1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Stmt nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGDebugInfo.h"
14 #include "CGOpenMPRuntime.h"
15 #include "CodeGenFunction.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/DiagnosticSema.h"
24 #include "clang/Basic/PrettyStackTrace.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Assumptions.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 
36 using namespace clang;
37 using namespace CodeGen;
38 
39 //===----------------------------------------------------------------------===//
40 //                              Statement Emission
41 //===----------------------------------------------------------------------===//
42 
43 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
44   if (CGDebugInfo *DI = getDebugInfo()) {
45     SourceLocation Loc;
46     Loc = S->getBeginLoc();
47     DI->EmitLocation(Builder, Loc);
48 
49     LastStopPoint = Loc;
50   }
51 }
52 
53 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) {
54   assert(S && "Null statement?");
55   PGO.setCurrentStmt(S);
56 
57   // These statements have their own debug info handling.
58   if (EmitSimpleStmt(S, Attrs))
59     return;
60 
61   // Check if we are generating unreachable code.
62   if (!HaveInsertPoint()) {
63     // If so, and the statement doesn't contain a label, then we do not need to
64     // generate actual code. This is safe because (1) the current point is
65     // unreachable, so we don't need to execute the code, and (2) we've already
66     // handled the statements which update internal data structures (like the
67     // local variable map) which could be used by subsequent statements.
68     if (!ContainsLabel(S)) {
69       // Verify that any decl statements were handled as simple, they may be in
70       // scope of subsequent reachable statements.
71       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
72       return;
73     }
74 
75     // Otherwise, make a new block to hold the code.
76     EnsureInsertPoint();
77   }
78 
79   // Generate a stoppoint if we are emitting debug info.
80   EmitStopPoint(S);
81 
82   // Ignore all OpenMP directives except for simd if OpenMP with Simd is
83   // enabled.
84   if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) {
85     if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) {
86       EmitSimpleOMPExecutableDirective(*D);
87       return;
88     }
89   }
90 
91   switch (S->getStmtClass()) {
92   case Stmt::NoStmtClass:
93   case Stmt::CXXCatchStmtClass:
94   case Stmt::SEHExceptStmtClass:
95   case Stmt::SEHFinallyStmtClass:
96   case Stmt::MSDependentExistsStmtClass:
97     llvm_unreachable("invalid statement class to emit generically");
98   case Stmt::NullStmtClass:
99   case Stmt::CompoundStmtClass:
100   case Stmt::DeclStmtClass:
101   case Stmt::LabelStmtClass:
102   case Stmt::AttributedStmtClass:
103   case Stmt::GotoStmtClass:
104   case Stmt::BreakStmtClass:
105   case Stmt::ContinueStmtClass:
106   case Stmt::DefaultStmtClass:
107   case Stmt::CaseStmtClass:
108   case Stmt::SEHLeaveStmtClass:
109     llvm_unreachable("should have emitted these statements as simple");
110 
111 #define STMT(Type, Base)
112 #define ABSTRACT_STMT(Op)
113 #define EXPR(Type, Base) \
114   case Stmt::Type##Class:
115 #include "clang/AST/StmtNodes.inc"
116   {
117     // Remember the block we came in on.
118     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
119     assert(incoming && "expression emission must have an insertion point");
120 
121     EmitIgnoredExpr(cast<Expr>(S));
122 
123     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
124     assert(outgoing && "expression emission cleared block!");
125 
126     // The expression emitters assume (reasonably!) that the insertion
127     // point is always set.  To maintain that, the call-emission code
128     // for noreturn functions has to enter a new block with no
129     // predecessors.  We want to kill that block and mark the current
130     // insertion point unreachable in the common case of a call like
131     // "exit();".  Since expression emission doesn't otherwise create
132     // blocks with no predecessors, we can just test for that.
133     // However, we must be careful not to do this to our incoming
134     // block, because *statement* emission does sometimes create
135     // reachable blocks which will have no predecessors until later in
136     // the function.  This occurs with, e.g., labels that are not
137     // reachable by fallthrough.
138     if (incoming != outgoing && outgoing->use_empty()) {
139       outgoing->eraseFromParent();
140       Builder.ClearInsertionPoint();
141     }
142     break;
143   }
144 
145   case Stmt::IndirectGotoStmtClass:
146     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
147 
148   case Stmt::IfStmtClass:      EmitIfStmt(cast<IfStmt>(*S));              break;
149   case Stmt::WhileStmtClass:   EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break;
150   case Stmt::DoStmtClass:      EmitDoStmt(cast<DoStmt>(*S), Attrs);       break;
151   case Stmt::ForStmtClass:     EmitForStmt(cast<ForStmt>(*S), Attrs);     break;
152 
153   case Stmt::ReturnStmtClass:  EmitReturnStmt(cast<ReturnStmt>(*S));      break;
154 
155   case Stmt::SwitchStmtClass:  EmitSwitchStmt(cast<SwitchStmt>(*S));      break;
156   case Stmt::GCCAsmStmtClass:  // Intentional fall-through.
157   case Stmt::MSAsmStmtClass:   EmitAsmStmt(cast<AsmStmt>(*S));            break;
158   case Stmt::CoroutineBodyStmtClass:
159     EmitCoroutineBody(cast<CoroutineBodyStmt>(*S));
160     break;
161   case Stmt::CoreturnStmtClass:
162     EmitCoreturnStmt(cast<CoreturnStmt>(*S));
163     break;
164   case Stmt::CapturedStmtClass: {
165     const CapturedStmt *CS = cast<CapturedStmt>(S);
166     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
167     }
168     break;
169   case Stmt::ObjCAtTryStmtClass:
170     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
171     break;
172   case Stmt::ObjCAtCatchStmtClass:
173     llvm_unreachable(
174                     "@catch statements should be handled by EmitObjCAtTryStmt");
175   case Stmt::ObjCAtFinallyStmtClass:
176     llvm_unreachable(
177                   "@finally statements should be handled by EmitObjCAtTryStmt");
178   case Stmt::ObjCAtThrowStmtClass:
179     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
180     break;
181   case Stmt::ObjCAtSynchronizedStmtClass:
182     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
183     break;
184   case Stmt::ObjCForCollectionStmtClass:
185     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
186     break;
187   case Stmt::ObjCAutoreleasePoolStmtClass:
188     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
189     break;
190 
191   case Stmt::CXXTryStmtClass:
192     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
193     break;
194   case Stmt::CXXForRangeStmtClass:
195     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs);
196     break;
197   case Stmt::SEHTryStmtClass:
198     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
199     break;
200   case Stmt::OMPMetaDirectiveClass:
201     EmitOMPMetaDirective(cast<OMPMetaDirective>(*S));
202     break;
203   case Stmt::OMPCanonicalLoopClass:
204     EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S));
205     break;
206   case Stmt::OMPParallelDirectiveClass:
207     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
208     break;
209   case Stmt::OMPSimdDirectiveClass:
210     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
211     break;
212   case Stmt::OMPTileDirectiveClass:
213     EmitOMPTileDirective(cast<OMPTileDirective>(*S));
214     break;
215   case Stmt::OMPUnrollDirectiveClass:
216     EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S));
217     break;
218   case Stmt::OMPForDirectiveClass:
219     EmitOMPForDirective(cast<OMPForDirective>(*S));
220     break;
221   case Stmt::OMPForSimdDirectiveClass:
222     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
223     break;
224   case Stmt::OMPSectionsDirectiveClass:
225     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
226     break;
227   case Stmt::OMPSectionDirectiveClass:
228     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
229     break;
230   case Stmt::OMPSingleDirectiveClass:
231     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
232     break;
233   case Stmt::OMPMasterDirectiveClass:
234     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
235     break;
236   case Stmt::OMPCriticalDirectiveClass:
237     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
238     break;
239   case Stmt::OMPParallelForDirectiveClass:
240     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
241     break;
242   case Stmt::OMPParallelForSimdDirectiveClass:
243     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
244     break;
245   case Stmt::OMPParallelMasterDirectiveClass:
246     EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S));
247     break;
248   case Stmt::OMPParallelSectionsDirectiveClass:
249     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
250     break;
251   case Stmt::OMPTaskDirectiveClass:
252     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
253     break;
254   case Stmt::OMPTaskyieldDirectiveClass:
255     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
256     break;
257   case Stmt::OMPBarrierDirectiveClass:
258     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
259     break;
260   case Stmt::OMPTaskwaitDirectiveClass:
261     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
262     break;
263   case Stmt::OMPTaskgroupDirectiveClass:
264     EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S));
265     break;
266   case Stmt::OMPFlushDirectiveClass:
267     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
268     break;
269   case Stmt::OMPDepobjDirectiveClass:
270     EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S));
271     break;
272   case Stmt::OMPScanDirectiveClass:
273     EmitOMPScanDirective(cast<OMPScanDirective>(*S));
274     break;
275   case Stmt::OMPOrderedDirectiveClass:
276     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
277     break;
278   case Stmt::OMPAtomicDirectiveClass:
279     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
280     break;
281   case Stmt::OMPTargetDirectiveClass:
282     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
283     break;
284   case Stmt::OMPTeamsDirectiveClass:
285     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
286     break;
287   case Stmt::OMPCancellationPointDirectiveClass:
288     EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S));
289     break;
290   case Stmt::OMPCancelDirectiveClass:
291     EmitOMPCancelDirective(cast<OMPCancelDirective>(*S));
292     break;
293   case Stmt::OMPTargetDataDirectiveClass:
294     EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S));
295     break;
296   case Stmt::OMPTargetEnterDataDirectiveClass:
297     EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S));
298     break;
299   case Stmt::OMPTargetExitDataDirectiveClass:
300     EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S));
301     break;
302   case Stmt::OMPTargetParallelDirectiveClass:
303     EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S));
304     break;
305   case Stmt::OMPTargetParallelForDirectiveClass:
306     EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S));
307     break;
308   case Stmt::OMPTaskLoopDirectiveClass:
309     EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S));
310     break;
311   case Stmt::OMPTaskLoopSimdDirectiveClass:
312     EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S));
313     break;
314   case Stmt::OMPMasterTaskLoopDirectiveClass:
315     EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S));
316     break;
317   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
318     EmitOMPMasterTaskLoopSimdDirective(
319         cast<OMPMasterTaskLoopSimdDirective>(*S));
320     break;
321   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
322     EmitOMPParallelMasterTaskLoopDirective(
323         cast<OMPParallelMasterTaskLoopDirective>(*S));
324     break;
325   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
326     EmitOMPParallelMasterTaskLoopSimdDirective(
327         cast<OMPParallelMasterTaskLoopSimdDirective>(*S));
328     break;
329   case Stmt::OMPDistributeDirectiveClass:
330     EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S));
331     break;
332   case Stmt::OMPTargetUpdateDirectiveClass:
333     EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S));
334     break;
335   case Stmt::OMPDistributeParallelForDirectiveClass:
336     EmitOMPDistributeParallelForDirective(
337         cast<OMPDistributeParallelForDirective>(*S));
338     break;
339   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
340     EmitOMPDistributeParallelForSimdDirective(
341         cast<OMPDistributeParallelForSimdDirective>(*S));
342     break;
343   case Stmt::OMPDistributeSimdDirectiveClass:
344     EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S));
345     break;
346   case Stmt::OMPTargetParallelForSimdDirectiveClass:
347     EmitOMPTargetParallelForSimdDirective(
348         cast<OMPTargetParallelForSimdDirective>(*S));
349     break;
350   case Stmt::OMPTargetSimdDirectiveClass:
351     EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S));
352     break;
353   case Stmt::OMPTeamsDistributeDirectiveClass:
354     EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S));
355     break;
356   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
357     EmitOMPTeamsDistributeSimdDirective(
358         cast<OMPTeamsDistributeSimdDirective>(*S));
359     break;
360   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
361     EmitOMPTeamsDistributeParallelForSimdDirective(
362         cast<OMPTeamsDistributeParallelForSimdDirective>(*S));
363     break;
364   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
365     EmitOMPTeamsDistributeParallelForDirective(
366         cast<OMPTeamsDistributeParallelForDirective>(*S));
367     break;
368   case Stmt::OMPTargetTeamsDirectiveClass:
369     EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S));
370     break;
371   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
372     EmitOMPTargetTeamsDistributeDirective(
373         cast<OMPTargetTeamsDistributeDirective>(*S));
374     break;
375   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
376     EmitOMPTargetTeamsDistributeParallelForDirective(
377         cast<OMPTargetTeamsDistributeParallelForDirective>(*S));
378     break;
379   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
380     EmitOMPTargetTeamsDistributeParallelForSimdDirective(
381         cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S));
382     break;
383   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
384     EmitOMPTargetTeamsDistributeSimdDirective(
385         cast<OMPTargetTeamsDistributeSimdDirective>(*S));
386     break;
387   case Stmt::OMPInteropDirectiveClass:
388     EmitOMPInteropDirective(cast<OMPInteropDirective>(*S));
389     break;
390   case Stmt::OMPDispatchDirectiveClass:
391     llvm_unreachable("Dispatch directive not supported yet.");
392     break;
393   case Stmt::OMPMaskedDirectiveClass:
394     EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S));
395     break;
396   case Stmt::OMPGenericLoopDirectiveClass:
397     EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S));
398     break;
399   case Stmt::OMPTeamsGenericLoopDirectiveClass:
400     llvm_unreachable("teams loop directive not supported yet.");
401     break;
402   }
403 }
404 
405 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S,
406                                      ArrayRef<const Attr *> Attrs) {
407   switch (S->getStmtClass()) {
408   default:
409     return false;
410   case Stmt::NullStmtClass:
411     break;
412   case Stmt::CompoundStmtClass:
413     EmitCompoundStmt(cast<CompoundStmt>(*S));
414     break;
415   case Stmt::DeclStmtClass:
416     EmitDeclStmt(cast<DeclStmt>(*S));
417     break;
418   case Stmt::LabelStmtClass:
419     EmitLabelStmt(cast<LabelStmt>(*S));
420     break;
421   case Stmt::AttributedStmtClass:
422     EmitAttributedStmt(cast<AttributedStmt>(*S));
423     break;
424   case Stmt::GotoStmtClass:
425     EmitGotoStmt(cast<GotoStmt>(*S));
426     break;
427   case Stmt::BreakStmtClass:
428     EmitBreakStmt(cast<BreakStmt>(*S));
429     break;
430   case Stmt::ContinueStmtClass:
431     EmitContinueStmt(cast<ContinueStmt>(*S));
432     break;
433   case Stmt::DefaultStmtClass:
434     EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs);
435     break;
436   case Stmt::CaseStmtClass:
437     EmitCaseStmt(cast<CaseStmt>(*S), Attrs);
438     break;
439   case Stmt::SEHLeaveStmtClass:
440     EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S));
441     break;
442   }
443   return true;
444 }
445 
446 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
447 /// this captures the expression result of the last sub-statement and returns it
448 /// (for use by the statement expression extension).
