1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Stmt nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGDebugInfo.h" 14 #include "CGOpenMPRuntime.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/Attr.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/Stmt.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Basic/DiagnosticSema.h" 24 #include "clang/Basic/PrettyStackTrace.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/InlineAsm.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/Support/SaveAndRestore.h" 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 //===----------------------------------------------------------------------===// 39 // Statement Emission 40 //===----------------------------------------------------------------------===// 41 42 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 43 if (CGDebugInfo *DI = getDebugInfo()) { 44 SourceLocation Loc; 45 Loc = S->getBeginLoc(); 46 DI->EmitLocation(Builder, Loc); 47 48 LastStopPoint = Loc; 49 } 50 } 51 52 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 53 assert(S && "Null statement?"); 54 PGO.setCurrentStmt(S); 55 56 // These statements have their own debug info handling. 57 if (EmitSimpleStmt(S, Attrs)) 58 return; 59 60 // Check if we are generating unreachable code. 61 if (!HaveInsertPoint()) { 62 // If so, and the statement doesn't contain a label, then we do not need to 63 // generate actual code. This is safe because (1) the current point is 64 // unreachable, so we don't need to execute the code, and (2) we've already 65 // handled the statements which update internal data structures (like the 66 // local variable map) which could be used by subsequent statements. 67 if (!ContainsLabel(S)) { 68 // Verify that any decl statements were handled as simple, they may be in 69 // scope of subsequent reachable statements. 70 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 71 return; 72 } 73 74 // Otherwise, make a new block to hold the code. 75 EnsureInsertPoint(); 76 } 77 78 // Generate a stoppoint if we are emitting debug info. 79 EmitStopPoint(S); 80 81 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 82 // enabled. 83 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 84 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 85 EmitSimpleOMPExecutableDirective(*D); 86 return; 87 } 88 } 89 90 switch (S->getStmtClass()) { 91 case Stmt::NoStmtClass: 92 case Stmt::CXXCatchStmtClass: 93 case Stmt::SEHExceptStmtClass: 94 case Stmt::SEHFinallyStmtClass: 95 case Stmt::MSDependentExistsStmtClass: 96 llvm_unreachable("invalid statement class to emit generically"); 97 case Stmt::NullStmtClass: 98 case Stmt::CompoundStmtClass: 99 case Stmt::DeclStmtClass: 100 case Stmt::LabelStmtClass: 101 case Stmt::AttributedStmtClass: 102 case Stmt::GotoStmtClass: 103 case Stmt::BreakStmtClass: 104 case Stmt::ContinueStmtClass: 105 case Stmt::DefaultStmtClass: 106 case Stmt::CaseStmtClass: 107 case Stmt::SEHLeaveStmtClass: 108 llvm_unreachable("should have emitted these statements as simple"); 109 110 #define STMT(Type, Base) 111 #define ABSTRACT_STMT(Op) 112 #define EXPR(Type, Base) \ 113 case Stmt::Type##Class: 114 #include "clang/AST/StmtNodes.inc" 115 { 116 // Remember the block we came in on. 117 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 118 assert(incoming && "expression emission must have an insertion point"); 119 120 EmitIgnoredExpr(cast<Expr>(S)); 121 122 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 123 assert(outgoing && "expression emission cleared block!"); 124 125 // The expression emitters assume (reasonably!) that the insertion 126 // point is always set. To maintain that, the call-emission code 127 // for noreturn functions has to enter a new block with no 128 // predecessors. We want to kill that block and mark the current 129 // insertion point unreachable in the common case of a call like 130 // "exit();". Since expression emission doesn't otherwise create 131 // blocks with no predecessors, we can just test for that. 132 // However, we must be careful not to do this to our incoming 133 // block, because *statement* emission does sometimes create 134 // reachable blocks which will have no predecessors until later in 135 // the function. This occurs with, e.g., labels that are not 136 // reachable by fallthrough. 137 if (incoming != outgoing && outgoing->use_empty()) { 138 outgoing->eraseFromParent(); 139 Builder.ClearInsertionPoint(); 140 } 141 break; 142 } 143 144 case Stmt::IndirectGotoStmtClass: 145 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 146 147 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 148 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 149 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 150 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 151 152 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 153 154 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 155 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 156 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 157 case Stmt::CoroutineBodyStmtClass: 158 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 159 break; 160 case Stmt::CoreturnStmtClass: 161 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 162 break; 163 case Stmt::CapturedStmtClass: { 164 const CapturedStmt *CS = cast<CapturedStmt>(S); 165 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 166 } 167 break; 168 case Stmt::ObjCAtTryStmtClass: 169 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 170 break; 171 case Stmt::ObjCAtCatchStmtClass: 172 llvm_unreachable( 173 "@catch statements should be handled by EmitObjCAtTryStmt"); 174 case Stmt::ObjCAtFinallyStmtClass: 175 llvm_unreachable( 176 "@finally statements should be handled by EmitObjCAtTryStmt"); 177 case Stmt::ObjCAtThrowStmtClass: 178 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 179 break; 180 case Stmt::ObjCAtSynchronizedStmtClass: 181 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 182 break; 183 case Stmt::ObjCForCollectionStmtClass: 184 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 185 break; 186 case Stmt::ObjCAutoreleasePoolStmtClass: 187 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 188 break; 189 190 case Stmt::CXXTryStmtClass: 191 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 192 break; 193 case Stmt::CXXForRangeStmtClass: 194 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 195 break; 196 case Stmt::SEHTryStmtClass: 197 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 198 break; 199 case Stmt::OMPCanonicalLoopClass: 200 EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); 201 break; 202 case Stmt::OMPParallelDirectiveClass: 203 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 204 break; 205 case Stmt::OMPSimdDirectiveClass: 206 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 207 break; 208 case Stmt::OMPTileDirectiveClass: 209 EmitOMPTileDirective(cast<OMPTileDirective>(*S)); 210 break; 211 case Stmt::OMPForDirectiveClass: 212 EmitOMPForDirective(cast<OMPForDirective>(*S)); 213 break; 214 case Stmt::OMPForSimdDirectiveClass: 215 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 216 break; 217 case Stmt::OMPSectionsDirectiveClass: 218 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 219 break; 220 case Stmt::OMPSectionDirectiveClass: 221 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 222 break; 223 case Stmt::OMPSingleDirectiveClass: 224 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 225 break; 226 case Stmt::OMPMasterDirectiveClass: 227 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 228 break; 229 case Stmt::OMPCriticalDirectiveClass: 230 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 231 break; 232 case Stmt::OMPParallelForDirectiveClass: 233 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 234 break; 235 case Stmt::OMPParallelForSimdDirectiveClass: 236 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 237 break; 238 case Stmt::OMPParallelMasterDirectiveClass: 239 EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); 240 break; 241 case Stmt::OMPParallelSectionsDirectiveClass: 242 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 243 break; 244 case Stmt::OMPTaskDirectiveClass: 245 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 246 break; 247 case Stmt::OMPTaskyieldDirectiveClass: 248 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 249 break; 250 case Stmt::OMPBarrierDirectiveClass: 251 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 252 break; 253 case Stmt::OMPTaskwaitDirectiveClass: 254 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 255 break; 256 case Stmt::OMPTaskgroupDirectiveClass: 257 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 258 break; 259 case Stmt::OMPFlushDirectiveClass: 260 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 261 break; 262 case Stmt::OMPDepobjDirectiveClass: 263 EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); 264 break; 265 case Stmt::OMPScanDirectiveClass: 266 EmitOMPScanDirective(cast<OMPScanDirective>(*S)); 267 break; 268 case Stmt::OMPOrderedDirectiveClass: 269 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 270 break; 271 case Stmt::OMPAtomicDirectiveClass: 272 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 273 break; 274 case Stmt::OMPTargetDirectiveClass: 275 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 276 break; 277 case Stmt::OMPTeamsDirectiveClass: 278 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 279 break; 280 case Stmt::OMPCancellationPointDirectiveClass: 281 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 282 break; 283 case Stmt::OMPCancelDirectiveClass: 284 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 285 break; 286 case Stmt::OMPTargetDataDirectiveClass: 287 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 288 break; 289 case Stmt::OMPTargetEnterDataDirectiveClass: 290 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 291 break; 292 case Stmt::OMPTargetExitDataDirectiveClass: 293 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 294 break; 295 case Stmt::OMPTargetParallelDirectiveClass: 296 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 297 break; 298 case Stmt::OMPTargetParallelForDirectiveClass: 299 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 300 break; 301 case Stmt::OMPTaskLoopDirectiveClass: 302 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 303 break; 304 case Stmt::OMPTaskLoopSimdDirectiveClass: 305 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 306 break; 307 case Stmt::OMPMasterTaskLoopDirectiveClass: 308 EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); 309 break; 310 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 311 EmitOMPMasterTaskLoopSimdDirective( 312 cast<OMPMasterTaskLoopSimdDirective>(*S)); 313 break; 314 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 315 EmitOMPParallelMasterTaskLoopDirective( 316 cast<OMPParallelMasterTaskLoopDirective>(*S)); 317 break; 318 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 319 EmitOMPParallelMasterTaskLoopSimdDirective( 320 cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); 321 break; 322 case Stmt::OMPDistributeDirectiveClass: 323 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 324 break; 325 case Stmt::OMPTargetUpdateDirectiveClass: 326 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 327 break; 328 case Stmt::OMPDistributeParallelForDirectiveClass: 329 EmitOMPDistributeParallelForDirective( 330 cast<OMPDistributeParallelForDirective>(*S)); 331 break; 332 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 333 EmitOMPDistributeParallelForSimdDirective( 334 cast<OMPDistributeParallelForSimdDirective>(*S)); 335 break; 336 case Stmt::OMPDistributeSimdDirectiveClass: 337 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 338 break; 339 case Stmt::OMPTargetParallelForSimdDirectiveClass: 340 EmitOMPTargetParallelForSimdDirective( 341 cast<OMPTargetParallelForSimdDirective>(*S)); 342 break; 343 case Stmt::OMPTargetSimdDirectiveClass: 344 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 345 break; 346 case Stmt::OMPTeamsDistributeDirectiveClass: 347 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 348 break; 349 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 350 EmitOMPTeamsDistributeSimdDirective( 351 cast<OMPTeamsDistributeSimdDirective>(*S)); 352 break; 353 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 354 EmitOMPTeamsDistributeParallelForSimdDirective( 355 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 356 break; 357 