1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/SaveAndRestore.h"
34 
35 using namespace clang;
36 using namespace CodeGen;
37 
38 //===----------------------------------------------------------------------===//
39 //                              Statement Emission
40 //===----------------------------------------------------------------------===//
41 
42 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
43   if (CGDebugInfo *DI = getDebugInfo()) {
44     SourceLocation Loc;
45     Loc = S->getBeginLoc();
46     DI->EmitLocation(Builder, Loc);
47 
48     LastStopPoint = Loc;
49   }
50 }
51 
52 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
53   assert(S && "Null statement?");
54   PGO.setCurrentStmt(S);
55 
56   // These statements have their own debug info handling.
57   if (EmitSimpleStmt(S, Attrs))
58     return;
59 
60   // Check if we are generating unreachable code.
61   if (!HaveInsertPoint()) {
62     // If so, and the statement doesn't contain a label, then we do not need to
63     // generate actual code. This is safe because (1) the current point is
64     // unreachable, so we don't need to execute the code, and (2) we've already
65     // handled the statements which update internal data structures (like the
66     // local variable map) which could be used by subsequent statements.
67     if (!ContainsLabel(S)) {
68       // Verify that any decl statements were handled as simple, they may be in
69       // scope of subsequent reachable statements.
70       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
71       return;
72     }
73 
74     // Otherwise, make a new block to hold the code.
75     EnsureInsertPoint();
76   }
77 
78   // Generate a stoppoint if we are emitting debug info.
79   EmitStopPoint(S);
80 
81   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
82   // enabled.
83   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
84     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
85       EmitSimpleOMPExecutableDirective(*D);
86       return;
87     }
88   }
89 
90   switch (S->getStmtClass()) {
91   case Stmt::NoStmtClass:
92   case Stmt::CXXCatchStmtClass:
93   case Stmt::SEHExceptStmtClass:
94   case Stmt::SEHFinallyStmtClass:
95   case Stmt::MSDependentExistsStmtClass:
96     llvm_unreachable("invalid statement class to emit generically");
97   case Stmt::NullStmtClass:
98   case Stmt::CompoundStmtClass:
99   case Stmt::DeclStmtClass:
100   case Stmt::LabelStmtClass:
101   case Stmt::AttributedStmtClass:
102   case Stmt::GotoStmtClass:
103   case Stmt::BreakStmtClass:
104   case Stmt::ContinueStmtClass:
105   case Stmt::DefaultStmtClass:
106   case Stmt::CaseStmtClass:
107   case Stmt::SEHLeaveStmtClass:
108     llvm_unreachable("should have emitted these statements as simple");
109 
110 #define STMT(Type, Base)
111 #define ABSTRACT_STMT(Op)
112 #define EXPR(Type, Base) \
113   case Stmt::Type##Class:
114 #include "clang/AST/StmtNodes.inc"
115   {
116     // Remember the block we came in on.
117     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
118     assert(incoming && "expression emission must have an insertion point");
119 
120     EmitIgnoredExpr(cast<Expr>(S));
121 
122     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
123     assert(outgoing && "expression emission cleared block!");
124 
125     // The expression emitters assume (reasonably!) that the insertion
126     // point is always set.  To maintain that, the call-emission code
127     // for noreturn functions has to enter a new block with no
128     // predecessors.  We want to kill that block and mark the current
129     // insertion point unreachable in the common case of a call like
130     // "exit();".  Since expression emission doesn't otherwise create
131     // blocks with no predecessors, we can just test for that.
132     // However, we must be careful not to do this to our incoming
133     // block, because *statement* emission does sometimes create
134     // reachable blocks which will have no predecessors until later in
135     // the function.  This occurs with, e.g., labels that are not
136     // reachable by fallthrough.
137     if (incoming != outgoing && outgoing->use_empty()) {
138       outgoing->eraseFromParent();
139       Builder.ClearInsertionPoint();
140     }
141     break;
142   }
143 
144   case Stmt::IndirectGotoStmtClass:
145     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
146 
147   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
148   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
149   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
150   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
151 
152   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
153 
154   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
155   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
156   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
157   case Stmt::CoroutineBodyStmtClass:
158     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
159     break;
160   case Stmt::CoreturnStmtClass:
161     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
162     break;
163   case Stmt::CapturedStmtClass: {
164     const CapturedStmt *CS = cast<CapturedStmt>(S);
165     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
166     }
167     break;
168   case Stmt::ObjCAtTryStmtClass:
169     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
170     break;
171   case Stmt::ObjCAtCatchStmtClass:
172     llvm_unreachable(
173                     "@catch statements should be handled by EmitObjCAtTryStmt");
174   case Stmt::ObjCAtFinallyStmtClass:
175     llvm_unreachable(
176                   "@finally statements should be handled by EmitObjCAtTryStmt");
177   case Stmt::ObjCAtThrowStmtClass:
178     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
179     break;
180   case Stmt::ObjCAtSynchronizedStmtClass:
181     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
182     break;
183   case Stmt::ObjCForCollectionStmtClass:
184     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
185     break;
186   case Stmt::ObjCAutoreleasePoolStmtClass:
187     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
188     break;
189 
190   case Stmt::CXXTryStmtClass:
191     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
192     break;
193   case Stmt::CXXForRangeStmtClass:
194     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
195     break;
196   case Stmt::SEHTryStmtClass:
197     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
198     break;
199   case Stmt::OMPCanonicalLoopClass:
200     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
201     break;
202   case Stmt::OMPParallelDirectiveClass:
203     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
204     break;
205   case Stmt::OMPSimdDirectiveClass:
206     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
207     break;
208   case Stmt::OMPTileDirectiveClass:
209     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
210     break;
211   case Stmt::OMPForDirectiveClass:
212     EmitOMPForDirective(cast<OMPForDirective>(*S));
213     break;
214   case Stmt::OMPForSimdDirectiveClass:
215     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
216     break;
217   case Stmt::OMPSectionsDirectiveClass:
218     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
219     break;
220   case Stmt::OMPSectionDirectiveClass:
221     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
222     break;
223   case Stmt::OMPSingleDirectiveClass:
224     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
225     break;
226   case Stmt::OMPMasterDirectiveClass:
227     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
228     break;
229   case Stmt::OMPCriticalDirectiveClass:
230     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
231     break;
232   case Stmt::OMPParallelForDirectiveClass:
233     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
234     break;
235   case Stmt::OMPParallelForSimdDirectiveClass:
236     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
237     break;
238   case Stmt::OMPParallelMasterDirectiveClass:
239     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
240     break;
241   case Stmt::OMPParallelSectionsDirectiveClass:
242     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
243     break;
244   case Stmt::OMPTaskDirectiveClass:
245     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
246     break;
247   case Stmt::OMPTaskyieldDirectiveClass:
248     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
249     break;
250   case Stmt::OMPBarrierDirectiveClass:
251     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
252     break;
253   case Stmt::OMPTaskwaitDirectiveClass:
254     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
255     break;
256   case Stmt::OMPTaskgroupDirectiveClass:
257     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
258     break;
259   case Stmt::OMPFlushDirectiveClass:
260     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
261     break;
262   case Stmt::OMPDepobjDirectiveClass:
263     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
264     break;
265   case Stmt::OMPScanDirectiveClass:
266     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
267     break;
268   case Stmt::OMPOrderedDirectiveClass:
269     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
270     break;
271   case Stmt::OMPAtomicDirectiveClass:
272     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
273     break;
274   case Stmt::OMPTargetDirectiveClass:
275     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
276     break;
277   case Stmt::OMPTeamsDirectiveClass:
278     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
279     break;
280   case Stmt::OMPCancellationPointDirectiveClass:
281     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
282     break;
283   case Stmt::OMPCancelDirectiveClass:
284     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
285     break;
286   case Stmt::OMPTargetDataDirectiveClass:
287     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
288     break;
289   case Stmt::OMPTargetEnterDataDirectiveClass:
290     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
291     break;
292   case Stmt::OMPTargetExitDataDirectiveClass:
293     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
294     break;
295   case Stmt::OMPTargetParallelDirectiveClass:
296     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
297     break;
298   case Stmt::OMPTargetParallelForDirectiveClass:
299     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
300     break;
301   case Stmt::OMPTaskLoopDirectiveClass:
302     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
303     break;
304   case Stmt::OMPTaskLoopSimdDirectiveClass:
305     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
306     break;
307   case Stmt::OMPMasterTaskLoopDirectiveClass:
308     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
309     break;
310   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
311     EmitOMPMasterTaskLoopSimdDirective(
312         cast<OMPMasterTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
315     EmitOMPParallelMasterTaskLoopDirective(
316         cast<OMPParallelMasterTaskLoopDirective>(*S));
317     break;
318   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
319     EmitOMPParallelMasterTaskLoopSimdDirective(
320         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
321     break;
322   case Stmt::OMPDistributeDirectiveClass:
323     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
324     break;
325   case Stmt::OMPTargetUpdateDirectiveClass:
326     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
327     break;
328   case Stmt::OMPDistributeParallelForDirectiveClass:
329     EmitOMPDistributeParallelForDirective(
330         cast<OMPDistributeParallelForDirective>(*S));
331     break;
332   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
333     EmitOMPDistributeParallelForSimdDirective(
334         cast<OMPDistributeParallelForSimdDirective>(*S));
335     break;
336   case Stmt::OMPDistributeSimdDirectiveClass:
337     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
338     break;
339   case Stmt::OMPTargetParallelForSimdDirectiveClass:
340     EmitOMPTargetParallelForSimdDirective(
341         cast<OMPTargetParallelForSimdDirective>(*S));
342     break;
343   case Stmt::OMPTargetSimdDirectiveClass:
344     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
345     break;
346   case Stmt::OMPTeamsDistributeDirectiveClass:
347     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
348     break;
349   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
350     EmitOMPTeamsDistributeSimdDirective(
351         cast<OMPTeamsDistributeSimdDirective>(*S));
352     break;
353   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
354     EmitOMPTeamsDistributeParallelForSimdDirective(
355         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
356     break;
357   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
358     EmitOMPTeamsDistributeParallelForDirective(
359         cast<OMPTeamsDistributeParallelForDirective>(*S));
360     break;
361   case Stmt::OMPTargetTeamsDirectiveClass:
362     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
363     break;
364   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
365     EmitOMPTargetTeamsDistributeDirective(
366         cast<OMPTargetTeamsDistributeDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
369     EmitOMPTargetTeamsDistributeParallelForDirective(
370         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
371     break;
372   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
373     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
374         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
375     break;
376   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
377     EmitOMPTargetTeamsDistributeSimdDirective(
378         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
379     break;
380   case Stmt::OMPInteropDirectiveClass:
381     llvm_unreachable("Interop directive not supported yet.");
382     break;
383   case Stmt::OMPDispatchDirectiveClass:
384     llvm_unreachable("Dispatch directive not supported yet.");
385     break;
386   case Stmt::OMPMaskedDirectiveClass:
387     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
388     break;
389   }
390 }
391 
392 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
393                                      ArrayRef<const Attr *> Attrs) {
394   switch (S->getStmtClass()) {
395   default:
396     return false;
397   case Stmt::NullStmtClass:
398     break;
399   case Stmt::CompoundStmtClass:
400     EmitCompoundStmt(cast<CompoundStmt>(*S));
401     break;
402   case Stmt::DeclStmtClass:
403     EmitDeclStmt(cast<DeclStmt>(*S));
404     break;
405   case Stmt::LabelStmtClass:
406     EmitLabelStmt(cast<LabelStmt>(*S));
407     break;
408   case Stmt::AttributedStmtClass:
409     EmitAttributedStmt(cast<AttributedStmt>(*S));
410     break;
411   case Stmt::GotoStmtClass:
412     EmitGotoStmt(cast<GotoStmt>(*S));
413     break;
414   case Stmt::BreakStmtClass:
415     EmitBreakStmt(cast<BreakStmt>(*S));
416     break;
417   case Stmt::ContinueStmtClass:
418     EmitContinueStmt(cast<ContinueStmt>(*S));
419     break;
420   case Stmt::DefaultStmtClass:
421     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
422     break;
423   case Stmt::CaseStmtClass:
424     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
425     break;
426   case Stmt::SEHLeaveStmtClass:
427     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
428     break;
429   }
430   return true;
431 }
432 
433 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
434 /// this captures the expression result of the last sub-statement and returns it
435 /// (for use by the statement expression extension).
