1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 146 break; 147 case Stmt::CoreturnStmtClass: 148 CGM.ErrorUnsupported(S, "coroutine"); 149 break; 150 case Stmt::CapturedStmtClass: { 151 const CapturedStmt *CS = cast<CapturedStmt>(S); 152 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 153 } 154 break; 155 case Stmt::ObjCAtTryStmtClass: 156 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 157 break; 158 case Stmt::ObjCAtCatchStmtClass: 159 llvm_unreachable( 160 "@catch statements should be handled by EmitObjCAtTryStmt"); 161 case Stmt::ObjCAtFinallyStmtClass: 162 llvm_unreachable( 163 "@finally statements should be handled by EmitObjCAtTryStmt"); 164 case Stmt::ObjCAtThrowStmtClass: 165 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 166 break; 167 case Stmt::ObjCAtSynchronizedStmtClass: 168 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 169 break; 170 case Stmt::ObjCForCollectionStmtClass: 171 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 172 break; 173 case Stmt::ObjCAutoreleasePoolStmtClass: 174 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 175 break; 176 177 case Stmt::CXXTryStmtClass: 178 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 179 break; 180 case Stmt::CXXForRangeStmtClass: 181 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 182 break; 183 case Stmt::SEHTryStmtClass: 184 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 185 break; 186 case Stmt::OMPParallelDirectiveClass: 187 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 188 break; 189 case Stmt::OMPSimdDirectiveClass: 190 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 191 break; 192 case Stmt::OMPForDirectiveClass: 193 EmitOMPForDirective(cast<OMPForDirective>(*S)); 194 break; 195 case Stmt::OMPForSimdDirectiveClass: 196 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 197 break; 198 case Stmt::OMPSectionsDirectiveClass: 199 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 200 break; 201 case Stmt::OMPSectionDirectiveClass: 202 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 203 break; 204 case Stmt::OMPSingleDirectiveClass: 205 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 206 break; 207 case Stmt::OMPMasterDirectiveClass: 208 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 209 break; 210 case Stmt::OMPCriticalDirectiveClass: 211 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 212 break; 213 case Stmt::OMPParallelForDirectiveClass: 214 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 215 break; 216 case Stmt::OMPParallelForSimdDirectiveClass: 217 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 218 break; 219 case Stmt::OMPParallelSectionsDirectiveClass: 220 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 221 break; 222 case Stmt::OMPTaskDirectiveClass: 223 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 224 break; 225 case Stmt::OMPTaskyieldDirectiveClass: 226 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 227 break; 228 case Stmt::OMPBarrierDirectiveClass: 229 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 230 break; 231 case Stmt::OMPTaskwaitDirectiveClass: 232 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 233 break; 234 case Stmt::OMPTaskgroupDirectiveClass: 235 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 236 break; 237 case Stmt::OMPFlushDirectiveClass: 238 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 239 break; 240 case Stmt::OMPOrderedDirectiveClass: 241 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 242 break; 243 case Stmt::OMPAtomicDirectiveClass: 244 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 245 break; 246 case Stmt::OMPTargetDirectiveClass: 247 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 248 break; 249 case Stmt::OMPTeamsDirectiveClass: 250 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 251 break; 252 case Stmt::OMPCancellationPointDirectiveClass: 253 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 254 break; 255 case Stmt::OMPCancelDirectiveClass: 256 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 257 break; 258 case Stmt::OMPTargetDataDirectiveClass: 259 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 260 break; 261 case Stmt::OMPTargetEnterDataDirectiveClass: 262 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 263 break; 264 case Stmt::OMPTargetExitDataDirectiveClass: 265 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 266 break; 267 case Stmt::OMPTargetParallelDirectiveClass: 268 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 269 break; 270 case Stmt::OMPTargetParallelForDirectiveClass: 271 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 272 break; 273 case Stmt::OMPTaskLoopDirectiveClass: 274 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 275 break; 276 case Stmt::OMPTaskLoopSimdDirectiveClass: 277 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 278 break; 279 case Stmt::OMPDistributeDirectiveClass: 280 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 281 break; 282 case Stmt::OMPTargetUpdateDirectiveClass: 283 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 284 break; 285 case Stmt::OMPDistributeParallelForDirectiveClass: 286 EmitOMPDistributeParallelForDirective( 287 cast<OMPDistributeParallelForDirective>(*S)); 288 break; 289 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 290 EmitOMPDistributeParallelForSimdDirective( 291 cast<OMPDistributeParallelForSimdDirective>(*S)); 292 break; 293 case Stmt::OMPDistributeSimdDirectiveClass: 294 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForSimdDirectiveClass: 297 EmitOMPTargetParallelForSimdDirective( 298 cast<OMPTargetParallelForSimdDirective>(*S)); 299 break; 300 case Stmt::OMPTargetSimdDirectiveClass: 301 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 302 break; 303 case Stmt::OMPTeamsDistributeDirectiveClass: 304 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 305 break; 306 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 307 EmitOMPTeamsDistributeSimdDirective( 308 cast<OMPTeamsDistributeSimdDirective>(*S)); 309 break; 310 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 311 EmitOMPTeamsDistributeParallelForSimdDirective( 312 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 313 break; 314 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 315 EmitOMPTeamsDistributeParallelForDirective( 316 cast<OMPTeamsDistributeParallelForDirective>(*S)); 317 break; 318 } 319 } 320 321 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 322 switch (S->getStmtClass()) { 323 default: return false; 324 case Stmt::NullStmtClass: break; 325 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 326 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 327 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 328 case Stmt::AttributedStmtClass: 329 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 330 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 331 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 332 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 333 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 334 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 335 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 336 } 337 338 return true; 339 } 340 341 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 342 /// this captures the expression result of the last sub-statement and returns it 343 /// (for use by the statement expression extension). 344 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 345 AggValueSlot AggSlot) { 346 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 347 "LLVM IR generation of compound statement ('{}')"); 348 349 // Keep track of the current cleanup stack depth, including debug scopes. 350 LexicalScope Scope(*this, S.getSourceRange()); 351 352 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 353 } 354 355 Address 356 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 357 bool GetLast, 358 AggValueSlot AggSlot) { 359 360 for (CompoundStmt::const_body_iterator I = S.body_begin(), 361 E = S.body_end()-GetLast; I != E; ++I) 362 EmitStmt(*I); 363 364 Address RetAlloca = Address::invalid(); 365 if (GetLast) { 366 // We have to special case labels here. They are statements, but when put 367 // at the end of a statement expression, they yield the value of their 368 // subexpression. Handle this by walking through all labels we encounter, 369 // emitting them before we evaluate the subexpr. 370 const Stmt *LastStmt = S.body_back(); 371 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 372 EmitLabel(LS->getDecl()); 373 LastStmt = LS->getSubStmt(); 374 } 375 376 EnsureInsertPoint(); 377 378 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 379 if (hasAggregateEvaluationKind(ExprTy)) { 380 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 381 } else { 382 // We can't return an RValue here because there might be cleanups at 383 // the end of the StmtExpr. Because of that, we have to emit the result 384 // here into a temporary alloca. 385 RetAlloca = CreateMemTemp(ExprTy); 386 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 387 /*IsInit*/false); 388 } 389 390 } 391 392 return RetAlloca; 393 } 394 395 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 396 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 397 398 // If there is a cleanup stack, then we it isn't worth trying to 399 // simplify this block (we would need to remove it from the scope map 400 // and cleanup entry). 401 if (!EHStack.empty()) 402 return; 403 404 // Can only simplify direct branches. 405 if (!BI || !BI->isUnconditional()) 406 return; 407 408 // Can only simplify empty blocks. 