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 358 EmitOMPTeamsDistributeParallelForDirective( 359 cast<OMPTeamsDistributeParallelForDirective>(*S)); 360 break; 361 case Stmt::OMPTargetTeamsDirectiveClass: 362 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 363 break; 364 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 365 EmitOMPTargetTeamsDistributeDirective( 366 cast<OMPTargetTeamsDistributeDirective>(*S)); 367 break; 368 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 369 EmitOMPTargetTeamsDistributeParallelForDirective( 370 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 371 break; 372 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 373 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 374 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 375 break; 376 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 377 EmitOMPTargetTeamsDistributeSimdDirective( 378 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 379 break; 380 case Stmt::OMPInteropDirectiveClass: 381 llvm_unreachable("Interop directive not supported yet."); 382 break; 383 case Stmt::OMPDispatchDirectiveClass: 384 llvm_unreachable("Dispatch directive not supported yet."); 385 break; 386 case Stmt::OMPMaskedDirectiveClass: 387 EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); 388 break; 389 } 390 } 391 392 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, 393 ArrayRef<const Attr *> Attrs) { 394 switch (S->getStmtClass()) { 395 default: 396 return false; 397 case Stmt::NullStmtClass: 398 break; 399 case Stmt::CompoundStmtClass: 400 EmitCompoundStmt(cast<CompoundStmt>(*S)); 401 break; 402 case Stmt::DeclStmtClass: 403 EmitDeclStmt(cast<DeclStmt>(*S)); 404 break; 405 case Stmt::LabelStmtClass: 406 EmitLabelStmt(cast<LabelStmt>(*S)); 407 break; 408 case Stmt::AttributedStmtClass: 409 EmitAttributedStmt(cast<AttributedStmt>(*S)); 410 break; 411 case Stmt::GotoStmtClass: 412 EmitGotoStmt(cast<GotoStmt>(*S)); 413 break; 414 case Stmt::BreakStmtClass: 415 EmitBreakStmt(cast<BreakStmt>(*S)); 416 break; 417 case Stmt::ContinueStmtClass: 418 EmitContinueStmt(cast<ContinueStmt>(*S)); 419 break; 420 case Stmt::DefaultStmtClass: 421 EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); 422 break; 423 case Stmt::CaseStmtClass: 424 EmitCaseStmt(cast<CaseStmt>(*S), Attrs); 425 break; 426 case Stmt::SEHLeaveStmtClass: 427 EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); 428 break; 429 } 430 return true; 431 } 432 433 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 434 /// this captures the expression result of the last sub-statement and returns it 435 /// (for use by the statement expression extension). 436 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 437 AggValueSlot AggSlot) { 438 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 439 "LLVM IR generation of compound statement ('{}')"); 440 441 // Keep track of the current cleanup stack depth, including debug scopes. 442 LexicalScope Scope(*this, S.getSourceRange()); 443 444 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 445 } 446 447 Address 448 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 449 bool GetLast, 450 AggValueSlot AggSlot) { 451 452 const Stmt *ExprResult = S.getStmtExprResult(); 453 assert((!GetLast || (GetLast && ExprResult)) && 454 "If GetLast is true then the CompoundStmt must have a StmtExprResult"); 455 456 Address RetAlloca = Address::invalid(); 457 458 for (auto *CurStmt : S.body()) { 459 if (GetLast && ExprResult == CurStmt) { 460 // We have to special case labels here. They are statements, but when put 461 // at the end of a statement expression, they yield the value of their 462 // subexpression. Handle this by walking through all labels we encounter, 463 // emitting them before we evaluate the subexpr. 464 // Similar issues arise for attributed statements. 465 while (!isa<Expr>(ExprResult)) { 466 if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { 467 EmitLabel(LS->getDecl()); 468 ExprResult = LS->getSubStmt(); 469 } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { 470 // FIXME: Update this if we ever have attributes that affect the 471 // semantics of an expression. 472 ExprResult = AS->getSubStmt(); 473 } else { 474 llvm_unreachable("unknown value statement"); 475 } 476 } 477 478 EnsureInsertPoint(); 479 480 const Expr *E = cast<Expr>(ExprResult); 481 QualType ExprTy = E->getType(); 482 if (hasAggregateEvaluationKind(ExprTy)) { 483 EmitAggExpr(E, AggSlot); 484 } else { 485 // We can't return an RValue here because there might be cleanups at 486 // the end of the StmtExpr. Because of that, we have to emit the result 487 // here into a temporary alloca. 488 RetAlloca = CreateMemTemp(ExprTy); 489 EmitAnyExprToMem(E, RetAlloca, Qualifiers(), 490 /*IsInit*/ false); 491 } 492 } else { 493 EmitStmt(CurStmt); 494 } 495 } 496 497 return RetAlloca; 498 } 499 500 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 501 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 502 503 // If there is a cleanup stack, then we it isn't worth trying to 504 // simplify this block (we would need to remove it from the scope map 505 // and cleanup entry). 506 if (!EHStack.empty()) 507 return; 508 509 // Can only simplify direct branches. 510 if (!BI || !BI->isUnconditional()) 511 return; 512 513 // Can only simplify empty blocks. 514 if (BI->getIterator() != BB->begin()) 515 return; 516 517 BB->replaceAllUsesWith(BI->getSuccessor(0)); 518 BI->eraseFromParent(); 519 BB->eraseFromParent(); 520 } 521 522 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 523 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 524 525 // Fall out of the current block (if necessary). 526 EmitBranch(BB); 527 528 if (IsFinished && BB->use_empty()) { 529 delete BB; 530 return; 531 } 532 533 // Place the block after the current block, if possible, or else at 534 // the end of the function. 535 if (CurBB && CurBB->getParent()) 536 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 537 else 538 CurFn->getBasicBlockList().push_back(BB); 539 Builder.SetInsertPoint(BB); 540 } 541 542 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 543 // Emit a branch from the current block to the target one if this 544 // was a real block. If this was just a fall-through block after a 545 // terminator, don't emit it. 546 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 547 548 if (!CurBB || CurBB->getTerminator()) { 549 // If there is no insert point or the previous block is already 550 // terminated, don't touch it. 551 } else { 552 // Otherwise, create a fall-through branch. 553 Builder.CreateBr(Target); 554 } 555 556 Builder.ClearInsertionPoint(); 557 } 558 559 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 560 bool inserted = false; 561 for (llvm::User *u : block->users()) { 562 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 563 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 564 block); 565 inserted = true; 566 break; 567 } 568 } 569 570 if (!inserted) 571 CurFn->getBasicBlockList().push_back(block); 572 573 Builder.SetInsertPoint(block); 574 } 575 576 CodeGenFunction::JumpDest 577 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 578 JumpDest &Dest = LabelMap[D]; 579 if (Dest.isValid()) return Dest; 580 581 // Create, but don't insert, the new block. 582 Dest = JumpDest(createBasicBlock(D->getName()), 583 EHScopeStack::stable_iterator::invalid(), 584 NextCleanupDestIndex++); 585 return Dest; 586 } 587 588 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 589 // Add this label to the current lexical scope if we're within any 590 // normal cleanups. Jumps "in" to this label --- when permitted by 591 // the language --- may need to be routed around such cleanups. 592 if (EHStack.hasNormalCleanups() && CurLexicalScope) 593 CurLexicalScope->addLabel(D); 594 595 JumpDest &Dest = LabelMap[D]; 596 597 // If we didn't need a forward reference to this label, just go 598 // ahead and create a destination at the current scope. 599 if (!Dest.isValid()) { 600 Dest = getJumpDestInCurrentScope(D->getName()); 601 602 // Otherwise, we need to give this label a target depth and remove 603 // it from the branch-fixups list. 604 } else { 605 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 606 Dest.setScopeDepth(EHStack.stable_begin()); 607 ResolveBranchFixups(Dest.getBlock()); 608 } 609 610 EmitBlock(Dest.getBlock()); 611 612 // Emit debug info for labels. 613 if (CGDebugInfo *DI = getDebugInfo()) { 614 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { 615 DI->setLocation(D->getLocation()); 616 DI->EmitLabel(D, Builder); 617 } 618 } 619 620 incrementProfileCounter(D->getStmt()); 621 } 622 623 /// Change the cleanup scope of the labels in this lexical scope to 624 /// match the scope of the enclosing context. 625 void CodeGenFunction::LexicalScope::rescopeLabels() { 626 assert(!Labels.empty()); 627 EHScopeStack::stable_iterator innermostScope 628 = CGF.EHStack.getInnermostNormalCleanup(); 629 630 // Change the scope depth of all the labels. 631 for (SmallVectorImpl<const LabelDecl*>::const_iterator 632 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 633 assert(CGF.LabelMap.count(*i)); 634 JumpDest &dest = CGF.LabelMap.find(*i)->second; 635 assert(dest.getScopeDepth().isValid()); 636 assert(innermostScope.encloses(dest.getScopeDepth())); 637 dest.setScopeDepth(innermostScope); 638 } 639 640 // Reparent the labels if the new scope also has cleanups. 641 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 642 ParentScope->Labels.append(Labels.begin(), Labels.end()); 643 } 644 } 645 646 647 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 648 EmitLabel(S.getDecl()); 649 EmitStmt(S.getSubStmt()); 650 } 651 652 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 653 bool nomerge = false; 654 const CallExpr *musttail = nullptr; 655 656 for (const auto *A : S.getAttrs()) { 657 if (A->getKind() == attr::NoMerge) { 658 nomerge = true; 659 } 660 if (A->getKind() == attr::MustTail) { 661 const Stmt *Sub = S.getSubStmt(); 662 const ReturnStmt *R = cast<ReturnStmt>(Sub); 663 musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); 664 } 665 } 666 SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); 667 SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); 668 EmitStmt(S.getSubStmt(), S.getAttrs()); 669 } 670 671 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 672 // If this code is reachable then emit a stop point (if generating 673 // debug info). We have to do this ourselves because we are on the 674 // "simple" statement path. 675 if (HaveInsertPoint()) 676 EmitStopPoint(&S); 677 678 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 679 } 680 681 682 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 683 if (const LabelDecl *Target = S.getConstantTarget()) { 684 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 685 return; 686 } 687 688 // Ensure that we have an i8* for our PHI node. 689 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 690 Int8PtrTy, "addr"); 691 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 692 693 // Get the basic block for the indirect goto. 694 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 695 696 // The first instruction in the block has to be the PHI for the switch dest, 697 // add an entry for this branch. 698 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 699 700 EmitBranch(IndGotoBB); 701 } 702 703 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 704 // C99 6.8.4.1: The first substatement is executed if the expression compares 705 // unequal to 0. The condition must be a scalar type. 706 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 707 708 if (S.getInit()) 709 EmitStmt(S.getInit()); 710 711 if (S.getConditionVariable()) 712 EmitDecl(*S.getConditionVariable()); 713 714 // If the condition constant folds and can be elided, try to avoid emitting 715 // the condition and the dead arm of the if/else. 716 bool CondConstant; 717 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 718 S.isConstexpr())) { 719 // Figure out which block (then or else) is executed. 720 const Stmt *Executed = S.getThen(); 721 const Stmt *Skipped = S.getElse(); 722 if (!CondConstant) // Condition false? 723 std::swap(Executed, Skipped); 724 725 // If the skipped block has no labels in it, just emit the executed block. 726 // This avoids emitting dead code and simplifies the CFG substantially. 727 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 728 if (CondConstant) 729 incrementProfileCounter(&S); 730 if (Executed) { 731 RunCleanupsScope ExecutedScope(*this); 732 EmitStmt(Executed); 733 } 734 return; 735 } 736 } 737 738 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 739 // the conditional branch. 