1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 146 break; 147 case Stmt::CoreturnStmtClass: 148 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 149 break; 150 case Stmt::CapturedStmtClass: { 151 const CapturedStmt *CS = cast<CapturedStmt>(S); 152 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 153 } 154 break; 155 case Stmt::ObjCAtTryStmtClass: 156 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 157 break; 158 case Stmt::ObjCAtCatchStmtClass: 159 llvm_unreachable( 160 "@catch statements should be handled by EmitObjCAtTryStmt"); 161 case Stmt::ObjCAtFinallyStmtClass: 162 llvm_unreachable( 163 "@finally statements should be handled by EmitObjCAtTryStmt"); 164 case Stmt::ObjCAtThrowStmtClass: 165 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 166 break; 167 case Stmt::ObjCAtSynchronizedStmtClass: 168 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 169 break; 170 case Stmt::ObjCForCollectionStmtClass: 171 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 172 break; 173 case Stmt::ObjCAutoreleasePoolStmtClass: 174 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 175 break; 176 177 case Stmt::CXXTryStmtClass: 178 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 179 break; 180 case Stmt::CXXForRangeStmtClass: 181 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 182 break; 183 case Stmt::SEHTryStmtClass: 184 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 185 break; 186 case Stmt::OMPParallelDirectiveClass: 187 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 188 break; 189 case Stmt::OMPSimdDirectiveClass: 190 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 191 break; 192 case Stmt::OMPForDirectiveClass: 193 EmitOMPForDirective(cast<OMPForDirective>(*S)); 194 break; 195 case Stmt::OMPForSimdDirectiveClass: 196 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 197 break; 198 case Stmt::OMPSectionsDirectiveClass: 199 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 200 break; 201 case Stmt::OMPSectionDirectiveClass: 202 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 203 break; 204 case Stmt::OMPSingleDirectiveClass: 205 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 206 break; 207 case Stmt::OMPMasterDirectiveClass: 208 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 209 break; 210 case Stmt::OMPCriticalDirectiveClass: 211 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 212 break; 213 case Stmt::OMPParallelForDirectiveClass: 214 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 215 break; 216 case Stmt::OMPParallelForSimdDirectiveClass: 217 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 218 break; 219 case Stmt::OMPParallelSectionsDirectiveClass: 220 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 221 break; 222 case Stmt::OMPTaskDirectiveClass: 223 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 224 break; 225 case Stmt::OMPTaskyieldDirectiveClass: 226 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 227 break; 228 case Stmt::OMPBarrierDirectiveClass: 229 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 230 break; 231 case Stmt::OMPTaskwaitDirectiveClass: 232 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 233 break; 234 case Stmt::OMPTaskgroupDirectiveClass: 235 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 236 break; 237 case Stmt::OMPFlushDirectiveClass: 238 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 239 break; 240 case Stmt::OMPOrderedDirectiveClass: 241 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 242 break; 243 case Stmt::OMPAtomicDirectiveClass: 244 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 245 break; 246 case Stmt::OMPTargetDirectiveClass: 247 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 248 break; 249 case Stmt::OMPTeamsDirectiveClass: 250 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 251 break; 252 case Stmt::OMPCancellationPointDirectiveClass: 253 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 254 break; 255 case Stmt::OMPCancelDirectiveClass: 256 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 257 break; 258 case Stmt::OMPTargetDataDirectiveClass: 259 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 260 break; 261 case Stmt::OMPTargetEnterDataDirectiveClass: 262 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 263 break; 264 case Stmt::OMPTargetExitDataDirectiveClass: 265 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 266 break; 267 case Stmt::OMPTargetParallelDirectiveClass: 268 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 269 break; 270 case Stmt::OMPTargetParallelForDirectiveClass: 271 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 272 break; 273 case Stmt::OMPTaskLoopDirectiveClass: 274 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 275 break; 276 case Stmt::OMPTaskLoopSimdDirectiveClass: 277 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 278 break; 279 case Stmt::OMPDistributeDirectiveClass: 280 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 281 break; 282 case Stmt::OMPTargetUpdateDirectiveClass: 283 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 284 break; 285 case Stmt::OMPDistributeParallelForDirectiveClass: 286 EmitOMPDistributeParallelForDirective( 287 cast<OMPDistributeParallelForDirective>(*S)); 288 break; 289 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 290 EmitOMPDistributeParallelForSimdDirective( 291 cast<OMPDistributeParallelForSimdDirective>(*S)); 292 break; 293 case Stmt::OMPDistributeSimdDirectiveClass: 294 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForSimdDirectiveClass: 297 EmitOMPTargetParallelForSimdDirective( 298 cast<OMPTargetParallelForSimdDirective>(*S)); 299 break; 300 case Stmt::OMPTargetSimdDirectiveClass: 301 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 302 break; 303 case Stmt::OMPTeamsDistributeDirectiveClass: 304 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 305 break; 306 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 307 EmitOMPTeamsDistributeSimdDirective( 308 cast<OMPTeamsDistributeSimdDirective>(*S)); 309 break; 310 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 311 EmitOMPTeamsDistributeParallelForSimdDirective( 312 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 313 break; 314 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 315 EmitOMPTeamsDistributeParallelForDirective( 316 cast<OMPTeamsDistributeParallelForDirective>(*S)); 317 break; 318 case Stmt::OMPTargetTeamsDirectiveClass: 319 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 320 break; 321 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 322 EmitOMPTargetTeamsDistributeDirective( 323 cast<OMPTargetTeamsDistributeDirective>(*S)); 324 break; 325 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 326 EmitOMPTargetTeamsDistributeParallelForDirective( 327 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 328 break; 329 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 330 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 331 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 332 break; 333 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 334 EmitOMPTargetTeamsDistributeSimdDirective( 335 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 336 break; 337 } 338 } 339 340 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 341 switch (S->getStmtClass()) { 342 default: return false; 343 case Stmt::NullStmtClass: break; 344 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 345 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 346 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 347 case Stmt::AttributedStmtClass: 348 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 349 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 350 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 351 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 352 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 353 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 354 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 355 } 356 357 return true; 358 } 359 360 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 361 /// this captures the expression result of the last sub-statement and returns it 362 /// (for use by the statement expression extension). 363 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 364 AggValueSlot AggSlot) { 365 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 366 "LLVM IR generation of compound statement ('{}')"); 367 368 // Keep track of the current cleanup stack depth, including debug scopes. 369 LexicalScope Scope(*this, S.getSourceRange()); 370 371 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 372 } 373 374 Address 375 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 376 bool GetLast, 377 AggValueSlot AggSlot) { 378 379 for (CompoundStmt::const_body_iterator I = S.body_begin(), 380 E = S.body_end()-GetLast; I != E; ++I) 381 EmitStmt(*I); 382 383 Address RetAlloca = Address::invalid(); 384 if (GetLast) { 385 // We have to special case labels here. They are statements, but when put 386 // at the end of a statement expression, they yield the value of their 387 // subexpression. Handle this by walking through all labels we encounter, 388 // emitting them before we evaluate the subexpr. 389 const Stmt *LastStmt = S.body_back(); 390 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 391 EmitLabel(LS->getDecl()); 392 LastStmt = LS->getSubStmt(); 393 } 394 395 EnsureInsertPoint(); 396 397 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 398 if (hasAggregateEvaluationKind(ExprTy)) { 399 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 400 } else { 401 // We can't return an RValue here because there might be cleanups at 402 // the end of the StmtExpr. Because of that, we have to emit the result 403 // here into a temporary alloca. 