409 if (BI->getIterator() != BB->begin()) 410 return; 411 412 BB->replaceAllUsesWith(BI->getSuccessor(0)); 413 BI->eraseFromParent(); 414 BB->eraseFromParent(); 415 } 416 417 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 418 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 419 420 // Fall out of the current block (if necessary). 421 EmitBranch(BB); 422 423 if (IsFinished && BB->use_empty()) { 424 delete BB; 425 return; 426 } 427 428 // Place the block after the current block, if possible, or else at 429 // the end of the function. 430 if (CurBB && CurBB->getParent()) 431 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 432 else 433 CurFn->getBasicBlockList().push_back(BB); 434 Builder.SetInsertPoint(BB); 435 } 436 437 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 438 // Emit a branch from the current block to the target one if this 439 // was a real block. If this was just a fall-through block after a 440 // terminator, don't emit it. 441 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 442 443 if (!CurBB || CurBB->getTerminator()) { 444 // If there is no insert point or the previous block is already 445 // terminated, don't touch it. 446 } else { 447 // Otherwise, create a fall-through branch. 448 Builder.CreateBr(Target); 449 } 450 451 Builder.ClearInsertionPoint(); 452 } 453 454 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 455 bool inserted = false; 456 for (llvm::User *u : block->users()) { 457 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 458 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 459 block); 460 inserted = true; 461 break; 462 } 463 } 464 465 if (!inserted) 466 CurFn->getBasicBlockList().push_back(block); 467 468 Builder.SetInsertPoint(block); 469 } 470 471 CodeGenFunction::JumpDest 472 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 473 JumpDest &Dest = LabelMap[D]; 474 if (Dest.isValid()) return Dest; 475 476 // Create, but don't insert, the new block. 477 Dest = JumpDest(createBasicBlock(D->getName()), 478 EHScopeStack::stable_iterator::invalid(), 479 NextCleanupDestIndex++); 480 return Dest; 481 } 482 483 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 484 // Add this label to the current lexical scope if we're within any 485 // normal cleanups. Jumps "in" to this label --- when permitted by 486 // the language --- may need to be routed around such cleanups. 487 if (EHStack.hasNormalCleanups() && CurLexicalScope) 488 CurLexicalScope->addLabel(D); 489 490 JumpDest &Dest = LabelMap[D]; 491 492 // If we didn't need a forward reference to this label, just go 493 // ahead and create a destination at the current scope. 494 if (!Dest.isValid()) { 495 Dest = getJumpDestInCurrentScope(D->getName()); 496 497 // Otherwise, we need to give this label a target depth and remove 498 // it from the branch-fixups list. 499 } else { 500 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 501 Dest.setScopeDepth(EHStack.stable_begin()); 502 ResolveBranchFixups(Dest.getBlock()); 503 } 504 505 EmitBlock(Dest.getBlock()); 506 incrementProfileCounter(D->getStmt()); 507 } 508 509 /// Change the cleanup scope of the labels in this lexical scope to 510 /// match the scope of the enclosing context. 511 void CodeGenFunction::LexicalScope::rescopeLabels() { 512 assert(!Labels.empty()); 513 EHScopeStack::stable_iterator innermostScope 514 = CGF.EHStack.getInnermostNormalCleanup(); 515 516 // Change the scope depth of all the labels. 517 for (SmallVectorImpl<const LabelDecl*>::const_iterator 518 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 519 assert(CGF.LabelMap.count(*i)); 520 JumpDest &dest = CGF.LabelMap.find(*i)->second; 521 assert(dest.getScopeDepth().isValid()); 522 assert(innermostScope.encloses(dest.getScopeDepth())); 523 dest.setScopeDepth(innermostScope); 524 } 525 526 // Reparent the labels if the new scope also has cleanups. 527 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 528 ParentScope->Labels.append(Labels.begin(), Labels.end()); 529 } 530 } 531 532 533 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 534 EmitLabel(S.getDecl()); 535 EmitStmt(S.getSubStmt()); 536 } 537 538 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 539 const Stmt *SubStmt = S.getSubStmt(); 540 switch (SubStmt->getStmtClass()) { 541 case Stmt::DoStmtClass: 542 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 543 break; 544 case Stmt::ForStmtClass: 545 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 546 break; 547 case Stmt::WhileStmtClass: 548 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 549 break; 550 case Stmt::CXXForRangeStmtClass: 551 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 552 break; 553 default: 554 EmitStmt(SubStmt); 555 } 556 } 557 558 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 559 // If this code is reachable then emit a stop point (if generating 560 // debug info). We have to do this ourselves because we are on the 561 // "simple" statement path. 562 if (HaveInsertPoint()) 563 EmitStopPoint(&S); 564 565 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 566 } 567 568 569 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 570 if (const LabelDecl *Target = S.getConstantTarget()) { 571 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 572 return; 573 } 574 575 // Ensure that we have an i8* for our PHI node. 576 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 577 Int8PtrTy, "addr"); 578 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 579 580 // Get the basic block for the indirect goto. 581 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 582 583 // The first instruction in the block has to be the PHI for the switch dest, 584 // add an entry for this branch. 585 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 586 587 EmitBranch(IndGotoBB); 588 } 589 590 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 591 // C99 6.8.4.1: The first substatement is executed if the expression compares 592 // unequal to 0. The condition must be a scalar type. 593 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 594 595 if (S.getInit()) 596 EmitStmt(S.getInit()); 597 598 if (S.getConditionVariable()) 599 EmitAutoVarDecl(*S.getConditionVariable()); 600 601 // If the condition constant folds and can be elided, try to avoid emitting 602 // the condition and the dead arm of the if/else. 603 bool CondConstant; 604 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 605 S.isConstexpr())) { 606 // Figure out which block (then or else) is executed. 607 const Stmt *Executed = S.getThen(); 608 const Stmt *Skipped = S.getElse(); 609 if (!CondConstant) // Condition false? 610 std::swap(Executed, Skipped); 611 612 // If the skipped block has no labels in it, just emit the executed block. 613 // This avoids emitting dead code and simplifies the CFG substantially. 614 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 615 if (CondConstant) 616 incrementProfileCounter(&S); 617 if (Executed) { 618 RunCleanupsScope ExecutedScope(*this); 619 EmitStmt(Executed); 620 } 621 return; 622 } 623 } 624 625 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 626 // the conditional branch. 627 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 628 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 629 llvm::BasicBlock *ElseBlock = ContBlock; 630 if (S.getElse()) 631 ElseBlock = createBasicBlock("if.else"); 632 633 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 634 getProfileCount(S.getThen())); 635 636 // Emit the 'then' code. 637 EmitBlock(ThenBlock); 638 incrementProfileCounter(&S); 639 { 640 RunCleanupsScope ThenScope(*this); 641 EmitStmt(S.getThen()); 642 } 643 EmitBranch(ContBlock); 644 645 // Emit the 'else' code if present. 646 if (const Stmt *Else = S.getElse()) { 647 { 648 // There is no need to emit line number for an unconditional branch. 649 auto NL = ApplyDebugLocation::CreateEmpty(*this); 650 EmitBlock(ElseBlock); 651 } 652 { 653 RunCleanupsScope ElseScope(*this); 654 EmitStmt(Else); 655 } 656 { 657 // There is no need to emit line number for an unconditional branch. 658 auto NL = ApplyDebugLocation::CreateEmpty(*this); 659 EmitBranch(ContBlock); 660 } 661 } 662 663 // Emit the continuation block for code after the if. 664 EmitBlock(ContBlock, true); 665 } 666 667 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 668 ArrayRef<const Attr *> WhileAttrs) { 669 // Emit the header for the loop, which will also become 670 // the continue target. 671 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 672 EmitBlock(LoopHeader.getBlock()); 673 674 const SourceRange &R = S.getSourceRange(); 675 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 676 SourceLocToDebugLoc(R.getBegin()), 677 SourceLocToDebugLoc(R.getEnd())); 678 679 // Create an exit block for when the condition fails, which will 680 // also become the break target. 681 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 682 683 // Store the blocks to use for break and continue. 684 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 685 686 // C++ [stmt.while]p2: 687 // When the condition of a while statement is a declaration, the 688 // scope of the variable that is declared extends from its point 689 // of declaration (3.3.2) to the end of the while statement. 690 // [...] 691 // The object created in a condition is destroyed and created 692 // with each iteration of the loop. 693 RunCleanupsScope ConditionScope(*this); 694 695 if (S.getConditionVariable()) 696 EmitAutoVarDecl(*S.getConditionVariable()); 697 698 // Evaluate the conditional in the while header. C99 6.8.5.1: The 699 // evaluation of the controlling expression takes place before each 700 // execution of the loop body. 701 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 702 703 // while(1) is common, avoid extra exit blocks. Be sure 704 // to correctly handle break/continue though. 