740 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 741 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 742 llvm::BasicBlock *ElseBlock = ContBlock; 743 if (S.getElse()) 744 ElseBlock = createBasicBlock("if.else"); 745 746 // Prefer the PGO based weights over the likelihood attribute. 747 // When the build isn't optimized the metadata isn't used, so don't generate 748 // it. 749 Stmt::Likelihood LH = Stmt::LH_None; 750 uint64_t Count = getProfileCount(S.getThen()); 751 if (!Count && CGM.getCodeGenOpts().OptimizationLevel) 752 LH = Stmt::getLikelihood(S.getThen(), S.getElse()); 753 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); 754 755 // Emit the 'then' code. 756 EmitBlock(ThenBlock); 757 incrementProfileCounter(&S); 758 { 759 RunCleanupsScope ThenScope(*this); 760 EmitStmt(S.getThen()); 761 } 762 EmitBranch(ContBlock); 763 764 // Emit the 'else' code if present. 765 if (const Stmt *Else = S.getElse()) { 766 { 767 // There is no need to emit line number for an unconditional branch. 768 auto NL = ApplyDebugLocation::CreateEmpty(*this); 769 EmitBlock(ElseBlock); 770 } 771 { 772 RunCleanupsScope ElseScope(*this); 773 EmitStmt(Else); 774 } 775 { 776 // There is no need to emit line number for an unconditional branch. 777 auto NL = ApplyDebugLocation::CreateEmpty(*this); 778 EmitBranch(ContBlock); 779 } 780 } 781 782 // Emit the continuation block for code after the if. 783 EmitBlock(ContBlock, true); 784 } 785 786 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 787 ArrayRef<const Attr *> WhileAttrs) { 788 // Emit the header for the loop, which will also become 789 // the continue target. 790 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 791 EmitBlock(LoopHeader.getBlock()); 792 793 // Create an exit block for when the condition fails, which will 794 // also become the break target. 795 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 796 797 // Store the blocks to use for break and continue. 798 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 799 800 // C++ [stmt.while]p2: 801 // When the condition of a while statement is a declaration, the 802 // scope of the variable that is declared extends from its point 803 // of declaration (3.3.2) to the end of the while statement. 804 // [...] 805 // The object created in a condition is destroyed and created 806 // with each iteration of the loop. 807 RunCleanupsScope ConditionScope(*this); 808 809 if (S.getConditionVariable()) 810 EmitDecl(*S.getConditionVariable()); 811 812 // Evaluate the conditional in the while header. C99 6.8.5.1: The 813 // evaluation of the controlling expression takes place before each 814 // execution of the loop body. 815 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 816 817 // while(1) is common, avoid extra exit blocks. Be sure 818 // to correctly handle break/continue though. 819 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 820 bool CondIsConstInt = C != nullptr; 821 bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); 822 const SourceRange &R = S.getSourceRange(); 823 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), 824 WhileAttrs, SourceLocToDebugLoc(R.getBegin()), 825 SourceLocToDebugLoc(R.getEnd()), 826 checkIfLoopMustProgress(CondIsConstInt)); 827 828 // As long as the condition is true, go to the loop body. 829 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 830 if (EmitBoolCondBranch) { 831 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 832 if (ConditionScope.requiresCleanups()) 833 ExitBlock = createBasicBlock("while.exit"); 834 llvm::MDNode *Weights = 835 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 836 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 837 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 838 BoolCondVal, Stmt::getLikelihood(S.getBody())); 839 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); 840 841 if (ExitBlock != LoopExit.getBlock()) { 842 EmitBlock(ExitBlock); 843 EmitBranchThroughCleanup(LoopExit); 844 } 845 } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { 846 CGM.getDiags().Report(A->getLocation(), 847 diag::warn_attribute_has_no_effect_on_infinite_loop) 848 << A << A->getRange(); 849 CGM.getDiags().Report( 850 S.getWhileLoc(), 851 diag::note_attribute_has_no_effect_on_infinite_loop_here) 852 << SourceRange(S.getWhileLoc(), S.getRParenLoc()); 853 } 854 855 // Emit the loop body. We have to emit this in a cleanup scope 856 // because it might be a singleton DeclStmt. 857 { 858 RunCleanupsScope BodyScope(*this); 859 EmitBlock(LoopBody); 860 incrementProfileCounter(&S); 861 EmitStmt(S.getBody()); 862 } 863 864 BreakContinueStack.pop_back(); 865 866 // Immediately force cleanup. 867 ConditionScope.ForceCleanup(); 868 869 EmitStopPoint(&S); 870 // Branch to the loop header again. 871 EmitBranch(LoopHeader.getBlock()); 872 873 LoopStack.pop(); 874 875 // Emit the exit block. 876 EmitBlock(LoopExit.getBlock(), true); 877 878 // The LoopHeader typically is just a branch if we skipped emitting 879 // a branch, try to erase it. 880 if (!EmitBoolCondBranch) 881 SimplifyForwardingBlocks(LoopHeader.getBlock()); 882 } 883 884 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 885 ArrayRef<const Attr *> DoAttrs) { 886 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 887 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 888 889 uint64_t ParentCount = getCurrentProfileCount(); 890 891 // Store the blocks to use for break and continue. 892 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 893 894 // Emit the body of the loop. 895 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 896 897 EmitBlockWithFallThrough(LoopBody, &S); 898 { 899 RunCleanupsScope BodyScope(*this); 900 EmitStmt(S.getBody()); 901 } 902 903 EmitBlock(LoopCond.getBlock()); 904 905 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 906 // after each execution of the loop body." 907 908 // Evaluate the conditional in the while header. 909 // C99 6.8.5p2/p4: The first substatement is executed if the expression 910 // compares unequal to 0. The condition must be a scalar type. 911 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 912 913 BreakContinueStack.pop_back(); 914 915 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 916 // to correctly handle break/continue though. 917 llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); 918 bool CondIsConstInt = C; 919 bool EmitBoolCondBranch = !C || !C->isZero(); 920 921 const SourceRange &R = S.getSourceRange(); 922 LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, 923 SourceLocToDebugLoc(R.getBegin()), 924 SourceLocToDebugLoc(R.getEnd()), 925 checkIfLoopMustProgress(CondIsConstInt)); 926 927 // As long as the condition is true, iterate the loop. 928 if (EmitBoolCondBranch) { 929 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 930 Builder.CreateCondBr( 931 BoolCondVal, LoopBody, LoopExit.getBlock(), 932 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 933 } 934 935 LoopStack.pop(); 936 937 // Emit the exit block. 938 EmitBlock(LoopExit.getBlock()); 939 940 // The DoCond block typically is just a branch if we skipped 941 // emitting a branch, try to erase it. 942 if (!EmitBoolCondBranch) 943 SimplifyForwardingBlocks(LoopCond.getBlock()); 944 } 945 946 void CodeGenFunction::EmitForStmt(const ForStmt &S, 947 ArrayRef<const Attr *> ForAttrs) { 948 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 949 950 LexicalScope ForScope(*this, S.getSourceRange()); 951 952 // Evaluate the first part before the loop. 953 if (S.getInit()) 954 EmitStmt(S.getInit()); 955 956 // Start the loop with a block that tests the condition. 957 // If there's an increment, the continue scope will be overwritten 958 // later. 959 JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); 960 llvm::BasicBlock *CondBlock = CondDest.getBlock(); 961 EmitBlock(CondBlock); 962 963 Expr::EvalResult Result; 964 bool CondIsConstInt = 965 !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); 966 967 const SourceRange &R = S.getSourceRange(); 968 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 969 SourceLocToDebugLoc(R.getBegin()), 970 SourceLocToDebugLoc(R.getEnd()), 971 checkIfLoopMustProgress(CondIsConstInt)); 972 973 // Create a cleanup scope for the condition variable cleanups. 974 LexicalScope ConditionScope(*this, S.getSourceRange()); 975 976 // If the for loop doesn't have an increment we can just use the condition as 977 // the continue block. Otherwise, if there is no condition variable, we can 978 // form the continue block now. If there is a condition variable, we can't 979 // form the continue block until after we've emitted the condition, because 980 // the condition is in scope in the increment, but Sema's jump diagnostics 981 // ensure that there are no continues from the condition variable that jump 982 // to the loop increment. 983 JumpDest Continue; 984 if (!S.getInc()) 985 Continue = CondDest; 986 else if (!S.getConditionVariable()) 987 Continue = getJumpDestInCurrentScope("for.inc"); 988 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 989 990 if (S.getCond()) { 991 // If the for statement has a condition scope, emit the local variable 992 // declaration. 993 if (S.getConditionVariable()) { 994 EmitDecl(*S.getConditionVariable()); 995 996 // We have entered the condition variable's scope, so we're now able to 997 // jump to the continue block. 998 Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; 999 BreakContinueStack.back().ContinueBlock = Continue; 1000 } 1001 1002 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1003 // If there are any cleanups between here and the loop-exit scope, 1004 // create a block to stage a loop exit along. 1005 if (ForScope.requiresCleanups()) 1006 ExitBlock = createBasicBlock("for.cond.cleanup"); 1007 1008 // As long as the condition is true, iterate the loop. 1009 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1010 1011 // C99 6.8.5p2/p4: The first substatement is executed if the expression 1012 // compares unequal to 0. The condition must be a scalar type. 1013 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1014 llvm::MDNode *Weights = 1015 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1016 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1017 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1018 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1019 1020 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1021 1022 if (ExitBlock != LoopExit.getBlock()) { 1023 EmitBlock(ExitBlock); 1024 EmitBranchThroughCleanup(LoopExit); 1025 } 1026 1027 EmitBlock(ForBody); 1028 } else { 1029 // Treat it as a non-zero constant. Don't even create a new block for the 1030 // body, just fall into it. 1031 } 1032 incrementProfileCounter(&S); 1033 1034 { 1035 // Create a separate cleanup scope for the body, in case it is not 1036 // a compound statement. 1037 RunCleanupsScope BodyScope(*this); 1038 EmitStmt(S.getBody()); 1039 } 1040 1041 // If there is an increment, emit it next. 1042 if (S.getInc()) { 1043 EmitBlock(Continue.getBlock()); 1044 EmitStmt(S.getInc()); 1045 } 1046 1047 BreakContinueStack.pop_back(); 1048 1049 ConditionScope.ForceCleanup(); 1050 1051 EmitStopPoint(&S); 1052 EmitBranch(CondBlock); 1053 1054 ForScope.ForceCleanup(); 1055 1056 LoopStack.pop(); 1057 1058 // Emit the fall-through block. 1059 EmitBlock(LoopExit.getBlock(), true); 1060 } 1061 1062 void 1063 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 1064 ArrayRef<const Attr *> ForAttrs) { 1065 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 1066 1067 LexicalScope ForScope(*this, S.getSourceRange()); 1068 1069 // Evaluate the first pieces before the loop. 1070 if (S.getInit()) 1071 EmitStmt(S.getInit()); 1072 EmitStmt(S.getRangeStmt()); 1073 EmitStmt(S.getBeginStmt()); 1074 EmitStmt(S.getEndStmt()); 1075 1076 // Start the loop with a block that tests the condition. 1077 // If there's an increment, the continue scope will be overwritten 1078 // later. 1079 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 1080 EmitBlock(CondBlock); 1081 1082 const SourceRange &R = S.getSourceRange(); 1083 LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, 1084 SourceLocToDebugLoc(R.getBegin()), 1085 SourceLocToDebugLoc(R.getEnd())); 1086 1087 // If there are any cleanups between here and the loop-exit scope, 1088 // create a block to stage a loop exit along. 