404 RetAlloca = CreateMemTemp(ExprTy); 405 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 406 /*IsInit*/false); 407 } 408 409 } 410 411 return RetAlloca; 412 } 413 414 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 415 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 416 417 // If there is a cleanup stack, then we it isn't worth trying to 418 // simplify this block (we would need to remove it from the scope map 419 // and cleanup entry). 420 if (!EHStack.empty()) 421 return; 422 423 // Can only simplify direct branches. 424 if (!BI || !BI->isUnconditional()) 425 return; 426 427 // Can only simplify empty blocks. 428 if (BI->getIterator() != BB->begin()) 429 return; 430 431 BB->replaceAllUsesWith(BI->getSuccessor(0)); 432 BI->eraseFromParent(); 433 BB->eraseFromParent(); 434 } 435 436 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 437 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 438 439 // Fall out of the current block (if necessary). 440 EmitBranch(BB); 441 442 if (IsFinished && BB->use_empty()) { 443 delete BB; 444 return; 445 } 446 447 // Place the block after the current block, if possible, or else at 448 // the end of the function. 449 if (CurBB && CurBB->getParent()) 450 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 451 else 452 CurFn->getBasicBlockList().push_back(BB); 453 Builder.SetInsertPoint(BB); 454 } 455 456 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 457 // Emit a branch from the current block to the target one if this 458 // was a real block. If this was just a fall-through block after a 459 // terminator, don't emit it. 460 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 461 462 if (!CurBB || CurBB->getTerminator()) { 463 // If there is no insert point or the previous block is already 464 // terminated, don't touch it. 465 } else { 466 // Otherwise, create a fall-through branch. 467 Builder.CreateBr(Target); 468 } 469 470 Builder.ClearInsertionPoint(); 471 } 472 473 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 474 bool inserted = false; 475 for (llvm::User *u : block->users()) { 476 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 477 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 478 block); 479 inserted = true; 480 break; 481 } 482 } 483 484 if (!inserted) 485 CurFn->getBasicBlockList().push_back(block); 486 487 Builder.SetInsertPoint(block); 488 } 489 490 CodeGenFunction::JumpDest 491 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 492 JumpDest &Dest = LabelMap[D]; 493 if (Dest.isValid()) return Dest; 494 495 // Create, but don't insert, the new block. 496 Dest = JumpDest(createBasicBlock(D->getName()), 497 EHScopeStack::stable_iterator::invalid(), 498 NextCleanupDestIndex++); 499 return Dest; 500 } 501 502 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 503 // Add this label to the current lexical scope if we're within any 504 // normal cleanups. Jumps "in" to this label --- when permitted by 505 // the language --- may need to be routed around such cleanups. 506 if (EHStack.hasNormalCleanups() && CurLexicalScope) 507 CurLexicalScope->addLabel(D); 508 509 JumpDest &Dest = LabelMap[D]; 510 511 // If we didn't need a forward reference to this label, just go 512 // ahead and create a destination at the current scope. 513 if (!Dest.isValid()) { 514 Dest = getJumpDestInCurrentScope(D->getName()); 515 516 // Otherwise, we need to give this label a target depth and remove 517 // it from the branch-fixups list. 518 } else { 519 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 520 Dest.setScopeDepth(EHStack.stable_begin()); 521 ResolveBranchFixups(Dest.getBlock()); 522 } 523 524 EmitBlock(Dest.getBlock()); 525 incrementProfileCounter(D->getStmt()); 526 } 527 528 /// Change the cleanup scope of the labels in this lexical scope to 529 /// match the scope of the enclosing context. 530 void CodeGenFunction::LexicalScope::rescopeLabels() { 531 assert(!Labels.empty()); 532 EHScopeStack::stable_iterator innermostScope 533 = CGF.EHStack.getInnermostNormalCleanup(); 534 535 // Change the scope depth of all the labels. 536 for (SmallVectorImpl<const LabelDecl*>::const_iterator 537 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 538 assert(CGF.LabelMap.count(*i)); 539 JumpDest &dest = CGF.LabelMap.find(*i)->second; 540 assert(dest.getScopeDepth().isValid()); 541 assert(innermostScope.encloses(dest.getScopeDepth())); 542 dest.setScopeDepth(innermostScope); 543 } 544 545 // Reparent the labels if the new scope also has cleanups. 546 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 547 ParentScope->Labels.append(Labels.begin(), Labels.end()); 548 } 549 } 550 551 552 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 553 EmitLabel(S.getDecl()); 554 EmitStmt(S.getSubStmt()); 555 } 556 557 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 558 const Stmt *SubStmt = S.getSubStmt(); 559 switch (SubStmt->getStmtClass()) { 560 case Stmt::DoStmtClass: 561 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 562 break; 563 case Stmt::ForStmtClass: 564 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 565 break; 566 case Stmt::WhileStmtClass: 567 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 568 break; 569 case Stmt::CXXForRangeStmtClass: 570 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 571 break; 572 default: 573 EmitStmt(SubStmt); 574 } 575 } 576 577 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 578 // If this code is reachable then emit a stop point (if generating 579 // debug info). We have to do this ourselves because we are on the 580 // "simple" statement path. 581 if (HaveInsertPoint()) 582 EmitStopPoint(&S); 583 584 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 585 } 586 587 588 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 589 if (const LabelDecl *Target = S.getConstantTarget()) { 590 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 591 return; 592 } 593 594 // Ensure that we have an i8* for our PHI node. 595 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 596 Int8PtrTy, "addr"); 597 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 598 599 // Get the basic block for the indirect goto. 600 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 601 602 // The first instruction in the block has to be the PHI for the switch dest, 603 // add an entry for this branch. 604 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 605 606 EmitBranch(IndGotoBB); 607 } 608 609 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 610 // C99 6.8.4.1: The first substatement is executed if the expression compares 611 // unequal to 0. The condition must be a scalar type. 612 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 613 614 if (S.getInit()) 615 EmitStmt(S.getInit()); 616 617 if (S.getConditionVariable()) 618 EmitAutoVarDecl(*S.getConditionVariable()); 619 620 // If the condition constant folds and can be elided, try to avoid emitting 621 // the condition and the dead arm of the if/else. 622 bool CondConstant; 623 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 624 S.isConstexpr())) { 625 // Figure out which block (then or else) is executed. 626 const Stmt *Executed = S.getThen(); 627 const Stmt *Skipped = S.getElse(); 628 if (!CondConstant) // Condition false? 629 std::swap(Executed, Skipped); 630 631 // If the skipped block has no labels in it, just emit the executed block. 632 // This avoids emitting dead code and simplifies the CFG substantially. 633 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 634 if (CondConstant) 635 incrementProfileCounter(&S); 636 if (Executed) { 637 RunCleanupsScope ExecutedScope(*this); 638 EmitStmt(Executed); 639 } 640 return; 641 } 642 } 643 644 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 645 // the conditional branch. 646 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 647 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 648 llvm::BasicBlock *ElseBlock = ContBlock; 649 if (S.getElse()) 650 ElseBlock = createBasicBlock("if.else"); 651 652 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 653 getProfileCount(S.getThen())); 654 655 // Emit the 'then' code. 656 EmitBlock(ThenBlock); 657 incrementProfileCounter(&S); 658 { 659 RunCleanupsScope ThenScope(*this); 660 EmitStmt(S.getThen()); 661 } 662 EmitBranch(ContBlock); 663 664 // Emit the 'else' code if present. 665 if (const Stmt *Else = S.getElse()) { 666 { 667 // There is no need to emit line number for an unconditional branch. 668 auto NL = ApplyDebugLocation::CreateEmpty(*this); 669 EmitBlock(ElseBlock); 670 } 671 { 672 RunCleanupsScope ElseScope(*this); 673 EmitStmt(Else); 674 } 675 { 676 // There is no need to emit line number for an unconditional branch. 677 auto NL = ApplyDebugLocation::CreateEmpty(*this); 678 EmitBranch(ContBlock); 679 } 680 } 681 682 // Emit the continuation block for code after the if. 683 EmitBlock(ContBlock, true); 684 } 685 686 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 687 ArrayRef<const Attr *> WhileAttrs) { 688 // Emit the header for the loop, which will also become 689 // the continue target. 690 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 691 EmitBlock(LoopHeader.getBlock()); 692 693 const SourceRange &R = S.getSourceRange(); 694 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 695 SourceLocToDebugLoc(R.getBegin()), 696 SourceLocToDebugLoc(R.getEnd())); 697 698 // Create an exit block for when the condition fails, which will 699 // also become the break target. 700 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 701 702 // Store the blocks to use for break and continue. 703 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 704 705 // C++ [stmt.while]p2: 706 // When the condition of a while statement is a declaration, the 707 // scope of the variable that is declared extends from its point 708 // of declaration (3.3.2) to the end of the while statement. 709 // [...] 