705 bool EmitBoolCondBranch = true; 706 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 707 if (C->isOne()) 708 EmitBoolCondBranch = false; 709 710 // As long as the condition is true, go to the loop body. 711 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 712 if (EmitBoolCondBranch) { 713 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 714 if (ConditionScope.requiresCleanups()) 715 ExitBlock = createBasicBlock("while.exit"); 716 Builder.CreateCondBr( 717 BoolCondVal, LoopBody, ExitBlock, 718 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 719 720 if (ExitBlock != LoopExit.getBlock()) { 721 EmitBlock(ExitBlock); 722 EmitBranchThroughCleanup(LoopExit); 723 } 724 } 725 726 // Emit the loop body. We have to emit this in a cleanup scope 727 // because it might be a singleton DeclStmt. 728 { 729 RunCleanupsScope BodyScope(*this); 730 EmitBlock(LoopBody); 731 incrementProfileCounter(&S); 732 EmitStmt(S.getBody()); 733 } 734 735 BreakContinueStack.pop_back(); 736 737 // Immediately force cleanup. 738 ConditionScope.ForceCleanup(); 739 740 EmitStopPoint(&S); 741 // Branch to the loop header again. 742 EmitBranch(LoopHeader.getBlock()); 743 744 LoopStack.pop(); 745 746 // Emit the exit block. 747 EmitBlock(LoopExit.getBlock(), true); 748 749 // The LoopHeader typically is just a branch if we skipped emitting 750 // a branch, try to erase it. 751 if (!EmitBoolCondBranch) 752 SimplifyForwardingBlocks(LoopHeader.getBlock()); 753 } 754 755 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 756 ArrayRef<const Attr *> DoAttrs) { 757 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 758 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 759 760 uint64_t ParentCount = getCurrentProfileCount(); 761 762 // Store the blocks to use for break and continue. 763 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 764 765 // Emit the body of the loop. 766 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 767 768 const SourceRange &R = S.getSourceRange(); 769 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 770 SourceLocToDebugLoc(R.getBegin()), 771 SourceLocToDebugLoc(R.getEnd())); 772 773 EmitBlockWithFallThrough(LoopBody, &S); 774 { 775 RunCleanupsScope BodyScope(*this); 776 EmitStmt(S.getBody()); 777 } 778 779 EmitBlock(LoopCond.getBlock()); 780 781 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 782 // after each execution of the loop body." 783 784 // Evaluate the conditional in the while header. 785 // C99 6.8.5p2/p4: The first substatement is executed if the expression 786 // compares unequal to 0. The condition must be a scalar type. 787 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 788 789 BreakContinueStack.pop_back(); 790 791 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 792 // to correctly handle break/continue though. 793 bool EmitBoolCondBranch = true; 794 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 795 if (C->isZero()) 796 EmitBoolCondBranch = false; 797 798 // As long as the condition is true, iterate the loop. 799 if (EmitBoolCondBranch) { 800 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 801 Builder.CreateCondBr( 802 BoolCondVal, LoopBody, LoopExit.getBlock(), 803 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 804 } 805 806 LoopStack.pop(); 807 808 // Emit the exit block. 809 EmitBlock(LoopExit.getBlock()); 810 811 // The DoCond block typically is just a branch if we skipped 812 // emitting a branch, try to erase it. 813 if (!EmitBoolCondBranch) 814 SimplifyForwardingBlocks(LoopCond.getBlock()); 815 } 816 817 void CodeGenFunction::EmitForStmt(const ForStmt &S, 818 ArrayRef<const Attr *> ForAttrs) { 819 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 820 821 LexicalScope ForScope(*this, S.getSourceRange()); 822 823 // Evaluate the first part before the loop. 824 if (S.getInit()) 825 EmitStmt(S.getInit()); 826 827 // Start the loop with a block that tests the condition. 828 // If there's an increment, the continue scope will be overwritten 829 // later. 830 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 831 llvm::BasicBlock *CondBlock = Continue.getBlock(); 832 EmitBlock(CondBlock); 833 834 const SourceRange &R = S.getSourceRange(); 835 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 836 SourceLocToDebugLoc(R.getBegin()), 837 SourceLocToDebugLoc(R.getEnd())); 838 839 // If the for loop doesn't have an increment we can just use the 840 // condition as the continue block. Otherwise we'll need to create 841 // a block for it (in the current scope, i.e. in the scope of the 842 // condition), and that we will become our continue block. 843 if (S.getInc()) 844 Continue = getJumpDestInCurrentScope("for.inc"); 845 846 // Store the blocks to use for break and continue. 847 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 848 849 // Create a cleanup scope for the condition variable cleanups. 850 LexicalScope ConditionScope(*this, S.getSourceRange()); 851 852 if (S.getCond()) { 853 // If the for statement has a condition scope, emit the local variable 854 // declaration. 855 if (S.getConditionVariable()) { 856 EmitAutoVarDecl(*S.getConditionVariable()); 857 } 858 859 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 860 // If there are any cleanups between here and the loop-exit scope, 861 // create a block to stage a loop exit along. 862 if (ForScope.requiresCleanups()) 863 ExitBlock = createBasicBlock("for.cond.cleanup"); 864 865 // As long as the condition is true, iterate the loop. 866 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 867 868 // C99 6.8.5p2/p4: The first substatement is executed if the expression 869 // compares unequal to 0. The condition must be a scalar type. 870 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 871 Builder.CreateCondBr( 872 BoolCondVal, ForBody, ExitBlock, 873 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 874 875 if (ExitBlock != LoopExit.getBlock()) { 876 EmitBlock(ExitBlock); 877 EmitBranchThroughCleanup(LoopExit); 878 } 879 880 EmitBlock(ForBody); 881 } else { 882 // Treat it as a non-zero constant. Don't even create a new block for the 883 // body, just fall into it. 884 } 885 incrementProfileCounter(&S); 886 887 { 888 // Create a separate cleanup scope for the body, in case it is not 889 // a compound statement. 890 RunCleanupsScope BodyScope(*this); 891 EmitStmt(S.getBody()); 892 } 893 894 // If there is an increment, emit it next. 895 if (S.getInc()) { 896 EmitBlock(Continue.getBlock()); 897 EmitStmt(S.getInc()); 898 } 899 900 BreakContinueStack.pop_back(); 901 902 ConditionScope.ForceCleanup(); 903 904 EmitStopPoint(&S); 905 EmitBranch(CondBlock); 906 907 ForScope.ForceCleanup(); 908 909 LoopStack.pop(); 910 911 // Emit the fall-through block. 912 EmitBlock(LoopExit.getBlock(), true); 913 } 914 915 void 916 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 917 ArrayRef<const Attr *> ForAttrs) { 918 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 919 920 LexicalScope ForScope(*this, S.getSourceRange()); 921 922 // Evaluate the first pieces before the loop. 923 EmitStmt(S.getRangeStmt()); 924 EmitStmt(S.getBeginStmt()); 925 EmitStmt(S.getEndStmt()); 926 927 // Start the loop with a block that tests the condition. 928 // If there's an increment, the continue scope will be overwritten 929 // later. 930 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 931 EmitBlock(CondBlock); 932 933 const SourceRange &R = S.getSourceRange(); 934 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 935 SourceLocToDebugLoc(R.getBegin()), 936 SourceLocToDebugLoc(R.getEnd())); 937 938 // If there are any cleanups between here and the loop-exit scope, 939 // create a block to stage a loop exit along. 940 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 941 if (ForScope.requiresCleanups()) 942 ExitBlock = createBasicBlock("for.cond.cleanup"); 943 944 // The loop body, consisting of the specified body and the loop variable. 945 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 946 947 // The body is executed if the expression, contextually converted 948 // to bool, is true. 949 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 950 Builder.CreateCondBr( 951 BoolCondVal, ForBody, ExitBlock, 952 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 953 954 if (ExitBlock != LoopExit.getBlock()) { 955 EmitBlock(ExitBlock); 956 EmitBranchThroughCleanup(LoopExit); 957 } 958 959 EmitBlock(ForBody); 960 incrementProfileCounter(&S); 961 962 // Create a block for the increment. In case of a 'continue', we jump there. 963 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 964 965 // Store the blocks to use for break and continue. 966 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 967 968 { 969 // Create a separate cleanup scope for the loop variable and body. 970 LexicalScope BodyScope(*this, S.getSourceRange()); 971 EmitStmt(S.getLoopVarStmt()); 972 EmitStmt(S.getBody()); 973 } 974 975 EmitStopPoint(&S); 976 // If there is an increment, emit it next. 977 EmitBlock(Continue.getBlock()); 978 EmitStmt(S.getInc()); 979 980 BreakContinueStack.pop_back(); 981 982 EmitBranch(CondBlock); 983 984 ForScope.ForceCleanup(); 985 986 LoopStack.pop(); 987 988 // Emit the fall-through block. 989 EmitBlock(LoopExit.getBlock(), true); 990 } 991 992 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 993 if (RV.isScalar()) { 994 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 995 } else if (RV.isAggregate()) { 996 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 997 } else { 998 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 999 /*init*/ true); 1000 } 1001 EmitBranchThroughCleanup(ReturnBlock); 1002 } 1003 1004 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1005 /// if the function returns void, or may be missing one if the function returns 1006 /// non-void. Fun stuff :). 