436 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
437                                           AggValueSlot AggSlot) {
438   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
439                              "LLVM IR generation of compound statement ('{}')");
440 
441   // Keep track of the current cleanup stack depth, including debug scopes.
442   LexicalScope Scope(*this, S.getSourceRange());
443 
444   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
445 }
446 
447 Address
448 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
449                                               bool GetLast,
450                                               AggValueSlot AggSlot) {
451 
452   const Stmt *ExprResult = S.getStmtExprResult();
453   assert((!GetLast || (GetLast && ExprResult)) &&
454          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
455 
456   Address RetAlloca = Address::invalid();
457 
458   for (auto *CurStmt : S.body()) {
459     if (GetLast && ExprResult == CurStmt) {
460       // We have to special case labels here.  They are statements, but when put
461       // at the end of a statement expression, they yield the value of their
462       // subexpression.  Handle this by walking through all labels we encounter,
463       // emitting them before we evaluate the subexpr.
464       // Similar issues arise for attributed statements.
465       while (!isa<Expr>(ExprResult)) {
466         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
467           EmitLabel(LS->getDecl());
468           ExprResult = LS->getSubStmt();
469         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
470           // FIXME: Update this if we ever have attributes that affect the
471           // semantics of an expression.
472           ExprResult = AS->getSubStmt();
473         } else {
474           llvm_unreachable("unknown value statement");
475         }
476       }
477 
478       EnsureInsertPoint();
479 
480       const Expr *E = cast<Expr>(ExprResult);
481       QualType ExprTy = E->getType();
482       if (hasAggregateEvaluationKind(ExprTy)) {
483         EmitAggExpr(E, AggSlot);
484       } else {
485         // We can't return an RValue here because there might be cleanups at
486         // the end of the StmtExpr.  Because of that, we have to emit the result
487         // here into a temporary alloca.
488         RetAlloca = CreateMemTemp(ExprTy);
489         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
490                          /*IsInit*/ false);
491       }
492     } else {
493       EmitStmt(CurStmt);
494     }
495   }
496 
497   return RetAlloca;
498 }
499 
500 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
501   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
502 
503   // If there is a cleanup stack, then we it isn't worth trying to
504   // simplify this block (we would need to remove it from the scope map
505   // and cleanup entry).
506   if (!EHStack.empty())
507     return;
508 
509   // Can only simplify direct branches.
510   if (!BI || !BI->isUnconditional())
511     return;
512 
513   // Can only simplify empty blocks.
514   if (BI->getIterator() != BB->begin())
515     return;
516 
517   BB->replaceAllUsesWith(BI->getSuccessor(0));
518   BI->eraseFromParent();
519   BB->eraseFromParent();
520 }
521 
522 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
523   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
524 
525   // Fall out of the current block (if necessary).
526   EmitBranch(BB);
527 
528   if (IsFinished && BB->use_empty()) {
529     delete BB;
530     return;
531   }
532 
533   // Place the block after the current block, if possible, or else at
534   // the end of the function.
535   if (CurBB && CurBB->getParent())
536     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
537   else
538     CurFn->getBasicBlockList().push_back(BB);
539   Builder.SetInsertPoint(BB);
540 }
541 
542 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
543   // Emit a branch from the current block to the target one if this
544   // was a real block.  If this was just a fall-through block after a
545   // terminator, don't emit it.
546   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
547 
548   if (!CurBB || CurBB->getTerminator()) {
549     // If there is no insert point or the previous block is already
550     // terminated, don't touch it.
551   } else {
552     // Otherwise, create a fall-through branch.
553     Builder.CreateBr(Target);
554   }
555 
556   Builder.ClearInsertionPoint();
557 }
558 
559 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
560   bool inserted = false;
561   for (llvm::User *u : block->users()) {
562     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
563       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
564                                              block);
565       inserted = true;
566       break;
567     }
568   }
569 
570   if (!inserted)
571     CurFn->getBasicBlockList().push_back(block);
572 
573   Builder.SetInsertPoint(block);
574 }
575 
576 CodeGenFunction::JumpDest
577 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
578   JumpDest &Dest = LabelMap[D];
579   if (Dest.isValid()) return Dest;
580 
581   // Create, but don't insert, the new block.
582   Dest = JumpDest(createBasicBlock(D->getName()),
583                   EHScopeStack::stable_iterator::invalid(),
584                   NextCleanupDestIndex++);
585   return Dest;
586 }
587 
588 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
589   // Add this label to the current lexical scope if we're within any
590   // normal cleanups.  Jumps "in" to this label --- when permitted by
591   // the language --- may need to be routed around such cleanups.
592   if (EHStack.hasNormalCleanups() && CurLexicalScope)
593     CurLexicalScope->addLabel(D);
594 
595   JumpDest &Dest = LabelMap[D];
596 
597   // If we didn't need a forward reference to this label, just go
598   // ahead and create a destination at the current scope.
599   if (!Dest.isValid()) {
600     Dest = getJumpDestInCurrentScope(D->getName());
601 
602   // Otherwise, we need to give this label a target depth and remove
603   // it from the branch-fixups list.
604   } else {
605     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
606     Dest.setScopeDepth(EHStack.stable_begin());
607     ResolveBranchFixups(Dest.getBlock());
608   }
609 
610   EmitBlock(Dest.getBlock());
611 
612   // Emit debug info for labels.
613   if (CGDebugInfo *DI = getDebugInfo()) {
614     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
615       DI->setLocation(D->getLocation());
616       DI->EmitLabel(D, Builder);
617     }
618   }
619 
620   incrementProfileCounter(D->getStmt());
621 }
622 
623 /// Change the cleanup scope of the labels in this lexical scope to
624 /// match the scope of the enclosing context.
625 void CodeGenFunction::LexicalScope::rescopeLabels() {
626   assert(!Labels.empty());
627   EHScopeStack::stable_iterator innermostScope
628     = CGF.EHStack.getInnermostNormalCleanup();
629 
630   // Change the scope depth of all the labels.
631   for (SmallVectorImpl<const LabelDecl*>::const_iterator
632          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
633     assert(CGF.LabelMap.count(*i));
634     JumpDest &dest = CGF.LabelMap.find(*i)->second;
635     assert(dest.getScopeDepth().isValid());
636     assert(innermostScope.encloses(dest.getScopeDepth()));
637     dest.setScopeDepth(innermostScope);
638   }
639 
640   // Reparent the labels if the new scope also has cleanups.
641   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
642     ParentScope->Labels.append(Labels.begin(), Labels.end());
643   }
644 }
645 
646 
647 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
648   EmitLabel(S.getDecl());
649   EmitStmt(S.getSubStmt());
650 }
651 
652 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
653   bool nomerge = false;
654   const CallExpr *musttail = nullptr;
655 
656   for (const auto *A : S.getAttrs()) {
657     if (A->getKind() == attr::NoMerge) {
658       nomerge = true;
659     }
660     if (A->getKind() == attr::MustTail) {
661       const Stmt *Sub = S.getSubStmt();
662       const ReturnStmt *R = cast<ReturnStmt>(Sub);
663       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
664     }
665   }
666   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
667   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
668   EmitStmt(S.getSubStmt(), S.getAttrs());
669 }
670 
671 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
672   // If this code is reachable then emit a stop point (if generating
673   // debug info). We have to do this ourselves because we are on the
674   // "simple" statement path.
675   if (HaveInsertPoint())
676     EmitStopPoint(&S);
677 
678   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
679 }
680 
681 
682 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
683   if (const LabelDecl *Target = S.getConstantTarget()) {
684     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
685     return;
686   }
687 
688   // Ensure that we have an i8* for our PHI node.
689   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
690                                          Int8PtrTy, "addr");
691   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
692 
693   // Get the basic block for the indirect goto.
694   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
695 
696   // The first instruction in the block has to be the PHI for the switch dest,
697   // add an entry for this branch.
698   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
699 
700   EmitBranch(IndGotoBB);
701 }
702 
703 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
704   // C99 6.8.4.1: The first substatement is executed if the expression compares
705   // unequal to 0.  The condition must be a scalar type.
706   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
707 
708   if (S.getInit())
709     EmitStmt(S.getInit());
710 
711   if (S.getConditionVariable())
712     EmitDecl(*S.getConditionVariable());
713 
714   // If the condition constant folds and can be elided, try to avoid emitting
715   // the condition and the dead arm of the if/else.
716   bool CondConstant;
717   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
718                                    S.isConstexpr())) {
719     // Figure out which block (then or else) is executed.
720     const Stmt *Executed = S.getThen();
721     const Stmt *Skipped  = S.getElse();
722     if (!CondConstant)  // Condition false?
723       std::swap(Executed, Skipped);
724 
725     // If the skipped block has no labels in it, just emit the executed block.
726     // This avoids emitting dead code and simplifies the CFG substantially.
727     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
728       if (CondConstant)
729         incrementProfileCounter(&S);
730       if (Executed) {
731         RunCleanupsScope ExecutedScope(*this);
732         EmitStmt(Executed);
733       }
734       return;
735     }
736   }
737 
738   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
739   // the conditional branch.
740   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
741   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
742   llvm::BasicBlock *ElseBlock = ContBlock;
743   if (S.getElse())
744     ElseBlock = createBasicBlock("if.else");
745 
746   // Prefer the PGO based weights over the likelihood attribute.
747   // When the build isn't optimized the metadata isn't used, so don't generate
748   // it.
749   Stmt::Likelihood LH = Stmt::LH_None;
750   uint64_t Count = getProfileCount(S.getThen());
751   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
752     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
753   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
754 
755   // Emit the 'then' code.
756   EmitBlock(ThenBlock);
757   incrementProfileCounter(&S);
758   {
759     RunCleanupsScope ThenScope(*this);
760     EmitStmt(S.getThen());
761   }
762   EmitBranch(ContBlock);
763 
764   // Emit the 'else' code if present.