1089 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 1090 if (ForScope.requiresCleanups()) 1091 ExitBlock = createBasicBlock("for.cond.cleanup"); 1092 1093 // The loop body, consisting of the specified body and the loop variable. 1094 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 1095 1096 // The body is executed if the expression, contextually converted 1097 // to bool, is true. 1098 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 1099 llvm::MDNode *Weights = 1100 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); 1101 if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) 1102 BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( 1103 BoolCondVal, Stmt::getLikelihood(S.getBody())); 1104 Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); 1105 1106 if (ExitBlock != LoopExit.getBlock()) { 1107 EmitBlock(ExitBlock); 1108 EmitBranchThroughCleanup(LoopExit); 1109 } 1110 1111 EmitBlock(ForBody); 1112 incrementProfileCounter(&S); 1113 1114 // Create a block for the increment. In case of a 'continue', we jump there. 1115 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 1116 1117 // Store the blocks to use for break and continue. 1118 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 1119 1120 { 1121 // Create a separate cleanup scope for the loop variable and body. 1122 LexicalScope BodyScope(*this, S.getSourceRange()); 1123 EmitStmt(S.getLoopVarStmt()); 1124 EmitStmt(S.getBody()); 1125 } 1126 1127 EmitStopPoint(&S); 1128 // If there is an increment, emit it next. 1129 EmitBlock(Continue.getBlock()); 1130 EmitStmt(S.getInc()); 1131 1132 BreakContinueStack.pop_back(); 1133 1134 EmitBranch(CondBlock); 1135 1136 ForScope.ForceCleanup(); 1137 1138 LoopStack.pop(); 1139 1140 // Emit the fall-through block. 1141 EmitBlock(LoopExit.getBlock(), true); 1142 } 1143 1144 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1145 if (RV.isScalar()) { 1146 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1147 } else if (RV.isAggregate()) { 1148 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1149 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1150 EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); 1151 } else { 1152 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1153 /*init*/ true); 1154 } 1155 EmitBranchThroughCleanup(ReturnBlock); 1156 } 1157 1158 namespace { 1159 // RAII struct used to save and restore a return statment's result expression. 1160 struct SaveRetExprRAII { 1161 SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) 1162 : OldRetExpr(CGF.RetExpr), CGF(CGF) { 1163 CGF.RetExpr = RetExpr; 1164 } 1165 ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } 1166 const Expr *OldRetExpr; 1167 CodeGenFunction &CGF; 1168 }; 1169 } // namespace 1170 1171 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1172 /// if the function returns void, or may be missing one if the function returns 1173 /// non-void. Fun stuff :). 1174 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1175 if (requiresReturnValueCheck()) { 1176 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1177 auto *SLocPtr = 1178 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1179 llvm::GlobalVariable::PrivateLinkage, SLoc); 1180 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1181 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1182 assert(ReturnLocation.isValid() && "No valid return location"); 1183 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1184 ReturnLocation); 1185 } 1186 1187 // Returning from an outlined SEH helper is UB, and we already warn on it. 1188 if (IsOutlinedSEHHelper) { 1189 Builder.CreateUnreachable(); 1190 Builder.ClearInsertionPoint(); 1191 } 1192 1193 // Emit the result value, even if unused, to evaluate the side effects. 1194 const Expr *RV = S.getRetValue(); 1195 1196 // Record the result expression of the return statement. The recorded 1197 // expression is used to determine whether a block capture's lifetime should 1198 // end at the end of the full expression as opposed to the end of the scope 1199 // enclosing the block expression. 1200 // 1201 // This permits a small, easily-implemented exception to our over-conservative 1202 // rules about not jumping to statements following block literals with 1203 // non-trivial cleanups. 1204 SaveRetExprRAII SaveRetExpr(RV, *this); 1205 1206 RunCleanupsScope cleanupScope(*this); 1207 if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) 1208 RV = EWC->getSubExpr(); 1209 // FIXME: Clean this up by using an LValue for ReturnTemp, 1210 // EmitStoreThroughLValue, and EmitAnyExpr. 1211 // Check if the NRVO candidate was not globalized in OpenMP mode. 1212 if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && 1213 S.getNRVOCandidate()->isNRVOVariable() && 1214 (!getLangOpts().OpenMP || 1215 !CGM.getOpenMPRuntime() 1216 .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) 1217 .isValid())) { 1218 // Apply the named return value optimization for this return statement, 1219 // which means doing nothing: the appropriate result has already been 1220 // constructed into the NRVO variable. 1221 1222 // If there is an NRVO flag for this variable, set it to 1 into indicate 1223 // that the cleanup code should not destroy the variable. 1224 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1225 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1226 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1227 // Make sure not to return anything, but evaluate the expression 1228 // for side effects. 1229 if (RV) 1230 EmitAnyExpr(RV); 1231 } else if (!RV) { 1232 // Do nothing (return value is left uninitialized) 1233 } else if (FnRetTy->isReferenceType()) { 1234 // If this function returns a reference, take the address of the expression 1235 // rather than the value. 1236 RValue Result = EmitReferenceBindingToExpr(RV); 1237 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1238 } else { 1239 switch (getEvaluationKind(RV->getType())) { 1240 case TEK_Scalar: 1241 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1242 break; 1243 case TEK_Complex: 1244 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1245 /*isInit*/ true); 1246 break; 1247 case TEK_Aggregate: 1248 EmitAggExpr(RV, AggValueSlot::forAddr( 1249 ReturnValue, Qualifiers(), 1250 AggValueSlot::IsDestructed, 1251 AggValueSlot::DoesNotNeedGCBarriers, 1252 AggValueSlot::IsNotAliased, 1253 getOverlapForReturnValue())); 1254 break; 1255 } 1256 } 1257 1258 ++NumReturnExprs; 1259 if (!RV || RV->isEvaluatable(getContext())) 1260 ++NumSimpleReturnExprs; 1261 1262 cleanupScope.ForceCleanup(); 1263 EmitBranchThroughCleanup(ReturnBlock); 1264 } 1265 1266 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1267 // As long as debug info is modeled with instructions, we have to ensure we 1268 // have a place to insert here and write the stop point here. 1269 if (HaveInsertPoint()) 1270 EmitStopPoint(&S); 1271 1272 for (const auto *I : S.decls()) 1273 EmitDecl(*I); 1274 } 1275 1276 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1277 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1278 1279 // If this code is reachable then emit a stop point (if generating 1280 // debug info). We have to do this ourselves because we are on the 1281 // "simple" statement path. 1282 if (HaveInsertPoint()) 1283 EmitStopPoint(&S); 1284 1285 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1286 } 1287 1288 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1289 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1290 1291 // If this code is reachable then emit a stop point (if generating 1292 // debug info). We have to do this ourselves because we are on the 1293 // "simple" statement path. 1294 if (HaveInsertPoint()) 1295 EmitStopPoint(&S); 1296 1297 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1298 } 1299 1300 /// EmitCaseStmtRange - If case statement range is not too big then 1301 /// add multiple cases to switch instruction, one for each value within 1302 /// the range. If range is too big then emit "if" condition check. 1303 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, 1304 ArrayRef<const Attr *> Attrs) { 1305 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1306 1307 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1308 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1309 1310 // Emit the code for this case. We do this first to make sure it is 1311 // properly chained from our predecessor before generating the 1312 // switch machinery to enter this block. 1313 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1314 EmitBlockWithFallThrough(CaseDest, &S); 1315 EmitStmt(S.getSubStmt()); 1316 1317 // If range is empty, do nothing. 1318 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1319 return; 1320 1321 Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); 1322 llvm::APInt Range = RHS - LHS; 1323 // FIXME: parameters such as this should not be hardcoded. 1324 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1325 // Range is small enough to add multiple switch instruction cases. 1326 uint64_t Total = getProfileCount(&S); 1327 unsigned NCases = Range.getZExtValue() + 1; 1328 // We only have one region counter for the entire set of cases here, so we 1329 // need to divide the weights evenly between the generated cases, ensuring 1330 // that the total weight is preserved. E.g., a weight of 5 over three cases 1331 // will be distributed as weights of 2, 2, and 1. 1332 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1333 for (unsigned I = 0; I != NCases; ++I) { 1334 if (SwitchWeights) 1335 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1336 else if (SwitchLikelihood) 1337 SwitchLikelihood->push_back(LH); 1338 1339 if (Rem) 1340 Rem--; 1341 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1342 ++LHS; 1343 } 1344 return; 1345 } 1346 1347 // The range is too big. Emit "if" condition into a new block, 1348 // making sure to save and restore the current insertion point. 1349 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1350 1351 // Push this test onto the chain of range checks (which terminates 1352 // in the default basic block). The switch's default will be changed 1353 // to the top of this chain after switch emission is complete. 1354 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1355 CaseRangeBlock = createBasicBlock("sw.caserange"); 1356 1357 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1358 Builder.SetInsertPoint(CaseRangeBlock); 1359 1360 // Emit range check. 1361 llvm::Value *Diff = 1362 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1363 llvm::Value *Cond = 1364 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1365 1366 llvm::MDNode *Weights = nullptr; 1367 if (SwitchWeights) { 1368 uint64_t ThisCount = getProfileCount(&S); 1369 uint64_t DefaultCount = (*SwitchWeights)[0]; 1370 Weights = createProfileWeights(ThisCount, DefaultCount); 1371 1372 // Since we're chaining the switch default through each large case range, we 1373 // need to update the weight for the default, ie, the first case, to include 1374 // this case. 1375 (*SwitchWeights)[0] += ThisCount; 1376 } else if (SwitchLikelihood) 1377 Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); 1378 1379 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1380 1381 // Restore the appropriate insertion point. 1382 if (RestoreBB) 1383 Builder.SetInsertPoint(RestoreBB); 1384 else 1385 Builder.ClearInsertionPoint(); 1386 } 1387 1388 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, 1389 ArrayRef<const Attr *> Attrs) { 1390 // If there is no enclosing switch instance that we're aware of, then this 1391 // case statement and its block can be elided. This situation only happens 1392 // when we've constant-folded the switch, are emitting the constant case, 1393 // and part of the constant case includes another case statement. For 1394 // instance: switch (4) { case 4: do { case 5: } while (1); } 1395 if (!SwitchInsn) { 1396 EmitStmt(S.getSubStmt()); 1397 return; 1398 } 1399 1400 // Handle case ranges. 1401 if (S.getRHS()) { 1402 EmitCaseStmtRange(S, Attrs); 1403 return; 1404 } 1405 1406 llvm::ConstantInt *CaseVal = 1407 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1408 if (SwitchLikelihood) 1409 SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); 1410 1411 // If the body of the case is just a 'break', try to not emit an empty block. 1412 // If we're profiling or we're not optimizing, leave the block in for better 1413 // debug and coverage analysis. 