwitchCase()) { 1433 // It's either a default or case. Just remember the default statement in 1434 // case we're not jumping to any numbered cases. 1435 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1436 DefaultCase = DS; 1437 continue; 1438 } 1439 1440 // Check to see if this case is the one we're looking for. 1441 const CaseStmt *CS = cast<CaseStmt>(Case); 1442 // Don't handle case ranges yet. 1443 if (CS->getRHS()) return false; 1444 1445 // If we found our case, remember it as 'case'. 1446 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1447 break; 1448 } 1449 1450 // If we didn't find a matching case, we use a default if it exists, or we 1451 // elide the whole switch body! 1452 if (!Case) { 1453 // It is safe to elide the body of the switch if it doesn't contain labels 1454 // etc. If it is safe, return successfully with an empty ResultStmts list. 1455 if (!DefaultCase) 1456 return !CodeGenFunction::ContainsLabel(&S); 1457 Case = DefaultCase; 1458 } 1459 1460 // Ok, we know which case is being jumped to, try to collect all the 1461 // statements that follow it. This can fail for a variety of reasons. Also, 1462 // check to see that the recursive walk actually found our case statement. 1463 // Insane cases like this can fail to find it in the recursive walk since we 1464 // don't handle every stmt kind: 1465 // switch (4) { 1466 // while (1) { 1467 // case 4: ... 1468 bool FoundCase = false; 1469 ResultCase = Case; 1470 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1471 ResultStmts) != CSFC_Failure && 1472 FoundCase; 1473 } 1474 1475 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1476 // Handle nested switch statements. 1477 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1478 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1479 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1480 1481 // See if we can constant fold the condition of the switch and therefore only 1482 // emit the live case statement (if any) of the switch. 1483 llvm::APSInt ConstantCondValue; 1484 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1485 SmallVector<const Stmt*, 4> CaseStmts; 1486 const SwitchCase *Case = nullptr; 1487 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1488 getContext(), Case)) { 1489 if (Case) 1490 incrementProfileCounter(Case); 1491 RunCleanupsScope ExecutedScope(*this); 1492 1493 if (S.getInit()) 1494 EmitStmt(S.getInit()); 1495 1496 // Emit the condition variable if needed inside the entire cleanup scope 1497 // used by this special case for constant folded switches. 1498 if (S.getConditionVariable()) 1499 EmitAutoVarDecl(*S.getConditionVariable()); 1500 1501 // At this point, we are no longer "within" a switch instance, so 1502 // we can temporarily enforce this to ensure that any embedded case 1503 // statements are not emitted. 1504 SwitchInsn = nullptr; 1505 1506 // Okay, we can dead code eliminate everything except this case. Emit the 1507 // specified series of statements and we're good. 1508 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1509 EmitStmt(CaseStmts[i]); 1510 incrementProfileCounter(&S); 1511 1512 // Now we want to restore the saved switch instance so that nested 1513 // switches continue to function properly 1514 SwitchInsn = SavedSwitchInsn; 1515 1516 return; 1517 } 1518 } 1519 1520 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1521 1522 RunCleanupsScope ConditionScope(*this); 1523 1524 if (S.getInit()) 1525 EmitStmt(S.getInit()); 1526 1527 if (S.getConditionVariable()) 1528 EmitAutoVarDecl(*S.getConditionVariable()); 1529 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1530 1531 // Create basic block to hold stuff that comes after switch 1532 // statement. We also need to create a default block now so that 1533 // explicit case ranges tests can have a place to jump to on 1534 // failure. 1535 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1536 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1537 if (PGO.haveRegionCounts()) { 1538 // Walk the SwitchCase list to find how many there are. 1539 uint64_t DefaultCount = 0; 1540 unsigned NumCases = 0; 1541 for (const SwitchCase *Case = S.getSwitchCaseList(); 1542 Case; 1543 Case = Case->getNextSwitchCase()) { 1544 if (isa<DefaultStmt>(Case)) 1545 DefaultCount = getProfileCount(Case); 1546 NumCases += 1; 1547 } 1548 SwitchWeights = new SmallVector<uint64_t, 16>(); 1549 SwitchWeights->reserve(NumCases); 1550 // The default needs to be first. We store the edge count, so we already 1551 // know the right weight. 1552 SwitchWeights->push_back(DefaultCount); 1553 } 1554 CaseRangeBlock = DefaultBlock; 1555 1556 // Clear the insertion point to indicate we are in unreachable code. 1557 Builder.ClearInsertionPoint(); 1558 1559 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1560 // then reuse last ContinueBlock. 