765   if (const Stmt *Else = S.getElse()) {
766     {
767       // There is no need to emit line number for an unconditional branch.
768       auto NL = ApplyDebugLocation::CreateEmpty(*this);
769       EmitBlock(ElseBlock);
770     }
771     {
772       RunCleanupsScope ElseScope(*this);
773       EmitStmt(Else);
774     }
775     {
776       // There is no need to emit line number for an unconditional branch.
777       auto NL = ApplyDebugLocation::CreateEmpty(*this);
778       EmitBranch(ContBlock);
779     }
780   }
781 
782   // Emit the continuation block for code after the if.
783   EmitBlock(ContBlock, true);
784 }
785 
786 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
787                                     ArrayRef<const Attr *> WhileAttrs) {
788   // Emit the header for the loop, which will also become
789   // the continue target.
790   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
791   EmitBlock(LoopHeader.getBlock());
792 
793   // Create an exit block for when the condition fails, which will
794   // also become the break target.
795   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
796 
797   // Store the blocks to use for break and continue.
798   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
799 
800   // C++ [stmt.while]p2:
801   //   When the condition of a while statement is a declaration, the
802   //   scope of the variable that is declared extends from its point
803   //   of declaration (3.3.2) to the end of the while statement.
804   //   [...]
805   //   The object created in a condition is destroyed and created
806   //   with each iteration of the loop.
807   RunCleanupsScope ConditionScope(*this);
808 
809   if (S.getConditionVariable())
810     EmitDecl(*S.getConditionVariable());
811 
812   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
813   // evaluation of the controlling expression takes place before each
814   // execution of the loop body.
815   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
816 
817   // while(1) is common, avoid extra exit blocks.  Be sure
818   // to correctly handle break/continue though.
819   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
820   bool CondIsConstInt = C != nullptr;
821   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
822   const SourceRange &R = S.getSourceRange();
823   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
824                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
825                  SourceLocToDebugLoc(R.getEnd()),
826                  checkIfLoopMustProgress(CondIsConstInt));
827 
828   // As long as the condition is true, go to the loop body.
829   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
830   if (EmitBoolCondBranch) {
831     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
832     if (ConditionScope.requiresCleanups())
833       ExitBlock = createBasicBlock("while.exit");
834     llvm::MDNode *Weights =
835         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
836     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
837       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
838           BoolCondVal, Stmt::getLikelihood(S.getBody()));
839     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
840 
841     if (ExitBlock != LoopExit.getBlock()) {
842       EmitBlock(ExitBlock);
843       EmitBranchThroughCleanup(LoopExit);
844     }
845   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
846     CGM.getDiags().Report(A->getLocation(),
847                           diag::warn_attribute_has_no_effect_on_infinite_loop)
848         << A << A->getRange();
849     CGM.getDiags().Report(
850         S.getWhileLoc(),
851         diag::note_attribute_has_no_effect_on_infinite_loop_here)
852         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
853   }
854 
855   // Emit the loop body.  We have to emit this in a cleanup scope
856   // because it might be a singleton DeclStmt.
857   {
858     RunCleanupsScope BodyScope(*this);
859     EmitBlock(LoopBody);
860     incrementProfileCounter(&S);
861     EmitStmt(S.getBody());
862   }
863 
864   BreakContinueStack.pop_back();
865 
866   // Immediately force cleanup.
867   ConditionScope.ForceCleanup();
868 
869   EmitStopPoint(&S);
870   // Branch to the loop header again.
871   EmitBranch(LoopHeader.getBlock());
872 
873   LoopStack.pop();
874 
875   // Emit the exit block.
876   EmitBlock(LoopExit.getBlock(), true);
877 
878   // The LoopHeader typically is just a branch if we skipped emitting
879   // a branch, try to erase it.
880   if (!EmitBoolCondBranch)
881     SimplifyForwardingBlocks(LoopHeader.getBlock());
882 }
883 
884 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
885                                  ArrayRef<const Attr *> DoAttrs) {
886   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
887   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
888 
889   uint64_t ParentCount = getCurrentProfileCount();
890 
891   // Store the blocks to use for break and continue.
892   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
893 
894   // Emit the body of the loop.
895   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
896 
897   EmitBlockWithFallThrough(LoopBody, &S);
898   {
899     RunCleanupsScope BodyScope(*this);
900     EmitStmt(S.getBody());
901   }
902 
903   EmitBlock(LoopCond.getBlock());
904 
905   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
906   // after each execution of the loop body."
907 
908   // Evaluate the conditional in the while header.
909   // C99 6.8.5p2/p4: The first substatement is executed if the expression
910   // compares unequal to 0.  The condition must be a scalar type.
911   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
912 
913   BreakContinueStack.pop_back();
914 
915   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
916   // to correctly handle break/continue though.
917   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
918   bool CondIsConstInt = C;
919   bool EmitBoolCondBranch = !C || !C->isZero();
920 
921   const SourceRange &R = S.getSourceRange();
922   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
923                  SourceLocToDebugLoc(R.getBegin()),
924                  SourceLocToDebugLoc(R.getEnd()),
925                  checkIfLoopMustProgress(CondIsConstInt));
926 
927   // As long as the condition is true, iterate the loop.
928   if (EmitBoolCondBranch) {
929     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
930     Builder.CreateCondBr(
931         BoolCondVal, LoopBody, LoopExit.getBlock(),
932         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
933   }
934 
935   LoopStack.pop();
936 
937   // Emit the exit block.
938   EmitBlock(LoopExit.getBlock());
939 
940   // The DoCond block typically is just a branch if we skipped
941   // emitting a branch, try to erase it.
942   if (!EmitBoolCondBranch)
943     SimplifyForwardingBlocks(LoopCond.getBlock());
944 }
945 
946 void CodeGenFunction::EmitForStmt(const ForStmt &S,
947                                   ArrayRef<const Attr *> ForAttrs) {
948   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
949 
950   LexicalScope ForScope(*this, S.getSourceRange());
951 
952   // Evaluate the first part before the loop.
953   if (S.getInit())
954     EmitStmt(S.getInit());
955 
956   // Start the loop with a block that tests the condition.
957   // If there's an increment, the continue scope will be overwritten
958   // later.
959   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
960   llvm::BasicBlock *CondBlock = CondDest.getBlock();
961   EmitBlock(CondBlock);
962 
963   Expr::EvalResult Result;
964   bool CondIsConstInt =
965       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
966 
967   const SourceRange &R = S.getSourceRange();
968   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
969                  SourceLocToDebugLoc(R.getBegin()),
970                  SourceLocToDebugLoc(R.getEnd()),
971                  checkIfLoopMustProgress(CondIsConstInt));
972 
973   // Create a cleanup scope for the condition variable cleanups.
974   LexicalScope ConditionScope(*this, S.getSourceRange());
975 
976   // If the for loop doesn't have an increment we can just use the condition as
977   // the continue block. Otherwise, if there is no condition variable, we can
978   // form the continue block now. If there is a condition variable, we can't
979   // form the continue block until after we've emitted the condition, because
980   // the condition is in scope in the increment, but Sema's jump diagnostics
981   // ensure that there are no continues from the condition variable that jump
982   // to the loop increment.
983   JumpDest Continue;
984   if (!S.getInc())
985     Continue = CondDest;
986   else if (!S.getConditionVariable())
987     Continue = getJumpDestInCurrentScope("for.inc");
988   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
989 
990   if (S.getCond()) {
991     // If the for statement has a condition scope, emit the local variable
992     // declaration.
993     if (S.getConditionVariable()) {
994       EmitDecl(*S.getConditionVariable());
995 
996       // We have entered the condition variable's scope, so we're now able to
997       // jump to the continue block.
998       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
999       BreakContinueStack.back().ContinueBlock = Continue;
1000     }
1001 
1002     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1003     // If there are any cleanups between here and the loop-exit scope,
1004     // create a block to stage a loop exit along.
1005     if (ForScope.requiresCleanups())
1006       ExitBlock = createBasicBlock("for.cond.cleanup");
1007 
1008     // As long as the condition is true, iterate the loop.
1009     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1010 
1011     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1012     // compares unequal to 0.  The condition must be a scalar type.
1013     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1014     llvm::MDNode *Weights =
1015         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1016     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1017       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1018           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1019 
1020     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1021 
1022     if (ExitBlock != LoopExit.getBlock()) {
1023       EmitBlock(ExitBlock);
1024       EmitBranchThroughCleanup(LoopExit);
1025     }
1026 
1027     EmitBlock(ForBody);
1028   } else {
1029     // Treat it as a non-zero constant.  Don't even create a new block for the
1030     // body, just fall into it.
1031   }
1032   incrementProfileCounter(&S);
1033 
1034   {
1035     // Create a separate cleanup scope for the body, in case it is not
1036     // a compound statement.
1037     RunCleanupsScope BodyScope(*this);
1038     EmitStmt(S.getBody());
1039   }
1040 
1041   // If there is an increment, emit it next.
1042   if (S.getInc()) {
1043     EmitBlock(Continue.getBlock());
1044     EmitStmt(S.getInc());
1045   }
1046 
1047   BreakContinueStack.pop_back();
1048 
1049   ConditionScope.ForceCleanup();
1050 
1051   EmitStopPoint(&S);
1052   EmitBranch(CondBlock);
1053 
1054   ForScope.ForceCleanup();
1055 
1056   LoopStack.pop();
1057 
1058   // Emit the fall-through block.
1059   EmitBlock(LoopExit.getBlock(), true);
1060 }
1061 
1062 void
1063 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1064                                      ArrayRef<const Attr *> ForAttrs) {
1065   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1066 
1067   LexicalScope ForScope(*this, S.getSourceRange());
1068 
1069   // Evaluate the first pieces before the loop.
1070   if (S.getInit())
1071     EmitStmt(S.getInit());
1072   EmitStmt(S.getRangeStmt());
1073   EmitStmt(S.getBeginStmt());
1074   EmitStmt(S.getEndStmt());
1075 
1076   // Start the loop with a block that tests the condition.
1077   // If there's an increment, the continue scope will be overwritten
1078   // later.
1079   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1080   EmitBlock(CondBlock);
1081 
1082   const SourceRange &R = S.getSourceRange();
1083   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1084                  SourceLocToDebugLoc(R.getBegin()),
1085                  SourceLocToDebugLoc(R.getEnd()));
1086 
1087   // If there are any cleanups between here and the loop-exit scope,
1088   // create a block to stage a loop exit along.
1089   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1090   if (ForScope.requiresCleanups())
1091     ExitBlock = createBasicBlock("for.cond.cleanup");
1092 
1093   // The loop body, consisting of the specified body and the loop variable.
1094   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1095 
1096   // The body is executed if the expression, contextually converted
1097   // to bool, is true.
1098   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1099   llvm::MDNode *Weights =
1100       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1101   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1102     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1103         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1104   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1105 
1106   if (ExitBlock != LoopExit.getBlock()) {
1107     EmitBlock(ExitBlock);
1108     EmitBranchThroughCleanup(LoopExit);
1109   }
1110 
1111   EmitBlock(ForBody);
1112   incrementProfileCounter(&S);
1113 
1114   // Create a block for the increment. In case of a 'continue', we jump there.