710 // The object created in a condition is destroyed and created 711 // with each iteration of the loop. 712 RunCleanupsScope ConditionScope(*this); 713 714 if (S.getConditionVariable()) 715 EmitAutoVarDecl(*S.getConditionVariable()); 716 717 // Evaluate the conditional in the while header. C99 6.8.5.1: The 718 // evaluation of the controlling expression takes place before each 719 // execution of the loop body. 720 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 721 722 // while(1) is common, avoid extra exit blocks. Be sure 723 // to correctly handle break/continue though. 724 bool EmitBoolCondBranch = true; 725 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 726 if (C->isOne()) 727 EmitBoolCondBranch = false; 728 729 // As long as the condition is true, go to the loop body. 730 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 731 if (EmitBoolCondBranch) { 732 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 733 if (ConditionScope.requiresCleanups()) 734 ExitBlock = createBasicBlock("while.exit"); 735 Builder.CreateCondBr( 736 BoolCondVal, LoopBody, ExitBlock, 737 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 738 739 if (ExitBlock != LoopExit.getBlock()) { 740 EmitBlock(ExitBlock); 741 EmitBranchThroughCleanup(LoopExit); 742 } 743 } 744 745 // Emit the loop body. We have to emit this in a cleanup scope 746 // because it might be a singleton DeclStmt. 747 { 748 RunCleanupsScope BodyScope(*this); 749 EmitBlock(LoopBody); 750 incrementProfileCounter(&S); 751 EmitStmt(S.getBody()); 752 } 753 754 BreakContinueStack.pop_back(); 755 756 // Immediately force cleanup. 757 ConditionScope.ForceCleanup(); 758 759 EmitStopPoint(&S); 760 // Branch to the loop header again. 761 EmitBranch(LoopHeader.getBlock()); 762 763 LoopStack.pop(); 764 765 // Emit the exit block. 766 EmitBlock(LoopExit.getBlock(), true); 767 768 // The LoopHeader typically is just a branch if we skipped emitting 769 // a branch, try to erase it. 770 if (!EmitBoolCondBranch) 771 SimplifyForwardingBlocks(LoopHeader.getBlock()); 772 } 773 774 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 775 ArrayRef<const Attr *> DoAttrs) { 776 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 777 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 778 779 uint64_t ParentCount = getCurrentProfileCount(); 780 781 // Store the blocks to use for break and continue. 782 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 783 784 // Emit the body of the loop. 785 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 786 787 const SourceRange &R = S.getSourceRange(); 788 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 789 SourceLocToDebugLoc(R.getBegin()), 790 SourceLocToDebugLoc(R.getEnd())); 791 792 EmitBlockWithFallThrough(LoopBody, &S); 793 { 794 RunCleanupsScope BodyScope(*this); 795 EmitStmt(S.getBody()); 796 } 797 798 EmitBlock(LoopCond.getBlock()); 799 800 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 801 // after each execution of the loop body." 802 803 // Evaluate the conditional in the while header. 804 // C99 6.8.5p2/p4: The first substatement is executed if the expression 805 // compares unequal to 0. The condition must be a scalar type. 806 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 807 808 BreakContinueStack.pop_back(); 809 810 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 811 // to correctly handle break/continue though. 812 bool EmitBoolCondBranch = true; 813 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 814 if (C->isZero()) 815 EmitBoolCondBranch = false; 816 817 // As long as the condition is true, iterate the loop. 818 if (EmitBoolCondBranch) { 819 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 820 Builder.CreateCondBr( 821 BoolCondVal, LoopBody, LoopExit.getBlock(), 822 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 823 } 824 825 LoopStack.pop(); 826 827 // Emit the exit block. 828 EmitBlock(LoopExit.getBlock()); 829 830 // The DoCond block typically is just a branch if we skipped 831 // emitting a branch, try to erase it. 832 if (!EmitBoolCondBranch) 833 SimplifyForwardingBlocks(LoopCond.getBlock()); 834 } 835 836 void CodeGenFunction::EmitForStmt(const ForStmt &S, 837 ArrayRef<const Attr *> ForAttrs) { 838 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 839 840 LexicalScope ForScope(*this, S.getSourceRange()); 841 842 // Evaluate the first part before the loop. 843 if (S.getInit()) 844 EmitStmt(S.getInit()); 845 846 // Start the loop with a block that tests the condition. 847 // If there's an increment, the continue scope will be overwritten 848 // later. 849 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 850 llvm::BasicBlock *CondBlock = Continue.getBlock(); 851 EmitBlock(CondBlock); 852 853 const SourceRange &R = S.getSourceRange(); 854 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 855 SourceLocToDebugLoc(R.getBegin()), 856 SourceLocToDebugLoc(R.getEnd())); 857 858 // If the for loop doesn't have an increment we can just use the 859 // condition as the continue block. Otherwise we'll need to create 860 // a block for it (in the current scope, i.e. in the scope of the 861 // condition), and that we will become our continue block. 862 if (S.getInc()) 863 Continue = getJumpDestInCurrentScope("for.inc"); 864 865 // Store the blocks to use for break and continue. 866 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 867 868 // Create a cleanup scope for the condition variable cleanups. 869 LexicalScope ConditionScope(*this, S.getSourceRange()); 870 871 if (S.getCond()) { 872 // If the for statement has a condition scope, emit the local variable 873 // declaration. 874 if (S.getConditionVariable()) { 875 EmitAutoVarDecl(*S.getConditionVariable()); 876 } 877 878 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 879 // If there are any cleanups between here and the loop-exit scope, 880 // create a block to stage a loop exit along. 881 if (ForScope.requiresCleanups()) 882 ExitBlock = createBasicBlock("for.cond.cleanup"); 883 884 // As long as the condition is true, iterate the loop. 885 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 886 887 // C99 6.8.5p2/p4: The first substatement is executed if the expression 888 // compares unequal to 0. The condition must be a scalar type. 889 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 890 Builder.CreateCondBr( 891 BoolCondVal, ForBody, ExitBlock, 892 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 893 894 if (ExitBlock != LoopExit.getBlock()) { 895 EmitBlock(ExitBlock); 896 EmitBranchThroughCleanup(LoopExit); 897 } 898 899 EmitBlock(ForBody); 900 } else { 901 // Treat it as a non-zero constant. Don't even create a new block for the 902 // body, just fall into it. 903 } 904 incrementProfileCounter(&S); 905 906 { 907 // Create a separate cleanup scope for the body, in case it is not 908 // a compound statement. 909 RunCleanupsScope BodyScope(*this); 910 EmitStmt(S.getBody()); 911 } 912 913 // If there is an increment, emit it next. 914 if (S.getInc()) { 915 EmitBlock(Continue.getBlock()); 916 EmitStmt(S.getInc()); 917 } 918 919 BreakContinueStack.pop_back(); 920 921 ConditionScope.ForceCleanup(); 922 923 EmitStopPoint(&S); 924 EmitBranch(CondBlock); 925 926 ForScope.ForceCleanup(); 927 928 LoopStack.pop(); 929 930 // Emit the fall-through block. 931 EmitBlock(LoopExit.getBlock(), true); 932 } 933 934 void 935 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 936 ArrayRef<const Attr *> ForAttrs) { 937 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 938 939 LexicalScope ForScope(*this, S.getSourceRange()); 940 941 // Evaluate the first pieces before the loop. 942 EmitStmt(S.getRangeStmt()); 943 EmitStmt(S.getBeginStmt()); 944 EmitStmt(S.getEndStmt()); 945 946 // Start the loop with a block that tests the condition. 947 // If there's an increment, the continue scope will be overwritten 948 // later. 949 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 950 EmitBlock(CondBlock); 951 952 const SourceRange &R = S.getSourceRange(); 953 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 954 SourceLocToDebugLoc(R.getBegin()), 955 SourceLocToDebugLoc(R.getEnd())); 956 957 // If there are any cleanups between here and the loop-exit scope, 958 // create a block to stage a loop exit along. 959 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 960 if (ForScope.requiresCleanups()) 961 ExitBlock = createBasicBlock("for.cond.cleanup"); 962 963 // The loop body, consisting of the specified body and the loop variable. 964 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 965 966 // The body is executed if the expression, contextually converted 967 // to bool, is true. 968 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 969 Builder.CreateCondBr( 970 BoolCondVal, ForBody, ExitBlock, 971 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 972 973 if (ExitBlock != LoopExit.getBlock()) { 974 EmitBlock(ExitBlock); 975 EmitBranchThroughCleanup(LoopExit); 976 } 977 978 EmitBlock(ForBody); 979 incrementProfileCounter(&S); 980 981 // Create a block for the increment. In case of a 'continue', we jump there. 982 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 983 984 // Store the blocks to use for break and continue. 985 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 986 987 { 988 // Create a separate cleanup scope for the loop variable and body. 989 LexicalScope BodyScope(*this, S.getSourceRange()); 990 EmitStmt(S.getLoopVarStmt()); 991 EmitStmt(S.getBody()); 992 } 993 994 EmitStopPoint(&S); 995 // If there is an increment, emit it next. 996 EmitBlock(Continue.getBlock()); 997 EmitStmt(S.getInc()); 998 999 BreakContinueStack.pop_back(); 1000 1001 EmitBranch(CondBlock); 1002 1003 ForScope.ForceCleanup(); 1004 1005 LoopStack.pop(); 1006 1007 // Emit the fall-through block. 