1414 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1415 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1416 isa<BreakStmt>(S.getSubStmt())) { 1417 JumpDest Block = BreakContinueStack.back().BreakBlock; 1418 1419 // Only do this optimization if there are no cleanups that need emitting. 1420 if (isObviouslyBranchWithoutCleanups(Block)) { 1421 if (SwitchWeights) 1422 SwitchWeights->push_back(getProfileCount(&S)); 1423 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1424 1425 // If there was a fallthrough into this case, make sure to redirect it to 1426 // the end of the switch as well. 1427 if (Builder.GetInsertBlock()) { 1428 Builder.CreateBr(Block.getBlock()); 1429 Builder.ClearInsertionPoint(); 1430 } 1431 return; 1432 } 1433 } 1434 1435 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1436 EmitBlockWithFallThrough(CaseDest, &S); 1437 if (SwitchWeights) 1438 SwitchWeights->push_back(getProfileCount(&S)); 1439 SwitchInsn->addCase(CaseVal, CaseDest); 1440 1441 // Recursively emitting the statement is acceptable, but is not wonderful for 1442 // code where we have many case statements nested together, i.e.: 1443 // case 1: 1444 // case 2: 1445 // case 3: etc. 1446 // Handling this recursively will create a new block for each case statement 1447 // that falls through to the next case which is IR intensive. It also causes 1448 // deep recursion which can run into stack depth limitations. Handle 1449 // sequential non-range case statements specially. 1450 // 1451 // TODO When the next case has a likelihood attribute the code returns to the 1452 // recursive algorithm. Maybe improve this case if it becomes common practice 1453 // to use a lot of attributes. 1454 const CaseStmt *CurCase = &S; 1455 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1456 1457 // Otherwise, iteratively add consecutive cases to this switch stmt. 1458 while (NextCase && NextCase->getRHS() == nullptr) { 1459 CurCase = NextCase; 1460 llvm::ConstantInt *CaseVal = 1461 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1462 1463 if (SwitchWeights) 1464 SwitchWeights->push_back(getProfileCount(NextCase)); 1465 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1466 CaseDest = createBasicBlock("sw.bb"); 1467 EmitBlockWithFallThrough(CaseDest, CurCase); 1468 } 1469 // Since this loop is only executed when the CaseStmt has no attributes 1470 // use a hard-coded value. 1471 if (SwitchLikelihood) 1472 SwitchLikelihood->push_back(Stmt::LH_None); 1473 1474 SwitchInsn->addCase(CaseVal, CaseDest); 1475 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1476 } 1477 1478 // Normal default recursion for non-cases. 1479 EmitStmt(CurCase->getSubStmt()); 1480 } 1481 1482 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, 1483 ArrayRef<const Attr *> Attrs) { 1484 // If there is no enclosing switch instance that we're aware of, then this 1485 // default statement can be elided. This situation only happens when we've 1486 // constant-folded the switch. 1487 if (!SwitchInsn) { 1488 EmitStmt(S.getSubStmt()); 1489 return; 1490 } 1491 1492 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1493 assert(DefaultBlock->empty() && 1494 "EmitDefaultStmt: Default block already defined?"); 1495 1496 if (SwitchLikelihood) 1497 SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); 1498 1499 EmitBlockWithFallThrough(DefaultBlock, &S); 1500 1501 EmitStmt(S.getSubStmt()); 1502 } 1503 1504 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1505 /// constant value that is being switched on, see if we can dead code eliminate 1506 /// the body of the switch to a simple series of statements to emit. Basically, 1507 /// on a switch (5) we want to find these statements: 1508 /// case 5: 1509 /// printf(...); <-- 1510 /// ++i; <-- 1511 /// break; 1512 /// 1513 /// and add them to the ResultStmts vector. If it is unsafe to do this 1514 /// transformation (for example, one of the elided statements contains a label 1515 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1516 /// should include statements after it (e.g. the printf() line is a substmt of 1517 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1518 /// statement, then return CSFC_Success. 1519 /// 1520 /// If Case is non-null, then we are looking for the specified case, checking 1521 /// that nothing we jump over contains labels. If Case is null, then we found 1522 /// the case and are looking for the break. 1523 /// 1524 /// If the recursive walk actually finds our Case, then we set FoundCase to 1525 /// true. 1526 /// 1527 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1528 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1529 const SwitchCase *Case, 1530 bool &FoundCase, 1531 SmallVectorImpl<const Stmt*> &ResultStmts) { 1532 // If this is a null statement, just succeed. 1533 if (!S) 1534 return Case ? CSFC_Success : CSFC_FallThrough; 1535 1536 // If this is the switchcase (case 4: or default) that we're looking for, then 1537 // we're in business. Just add the substatement. 1538 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1539 if (S == Case) { 1540 FoundCase = true; 1541 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1542 ResultStmts); 1543 } 1544 1545 // Otherwise, this is some other case or default statement, just ignore it. 1546 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1547 ResultStmts); 1548 } 1549 1550 // If we are in the live part of the code and we found our break statement, 1551 // return a success! 1552 if (!Case && isa<BreakStmt>(S)) 1553 return CSFC_Success; 1554 1555 // If this is a switch statement, then it might contain the SwitchCase, the 1556 // break, or neither. 1557 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1558 // Handle this as two cases: we might be looking for the SwitchCase (if so 1559 // the skipped statements must be skippable) or we might already have it. 1560 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1561 bool StartedInLiveCode = FoundCase; 1562 unsigned StartSize = ResultStmts.size(); 1563 1564 // If we've not found the case yet, scan through looking for it. 1565 if (Case) { 1566 // Keep track of whether we see a skipped declaration. The code could be 1567 // using the declaration even if it is skipped, so we can't optimize out 1568 // the decl if the kept statements might refer to it. 1569 bool HadSkippedDecl = false; 1570 1571 // If we're looking for the case, just see if we can skip each of the 1572 // substatements. 1573 for (; Case && I != E; ++I) { 1574 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1575 1576 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1577 case CSFC_Failure: return CSFC_Failure; 1578 case CSFC_Success: 1579 // A successful result means that either 1) that the statement doesn't 1580 // have the case and is skippable, or 2) does contain the case value 1581 // and also contains the break to exit the switch. In the later case, 1582 // we just verify the rest of the statements are elidable. 1583 if (FoundCase) { 1584 // If we found the case and skipped declarations, we can't do the 1585 // optimization. 1586 if (HadSkippedDecl) 1587 return CSFC_Failure; 1588 1589 for (++I; I != E; ++I) 1590 if (CodeGenFunction::ContainsLabel(*I, true)) 1591 return CSFC_Failure; 1592 return CSFC_Success; 1593 } 1594 break; 1595 case CSFC_FallThrough: 1596 // If we have a fallthrough condition, then we must have found the 1597 // case started to include statements. Consider the rest of the 1598 // statements in the compound statement as candidates for inclusion. 1599 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1600 // We recursively found Case, so we're not looking for it anymore. 1601 Case = nullptr; 1602 1603 // If we found the case and skipped declarations, we can't do the 1604 // optimization. 1605 if (HadSkippedDecl) 1606 return CSFC_Failure; 1607 break; 1608 } 1609 } 1610 1611 if (!FoundCase) 1612 return CSFC_Success; 1613 1614 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1615 } 1616 1617 // If we have statements in our range, then we know that the statements are 1618 // live and need to be added to the set of statements we're tracking. 1619 bool AnyDecls = false; 1620 for (; I != E; ++I) { 1621 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1622 1623 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1624 case CSFC_Failure: return CSFC_Failure; 1625 case CSFC_FallThrough: 1626 // A fallthrough result means that the statement was simple and just 1627 // included in ResultStmt, keep adding them afterwards. 1628 break; 1629 case CSFC_Success: 1630 // A successful result means that we found the break statement and 1631 // stopped statement inclusion. We just ensure that any leftover stmts 1632 // are skippable and return success ourselves. 1633 for (++I; I != E; ++I) 1634 if (CodeGenFunction::ContainsLabel(*I, true)) 1635 return CSFC_Failure; 1636 return CSFC_Success; 1637 } 1638 } 1639 1640 // If we're about to fall out of a scope without hitting a 'break;', we 1641 // can't perform the optimization if there were any decls in that scope 1642 // (we'd lose their end-of-lifetime). 1643 if (AnyDecls) { 1644 // If the entire compound statement was live, there's one more thing we 1645 // can try before giving up: emit the whole thing as a single statement. 1646 // We can do that unless the statement contains a 'break;'. 1647 // FIXME: Such a break must be at the end of a construct within this one. 1648 // We could emit this by just ignoring the BreakStmts entirely. 1649 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1650 ResultStmts.resize(StartSize); 1651 ResultStmts.push_back(S); 1652 } else { 1653 return CSFC_Failure; 1654 } 1655 } 1656 1657 return CSFC_FallThrough; 1658 } 1659 1660 // Okay, this is some other statement that we don't handle explicitly, like a 1661 // for statement or increment etc. If we are skipping over this statement, 1662 // just verify it doesn't have labels, which would make it invalid to elide. 1663 if (Case) { 1664 if (CodeGenFunction::ContainsLabel(S, true)) 1665 return CSFC_Failure; 1666 return CSFC_Success; 1667 } 1668 1669 // Otherwise, we want to include this statement. Everything is cool with that 1670 // so long as it doesn't contain a break out of the switch we're in. 1671 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1672 1673 // Otherwise, everything is great. Include the statement and tell the caller 1674 // that we fall through and include the next statement as well. 1675 ResultStmts.push_back(S); 1676 return CSFC_FallThrough; 1677 } 1678 1679 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1680 /// then invoke CollectStatementsForCase to find the list of statements to emit 1681 /// for a switch on constant. See the comment above CollectStatementsForCase 1682 /// for more details. 1683 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1684 const llvm::APSInt &ConstantCondValue, 1685 SmallVectorImpl<const Stmt*> &ResultStmts, 1686 ASTContext &C, 1687 const SwitchCase *&ResultCase) { 1688 // First step, find the switch case that is being branched to. We can do this 1689 // efficiently by scanning the SwitchCase list. 1690 const SwitchCase *Case = S.getSwitchCaseList(); 1691 const DefaultStmt *DefaultCase = nullptr; 1692 1693 for (; Case; Case = Case->getNextSwitchCase()) { 1694 // It's either a default or case. Just remember the default statement in 1695 // case we're not jumping to any numbered cases. 1696 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1697 DefaultCase = DS; 1698 continue; 1699 } 1700 1701 // Check to see if this case is the one we're looking for. 1702 const CaseStmt *CS = cast<CaseStmt>(Case); 1703 // Don't handle case ranges yet. 1704 if (CS->getRHS()) return false; 1705 1706 // If we found our case, remember it as 'case'. 1707 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1708 break; 1709 } 1710 1711 // If we didn't find a matching case, we use a default if it exists, or we 1712 // elide the whole switch body! 1713 if (!Case) { 1714 // It is safe to elide the body of the switch if it doesn't contain labels 1715 // etc. If it is safe, return successfully with an empty ResultStmts list. 1716 if (!DefaultCase) 1717 return !CodeGenFunction::ContainsLabel(&S); 1718 Case = DefaultCase; 1719 } 1720 1721 // Ok, we know which case is being jumped to, try to collect all the 1722 // statements that follow it. This can fail for a variety of reasons. Also, 1723 // check to see that the recursive walk actually found our case statement. 1724 // Insane cases like this can fail to find it in the recursive walk since we 1725 // don't handle every stmt kind: 1726 // switch (4) { 1727 // while (1) { 1728 // case 4: ... 