1007 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1008 // Returning from an outlined SEH helper is UB, and we already warn on it. 1009 if (IsOutlinedSEHHelper) { 1010 Builder.CreateUnreachable(); 1011 Builder.ClearInsertionPoint(); 1012 } 1013 1014 // Emit the result value, even if unused, to evalute the side effects. 1015 const Expr *RV = S.getRetValue(); 1016 1017 // Treat block literals in a return expression as if they appeared 1018 // in their own scope. This permits a small, easily-implemented 1019 // exception to our over-conservative rules about not jumping to 1020 // statements following block literals with non-trivial cleanups. 1021 RunCleanupsScope cleanupScope(*this); 1022 if (const ExprWithCleanups *cleanups = 1023 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1024 enterFullExpression(cleanups); 1025 RV = cleanups->getSubExpr(); 1026 } 1027 1028 // FIXME: Clean this up by using an LValue for ReturnTemp, 1029 // EmitStoreThroughLValue, and EmitAnyExpr. 1030 if (getLangOpts().ElideConstructors && 1031 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1032 // Apply the named return value optimization for this return statement, 1033 // which means doing nothing: the appropriate result has already been 1034 // constructed into the NRVO variable. 1035 1036 // If there is an NRVO flag for this variable, set it to 1 into indicate 1037 // that the cleanup code should not destroy the variable. 1038 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1039 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1040 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1041 // Make sure not to return anything, but evaluate the expression 1042 // for side effects. 1043 if (RV) 1044 EmitAnyExpr(RV); 1045 } else if (!RV) { 1046 // Do nothing (return value is left uninitialized) 1047 } else if (FnRetTy->isReferenceType()) { 1048 // If this function returns a reference, take the address of the expression 1049 // rather than the value. 1050 RValue Result = EmitReferenceBindingToExpr(RV); 1051 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1052 } else { 1053 switch (getEvaluationKind(RV->getType())) { 1054 case TEK_Scalar: 1055 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1056 break; 1057 case TEK_Complex: 1058 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1059 /*isInit*/ true); 1060 break; 1061 case TEK_Aggregate: 1062 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1063 Qualifiers(), 1064 AggValueSlot::IsDestructed, 1065 AggValueSlot::DoesNotNeedGCBarriers, 1066 AggValueSlot::IsNotAliased)); 1067 break; 1068 } 1069 } 1070 1071 ++NumReturnExprs; 1072 if (!RV || RV->isEvaluatable(getContext())) 1073 ++NumSimpleReturnExprs; 1074 1075 cleanupScope.ForceCleanup(); 1076 EmitBranchThroughCleanup(ReturnBlock); 1077 } 1078 1079 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1080 // As long as debug info is modeled with instructions, we have to ensure we 1081 // have a place to insert here and write the stop point here. 1082 if (HaveInsertPoint()) 1083 EmitStopPoint(&S); 1084 1085 for (const auto *I : S.decls()) 1086 EmitDecl(*I); 1087 } 1088 1089 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1090 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1091 1092 // If this code is reachable then emit a stop point (if generating 1093 // debug info). We have to do this ourselves because we are on the 1094 // "simple" statement path. 1095 if (HaveInsertPoint()) 1096 EmitStopPoint(&S); 1097 1098 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1099 } 1100 1101 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1102 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1103 1104 // If this code is reachable then emit a stop point (if generating 1105 // debug info). We have to do this ourselves because we are on the 1106 // "simple" statement path. 1107 if (HaveInsertPoint()) 1108 EmitStopPoint(&S); 1109 1110 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1111 } 1112 1113 /// EmitCaseStmtRange - If case statement range is not too big then 1114 /// add multiple cases to switch instruction, one for each value within 1115 /// the range. If range is too big then emit "if" condition check. 1116 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1117 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1118 1119 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1120 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1121 1122 // Emit the code for this case. We do this first to make sure it is 1123 // properly chained from our predecessor before generating the 1124 // switch machinery to enter this block. 1125 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1126 EmitBlockWithFallThrough(CaseDest, &S); 1127 EmitStmt(S.getSubStmt()); 1128 1129 // If range is empty, do nothing. 1130 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1131 return; 1132 1133 llvm::APInt Range = RHS - LHS; 1134 // FIXME: parameters such as this should not be hardcoded. 1135 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1136 // Range is small enough to add multiple switch instruction cases. 1137 uint64_t Total = getProfileCount(&S); 1138 unsigned NCases = Range.getZExtValue() + 1; 1139 // We only have one region counter for the entire set of cases here, so we 1140 // need to divide the weights evenly between the generated cases, ensuring 1141 // that the total weight is preserved. E.g., a weight of 5 over three cases 1142 // will be distributed as weights of 2, 2, and 1. 1143 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1144 for (unsigned I = 0; I != NCases; ++I) { 1145 if (SwitchWeights) 1146 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1147 if (Rem) 1148 Rem--; 1149 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1150 LHS++; 1151 } 1152 return; 1153 } 1154 1155 // The range is too big. Emit "if" condition into a new block, 1156 // making sure to save and restore the current insertion point. 1157 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1158 1159 // Push this test onto the chain of range checks (which terminates 1160 // in the default basic block). The switch's default will be changed 1161 // to the top of this chain after switch emission is complete. 1162 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1163 CaseRangeBlock = createBasicBlock("sw.caserange"); 1164 1165 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1166 Builder.SetInsertPoint(CaseRangeBlock); 1167 1168 // Emit range check. 1169 llvm::Value *Diff = 1170 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1171 llvm::Value *Cond = 1172 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1173 1174 llvm::MDNode *Weights = nullptr; 1175 if (SwitchWeights) { 1176 uint64_t ThisCount = getProfileCount(&S); 1177 uint64_t DefaultCount = (*SwitchWeights)[0]; 1178 Weights = createProfileWeights(ThisCount, DefaultCount); 1179 1180 // Since we're chaining the switch default through each large case range, we 1181 // need to update the weight for the default, ie, the first case, to include 1182 // this case. 1183 (*SwitchWeights)[0] += ThisCount; 1184 } 1185 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1186 1187 // Restore the appropriate insertion point. 1188 if (RestoreBB) 1189 Builder.SetInsertPoint(RestoreBB); 1190 else 1191 Builder.ClearInsertionPoint(); 1192 } 1193 1194 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1195 // If there is no enclosing switch instance that we're aware of, then this 1196 // case statement and its block can be elided. This situation only happens 1197 // when we've constant-folded the switch, are emitting the constant case, 1198 // and part of the constant case includes another case statement. For 1199 // instance: switch (4) { case 4: do { case 5: } while (1); } 1200 if (!SwitchInsn) { 1201 EmitStmt(S.getSubStmt()); 1202 return; 1203 } 1204 1205 // Handle case ranges. 1206 if (S.getRHS()) { 1207 EmitCaseStmtRange(S); 1208 return; 1209 } 1210 1211 llvm::ConstantInt *CaseVal = 1212 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1213 1214 // If the body of the case is just a 'break', try to not emit an empty block. 1215 // If we're profiling or we're not optimizing, leave the block in for better 1216 // debug and coverage analysis. 1217 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1218 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1219 isa<BreakStmt>(S.getSubStmt())) { 1220 JumpDest Block = BreakContinueStack.back().BreakBlock; 1221 1222 // Only do this optimization if there are no cleanups that need emitting. 1223 if (isObviouslyBranchWithoutCleanups(Block)) { 1224 if (SwitchWeights) 1225 SwitchWeights->push_back(getProfileCount(&S)); 1226 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1227 1228 // If there was a fallthrough into this case, make sure to redirect it to 1229 // the end of the switch as well. 1230 if (Builder.GetInsertBlock()) { 1231 Builder.CreateBr(Block.getBlock()); 1232 Builder.ClearInsertionPoint(); 1233 } 1234 return; 1235 } 1236 } 1237 1238 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1239 EmitBlockWithFallThrough(CaseDest, &S); 1240 if (SwitchWeights) 1241 SwitchWeights->push_back(getProfileCount(&S)); 1242 SwitchInsn->addCase(CaseVal, CaseDest); 1243 1244 // Recursively emitting the statement is acceptable, but is not wonderful for 1245 // code where we have many case statements nested together, i.e.: 1246 // case 1: 1247 // case 2: 1248 // case 3: etc. 1249 // Handling this recursively will create a new block for each case statement 1250 // that falls through to the next case which is IR intensive. It also causes 1251 // deep recursion which can run into stack depth limitations. Handle 1252 // sequential non-range case statements specially. 