1561 JumpDest OuterContinue; 1562 if (!BreakContinueStack.empty()) 1563 OuterContinue = BreakContinueStack.back().ContinueBlock; 1564 1565 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1566 1567 // Emit switch body. 1568 EmitStmt(S.getBody()); 1569 1570 BreakContinueStack.pop_back(); 1571 1572 // Update the default block in case explicit case range tests have 1573 // been chained on top. 1574 SwitchInsn->setDefaultDest(CaseRangeBlock); 1575 1576 // If a default was never emitted: 1577 if (!DefaultBlock->getParent()) { 1578 // If we have cleanups, emit the default block so that there's a 1579 // place to jump through the cleanups from. 1580 if (ConditionScope.requiresCleanups()) { 1581 EmitBlock(DefaultBlock); 1582 1583 // Otherwise, just forward the default block to the switch end. 1584 } else { 1585 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1586 delete DefaultBlock; 1587 } 1588 } 1589 1590 ConditionScope.ForceCleanup(); 1591 1592 // Emit continuation. 1593 EmitBlock(SwitchExit.getBlock(), true); 1594 incrementProfileCounter(&S); 1595 1596 // If the switch has a condition wrapped by __builtin_unpredictable, 1597 // create metadata that specifies that the switch is unpredictable. 1598 // Don't bother if not optimizing because that metadata would not be used. 1599 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1600 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1601 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1602 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1603 llvm::MDBuilder MDHelper(getLLVMContext()); 1604 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1605 MDHelper.createUnpredictable()); 1606 } 1607 } 1608 1609 if (SwitchWeights) { 1610 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1611 "switch weights do not match switch cases"); 1612 // If there's only one jump destination there's no sense weighting it. 1613 if (SwitchWeights->size() > 1) 1614 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1615 createProfileWeights(*SwitchWeights)); 1616 delete SwitchWeights; 1617 } 1618 SwitchInsn = SavedSwitchInsn; 1619 SwitchWeights = SavedSwitchWeights; 1620 CaseRangeBlock = SavedCRBlock; 1621 } 1622 1623 static std::string 1624 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1625 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1626 std::string Result; 1627 1628 while (*Constraint) { 1629 switch (*Constraint) { 1630 default: 1631 Result += Target.convertConstraint(Constraint); 1632 break; 1633 // Ignore these 1634 case '*': 1635 case '?': 1636 case '!': 1637 case '=': // Will see this and the following in mult-alt constraints. 1638 case '+': 1639 break; 1640 case '#': // Ignore the rest of the constraint alternative. 1641 while (Constraint[1] && Constraint[1] != ',') 1642 Constraint++; 1643 break; 1644 case '&': 1645 case '%': 1646 Result += *Constraint; 1647 while (Constraint[1] && Constraint[1] == *Constraint) 1648 Constraint++; 1649 break; 1650 case ',': 1651 Result += "|"; 1652 break; 1653 case 'g': 1654 Result += "imr"; 1655 break; 1656 case '[': { 1657 assert(OutCons && 1658 "Must pass output names to constraints with a symbolic name"); 1659 unsigned Index; 1660 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1661 assert(result && "Could not resolve symbolic name"); (void)result; 1662 Result += llvm::utostr(Index); 1663 break; 1664 } 1665 } 1666 1667 Constraint++; 1668 } 1669 1670 return Result; 1671 } 1672 1673 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1674 /// as using a particular register add that as a constraint that will be used 1675 /// in this asm stmt. 1676 static std::string 1677 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1678 const TargetInfo &Target, CodeGenModule &CGM, 1679 const AsmStmt &Stmt, const bool EarlyClobber) { 1680 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1681 if (!AsmDeclRef) 1682 return Constraint; 1683 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1684 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1685 if (!Variable) 1686 return Constraint; 1687 if (Variable->getStorageClass() != SC_Register) 1688 return Constraint; 1689 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1690 if (!Attr) 1691 return Constraint; 1692 StringRef Register = Attr->getLabel(); 1693 assert(Target.isValidGCCRegisterName(Register)); 1694 // We're using validateOutputConstraint here because we only care if 1695 // this is a register constraint. 1696 TargetInfo::ConstraintInfo Info(Constraint, ""); 1697 if (Target.validateOutputConstraint(Info) && 1698 !Info.allowsRegister()) { 1699 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1700 return Constraint; 1701 } 1702 // Canonicalize the register here before returning it. 1703 Register = Target.getNormalizedGCCRegisterName(Register); 1704 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1705 } 1706 1707 llvm::Value* 1708 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1709 LValue InputValue, QualType InputType, 1710 std::string &ConstraintStr, 1711 SourceLocation Loc) { 1712 llvm::Value *Arg; 1713 if (Info.allowsRegister() || !Info.allowsMemory()) { 1714 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1715 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1716 } else { 1717 llvm::Type *Ty = ConvertType(InputType); 1718 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1719 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1720 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1721 Ty = llvm::PointerType::getUnqual(Ty); 1722 1723 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1724 Ty)); 1725 } else { 1726 Arg = InputValue.getPointer(); 1727 ConstraintStr += '*'; 1728 } 1729 } 1730 } else { 1731 Arg = InputValue.getPointer(); 1732 ConstraintStr += '*'; 1733 } 1734 1735 return Arg; 1736 } 1737 1738 llvm::Value* CodeGenFunction::EmitAsmInput( 1739 const TargetInfo::ConstraintInfo &Info, 1740 const Expr *InputExpr, 1741 std::string &ConstraintStr) { 1742 // If this can't be a register or memory, i.e., has to be a constant 1743 // (immediate or symbolic), try to emit it as such. 1744 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1745 llvm::APSInt Result; 1746 if (InputExpr->EvaluateAsInt(Result, getContext())) 1747 return llvm::ConstantInt::get(getLLVMContext(), Result); 1748 assert(!Info.requiresImmediateConstant() && 1749 "Required-immediate inlineasm arg isn't constant?"); 1750 } 1751 1752 if (Info.allowsRegister() || !Info.allowsMemory()) 1753 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1754 return EmitScalarExpr(InputExpr); 1755 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1756 return EmitScalarExpr(InputExpr); 1757 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1758 LValue Dest = EmitLValue(InputExpr); 1759 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1760 InputExpr->getExprLoc()); 1761 } 1762 1763 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1764 /// asm call instruction. The !srcloc MDNode contains a list of constant 1765 /// integers which are the source locations of the start of each line in the 1766 /// asm. 1767 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1768 CodeGenFunction &CGF) { 1769 SmallVector<llvm::Metadata *, 8> Locs; 1770 // Add the location of the first line to the MDNode. 1771 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1772 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1773 StringRef StrVal = Str->getString(); 1774 if (!StrVal.empty()) { 1775 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1776 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1777 unsigned StartToken = 0; 1778 unsigned ByteOffset = 0; 1779 1780 // Add the location of the start of each subsequent line of the asm to the 1781 // MDNode. 1782 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1783 if (StrVal[i] != '\n') continue; 1784 SourceLocation LineLoc = Str->getLocationOfByte( 1785 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1786 Locs.push_back(llvm::ConstantAsMetadata::get( 1787 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1788 } 1789 } 1790 1791 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1792 } 1793 1794 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1795 // Assemble the final asm string. 1796 std::string AsmString = S.generateAsmString(getContext()); 1797 1798 // Get all the output and input constraints together. 1799 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1800 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1801 1802 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1803 StringRef Name; 1804 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1805 Name = GAS->getOutputName(i); 1806 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1807 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1808 assert(IsValid && "Failed to parse output constraint"); 1809 OutputConstraintInfos.push_back(Info); 1810 } 1811 1812 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1813 StringRef Name; 1814 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1815 Name = GAS->getInputName(i); 1816 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1817 bool IsValid = 1818 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1819 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1820 InputConstraintInfos.push_back(Info); 1821 } 1822 1823 std::string Constraints; 1824 1825 std::vector<LValue> ResultRegDests; 1826 std::vector<QualType> ResultRegQualTys; 1827 std::vector<llvm::Type *> ResultRegTypes; 1828 std::vector<llvm::Type *> ResultTruncRegTypes; 1829 std::vector<llvm::Type *> ArgTypes; 1830 std::vector<llvm::Value*> Args; 1831 1832 // Keep track of inout constraints. 1833 std::string InOutConstraints; 1834 std::vector<llvm::Value*> InOutArgs; 1835 std::vector<llvm::Type*> InOutArgTypes; 1836 1837 // An inline asm can be marked readonly if it meets the following conditions: 1838 // - it doesn't have any sideeffects 1839 // - it doesn't clobber memory 1840 // - it doesn't return a value by-reference 1841 // It can be marked readnone if it doesn't have any input memory constraints 1842 // in addition to meeting the conditions listed above. 1843 bool ReadOnly = true, ReadNone = true; 1844 1845 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1846 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1847 1848 // Simplify the output constraint. 