1729 bool FoundCase = false; 1730 ResultCase = Case; 1731 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1732 ResultStmts) != CSFC_Failure && 1733 FoundCase; 1734 } 1735 1736 static Optional<SmallVector<uint64_t, 16>> 1737 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { 1738 // Are there enough branches to weight them? 1739 if (Likelihoods.size() <= 1) 1740 return None; 1741 1742 uint64_t NumUnlikely = 0; 1743 uint64_t NumNone = 0; 1744 uint64_t NumLikely = 0; 1745 for (const auto LH : Likelihoods) { 1746 switch (LH) { 1747 case Stmt::LH_Unlikely: 1748 ++NumUnlikely; 1749 break; 1750 case Stmt::LH_None: 1751 ++NumNone; 1752 break; 1753 case Stmt::LH_Likely: 1754 ++NumLikely; 1755 break; 1756 } 1757 } 1758 1759 // Is there a likelihood attribute used? 1760 if (NumUnlikely == 0 && NumLikely == 0) 1761 return None; 1762 1763 // When multiple cases share the same code they can be combined during 1764 // optimization. In that case the weights of the branch will be the sum of 1765 // the individual weights. Make sure the combined sum of all neutral cases 1766 // doesn't exceed the value of a single likely attribute. 1767 // The additions both avoid divisions by 0 and make sure the weights of None 1768 // don't exceed the weight of Likely. 1769 const uint64_t Likely = INT32_MAX / (NumLikely + 2); 1770 const uint64_t None = Likely / (NumNone + 1); 1771 const uint64_t Unlikely = 0; 1772 1773 SmallVector<uint64_t, 16> Result; 1774 Result.reserve(Likelihoods.size()); 1775 for (const auto LH : Likelihoods) { 1776 switch (LH) { 1777 case Stmt::LH_Unlikely: 1778 Result.push_back(Unlikely); 1779 break; 1780 case Stmt::LH_None: 1781 Result.push_back(None); 1782 break; 1783 case Stmt::LH_Likely: 1784 Result.push_back(Likely); 1785 break; 1786 } 1787 } 1788 1789 return Result; 1790 } 1791 1792 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1793 // Handle nested switch statements. 1794 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1795 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1796 SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; 1797 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1798 1799 // See if we can constant fold the condition of the switch and therefore only 1800 // emit the live case statement (if any) of the switch. 1801 llvm::APSInt ConstantCondValue; 1802 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1803 SmallVector<const Stmt*, 4> CaseStmts; 1804 const SwitchCase *Case = nullptr; 1805 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1806 getContext(), Case)) { 1807 if (Case) 1808 incrementProfileCounter(Case); 1809 RunCleanupsScope ExecutedScope(*this); 1810 1811 if (S.getInit()) 1812 EmitStmt(S.getInit()); 1813 1814 // Emit the condition variable if needed inside the entire cleanup scope 1815 // used by this special case for constant folded switches. 1816 if (S.getConditionVariable()) 1817 EmitDecl(*S.getConditionVariable()); 1818 1819 // At this point, we are no longer "within" a switch instance, so 1820 // we can temporarily enforce this to ensure that any embedded case 1821 // statements are not emitted. 1822 SwitchInsn = nullptr; 1823 1824 // Okay, we can dead code eliminate everything except this case. Emit the 1825 // specified series of statements and we're good. 1826 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1827 EmitStmt(CaseStmts[i]); 1828 incrementProfileCounter(&S); 1829 1830 // Now we want to restore the saved switch instance so that nested 1831 // switches continue to function properly 1832 SwitchInsn = SavedSwitchInsn; 1833 1834 return; 1835 } 1836 } 1837 1838 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1839 1840 RunCleanupsScope ConditionScope(*this); 1841 1842 if (S.getInit()) 1843 EmitStmt(S.getInit()); 1844 1845 if (S.getConditionVariable()) 1846 EmitDecl(*S.getConditionVariable()); 1847 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1848 1849 // Create basic block to hold stuff that comes after switch 1850 // statement. We also need to create a default block now so that 1851 // explicit case ranges tests can have a place to jump to on 1852 // failure. 1853 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1854 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1855 if (PGO.haveRegionCounts()) { 1856 // Walk the SwitchCase list to find how many there are. 1857 uint64_t DefaultCount = 0; 1858 unsigned NumCases = 0; 1859 for (const SwitchCase *Case = S.getSwitchCaseList(); 1860 Case; 1861 Case = Case->getNextSwitchCase()) { 1862 if (isa<DefaultStmt>(Case)) 1863 DefaultCount = getProfileCount(Case); 1864 NumCases += 1; 1865 } 1866 SwitchWeights = new SmallVector<uint64_t, 16>(); 1867 SwitchWeights->reserve(NumCases); 1868 // The default needs to be first. We store the edge count, so we already 1869 // know the right weight. 1870 SwitchWeights->push_back(DefaultCount); 1871 } else if (CGM.getCodeGenOpts().OptimizationLevel) { 1872 SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); 1873 // Initialize the default case. 1874 SwitchLikelihood->push_back(Stmt::LH_None); 1875 } 1876 1877 CaseRangeBlock = DefaultBlock; 1878 1879 // Clear the insertion point to indicate we are in unreachable code. 1880 Builder.ClearInsertionPoint(); 1881 1882 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1883 // then reuse last ContinueBlock. 1884 JumpDest OuterContinue; 1885 if (!BreakContinueStack.empty()) 1886 OuterContinue = BreakContinueStack.back().ContinueBlock; 1887 1888 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1889 1890 // Emit switch body. 1891 EmitStmt(S.getBody()); 1892 1893 BreakContinueStack.pop_back(); 1894 1895 // Update the default block in case explicit case range tests have 1896 // been chained on top. 1897 SwitchInsn->setDefaultDest(CaseRangeBlock); 1898 1899 // If a default was never emitted: 1900 if (!DefaultBlock->getParent()) { 1901 // If we have cleanups, emit the default block so that there's a 1902 // place to jump through the cleanups from. 1903 if (ConditionScope.requiresCleanups()) { 1904 EmitBlock(DefaultBlock); 1905 1906 // Otherwise, just forward the default block to the switch end. 1907 } else { 1908 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1909 delete DefaultBlock; 1910 } 1911 } 1912 1913 ConditionScope.ForceCleanup(); 1914 1915 // Emit continuation. 1916 EmitBlock(SwitchExit.getBlock(), true); 1917 incrementProfileCounter(&S); 1918 1919 // If the switch has a condition wrapped by __builtin_unpredictable, 1920 // create metadata that specifies that the switch is unpredictable. 1921 // Don't bother if not optimizing because that metadata would not be used. 1922 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1923 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1924 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1925 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1926 llvm::MDBuilder MDHelper(getLLVMContext()); 1927 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1928 MDHelper.createUnpredictable()); 1929 } 1930 } 1931 1932 if (SwitchWeights) { 1933 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1934 "switch weights do not match switch cases"); 1935 // If there's only one jump destination there's no sense weighting it. 1936 if (SwitchWeights->size() > 1) 1937 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1938 createProfileWeights(*SwitchWeights)); 1939 delete SwitchWeights; 1940 } else if (SwitchLikelihood) { 1941 assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && 1942 "switch likelihoods do not match switch cases"); 1943 Optional<SmallVector<uint64_t, 16>> LHW = 1944 getLikelihoodWeights(*SwitchLikelihood); 1945 if (LHW) { 1946 llvm::MDBuilder MDHelper(CGM.getLLVMContext()); 1947 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1948 createProfileWeights(*LHW)); 1949 } 1950 delete SwitchLikelihood; 1951 } 1952 SwitchInsn = SavedSwitchInsn; 1953 SwitchWeights = SavedSwitchWeights; 1954 SwitchLikelihood = SavedSwitchLikelihood; 1955 CaseRangeBlock = SavedCRBlock; 1956 } 1957 1958 static std::string 1959 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1960 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1961 std::string Result; 1962 1963 while (*Constraint) { 1964 switch (*Constraint) { 1965 default: 1966 Result += Target.convertConstraint(Constraint); 1967 break; 1968 // Ignore these 1969 case '*': 1970 case '?': 1971 case '!': 1972 case '=': // Will see this and the following in mult-alt constraints. 1973 case '+': 1974 break; 1975 case '#': // Ignore the rest of the constraint alternative. 1976 while (Constraint[1] && Constraint[1] != ',') 1977 Constraint++; 1978 break; 1979 case '&': 1980 case '%': 1981 Result += *Constraint; 1982 while (Constraint[1] && Constraint[1] == *Constraint) 1983 Constraint++; 1984 break; 1985 case ',': 1986 Result += "|"; 1987 break; 1988 case 'g': 1989 Result += "imr"; 1990 break; 1991 case '[': { 1992 assert(OutCons && 1993 "Must pass output names to constraints with a symbolic name"); 1994 unsigned Index; 1995 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1996 assert(result && "Could not resolve symbolic name"); (void)result; 1997 Result += llvm::utostr(Index); 1998 break; 1999 } 2000 } 2001 2002 Constraint++; 2003 } 2004 2005 return Result; 2006 } 2007 2008 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 2009 /// as using a particular register add that as a constraint that will be used 2010 /// in this asm stmt. 2011 static std::string 2012 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 2013 const TargetInfo &Target, CodeGenModule &CGM, 2014 const AsmStmt &Stmt, const bool EarlyClobber, 2015 std::string *GCCReg = nullptr) { 2016 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 2017 if (!AsmDeclRef) 2018 return Constraint; 2019 const ValueDecl &Value = *AsmDeclRef->getDecl(); 2020 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 2021 if (!Variable) 2022 return Constraint; 2023 if (Variable->getStorageClass() != SC_Register) 2024 return Constraint; 2025 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 2026 if (!Attr) 2027 return Constraint; 2028 StringRef Register = Attr->getLabel(); 2029 assert(Target.isValidGCCRegisterName(Register)); 2030 // We're using validateOutputConstraint here because we only care if 2031 // this is a register constraint. 2032 TargetInfo::ConstraintInfo Info(Constraint, ""); 2033 if (Target.validateOutputConstraint(Info) && 2034 !Info.allowsRegister()) { 2035 CGM.ErrorUnsupported(&Stmt, "__asm__"); 2036 return Constraint; 2037 } 2038 // Canonicalize the register here before returning it. 2039 Register = Target.getNormalizedGCCRegisterName(Register); 2040 if (GCCReg != nullptr) 2041 *GCCReg = Register.str(); 2042 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 2043 } 2044 2045 llvm::Value* 2046 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 2047 LValue InputValue, QualType InputType, 2048 std::string &ConstraintStr, 2049 SourceLocation Loc) { 2050 llvm::Value *Arg; 2051 if (Info.allowsRegister() || !Info.allowsMemory()) { 2052 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 2053 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 2054 } else { 2055 llvm::Type *Ty = ConvertType(InputType); 2056 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 2057 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 2058 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 2059 Ty = llvm::PointerType::getUnqual(Ty); 2060 2061 Arg = Builder.CreateLoad( 2062 Builder.CreateBitCast(InputValue.getAddress(*this), Ty)); 2063 } else { 2064 Arg = InputValue.getPointer(*this); 2065 ConstraintStr += '*'; 2066 } 2067 } 2068 } else { 2069 Arg = InputValue.getPointer(*this); 2070 ConstraintStr += '*'; 2071 } 2072 2073 return Arg; 2074 } 2075 2076 llvm::Value* CodeGenFunction::EmitAsmInput( 2077 const TargetInfo::ConstraintInfo &Info, 2078 const Expr *InputExpr, 2079 std::string &ConstraintStr) { 2080 // If this can't be a register or memory, i.e., has to be a constant 2081 // (immediate or symbolic), try to emit it as such. 2082 if (!Info.allowsRegister() && !Info.allowsMemory()) { 2083 if (Info.requiresImmediateConstant()) { 2084 Expr::EvalResult EVResult; 2085 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 2086 2087 llvm::APSInt IntResult; 2088 if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 2089 getContext())) 2090 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 2091 } 2092 2093 Expr::EvalResult Result; 2094 if (InputExpr->EvaluateAsInt(Result, getContext())) 2095 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 2096 } 2097 2098 if (Info.allowsRegister() || !Info.allowsMemory()) 2099 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 2100 return EmitScalarExpr(InputExpr); 2101 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 2102 return EmitScalarExpr(InputExpr); 2103 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 2104 LValue Dest = EmitLValue(InputExpr); 2105 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 2106 InputExpr->getExprLoc()); 2107 } 2108 2109 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 2110 /// asm call instruction. The !srcloc MDNode contains a list of constant 2111 /// integers which are the source locations of the start of each line in the 2112 /// asm. 2113 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 2114 CodeGenFunction &CGF) { 2115 SmallVector<llvm::Metadata *, 8> Locs; 2116 // Add the location of the first line to the MDNode. 