1253 const CaseStmt *CurCase = &S; 1254 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1255 1256 // Otherwise, iteratively add consecutive cases to this switch stmt. 1257 while (NextCase && NextCase->getRHS() == nullptr) { 1258 CurCase = NextCase; 1259 llvm::ConstantInt *CaseVal = 1260 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1261 1262 if (SwitchWeights) 1263 SwitchWeights->push_back(getProfileCount(NextCase)); 1264 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1265 CaseDest = createBasicBlock("sw.bb"); 1266 EmitBlockWithFallThrough(CaseDest, &S); 1267 } 1268 1269 SwitchInsn->addCase(CaseVal, CaseDest); 1270 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1271 } 1272 1273 // Normal default recursion for non-cases. 1274 EmitStmt(CurCase->getSubStmt()); 1275 } 1276 1277 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1278 // If there is no enclosing switch instance that we're aware of, then this 1279 // default statement can be elided. This situation only happens when we've 1280 // constant-folded the switch. 1281 if (!SwitchInsn) { 1282 EmitStmt(S.getSubStmt()); 1283 return; 1284 } 1285 1286 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1287 assert(DefaultBlock->empty() && 1288 "EmitDefaultStmt: Default block already defined?"); 1289 1290 EmitBlockWithFallThrough(DefaultBlock, &S); 1291 1292 EmitStmt(S.getSubStmt()); 1293 } 1294 1295 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1296 /// constant value that is being switched on, see if we can dead code eliminate 1297 /// the body of the switch to a simple series of statements to emit. Basically, 1298 /// on a switch (5) we want to find these statements: 1299 /// case 5: 1300 /// printf(...); <-- 1301 /// ++i; <-- 1302 /// break; 1303 /// 1304 /// and add them to the ResultStmts vector. If it is unsafe to do this 1305 /// transformation (for example, one of the elided statements contains a label 1306 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1307 /// should include statements after it (e.g. the printf() line is a substmt of 1308 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1309 /// statement, then return CSFC_Success. 1310 /// 1311 /// If Case is non-null, then we are looking for the specified case, checking 1312 /// that nothing we jump over contains labels. If Case is null, then we found 1313 /// the case and are looking for the break. 1314 /// 1315 /// If the recursive walk actually finds our Case, then we set FoundCase to 1316 /// true. 1317 /// 1318 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1319 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1320 const SwitchCase *Case, 1321 bool &FoundCase, 1322 SmallVectorImpl<const Stmt*> &ResultStmts) { 1323 // If this is a null statement, just succeed. 1324 if (!S) 1325 return Case ? CSFC_Success : CSFC_FallThrough; 1326 1327 // If this is the switchcase (case 4: or default) that we're looking for, then 1328 // we're in business. Just add the substatement. 1329 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1330 if (S == Case) { 1331 FoundCase = true; 1332 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1333 ResultStmts); 1334 } 1335 1336 // Otherwise, this is some other case or default statement, just ignore it. 1337 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1338 ResultStmts); 1339 } 1340 1341 // If we are in the live part of the code and we found our break statement, 1342 // return a success! 1343 if (!Case && isa<BreakStmt>(S)) 1344 return CSFC_Success; 1345 1346 // If this is a switch statement, then it might contain the SwitchCase, the 1347 // break, or neither. 1348 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1349 // Handle this as two cases: we might be looking for the SwitchCase (if so 1350 // the skipped statements must be skippable) or we might already have it. 1351 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1352 bool StartedInLiveCode = FoundCase; 1353 unsigned StartSize = ResultStmts.size(); 1354 1355 // If we've not found the case yet, scan through looking for it. 1356 if (Case) { 1357 // Keep track of whether we see a skipped declaration. The code could be 1358 // using the declaration even if it is skipped, so we can't optimize out 1359 // the decl if the kept statements might refer to it. 1360 bool HadSkippedDecl = false; 1361 1362 // If we're looking for the case, just see if we can skip each of the 1363 // substatements. 1364 for (; Case && I != E; ++I) { 1365 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1366 1367 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1368 case CSFC_Failure: return CSFC_Failure; 1369 case CSFC_Success: 1370 // A successful result means that either 1) that the statement doesn't 1371 // have the case and is skippable, or 2) does contain the case value 1372 // and also contains the break to exit the switch. In the later case, 1373 // we just verify the rest of the statements are elidable. 1374 if (FoundCase) { 1375 // If we found the case and skipped declarations, we can't do the 1376 // optimization. 1377 if (HadSkippedDecl) 1378 return CSFC_Failure; 1379 1380 for (++I; I != E; ++I) 1381 if (CodeGenFunction::ContainsLabel(*I, true)) 1382 return CSFC_Failure; 1383 return CSFC_Success; 1384 } 1385 break; 1386 case CSFC_FallThrough: 1387 // If we have a fallthrough condition, then we must have found the 1388 // case started to include statements. Consider the rest of the 1389 // statements in the compound statement as candidates for inclusion. 1390 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1391 // We recursively found Case, so we're not looking for it anymore. 1392 Case = nullptr; 1393 1394 // If we found the case and skipped declarations, we can't do the 1395 // optimization. 1396 if (HadSkippedDecl) 1397 return CSFC_Failure; 1398 break; 1399 } 1400 } 1401 1402 if (!FoundCase) 1403 return CSFC_Success; 1404 1405 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1406 } 1407 1408 // If we have statements in our range, then we know that the statements are 1409 // live and need to be added to the set of statements we're tracking. 1410 bool AnyDecls = false; 1411 for (; I != E; ++I) { 1412 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1413 1414 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1415 case CSFC_Failure: return CSFC_Failure; 1416 case CSFC_FallThrough: 1417 // A fallthrough result means that the statement was simple and just 1418 // included in ResultStmt, keep adding them afterwards. 1419 break; 1420 case CSFC_Success: 1421 // A successful result means that we found the break statement and 1422 // stopped statement inclusion. We just ensure that any leftover stmts 1423 // are skippable and return success ourselves. 1424 for (++I; I != E; ++I) 1425 if (CodeGenFunction::ContainsLabel(*I, true)) 1426 return CSFC_Failure; 1427 return CSFC_Success; 1428 } 1429 } 1430 1431 // If we're about to fall out of a scope without hitting a 'break;', we 1432 // can't perform the optimization if there were any decls in that scope 1433 // (we'd lose their end-of-lifetime). 1434 if (AnyDecls) { 1435 // If the entire compound statement was live, there's one more thing we 1436 // can try before giving up: emit the whole thing as a single statement. 1437 // We can do that unless the statement contains a 'break;'. 1438 // FIXME: Such a break must be at the end of a construct within this one. 1439 // We could emit this by just ignoring the BreakStmts entirely. 1440 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1441 ResultStmts.resize(StartSize); 1442 ResultStmts.push_back(S); 1443 } else { 1444 return CSFC_Failure; 1445 } 1446 } 1447 1448 return CSFC_FallThrough; 1449 } 1450 1451 // Okay, this is some other statement that we don't handle explicitly, like a 1452 // for statement or increment etc. If we are skipping over this statement, 1453 // just verify it doesn't have labels, which would make it invalid to elide. 1454 if (Case) { 1455 if (CodeGenFunction::ContainsLabel(S, true)) 1456 return CSFC_Failure; 1457 return CSFC_Success; 1458 } 1459 1460 // Otherwise, we want to include this statement. Everything is cool with that 1461 // so long as it doesn't contain a break out of the switch we're in. 1462 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1463 1464 // Otherwise, everything is great. Include the statement and tell the caller 1465 // that we fall through and include the next statement as well. 1466 ResultStmts.push_back(S); 1467 return CSFC_FallThrough; 1468 } 1469 1470 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1471 /// then invoke CollectStatementsForCase to find the list of statements to emit 1472 /// for a switch on constant. See the comment above CollectStatementsForCase 1473 /// for more details. 1474 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1475 const llvm::APSInt &ConstantCondValue, 1476 SmallVectorImpl<const Stmt*> &ResultStmts, 1477 ASTContext &C, 1478 const SwitchCase *&ResultCase) { 1479 // First step, find the switch case that is being branched to. We can do this 1480 // efficiently by scanning the SwitchCase list. 1481 const SwitchCase *Case = S.getSwitchCaseList(); 1482 const DefaultStmt *DefaultCase = nullptr; 1483 1484 for (; Case; Case = Case->getNextSwitchCase()) { 1485 // It's either a default or case. Just remember the default statement in 1486 // case we're not jumping to any numbered cases. 1487 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1488 DefaultCase = DS; 1489 continue; 1490 } 1491 1492 // Check to see if this case is the one we're looking for. 1493 const CaseStmt *CS = cast<CaseStmt>(Case); 1494 // Don't handle case ranges yet. 1495 if (CS->getRHS()) return false; 1496 1497 // If we found our case, remember it as 'case'. 