1008 EmitBlock(LoopExit.getBlock(), true); 1009 } 1010 1011 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1012 if (RV.isScalar()) { 1013 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1014 } else if (RV.isAggregate()) { 1015 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 1016 } else { 1017 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1018 /*init*/ true); 1019 } 1020 EmitBranchThroughCleanup(ReturnBlock); 1021 } 1022 1023 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1024 /// if the function returns void, or may be missing one if the function returns 1025 /// non-void. Fun stuff :). 1026 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1027 // Returning from an outlined SEH helper is UB, and we already warn on it. 1028 if (IsOutlinedSEHHelper) { 1029 Builder.CreateUnreachable(); 1030 Builder.ClearInsertionPoint(); 1031 } 1032 1033 // Emit the result value, even if unused, to evalute the side effects. 1034 const Expr *RV = S.getRetValue(); 1035 1036 // Treat block literals in a return expression as if they appeared 1037 // in their own scope. This permits a small, easily-implemented 1038 // exception to our over-conservative rules about not jumping to 1039 // statements following block literals with non-trivial cleanups. 1040 RunCleanupsScope cleanupScope(*this); 1041 if (const ExprWithCleanups *cleanups = 1042 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1043 enterFullExpression(cleanups); 1044 RV = cleanups->getSubExpr(); 1045 } 1046 1047 // FIXME: Clean this up by using an LValue for ReturnTemp, 1048 // EmitStoreThroughLValue, and EmitAnyExpr. 1049 if (getLangOpts().ElideConstructors && 1050 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1051 // Apply the named return value optimization for this return statement, 1052 // which means doing nothing: the appropriate result has already been 1053 // constructed into the NRVO variable. 1054 1055 // If there is an NRVO flag for this variable, set it to 1 into indicate 1056 // that the cleanup code should not destroy the variable. 1057 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1058 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1059 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1060 // Make sure not to return anything, but evaluate the expression 1061 // for side effects. 1062 if (RV) 1063 EmitAnyExpr(RV); 1064 } else if (!RV) { 1065 // Do nothing (return value is left uninitialized) 1066 } else if (FnRetTy->isReferenceType()) { 1067 // If this function returns a reference, take the address of the expression 1068 // rather than the value. 1069 RValue Result = EmitReferenceBindingToExpr(RV); 1070 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1071 } else { 1072 switch (getEvaluationKind(RV->getType())) { 1073 case TEK_Scalar: 1074 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1075 break; 1076 case TEK_Complex: 1077 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1078 /*isInit*/ true); 1079 break; 1080 case TEK_Aggregate: 1081 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1082 Qualifiers(), 1083 AggValueSlot::IsDestructed, 1084 AggValueSlot::DoesNotNeedGCBarriers, 1085 AggValueSlot::IsNotAliased)); 1086 break; 1087 } 1088 } 1089 1090 ++NumReturnExprs; 1091 if (!RV || RV->isEvaluatable(getContext())) 1092 ++NumSimpleReturnExprs; 1093 1094 cleanupScope.ForceCleanup(); 1095 EmitBranchThroughCleanup(ReturnBlock); 1096 } 1097 1098 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1099 // As long as debug info is modeled with instructions, we have to ensure we 1100 // have a place to insert here and write the stop point here. 1101 if (HaveInsertPoint()) 1102 EmitStopPoint(&S); 1103 1104 for (const auto *I : S.decls()) 1105 EmitDecl(*I); 1106 } 1107 1108 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1109 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1110 1111 // If this code is reachable then emit a stop point (if generating 1112 // debug info). We have to do this ourselves because we are on the 1113 // "simple" statement path. 1114 if (HaveInsertPoint()) 1115 EmitStopPoint(&S); 1116 1117 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1118 } 1119 1120 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1121 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1122 1123 // If this code is reachable then emit a stop point (if generating 1124 // debug info). We have to do this ourselves because we are on the 1125 // "simple" statement path. 1126 if (HaveInsertPoint()) 1127 EmitStopPoint(&S); 1128 1129 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1130 } 1131 1132 /// EmitCaseStmtRange - If case statement range is not too big then 1133 /// add multiple cases to switch instruction, one for each value within 1134 /// the range. If range is too big then emit "if" condition check. 1135 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1136 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1137 1138 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1139 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1140 1141 // Emit the code for this case. We do this first to make sure it is 1142 // properly chained from our predecessor before generating the 1143 // switch machinery to enter this block. 1144 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1145 EmitBlockWithFallThrough(CaseDest, &S); 1146 EmitStmt(S.getSubStmt()); 1147 1148 // If range is empty, do nothing. 1149 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1150 return; 1151 1152 llvm::APInt Range = RHS - LHS; 1153 // FIXME: parameters such as this should not be hardcoded. 1154 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1155 // Range is small enough to add multiple switch instruction cases. 1156 uint64_t Total = getProfileCount(&S); 1157 unsigned NCases = Range.getZExtValue() + 1; 1158 // We only have one region counter for the entire set of cases here, so we 1159 // need to divide the weights evenly between the generated cases, ensuring 1160 // that the total weight is preserved. E.g., a weight of 5 over three cases 1161 // will be distributed as weights of 2, 2, and 1. 1162 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1163 for (unsigned I = 0; I != NCases; ++I) { 1164 if (SwitchWeights) 1165 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1166 if (Rem) 1167 Rem--; 1168 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1169 ++LHS; 1170 } 1171 return; 1172 } 1173 1174 // The range is too big. Emit "if" condition into a new block, 1175 // making sure to save and restore the current insertion point. 1176 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1177 1178 // Push this test onto the chain of range checks (which terminates 1179 // in the default basic block). The switch's default will be changed 1180 // to the top of this chain after switch emission is complete. 1181 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1182 CaseRangeBlock = createBasicBlock("sw.caserange"); 1183 1184 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1185 Builder.SetInsertPoint(CaseRangeBlock); 1186 1187 // Emit range check. 1188 llvm::Value *Diff = 1189 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1190 llvm::Value *Cond = 1191 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1192 1193 llvm::MDNode *Weights = nullptr; 1194 if (SwitchWeights) { 1195 uint64_t ThisCount = getProfileCount(&S); 1196 uint64_t DefaultCount = (*SwitchWeights)[0]; 1197 Weights = createProfileWeights(ThisCount, DefaultCount); 1198 1199 // Since we're chaining the switch default through each large case range, we 1200 // need to update the weight for the default, ie, the first case, to include 1201 // this case. 1202 (*SwitchWeights)[0] += ThisCount; 1203 } 1204 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1205 1206 // Restore the appropriate insertion point. 1207 if (RestoreBB) 1208 Builder.SetInsertPoint(RestoreBB); 1209 else 1210 Builder.ClearInsertionPoint(); 1211 } 1212 1213 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1214 // If there is no enclosing switch instance that we're aware of, then this 1215 // case statement and its block can be elided. This situation only happens 1216 // when we've constant-folded the switch, are emitting the constant case, 1217 // and part of the constant case includes another case statement. For 1218 // instance: switch (4) { case 4: do { case 5: } while (1); } 1219 if (!SwitchInsn) { 1220 EmitStmt(S.getSubStmt()); 1221 return; 1222 } 1223 1224 // Handle case ranges. 1225 if (S.getRHS()) { 1226 EmitCaseStmtRange(S); 1227 return; 1228 } 1229 1230 llvm::ConstantInt *CaseVal = 1231 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1232 1233 // If the body of the case is just a 'break', try to not emit an empty block. 1234 // If we're profiling or we're not optimizing, leave the block in for better 1235 // debug and coverage analysis. 1236 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1237 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1238 isa<BreakStmt>(S.getSubStmt())) { 1239 JumpDest Block = BreakContinueStack.back().BreakBlock; 1240 1241 // Only do this optimization if there are no cleanups that need emitting. 1242 if (isObviouslyBranchWithoutCleanups(Block)) { 1243 if (SwitchWeights) 1244 SwitchWeights->push_back(getProfileCount(&S)); 1245 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1246 1247 // If there was a fallthrough into this case, make sure to redirect it to 1248 // the end of the switch as well. 1249 if (Builder.GetInsertBlock()) { 1250 Builder.CreateBr(Block.getBlock()); 1251 Builder.ClearInsertionPoint(); 1252 } 1253 return; 1254 } 1255 } 1256 1257 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1258 EmitBlockWithFallThrough(CaseDest, &S); 1259 if (SwitchWeights) 1260 SwitchWeights->push_back(getProfileCount(&S)); 1261 SwitchInsn->addCase(CaseVal, CaseDest); 1262 1263 // Recursively emitting the statement is acceptable, but is not wonderful for 1264 // code where we have many case statements nested together, i.e.: 1265 // case 1: 1266 // case 2: 1267 // case 3: etc. 1268 // Handling this recursively will create a new block for each case statement 1269 // that falls through to the next case which is IR intensive. It also causes 1270 // deep recursion which can run into stack depth limitations. Handle 1271 // sequential non-range case statements specially. 