1849 std::string OutputConstraint(S.getOutputConstraint(i)); 1850 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1851 getTarget()); 1852 1853 const Expr *OutExpr = S.getOutputExpr(i); 1854 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1855 1856 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1857 getTarget(), CGM, S, 1858 Info.earlyClobber()); 1859 1860 LValue Dest = EmitLValue(OutExpr); 1861 if (!Constraints.empty()) 1862 Constraints += ','; 1863 1864 // If this is a register output, then make the inline asm return it 1865 // by-value. If this is a memory result, return the value by-reference. 1866 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1867 Constraints += "=" + OutputConstraint; 1868 ResultRegQualTys.push_back(OutExpr->getType()); 1869 ResultRegDests.push_back(Dest); 1870 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1871 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1872 1873 // If this output is tied to an input, and if the input is larger, then 1874 // we need to set the actual result type of the inline asm node to be the 1875 // same as the input type. 1876 if (Info.hasMatchingInput()) { 1877 unsigned InputNo; 1878 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1879 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1880 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1881 break; 1882 } 1883 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1884 1885 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1886 QualType OutputType = OutExpr->getType(); 1887 1888 uint64_t InputSize = getContext().getTypeSize(InputTy); 1889 if (getContext().getTypeSize(OutputType) < InputSize) { 1890 // Form the asm to return the value as a larger integer or fp type. 1891 ResultRegTypes.back() = ConvertType(InputTy); 1892 } 1893 } 1894 if (llvm::Type* AdjTy = 1895 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1896 ResultRegTypes.back())) 1897 ResultRegTypes.back() = AdjTy; 1898 else { 1899 CGM.getDiags().Report(S.getAsmLoc(), 1900 diag::err_asm_invalid_type_in_input) 1901 << OutExpr->getType() << OutputConstraint; 1902 } 1903 } else { 1904 ArgTypes.push_back(Dest.getAddress().getType()); 1905 Args.push_back(Dest.getPointer()); 1906 Constraints += "=*"; 1907 Constraints += OutputConstraint; 1908 ReadOnly = ReadNone = false; 1909 } 1910 1911 if (Info.isReadWrite()) { 1912 InOutConstraints += ','; 1913 1914 const Expr *InputExpr = S.getOutputExpr(i); 1915 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1916 InOutConstraints, 1917 InputExpr->getExprLoc()); 1918 1919 if (llvm::Type* AdjTy = 1920 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1921 Arg->getType())) 1922 Arg = Builder.CreateBitCast(Arg, AdjTy); 1923 1924 if (Info.allowsRegister()) 1925 InOutConstraints += llvm::utostr(i); 1926 else 1927 InOutConstraints += OutputConstraint; 1928 1929 InOutArgTypes.push_back(Arg->getType()); 1930 InOutArgs.push_back(Arg); 1931 } 1932 } 1933 1934 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1935 // to the return value slot. Only do this when returning in registers. 1936 if (isa<MSAsmStmt>(&S)) { 1937 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1938 if (RetAI.isDirect() || RetAI.isExtend()) { 1939 // Make a fake lvalue for the return value slot. 1940 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1941 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1942 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1943 ResultRegDests, AsmString, S.getNumOutputs()); 1944 SawAsmBlock = true; 1945 } 1946 } 1947 1948 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1949 const Expr *InputExpr = S.getInputExpr(i); 1950 1951 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1952 1953 if (Info.allowsMemory()) 1954 ReadNone = false; 1955 1956 if (!Constraints.empty()) 1957 Constraints += ','; 1958 1959 // Simplify the input constraint. 1960 std::string InputConstraint(S.getInputConstraint(i)); 1961 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 1962 &OutputConstraintInfos); 1963 1964 InputConstraint = AddVariableConstraints( 1965 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 1966 getTarget(), CGM, S, false /* No EarlyClobber */); 1967 1968 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 1969 1970 // If this input argument is tied to a larger output result, extend the 1971 // input to be the same size as the output. The LLVM backend wants to see 1972 // the input and output of a matching constraint be the same size. Note 1973 // that GCC does not define what the top bits are here. We use zext because 1974 // that is usually cheaper, but LLVM IR should really get an anyext someday. 1975 if (Info.hasTiedOperand()) { 1976 unsigned Output = Info.getTiedOperand(); 1977 QualType OutputType = S.getOutputExpr(Output)->getType(); 1978 QualType InputTy = InputExpr->getType(); 1979 1980 if (getContext().getTypeSize(OutputType) > 1981 getContext().getTypeSize(InputTy)) { 1982 // Use ptrtoint as appropriate so that we can do our extension. 