1498 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1499 break; 1500 } 1501 1502 // If we didn't find a matching case, we use a default if it exists, or we 1503 // elide the whole switch body! 1504 if (!Case) { 1505 // It is safe to elide the body of the switch if it doesn't contain labels 1506 // etc. If it is safe, return successfully with an empty ResultStmts list. 1507 if (!DefaultCase) 1508 return !CodeGenFunction::ContainsLabel(&S); 1509 Case = DefaultCase; 1510 } 1511 1512 // Ok, we know which case is being jumped to, try to collect all the 1513 // statements that follow it. This can fail for a variety of reasons. Also, 1514 // check to see that the recursive walk actually found our case statement. 1515 // Insane cases like this can fail to find it in the recursive walk since we 1516 // don't handle every stmt kind: 1517 // switch (4) { 1518 // while (1) { 1519 // case 4: ... 1520 bool FoundCase = false; 1521 ResultCase = Case; 1522 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1523 ResultStmts) != CSFC_Failure && 1524 FoundCase; 1525 } 1526 1527 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1528 // Handle nested switch statements. 1529 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1530 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1531 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1532 1533 // See if we can constant fold the condition of the switch and therefore only 1534 // emit the live case statement (if any) of the switch. 1535 llvm::APSInt ConstantCondValue; 1536 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1537 SmallVector<const Stmt*, 4> CaseStmts; 1538 const SwitchCase *Case = nullptr; 1539 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1540 getContext(), Case)) { 1541 if (Case) 1542 incrementProfileCounter(Case); 1543 RunCleanupsScope ExecutedScope(*this); 1544 1545 if (S.getInit()) 1546 EmitStmt(S.getInit()); 1547 1548 // Emit the condition variable if needed inside the entire cleanup scope 1549 // used by this special case for constant folded switches. 1550 if (S.getConditionVariable()) 1551 EmitAutoVarDecl(*S.getConditionVariable()); 1552 1553 // At this point, we are no longer "within" a switch instance, so 1554 // we can temporarily enforce this to ensure that any embedded case 1555 // statements are not emitted. 1556 SwitchInsn = nullptr; 1557 1558 // Okay, we can dead code eliminate everything except this case. Emit the 1559 // specified series of statements and we're good. 1560 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1561 EmitStmt(CaseStmts[i]); 1562 incrementProfileCounter(&S); 1563 1564 // Now we want to restore the saved switch instance so that nested 1565 // switches continue to function properly 1566 SwitchInsn = SavedSwitchInsn; 1567 1568 return; 1569 } 1570 } 1571 1572 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1573 1574 RunCleanupsScope ConditionScope(*this); 1575 1576 if (S.getInit()) 1577 EmitStmt(S.getInit()); 1578 1579 if (S.getConditionVariable()) 1580 EmitAutoVarDecl(*S.getConditionVariable()); 1581 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1582 1583 // Create basic block to hold stuff that comes after switch 1584 // statement. We also need to create a default block now so that 1585 // explicit case ranges tests can have a place to jump to on 1586 // failure. 1587 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1588 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1589 if (PGO.haveRegionCounts()) { 1590 // Walk the SwitchCase list to find how many there are. 1591 uint64_t DefaultCount = 0; 1592 unsigned NumCases = 0; 1593 for (const SwitchCase *Case = S.getSwitchCaseList(); 1594 Case; 1595 Case = Case->getNextSwitchCase()) { 1596 if (isa<DefaultStmt>(Case)) 1597 DefaultCount = getProfileCount(Case); 1598 NumCases += 1; 1599 } 1600 SwitchWeights = new SmallVector<uint64_t, 16>(); 1601 SwitchWeights->reserve(NumCases); 1602 // The default needs to be first. We store the edge count, so we already 1603 // know the right weight. 1604 SwitchWeights->push_back(DefaultCount); 1605 } 1606 CaseRangeBlock = DefaultBlock; 1607 1608 // Clear the insertion point to indicate we are in unreachable code. 1609 Builder.ClearInsertionPoint(); 1610 1611 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1612 // then reuse last ContinueBlock. 1613 JumpDest OuterContinue; 1614 if (!BreakContinueStack.empty()) 1615 OuterContinue = BreakContinueStack.back().ContinueBlock; 1616 1617 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1618 1619 // Emit switch body. 1620 EmitStmt(S.getBody()); 1621 1622 BreakContinueStack.pop_back(); 1623 1624 // Update the default block in case explicit case range tests have 1625 // been chained on top. 1626 SwitchInsn->setDefaultDest(CaseRangeBlock); 1627 1628 // If a default was never emitted: 1629 if (!DefaultBlock->getParent()) { 1630 // If we have cleanups, emit the default block so that there's a 1631 // place to jump through the cleanups from. 1632 if (ConditionScope.requiresCleanups()) { 1633 EmitBlock(DefaultBlock); 1634 1635 // Otherwise, just forward the default block to the switch end. 1636 } else { 1637 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1638 delete DefaultBlock; 1639 } 1640 } 1641 1642 ConditionScope.ForceCleanup(); 1643 1644 // Emit continuation. 1645 EmitBlock(SwitchExit.getBlock(), true); 1646 incrementProfileCounter(&S); 1647 1648 // If the switch has a condition wrapped by __builtin_unpredictable, 1649 // create metadata that specifies that the switch is unpredictable. 1650 // Don't bother if not optimizing because that metadata would not be used. 1651 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1652 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1653 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1654 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1655 llvm::MDBuilder MDHelper(getLLVMContext()); 1656 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1657 MDHelper.createUnpredictable()); 1658 } 1659 } 1660 1661 if (SwitchWeights) { 1662 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1663 "switch weights do not match switch cases"); 1664 // If there's only one jump destination there's no sense weighting it. 1665 if (SwitchWeights->size() > 1) 1666 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1667 createProfileWeights(*SwitchWeights)); 1668 delete SwitchWeights; 1669 } 1670 SwitchInsn = SavedSwitchInsn; 1671 SwitchWeights = SavedSwitchWeights; 1672 CaseRangeBlock = SavedCRBlock; 1673 } 1674 1675 static std::string 1676 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1677 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1678 std::string Result; 1679 1680 while (*Constraint) { 1681 switch (*Constraint) { 1682 default: 1683 Result += Target.convertConstraint(Constraint); 1684 break; 1685 // Ignore these 1686 case '*': 1687 case '?': 1688 case '!': 1689 case '=': // Will see this and the following in mult-alt constraints. 1690 case '+': 1691 break; 1692 case '#': // Ignore the rest of the constraint alternative. 1693 while (Constraint[1] && Constraint[1] != ',') 1694 Constraint++; 1695 break; 1696 case '&': 1697 case '%': 1698 Result += *Constraint; 1699 while (Constraint[1] && Constraint[1] == *Constraint) 1700 Constraint++; 1701 break; 1702 case ',': 1703 Result += "|"; 1704 break; 1705 case 'g': 1706 Result += "imr"; 1707 break; 1708 case '[': { 1709 assert(OutCons && 1710 "Must pass output names to constraints with a symbolic name"); 1711 unsigned Index; 1712 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1713 assert(result && "Could not resolve symbolic name"); (void)result; 1714 Result += llvm::utostr(Index); 1715 break; 1716 } 1717 } 1718 1719 Constraint++; 1720 } 1721 1722 return Result; 1723 } 1724 1725 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1726 /// as using a particular register add that as a constraint that will be used 1727 /// in this asm stmt. 1728 static std::string 1729 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1730 const TargetInfo &Target, CodeGenModule &CGM, 1731 const AsmStmt &Stmt, const bool EarlyClobber) { 1732 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1733 if (!AsmDeclRef) 1734 return Constraint; 1735 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1736 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1737 if (!Variable) 1738 return Constraint; 1739 if (Variable->getStorageClass() != SC_Register) 1740 return Constraint; 1741 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1742 if (!Attr) 1743 return Constraint; 1744 StringRef Register = Attr->getLabel(); 1745 assert(Target.isValidGCCRegisterName(Register)); 1746 // We're using validateOutputConstraint here because we only care if 1747 // this is a register constraint. 