1115   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1116 
1117   // Store the blocks to use for break and continue.
1118   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1119 
1120   {
1121     // Create a separate cleanup scope for the loop variable and body.
1122     LexicalScope BodyScope(*this, S.getSourceRange());
1123     EmitStmt(S.getLoopVarStmt());
1124     EmitStmt(S.getBody());
1125   }
1126 
1127   EmitStopPoint(&S);
1128   // If there is an increment, emit it next.
1129   EmitBlock(Continue.getBlock());
1130   EmitStmt(S.getInc());
1131 
1132   BreakContinueStack.pop_back();
1133 
1134   EmitBranch(CondBlock);
1135 
1136   ForScope.ForceCleanup();
1137 
1138   LoopStack.pop();
1139 
1140   // Emit the fall-through block.
1141   EmitBlock(LoopExit.getBlock(), true);
1142 }
1143 
1144 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1145   if (RV.isScalar()) {
1146     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1147   } else if (RV.isAggregate()) {
1148     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1149     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1150     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1151   } else {
1152     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1153                        /*init*/ true);
1154   }
1155   EmitBranchThroughCleanup(ReturnBlock);
1156 }
1157 
1158 namespace {
1159 // RAII struct used to save and restore a return statment's result expression.
1160 struct SaveRetExprRAII {
1161   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1162       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1163     CGF.RetExpr = RetExpr;
1164   }
1165   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1166   const Expr *OldRetExpr;
1167   CodeGenFunction &CGF;
1168 };
1169 } // namespace
1170 
1171 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1172 /// if the function returns void, or may be missing one if the function returns
1173 /// non-void.  Fun stuff :).
1174 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1175   if (requiresReturnValueCheck()) {
1176     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1177     auto *SLocPtr =
1178         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1179                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1180     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1181     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1182     assert(ReturnLocation.isValid() && "No valid return location");
1183     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1184                         ReturnLocation);
1185   }
1186 
1187   // Returning from an outlined SEH helper is UB, and we already warn on it.
1188   if (IsOutlinedSEHHelper) {
1189     Builder.CreateUnreachable();
1190     Builder.ClearInsertionPoint();
1191   }
1192 
1193   // Emit the result value, even if unused, to evaluate the side effects.
1194   const Expr *RV = S.getRetValue();
1195 
1196   // Record the result expression of the return statement. The recorded
1197   // expression is used to determine whether a block capture's lifetime should
1198   // end at the end of the full expression as opposed to the end of the scope
1199   // enclosing the block expression.
1200   //
1201   // This permits a small, easily-implemented exception to our over-conservative
1202   // rules about not jumping to statements following block literals with
1203   // non-trivial cleanups.
1204   SaveRetExprRAII SaveRetExpr(RV, *this);
1205 
1206   RunCleanupsScope cleanupScope(*this);
1207   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1208     RV = EWC->getSubExpr();
1209   // FIXME: Clean this up by using an LValue for ReturnTemp,
1210   // EmitStoreThroughLValue, and EmitAnyExpr.
1211   // Check if the NRVO candidate was not globalized in OpenMP mode.
1212   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1213       S.getNRVOCandidate()->isNRVOVariable() &&
1214       (!getLangOpts().OpenMP ||
1215        !CGM.getOpenMPRuntime()
1216             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1217             .isValid())) {
1218     // Apply the named return value optimization for this return statement,
1219     // which means doing nothing: the appropriate result has already been
1220     // constructed into the NRVO variable.
1221 
1222     // If there is an NRVO flag for this variable, set it to 1 into indicate
1223     // that the cleanup code should not destroy the variable.
1224     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1225       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1226   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1227     // Make sure not to return anything, but evaluate the expression
1228     // for side effects.
1229     if (RV)
1230       EmitAnyExpr(RV);
1231   } else if (!RV) {
1232     // Do nothing (return value is left uninitialized)
1233   } else if (FnRetTy->isReferenceType()) {
1234     // If this function returns a reference, take the address of the expression
1235     // rather than the value.
1236     RValue Result = EmitReferenceBindingToExpr(RV);
1237     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1238   } else {
1239     switch (getEvaluationKind(RV->getType())) {
1240     case TEK_Scalar:
1241       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1242       break;
1243     case TEK_Complex:
1244       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1245                                 /*isInit*/ true);
1246       break;
1247     case TEK_Aggregate:
1248       EmitAggExpr(RV, AggValueSlot::forAddr(
1249                           ReturnValue, Qualifiers(),
1250                           AggValueSlot::IsDestructed,
1251                           AggValueSlot::DoesNotNeedGCBarriers,
1252                           AggValueSlot::IsNotAliased,
1253                           getOverlapForReturnValue()));
1254       break;
1255     }
1256   }
1257 
1258   ++NumReturnExprs;
1259   if (!RV || RV->isEvaluatable(getContext()))
1260     ++NumSimpleReturnExprs;
1261 
1262   cleanupScope.ForceCleanup();
1263   EmitBranchThroughCleanup(ReturnBlock);
1264 }
1265 
1266 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1267   // As long as debug info is modeled with instructions, we have to ensure we
1268   // have a place to insert here and write the stop point here.
1269   if (HaveInsertPoint())
1270     EmitStopPoint(&S);
1271 
1272   for (const auto *I : S.decls())
1273     EmitDecl(*I);
1274 }
1275 
1276 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1277   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1278 
1279   // If this code is reachable then emit a stop point (if generating
1280   // debug info). We have to do this ourselves because we are on the
1281   // "simple" statement path.
1282   if (HaveInsertPoint())
1283     EmitStopPoint(&S);
1284 
1285   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1286 }
1287 
1288 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1289   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1290 
1291   // If this code is reachable then emit a stop point (if generating
1292   // debug info). We have to do this ourselves because we are on the
1293   // "simple" statement path.
1294   if (HaveInsertPoint())
1295     EmitStopPoint(&S);
1296 
1297   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1298 }
1299 
1300 /// EmitCaseStmtRange - If case statement range is not too big then
1301 /// add multiple cases to switch instruction, one for each value within
1302 /// the range. If range is too big then emit "if" condition check.
1303 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1304                                         ArrayRef<const Attr *> Attrs) {
1305   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1306 
1307   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1308   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1309 
1310   // Emit the code for this case. We do this first to make sure it is
1311   // properly chained from our predecessor before generating the
1312   // switch machinery to enter this block.
1313   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1314   EmitBlockWithFallThrough(CaseDest, &S);
1315   EmitStmt(S.getSubStmt());
1316 
1317   // If range is empty, do nothing.
1318   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1319     return;
1320 
1321   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1322   llvm::APInt Range = RHS - LHS;
1323   // FIXME: parameters such as this should not be hardcoded.
1324   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1325     // Range is small enough to add multiple switch instruction cases.
1326     uint64_t Total = getProfileCount(&S);
1327     unsigned NCases = Range.getZExtValue() + 1;
1328     // We only have one region counter for the entire set of cases here, so we
1329     // need to divide the weights evenly between the generated cases, ensuring
1330     // that the total weight is preserved. E.g., a weight of 5 over three cases
1331     // will be distributed as weights of 2, 2, and 1.
1332     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1333     for (unsigned I = 0; I != NCases; ++I) {
1334       if (SwitchWeights)
1335         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1336       else if (SwitchLikelihood)
1337         SwitchLikelihood->push_back(LH);
1338 
1339       if (Rem)
1340         Rem--;
1341       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1342       ++LHS;
1343     }
1344     return;
1345   }
1346 
1347   // The range is too big. Emit "if" condition into a new block,
1348   // making sure to save and restore the current insertion point.
1349   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1350 
1351   // Push this test onto the chain of range checks (which terminates
1352   // in the default basic block). The switch's default will be changed
1353   // to the top of this chain after switch emission is complete.
1354   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1355   CaseRangeBlock = createBasicBlock("sw.caserange");
1356 
1357   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1358   Builder.SetInsertPoint(CaseRangeBlock);
1359 
1360   // Emit range check.
1361   llvm::Value *Diff =
1362     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1363   llvm::Value *Cond =
1364     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1365 
1366   llvm::MDNode *Weights = nullptr;
1367   if (SwitchWeights) {
1368     uint64_t ThisCount = getProfileCount(&S);
1369     uint64_t DefaultCount = (*SwitchWeights)[0];
1370     Weights = createProfileWeights(ThisCount, DefaultCount);
1371 
1372     // Since we're chaining the switch default through each large case range, we
1373     // need to update the weight for the default, ie, the first case, to include
1374     // this case.
1375     (*SwitchWeights)[0] += ThisCount;
1376   } else if (SwitchLikelihood)
1377     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1378 
1379   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1380 
1381   // Restore the appropriate insertion point.
1382   if (RestoreBB)
1383     Builder.SetInsertPoint(RestoreBB);
1384   else
1385     Builder.ClearInsertionPoint();
1386 }
1387 
1388 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1389                                    ArrayRef<const Attr *> Attrs) {
1390   // If there is no enclosing switch instance that we're aware of, then this
1391   // case statement and its block can be elided.  This situation only happens
1392   // when we've constant-folded the switch, are emitting the constant case,
1393   // and part of the constant case includes another case statement.  For
1394   // instance: switch (4) { case 4: do { case 5: } while (1); }
1395   if (!SwitchInsn) {
1396     EmitStmt(S.getSubStmt());
1397     return;
1398   }
1399 
1400   // Handle case ranges.
1401   if (S.getRHS()) {
1402     EmitCaseStmtRange(S, Attrs);
1403     return;
1404   }
1405 
1406   llvm::ConstantInt *CaseVal =
1407     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1408   if (SwitchLikelihood)
1409     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1410 
1411   // If the body of the case is just a 'break', try to not emit an empty block.
1412   // If we're profiling or we're not optimizing, leave the block in for better
1413   // debug and coverage analysis.
1414   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1415       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1416       isa<BreakStmt>(S.getSubStmt())) {
1417     JumpDest Block = BreakContinueStack.back().BreakBlock;
1418 
1419     // Only do this optimization if there are no cleanups that need emitting.
1420     if (isObviouslyBranchWithoutCleanups(Block)) {
1421       if (SwitchWeights)
1422         SwitchWeights->push_back(getProfileCount(&S));
1423       SwitchInsn->addCase(CaseVal, Block.getBlock());
1424 
1425       // If there was a fallthrough into this case, make sure to redirect it to
1426       // the end of the switch as well.
1427       if (Builder.GetInsertBlock()) {
1428         Builder.CreateBr(Block.getBlock());
1429         Builder.ClearInsertionPoint();
1430       }
1431       return;
1432     }
1433   }
1434 
1435   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1436   EmitBlockWithFallThrough(CaseDest, &S);
1437   if (SwitchWeights)
1438     SwitchWeights->push_back(getProfileCount(&S));
1439   SwitchInsn->addCase(CaseVal, CaseDest);
1440 
1441   // Recursively emitting the statement is acceptable, but is not wonderful for
1442   // code where we have many case statements nested together, i.e.:
1443   //  case 1:
1444   //    case 2:
1445   //      case 3: etc.