449 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
450                                           AggValueSlot AggSlot) {
451   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
452                              "LLVM IR generation of compound statement ('{}')");
453 
454   // Keep track of the current cleanup stack depth, including debug scopes.
455   LexicalScope Scope(*this, S.getSourceRange());
456 
457   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
458 }
459 
460 Address
461 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
462                                               bool GetLast,
463                                               AggValueSlot AggSlot) {
464 
465   const Stmt *ExprResult = S.getStmtExprResult();
466   assert((!GetLast || (GetLast && ExprResult)) &&
467          "If GetLast is true then the CompoundStmt must have a StmtExprResult");
468 
469   Address RetAlloca = Address::invalid();
470 
471   for (auto *CurStmt : S.body()) {
472     if (GetLast && ExprResult == CurStmt) {
473       // We have to special case labels here.  They are statements, but when put
474       // at the end of a statement expression, they yield the value of their
475       // subexpression.  Handle this by walking through all labels we encounter,
476       // emitting them before we evaluate the subexpr.
477       // Similar issues arise for attributed statements.
478       while (!isa<Expr>(ExprResult)) {
479         if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) {
480           EmitLabel(LS->getDecl());
481           ExprResult = LS->getSubStmt();
482         } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) {
483           // FIXME: Update this if we ever have attributes that affect the
484           // semantics of an expression.
485           ExprResult = AS->getSubStmt();
486         } else {
487           llvm_unreachable("unknown value statement");
488         }
489       }
490 
491       EnsureInsertPoint();
492 
493       const Expr *E = cast<Expr>(ExprResult);
494       QualType ExprTy = E->getType();
495       if (hasAggregateEvaluationKind(ExprTy)) {
496         EmitAggExpr(E, AggSlot);
497       } else {
498         // We can't return an RValue here because there might be cleanups at
499         // the end of the StmtExpr.  Because of that, we have to emit the result
500         // here into a temporary alloca.
501         RetAlloca = CreateMemTemp(ExprTy);
502         EmitAnyExprToMem(E, RetAlloca, Qualifiers(),
503                          /*IsInit*/ false);
504       }
505     } else {
506       EmitStmt(CurStmt);
507     }
508   }
509 
510   return RetAlloca;
511 }
512 
513 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
514   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
515 
516   // If there is a cleanup stack, then we it isn't worth trying to
517   // simplify this block (we would need to remove it from the scope map
518   // and cleanup entry).
519   if (!EHStack.empty())
520     return;
521 
522   // Can only simplify direct branches.
523   if (!BI || !BI->isUnconditional())
524     return;
525 
526   // Can only simplify empty blocks.
527   if (BI->getIterator() != BB->begin())
528     return;
529 
530   BB->replaceAllUsesWith(BI->getSuccessor(0));
531   BI->eraseFromParent();
532   BB->eraseFromParent();
533 }
534 
535 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
536   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
537 
538   // Fall out of the current block (if necessary).
539   EmitBranch(BB);
540 
541   if (IsFinished && BB->use_empty()) {
542     delete BB;
543     return;
544   }
545 
546   // Place the block after the current block, if possible, or else at
547   // the end of the function.
548   if (CurBB && CurBB->getParent())
549     CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB);
550   else
551     CurFn->getBasicBlockList().push_back(BB);
552   Builder.SetInsertPoint(BB);
553 }
554 
555 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
556   // Emit a branch from the current block to the target one if this
557   // was a real block.  If this was just a fall-through block after a
558   // terminator, don't emit it.
559   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
560 
561   if (!CurBB || CurBB->getTerminator()) {
562     // If there is no insert point or the previous block is already
563     // terminated, don't touch it.
564   } else {
565     // Otherwise, create a fall-through branch.
566     Builder.CreateBr(Target);
567   }
568 
569   Builder.ClearInsertionPoint();
570 }
571 
572 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
573   bool inserted = false;
574   for (llvm::User *u : block->users()) {
575     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
576       CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(),
577                                              block);
578       inserted = true;
579       break;
580     }
581   }
582 
583   if (!inserted)
584     CurFn->getBasicBlockList().push_back(block);
585 
586   Builder.SetInsertPoint(block);
587 }
588 
589 CodeGenFunction::JumpDest
590 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
591   JumpDest &Dest = LabelMap[D];
592   if (Dest.isValid()) return Dest;
593 
594   // Create, but don't insert, the new block.
595   Dest = JumpDest(createBasicBlock(D->getName()),
596                   EHScopeStack::stable_iterator::invalid(),
597                   NextCleanupDestIndex++);
598   return Dest;
599 }
600 
601 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
602   // Add this label to the current lexical scope if we're within any
603   // normal cleanups.  Jumps "in" to this label --- when permitted by
604   // the language --- may need to be routed around such cleanups.
605   if (EHStack.hasNormalCleanups() && CurLexicalScope)
606     CurLexicalScope->addLabel(D);
607 
608   JumpDest &Dest = LabelMap[D];
609 
610   // If we didn't need a forward reference to this label, just go
611   // ahead and create a destination at the current scope.
612   if (!Dest.isValid()) {
613     Dest = getJumpDestInCurrentScope(D->getName());
614 
615   // Otherwise, we need to give this label a target depth and remove
616   // it from the branch-fixups list.
617   } else {
618     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
619     Dest.setScopeDepth(EHStack.stable_begin());
620     ResolveBranchFixups(Dest.getBlock());
621   }
622 
623   EmitBlock(Dest.getBlock());
624 
625   // Emit debug info for labels.
626   if (CGDebugInfo *DI = getDebugInfo()) {
627     if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
628       DI->setLocation(D->getLocation());
629       DI->EmitLabel(D, Builder);
630     }
631   }
632 
633   incrementProfileCounter(D->getStmt());
634 }
635 
636 /// Change the cleanup scope of the labels in this lexical scope to
637 /// match the scope of the enclosing context.
638 void CodeGenFunction::LexicalScope::rescopeLabels() {
639   assert(!Labels.empty());
640   EHScopeStack::stable_iterator innermostScope
641     = CGF.EHStack.getInnermostNormalCleanup();
642 
643   // Change the scope depth of all the labels.
644   for (SmallVectorImpl<const LabelDecl*>::const_iterator
645          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
646     assert(CGF.LabelMap.count(*i));
647     JumpDest &dest = CGF.LabelMap.find(*i)->second;
648     assert(dest.getScopeDepth().isValid());
649     assert(innermostScope.encloses(dest.getScopeDepth()));
650     dest.setScopeDepth(innermostScope);
651   }
652 
653   // Reparent the labels if the new scope also has cleanups.
654   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
655     ParentScope->Labels.append(Labels.begin(), Labels.end());
656   }
657 }
658 
659 
660 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
661   EmitLabel(S.getDecl());
662 
663   // IsEHa - emit eha.scope.begin if it's a side entry of a scope
664   if (getLangOpts().EHAsynch && S.isSideEntry())
665     EmitSehCppScopeBegin();
666 
667   EmitStmt(S.getSubStmt());
668 }
669 
670 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
671   bool nomerge = false;
672   bool noinline = false;
673   bool alwaysinline = false;
674   const CallExpr *musttail = nullptr;
675 
676   for (const auto *A : S.getAttrs()) {
677     switch (A->getKind()) {
678     default:
679       break;
680     case attr::NoMerge:
681       nomerge = true;
682       break;
683     case attr::NoInline:
684       noinline = true;
685       break;
686     case attr::AlwaysInline:
687       alwaysinline = true;
688       break;
689     case attr::MustTail:
690       const Stmt *Sub = S.getSubStmt();
691       const ReturnStmt *R = cast<ReturnStmt>(Sub);
692       musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens());
693       break;
694     }
695   }
696   SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge);
697   SaveAndRestore<bool> save_noinline(InNoInlineAttributedStmt, noinline);
698   SaveAndRestore<bool> save_alwaysinline(InAlwaysInlineAttributedStmt,
699                                          alwaysinline);
700   SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail);
701   EmitStmt(S.getSubStmt(), S.getAttrs());
702 }
703 
704 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
705   // If this code is reachable then emit a stop point (if generating
706   // debug info). We have to do this ourselves because we are on the
707   // "simple" statement path.
708   if (HaveInsertPoint())
709     EmitStopPoint(&S);
710 
711   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
712 }
713 
714 
715 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
716   if (const LabelDecl *Target = S.getConstantTarget()) {
717     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
718     return;
719   }
720 
721   // Ensure that we have an i8* for our PHI node.
722   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
723                                          Int8PtrTy, "addr");
724   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
725 
726   // Get the basic block for the indirect goto.
727   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
728 
729   // The first instruction in the block has to be the PHI for the switch dest,
730   // add an entry for this branch.