1748 TargetInfo::ConstraintInfo Info(Constraint, ""); 1749 if (Target.validateOutputConstraint(Info) && 1750 !Info.allowsRegister()) { 1751 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1752 return Constraint; 1753 } 1754 // Canonicalize the register here before returning it. 1755 Register = Target.getNormalizedGCCRegisterName(Register); 1756 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1757 } 1758 1759 llvm::Value* 1760 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1761 LValue InputValue, QualType InputType, 1762 std::string &ConstraintStr, 1763 SourceLocation Loc) { 1764 llvm::Value *Arg; 1765 if (Info.allowsRegister() || !Info.allowsMemory()) { 1766 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1767 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1768 } else { 1769 llvm::Type *Ty = ConvertType(InputType); 1770 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1771 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1772 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1773 Ty = llvm::PointerType::getUnqual(Ty); 1774 1775 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1776 Ty)); 1777 } else { 1778 Arg = InputValue.getPointer(); 1779 ConstraintStr += '*'; 1780 } 1781 } 1782 } else { 1783 Arg = InputValue.getPointer(); 1784 ConstraintStr += '*'; 1785 } 1786 1787 return Arg; 1788 } 1789 1790 llvm::Value* CodeGenFunction::EmitAsmInput( 1791 const TargetInfo::ConstraintInfo &Info, 1792 const Expr *InputExpr, 1793 std::string &ConstraintStr) { 1794 // If this can't be a register or memory, i.e., has to be a constant 1795 // (immediate or symbolic), try to emit it as such. 1796 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1797 llvm::APSInt Result; 1798 if (InputExpr->EvaluateAsInt(Result, getContext())) 1799 return llvm::ConstantInt::get(getLLVMContext(), Result); 1800 assert(!Info.requiresImmediateConstant() && 1801 "Required-immediate inlineasm arg isn't constant?"); 1802 } 1803 1804 if (Info.allowsRegister() || !Info.allowsMemory()) 1805 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1806 return EmitScalarExpr(InputExpr); 1807 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1808 return EmitScalarExpr(InputExpr); 1809 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1810 LValue Dest = EmitLValue(InputExpr); 1811 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1812 InputExpr->getExprLoc()); 1813 } 1814 1815 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1816 /// asm call instruction. The !srcloc MDNode contains a list of constant 1817 /// integers which are the source locations of the start of each line in the 1818 /// asm. 1819 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1820 CodeGenFunction &CGF) { 1821 SmallVector<llvm::Metadata *, 8> Locs; 1822 // Add the location of the first line to the MDNode. 1823 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1824 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1825 StringRef StrVal = Str->getString(); 1826 if (!StrVal.empty()) { 1827 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1828 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1829 unsigned StartToken = 0; 1830 unsigned ByteOffset = 0; 1831 1832 // Add the location of the start of each subsequent line of the asm to the 1833 // MDNode. 1834 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1835 if (StrVal[i] != '\n') continue; 1836 SourceLocation LineLoc = Str->getLocationOfByte( 1837 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1838 Locs.push_back(llvm::ConstantAsMetadata::get( 1839 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1840 } 1841 } 1842 1843 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1844 } 1845 1846 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1847 // Assemble the final asm string. 1848 std::string AsmString = S.generateAsmString(getContext()); 1849 1850 // Get all the output and input constraints together. 1851 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1852 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1853 1854 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1855 StringRef Name; 1856 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1857 Name = GAS->getOutputName(i); 1858 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1859 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1860 assert(IsValid && "Failed to parse output constraint"); 1861 OutputConstraintInfos.push_back(Info); 1862 } 1863 1864 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1865 StringRef Name; 1866 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1867 Name = GAS->getInputName(i); 1868 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1869 bool IsValid = 1870 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1871 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1872 InputConstraintInfos.push_back(Info); 1873 } 1874 1875 std::string Constraints; 1876 1877 std::vector<LValue> ResultRegDests; 1878 std::vector<QualType> ResultRegQualTys; 1879 std::vector<llvm::Type *> ResultRegTypes; 1880 std::vector<llvm::Type *> ResultTruncRegTypes; 1881 std::vector<llvm::Type *> ArgTypes; 1882 std::vector<llvm::Value*> Args; 1883 1884 // Keep track of inout constraints. 1885 std::string InOutConstraints; 1886 std::vector<llvm::Value*> InOutArgs; 1887 std::vector<llvm::Type*> InOutArgTypes; 1888 1889 // An inline asm can be marked readonly if it meets the following conditions: 1890 // - it doesn't have any sideeffects 1891 // - it doesn't clobber memory 1892 // - it doesn't return a value by-reference 1893 // It can be marked readnone if it doesn't have any input memory constraints 1894 // in addition to meeting the conditions listed above. 1895 bool ReadOnly = true, ReadNone = true; 1896 1897 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1898 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1899 1900 // Simplify the output constraint. 1901 std::string OutputConstraint(S.getOutputConstraint(i)); 1902 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1903 getTarget()); 1904 1905 const Expr *OutExpr = S.getOutputExpr(i); 1906 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1907 1908 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1909 getTarget(), CGM, S, 1910 Info.earlyClobber()); 1911 1912 LValue Dest = EmitLValue(OutExpr); 1913 if (!Constraints.empty()) 1914 Constraints += ','; 1915 1916 // If this is a register output, then make the inline asm return it 1917 // by-value. If this is a memory result, return the value by-reference. 1918 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1919 Constraints += "=" + OutputConstraint; 1920 ResultRegQualTys.push_back(OutExpr->getType()); 1921 ResultRegDests.push_back(Dest); 1922 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1923 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1924 1925 // If this output is tied to an input, and if the input is larger, then 1926 // we need to set the actual result type of the inline asm node to be the 1927 // same as the input type. 1928 if (Info.hasMatchingInput()) { 1929 unsigned InputNo; 1930 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1931 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1932 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1933 break; 1934 } 1935 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1936 1937 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1938 QualType OutputType = OutExpr->getType(); 1939 1940 uint64_t InputSize = getContext().getTypeSize(InputTy); 1941 if (getContext().getTypeSize(OutputType) < InputSize) { 1942 // Form the asm to return the value as a larger integer or fp type. 1943 ResultRegTypes.back() = ConvertType(InputTy); 1944 } 1945 } 1946 if (llvm::Type* AdjTy = 1947 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1948 ResultRegTypes.back())) 1949 ResultRegTypes.back() = AdjTy; 1950 else { 1951 CGM.getDiags().Report(S.getAsmLoc(), 1952 diag::err_asm_invalid_type_in_input) 1953 << OutExpr->getType() << OutputConstraint; 1954 } 1955 } else { 1956 ArgTypes.push_back(Dest.getAddress().getType()); 1957 Args.push_back(Dest.getPointer()); 1958 Constraints += "=*"; 1959 Constraints += OutputConstraint; 1960 ReadOnly = ReadNone = false; 1961 } 1962 1963 if (Info.isReadWrite()) { 1964 InOutConstraints += ','; 1965 1966 const Expr *InputExpr = S.getOutputExpr(i); 1967 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1968 InOutConstraints, 1969 InputExpr->getExprLoc()); 1970 1971 if (llvm::Type* AdjTy = 1972 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1973 Arg->getType())) 1974 Arg = Builder.CreateBitCast(Arg, AdjTy); 1975 1976 if (Info.allowsRegister()) 1977 InOutConstraints += llvm::utostr(i); 1978 else 1979 InOutConstraints += OutputConstraint; 1980 1981 InOutArgTypes.push_back(Arg->getType()); 1982 InOutArgs.push_back(Arg); 1983 } 1984 } 1985 1986 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1987 // to the return value slot. Only do this when returning in registers. 1988 if (isa<MSAsmStmt>(&S)) { 1989 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1990 if (RetAI.isDirect() || RetAI.isExtend()) { 1991 // Make a fake lvalue for the return value slot. 1992 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1993 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1994 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1995 ResultRegDests, AsmString, S.getNumOutputs()); 1996 SawAsmBlock = true; 1997 } 1998 } 1999 2000 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2001 const Expr *InputExpr = S.getInputExpr(i); 2002 2003 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2004 2005 if (Info.allowsMemory()) 2006 ReadNone = false; 2007 2008 if (!Constraints.empty()) 2009 Constraints += ','; 2010 2011 // Simplify the input constraint. 2012 std::string InputConstraint(S.getInputConstraint(i)); 2013 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2014 &OutputConstraintInfos); 2015 2016 InputConstraint = AddVariableConstraints( 2017 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2018 getTarget(), CGM, S, false /* No EarlyClobber */); 2019 2020 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2021 2022 // If this input argument is tied to a larger output result, extend the 2023 // input to be the same size as the output. The LLVM backend wants to see 2024 // the input and output of a matching constraint be the same size. Note 2025 // that GCC does not define what the top bits are here. We use zext because 2026 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2027 if (Info.hasTiedOperand()) { 2028 unsigned Output = Info.getTiedOperand(); 2029 QualType OutputType = S.getOutputExpr(Output)->getType(); 2030 QualType InputTy = InputExpr->getType(); 2031 2032 if (getContext().getTypeSize(OutputType) > 2033 getContext().getTypeSize(InputTy)) { 2034 // Use ptrtoint as appropriate so that we can do our extension. 