1446   // Handling this recursively will create a new block for each case statement
1447   // that falls through to the next case which is IR intensive.  It also causes
1448   // deep recursion which can run into stack depth limitations.  Handle
1449   // sequential non-range case statements specially.
1450   //
1451   // TODO When the next case has a likelihood attribute the code returns to the
1452   // recursive algorithm. Maybe improve this case if it becomes common practice
1453   // to use a lot of attributes.
1454   const CaseStmt *CurCase = &S;
1455   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1456 
1457   // Otherwise, iteratively add consecutive cases to this switch stmt.
1458   while (NextCase && NextCase->getRHS() == nullptr) {
1459     CurCase = NextCase;
1460     llvm::ConstantInt *CaseVal =
1461       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1462 
1463     if (SwitchWeights)
1464       SwitchWeights->push_back(getProfileCount(NextCase));
1465     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1466       CaseDest = createBasicBlock("sw.bb");
1467       EmitBlockWithFallThrough(CaseDest, CurCase);
1468     }
1469     // Since this loop is only executed when the CaseStmt has no attributes
1470     // use a hard-coded value.
1471     if (SwitchLikelihood)
1472       SwitchLikelihood->push_back(Stmt::LH_None);
1473 
1474     SwitchInsn->addCase(CaseVal, CaseDest);
1475     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1476   }
1477 
1478   // Normal default recursion for non-cases.
1479   EmitStmt(CurCase->getSubStmt());
1480 }
1481 
1482 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1483                                       ArrayRef<const Attr *> Attrs) {
1484   // If there is no enclosing switch instance that we're aware of, then this
1485   // default statement can be elided. This situation only happens when we've
1486   // constant-folded the switch.
1487   if (!SwitchInsn) {
1488     EmitStmt(S.getSubStmt());
1489     return;
1490   }
1491 
1492   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1493   assert(DefaultBlock->empty() &&
1494          "EmitDefaultStmt: Default block already defined?");
1495 
1496   if (SwitchLikelihood)
1497     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1498 
1499   EmitBlockWithFallThrough(DefaultBlock, &S);
1500 
1501   EmitStmt(S.getSubStmt());
1502 }
1503 
1504 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1505 /// constant value that is being switched on, see if we can dead code eliminate
1506 /// the body of the switch to a simple series of statements to emit.  Basically,
1507 /// on a switch (5) we want to find these statements:
1508 ///    case 5:
1509 ///      printf(...);    <--
1510 ///      ++i;            <--
1511 ///      break;
1512 ///
1513 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1514 /// transformation (for example, one of the elided statements contains a label
1515 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1516 /// should include statements after it (e.g. the printf() line is a substmt of
1517 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1518 /// statement, then return CSFC_Success.
1519 ///
1520 /// If Case is non-null, then we are looking for the specified case, checking
1521 /// that nothing we jump over contains labels.  If Case is null, then we found
1522 /// the case and are looking for the break.
1523 ///
1524 /// If the recursive walk actually finds our Case, then we set FoundCase to
1525 /// true.
1526 ///
1527 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1528 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1529                                             const SwitchCase *Case,
1530                                             bool &FoundCase,
1531                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1532   // If this is a null statement, just succeed.
1533   if (!S)
1534     return Case ? CSFC_Success : CSFC_FallThrough;
1535 
1536   // If this is the switchcase (case 4: or default) that we're looking for, then
1537   // we're in business.  Just add the substatement.
1538   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1539     if (S == Case) {
1540       FoundCase = true;
1541       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1542                                       ResultStmts);
1543     }
1544 
1545     // Otherwise, this is some other case or default statement, just ignore it.
1546     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1547                                     ResultStmts);
1548   }
1549 
1550   // If we are in the live part of the code and we found our break statement,
1551   // return a success!
1552   if (!Case && isa<BreakStmt>(S))
1553     return CSFC_Success;
1554 
1555   // If this is a switch statement, then it might contain the SwitchCase, the
1556   // break, or neither.
1557   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1558     // Handle this as two cases: we might be looking for the SwitchCase (if so
1559     // the skipped statements must be skippable) or we might already have it.
1560     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1561     bool StartedInLiveCode = FoundCase;
1562     unsigned StartSize = ResultStmts.size();
1563 
1564     // If we've not found the case yet, scan through looking for it.
1565     if (Case) {
1566       // Keep track of whether we see a skipped declaration.  The code could be
1567       // using the declaration even if it is skipped, so we can't optimize out
1568       // the decl if the kept statements might refer to it.
1569       bool HadSkippedDecl = false;
1570 
1571       // If we're looking for the case, just see if we can skip each of the
1572       // substatements.
1573       for (; Case && I != E; ++I) {
1574         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1575 
1576         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1577         case CSFC_Failure: return CSFC_Failure;
1578         case CSFC_Success:
1579           // A successful result means that either 1) that the statement doesn't
1580           // have the case and is skippable, or 2) does contain the case value
1581           // and also contains the break to exit the switch.  In the later case,
1582           // we just verify the rest of the statements are elidable.
1583           if (FoundCase) {
1584             // If we found the case and skipped declarations, we can't do the
1585             // optimization.
1586             if (HadSkippedDecl)
1587               return CSFC_Failure;
1588 
1589             for (++I; I != E; ++I)
1590               if (CodeGenFunction::ContainsLabel(*I, true))
1591                 return CSFC_Failure;
1592             return CSFC_Success;
1593           }
1594           break;
1595         case CSFC_FallThrough:
1596           // If we have a fallthrough condition, then we must have found the
1597           // case started to include statements.  Consider the rest of the
1598           // statements in the compound statement as candidates for inclusion.
1599           assert(FoundCase && "Didn't find case but returned fallthrough?");
1600           // We recursively found Case, so we're not looking for it anymore.
1601           Case = nullptr;
1602 
1603           // If we found the case and skipped declarations, we can't do the
1604           // optimization.
1605           if (HadSkippedDecl)
1606             return CSFC_Failure;
1607           break;
1608         }
1609       }
1610 
1611       if (!FoundCase)
1612         return CSFC_Success;
1613 
1614       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1615     }
1616 
1617     // If we have statements in our range, then we know that the statements are
1618     // live and need to be added to the set of statements we're tracking.
1619     bool AnyDecls = false;
1620     for (; I != E; ++I) {
1621       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1622 
1623       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1624       case CSFC_Failure: return CSFC_Failure;
1625       case CSFC_FallThrough:
1626         // A fallthrough result means that the statement was simple and just
1627         // included in ResultStmt, keep adding them afterwards.
1628         break;
1629       case CSFC_Success:
1630         // A successful result means that we found the break statement and
1631         // stopped statement inclusion.  We just ensure that any leftover stmts
1632         // are skippable and return success ourselves.
1633         for (++I; I != E; ++I)
1634           if (CodeGenFunction::ContainsLabel(*I, true))
1635             return CSFC_Failure;
1636         return CSFC_Success;
1637       }
1638     }
1639 
1640     // If we're about to fall out of a scope without hitting a 'break;', we
1641     // can't perform the optimization if there were any decls in that scope
1642     // (we'd lose their end-of-lifetime).
1643     if (AnyDecls) {
1644       // If the entire compound statement was live, there's one more thing we
1645       // can try before giving up: emit the whole thing as a single statement.
1646       // We can do that unless the statement contains a 'break;'.
1647       // FIXME: Such a break must be at the end of a construct within this one.
1648       // We could emit this by just ignoring the BreakStmts entirely.
1649       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1650         ResultStmts.resize(StartSize);
1651         ResultStmts.push_back(S);
1652       } else {
1653         return CSFC_Failure;
1654       }
1655     }
1656 
1657     return CSFC_FallThrough;
1658   }
1659 
1660   // Okay, this is some other statement that we don't handle explicitly, like a
1661   // for statement or increment etc.  If we are skipping over this statement,
1662   // just verify it doesn't have labels, which would make it invalid to elide.
1663   if (Case) {
1664     if (CodeGenFunction::ContainsLabel(S, true))
1665       return CSFC_Failure;
1666     return CSFC_Success;
1667   }
1668 
1669   // Otherwise, we want to include this statement.  Everything is cool with that
1670   // so long as it doesn't contain a break out of the switch we're in.
1671   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1672 
1673   // Otherwise, everything is great.  Include the statement and tell the caller
1674   // that we fall through and include the next statement as well.
1675   ResultStmts.push_back(S);
1676   return CSFC_FallThrough;
1677 }
1678 
1679 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1680 /// then invoke CollectStatementsForCase to find the list of statements to emit
1681 /// for a switch on constant.  See the comment above CollectStatementsForCase
1682 /// for more details.
1683 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1684                                        const llvm::APSInt &ConstantCondValue,
1685                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1686                                        ASTContext &C,
1687                                        const SwitchCase *&ResultCase) {
1688   // First step, find the switch case that is being branched to.  We can do this
1689   // efficiently by scanning the SwitchCase list.
1690   const SwitchCase *Case = S.getSwitchCaseList();
1691   const DefaultStmt *DefaultCase = nullptr;
1692 
1693   for (; Case; Case = Case->getNextSwitchCase()) {
1694     // It's either a default or case.  Just remember the default statement in
1695     // case we're not jumping to any numbered cases.
1696     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1697       DefaultCase = DS;
1698       continue;
1699     }
1700 
1701     // Check to see if this case is the one we're looking for.
1702     const CaseStmt *CS = cast<CaseStmt>(Case);
1703     // Don't handle case ranges yet.
1704     if (CS->getRHS()) return false;
1705 
1706     // If we found our case, remember it as 'case'.
1707     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1708       break;
1709   }
1710 
1711   // If we didn't find a matching case, we use a default if it exists, or we
1712   // elide the whole switch body!
1713   if (!Case) {
1714     // It is safe to elide the body of the switch if it doesn't contain labels
1715     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1716     if (!DefaultCase)
1717       return !CodeGenFunction::ContainsLabel(&S);
1718     Case = DefaultCase;
1719   }
1720 
1721   // Ok, we know which case is being jumped to, try to collect all the
1722   // statements that follow it.  This can fail for a variety of reasons.  Also,
1723   // check to see that the recursive walk actually found our case statement.
1724   // Insane cases like this can fail to find it in the recursive walk since we
1725   // don't handle every stmt kind:
1726   // switch (4) {
1727   //   while (1) {
1728   //     case 4: ...
1729   bool FoundCase = false;
1730   ResultCase = Case;
1731   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1732                                   ResultStmts) != CSFC_Failure &&
1733          FoundCase;
1734 }
1735 
1736 static Optional<SmallVector<uint64_t, 16>>
1737 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1738   // Are there enough branches to weight them?
1739   if (Likelihoods.size() <= 1)
1740     return None;
1741 
1742   uint64_t NumUnlikely = 0;
1743   uint64_t NumNone = 0;
1744   uint64_t NumLikely = 0;
1745   for (const auto LH : Likelihoods) {
1746     switch (LH) {
1747     case Stmt::LH_Unlikely:
1748       ++NumUnlikely;
1749       break;
1750     case Stmt::LH_None:
1751       ++NumNone;
1752       break;
1753     case Stmt::LH_Likely:
1754       ++NumLikely;
1755       break;
1756     }
1757   }
1758 
1759   // Is there a likelihood attribute used?