1983 if (isa<llvm::PointerType>(Arg->getType())) 1984 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 1985 llvm::Type *OutputTy = ConvertType(OutputType); 1986 if (isa<llvm::IntegerType>(OutputTy)) 1987 Arg = Builder.CreateZExt(Arg, OutputTy); 1988 else if (isa<llvm::PointerType>(OutputTy)) 1989 Arg = Builder.CreateZExt(Arg, IntPtrTy); 1990 else { 1991 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 1992 Arg = Builder.CreateFPExt(Arg, OutputTy); 1993 } 1994 } 1995 } 1996 if (llvm::Type* AdjTy = 1997 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 1998 Arg->getType())) 1999 Arg = Builder.CreateBitCast(Arg, AdjTy); 2000 else 2001 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2002 << InputExpr->getType() << InputConstraint; 2003 2004 ArgTypes.push_back(Arg->getType()); 2005 Args.push_back(Arg); 2006 Constraints += InputConstraint; 2007 } 2008 2009 // Append the "input" part of inout constraints last. 2010 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2011 ArgTypes.push_back(InOutArgTypes[i]); 2012 Args.push_back(InOutArgs[i]); 2013 } 2014 Constraints += InOutConstraints; 2015 2016 // Clobbers 2017 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2018 StringRef Clobber = S.getClobber(i); 2019 2020 if (Clobber == "memory") 2021 ReadOnly = ReadNone = false; 2022 else if (Clobber != "cc") 2023 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2024 2025 if (!Constraints.empty()) 2026 Constraints += ','; 2027 2028 Constraints += "~{"; 2029 Constraints += Clobber; 2030 Constraints += '}'; 2031 } 2032 2033 // Add machine specific clobbers 2034 std::string MachineClobbers = getTarget().getClobbers(); 2035 if (!MachineClobbers.empty()) { 2036 if (!Constraints.empty()) 2037 Constraints += ','; 2038 Constraints += MachineClobbers; 2039 } 2040 2041 llvm::Type *ResultType; 2042 if (ResultRegTypes.empty()) 2043 ResultType = VoidTy; 2044 else if (ResultRegTypes.size() == 1) 2045 ResultType = ResultRegTypes[0]; 2046 else 2047 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2048 2049 llvm::FunctionType *FTy = 2050 llvm::FunctionType::get(ResultType, ArgTypes, false); 2051 2052 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2053 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2054 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2055 llvm::InlineAsm *IA = 2056 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2057 /* IsAlignStack */ false, AsmDialect); 2058 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2059 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2060 llvm::Attribute::NoUnwind); 2061 2062 if (isa<MSAsmStmt>(&S)) { 2063 // If the assembly contains any labels, mark the call noduplicate to prevent 2064 // defining the same ASM label twice (PR23715). This is pretty hacky, but it 2065 // works. 2066 if (AsmString.find("__MSASMLABEL_") != std::string::npos) 2067 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2068 llvm::Attribute::NoDuplicate); 2069 } 2070 2071 // Attach readnone and readonly attributes. 2072 if (!HasSideEffect) { 2073 if (ReadNone) 2074 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2075 llvm::Attribute::ReadNone); 2076 else if (ReadOnly) 2077 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2078 llvm::Attribute::ReadOnly); 2079 } 2080 2081 // Slap the source location of the inline asm into a !srcloc metadata on the 2082 // call. 2083 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2084 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2085 *this)); 2086 } else { 2087 // At least put the line number on MS inline asm blobs. 2088 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2089 Result->setMetadata("srcloc", 2090 llvm::MDNode::get(getLLVMContext(), 2091 llvm::ConstantAsMetadata::get(Loc))); 2092 } 2093 2094 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 2095 // Conservatively, mark all inline asm blocks in CUDA as convergent 2096 // (meaning, they may call an intrinsically convergent op, such as bar.sync, 2097 // and so can't have certain optimizations applied around them). 2098 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2099 llvm::Attribute::Convergent); 2100 } 2101 2102 // Extract all of the register value results from the asm. 2103 std::vector<llvm::Value*> RegResults; 2104 if (ResultRegTypes.size() == 1) { 2105 RegResults.push_back(Result); 2106 } else { 2107 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2108 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2109 RegResults.push_back(Tmp); 2110 } 2111 } 2112 2113 assert(RegResults.size() == ResultRegTypes.size()); 2114 assert(RegResults.size() == ResultTruncRegTypes.size()); 2115 assert(RegResults.size() == ResultRegDests.size()); 2116 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2117 llvm::Value *Tmp = RegResults[i]; 2118 2119 // If the result type of the LLVM IR asm doesn't match the result type of 2120 // the expression, do the conversion. 