2035 if (isa<llvm::PointerType>(Arg->getType())) 2036 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2037 llvm::Type *OutputTy = ConvertType(OutputType); 2038 if (isa<llvm::IntegerType>(OutputTy)) 2039 Arg = Builder.CreateZExt(Arg, OutputTy); 2040 else if (isa<llvm::PointerType>(OutputTy)) 2041 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2042 else { 2043 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2044 Arg = Builder.CreateFPExt(Arg, OutputTy); 2045 } 2046 } 2047 } 2048 if (llvm::Type* AdjTy = 2049 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2050 Arg->getType())) 2051 Arg = Builder.CreateBitCast(Arg, AdjTy); 2052 else 2053 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2054 << InputExpr->getType() << InputConstraint; 2055 2056 ArgTypes.push_back(Arg->getType()); 2057 Args.push_back(Arg); 2058 Constraints += InputConstraint; 2059 } 2060 2061 // Append the "input" part of inout constraints last. 2062 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2063 ArgTypes.push_back(InOutArgTypes[i]); 2064 Args.push_back(InOutArgs[i]); 2065 } 2066 Constraints += InOutConstraints; 2067 2068 // Clobbers 2069 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2070 StringRef Clobber = S.getClobber(i); 2071 2072 if (Clobber == "memory") 2073 ReadOnly = ReadNone = false; 2074 else if (Clobber != "cc") 2075 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2076 2077 if (!Constraints.empty()) 2078 Constraints += ','; 2079 2080 Constraints += "~{"; 2081 Constraints += Clobber; 2082 Constraints += '}'; 2083 } 2084 2085 // Add machine specific clobbers 2086 std::string MachineClobbers = getTarget().getClobbers(); 2087 if (!MachineClobbers.empty()) { 2088 if (!Constraints.empty()) 2089 Constraints += ','; 2090 Constraints += MachineClobbers; 2091 } 2092 2093 llvm::Type *ResultType; 2094 if (ResultRegTypes.empty()) 2095 ResultType = VoidTy; 2096 else if (ResultRegTypes.size() == 1) 2097 ResultType = ResultRegTypes[0]; 2098 else 2099 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2100 2101 llvm::FunctionType *FTy = 2102 llvm::FunctionType::get(ResultType, ArgTypes, false); 2103 2104 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2105 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2106 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2107 llvm::InlineAsm *IA = 2108 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2109 /* IsAlignStack */ false, AsmDialect); 2110 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2111 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2112 llvm::Attribute::NoUnwind); 2113 2114 // Attach readnone and readonly attributes. 2115 if (!HasSideEffect) { 2116 if (ReadNone) 2117 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2118 llvm::Attribute::ReadNone); 2119 else if (ReadOnly) 2120 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2121 llvm::Attribute::ReadOnly); 2122 } 2123 2124 // Slap the source location of the inline asm into a !srcloc metadata on the 2125 // call. 2126 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2127 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2128 *this)); 2129 } else { 2130 // At least put the line number on MS inline asm blobs. 2131 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2132 Result->setMetadata("srcloc", 2133 llvm::MDNode::get(getLLVMContext(), 2134 llvm::ConstantAsMetadata::get(Loc))); 2135 } 2136 2137 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 2138 // Conservatively, mark all inline asm blocks in CUDA as convergent 2139 // (meaning, they may call an intrinsically convergent op, such as bar.sync, 2140 // and so can't have certain optimizations applied around them). 2141 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2142 llvm::Attribute::Convergent); 2143 } 2144 2145 // Extract all of the register value results from the asm. 2146 std::vector<llvm::Value*> RegResults; 2147 if (ResultRegTypes.size() == 1) { 2148 RegResults.push_back(Result); 2149 } else { 2150 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2151 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2152 RegResults.push_back(Tmp); 2153 } 2154 } 2155 2156 assert(RegResults.size() == ResultRegTypes.size()); 2157 assert(RegResults.size() == ResultTruncRegTypes.size()); 2158 assert(RegResults.size() == ResultRegDests.size()); 2159 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2160 llvm::Value *Tmp = RegResults[i]; 2161 2162 // If the result type of the LLVM IR asm doesn't match the result type of 2163 // the expression, do the conversion. 2164 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2165 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2166 2167 // Truncate the integer result to the right size, note that TruncTy can be 2168 // a pointer. 2169 if (TruncTy->isFloatingPointTy()) 2170 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2171 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2172 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2173 Tmp = Builder.CreateTrunc(Tmp, 2174 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2175 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2176 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2177 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2178 Tmp = Builder.CreatePtrToInt(Tmp, 2179 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2180 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2181 } else if (TruncTy->isIntegerTy()) { 2182 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2183 } else if (TruncTy->isVectorTy()) { 2184 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2185 } 2186 } 2187 2188 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2189 } 2190 } 2191 2192 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2193 const RecordDecl *RD = S.getCapturedRecordDecl(); 2194 QualType RecordTy = getContext().getRecordType(RD); 2195 2196 // Initialize the captured struct. 2197 LValue SlotLV = 2198 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2199 2200 RecordDecl::field_iterator CurField = RD->field_begin(); 2201 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2202 E = S.capture_init_end(); 2203 I != E; ++I, ++CurField) { 2204 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2205 if (CurField->hasCapturedVLAType()) { 2206 auto VAT = CurField->getCapturedVLAType(); 2207 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2208 } else { 2209 EmitInitializerForField(*CurField, LV, *I); 2210 } 2211 } 2212 2213 return SlotLV; 2214 } 2215 2216 /// Generate an outlined function for the body of a CapturedStmt, store any 2217 /// captured variables into the captured struct, and call the outlined function. 2218 llvm::Function * 2219 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2220 LValue CapStruct = InitCapturedStruct(S); 2221 2222 // Emit the CapturedDecl 2223 CodeGenFunction CGF(CGM, true); 2224 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2225 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2226 delete CGF.CapturedStmtInfo; 2227 2228 // Emit call to the helper function. 2229 EmitCallOrInvoke(F, CapStruct.getPointer()); 2230 2231 return F; 2232 } 2233 2234 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2235 LValue CapStruct = InitCapturedStruct(S); 2236 return CapStruct.getAddress(); 2237 } 2238 2239 /// Creates the outlined function for a CapturedStmt. 2240 llvm::Function * 2241 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2242 assert(CapturedStmtInfo && 2243 "CapturedStmtInfo should be set when generating the captured function"); 2244 const CapturedDecl *CD = S.getCapturedDecl(); 2245 const RecordDecl *RD = S.getCapturedRecordDecl(); 2246 SourceLocation Loc = S.getLocStart(); 2247 assert(CD->hasBody() && "missing CapturedDecl body"); 2248 2249 // Build the argument list. 2250 ASTContext &Ctx = CGM.getContext(); 2251 FunctionArgList Args; 2252 Args.append(CD->param_begin(), CD->param_end()); 2253 2254 // Create the function declaration. 2255 FunctionType::ExtInfo ExtInfo; 2256 const CGFunctionInfo &FuncInfo = 2257 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2258 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2259 2260 llvm::Function *F = 2261 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2262 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2263 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2264 if (CD->isNothrow()) 2265 F->addFnAttr(llvm::Attribute::NoUnwind); 2266 2267 // Generate the function. 2268 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2269 CD->getLocation(), 2270 CD->getBody()->getLocStart()); 2271 // Set the context parameter in CapturedStmtInfo. 2272 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2273 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2274 2275 // Initialize variable-length arrays. 2276 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2277 Ctx.getTagDeclType(RD)); 2278 for (auto *FD : RD->fields()) { 2279 if (FD->hasCapturedVLAType()) { 2280 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2281 S.getLocStart()).getScalarVal(); 2282 auto VAT = FD->getCapturedVLAType(); 2283 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2284 } 2285 } 2286 2287 // If 'this' is captured, load it into CXXThisValue. 2288 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2289 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2290 LValue ThisLValue = EmitLValueForField(Base, FD); 2291 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2292 } 2293 2294 PGO.assignRegionCounters(GlobalDecl(CD), F); 2295 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2296 FinishFunction(CD->getBodyRBrace()); 2297 2298 return F; 2299 } 2300