1760   if (NumUnlikely == 0 && NumLikely == 0)
1761     return None;
1762 
1763   // When multiple cases share the same code they can be combined during
1764   // optimization. In that case the weights of the branch will be the sum of
1765   // the individual weights. Make sure the combined sum of all neutral cases
1766   // doesn't exceed the value of a single likely attribute.
1767   // The additions both avoid divisions by 0 and make sure the weights of None
1768   // don't exceed the weight of Likely.
1769   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1770   const uint64_t None = Likely / (NumNone + 1);
1771   const uint64_t Unlikely = 0;
1772 
1773   SmallVector<uint64_t, 16> Result;
1774   Result.reserve(Likelihoods.size());
1775   for (const auto LH : Likelihoods) {
1776     switch (LH) {
1777     case Stmt::LH_Unlikely:
1778       Result.push_back(Unlikely);
1779       break;
1780     case Stmt::LH_None:
1781       Result.push_back(None);
1782       break;
1783     case Stmt::LH_Likely:
1784       Result.push_back(Likely);
1785       break;
1786     }
1787   }
1788 
1789   return Result;
1790 }
1791 
1792 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1793   // Handle nested switch statements.
1794   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1795   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1796   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1797   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1798 
1799   // See if we can constant fold the condition of the switch and therefore only
1800   // emit the live case statement (if any) of the switch.
1801   llvm::APSInt ConstantCondValue;
1802   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1803     SmallVector<const Stmt*, 4> CaseStmts;
1804     const SwitchCase *Case = nullptr;
1805     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1806                                    getContext(), Case)) {
1807       if (Case)
1808         incrementProfileCounter(Case);
1809       RunCleanupsScope ExecutedScope(*this);
1810 
1811       if (S.getInit())
1812         EmitStmt(S.getInit());
1813 
1814       // Emit the condition variable if needed inside the entire cleanup scope
1815       // used by this special case for constant folded switches.
1816       if (S.getConditionVariable())
1817         EmitDecl(*S.getConditionVariable());
1818 
1819       // At this point, we are no longer "within" a switch instance, so
1820       // we can temporarily enforce this to ensure that any embedded case
1821       // statements are not emitted.
1822       SwitchInsn = nullptr;
1823 
1824       // Okay, we can dead code eliminate everything except this case.  Emit the
1825       // specified series of statements and we're good.
1826       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1827         EmitStmt(CaseStmts[i]);
1828       incrementProfileCounter(&S);
1829 
1830       // Now we want to restore the saved switch instance so that nested
1831       // switches continue to function properly
1832       SwitchInsn = SavedSwitchInsn;
1833 
1834       return;
1835     }
1836   }
1837 
1838   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1839 
1840   RunCleanupsScope ConditionScope(*this);
1841 
1842   if (S.getInit())
1843     EmitStmt(S.getInit());
1844 
1845   if (S.getConditionVariable())
1846     EmitDecl(*S.getConditionVariable());
1847   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1848 
1849   // Create basic block to hold stuff that comes after switch
1850   // statement. We also need to create a default block now so that
1851   // explicit case ranges tests can have a place to jump to on
1852   // failure.
1853   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1854   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1855   if (PGO.haveRegionCounts()) {
1856     // Walk the SwitchCase list to find how many there are.
1857     uint64_t DefaultCount = 0;
1858     unsigned NumCases = 0;
1859     for (const SwitchCase *Case = S.getSwitchCaseList();
1860          Case;
1861          Case = Case->getNextSwitchCase()) {
1862       if (isa<DefaultStmt>(Case))
1863         DefaultCount = getProfileCount(Case);
1864       NumCases += 1;
1865     }
1866     SwitchWeights = new SmallVector<uint64_t, 16>();
1867     SwitchWeights->reserve(NumCases);
1868     // The default needs to be first. We store the edge count, so we already
1869     // know the right weight.
1870     SwitchWeights->push_back(DefaultCount);
1871   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1872     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1873     // Initialize the default case.
1874     SwitchLikelihood->push_back(Stmt::LH_None);
1875   }
1876 
1877   CaseRangeBlock = DefaultBlock;
1878 
1879   // Clear the insertion point to indicate we are in unreachable code.
1880   Builder.ClearInsertionPoint();
1881 
1882   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1883   // then reuse last ContinueBlock.
1884   JumpDest OuterContinue;
1885   if (!BreakContinueStack.empty())
1886     OuterContinue = BreakContinueStack.back().ContinueBlock;
1887 
1888   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1889 
1890   // Emit switch body.
1891   EmitStmt(S.getBody());
1892 
1893   BreakContinueStack.pop_back();
1894 
1895   // Update the default block in case explicit case range tests have
1896   // been chained on top.
1897   SwitchInsn->setDefaultDest(CaseRangeBlock);
1898 
1899   // If a default was never emitted:
1900   if (!DefaultBlock->getParent()) {
1901     // If we have cleanups, emit the default block so that there's a
1902     // place to jump through the cleanups from.
1903     if (ConditionScope.requiresCleanups()) {
1904       EmitBlock(DefaultBlock);
1905 
1906     // Otherwise, just forward the default block to the switch end.
1907     } else {
1908       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1909       delete DefaultBlock;
1910     }
1911   }
1912 
1913   ConditionScope.ForceCleanup();
1914 
1915   // Emit continuation.
1916   EmitBlock(SwitchExit.getBlock(), true);
1917   incrementProfileCounter(&S);
1918 
1919   // If the switch has a condition wrapped by __builtin_unpredictable,
1920   // create metadata that specifies that the switch is unpredictable.
1921   // Don't bother if not optimizing because that metadata would not be used.
1922   auto *Call = dyn_cast<CallExpr>(S.getCond());
1923   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
1924     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
1925     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
1926       llvm::MDBuilder MDHelper(getLLVMContext());
1927       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
1928                               MDHelper.createUnpredictable());
1929     }
1930   }
1931 
1932   if (SwitchWeights) {
1933     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1934            "switch weights do not match switch cases");
1935     // If there's only one jump destination there's no sense weighting it.
1936     if (SwitchWeights->size() > 1)
1937       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1938                               createProfileWeights(*SwitchWeights));
1939     delete SwitchWeights;
1940   } else if (SwitchLikelihood) {
1941     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
1942            "switch likelihoods do not match switch cases");
1943     Optional<SmallVector<uint64_t, 16>> LHW =
1944         getLikelihoodWeights(*SwitchLikelihood);
1945     if (LHW) {
1946       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
1947       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1948                               createProfileWeights(*LHW));
1949     }
1950     delete SwitchLikelihood;
1951   }
1952   SwitchInsn = SavedSwitchInsn;
1953   SwitchWeights = SavedSwitchWeights;
1954   SwitchLikelihood = SavedSwitchLikelihood;
1955   CaseRangeBlock = SavedCRBlock;
1956 }
1957 
1958 static std::string
1959 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1960                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1961   std::string Result;
1962 
1963   while (*Constraint) {
1964     switch (*Constraint) {
1965     default:
1966       Result += Target.convertConstraint(Constraint);
1967       break;
1968     // Ignore these
1969     case '*':
1970     case '?':
1971     case '!':
1972     case '=': // Will see this and the following in mult-alt constraints.
1973     case '+':
1974       break;
1975     case '#': // Ignore the rest of the constraint alternative.
1976       while (Constraint[1] && Constraint[1] != ',')
1977         Constraint++;
1978       break;
1979     case '&':
1980     case '%':
1981       Result += *Constraint;
1982       while (Constraint[1] && Constraint[1] == *Constraint)
1983         Constraint++;
1984       break;
1985     case ',':
1986       Result += "|";
1987       break;
1988     case 'g':
1989       Result += "imr";
1990       break;
1991     case '[': {
1992       assert(OutCons &&
1993              "Must pass output names to constraints with a symbolic name");
1994       unsigned Index;
1995       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
1996       assert(result && "Could not resolve symbolic name"); (void)result;
1997       Result += llvm::utostr(Index);
1998       break;
1999     }
2000     }
2001 
2002     Constraint++;
2003   }
2004 
2005   return Result;
2006 }
2007 
2008 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2009 /// as using a particular register add that as a constraint that will be used
2010 /// in this asm stmt.
2011 static std::string
2012 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2013                        const TargetInfo &Target, CodeGenModule &CGM,
2014                        const AsmStmt &Stmt, const bool EarlyClobber,
2015                        std::string *GCCReg = nullptr) {
2016   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2017   if (!AsmDeclRef)
2018     return Constraint;
2019   const ValueDecl &Value = *AsmDeclRef->getDecl();
2020   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2021   if (!Variable)
2022     return Constraint;
2023   if (Variable->getStorageClass() != SC_Register)
2024     return Constraint;
2025   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2026   if (!Attr)
2027     return Constraint;
2028   StringRef Register = Attr->getLabel();
2029   assert(Target.isValidGCCRegisterName(Register));
2030   // We're using validateOutputConstraint here because we only care if
2031   // this is a register constraint.
2032   TargetInfo::ConstraintInfo Info(Constraint, "");
2033   if (Target.validateOutputConstraint(Info) &&
2034       !Info.allowsRegister()) {
2035     CGM.ErrorUnsupported(&Stmt, "__asm__");
2036     return Constraint;
2037   }
2038   // Canonicalize the register here before returning it.
2039   Register = Target.getNormalizedGCCRegisterName(Register);
2040   if (GCCReg != nullptr)
2041     *GCCReg = Register.str();
2042   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2043 }
2044 
2045 llvm::Value*
2046 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
2047                                     LValue InputValue, QualType InputType,
2048                                     std::string &ConstraintStr,
2049                                     SourceLocation Loc) {
2050   llvm::Value *Arg;
2051   if (Info.allowsRegister() || !Info.allowsMemory()) {
2052     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
2053       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
2054     } else {
2055       llvm::Type *Ty = ConvertType(InputType);
2056       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2057       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
2058         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2059         Ty = llvm::PointerType::getUnqual(Ty);
2060 
2061         Arg = Builder.CreateLoad(
2062             Builder.CreateBitCast(InputValue.getAddress(*this), Ty));
2063       } else {
2064         Arg = InputValue.getPointer(*this);
2065         ConstraintStr += '*';
2066       }
2067     }
2068   } else {
2069     Arg = InputValue.getPointer(*this);
2070     ConstraintStr += '*';
2071   }
2072 
2073   return Arg;
2074 }
2075 
2076 llvm::Value* CodeGenFunction::EmitAsmInput(
2077                                          const TargetInfo::ConstraintInfo &Info,
2078                                            const Expr *InputExpr,
2079                                            std::string &ConstraintStr) {
2080   // If this can't be a register or memory, i.e., has to be a constant
2081   // (immediate or symbolic), try to emit it as such.