731   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
732 
733   EmitBranch(IndGotoBB);
734 }
735 
736 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
737   // The else branch of a consteval if statement is always the only branch that
738   // can be runtime evaluated.
739   if (S.isConsteval()) {
740     const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse();
741     if (Executed) {
742       RunCleanupsScope ExecutedScope(*this);
743       EmitStmt(Executed);
744     }
745     return;
746   }
747 
748   // C99 6.8.4.1: The first substatement is executed if the expression compares
749   // unequal to 0.  The condition must be a scalar type.
750   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
751 
752   if (S.getInit())
753     EmitStmt(S.getInit());
754 
755   if (S.getConditionVariable())
756     EmitDecl(*S.getConditionVariable());
757 
758   // If the condition constant folds and can be elided, try to avoid emitting
759   // the condition and the dead arm of the if/else.
760   bool CondConstant;
761   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant,
762                                    S.isConstexpr())) {
763     // Figure out which block (then or else) is executed.
764     const Stmt *Executed = S.getThen();
765     const Stmt *Skipped  = S.getElse();
766     if (!CondConstant)  // Condition false?
767       std::swap(Executed, Skipped);
768 
769     // If the skipped block has no labels in it, just emit the executed block.
770     // This avoids emitting dead code and simplifies the CFG substantially.
771     if (S.isConstexpr() || !ContainsLabel(Skipped)) {
772       if (CondConstant)
773         incrementProfileCounter(&S);
774       if (Executed) {
775         RunCleanupsScope ExecutedScope(*this);
776         EmitStmt(Executed);
777       }
778       return;
779     }
780   }
781 
782   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
783   // the conditional branch.
784   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
785   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
786   llvm::BasicBlock *ElseBlock = ContBlock;
787   if (S.getElse())
788     ElseBlock = createBasicBlock("if.else");
789 
790   // Prefer the PGO based weights over the likelihood attribute.
791   // When the build isn't optimized the metadata isn't used, so don't generate
792   // it.
793   Stmt::Likelihood LH = Stmt::LH_None;
794   uint64_t Count = getProfileCount(S.getThen());
795   if (!Count && CGM.getCodeGenOpts().OptimizationLevel)
796     LH = Stmt::getLikelihood(S.getThen(), S.getElse());
797   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH);
798 
799   // Emit the 'then' code.
800   EmitBlock(ThenBlock);
801   incrementProfileCounter(&S);
802   {
803     RunCleanupsScope ThenScope(*this);
804     EmitStmt(S.getThen());
805   }
806   EmitBranch(ContBlock);
807 
808   // Emit the 'else' code if present.
809   if (const Stmt *Else = S.getElse()) {
810     {
811       // There is no need to emit line number for an unconditional branch.
812       auto NL = ApplyDebugLocation::CreateEmpty(*this);
813       EmitBlock(ElseBlock);
814     }
815     {
816       RunCleanupsScope ElseScope(*this);
817       EmitStmt(Else);
818     }
819     {
820       // There is no need to emit line number for an unconditional branch.
821       auto NL = ApplyDebugLocation::CreateEmpty(*this);
822       EmitBranch(ContBlock);
823     }
824   }
825 
826   // Emit the continuation block for code after the if.
827   EmitBlock(ContBlock, true);
828 }
829 
830 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
831                                     ArrayRef<const Attr *> WhileAttrs) {
832   // Emit the header for the loop, which will also become
833   // the continue target.
834   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
835   EmitBlock(LoopHeader.getBlock());
836 
837   // Create an exit block for when the condition fails, which will
838   // also become the break target.
839   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
840 
841   // Store the blocks to use for break and continue.
842   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
843 
844   // C++ [stmt.while]p2:
845   //   When the condition of a while statement is a declaration, the
846   //   scope of the variable that is declared extends from its point
847   //   of declaration (3.3.2) to the end of the while statement.
848   //   [...]
849   //   The object created in a condition is destroyed and created
850   //   with each iteration of the loop.
851   RunCleanupsScope ConditionScope(*this);
852 
853   if (S.getConditionVariable())
854     EmitDecl(*S.getConditionVariable());
855 
856   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
857   // evaluation of the controlling expression takes place before each
858   // execution of the loop body.
859   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
860 
861   // while(1) is common, avoid extra exit blocks.  Be sure
862   // to correctly handle break/continue though.
863   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
864   bool CondIsConstInt = C != nullptr;
865   bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne();
866   const SourceRange &R = S.getSourceRange();
867   LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(),
868                  WhileAttrs, SourceLocToDebugLoc(R.getBegin()),
869                  SourceLocToDebugLoc(R.getEnd()),
870                  checkIfLoopMustProgress(CondIsConstInt));
871 
872   // As long as the condition is true, go to the loop body.
873   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
874   if (EmitBoolCondBranch) {
875     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
876     if (ConditionScope.requiresCleanups())
877       ExitBlock = createBasicBlock("while.exit");
878     llvm::MDNode *Weights =
879         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
880     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
881       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
882           BoolCondVal, Stmt::getLikelihood(S.getBody()));
883     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights);
884 
885     if (ExitBlock != LoopExit.getBlock()) {
886       EmitBlock(ExitBlock);
887       EmitBranchThroughCleanup(LoopExit);
888     }
889   } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) {
890     CGM.getDiags().Report(A->getLocation(),
891                           diag::warn_attribute_has_no_effect_on_infinite_loop)
892         << A << A->getRange();
893     CGM.getDiags().Report(
894         S.getWhileLoc(),
895         diag::note_attribute_has_no_effect_on_infinite_loop_here)
896         << SourceRange(S.getWhileLoc(), S.getRParenLoc());
897   }
898 
899   // Emit the loop body.  We have to emit this in a cleanup scope
900   // because it might be a singleton DeclStmt.
901   {
902     RunCleanupsScope BodyScope(*this);
903     EmitBlock(LoopBody);
904     incrementProfileCounter(&S);
905     EmitStmt(S.getBody());
906   }
907 
908   BreakContinueStack.pop_back();
909 
910   // Immediately force cleanup.
911   ConditionScope.ForceCleanup();
912 
913   EmitStopPoint(&S);
914   // Branch to the loop header again.
915   EmitBranch(LoopHeader.getBlock());
916 
917   LoopStack.pop();
918 
919   // Emit the exit block.
920   EmitBlock(LoopExit.getBlock(), true);
921 
922   // The LoopHeader typically is just a branch if we skipped emitting
923   // a branch, try to erase it.
924   if (!EmitBoolCondBranch)
925     SimplifyForwardingBlocks(LoopHeader.getBlock());
926 }
927 
928 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
929                                  ArrayRef<const Attr *> DoAttrs) {
930   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
931   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
932 
933   uint64_t ParentCount = getCurrentProfileCount();
934 
935   // Store the blocks to use for break and continue.
936   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
937 
938   // Emit the body of the loop.
939   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
940 
941   EmitBlockWithFallThrough(LoopBody, &S);
942   {
943     RunCleanupsScope BodyScope(*this);
944     EmitStmt(S.getBody());
945   }
946 
947   EmitBlock(LoopCond.getBlock());
948 
949   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
950   // after each execution of the loop body."
951 
952   // Evaluate the conditional in the while header.
953   // C99 6.8.5p2/p4: The first substatement is executed if the expression
954   // compares unequal to 0.  The condition must be a scalar type.
955   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
956 
957   BreakContinueStack.pop_back();
958 
959   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
960   // to correctly handle break/continue though.
961   llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal);
962   bool CondIsConstInt = C;
963   bool EmitBoolCondBranch = !C || !C->isZero();
964 
965   const SourceRange &R = S.getSourceRange();
966   LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs,
967                  SourceLocToDebugLoc(R.getBegin()),
968                  SourceLocToDebugLoc(R.getEnd()),
969                  checkIfLoopMustProgress(CondIsConstInt));
970 
971   // As long as the condition is true, iterate the loop.
972   if (EmitBoolCondBranch) {
973     uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount;
974     Builder.CreateCondBr(
975         BoolCondVal, LoopBody, LoopExit.getBlock(),
976         createProfileWeightsForLoop(S.getCond(), BackedgeCount));
977   }
978 
979   LoopStack.pop();
980 
981   // Emit the exit block.
982   EmitBlock(LoopExit.getBlock());
983 
984   // The DoCond block typically is just a branch if we skipped
985   // emitting a branch, try to erase it.
986   if (!EmitBoolCondBranch)
987     SimplifyForwardingBlocks(LoopCond.getBlock());
988 }
989 
990 void CodeGenFunction::EmitForStmt(const ForStmt &S,
991                                   ArrayRef<const Attr *> ForAttrs) {
992   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
993 
994   LexicalScope ForScope(*this, S.getSourceRange());
995 
996   // Evaluate the first part before the loop.
997   if (S.getInit())
998     EmitStmt(S.getInit());
999 
1000   // Start the loop with a block that tests the condition.
1001   // If there's an increment, the continue scope will be overwritten
1002   // later.
1003   JumpDest CondDest = getJumpDestInCurrentScope("for.cond");
1004   llvm::BasicBlock *CondBlock = CondDest.getBlock();
1005   EmitBlock(CondBlock);
1006 
1007   Expr::EvalResult Result;
1008   bool CondIsConstInt =
1009       !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext());
1010 
1011   const SourceRange &R = S.getSourceRange();
1012   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1013                  SourceLocToDebugLoc(R.getBegin()),
1014                  SourceLocToDebugLoc(R.getEnd()),
1015                  checkIfLoopMustProgress(CondIsConstInt));
1016 
1017   // Create a cleanup scope for the condition variable cleanups.
1018   LexicalScope ConditionScope(*this, S.getSourceRange());
1019 
1020   // If the for loop doesn't have an increment we can just use the condition as
1021   // the continue block. Otherwise, if there is no condition variable, we can
1022   // form the continue block now. If there is a condition variable, we can't
1023   // form the continue block until after we've emitted the condition, because
1024   // the condition is in scope in the increment, but Sema's jump diagnostics
1025   // ensure that there are no continues from the condition variable that jump
1026   // to the loop increment.
1027   JumpDest Continue;
1028   if (!S.getInc())
1029     Continue = CondDest;
1030   else if (!S.getConditionVariable())
1031     Continue = getJumpDestInCurrentScope("for.inc");
1032   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1033 
1034   if (S.getCond()) {
1035     // If the for statement has a condition scope, emit the local variable
1036     // declaration.
1037     if (S.getConditionVariable()) {
1038       EmitDecl(*S.getConditionVariable());
1039 
1040       // We have entered the condition variable's scope, so we're now able to
1041       // jump to the continue block.
1042       Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest;
1043       BreakContinueStack.back().ContinueBlock = Continue;
1044     }
1045 
1046     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1047     // If there are any cleanups between here and the loop-exit scope,
1048     // create a block to stage a loop exit along.
1049     if (ForScope.requiresCleanups())
1050       ExitBlock = createBasicBlock("for.cond.cleanup");
1051 
1052     // As long as the condition is true, iterate the loop.
1053     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1054 
1055     // C99 6.8.5p2/p4: The first substatement is executed if the expression
1056     // compares unequal to 0.  The condition must be a scalar type.
1057     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1058     llvm::MDNode *Weights =
1059         createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1060     if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1061       BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1062           BoolCondVal, Stmt::getLikelihood(S.getBody()));
1063 
1064     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1065 
1066     if (ExitBlock != LoopExit.getBlock()) {
1067       EmitBlock(ExitBlock);
1068       EmitBranchThroughCleanup(LoopExit);
1069     }
1070 
1071     EmitBlock(ForBody);
1072   } else {
1073     // Treat it as a non-zero constant.  Don't even create a new block for the
1074     // body, just fall into it.
1075   }
1076   incrementProfileCounter(&S);
1077 
1078   {
1079     // Create a separate cleanup scope for the body, in case it is not
1080     // a compound statement.