1272 const CaseStmt *CurCase = &S; 1273 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1274 1275 // Otherwise, iteratively add consecutive cases to this switch stmt. 1276 while (NextCase && NextCase->getRHS() == nullptr) { 1277 CurCase = NextCase; 1278 llvm::ConstantInt *CaseVal = 1279 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1280 1281 if (SwitchWeights) 1282 SwitchWeights->push_back(getProfileCount(NextCase)); 1283 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1284 CaseDest = createBasicBlock("sw.bb"); 1285 EmitBlockWithFallThrough(CaseDest, &S); 1286 } 1287 1288 SwitchInsn->addCase(CaseVal, CaseDest); 1289 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1290 } 1291 1292 // Normal default recursion for non-cases. 1293 EmitStmt(CurCase->getSubStmt()); 1294 } 1295 1296 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1297 // If there is no enclosing switch instance that we're aware of, then this 1298 // default statement can be elided. This situation only happens when we've 1299 // constant-folded the switch. 1300 if (!SwitchInsn) { 1301 EmitStmt(S.getSubStmt()); 1302 return; 1303 } 1304 1305 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1306 assert(DefaultBlock->empty() && 1307 "EmitDefaultStmt: Default block already defined?"); 1308 1309 EmitBlockWithFallThrough(DefaultBlock, &S); 1310 1311 EmitStmt(S.getSubStmt()); 1312 } 1313 1314 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1315 /// constant value that is being switched on, see if we can dead code eliminate 1316 /// the body of the switch to a simple series of statements to emit. Basically, 1317 /// on a switch (5) we want to find these statements: 1318 /// case 5: 1319 /// printf(...); <-- 1320 /// ++i; <-- 1321 /// break; 1322 /// 1323 /// and add them to the ResultStmts vector. If it is unsafe to do this 1324 /// transformation (for example, one of the elided statements contains a label 1325 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1326 /// should include statements after it (e.g. the printf() line is a substmt of 1327 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1328 /// statement, then return CSFC_Success. 1329 /// 1330 /// If Case is non-null, then we are looking for the specified case, checking 1331 /// that nothing we jump over contains labels. If Case is null, then we found 1332 /// the case and are looking for the break. 1333 /// 1334 /// If the recursive walk actually finds our Case, then we set FoundCase to 1335 /// true. 1336 /// 1337 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1338 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1339 const SwitchCase *Case, 1340 bool &FoundCase, 1341 SmallVectorImpl<const Stmt*> &ResultStmts) { 1342 // If this is a null statement, just succeed. 1343 if (!S) 1344 return Case ? CSFC_Success : CSFC_FallThrough; 1345 1346 // If this is the switchcase (case 4: or default) that we're looking for, then 1347 // we're in business. Just add the substatement. 1348 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1349 if (S == Case) { 1350 FoundCase = true; 1351 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1352 ResultStmts); 1353 } 1354 1355 // Otherwise, this is some other case or default statement, just ignore it. 1356 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1357 ResultStmts); 1358 } 1359 1360 // If we are in the live part of the code and we found our break statement, 1361 // return a success! 1362 if (!Case && isa<BreakStmt>(S)) 1363 return CSFC_Success; 1364 1365 // If this is a switch statement, then it might contain the SwitchCase, the 1366 // break, or neither. 1367 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1368 // Handle this as two cases: we might be looking for the SwitchCase (if so 1369 // the skipped statements must be skippable) or we might already have it. 1370 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1371 bool StartedInLiveCode = FoundCase; 1372 unsigned StartSize = ResultStmts.size(); 1373 1374 // If we've not found the case yet, scan through looking for it. 1375 if (Case) { 1376 // Keep track of whether we see a skipped declaration. The code could be 1377 // using the declaration even if it is skipped, so we can't optimize out 1378 // the decl if the kept statements might refer to it. 1379 bool HadSkippedDecl = false; 1380 1381 // If we're looking for the case, just see if we can skip each of the 1382 // substatements. 1383 for (; Case && I != E; ++I) { 1384 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1385 1386 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1387 case CSFC_Failure: return CSFC_Failure; 1388 case CSFC_Success: 1389 // A successful result means that either 1) that the statement doesn't 1390 // have the case and is skippable, or 2) does contain the case value 1391 // and also contains the break to exit the switch. In the later case, 1392 // we just verify the rest of the statements are elidable. 1393 if (FoundCase) { 1394 // If we found the case and skipped declarations, we can't do the 1395 // optimization. 1396 if (HadSkippedDecl) 1397 return CSFC_Failure; 1398 1399 for (++I; I != E; ++I) 1400 if (CodeGenFunction::ContainsLabel(*I, true)) 1401 return CSFC_Failure; 1402 return CSFC_Success; 1403 } 1404 break; 1405 case CSFC_FallThrough: 1406 // If we have a fallthrough condition, then we must have found the 1407 // case started to include statements. Consider the rest of the 1408 // statements in the compound statement as candidates for inclusion. 1409 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1410 // We recursively found Case, so we're not looking for it anymore. 1411 Case = nullptr; 1412 1413 // If we found the case and skipped declarations, we can't do the 1414 // optimization. 1415 if (HadSkippedDecl) 1416 return CSFC_Failure; 1417 break; 1418 } 1419 } 1420 1421 if (!FoundCase) 1422 return CSFC_Success; 1423 1424 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1425 } 1426 1427 // If we have statements in our range, then we know that the statements are 1428 // live and need to be added to the set of statements we're tracking. 1429 bool AnyDecls = false; 1430 for (; I != E; ++I) { 1431 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1432 1433 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1434 case CSFC_Failure: return CSFC_Failure; 1435 case CSFC_FallThrough: 1436 // A fallthrough result means that the statement was simple and just 1437 // included in ResultStmt, keep adding them afterwards. 1438 break; 1439 case CSFC_Success: 1440 // A successful result means that we found the break statement and 1441 // stopped statement inclusion. We just ensure that any leftover stmts 1442 // are skippable and return success ourselves. 1443 for (++I; I != E; ++I) 1444 if (CodeGenFunction::ContainsLabel(*I, true)) 1445 return CSFC_Failure; 1446 return CSFC_Success; 1447 } 1448 } 1449 1450 // If we're about to fall out of a scope without hitting a 'break;', we 1451 // can't perform the optimization if there were any decls in that scope 1452 // (we'd lose their end-of-lifetime). 1453 if (AnyDecls) { 1454 // If the entire compound statement was live, there's one more thing we 1455 // can try before giving up: emit the whole thing as a single statement. 1456 // We can do that unless the statement contains a 'break;'. 1457 // FIXME: Such a break must be at the end of a construct within this one. 1458 // We could emit this by just ignoring the BreakStmts entirely. 1459 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1460 ResultStmts.resize(StartSize); 1461 ResultStmts.push_back(S); 1462 } else { 1463 return CSFC_Failure; 1464 } 1465 } 1466 1467 return CSFC_FallThrough; 1468 } 1469 1470 // Okay, this is some other statement that we don't handle explicitly, like a 1471 // for statement or increment etc. If we are skipping over this statement, 1472 // just verify it doesn't have labels, which would make it invalid to elide. 1473 if (Case) { 1474 if (CodeGenFunction::ContainsLabel(S, true)) 1475 return CSFC_Failure; 1476 return CSFC_Success; 1477 } 1478 1479 // Otherwise, we want to include this statement. Everything is cool with that 1480 // so long as it doesn't contain a break out of the switch we're in. 1481 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1482 1483 // Otherwise, everything is great. Include the statement and tell the caller 1484 // that we fall through and include the next statement as well. 1485 ResultStmts.push_back(S); 1486 return CSFC_FallThrough; 1487 } 1488 1489 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1490 /// then invoke CollectStatementsForCase to find the list of statements to emit 1491 /// for a switch on constant. See the comment above CollectStatementsForCase 1492 /// for more details. 1493 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1494 const llvm::APSInt &ConstantCondValue, 1495 SmallVectorImpl<const Stmt*> &ResultStmts, 1496 ASTContext &C, 1497 const SwitchCase *&ResultCase) { 1498 // First step, find the switch case that is being branched to. We can do this 1499 // efficiently by scanning the SwitchCase list. 1500 const SwitchCase *Case = S.getSwitchCaseList(); 1501 const DefaultStmt *DefaultCase = nullptr; 1502 1503 for (; Case; Case = Case->getNextSwitchCase()) { 1504 // It's either a default or case. Just remember the default statement in 1505 // case we're not jumping to any numbered cases. 