2082   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2083     if (Info.requiresImmediateConstant()) {
2084       Expr::EvalResult EVResult;
2085       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2086 
2087       llvm::APSInt IntResult;
2088       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2089                                           getContext()))
2090         return llvm::ConstantInt::get(getLLVMContext(), IntResult);
2091     }
2092 
2093     Expr::EvalResult Result;
2094     if (InputExpr->EvaluateAsInt(Result, getContext()))
2095       return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt());
2096   }
2097 
2098   if (Info.allowsRegister() || !Info.allowsMemory())
2099     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2100       return EmitScalarExpr(InputExpr);
2101   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2102     return EmitScalarExpr(InputExpr);
2103   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2104   LValue Dest = EmitLValue(InputExpr);
2105   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2106                             InputExpr->getExprLoc());
2107 }
2108 
2109 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2110 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2111 /// integers which are the source locations of the start of each line in the
2112 /// asm.
2113 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2114                                       CodeGenFunction &CGF) {
2115   SmallVector<llvm::Metadata *, 8> Locs;
2116   // Add the location of the first line to the MDNode.
2117   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2118       CGF.Int32Ty, Str->getBeginLoc().getRawEncoding())));
2119   StringRef StrVal = Str->getString();
2120   if (!StrVal.empty()) {
2121     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2122     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2123     unsigned StartToken = 0;
2124     unsigned ByteOffset = 0;
2125 
2126     // Add the location of the start of each subsequent line of the asm to the
2127     // MDNode.
2128     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2129       if (StrVal[i] != '\n') continue;
2130       SourceLocation LineLoc = Str->getLocationOfByte(
2131           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2132       Locs.push_back(llvm::ConstantAsMetadata::get(
2133           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
2134     }
2135   }
2136 
2137   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2138 }
2139 
2140 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2141                               bool HasUnwindClobber, bool ReadOnly,
2142                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2143                               const std::vector<llvm::Type *> &ResultRegTypes,
2144                               CodeGenFunction &CGF,
2145                               std::vector<llvm::Value *> &RegResults) {
2146   if (!HasUnwindClobber)
2147     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2148                         llvm::Attribute::NoUnwind);
2149 
2150   if (NoMerge)
2151     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2152                         llvm::Attribute::NoMerge);
2153   // Attach readnone and readonly attributes.
2154   if (!HasSideEffect) {
2155     if (ReadNone)
2156       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2157                           llvm::Attribute::ReadNone);
2158     else if (ReadOnly)
2159       Result.addAttribute(llvm::AttributeList::FunctionIndex,
2160                           llvm::Attribute::ReadOnly);
2161   }
2162 
2163   // Slap the source location of the inline asm into a !srcloc metadata on the
2164   // call.
2165   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2166     Result.setMetadata("srcloc",
2167                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2168   else {
2169     // At least put the line number on MS inline asm blobs.
2170     llvm::Constant *Loc = llvm::ConstantInt::get(CGF.Int32Ty,
2171                                         S.getAsmLoc().getRawEncoding());
2172     Result.setMetadata("srcloc",
2173                        llvm::MDNode::get(CGF.getLLVMContext(),
2174                                          llvm::ConstantAsMetadata::get(Loc)));
2175   }
2176 
2177   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2178     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2179     // convergent (meaning, they may call an intrinsically convergent op, such
2180     // as bar.sync, and so can't have certain optimizations applied around
2181     // them).
2182     Result.addAttribute(llvm::AttributeList::FunctionIndex,
2183                         llvm::Attribute::Convergent);
2184   // Extract all of the register value results from the asm.
2185   if (ResultRegTypes.size() == 1) {
2186     RegResults.push_back(&Result);
2187   } else {
2188     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2189       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2190       RegResults.push_back(Tmp);
2191     }
2192   }
2193 }
2194 
2195 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2196   // Assemble the final asm string.
2197   std::string AsmString = S.generateAsmString(getContext());
2198 
2199   // Get all the output and input constraints together.
2200   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2201   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2202 
2203   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2204     StringRef Name;
2205     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2206       Name = GAS->getOutputName(i);
2207     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2208     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2209     assert(IsValid && "Failed to parse output constraint");
2210     OutputConstraintInfos.push_back(Info);
2211   }
2212 
2213   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2214     StringRef Name;
2215     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2216       Name = GAS->getInputName(i);
2217     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2218     bool IsValid =
2219       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2220     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2221     InputConstraintInfos.push_back(Info);
2222   }
2223 
2224   std::string Constraints;
2225 
2226   std::vector<LValue> ResultRegDests;
2227   std::vector<QualType> ResultRegQualTys;
2228   std::vector<llvm::Type *> ResultRegTypes;
2229   std::vector<llvm::Type *> ResultTruncRegTypes;
2230   std::vector<llvm::Type *> ArgTypes;
2231   std::vector<llvm::Value*> Args;
2232   llvm::BitVector ResultTypeRequiresCast;
2233 
2234   // Keep track of inout constraints.
2235   std::string InOutConstraints;
2236   std::vector<llvm::Value*> InOutArgs;
2237   std::vector<llvm::Type*> InOutArgTypes;
2238 
2239   // Keep track of out constraints for tied input operand.
2240   std::vector<std::string> OutputConstraints;
2241 
2242   // Keep track of defined physregs.
2243   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2244 
2245   // An inline asm can be marked readonly if it meets the following conditions:
2246   //  - it doesn't have any sideeffects
2247   //  - it doesn't clobber memory
2248   //  - it doesn't return a value by-reference
2249   // It can be marked readnone if it doesn't have any input memory constraints
2250   // in addition to meeting the conditions listed above.
2251   bool ReadOnly = true, ReadNone = true;
2252 
2253   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2254     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2255 
2256     // Simplify the output constraint.
2257     std::string OutputConstraint(S.getOutputConstraint(i));
2258     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2259                                           getTarget(), &OutputConstraintInfos);
2260 
2261     const Expr *OutExpr = S.getOutputExpr(i);
2262     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2263 
2264     std::string GCCReg;
2265     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2266                                               getTarget(), CGM, S,
2267                                               Info.earlyClobber(),
2268                                               &GCCReg);
2269     // Give an error on multiple outputs to same physreg.
2270     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2271       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2272 
2273     OutputConstraints.push_back(OutputConstraint);
2274     LValue Dest = EmitLValue(OutExpr);
2275     if (!Constraints.empty())
2276       Constraints += ',';
2277 
2278     // If this is a register output, then make the inline asm return it
2279     // by-value.  If this is a memory result, return the value by-reference.
2280     bool isScalarizableAggregate =
2281         hasAggregateEvaluationKind(OutExpr->getType());
2282     if (!Info.allowsMemory() && (hasScalarEvaluationKind(OutExpr->getType()) ||
2283                                  isScalarizableAggregate)) {
2284       Constraints += "=" + OutputConstraint;
2285       ResultRegQualTys.push_back(OutExpr->getType());
2286       ResultRegDests.push_back(Dest);
2287       ResultTruncRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
2288       if (Info.allowsRegister() && isScalarizableAggregate) {
2289         ResultTypeRequiresCast.push_back(true);
2290         unsigned Size = getContext().getTypeSize(OutExpr->getType());
2291         llvm::Type *ConvTy = llvm::IntegerType::get(getLLVMContext(), Size);
2292         ResultRegTypes.push_back(ConvTy);
2293       } else {
2294         ResultTypeRequiresCast.push_back(false);
2295         ResultRegTypes.push_back(ResultTruncRegTypes.back());
2296       }
2297       // If this output is tied to an input, and if the input is larger, then
2298       // we need to set the actual result type of the inline asm node to be the
2299       // same as the input type.
2300       if (Info.hasMatchingInput()) {
2301         unsigned InputNo;
2302         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2303           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2304           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2305             break;
2306         }
2307         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2308 
2309         QualType InputTy = S.getInputExpr(InputNo)->getType();
2310         QualType OutputType = OutExpr->getType();
2311 
2312         uint64_t InputSize = getContext().getTypeSize(InputTy);
2313         if (getContext().getTypeSize(OutputType) < InputSize) {
2314           // Form the asm to return the value as a larger integer or fp type.
2315           ResultRegTypes.back() = ConvertType(InputTy);
2316         }
2317       }
2318       if (llvm::Type* AdjTy =
2319             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2320                                                  ResultRegTypes.back()))
2321         ResultRegTypes.back() = AdjTy;
2322       else {
2323         CGM.getDiags().Report(S.getAsmLoc(),
2324                               diag::err_asm_invalid_type_in_input)
2325             << OutExpr->getType() << OutputConstraint;
2326       }
2327 
2328       // Update largest vector width for any vector types.
2329       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2330         LargestVectorWidth =
2331             std::max((uint64_t)LargestVectorWidth,
2332                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2333     } else {
2334       llvm::Type *DestAddrTy = Dest.getAddress(*this).getType();
2335       llvm::Value *DestPtr = Dest.getPointer(*this);
2336       // Matrix types in memory are represented by arrays, but accessed through
2337       // vector pointers, with the alignment specified on the access operation.
2338       // For inline assembly, update pointer arguments to use vector pointers.
2339       // Otherwise there will be a mis-match if the matrix is also an
2340       // input-argument which is represented as vector.
2341       if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) {
2342         DestAddrTy = llvm::PointerType::get(
2343             ConvertType(OutExpr->getType()),
2344             cast<llvm::PointerType>(DestAddrTy)->getAddressSpace());
2345         DestPtr = Builder.CreateBitCast(DestPtr, DestAddrTy);
2346       }
2347       ArgTypes.push_back(DestAddrTy);
2348       Args.push_back(DestPtr);
2349       Constraints += "=*";
2350       Constraints += OutputConstraint;
2351       ReadOnly = ReadNone = false;
2352     }
2353 
2354     if (Info.isReadWrite()) {
2355       InOutConstraints += ',';
2356 
2357       const Expr *InputExpr = S.getOutputExpr(i);
2358       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
2359                                             InOutConstraints,
2360                                             InputExpr->getExprLoc());
2361 
2362       if (llvm::Type* AdjTy =
2363           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2364                                                Arg->getType()))
2365         Arg = Builder.CreateBitCast(Arg, AdjTy);
2366 
2367       // Update largest vector width for any vector types.
2368       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2369         LargestVectorWidth =
2370             std::max((uint64_t)LargestVectorWidth,
2371                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2372       // Only tie earlyclobber physregs.
2373       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2374         InOutConstraints += llvm::utostr(i);
2375       else
2376         InOutConstraints += OutputConstraint;
2377 
2378       InOutArgTypes.push_back(Arg->getType());
2379       InOutArgs.push_back(Arg);
2380     }
2381   }
2382 
2383   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2384   // to the return value slot. Only do this when returning in registers.
2385   if (isa<MSAsmStmt>(&S)) {
2386     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2387     if (RetAI.isDirect() || RetAI.isExtend()) {
2388       // Make a fake lvalue for the return value slot.
2389       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
2390       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2391           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2392           ResultRegDests, AsmString, S.getNumOutputs());
2393       SawAsmBlock = true;
2394     }
2395   }
2396 
2397   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2398     const Expr *InputExpr = S.getInputExpr(i);
2399 
2400     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2401 
2402     if (Info.allowsMemory())
2403       ReadNone = false;
2404 
2405     if (!Constraints.empty())
2406       Constraints += ',';
2407 
2408     // Simplify the input constraint.