1081     RunCleanupsScope BodyScope(*this);
1082     EmitStmt(S.getBody());
1083   }
1084 
1085   // If there is an increment, emit it next.
1086   if (S.getInc()) {
1087     EmitBlock(Continue.getBlock());
1088     EmitStmt(S.getInc());
1089   }
1090 
1091   BreakContinueStack.pop_back();
1092 
1093   ConditionScope.ForceCleanup();
1094 
1095   EmitStopPoint(&S);
1096   EmitBranch(CondBlock);
1097 
1098   ForScope.ForceCleanup();
1099 
1100   LoopStack.pop();
1101 
1102   // Emit the fall-through block.
1103   EmitBlock(LoopExit.getBlock(), true);
1104 }
1105 
1106 void
1107 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
1108                                      ArrayRef<const Attr *> ForAttrs) {
1109   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
1110 
1111   LexicalScope ForScope(*this, S.getSourceRange());
1112 
1113   // Evaluate the first pieces before the loop.
1114   if (S.getInit())
1115     EmitStmt(S.getInit());
1116   EmitStmt(S.getRangeStmt());
1117   EmitStmt(S.getBeginStmt());
1118   EmitStmt(S.getEndStmt());
1119 
1120   // Start the loop with a block that tests the condition.
1121   // If there's an increment, the continue scope will be overwritten
1122   // later.
1123   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
1124   EmitBlock(CondBlock);
1125 
1126   const SourceRange &R = S.getSourceRange();
1127   LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs,
1128                  SourceLocToDebugLoc(R.getBegin()),
1129                  SourceLocToDebugLoc(R.getEnd()));
1130 
1131   // If there are any cleanups between here and the loop-exit scope,
1132   // create a block to stage a loop exit along.
1133   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
1134   if (ForScope.requiresCleanups())
1135     ExitBlock = createBasicBlock("for.cond.cleanup");
1136 
1137   // The loop body, consisting of the specified body and the loop variable.
1138   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
1139 
1140   // The body is executed if the expression, contextually converted
1141   // to bool, is true.
1142   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
1143   llvm::MDNode *Weights =
1144       createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()));
1145   if (!Weights && CGM.getCodeGenOpts().OptimizationLevel)
1146     BoolCondVal = emitCondLikelihoodViaExpectIntrinsic(
1147         BoolCondVal, Stmt::getLikelihood(S.getBody()));
1148   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights);
1149 
1150   if (ExitBlock != LoopExit.getBlock()) {
1151     EmitBlock(ExitBlock);
1152     EmitBranchThroughCleanup(LoopExit);
1153   }
1154 
1155   EmitBlock(ForBody);
1156   incrementProfileCounter(&S);
1157 
1158   // Create a block for the increment. In case of a 'continue', we jump there.
1159   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
1160 
1161   // Store the blocks to use for break and continue.
1162   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
1163 
1164   {
1165     // Create a separate cleanup scope for the loop variable and body.
1166     LexicalScope BodyScope(*this, S.getSourceRange());
1167     EmitStmt(S.getLoopVarStmt());
1168     EmitStmt(S.getBody());
1169   }
1170 
1171   EmitStopPoint(&S);
1172   // If there is an increment, emit it next.
1173   EmitBlock(Continue.getBlock());
1174   EmitStmt(S.getInc());
1175 
1176   BreakContinueStack.pop_back();
1177 
1178   EmitBranch(CondBlock);
1179 
1180   ForScope.ForceCleanup();
1181 
1182   LoopStack.pop();
1183 
1184   // Emit the fall-through block.
1185   EmitBlock(LoopExit.getBlock(), true);
1186 }
1187 
1188 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1189   if (RV.isScalar()) {
1190     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1191   } else if (RV.isAggregate()) {
1192     LValue Dest = MakeAddrLValue(ReturnValue, Ty);
1193     LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty);
1194     EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue());
1195   } else {
1196     EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty),
1197                        /*init*/ true);
1198   }
1199   EmitBranchThroughCleanup(ReturnBlock);
1200 }
1201 
1202 namespace {
1203 // RAII struct used to save and restore a return statment's result expression.
1204 struct SaveRetExprRAII {
1205   SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF)
1206       : OldRetExpr(CGF.RetExpr), CGF(CGF) {
1207     CGF.RetExpr = RetExpr;
1208   }
1209   ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; }
1210   const Expr *OldRetExpr;
1211   CodeGenFunction &CGF;
1212 };
1213 } // namespace
1214 
1215 /// If we have 'return f(...);', where both caller and callee are SwiftAsync,
1216 /// codegen it as 'tail call ...; ret void;'.
1217 static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder,
1218                                      const CGFunctionInfo *CurFnInfo) {
1219   auto calleeQualType = CE->getCallee()->getType();
1220   const FunctionType *calleeType = nullptr;
1221   if (calleeQualType->isFunctionPointerType() ||
1222       calleeQualType->isFunctionReferenceType() ||
1223       calleeQualType->isBlockPointerType() ||
1224       calleeQualType->isMemberFunctionPointerType()) {
1225     calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>();
1226   } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) {
1227     calleeType = ty;
1228   } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) {
1229     if (auto methodDecl = CMCE->getMethodDecl()) {
1230       // getMethodDecl() doesn't handle member pointers at the moment.
1231       calleeType = methodDecl->getType()->castAs<FunctionType>();
1232     } else {
1233       return;
1234     }
1235   } else {
1236     return;
1237   }
1238   if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync &&
1239       (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) {
1240     auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back());
1241     CI->setTailCallKind(llvm::CallInst::TCK_MustTail);
1242     Builder.CreateRetVoid();
1243     Builder.ClearInsertionPoint();
1244   }
1245 }
1246 
1247 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1248 /// if the function returns void, or may be missing one if the function returns
1249 /// non-void.  Fun stuff :).
1250 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1251   if (requiresReturnValueCheck()) {
1252     llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc());
1253     auto *SLocPtr =
1254         new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false,
1255                                  llvm::GlobalVariable::PrivateLinkage, SLoc);
1256     SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1257     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr);
1258     assert(ReturnLocation.isValid() && "No valid return location");
1259     Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy),
1260                         ReturnLocation);
1261   }
1262 
1263   // Returning from an outlined SEH helper is UB, and we already warn on it.
1264   if (IsOutlinedSEHHelper) {
1265     Builder.CreateUnreachable();
1266     Builder.ClearInsertionPoint();
1267   }
1268 
1269   // Emit the result value, even if unused, to evaluate the side effects.
1270   const Expr *RV = S.getRetValue();
1271 
1272   // Record the result expression of the return statement. The recorded
1273   // expression is used to determine whether a block capture's lifetime should
1274   // end at the end of the full expression as opposed to the end of the scope
1275   // enclosing the block expression.
1276   //
1277   // This permits a small, easily-implemented exception to our over-conservative
1278   // rules about not jumping to statements following block literals with
1279   // non-trivial cleanups.
1280   SaveRetExprRAII SaveRetExpr(RV, *this);
1281 
1282   RunCleanupsScope cleanupScope(*this);
1283   if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV))
1284     RV = EWC->getSubExpr();
1285   // FIXME: Clean this up by using an LValue for ReturnTemp,
1286   // EmitStoreThroughLValue, and EmitAnyExpr.
1287   // Check if the NRVO candidate was not globalized in OpenMP mode.
1288   if (getLangOpts().ElideConstructors && S.getNRVOCandidate() &&
1289       S.getNRVOCandidate()->isNRVOVariable() &&
1290       (!getLangOpts().OpenMP ||
1291        !CGM.getOpenMPRuntime()
1292             .getAddressOfLocalVariable(*this, S.getNRVOCandidate())
1293             .isValid())) {
1294     // Apply the named return value optimization for this return statement,
1295     // which means doing nothing: the appropriate result has already been
1296     // constructed into the NRVO variable.
1297 
1298     // If there is an NRVO flag for this variable, set it to 1 into indicate
1299     // that the cleanup code should not destroy the variable.
1300     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1301       Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag);
1302   } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) {
1303     // Make sure not to return anything, but evaluate the expression
1304     // for side effects.
1305     if (RV) {
1306       EmitAnyExpr(RV);
1307       if (auto *CE = dyn_cast<CallExpr>(RV))
1308         makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo);
1309     }
1310   } else if (!RV) {
1311     // Do nothing (return value is left uninitialized)
1312   } else if (FnRetTy->isReferenceType()) {
1313     // If this function returns a reference, take the address of the expression
1314     // rather than the value.
1315     RValue Result = EmitReferenceBindingToExpr(RV);
1316     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1317   } else {
1318     switch (getEvaluationKind(RV->getType())) {
1319     case TEK_Scalar:
1320       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1321       break;
1322     case TEK_Complex:
1323       EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()),
1324                                 /*isInit*/ true);
1325       break;
1326     case TEK_Aggregate:
1327       EmitAggExpr(RV, AggValueSlot::forAddr(
1328                           ReturnValue, Qualifiers(),
1329                           AggValueSlot::IsDestructed,
1330                           AggValueSlot::DoesNotNeedGCBarriers,
1331                           AggValueSlot::IsNotAliased,
1332                           getOverlapForReturnValue()));
1333       break;
1334     }
1335   }
1336 
1337   ++NumReturnExprs;
1338   if (!RV || RV->isEvaluatable(getContext()))
1339     ++NumSimpleReturnExprs;
1340 
1341   cleanupScope.ForceCleanup();
1342   EmitBranchThroughCleanup(ReturnBlock);
1343 }
1344 
1345 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1346   // As long as debug info is modeled with instructions, we have to ensure we
1347   // have a place to insert here and write the stop point here.
1348   if (HaveInsertPoint())
1349     EmitStopPoint(&S);
1350 
1351   for (const auto *I : S.decls())
1352     EmitDecl(*I);
1353 }
1354 
1355 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1356   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1357 
1358   // If this code is reachable then emit a stop point (if generating
1359   // debug info). We have to do this ourselves because we are on the
1360   // "simple" statement path.
1361   if (HaveInsertPoint())
1362     EmitStopPoint(&S);
1363 
1364   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1365 }
1366 
1367 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1368   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1369 
1370   // If this code is reachable then emit a stop point (if generating
1371   // debug info). We have to do this ourselves because we are on the
1372   // "simple" statement path.
1373   if (HaveInsertPoint())
1374     EmitStopPoint(&S);
1375 
1376   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1377 }
1378 
1379 /// EmitCaseStmtRange - If case statement range is not too big then
1380 /// add multiple cases to switch instruction, one for each value within
1381 /// the range. If range is too big then emit "if" condition check.
1382 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S,
1383                                         ArrayRef<const Attr *> Attrs) {
1384   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1385 
1386   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1387   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1388 
1389   // Emit the code for this case. We do this first to make sure it is
1390   // properly chained from our predecessor before generating the
1391   // switch machinery to enter this block.
1392   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1393   EmitBlockWithFallThrough(CaseDest, &S);
1394   EmitStmt(S.getSubStmt());
1395 
1396   // If range is empty, do nothing.
1397   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1398     return;
1399 
1400   Stmt::Likelihood LH = Stmt::getLikelihood(Attrs);
1401   llvm::APInt Range = RHS - LHS;
1402   // FIXME: parameters such as this should not be hardcoded.
1403   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1404     // Range is small enough to add multiple switch instruction cases.
1405     uint64_t Total = getProfileCount(&S);
1406     unsigned NCases = Range.getZExtValue() + 1;
1407     // We only have one region counter for the entire set of cases here, so we
1408     // need to divide the weights evenly between the generated cases, ensuring
1409     // that the total weight is preserved. E.g., a weight of 5 over three cases
1410     // will be distributed as weights of 2, 2, and 1.