1506 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1507 DefaultCase = DS; 1508 continue; 1509 } 1510 1511 // Check to see if this case is the one we're looking for. 1512 const CaseStmt *CS = cast<CaseStmt>(Case); 1513 // Don't handle case ranges yet. 1514 if (CS->getRHS()) return false; 1515 1516 // If we found our case, remember it as 'case'. 1517 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1518 break; 1519 } 1520 1521 // If we didn't find a matching case, we use a default if it exists, or we 1522 // elide the whole switch body! 1523 if (!Case) { 1524 // It is safe to elide the body of the switch if it doesn't contain labels 1525 // etc. If it is safe, return successfully with an empty ResultStmts list. 1526 if (!DefaultCase) 1527 return !CodeGenFunction::ContainsLabel(&S); 1528 Case = DefaultCase; 1529 } 1530 1531 // Ok, we know which case is being jumped to, try to collect all the 1532 // statements that follow it. This can fail for a variety of reasons. Also, 1533 // check to see that the recursive walk actually found our case statement. 1534 // Insane cases like this can fail to find it in the recursive walk since we 1535 // don't handle every stmt kind: 1536 // switch (4) { 1537 // while (1) { 1538 // case 4: ... 1539 bool FoundCase = false; 1540 ResultCase = Case; 1541 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1542 ResultStmts) != CSFC_Failure && 1543 FoundCase; 1544 } 1545 1546 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1547 // Handle nested switch statements. 1548 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1549 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1550 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1551 1552 // See if we can constant fold the condition of the switch and therefore only 1553 // emit the live case statement (if any) of the switch. 1554 llvm::APSInt ConstantCondValue; 1555 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1556 SmallVector<const Stmt*, 4> CaseStmts; 1557 const SwitchCase *Case = nullptr; 1558 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1559 getContext(), Case)) { 1560 if (Case) 1561 incrementProfileCounter(Case); 1562 RunCleanupsScope ExecutedScope(*this); 1563 1564 if (S.getInit()) 1565 EmitStmt(S.getInit()); 1566 1567 // Emit the condition variable if needed inside the entire cleanup scope 1568 // used by this special case for constant folded switches. 1569 if (S.getConditionVariable()) 1570 EmitAutoVarDecl(*S.getConditionVariable()); 1571 1572 // At this point, we are no longer "within" a switch instance, so 1573 // we can temporarily enforce this to ensure that any embedded case 1574 // statements are not emitted. 1575 SwitchInsn = nullptr; 1576 1577 // Okay, we can dead code eliminate everything except this case. Emit the 1578 // specified series of statements and we're good. 1579 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1580 EmitStmt(CaseStmts[i]); 1581 incrementProfileCounter(&S); 1582 1583 // Now we want to restore the saved switch instance so that nested 1584 // switches continue to function properly 1585 SwitchInsn = SavedSwitchInsn; 1586 1587 return; 1588 } 1589 } 1590 1591 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1592 1593 RunCleanupsScope ConditionScope(*this); 1594 1595 if (S.getInit()) 1596 EmitStmt(S.getInit()); 1597 1598 if (S.getConditionVariable()) 1599 EmitAutoVarDecl(*S.getConditionVariable()); 1600 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1601 1602 // Create basic block to hold stuff that comes after switch 1603 // statement. We also need to create a default block now so that 1604 // explicit case ranges tests can have a place to jump to on 1605 // failure. 1606 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1607 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1608 if (PGO.haveRegionCounts()) { 1609 // Walk the SwitchCase list to find how many there are. 1610 uint64_t DefaultCount = 0; 1611 unsigned NumCases = 0; 1612 for (const SwitchCase *Case = S.getSwitchCaseList(); 1613 Case; 1614 Case = Case->getNextSwitchCase()) { 1615 if (isa<DefaultStmt>(Case)) 1616 DefaultCount = getProfileCount(Case); 1617 NumCases += 1; 1618 } 1619 SwitchWeights = new SmallVector<uint64_t, 16>(); 1620 SwitchWeights->reserve(NumCases); 1621 // The default needs to be first. We store the edge count, so we already 1622 // know the right weight. 1623 SwitchWeights->push_back(DefaultCount); 1624 } 1625 CaseRangeBlock = DefaultBlock; 1626 1627 // Clear the insertion point to indicate we are in unreachable code. 1628 Builder.ClearInsertionPoint(); 1629 1630 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1631 // then reuse last ContinueBlock. 1632 JumpDest OuterContinue; 1633 if (!BreakContinueStack.empty()) 1634 OuterContinue = BreakContinueStack.back().ContinueBlock; 1635 1636 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1637 1638 // Emit switch body. 1639 EmitStmt(S.getBody()); 1640 1641 BreakContinueStack.pop_back(); 1642 1643 // Update the default block in case explicit case range tests have 1644 // been chained on top. 1645 SwitchInsn->setDefaultDest(CaseRangeBlock); 1646 1647 // If a default was never emitted: 1648 if (!DefaultBlock->getParent()) { 1649 // If we have cleanups, emit the default block so that there's a 1650 // place to jump through the cleanups from. 1651 if (ConditionScope.requiresCleanups()) { 1652 EmitBlock(DefaultBlock); 1653 1654 // Otherwise, just forward the default block to the switch end. 1655 } else { 1656 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1657 delete DefaultBlock; 1658 } 1659 } 1660 1661 ConditionScope.ForceCleanup(); 1662 1663 // Emit continuation. 1664 EmitBlock(SwitchExit.getBlock(), true); 1665 incrementProfileCounter(&S); 1666 1667 // If the switch has a condition wrapped by __builtin_unpredictable, 1668 // create metadata that specifies that the switch is unpredictable. 1669 // Don't bother if not optimizing because that metadata would not be used. 1670 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1671 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1672 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1673 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1674 llvm::MDBuilder MDHelper(getLLVMContext()); 1675 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1676 MDHelper.createUnpredictable()); 1677 } 1678 } 1679 1680 if (SwitchWeights) { 1681 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1682 "switch weights do not match switch cases"); 1683 // If there's only one jump destination there's no sense weighting it. 1684 if (SwitchWeights->size() > 1) 1685 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1686 createProfileWeights(*SwitchWeights)); 1687 delete SwitchWeights; 1688 } 1689 SwitchInsn = SavedSwitchInsn; 1690 SwitchWeights = SavedSwitchWeights; 1691 CaseRangeBlock = SavedCRBlock; 1692 } 1693 1694 static std::string 1695 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1696 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1697 std::string Result; 1698 1699 while (*Constraint) { 1700 switch (*Constraint) { 1701 default: 1702 Result += Target.convertConstraint(Constraint); 1703 break; 1704 // Ignore these 1705 case '*': 1706 case '?': 1707 case '!': 1708 case '=': // Will see this and the following in mult-alt constraints. 1709 case '+': 1710 break; 1711 case '#': // Ignore the rest of the constraint alternative. 1712 while (Constraint[1] && Constraint[1] != ',') 1713 Constraint++; 1714 break; 1715 case '&': 1716 case '%': 1717 Result += *Constraint; 1718 while (Constraint[1] && Constraint[1] == *Constraint) 1719 Constraint++; 1720 break; 1721 case ',': 1722 Result += "|"; 1723 break; 1724 case 'g': 1725 Result += "imr"; 1726 break; 1727 case '[': { 1728 assert(OutCons && 1729 "Must pass output names to constraints with a symbolic name"); 1730 unsigned Index; 1731 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1732 assert(result && "Could not resolve symbolic name"); (void)result; 1733 Result += llvm::utostr(Index); 1734 break; 1735 } 1736 } 1737 1738 Constraint++; 1739 } 1740 1741 return Result; 1742 } 1743 1744 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1745 /// as using a particular register add that as a constraint that will be used 1746 /// in this asm stmt. 1747 static std::string 1748 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1749 const TargetInfo &Target, CodeGenModule &CGM, 1750 const AsmStmt &Stmt, const bool EarlyClobber) { 1751 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1752 if (!AsmDeclRef) 1753 return Constraint; 1754 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1755 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1756 if (!Variable) 1757 return Constraint; 1758 if (Variable->getStorageClass() != SC_Register) 1759 return Constraint; 1760 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1761 if (!Attr) 1762 return Constraint; 1763 StringRef Register = Attr->getLabel(); 1764 assert(Target.isValidGCCRegisterName(Register)); 1765 // We're using validateOutputConstraint here because we only care if 1766 // this is a register constraint. 