2409     std::string InputConstraint(S.getInputConstraint(i));
2410     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2411                                          &OutputConstraintInfos);
2412 
2413     InputConstraint = AddVariableConstraints(
2414         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2415         getTarget(), CGM, S, false /* No EarlyClobber */);
2416 
2417     std::string ReplaceConstraint (InputConstraint);
2418     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
2419 
2420     // If this input argument is tied to a larger output result, extend the
2421     // input to be the same size as the output.  The LLVM backend wants to see
2422     // the input and output of a matching constraint be the same size.  Note
2423     // that GCC does not define what the top bits are here.  We use zext because
2424     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2425     if (Info.hasTiedOperand()) {
2426       unsigned Output = Info.getTiedOperand();
2427       QualType OutputType = S.getOutputExpr(Output)->getType();
2428       QualType InputTy = InputExpr->getType();
2429 
2430       if (getContext().getTypeSize(OutputType) >
2431           getContext().getTypeSize(InputTy)) {
2432         // Use ptrtoint as appropriate so that we can do our extension.
2433         if (isa<llvm::PointerType>(Arg->getType()))
2434           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2435         llvm::Type *OutputTy = ConvertType(OutputType);
2436         if (isa<llvm::IntegerType>(OutputTy))
2437           Arg = Builder.CreateZExt(Arg, OutputTy);
2438         else if (isa<llvm::PointerType>(OutputTy))
2439           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2440         else {
2441           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
2442           Arg = Builder.CreateFPExt(Arg, OutputTy);
2443         }
2444       }
2445       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2446       ReplaceConstraint = OutputConstraints[Output];
2447     }
2448     if (llvm::Type* AdjTy =
2449           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2450                                                    Arg->getType()))
2451       Arg = Builder.CreateBitCast(Arg, AdjTy);
2452     else
2453       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2454           << InputExpr->getType() << InputConstraint;
2455 
2456     // Update largest vector width for any vector types.
2457     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2458       LargestVectorWidth =
2459           std::max((uint64_t)LargestVectorWidth,
2460                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2461 
2462     ArgTypes.push_back(Arg->getType());
2463     Args.push_back(Arg);
2464     Constraints += InputConstraint;
2465   }
2466 
2467   // Labels
2468   SmallVector<llvm::BasicBlock *, 16> Transfer;
2469   llvm::BasicBlock *Fallthrough = nullptr;
2470   bool IsGCCAsmGoto = false;
2471   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2472     IsGCCAsmGoto = GS->isAsmGoto();
2473     if (IsGCCAsmGoto) {
2474       for (const auto *E : GS->labels()) {
2475         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2476         Transfer.push_back(Dest.getBlock());
2477         llvm::BlockAddress *BA =
2478             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2479         Args.push_back(BA);
2480         ArgTypes.push_back(BA->getType());
2481         if (!Constraints.empty())
2482           Constraints += ',';
2483         Constraints += 'X';
2484       }
2485       Fallthrough = createBasicBlock("asm.fallthrough");
2486     }
2487   }
2488 
2489   // Append the "input" part of inout constraints last.
2490   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2491     ArgTypes.push_back(InOutArgTypes[i]);
2492     Args.push_back(InOutArgs[i]);
2493   }
2494   Constraints += InOutConstraints;
2495 
2496   bool HasUnwindClobber = false;
2497 
2498   // Clobbers
2499   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2500     StringRef Clobber = S.getClobber(i);
2501 
2502     if (Clobber == "memory")
2503       ReadOnly = ReadNone = false;
2504     else if (Clobber == "unwind") {
2505       HasUnwindClobber = true;
2506       continue;
2507     } else if (Clobber != "cc") {
2508       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2509       if (CGM.getCodeGenOpts().StackClashProtector &&
2510           getTarget().isSPRegName(Clobber)) {
2511         CGM.getDiags().Report(S.getAsmLoc(),
2512                               diag::warn_stack_clash_protection_inline_asm);
2513       }
2514     }
2515 
2516     if (isa<MSAsmStmt>(&S)) {
2517       if (Clobber == "eax" || Clobber == "edx") {
2518         if (Constraints.find("=&A") != std::string::npos)
2519           continue;
2520         std::string::size_type position1 =
2521             Constraints.find("={" + Clobber.str() + "}");
2522         if (position1 != std::string::npos) {
2523           Constraints.insert(position1 + 1, "&");
2524           continue;
2525         }
2526         std::string::size_type position2 = Constraints.find("=A");
2527         if (position2 != std::string::npos) {
2528           Constraints.insert(position2 + 1, "&");
2529           continue;
2530         }
2531       }
2532     }
2533     if (!Constraints.empty())
2534       Constraints += ',';
2535 
2536     Constraints += "~{";
2537     Constraints += Clobber;
2538     Constraints += '}';
2539   }
2540 
2541   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2542          "unwind clobber can't be used with asm goto");
2543 
2544   // Add machine specific clobbers
2545   std::string MachineClobbers = getTarget().getClobbers();
2546   if (!MachineClobbers.empty()) {
2547     if (!Constraints.empty())
2548       Constraints += ',';
2549     Constraints += MachineClobbers;
2550   }
2551 
2552   llvm::Type *ResultType;
2553   if (ResultRegTypes.empty())
2554     ResultType = VoidTy;
2555   else if (ResultRegTypes.size() == 1)
2556     ResultType = ResultRegTypes[0];
2557   else
2558     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2559 
2560   llvm::FunctionType *FTy =
2561     llvm::FunctionType::get(ResultType, ArgTypes, false);
2562 
2563   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2564   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2565     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2566   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2567       FTy, AsmString, Constraints, HasSideEffect,
2568       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2569   std::vector<llvm::Value*> RegResults;
2570   if (IsGCCAsmGoto) {
2571     llvm::CallBrInst *Result =
2572         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2573     EmitBlock(Fallthrough);
2574     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2575                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2576                       ResultRegTypes, *this, RegResults);
2577   } else if (HasUnwindClobber) {
2578     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2579     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2580                       InNoMergeAttributedStmt, S, ResultRegTypes, *this,
2581                       RegResults);
2582   } else {
2583     llvm::CallInst *Result =
2584         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2585     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2586                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2587                       ResultRegTypes, *this, RegResults);
2588   }
2589 
2590   assert(RegResults.size() == ResultRegTypes.size());
2591   assert(RegResults.size() == ResultTruncRegTypes.size());
2592   assert(RegResults.size() == ResultRegDests.size());
2593   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2594   // in which case its size may grow.
2595   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2596   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2597     llvm::Value *Tmp = RegResults[i];
2598 
2599     // If the result type of the LLVM IR asm doesn't match the result type of
2600     // the expression, do the conversion.
2601     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2602       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2603 
2604       // Truncate the integer result to the right size, note that TruncTy can be
2605       // a pointer.
2606       if (TruncTy->isFloatingPointTy())
2607         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2608       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2609         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2610         Tmp = Builder.CreateTrunc(Tmp,
2611                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2612         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2613       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2614         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2615         Tmp = Builder.CreatePtrToInt(Tmp,
2616                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2617         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2618       } else if (TruncTy->isIntegerTy()) {
2619         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2620       } else if (TruncTy->isVectorTy()) {
2621         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2622       }
2623     }
2624 
2625     LValue Dest = ResultRegDests[i];
2626     // ResultTypeRequiresCast elements correspond to the first
2627     // ResultTypeRequiresCast.size() elements of RegResults.
2628     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2629       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2630       Address A = Builder.CreateBitCast(Dest.getAddress(*this),
2631                                         ResultRegTypes[i]->getPointerTo());
2632       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2633       if (Ty.isNull()) {
2634         const Expr *OutExpr = S.getOutputExpr(i);
2635         CGM.Error(
2636             OutExpr->getExprLoc(),
2637             "impossible constraint in asm: can't store value into a register");
2638         return;
2639       }
2640       Dest = MakeAddrLValue(A, Ty);
2641     }
2642     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2643   }
2644 }
2645 
2646 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2647   const RecordDecl *RD = S.getCapturedRecordDecl();
2648   QualType RecordTy = getContext().getRecordType(RD);
2649 
2650   // Initialize the captured struct.
2651   LValue SlotLV =
2652     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2653 
2654   RecordDecl::field_iterator CurField = RD->field_begin();
2655   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2656                                                  E = S.capture_init_end();
2657        I != E; ++I, ++CurField) {
2658     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2659     if (CurField->hasCapturedVLAType()) {
2660       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2661     } else {
2662       EmitInitializerForField(*CurField, LV, *I);
2663     }
2664   }
2665 
2666   return SlotLV;
2667 }
2668 
2669 /// Generate an outlined function for the body of a CapturedStmt, store any
2670 /// captured variables into the captured struct, and call the outlined function.
2671 llvm::Function *
2672 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2673   LValue CapStruct = InitCapturedStruct(S);
2674 
2675   // Emit the CapturedDecl
2676   CodeGenFunction CGF(CGM, true);
2677   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2678   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2679   delete CGF.CapturedStmtInfo;
2680 
2681   // Emit call to the helper function.
2682   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2683 
2684   return F;
2685 }
2686 
2687 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2688   LValue CapStruct = InitCapturedStruct(S);
2689   return CapStruct.getAddress(*this);
2690 }
2691 
2692 /// Creates the outlined function for a CapturedStmt.
2693 llvm::Function *
2694 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2695   assert(CapturedStmtInfo &&
2696     "CapturedStmtInfo should be set when generating the captured function");
2697   const CapturedDecl *CD = S.getCapturedDecl();
2698   const RecordDecl *RD = S.getCapturedRecordDecl();
2699   SourceLocation Loc = S.getBeginLoc();
2700   assert(CD->hasBody() && "missing CapturedDecl body");
2701 
2702   // Build the argument list.
2703   ASTContext &Ctx = CGM.getContext();
2704   FunctionArgList Args;
2705   Args.append(CD->param_begin(), CD->param_end());
2706 
2707   // Create the function declaration.
2708   const CGFunctionInfo &FuncInfo =
2709     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2710   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2711 
2712   llvm::Function *F =
2713     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2714                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2715   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2716   if (CD->isNothrow())
2717     F->addFnAttr(llvm::Attribute::NoUnwind);
2718 
2719   // Generate the function.
2720   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2721                 CD->getBody()->getBeginLoc());
2722   // Set the context parameter in CapturedStmtInfo.
2723   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2724   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2725 
2726   // Initialize variable-length arrays.
2727   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2728                                            Ctx.getTagDeclType(RD));
2729   for (auto *FD : RD->fields()) {
2730     if (FD->hasCapturedVLAType()) {
2731       auto *ExprArg =
2732           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2733               .getScalarVal();
2734       auto VAT = FD->getCapturedVLAType();
2735       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2736     }
2737   }
2738 
2739   // If 'this' is captured, load it into CXXThisValue.
2740   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2741     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2742     LValue ThisLValue = EmitLValueForField(Base, FD);
2743     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2744   }
2745 
2746   PGO.assignRegionCounters(GlobalDecl(CD), F);
2747   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2748   FinishFunction(CD->getBodyRBrace());
2749 
2750   return F;
2751 }
2752