1411     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1412     for (unsigned I = 0; I != NCases; ++I) {
1413       if (SwitchWeights)
1414         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1415       else if (SwitchLikelihood)
1416         SwitchLikelihood->push_back(LH);
1417 
1418       if (Rem)
1419         Rem--;
1420       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1421       ++LHS;
1422     }
1423     return;
1424   }
1425 
1426   // The range is too big. Emit "if" condition into a new block,
1427   // making sure to save and restore the current insertion point.
1428   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1429 
1430   // Push this test onto the chain of range checks (which terminates
1431   // in the default basic block). The switch's default will be changed
1432   // to the top of this chain after switch emission is complete.
1433   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1434   CaseRangeBlock = createBasicBlock("sw.caserange");
1435 
1436   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1437   Builder.SetInsertPoint(CaseRangeBlock);
1438 
1439   // Emit range check.
1440   llvm::Value *Diff =
1441     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1442   llvm::Value *Cond =
1443     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1444 
1445   llvm::MDNode *Weights = nullptr;
1446   if (SwitchWeights) {
1447     uint64_t ThisCount = getProfileCount(&S);
1448     uint64_t DefaultCount = (*SwitchWeights)[0];
1449     Weights = createProfileWeights(ThisCount, DefaultCount);
1450 
1451     // Since we're chaining the switch default through each large case range, we
1452     // need to update the weight for the default, ie, the first case, to include
1453     // this case.
1454     (*SwitchWeights)[0] += ThisCount;
1455   } else if (SwitchLikelihood)
1456     Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH);
1457 
1458   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1459 
1460   // Restore the appropriate insertion point.
1461   if (RestoreBB)
1462     Builder.SetInsertPoint(RestoreBB);
1463   else
1464     Builder.ClearInsertionPoint();
1465 }
1466 
1467 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S,
1468                                    ArrayRef<const Attr *> Attrs) {
1469   // If there is no enclosing switch instance that we're aware of, then this
1470   // case statement and its block can be elided.  This situation only happens
1471   // when we've constant-folded the switch, are emitting the constant case,
1472   // and part of the constant case includes another case statement.  For
1473   // instance: switch (4) { case 4: do { case 5: } while (1); }
1474   if (!SwitchInsn) {
1475     EmitStmt(S.getSubStmt());
1476     return;
1477   }
1478 
1479   // Handle case ranges.
1480   if (S.getRHS()) {
1481     EmitCaseStmtRange(S, Attrs);
1482     return;
1483   }
1484 
1485   llvm::ConstantInt *CaseVal =
1486     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1487   if (SwitchLikelihood)
1488     SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs));
1489 
1490   // If the body of the case is just a 'break', try to not emit an empty block.
1491   // If we're profiling or we're not optimizing, leave the block in for better
1492   // debug and coverage analysis.
1493   if (!CGM.getCodeGenOpts().hasProfileClangInstr() &&
1494       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1495       isa<BreakStmt>(S.getSubStmt())) {
1496     JumpDest Block = BreakContinueStack.back().BreakBlock;
1497 
1498     // Only do this optimization if there are no cleanups that need emitting.
1499     if (isObviouslyBranchWithoutCleanups(Block)) {
1500       if (SwitchWeights)
1501         SwitchWeights->push_back(getProfileCount(&S));
1502       SwitchInsn->addCase(CaseVal, Block.getBlock());
1503 
1504       // If there was a fallthrough into this case, make sure to redirect it to
1505       // the end of the switch as well.
1506       if (Builder.GetInsertBlock()) {
1507         Builder.CreateBr(Block.getBlock());
1508         Builder.ClearInsertionPoint();
1509       }
1510       return;
1511     }
1512   }
1513 
1514   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1515   EmitBlockWithFallThrough(CaseDest, &S);
1516   if (SwitchWeights)
1517     SwitchWeights->push_back(getProfileCount(&S));
1518   SwitchInsn->addCase(CaseVal, CaseDest);
1519 
1520   // Recursively emitting the statement is acceptable, but is not wonderful for
1521   // code where we have many case statements nested together, i.e.:
1522   //  case 1:
1523   //    case 2:
1524   //      case 3: etc.
1525   // Handling this recursively will create a new block for each case statement
1526   // that falls through to the next case which is IR intensive.  It also causes
1527   // deep recursion which can run into stack depth limitations.  Handle
1528   // sequential non-range case statements specially.
1529   //
1530   // TODO When the next case has a likelihood attribute the code returns to the
1531   // recursive algorithm. Maybe improve this case if it becomes common practice
1532   // to use a lot of attributes.
1533   const CaseStmt *CurCase = &S;
1534   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1535 
1536   // Otherwise, iteratively add consecutive cases to this switch stmt.
1537   while (NextCase && NextCase->getRHS() == nullptr) {
1538     CurCase = NextCase;
1539     llvm::ConstantInt *CaseVal =
1540       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1541 
1542     if (SwitchWeights)
1543       SwitchWeights->push_back(getProfileCount(NextCase));
1544     if (CGM.getCodeGenOpts().hasProfileClangInstr()) {
1545       CaseDest = createBasicBlock("sw.bb");
1546       EmitBlockWithFallThrough(CaseDest, CurCase);
1547     }
1548     // Since this loop is only executed when the CaseStmt has no attributes
1549     // use a hard-coded value.
1550     if (SwitchLikelihood)
1551       SwitchLikelihood->push_back(Stmt::LH_None);
1552 
1553     SwitchInsn->addCase(CaseVal, CaseDest);
1554     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1555   }
1556 
1557   // Generate a stop point for debug info if the case statement is
1558   // followed by a default statement. A fallthrough case before a
1559   // default case gets its own branch target.
1560   if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass)
1561     EmitStopPoint(CurCase);
1562 
1563   // Normal default recursion for non-cases.
1564   EmitStmt(CurCase->getSubStmt());
1565 }
1566 
1567 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S,
1568                                       ArrayRef<const Attr *> Attrs) {
1569   // If there is no enclosing switch instance that we're aware of, then this
1570   // default statement can be elided. This situation only happens when we've
1571   // constant-folded the switch.
1572   if (!SwitchInsn) {
1573     EmitStmt(S.getSubStmt());
1574     return;
1575   }
1576 
1577   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1578   assert(DefaultBlock->empty() &&
1579          "EmitDefaultStmt: Default block already defined?");
1580 
1581   if (SwitchLikelihood)
1582     SwitchLikelihood->front() = Stmt::getLikelihood(Attrs);
1583 
1584   EmitBlockWithFallThrough(DefaultBlock, &S);
1585 
1586   EmitStmt(S.getSubStmt());
1587 }
1588 
1589 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1590 /// constant value that is being switched on, see if we can dead code eliminate
1591 /// the body of the switch to a simple series of statements to emit.  Basically,
1592 /// on a switch (5) we want to find these statements:
1593 ///    case 5:
1594 ///      printf(...);    <--
1595 ///      ++i;            <--
1596 ///      break;
1597 ///
1598 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1599 /// transformation (for example, one of the elided statements contains a label
1600 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1601 /// should include statements after it (e.g. the printf() line is a substmt of
1602 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1603 /// statement, then return CSFC_Success.
1604 ///
1605 /// If Case is non-null, then we are looking for the specified case, checking
1606 /// that nothing we jump over contains labels.  If Case is null, then we found
1607 /// the case and are looking for the break.
1608 ///
1609 /// If the recursive walk actually finds our Case, then we set FoundCase to
1610 /// true.
1611 ///
1612 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
1613 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1614                                             const SwitchCase *Case,
1615                                             bool &FoundCase,
1616                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1617   // If this is a null statement, just succeed.
1618   if (!S)
1619     return Case ? CSFC_Success : CSFC_FallThrough;
1620 
1621   // If this is the switchcase (case 4: or default) that we're looking for, then
1622   // we're in business.  Just add the substatement.
1623   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1624     if (S == Case) {
1625       FoundCase = true;
1626       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1627                                       ResultStmts);
1628     }
1629 
1630     // Otherwise, this is some other case or default statement, just ignore it.
1631     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1632                                     ResultStmts);
1633   }
1634 
1635   // If we are in the live part of the code and we found our break statement,
1636   // return a success!
1637   if (!Case && isa<BreakStmt>(S))
1638     return CSFC_Success;
1639 
1640   // If this is a switch statement, then it might contain the SwitchCase, the
1641   // break, or neither.
1642   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1643     // Handle this as two cases: we might be looking for the SwitchCase (if so
1644     // the skipped statements must be skippable) or we might already have it.
1645     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1646     bool StartedInLiveCode = FoundCase;
1647     unsigned StartSize = ResultStmts.size();
1648 
1649     // If we've not found the case yet, scan through looking for it.
1650     if (Case) {
1651       // Keep track of whether we see a skipped declaration.  The code could be
1652       // using the declaration even if it is skipped, so we can't optimize out
1653       // the decl if the kept statements might refer to it.
1654       bool HadSkippedDecl = false;
1655 
1656       // If we're looking for the case, just see if we can skip each of the
1657       // substatements.
1658       for (; Case && I != E; ++I) {
1659         HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I);
1660 
1661         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1662         case CSFC_Failure: return CSFC_Failure;
1663         case CSFC_Success:
1664           // A successful result means that either 1) that the statement doesn't
1665           // have the case and is skippable, or 2) does contain the case value
1666           // and also contains the break to exit the switch.  In the later case,
1667           // we just verify the rest of the statements are elidable.
1668           if (FoundCase) {
1669             // If we found the case and skipped declarations, we can't do the
1670             // optimization.
1671             if (HadSkippedDecl)
1672               return CSFC_Failure;
1673 
1674             for (++I; I != E; ++I)
1675               if (CodeGenFunction::ContainsLabel(*I, true))
1676                 return CSFC_Failure;
1677             return CSFC_Success;
1678           }
1679           break;
1680         case CSFC_FallThrough:
1681           // If we have a fallthrough condition, then we must have found the
1682           // case started to include statements.  Consider the rest of the
1683           // statements in the compound statement as candidates for inclusion.
1684           assert(FoundCase && "Didn't find case but returned fallthrough?");
1685           // We recursively found Case, so we're not looking for it anymore.
1686           Case = nullptr;
1687 
1688           // If we found the case and skipped declarations, we can't do the
1689           // optimization.
1690           if (HadSkippedDecl)
1691             return CSFC_Failure;
1692           break;
1693         }
1694       }
1695 
1696       if (!FoundCase)
1697         return CSFC_Success;
1698 
1699       assert(!HadSkippedDecl && "fallthrough after skipping decl");
1700     }
1701 
1702     // If we have statements in our range, then we know that the statements are
1703     // live and need to be added to the set of statements we're tracking.
1704     bool AnyDecls = false;
1705     for (; I != E; ++I) {
1706       AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I);
1707 
1708       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1709       case CSFC_Failure: return CSFC_Failure;
1710       case CSFC_FallThrough:
1711         // A fallthrough result means that the statement was simple and just
1712         // included in ResultStmt, keep adding them afterwards.
1713         break;
1714       case CSFC_Success:
1715         // A successful result means that we found the break statement and
1716         // stopped statement inclusion.  We just ensure that any leftover stmts
1717         // are skippable and return success ourselves.
1718         for (++I; I != E; ++I)
1719           if (CodeGenFunction::ContainsLabel(*I, true))
1720             return CSFC_Failure;
1721         return CSFC_Success;
1722       }
1723     }
1724 
1725     // If we're about to fall out of a scope without hitting a 'break;', we
1726     // can't perform the optimization if there were any decls in that scope
1727     // (we'd lose their end-of-lifetime).
1728     if (AnyDecls) {
1729       // If the entire compound statement was live, there's one more thing we
1730       // can try before giving up: emit the whole thing as a single statement.
1731       // We can do that unless the statement contains a 'break;'.
1732       // FIXME: Such a break must be at the end of a construct within this one.
1733       // We could emit this by just ignoring the BreakStmts entirely.