2117 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 2118 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 2119 StringRef StrVal = Str->getString(); 2120 if (!StrVal.empty()) { 2121 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 2122 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 2123 unsigned StartToken = 0; 2124 unsigned ByteOffset = 0; 2125 2126 // Add the location of the start of each subsequent line of the asm to the 2127 // MDNode. 2128 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 2129 if (StrVal[i] != '\n') continue; 2130 SourceLocation LineLoc = Str->getLocationOfByte( 2131 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 2132 Locs.push_back(llvm::ConstantAsMetadata::get( 2133 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 2134 } 2135 } 2136 2137 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 2138 } 2139 2140 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, 2141 bool HasUnwindClobber, bool ReadOnly, 2142 bool ReadNone, bool NoMerge, const AsmStmt &S, 2143 const std::vector<llvm::Type *> &ResultRegTypes, 2144 CodeGenFunction &CGF, 2145 std::vector<llvm::Value *> &RegResults) { 2146 if (!HasUnwindClobber) 2147 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2148 llvm::Attribute::NoUnwind); 2149 2150 if (NoMerge) 2151 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2152 llvm::Attribute::NoMerge); 2153 // Attach readnone and readonly attributes. 2154 if (!HasSideEffect) { 2155 if (ReadNone) 2156 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2157 llvm::Attribute::ReadNone); 2158 else if (ReadOnly) 2159 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2160 llvm::Attribute::ReadOnly); 2161 } 2162 2163 // Slap the source location of the inline asm into a !srcloc metadata on the 2164 // call. 2165 if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) 2166 Result.setMetadata("srcloc", 2167 getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); 2168 else { 2169 // At least put the line number on MS inline asm blobs. 2170 llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty, 2171 S.getAsmLoc().getRawEncoding()); 2172 Result.setMetadata("srcloc", 2173 llvm::MDNode::get(CGF.getLLVMContext(), 2174 llvm::ConstantAsMetadata::get(Loc))); 2175 } 2176 2177 if (CGF.getLangOpts().assumeFunctionsAreConvergent()) 2178 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2179 // convergent (meaning, they may call an intrinsically convergent op, such 2180 // as bar.sync, and so can't have certain optimizations applied around 2181 // them). 2182 Result.addAttribute(llvm::AttributeList::FunctionIndex, 2183 llvm::Attribute::Convergent); 2184 // Extract all of the register value results from the asm. 2185 if (ResultRegTypes.size() == 1) { 2186 RegResults.push_back(&Result); 2187 } else { 2188 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2189 llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); 2190 RegResults.push_back(Tmp); 2191 } 2192 } 2193 } 2194 2195 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 2196 // Assemble the final asm string. 2197 std::string AsmString = S.generateAsmString(getContext()); 2198 2199 // Get all the output and input constraints together. 2200 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 2201 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 2202 2203 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2204 StringRef Name; 2205 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2206 Name = GAS->getOutputName(i); 2207 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 2208 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 2209 assert(IsValid && "Failed to parse output constraint"); 2210 OutputConstraintInfos.push_back(Info); 2211 } 2212 2213 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2214 StringRef Name; 2215 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 2216 Name = GAS->getInputName(i); 2217 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 2218 bool IsValid = 2219 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 2220 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 2221 InputConstraintInfos.push_back(Info); 2222 } 2223 2224 std::string Constraints; 2225 2226 std::vector<LValue> ResultRegDests; 2227 std::vector<QualType> ResultRegQualTys; 2228 std::vector<llvm::Type *> ResultRegTypes; 2229 std::vector<llvm::Type *> ResultTruncRegTypes; 2230 std::vector<llvm::Type *> ArgTypes; 2231 std::vector<llvm::Value*> Args; 2232 llvm::BitVector ResultTypeRequiresCast; 2233 2234 // Keep track of inout constraints. 2235 std::string InOutConstraints; 2236 std::vector<llvm::Value*> InOutArgs; 2237 std::vector<llvm::Type*> InOutArgTypes; 2238 2239 // Keep track of out constraints for tied input operand. 2240 std::vector<std::string> OutputConstraints; 2241 2242 // Keep track of defined physregs. 2243 llvm::SmallSet<std::string, 8> PhysRegOutputs; 2244 2245 // An inline asm can be marked readonly if it meets the following conditions: 2246 // - it doesn't have any sideeffects 2247 // - it doesn't clobber memory 2248 // - it doesn't return a value by-reference 2249 // It can be marked readnone if it doesn't have any input memory constraints 2250 // in addition to meeting the conditions listed above. 2251 bool ReadOnly = true, ReadNone = true; 2252 2253 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 2254 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 2255 2256 // Simplify the output constraint. 2257 std::string OutputConstraint(S.getOutputConstraint(i)); 2258 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 2259 getTarget(), &OutputConstraintInfos); 2260 2261 const Expr *OutExpr = S.getOutputExpr(i); 2262 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 2263 2264 std::string GCCReg; 2265 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 2266 getTarget(), CGM, S, 2267 Info.earlyClobber(), 2268 &GCCReg); 2269 // Give an error on multiple outputs to same physreg. 2270 if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) 2271 CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); 2272 2273 OutputConstraints.push_back(OutputConstraint); 2274 LValue Dest = EmitLValue(OutExpr); 2275 if (!Constraints.empty()) 2276 Constraints += ','; 2277 2278 // If this is a register output, then make the inline asm return it 2279 // by-value. If this is a memory result, return the value by-reference. 2280 bool isScalarizableAggregate = 2281 hasAggregateEvaluationKind(OutExpr->getType()); 2282 if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) || 2283 isScalarizableAggregate)) { 2284 Constraints += "=" + OutputConstraint; 2285 ResultRegQualTys.push_back(OutExpr->getType()); 2286 ResultRegDests.push_back(Dest); 2287 ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 2288 if (Info.allowsRegister() && isScalarizableAggregate) { 2289 ResultTypeRequiresCast.push_back(true); 2290 unsigned Size = getContext().getTypeSize(OutExpr->getType()); 2291 llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size); 2292 ResultRegTypes.push_back(ConvTy); 2293 } else { 2294 ResultTypeRequiresCast.push_back(false); 2295 ResultRegTypes.push_back(ResultTruncRegTypes.back()); 2296 } 2297 // If this output is tied to an input, and if the input is larger, then 2298 // we need to set the actual result type of the inline asm node to be the 2299 // same as the input type. 2300 if (Info.hasMatchingInput()) { 2301 unsigned InputNo; 2302 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 2303 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 2304 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 2305 break; 2306 } 2307 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 2308 2309 QualType InputTy = S.getInputExpr(InputNo)->getType(); 2310 QualType OutputType = OutExpr->getType(); 2311 2312 uint64_t InputSize = getContext().getTypeSize(InputTy); 2313 if (getContext().getTypeSize(OutputType) < InputSize) { 2314 // Form the asm to return the value as a larger integer or fp type. 2315 ResultRegTypes.back() = ConvertType(InputTy); 2316 } 2317 } 2318 if (llvm::Type* AdjTy = 2319 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2320 ResultRegTypes.back())) 2321 ResultRegTypes.back() = AdjTy; 2322 else { 2323 CGM.getDiags().Report(S.getAsmLoc(), 2324 diag::err_asm_invalid_type_in_input) 2325 << OutExpr->getType() << OutputConstraint; 2326 } 2327 2328 // Update largest vector width for any vector types. 2329 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 2330 LargestVectorWidth = 2331 std::max((uint64_t)LargestVectorWidth, 2332 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2333 } else { 2334 llvm::Type *DestAddrTy = Dest.getAddress(*this).getType(); 2335 llvm::Value *DestPtr = Dest.getPointer(*this); 2336 // Matrix types in memory are represented by arrays, but accessed through 2337 // vector pointers, with the alignment specified on the access operation. 2338 // For inline assembly, update pointer arguments to use vector pointers. 2339 // Otherwise there will be a mis-match if the matrix is also an 2340 // input-argument which is represented as vector. 2341 if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) { 2342 DestAddrTy = llvm::PointerType::get( 2343 ConvertType(OutExpr->getType()), 2344 cast<llvm::PointerType>(DestAddrTy)->getAddressSpace()); 2345 DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy); 2346 } 2347 ArgTypes.push_back(DestAddrTy); 2348 Args.push_back(DestPtr); 2349 Constraints += "=*"; 2350 Constraints += OutputConstraint; 2351 ReadOnly = ReadNone = false; 2352 } 2353 2354 if (Info.isReadWrite()) { 2355 InOutConstraints += ','; 2356 2357 const Expr *InputExpr = S.getOutputExpr(i); 2358 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2359 InOutConstraints, 2360 InputExpr->getExprLoc()); 2361 2362 if (llvm::Type* AdjTy = 2363 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2364 Arg->getType())) 2365 Arg = Builder.CreateBitCast(Arg, AdjTy); 2366 2367 // Update largest vector width for any vector types. 2368 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2369 LargestVectorWidth = 2370 std::max((uint64_t)LargestVectorWidth, 2371 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2372 // Only tie earlyclobber physregs. 2373 if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) 2374 InOutConstraints += llvm::utostr(i); 2375 else 2376 InOutConstraints += OutputConstraint; 2377 2378 InOutArgTypes.push_back(Arg->getType()); 2379 InOutArgs.push_back(Arg); 2380 } 2381 } 2382 2383 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2384 // to the return value slot. Only do this when returning in registers. 2385 if (isa<MSAsmStmt>(&S)) { 2386 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2387 if (RetAI.isDirect() || RetAI.isExtend()) { 2388 // Make a fake lvalue for the return value slot. 2389 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2390 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2391 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2392 ResultRegDests, AsmString, S.getNumOutputs()); 2393 SawAsmBlock = true; 2394 } 2395 } 2396 2397 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2398 const Expr *InputExpr = S.getInputExpr(i); 2399 2400 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2401 2402 if (Info.allowsMemory()) 2403 ReadNone = false; 2404 2405 if (!Constraints.empty()) 2406 Constraints += ','; 2407 2408 // Simplify the input constraint. 