1767 TargetInfo::ConstraintInfo Info(Constraint, ""); 1768 if (Target.validateOutputConstraint(Info) && 1769 !Info.allowsRegister()) { 1770 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1771 return Constraint; 1772 } 1773 // Canonicalize the register here before returning it. 1774 Register = Target.getNormalizedGCCRegisterName(Register); 1775 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1776 } 1777 1778 llvm::Value* 1779 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1780 LValue InputValue, QualType InputType, 1781 std::string &ConstraintStr, 1782 SourceLocation Loc) { 1783 llvm::Value *Arg; 1784 if (Info.allowsRegister() || !Info.allowsMemory()) { 1785 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1786 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1787 } else { 1788 llvm::Type *Ty = ConvertType(InputType); 1789 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1790 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1791 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1792 Ty = llvm::PointerType::getUnqual(Ty); 1793 1794 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1795 Ty)); 1796 } else { 1797 Arg = InputValue.getPointer(); 1798 ConstraintStr += '*'; 1799 } 1800 } 1801 } else { 1802 Arg = InputValue.getPointer(); 1803 ConstraintStr += '*'; 1804 } 1805 1806 return Arg; 1807 } 1808 1809 llvm::Value* CodeGenFunction::EmitAsmInput( 1810 const TargetInfo::ConstraintInfo &Info, 1811 const Expr *InputExpr, 1812 std::string &ConstraintStr) { 1813 // If this can't be a register or memory, i.e., has to be a constant 1814 // (immediate or symbolic), try to emit it as such. 1815 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1816 llvm::APSInt Result; 1817 if (InputExpr->EvaluateAsInt(Result, getContext())) 1818 return llvm::ConstantInt::get(getLLVMContext(), Result); 1819 assert(!Info.requiresImmediateConstant() && 1820 "Required-immediate inlineasm arg isn't constant?"); 1821 } 1822 1823 if (Info.allowsRegister() || !Info.allowsMemory()) 1824 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1825 return EmitScalarExpr(InputExpr); 1826 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1827 return EmitScalarExpr(InputExpr); 1828 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1829 LValue Dest = EmitLValue(InputExpr); 1830 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1831 InputExpr->getExprLoc()); 1832 } 1833 1834 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1835 /// asm call instruction. The !srcloc MDNode contains a list of constant 1836 /// integers which are the source locations of the start of each line in the 1837 /// asm. 1838 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1839 CodeGenFunction &CGF) { 1840 SmallVector<llvm::Metadata *, 8> Locs; 1841 // Add the location of the first line to the MDNode. 1842 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1843 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1844 StringRef StrVal = Str->getString(); 1845 if (!StrVal.empty()) { 1846 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1847 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1848 unsigned StartToken = 0; 1849 unsigned ByteOffset = 0; 1850 1851 // Add the location of the start of each subsequent line of the asm to the 1852 // MDNode. 1853 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1854 if (StrVal[i] != '\n') continue; 1855 SourceLocation LineLoc = Str->getLocationOfByte( 1856 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1857 Locs.push_back(llvm::ConstantAsMetadata::get( 1858 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1859 } 1860 } 1861 1862 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1863 } 1864 1865 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1866 // Assemble the final asm string. 1867 std::string AsmString = S.generateAsmString(getContext()); 1868 1869 // Get all the output and input constraints together. 1870 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1871 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1872 1873 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1874 StringRef Name; 1875 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1876 Name = GAS->getOutputName(i); 1877 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1878 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1879 assert(IsValid && "Failed to parse output constraint"); 1880 OutputConstraintInfos.push_back(Info); 1881 } 1882 1883 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1884 StringRef Name; 1885 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1886 Name = GAS->getInputName(i); 1887 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1888 bool IsValid = 1889 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1890 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1891 InputConstraintInfos.push_back(Info); 1892 } 1893 1894 std::string Constraints; 1895 1896 std::vector<LValue> ResultRegDests; 1897 std::vector<QualType> ResultRegQualTys; 1898 std::vector<llvm::Type *> ResultRegTypes; 1899 std::vector<llvm::Type *> ResultTruncRegTypes; 1900 std::vector<llvm::Type *> ArgTypes; 1901 std::vector<llvm::Value*> Args; 1902 1903 // Keep track of inout constraints. 1904 std::string InOutConstraints; 1905 std::vector<llvm::Value*> InOutArgs; 1906 std::vector<llvm::Type*> InOutArgTypes; 1907 1908 // An inline asm can be marked readonly if it meets the following conditions: 1909 // - it doesn't have any sideeffects 1910 // - it doesn't clobber memory 1911 // - it doesn't return a value by-reference 1912 // It can be marked readnone if it doesn't have any input memory constraints 1913 // in addition to meeting the conditions listed above. 1914 bool ReadOnly = true, ReadNone = true; 1915 1916 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1917 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1918 1919 // Simplify the output constraint. 1920 std::string OutputConstraint(S.getOutputConstraint(i)); 1921 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1922 getTarget()); 1923 1924 const Expr *OutExpr = S.getOutputExpr(i); 1925 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1926 1927 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1928 getTarget(), CGM, S, 1929 Info.earlyClobber()); 1930 1931 LValue Dest = EmitLValue(OutExpr); 1932 if (!Constraints.empty()) 1933 Constraints += ','; 1934 1935 // If this is a register output, then make the inline asm return it 1936 // by-value. If this is a memory result, return the value by-reference. 1937 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1938 Constraints += "=" + OutputConstraint; 1939 ResultRegQualTys.push_back(OutExpr->getType()); 1940 ResultRegDests.push_back(Dest); 1941 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1942 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1943 1944 // If this output is tied to an input, and if the input is larger, then 1945 // we need to set the actual result type of the inline asm node to be the 1946 // same as the input type. 1947 if (Info.hasMatchingInput()) { 1948 unsigned InputNo; 1949 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1950 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1951 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1952 break; 1953 } 1954 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1955 1956 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1957 QualType OutputType = OutExpr->getType(); 1958 1959 uint64_t InputSize = getContext().getTypeSize(InputTy); 1960 if (getContext().getTypeSize(OutputType) < InputSize) { 1961 // Form the asm to return the value as a larger integer or fp type. 1962 ResultRegTypes.back() = ConvertType(InputTy); 1963 } 1964 } 1965 if (llvm::Type* AdjTy = 1966 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1967 ResultRegTypes.back())) 1968 ResultRegTypes.back() = AdjTy; 1969 else { 1970 CGM.getDiags().Report(S.getAsmLoc(), 1971 diag::err_asm_invalid_type_in_input) 1972 << OutExpr->getType() << OutputConstraint; 1973 } 1974 } else { 1975 ArgTypes.push_back(Dest.getAddress().getType()); 1976 Args.push_back(Dest.getPointer()); 1977 Constraints += "=*"; 1978 Constraints += OutputConstraint; 1979 ReadOnly = ReadNone = false; 1980 } 1981 1982 if (Info.isReadWrite()) { 1983 InOutConstraints += ','; 1984 1985 const Expr *InputExpr = S.getOutputExpr(i); 1986 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1987 InOutConstraints, 1988 InputExpr->getExprLoc()); 1989 1990 if (llvm::Type* AdjTy = 1991 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1992 Arg->getType())) 1993 Arg = Builder.CreateBitCast(Arg, AdjTy); 1994 1995 if (Info.allowsRegister()) 1996 InOutConstraints += llvm::utostr(i); 1997 else 1998 InOutConstraints += OutputConstraint; 1999 2000 InOutArgTypes.push_back(Arg->getType()); 2001 InOutArgs.push_back(Arg); 2002 } 2003 } 2004 2005 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2006 // to the return value slot. Only do this when returning in registers. 2007 if (isa<MSAsmStmt>(&S)) { 2008 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2009 if (RetAI.isDirect() || RetAI.isExtend()) { 2010 // Make a fake lvalue for the return value slot. 2011 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2012 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2013 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2014 ResultRegDests, AsmString, S.getNumOutputs()); 2015 SawAsmBlock = true; 2016 } 2017 } 2018 2019 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2020 const Expr *InputExpr = S.getInputExpr(i); 2021 2022 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2023 2024 if (Info.allowsMemory()) 2025 ReadNone = false; 2026 2027 if (!Constraints.empty()) 2028 Constraints += ','; 2029 2030 // Simplify the input constraint. 2031 std::string InputConstraint(S.getInputConstraint(i)); 2032 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2033 &OutputConstraintInfos); 2034 2035 InputConstraint = AddVariableConstraints( 2036 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2037 getTarget(), CGM, S, false /* No EarlyClobber */); 2038 2039 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2040 2041 // If this input argument is tied to a larger output result, extend the 2042 // input to be the same size as the output. The LLVM backend wants to see 2043 // the input and output of a matching constraint be the same size. Note 2044 // that GCC does not define what the top bits are here. We use zext because 2045 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2046 if (Info.hasTiedOperand()) { 2047 unsigned Output = Info.getTiedOperand(); 2048 QualType OutputType = S.getOutputExpr(Output)->getType(); 2049 QualType InputTy = InputExpr->getType(); 2050 2051 if (getContext().getTypeSize(OutputType) > 2052 getContext().getTypeSize(InputTy)) { 2053 // Use ptrtoint as appropriate so that we can do our extension. 