1734       if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) {
1735         ResultStmts.resize(StartSize);
1736         ResultStmts.push_back(S);
1737       } else {
1738         return CSFC_Failure;
1739       }
1740     }
1741 
1742     return CSFC_FallThrough;
1743   }
1744 
1745   // Okay, this is some other statement that we don't handle explicitly, like a
1746   // for statement or increment etc.  If we are skipping over this statement,
1747   // just verify it doesn't have labels, which would make it invalid to elide.
1748   if (Case) {
1749     if (CodeGenFunction::ContainsLabel(S, true))
1750       return CSFC_Failure;
1751     return CSFC_Success;
1752   }
1753 
1754   // Otherwise, we want to include this statement.  Everything is cool with that
1755   // so long as it doesn't contain a break out of the switch we're in.
1756   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1757 
1758   // Otherwise, everything is great.  Include the statement and tell the caller
1759   // that we fall through and include the next statement as well.
1760   ResultStmts.push_back(S);
1761   return CSFC_FallThrough;
1762 }
1763 
1764 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1765 /// then invoke CollectStatementsForCase to find the list of statements to emit
1766 /// for a switch on constant.  See the comment above CollectStatementsForCase
1767 /// for more details.
1768 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1769                                        const llvm::APSInt &ConstantCondValue,
1770                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1771                                        ASTContext &C,
1772                                        const SwitchCase *&ResultCase) {
1773   // First step, find the switch case that is being branched to.  We can do this
1774   // efficiently by scanning the SwitchCase list.
1775   const SwitchCase *Case = S.getSwitchCaseList();
1776   const DefaultStmt *DefaultCase = nullptr;
1777 
1778   for (; Case; Case = Case->getNextSwitchCase()) {
1779     // It's either a default or case.  Just remember the default statement in
1780     // case we're not jumping to any numbered cases.
1781     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1782       DefaultCase = DS;
1783       continue;
1784     }
1785 
1786     // Check to see if this case is the one we're looking for.
1787     const CaseStmt *CS = cast<CaseStmt>(Case);
1788     // Don't handle case ranges yet.
1789     if (CS->getRHS()) return false;
1790 
1791     // If we found our case, remember it as 'case'.
1792     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1793       break;
1794   }
1795 
1796   // If we didn't find a matching case, we use a default if it exists, or we
1797   // elide the whole switch body!
1798   if (!Case) {
1799     // It is safe to elide the body of the switch if it doesn't contain labels
1800     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1801     if (!DefaultCase)
1802       return !CodeGenFunction::ContainsLabel(&S);
1803     Case = DefaultCase;
1804   }
1805 
1806   // Ok, we know which case is being jumped to, try to collect all the
1807   // statements that follow it.  This can fail for a variety of reasons.  Also,
1808   // check to see that the recursive walk actually found our case statement.
1809   // Insane cases like this can fail to find it in the recursive walk since we
1810   // don't handle every stmt kind:
1811   // switch (4) {
1812   //   while (1) {
1813   //     case 4: ...
1814   bool FoundCase = false;
1815   ResultCase = Case;
1816   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1817                                   ResultStmts) != CSFC_Failure &&
1818          FoundCase;
1819 }
1820 
1821 static Optional<SmallVector<uint64_t, 16>>
1822 getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) {
1823   // Are there enough branches to weight them?
1824   if (Likelihoods.size() <= 1)
1825     return None;
1826 
1827   uint64_t NumUnlikely = 0;
1828   uint64_t NumNone = 0;
1829   uint64_t NumLikely = 0;
1830   for (const auto LH : Likelihoods) {
1831     switch (LH) {
1832     case Stmt::LH_Unlikely:
1833       ++NumUnlikely;
1834       break;
1835     case Stmt::LH_None:
1836       ++NumNone;
1837       break;
1838     case Stmt::LH_Likely:
1839       ++NumLikely;
1840       break;
1841     }
1842   }
1843 
1844   // Is there a likelihood attribute used?
1845   if (NumUnlikely == 0 && NumLikely == 0)
1846     return None;
1847 
1848   // When multiple cases share the same code they can be combined during
1849   // optimization. In that case the weights of the branch will be the sum of
1850   // the individual weights. Make sure the combined sum of all neutral cases
1851   // doesn't exceed the value of a single likely attribute.
1852   // The additions both avoid divisions by 0 and make sure the weights of None
1853   // don't exceed the weight of Likely.
1854   const uint64_t Likely = INT32_MAX / (NumLikely + 2);
1855   const uint64_t None = Likely / (NumNone + 1);
1856   const uint64_t Unlikely = 0;
1857 
1858   SmallVector<uint64_t, 16> Result;
1859   Result.reserve(Likelihoods.size());
1860   for (const auto LH : Likelihoods) {
1861     switch (LH) {
1862     case Stmt::LH_Unlikely:
1863       Result.push_back(Unlikely);
1864       break;
1865     case Stmt::LH_None:
1866       Result.push_back(None);
1867       break;
1868     case Stmt::LH_Likely:
1869       Result.push_back(Likely);
1870       break;
1871     }
1872   }
1873 
1874   return Result;
1875 }
1876 
1877 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1878   // Handle nested switch statements.
1879   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1880   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1881   SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood;
1882   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1883 
1884   // See if we can constant fold the condition of the switch and therefore only
1885   // emit the live case statement (if any) of the switch.
1886   llvm::APSInt ConstantCondValue;
1887   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1888     SmallVector<const Stmt*, 4> CaseStmts;
1889     const SwitchCase *Case = nullptr;
1890     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1891                                    getContext(), Case)) {
1892       if (Case)
1893         incrementProfileCounter(Case);
1894       RunCleanupsScope ExecutedScope(*this);
1895 
1896       if (S.getInit())
1897         EmitStmt(S.getInit());
1898 
1899       // Emit the condition variable if needed inside the entire cleanup scope
1900       // used by this special case for constant folded switches.
1901       if (S.getConditionVariable())
1902         EmitDecl(*S.getConditionVariable());
1903 
1904       // At this point, we are no longer "within" a switch instance, so
1905       // we can temporarily enforce this to ensure that any embedded case
1906       // statements are not emitted.
1907       SwitchInsn = nullptr;
1908 
1909       // Okay, we can dead code eliminate everything except this case.  Emit the
1910       // specified series of statements and we're good.
1911       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1912         EmitStmt(CaseStmts[i]);
1913       incrementProfileCounter(&S);
1914 
1915       // Now we want to restore the saved switch instance so that nested
1916       // switches continue to function properly
1917       SwitchInsn = SavedSwitchInsn;
1918 
1919       return;
1920     }
1921   }
1922 
1923   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1924 
1925   RunCleanupsScope ConditionScope(*this);
1926 
1927   if (S.getInit())
1928     EmitStmt(S.getInit());
1929 
1930   if (S.getConditionVariable())
1931     EmitDecl(*S.getConditionVariable());
1932   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1933 
1934   // Create basic block to hold stuff that comes after switch
1935   // statement. We also need to create a default block now so that
1936   // explicit case ranges tests can have a place to jump to on
1937   // failure.
1938   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1939   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1940   if (PGO.haveRegionCounts()) {
1941     // Walk the SwitchCase list to find how many there are.
1942     uint64_t DefaultCount = 0;
1943     unsigned NumCases = 0;
1944     for (const SwitchCase *Case = S.getSwitchCaseList();
1945          Case;
1946          Case = Case->getNextSwitchCase()) {
1947       if (isa<DefaultStmt>(Case))
1948         DefaultCount = getProfileCount(Case);
1949       NumCases += 1;
1950     }
1951     SwitchWeights = new SmallVector<uint64_t, 16>();
1952     SwitchWeights->reserve(NumCases);
1953     // The default needs to be first. We store the edge count, so we already
1954     // know the right weight.
1955     SwitchWeights->push_back(DefaultCount);
1956   } else if (CGM.getCodeGenOpts().OptimizationLevel) {
1957     SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>();
1958     // Initialize the default case.
1959     SwitchLikelihood->push_back(Stmt::LH_None);
1960   }
1961 
1962   CaseRangeBlock = DefaultBlock;
1963 
1964   // Clear the insertion point to indicate we are in unreachable code.
1965   Builder.ClearInsertionPoint();
1966 
1967   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1968   // then reuse last ContinueBlock.
1969   JumpDest OuterContinue;
1970   if (!BreakContinueStack.empty())
1971     OuterContinue = BreakContinueStack.back().ContinueBlock;
1972 
1973   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1974 
1975   // Emit switch body.
1976   EmitStmt(S.getBody());
1977 
1978   BreakContinueStack.pop_back();
1979 
1980   // Update the default block in case explicit case range tests have
1981   // been chained on top.
1982   SwitchInsn->setDefaultDest(CaseRangeBlock);
1983 
1984   // If a default was never emitted:
1985   if (!DefaultBlock->getParent()) {
1986     // If we have cleanups, emit the default block so that there's a
1987     // place to jump through the cleanups from.
1988     if (ConditionScope.requiresCleanups()) {
1989       EmitBlock(DefaultBlock);
1990 
1991     // Otherwise, just forward the default block to the switch end.
1992     } else {
1993       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1994       delete DefaultBlock;
1995     }
1996   }
1997 
1998   ConditionScope.ForceCleanup();
1999 
2000   // Emit continuation.
2001   EmitBlock(SwitchExit.getBlock(), true);
2002   incrementProfileCounter(&S);
2003 
2004   // If the switch has a condition wrapped by __builtin_unpredictable,
2005   // create metadata that specifies that the switch is unpredictable.
2006   // Don't bother if not optimizing because that metadata would not be used.
2007   auto *Call = dyn_cast<CallExpr>(S.getCond());
2008   if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) {
2009     auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl());
2010     if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) {
2011       llvm::MDBuilder MDHelper(getLLVMContext());
2012       SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable,
2013                               MDHelper.createUnpredictable());
2014     }
2015   }
2016 
2017   if (SwitchWeights) {
2018     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
2019            "switch weights do not match switch cases");
2020     // If there's only one jump destination there's no sense weighting it.
2021     if (SwitchWeights->size() > 1)
2022       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2023                               createProfileWeights(*SwitchWeights));
2024     delete SwitchWeights;
2025   } else if (SwitchLikelihood) {
2026     assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() &&
2027            "switch likelihoods do not match switch cases");
2028     Optional<SmallVector<uint64_t, 16>> LHW =
2029         getLikelihoodWeights(*SwitchLikelihood);
2030     if (LHW) {
2031       llvm::MDBuilder MDHelper(CGM.getLLVMContext());
2032       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
2033                               createProfileWeights(*LHW));
2034     }
2035     delete SwitchLikelihood;
2036   }
2037   SwitchInsn = SavedSwitchInsn;
2038   SwitchWeights = SavedSwitchWeights;
2039   SwitchLikelihood = SavedSwitchLikelihood;
2040   CaseRangeBlock = SavedCRBlock;
2041 }
2042 
2043 static std::string
2044 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
2045                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
2046   std::string Result;
2047 
2048   while (*Constraint) {
2049     switch (*Constraint) {
2050     default:
2051       Result += Target.convertConstraint(Constraint);
2052       break;
2053     // Ignore these
2054     case '*':
2055     case '?':
2056     case '!':
2057     case '=': // Will see this and the following in mult-alt constraints.
2058     case '+':
2059       break;
2060     case '#': // Ignore the rest of the constraint alternative.
2061       while (Constraint[1] && Constraint[1] != ',')
2062         Constraint++;
2063       break;
2064     case '&':
2065     case '%':
2066       Result += *Constraint;
2067       while (Constraint[1] && Constraint[1] == *Constraint)
2068         Constraint++;
2069       break;
2070     case ',':
2071       Result += "|";
2072       break;
2073     case 'g':
2074       Result += "imr";
2075       break;
2076     case '[': {
2077       assert(OutCons &&
2078              "Must pass output names to constraints with a symbolic name");
2079       unsigned Index;
2080       bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index);
2081       assert(result && "Could not resolve symbolic name"); (void)result;
2082       Result += llvm::utostr(Index);
2083       break;
2084     }
2085     }
2086 
2087     Constraint++;
2088   }
2089 
2090   return Result;
2091 }
2092 
2093 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
2094 /// as using a particular register add that as a constraint that will be used
2095 /// in this asm stmt.