2409 std::string InputConstraint(S.getInputConstraint(i)); 2410 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2411 &OutputConstraintInfos); 2412 2413 InputConstraint = AddVariableConstraints( 2414 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2415 getTarget(), CGM, S, false /* No EarlyClobber */); 2416 2417 std::string ReplaceConstraint (InputConstraint); 2418 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2419 2420 // If this input argument is tied to a larger output result, extend the 2421 // input to be the same size as the output. The LLVM backend wants to see 2422 // the input and output of a matching constraint be the same size. Note 2423 // that GCC does not define what the top bits are here. We use zext because 2424 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2425 if (Info.hasTiedOperand()) { 2426 unsigned Output = Info.getTiedOperand(); 2427 QualType OutputType = S.getOutputExpr(Output)->getType(); 2428 QualType InputTy = InputExpr->getType(); 2429 2430 if (getContext().getTypeSize(OutputType) > 2431 getContext().getTypeSize(InputTy)) { 2432 // Use ptrtoint as appropriate so that we can do our extension. 2433 if (isa<llvm::PointerType>(Arg->getType())) 2434 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2435 llvm::Type *OutputTy = ConvertType(OutputType); 2436 if (isa<llvm::IntegerType>(OutputTy)) 2437 Arg = Builder.CreateZExt(Arg, OutputTy); 2438 else if (isa<llvm::PointerType>(OutputTy)) 2439 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2440 else { 2441 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2442 Arg = Builder.CreateFPExt(Arg, OutputTy); 2443 } 2444 } 2445 // Deal with the tied operands' constraint code in adjustInlineAsmType. 2446 ReplaceConstraint = OutputConstraints[Output]; 2447 } 2448 if (llvm::Type* AdjTy = 2449 getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, 2450 Arg->getType())) 2451 Arg = Builder.CreateBitCast(Arg, AdjTy); 2452 else 2453 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2454 << InputExpr->getType() << InputConstraint; 2455 2456 // Update largest vector width for any vector types. 2457 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2458 LargestVectorWidth = 2459 std::max((uint64_t)LargestVectorWidth, 2460 VT->getPrimitiveSizeInBits().getKnownMinSize()); 2461 2462 ArgTypes.push_back(Arg->getType()); 2463 Args.push_back(Arg); 2464 Constraints += InputConstraint; 2465 } 2466 2467 // Labels 2468 SmallVector<llvm::BasicBlock *, 16> Transfer; 2469 llvm::BasicBlock *Fallthrough = nullptr; 2470 bool IsGCCAsmGoto = false; 2471 if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { 2472 IsGCCAsmGoto = GS->isAsmGoto(); 2473 if (IsGCCAsmGoto) { 2474 for (const auto *E : GS->labels()) { 2475 JumpDest Dest = getJumpDestForLabel(E->getLabel()); 2476 Transfer.push_back(Dest.getBlock()); 2477 llvm::BlockAddress *BA = 2478 llvm::BlockAddress::get(CurFn, Dest.getBlock()); 2479 Args.push_back(BA); 2480 ArgTypes.push_back(BA->getType()); 2481 if (!Constraints.empty()) 2482 Constraints += ','; 2483 Constraints += 'X'; 2484 } 2485 Fallthrough = createBasicBlock("asm.fallthrough"); 2486 } 2487 } 2488 2489 // Append the "input" part of inout constraints last. 2490 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2491 ArgTypes.push_back(InOutArgTypes[i]); 2492 Args.push_back(InOutArgs[i]); 2493 } 2494 Constraints += InOutConstraints; 2495 2496 bool HasUnwindClobber = false; 2497 2498 // Clobbers 2499 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2500 StringRef Clobber = S.getClobber(i); 2501 2502 if (Clobber == "memory") 2503 ReadOnly = ReadNone = false; 2504 else if (Clobber == "unwind") { 2505 HasUnwindClobber = true; 2506 continue; 2507 } else if (Clobber != "cc") { 2508 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2509 if (CGM.getCodeGenOpts().StackClashProtector && 2510 getTarget().isSPRegName(Clobber)) { 2511 CGM.getDiags().Report(S.getAsmLoc(), 2512 diag::warn_stack_clash_protection_inline_asm); 2513 } 2514 } 2515 2516 if (isa<MSAsmStmt>(&S)) { 2517 if (Clobber == "eax" || Clobber == "edx") { 2518 if (Constraints.find("=&A") != std::string::npos) 2519 continue; 2520 std::string::size_type position1 = 2521 Constraints.find("={" + Clobber.str() + "}"); 2522 if (position1 != std::string::npos) { 2523 Constraints.insert(position1 + 1, "&"); 2524 continue; 2525 } 2526 std::string::size_type position2 = Constraints.find("=A"); 2527 if (position2 != std::string::npos) { 2528 Constraints.insert(position2 + 1, "&"); 2529 continue; 2530 } 2531 } 2532 } 2533 if (!Constraints.empty()) 2534 Constraints += ','; 2535 2536 Constraints += "~{"; 2537 Constraints += Clobber; 2538 Constraints += '}'; 2539 } 2540 2541 assert(!(HasUnwindClobber && IsGCCAsmGoto) && 2542 "unwind clobber can't be used with asm goto"); 2543 2544 // Add machine specific clobbers 2545 std::string MachineClobbers = getTarget().getClobbers(); 2546 if (!MachineClobbers.empty()) { 2547 if (!Constraints.empty()) 2548 Constraints += ','; 2549 Constraints += MachineClobbers; 2550 } 2551 2552 llvm::Type *ResultType; 2553 if (ResultRegTypes.empty()) 2554 ResultType = VoidTy; 2555 else if (ResultRegTypes.size() == 1) 2556 ResultType = ResultRegTypes[0]; 2557 else 2558 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2559 2560 llvm::FunctionType *FTy = 2561 llvm::FunctionType::get(ResultType, ArgTypes, false); 2562 2563 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2564 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2565 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2566 llvm::InlineAsm *IA = llvm::InlineAsm::get( 2567 FTy, AsmString, Constraints, HasSideEffect, 2568 /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); 2569 std::vector<llvm::Value*> RegResults; 2570 if (IsGCCAsmGoto) { 2571 llvm::CallBrInst *Result = 2572 Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); 2573 EmitBlock(Fallthrough); 2574 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2575 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2576 ResultRegTypes, *this, RegResults); 2577 } else if (HasUnwindClobber) { 2578 llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); 2579 UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, 2580 InNoMergeAttributedStmt, S, ResultRegTypes, *this, 2581 RegResults); 2582 } else { 2583 llvm::CallInst *Result = 2584 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2585 UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, 2586 ReadOnly, ReadNone, InNoMergeAttributedStmt, S, 2587 ResultRegTypes, *this, RegResults); 2588 } 2589 2590 assert(RegResults.size() == ResultRegTypes.size()); 2591 assert(RegResults.size() == ResultTruncRegTypes.size()); 2592 assert(RegResults.size() == ResultRegDests.size()); 2593 // ResultRegDests can be also populated by addReturnRegisterOutputs() above, 2594 // in which case its size may grow. 2595 assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); 2596 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2597 llvm::Value *Tmp = RegResults[i]; 2598 2599 // If the result type of the LLVM IR asm doesn't match the result type of 2600 // the expression, do the conversion. 2601 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2602 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2603 2604 // Truncate the integer result to the right size, note that TruncTy can be 2605 // a pointer. 2606 if (TruncTy->isFloatingPointTy()) 2607 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2608 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2609 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2610 Tmp = Builder.CreateTrunc(Tmp, 2611 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2612 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2613 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2614 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2615 Tmp = Builder.CreatePtrToInt(Tmp, 2616 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2617 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2618 } else if (TruncTy->isIntegerTy()) { 2619 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2620 } else if (TruncTy->isVectorTy()) { 2621 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2622 } 2623 } 2624 2625 LValue Dest = ResultRegDests[i]; 2626 // ResultTypeRequiresCast elements correspond to the first 2627 // ResultTypeRequiresCast.size() elements of RegResults. 2628 if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { 2629 unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); 2630 Address A = Builder.CreateBitCast(Dest.getAddress(*this), 2631 ResultRegTypes[i]->getPointerTo()); 2632 QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); 2633 if (Ty.isNull()) { 2634 const Expr *OutExpr = S.getOutputExpr(i); 2635 CGM.Error( 2636 OutExpr->getExprLoc(), 2637 "impossible constraint in asm: can't store value into a register"); 2638 return; 2639 } 2640 Dest = MakeAddrLValue(A, Ty); 2641 } 2642 EmitStoreThroughLValue(RValue::get(Tmp), Dest); 2643 } 2644 } 2645 2646 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2647 const RecordDecl *RD = S.getCapturedRecordDecl(); 2648 QualType RecordTy = getContext().getRecordType(RD); 2649 2650 // Initialize the captured struct. 2651 LValue SlotLV = 2652 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2653 2654 RecordDecl::field_iterator CurField = RD->field_begin(); 2655 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2656 E = S.capture_init_end(); 2657 I != E; ++I, ++CurField) { 2658 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2659 if (CurField->hasCapturedVLAType()) { 2660 EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); 2661 } else { 2662 EmitInitializerForField(*CurField, LV, *I); 2663 } 2664 } 2665 2666 return SlotLV; 2667 } 2668 2669 /// Generate an outlined function for the body of a CapturedStmt, store any 2670 /// captured variables into the captured struct, and call the outlined function. 2671 llvm::Function * 2672 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2673 LValue CapStruct = InitCapturedStruct(S); 2674 2675 // Emit the CapturedDecl 2676 CodeGenFunction CGF(CGM, true); 2677 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2678 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2679 delete CGF.CapturedStmtInfo; 2680 2681 // Emit call to the helper function. 2682 EmitCallOrInvoke(F, CapStruct.getPointer(*this)); 2683 2684 return F; 2685 } 2686 2687 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2688 LValue CapStruct = InitCapturedStruct(S); 2689 return CapStruct.getAddress(*this); 2690 } 2691 2692 /// Creates the outlined function for a CapturedStmt. 2693 llvm::Function * 2694 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2695 assert(CapturedStmtInfo && 2696 "CapturedStmtInfo should be set when generating the captured function"); 2697 const CapturedDecl *CD = S.getCapturedDecl(); 2698 const RecordDecl *RD = S.getCapturedRecordDecl(); 2699 SourceLocation Loc = S.getBeginLoc(); 2700 assert(CD->hasBody() && "missing CapturedDecl body"); 2701 2702 // Build the argument list. 2703 ASTContext &Ctx = CGM.getContext(); 2704 FunctionArgList Args; 2705 Args.append(CD->param_begin(), CD->param_end()); 2706 2707 // Create the function declaration. 2708 const CGFunctionInfo &FuncInfo = 2709 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2710 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2711 2712 llvm::Function *F = 2713 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2714 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2715 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2716 if (CD->isNothrow()) 2717 F->addFnAttr(llvm::Attribute::NoUnwind); 2718 2719 // Generate the function. 2720 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2721 CD->getBody()->getBeginLoc()); 2722 // Set the context parameter in CapturedStmtInfo. 2723 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2724 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2725 2726 // Initialize variable-length arrays. 2727 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2728 Ctx.getTagDeclType(RD)); 2729 for (auto *FD : RD->fields()) { 2730 if (FD->hasCapturedVLAType()) { 2731 auto *ExprArg = 2732 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2733 .getScalarVal(); 2734 auto VAT = FD->getCapturedVLAType(); 2735 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2736 } 2737 } 2738 2739 // If 'this' is captured, load it into CXXThisValue. 2740 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2741 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2742 LValue ThisLValue = EmitLValueForField(Base, FD); 2743 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2744 } 2745 2746 PGO.assignRegionCounters(GlobalDecl(CD), F); 2747 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2748 FinishFunction(CD->getBodyRBrace()); 2749 2750 return F; 2751 } 2752