2121 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2122 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2123 2124 // Truncate the integer result to the right size, note that TruncTy can be 2125 // a pointer. 2126 if (TruncTy->isFloatingPointTy()) 2127 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2128 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2129 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2130 Tmp = Builder.CreateTrunc(Tmp, 2131 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2132 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2133 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2134 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2135 Tmp = Builder.CreatePtrToInt(Tmp, 2136 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2137 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2138 } else if (TruncTy->isIntegerTy()) { 2139 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2140 } else if (TruncTy->isVectorTy()) { 2141 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2142 } 2143 } 2144 2145 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2146 } 2147 } 2148 2149 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2150 const RecordDecl *RD = S.getCapturedRecordDecl(); 2151 QualType RecordTy = getContext().getRecordType(RD); 2152 2153 // Initialize the captured struct. 2154 LValue SlotLV = 2155 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2156 2157 RecordDecl::field_iterator CurField = RD->field_begin(); 2158 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2159 E = S.capture_init_end(); 2160 I != E; ++I, ++CurField) { 2161 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2162 if (CurField->hasCapturedVLAType()) { 2163 auto VAT = CurField->getCapturedVLAType(); 2164 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2165 } else { 2166 EmitInitializerForField(*CurField, LV, *I, None); 2167 } 2168 } 2169 2170 return SlotLV; 2171 } 2172 2173 /// Generate an outlined function for the body of a CapturedStmt, store any 2174 /// captured variables into the captured struct, and call the outlined function. 2175 llvm::Function * 2176 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2177 LValue CapStruct = InitCapturedStruct(S); 2178 2179 // Emit the CapturedDecl 2180 CodeGenFunction CGF(CGM, true); 2181 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2182 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2183 delete CGF.CapturedStmtInfo; 2184 2185 // Emit call to the helper function. 2186 EmitCallOrInvoke(F, CapStruct.getPointer()); 2187 2188 return F; 2189 } 2190 2191 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2192 LValue CapStruct = InitCapturedStruct(S); 2193 return CapStruct.getAddress(); 2194 } 2195 2196 /// Creates the outlined function for a CapturedStmt. 2197 llvm::Function * 2198 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2199 assert(CapturedStmtInfo && 2200 "CapturedStmtInfo should be set when generating the captured function"); 2201 const CapturedDecl *CD = S.getCapturedDecl(); 2202 const RecordDecl *RD = S.getCapturedRecordDecl(); 2203 SourceLocation Loc = S.getLocStart(); 2204 assert(CD->hasBody() && "missing CapturedDecl body"); 2205 2206 // Build the argument list. 2207 ASTContext &Ctx = CGM.getContext(); 2208 FunctionArgList Args; 2209 Args.append(CD->param_begin(), CD->param_end()); 2210 2211 // Create the function declaration. 2212 FunctionType::ExtInfo ExtInfo; 2213 const CGFunctionInfo &FuncInfo = 2214 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2215 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2216 2217 llvm::Function *F = 2218 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2219 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2220 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2221 if (CD->isNothrow()) 2222 F->addFnAttr(llvm::Attribute::NoUnwind); 2223 2224 // Generate the function. 2225 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2226 CD->getLocation(), 2227 CD->getBody()->getLocStart()); 2228 // Set the context parameter in CapturedStmtInfo. 2229 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2230 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2231 2232 // Initialize variable-length arrays. 2233 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2234 Ctx.getTagDeclType(RD)); 2235 for (auto *FD : RD->fields()) { 2236 if (FD->hasCapturedVLAType()) { 2237 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2238 S.getLocStart()).getScalarVal(); 2239 auto VAT = FD->getCapturedVLAType(); 2240 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2241 } 2242 } 2243 2244 // If 'this' is captured, load it into CXXThisValue. 2245 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2246 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2247 LValue ThisLValue = EmitLValueForField(Base, FD); 2248 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2249 } 2250 2251 PGO.assignRegionCounters(GlobalDecl(CD), F); 2252 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2253 FinishFunction(CD->getBodyRBrace()); 2254 2255 return F; 2256 } 2257