2096 static std::string
2097 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
2098                        const TargetInfo &Target, CodeGenModule &CGM,
2099                        const AsmStmt &Stmt, const bool EarlyClobber,
2100                        std::string *GCCReg = nullptr) {
2101   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
2102   if (!AsmDeclRef)
2103     return Constraint;
2104   const ValueDecl &Value = *AsmDeclRef->getDecl();
2105   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
2106   if (!Variable)
2107     return Constraint;
2108   if (Variable->getStorageClass() != SC_Register)
2109     return Constraint;
2110   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
2111   if (!Attr)
2112     return Constraint;
2113   StringRef Register = Attr->getLabel();
2114   assert(Target.isValidGCCRegisterName(Register));
2115   // We're using validateOutputConstraint here because we only care if
2116   // this is a register constraint.
2117   TargetInfo::ConstraintInfo Info(Constraint, "");
2118   if (Target.validateOutputConstraint(Info) &&
2119       !Info.allowsRegister()) {
2120     CGM.ErrorUnsupported(&Stmt, "__asm__");
2121     return Constraint;
2122   }
2123   // Canonicalize the register here before returning it.
2124   Register = Target.getNormalizedGCCRegisterName(Register);
2125   if (GCCReg != nullptr)
2126     *GCCReg = Register.str();
2127   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
2128 }
2129 
2130 std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue(
2131     const TargetInfo::ConstraintInfo &Info, LValue InputValue,
2132     QualType InputType, std::string &ConstraintStr, SourceLocation Loc) {
2133   if (Info.allowsRegister() || !Info.allowsMemory()) {
2134     if (CodeGenFunction::hasScalarEvaluationKind(InputType))
2135       return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr};
2136 
2137     llvm::Type *Ty = ConvertType(InputType);
2138     uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
2139     if ((Size <= 64 && llvm::isPowerOf2_64(Size)) ||
2140         getTargetHooks().isScalarizableAsmOperand(*this, Ty)) {
2141       Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2142 
2143       return {Builder.CreateLoad(Builder.CreateElementBitCast(
2144                   InputValue.getAddress(*this), Ty)),
2145               nullptr};
2146     }
2147   }
2148 
2149   Address Addr = InputValue.getAddress(*this);
2150   ConstraintStr += '*';
2151   return {Addr.getPointer(), Addr.getElementType()};
2152 }
2153 
2154 std::pair<llvm::Value *, llvm::Type *>
2155 CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
2156                               const Expr *InputExpr,
2157                               std::string &ConstraintStr) {
2158   // If this can't be a register or memory, i.e., has to be a constant
2159   // (immediate or symbolic), try to emit it as such.
2160   if (!Info.allowsRegister() && !Info.allowsMemory()) {
2161     if (Info.requiresImmediateConstant()) {
2162       Expr::EvalResult EVResult;
2163       InputExpr->EvaluateAsRValue(EVResult, getContext(), true);
2164 
2165       llvm::APSInt IntResult;
2166       if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
2167                                           getContext()))
2168         return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr};
2169     }
2170 
2171     Expr::EvalResult Result;
2172     if (InputExpr->EvaluateAsInt(Result, getContext()))
2173       return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()),
2174               nullptr};
2175   }
2176 
2177   if (Info.allowsRegister() || !Info.allowsMemory())
2178     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
2179       return {EmitScalarExpr(InputExpr), nullptr};
2180   if (InputExpr->getStmtClass() == Expr::CXXThisExprClass)
2181     return {EmitScalarExpr(InputExpr), nullptr};
2182   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
2183   LValue Dest = EmitLValue(InputExpr);
2184   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
2185                             InputExpr->getExprLoc());
2186 }
2187 
2188 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
2189 /// asm call instruction.  The !srcloc MDNode contains a list of constant
2190 /// integers which are the source locations of the start of each line in the
2191 /// asm.
2192 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
2193                                       CodeGenFunction &CGF) {
2194   SmallVector<llvm::Metadata *, 8> Locs;
2195   // Add the location of the first line to the MDNode.
2196   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
2197       CGF.Int64Ty, Str->getBeginLoc().getRawEncoding())));
2198   StringRef StrVal = Str->getString();
2199   if (!StrVal.empty()) {
2200     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
2201     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
2202     unsigned StartToken = 0;
2203     unsigned ByteOffset = 0;
2204 
2205     // Add the location of the start of each subsequent line of the asm to the
2206     // MDNode.
2207     for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) {
2208       if (StrVal[i] != '\n') continue;
2209       SourceLocation LineLoc = Str->getLocationOfByte(
2210           i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset);
2211       Locs.push_back(llvm::ConstantAsMetadata::get(
2212           llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding())));
2213     }
2214   }
2215 
2216   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
2217 }
2218 
2219 static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect,
2220                               bool HasUnwindClobber, bool ReadOnly,
2221                               bool ReadNone, bool NoMerge, const AsmStmt &S,
2222                               const std::vector<llvm::Type *> &ResultRegTypes,
2223                               const std::vector<llvm::Type *> &ArgElemTypes,
2224                               CodeGenFunction &CGF,
2225                               std::vector<llvm::Value *> &RegResults) {
2226   if (!HasUnwindClobber)
2227     Result.addFnAttr(llvm::Attribute::NoUnwind);
2228 
2229   if (NoMerge)
2230     Result.addFnAttr(llvm::Attribute::NoMerge);
2231   // Attach readnone and readonly attributes.
2232   if (!HasSideEffect) {
2233     if (ReadNone)
2234       Result.addFnAttr(llvm::Attribute::ReadNone);
2235     else if (ReadOnly)
2236       Result.addFnAttr(llvm::Attribute::ReadOnly);
2237   }
2238 
2239   // Add elementtype attribute for indirect constraints.
2240   for (auto Pair : llvm::enumerate(ArgElemTypes)) {
2241     if (Pair.value()) {
2242       auto Attr = llvm::Attribute::get(
2243           CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value());
2244       Result.addParamAttr(Pair.index(), Attr);
2245     }
2246   }
2247 
2248   // Slap the source location of the inline asm into a !srcloc metadata on the
2249   // call.
2250   if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
2251     Result.setMetadata("srcloc",
2252                        getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF));
2253   else {
2254     // At least put the line number on MS inline asm blobs.
2255     llvm::Constant *Loc =
2256         llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding());
2257     Result.setMetadata("srcloc",
2258                        llvm::MDNode::get(CGF.getLLVMContext(),
2259                                          llvm::ConstantAsMetadata::get(Loc)));
2260   }
2261 
2262   if (CGF.getLangOpts().assumeFunctionsAreConvergent())
2263     // Conservatively, mark all inline asm blocks in CUDA or OpenCL as
2264     // convergent (meaning, they may call an intrinsically convergent op, such
2265     // as bar.sync, and so can't have certain optimizations applied around
2266     // them).
2267     Result.addFnAttr(llvm::Attribute::Convergent);
2268   // Extract all of the register value results from the asm.
2269   if (ResultRegTypes.size() == 1) {
2270     RegResults.push_back(&Result);
2271   } else {
2272     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2273       llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult");
2274       RegResults.push_back(Tmp);
2275     }
2276   }
2277 }
2278 
2279 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
2280   // Assemble the final asm string.
2281   std::string AsmString = S.generateAsmString(getContext());
2282 
2283   // Get all the output and input constraints together.
2284   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
2285   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
2286 
2287   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2288     StringRef Name;
2289     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2290       Name = GAS->getOutputName(i);
2291     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
2292     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
2293     assert(IsValid && "Failed to parse output constraint");
2294     OutputConstraintInfos.push_back(Info);
2295   }
2296 
2297   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2298     StringRef Name;
2299     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
2300       Name = GAS->getInputName(i);
2301     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
2302     bool IsValid =
2303       getTarget().validateInputConstraint(OutputConstraintInfos, Info);
2304     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
2305     InputConstraintInfos.push_back(Info);
2306   }
2307 
2308   std::string Constraints;
2309 
2310   std::vector<LValue> ResultRegDests;
2311   std::vector<QualType> ResultRegQualTys;
2312   std::vector<llvm::Type *> ResultRegTypes;
2313   std::vector<llvm::Type *> ResultTruncRegTypes;
2314   std::vector<llvm::Type *> ArgTypes;
2315   std::vector<llvm::Type *> ArgElemTypes;
2316   std::vector<llvm::Value*> Args;
2317   llvm::BitVector ResultTypeRequiresCast;
2318 
2319   // Keep track of inout constraints.
2320   std::string InOutConstraints;
2321   std::vector<llvm::Value*> InOutArgs;
2322   std::vector<llvm::Type*> InOutArgTypes;
2323   std::vector<llvm::Type*> InOutArgElemTypes;
2324 
2325   // Keep track of out constraints for tied input operand.
2326   std::vector<std::string> OutputConstraints;
2327 
2328   // Keep track of defined physregs.
2329   llvm::SmallSet<std::string, 8> PhysRegOutputs;
2330 
2331   // An inline asm can be marked readonly if it meets the following conditions:
2332   //  - it doesn't have any sideeffects
2333   //  - it doesn't clobber memory
2334   //  - it doesn't return a value by-reference
2335   // It can be marked readnone if it doesn't have any input memory constraints
2336   // in addition to meeting the conditions listed above.
2337   bool ReadOnly = true, ReadNone = true;
2338 
2339   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
2340     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
2341 
2342     // Simplify the output constraint.
2343     std::string OutputConstraint(S.getOutputConstraint(i));
2344     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
2345                                           getTarget(), &OutputConstraintInfos);
2346 
2347     const Expr *OutExpr = S.getOutputExpr(i);
2348     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
2349 
2350     std::string GCCReg;
2351     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
2352                                               getTarget(), CGM, S,
2353                                               Info.earlyClobber(),
2354                                               &GCCReg);
2355     // Give an error on multiple outputs to same physreg.
2356     if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second)
2357       CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg);
2358 
2359     OutputConstraints.push_back(OutputConstraint);
2360     LValue Dest = EmitLValue(OutExpr);
2361     if (!Constraints.empty())
2362       Constraints += ',';
2363 
2364     // If this is a register output, then make the inline asm return it
2365     // by-value.  If this is a memory result, return the value by-reference.
2366     QualType QTy = OutExpr->getType();
2367     const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) ||
2368                                      hasAggregateEvaluationKind(QTy);
2369     if (!Info.allowsMemory() && IsScalarOrAggregate) {
2370 
2371       Constraints += "=" + OutputConstraint;
2372       ResultRegQualTys.push_back(QTy);
2373       ResultRegDests.push_back(Dest);
2374 
2375       llvm::Type *Ty = ConvertTypeForMem(QTy);
2376       const bool RequiresCast = Info.allowsRegister() &&
2377           (getTargetHooks().isScalarizableAsmOperand(*this, Ty) ||
2378            Ty->isAggregateType());
2379 
2380       ResultTruncRegTypes.push_back(Ty);
2381       ResultTypeRequiresCast.push_back(RequiresCast);
2382 
2383       if (RequiresCast) {
2384         unsigned Size = getContext().getTypeSize(QTy);
2385         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
2386       }
2387       ResultRegTypes.push_back(Ty);
2388       // If this output is tied to an input, and if the input is larger, then
2389       // we need to set the actual result type of the inline asm node to be the
2390       // same as the input type.