2054 if (isa<llvm::PointerType>(Arg->getType())) 2055 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2056 llvm::Type *OutputTy = ConvertType(OutputType); 2057 if (isa<llvm::IntegerType>(OutputTy)) 2058 Arg = Builder.CreateZExt(Arg, OutputTy); 2059 else if (isa<llvm::PointerType>(OutputTy)) 2060 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2061 else { 2062 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2063 Arg = Builder.CreateFPExt(Arg, OutputTy); 2064 } 2065 } 2066 } 2067 if (llvm::Type* AdjTy = 2068 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2069 Arg->getType())) 2070 Arg = Builder.CreateBitCast(Arg, AdjTy); 2071 else 2072 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2073 << InputExpr->getType() << InputConstraint; 2074 2075 ArgTypes.push_back(Arg->getType()); 2076 Args.push_back(Arg); 2077 Constraints += InputConstraint; 2078 } 2079 2080 // Append the "input" part of inout constraints last. 2081 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2082 ArgTypes.push_back(InOutArgTypes[i]); 2083 Args.push_back(InOutArgs[i]); 2084 } 2085 Constraints += InOutConstraints; 2086 2087 // Clobbers 2088 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2089 StringRef Clobber = S.getClobber(i); 2090 2091 if (Clobber == "memory") 2092 ReadOnly = ReadNone = false; 2093 else if (Clobber != "cc") 2094 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2095 2096 if (!Constraints.empty()) 2097 Constraints += ','; 2098 2099 Constraints += "~{"; 2100 Constraints += Clobber; 2101 Constraints += '}'; 2102 } 2103 2104 // Add machine specific clobbers 2105 std::string MachineClobbers = getTarget().getClobbers(); 2106 if (!MachineClobbers.empty()) { 2107 if (!Constraints.empty()) 2108 Constraints += ','; 2109 Constraints += MachineClobbers; 2110 } 2111 2112 llvm::Type *ResultType; 2113 if (ResultRegTypes.empty()) 2114 ResultType = VoidTy; 2115 else if (ResultRegTypes.size() == 1) 2116 ResultType = ResultRegTypes[0]; 2117 else 2118 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2119 2120 llvm::FunctionType *FTy = 2121 llvm::FunctionType::get(ResultType, ArgTypes, false); 2122 2123 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2124 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2125 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2126 llvm::InlineAsm *IA = 2127 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2128 /* IsAlignStack */ false, AsmDialect); 2129 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2130 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2131 llvm::Attribute::NoUnwind); 2132 2133 // Attach readnone and readonly attributes. 2134 if (!HasSideEffect) { 2135 if (ReadNone) 2136 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2137 llvm::Attribute::ReadNone); 2138 else if (ReadOnly) 2139 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2140 llvm::Attribute::ReadOnly); 2141 } 2142 2143 // Slap the source location of the inline asm into a !srcloc metadata on the 2144 // call. 2145 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2146 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2147 *this)); 2148 } else { 2149 // At least put the line number on MS inline asm blobs. 2150 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2151 Result->setMetadata("srcloc", 2152 llvm::MDNode::get(getLLVMContext(), 2153 llvm::ConstantAsMetadata::get(Loc))); 2154 } 2155 2156 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 2157 // Conservatively, mark all inline asm blocks in CUDA as convergent 2158 // (meaning, they may call an intrinsically convergent op, such as bar.sync, 2159 // and so can't have certain optimizations applied around them). 2160 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2161 llvm::Attribute::Convergent); 2162 } 2163 2164 // Extract all of the register value results from the asm. 2165 std::vector<llvm::Value*> RegResults; 2166 if (ResultRegTypes.size() == 1) { 2167 RegResults.push_back(Result); 2168 } else { 2169 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2170 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2171 RegResults.push_back(Tmp); 2172 } 2173 } 2174 2175 assert(RegResults.size() == ResultRegTypes.size()); 2176 assert(RegResults.size() == ResultTruncRegTypes.size()); 2177 assert(RegResults.size() == ResultRegDests.size()); 2178 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2179 llvm::Value *Tmp = RegResults[i]; 2180 2181 // If the result type of the LLVM IR asm doesn't match the result type of 2182 // the expression, do the conversion. 2183 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2184 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2185 2186 // Truncate the integer result to the right size, note that TruncTy can be 2187 // a pointer. 2188 if (TruncTy->isFloatingPointTy()) 2189 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2190 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2191 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2192 Tmp = Builder.CreateTrunc(Tmp, 2193 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2194 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2195 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2196 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2197 Tmp = Builder.CreatePtrToInt(Tmp, 2198 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2199 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2200 } else if (TruncTy->isIntegerTy()) { 2201 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2202 } else if (TruncTy->isVectorTy()) { 2203 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2204 } 2205 } 2206 2207 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2208 } 2209 } 2210 2211 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2212 const RecordDecl *RD = S.getCapturedRecordDecl(); 2213 QualType RecordTy = getContext().getRecordType(RD); 2214 2215 // Initialize the captured struct. 2216 LValue SlotLV = 2217 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2218 2219 RecordDecl::field_iterator CurField = RD->field_begin(); 2220 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2221 E = S.capture_init_end(); 2222 I != E; ++I, ++CurField) { 2223 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2224 if (CurField->hasCapturedVLAType()) { 2225 auto VAT = CurField->getCapturedVLAType(); 2226 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2227 } else { 2228 EmitInitializerForField(*CurField, LV, *I); 2229 } 2230 } 2231 2232 return SlotLV; 2233 } 2234 2235 /// Generate an outlined function for the body of a CapturedStmt, store any 2236 /// captured variables into the captured struct, and call the outlined function. 2237 llvm::Function * 2238 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2239 LValue CapStruct = InitCapturedStruct(S); 2240 2241 // Emit the CapturedDecl 2242 CodeGenFunction CGF(CGM, true); 2243 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2244 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2245 delete CGF.CapturedStmtInfo; 2246 2247 // Emit call to the helper function. 2248 EmitCallOrInvoke(F, CapStruct.getPointer()); 2249 2250 return F; 2251 } 2252 2253 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2254 LValue CapStruct = InitCapturedStruct(S); 2255 return CapStruct.getAddress(); 2256 } 2257 2258 /// Creates the outlined function for a CapturedStmt. 2259 llvm::Function * 2260 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2261 assert(CapturedStmtInfo && 2262 "CapturedStmtInfo should be set when generating the captured function"); 2263 const CapturedDecl *CD = S.getCapturedDecl(); 2264 const RecordDecl *RD = S.getCapturedRecordDecl(); 2265 SourceLocation Loc = S.getLocStart(); 2266 assert(CD->hasBody() && "missing CapturedDecl body"); 2267 2268 // Build the argument list. 2269 ASTContext &Ctx = CGM.getContext(); 2270 FunctionArgList Args; 2271 Args.append(CD->param_begin(), CD->param_end()); 2272 2273 // Create the function declaration. 2274 FunctionType::ExtInfo ExtInfo; 2275 const CGFunctionInfo &FuncInfo = 2276 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2277 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2278 2279 llvm::Function *F = 2280 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2281 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2282 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2283 if (CD->isNothrow()) 2284 F->addFnAttr(llvm::Attribute::NoUnwind); 2285 2286 // Generate the function. 2287 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2288 CD->getLocation(), 2289 CD->getBody()->getLocStart()); 2290 // Set the context parameter in CapturedStmtInfo. 2291 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2292 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2293 2294 // Initialize variable-length arrays. 2295 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2296 Ctx.getTagDeclType(RD)); 2297 for (auto *FD : RD->fields()) { 2298 if (FD->hasCapturedVLAType()) { 2299 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2300 S.getLocStart()).getScalarVal(); 2301 auto VAT = FD->getCapturedVLAType(); 2302 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2303 } 2304 } 2305 2306 // If 'this' is captured, load it into CXXThisValue. 2307 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2308 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2309 LValue ThisLValue = EmitLValueForField(Base, FD); 2310 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2311 } 2312 2313 PGO.assignRegionCounters(GlobalDecl(CD), F); 2314 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2315 FinishFunction(CD->getBodyRBrace()); 2316 2317 return F; 2318 } 2319