2391       if (Info.hasMatchingInput()) {
2392         unsigned InputNo;
2393         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
2394           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
2395           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
2396             break;
2397         }
2398         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
2399 
2400         QualType InputTy = S.getInputExpr(InputNo)->getType();
2401         QualType OutputType = OutExpr->getType();
2402 
2403         uint64_t InputSize = getContext().getTypeSize(InputTy);
2404         if (getContext().getTypeSize(OutputType) < InputSize) {
2405           // Form the asm to return the value as a larger integer or fp type.
2406           ResultRegTypes.back() = ConvertType(InputTy);
2407         }
2408       }
2409       if (llvm::Type* AdjTy =
2410             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2411                                                  ResultRegTypes.back()))
2412         ResultRegTypes.back() = AdjTy;
2413       else {
2414         CGM.getDiags().Report(S.getAsmLoc(),
2415                               diag::err_asm_invalid_type_in_input)
2416             << OutExpr->getType() << OutputConstraint;
2417       }
2418 
2419       // Update largest vector width for any vector types.
2420       if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back()))
2421         LargestVectorWidth =
2422             std::max((uint64_t)LargestVectorWidth,
2423                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2424     } else {
2425       Address DestAddr = Dest.getAddress(*this);
2426       // Matrix types in memory are represented by arrays, but accessed through
2427       // vector pointers, with the alignment specified on the access operation.
2428       // For inline assembly, update pointer arguments to use vector pointers.
2429       // Otherwise there will be a mis-match if the matrix is also an
2430       // input-argument which is represented as vector.
2431       if (isa<MatrixType>(OutExpr->getType().getCanonicalType()))
2432         DestAddr = Builder.CreateElementBitCast(
2433             DestAddr, ConvertType(OutExpr->getType()));
2434 
2435       ArgTypes.push_back(DestAddr.getType());
2436       ArgElemTypes.push_back(DestAddr.getElementType());
2437       Args.push_back(DestAddr.getPointer());
2438       Constraints += "=*";
2439       Constraints += OutputConstraint;
2440       ReadOnly = ReadNone = false;
2441     }
2442 
2443     if (Info.isReadWrite()) {
2444       InOutConstraints += ',';
2445 
2446       const Expr *InputExpr = S.getOutputExpr(i);
2447       llvm::Value *Arg;
2448       llvm::Type *ArgElemType;
2449       std::tie(Arg, ArgElemType) = EmitAsmInputLValue(
2450           Info, Dest, InputExpr->getType(), InOutConstraints,
2451           InputExpr->getExprLoc());
2452 
2453       if (llvm::Type* AdjTy =
2454           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
2455                                                Arg->getType()))
2456         Arg = Builder.CreateBitCast(Arg, AdjTy);
2457 
2458       // Update largest vector width for any vector types.
2459       if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2460         LargestVectorWidth =
2461             std::max((uint64_t)LargestVectorWidth,
2462                      VT->getPrimitiveSizeInBits().getKnownMinSize());
2463       // Only tie earlyclobber physregs.
2464       if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber()))
2465         InOutConstraints += llvm::utostr(i);
2466       else
2467         InOutConstraints += OutputConstraint;
2468 
2469       InOutArgTypes.push_back(Arg->getType());
2470       InOutArgElemTypes.push_back(ArgElemType);
2471       InOutArgs.push_back(Arg);
2472     }
2473   }
2474 
2475   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
2476   // to the return value slot. Only do this when returning in registers.
2477   if (isa<MSAsmStmt>(&S)) {
2478     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
2479     if (RetAI.isDirect() || RetAI.isExtend()) {
2480       // Make a fake lvalue for the return value slot.
2481       LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy);
2482       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
2483           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
2484           ResultRegDests, AsmString, S.getNumOutputs());
2485       SawAsmBlock = true;
2486     }
2487   }
2488 
2489   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
2490     const Expr *InputExpr = S.getInputExpr(i);
2491 
2492     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
2493 
2494     if (Info.allowsMemory())
2495       ReadNone = false;
2496 
2497     if (!Constraints.empty())
2498       Constraints += ',';
2499 
2500     // Simplify the input constraint.
2501     std::string InputConstraint(S.getInputConstraint(i));
2502     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
2503                                          &OutputConstraintInfos);
2504 
2505     InputConstraint = AddVariableConstraints(
2506         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
2507         getTarget(), CGM, S, false /* No EarlyClobber */);
2508 
2509     std::string ReplaceConstraint (InputConstraint);
2510     llvm::Value *Arg;
2511     llvm::Type *ArgElemType;
2512     std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints);
2513 
2514     // If this input argument is tied to a larger output result, extend the
2515     // input to be the same size as the output.  The LLVM backend wants to see
2516     // the input and output of a matching constraint be the same size.  Note
2517     // that GCC does not define what the top bits are here.  We use zext because
2518     // that is usually cheaper, but LLVM IR should really get an anyext someday.
2519     if (Info.hasTiedOperand()) {
2520       unsigned Output = Info.getTiedOperand();
2521       QualType OutputType = S.getOutputExpr(Output)->getType();
2522       QualType InputTy = InputExpr->getType();
2523 
2524       if (getContext().getTypeSize(OutputType) >
2525           getContext().getTypeSize(InputTy)) {
2526         // Use ptrtoint as appropriate so that we can do our extension.
2527         if (isa<llvm::PointerType>(Arg->getType()))
2528           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
2529         llvm::Type *OutputTy = ConvertType(OutputType);
2530         if (isa<llvm::IntegerType>(OutputTy))
2531           Arg = Builder.CreateZExt(Arg, OutputTy);
2532         else if (isa<llvm::PointerType>(OutputTy))
2533           Arg = Builder.CreateZExt(Arg, IntPtrTy);
2534         else if (OutputTy->isFloatingPointTy())
2535           Arg = Builder.CreateFPExt(Arg, OutputTy);
2536       }
2537       // Deal with the tied operands' constraint code in adjustInlineAsmType.
2538       ReplaceConstraint = OutputConstraints[Output];
2539     }
2540     if (llvm::Type* AdjTy =
2541           getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint,
2542                                                    Arg->getType()))
2543       Arg = Builder.CreateBitCast(Arg, AdjTy);
2544     else
2545       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2546           << InputExpr->getType() << InputConstraint;
2547 
2548     // Update largest vector width for any vector types.
2549     if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType()))
2550       LargestVectorWidth =
2551           std::max((uint64_t)LargestVectorWidth,
2552                    VT->getPrimitiveSizeInBits().getKnownMinSize());
2553 
2554     ArgTypes.push_back(Arg->getType());
2555     ArgElemTypes.push_back(ArgElemType);
2556     Args.push_back(Arg);
2557     Constraints += InputConstraint;
2558   }
2559 
2560   // Append the "input" part of inout constraints.
2561   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2562     ArgTypes.push_back(InOutArgTypes[i]);
2563     ArgElemTypes.push_back(InOutArgElemTypes[i]);
2564     Args.push_back(InOutArgs[i]);
2565   }
2566   Constraints += InOutConstraints;
2567 
2568   // Labels
2569   SmallVector<llvm::BasicBlock *, 16> Transfer;
2570   llvm::BasicBlock *Fallthrough = nullptr;
2571   bool IsGCCAsmGoto = false;
2572   if (const auto *GS =  dyn_cast<GCCAsmStmt>(&S)) {
2573     IsGCCAsmGoto = GS->isAsmGoto();
2574     if (IsGCCAsmGoto) {
2575       for (const auto *E : GS->labels()) {
2576         JumpDest Dest = getJumpDestForLabel(E->getLabel());
2577         Transfer.push_back(Dest.getBlock());
2578         llvm::BlockAddress *BA =
2579             llvm::BlockAddress::get(CurFn, Dest.getBlock());
2580         Args.push_back(BA);
2581         ArgTypes.push_back(BA->getType());
2582         ArgElemTypes.push_back(nullptr);
2583         if (!Constraints.empty())
2584           Constraints += ',';
2585         Constraints += 'i';
2586       }
2587       Fallthrough = createBasicBlock("asm.fallthrough");
2588     }
2589   }
2590 
2591   bool HasUnwindClobber = false;
2592 
2593   // Clobbers
2594   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2595     StringRef Clobber = S.getClobber(i);
2596 
2597     if (Clobber == "memory")
2598       ReadOnly = ReadNone = false;
2599     else if (Clobber == "unwind") {
2600       HasUnwindClobber = true;
2601       continue;
2602     } else if (Clobber != "cc") {
2603       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2604       if (CGM.getCodeGenOpts().StackClashProtector &&
2605           getTarget().isSPRegName(Clobber)) {
2606         CGM.getDiags().Report(S.getAsmLoc(),
2607                               diag::warn_stack_clash_protection_inline_asm);
2608       }
2609     }
2610 
2611     if (isa<MSAsmStmt>(&S)) {
2612       if (Clobber == "eax" || Clobber == "edx") {
2613         if (Constraints.find("=&A") != std::string::npos)
2614           continue;
2615         std::string::size_type position1 =
2616             Constraints.find("={" + Clobber.str() + "}");
2617         if (position1 != std::string::npos) {
2618           Constraints.insert(position1 + 1, "&");
2619           continue;
2620         }
2621         std::string::size_type position2 = Constraints.find("=A");
2622         if (position2 != std::string::npos) {
2623           Constraints.insert(position2 + 1, "&");
2624           continue;
2625         }
2626       }
2627     }
2628     if (!Constraints.empty())
2629       Constraints += ',';
2630 
2631     Constraints += "~{";
2632     Constraints += Clobber;
2633     Constraints += '}';
2634   }
2635 
2636   assert(!(HasUnwindClobber && IsGCCAsmGoto) &&
2637          "unwind clobber can't be used with asm goto");
2638 
2639   // Add machine specific clobbers
2640   std::string MachineClobbers = getTarget().getClobbers();
2641   if (!MachineClobbers.empty()) {
2642     if (!Constraints.empty())
2643       Constraints += ',';
2644     Constraints += MachineClobbers;
2645   }
2646 
2647   llvm::Type *ResultType;
2648   if (ResultRegTypes.empty())
2649     ResultType = VoidTy;
2650   else if (ResultRegTypes.size() == 1)
2651     ResultType = ResultRegTypes[0];
2652   else
2653     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2654 
2655   llvm::FunctionType *FTy =
2656     llvm::FunctionType::get(ResultType, ArgTypes, false);
2657 
2658   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2659 
2660   llvm::InlineAsm::AsmDialect GnuAsmDialect =
2661       CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT
2662           ? llvm::InlineAsm::AD_ATT
2663           : llvm::InlineAsm::AD_Intel;
2664   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2665     llvm::InlineAsm::AD_Intel : GnuAsmDialect;
2666 
2667   llvm::InlineAsm *IA = llvm::InlineAsm::get(
2668       FTy, AsmString, Constraints, HasSideEffect,
2669       /* IsAlignStack */ false, AsmDialect, HasUnwindClobber);
2670   std::vector<llvm::Value*> RegResults;
2671   if (IsGCCAsmGoto) {
2672     llvm::CallBrInst *Result =
2673         Builder.CreateCallBr(IA, Fallthrough, Transfer, Args);
2674     EmitBlock(Fallthrough);
2675     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2676                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2677                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2678   } else if (HasUnwindClobber) {
2679     llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, "");
2680     UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone,
2681                       InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes,
2682                       *this, RegResults);
2683   } else {
2684     llvm::CallInst *Result =
2685         Builder.CreateCall(IA, Args, getBundlesForFunclet(IA));
2686     UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false,
2687                       ReadOnly, ReadNone, InNoMergeAttributedStmt, S,
2688                       ResultRegTypes, ArgElemTypes, *this, RegResults);
2689   }
2690 
2691   assert(RegResults.size() == ResultRegTypes.size());
2692   assert(RegResults.size() == ResultTruncRegTypes.size());
2693   assert(RegResults.size() == ResultRegDests.size());
2694   // ResultRegDests can be also populated by addReturnRegisterOutputs() above,
2695   // in which case its size may grow.
2696   assert(ResultTypeRequiresCast.size() <= ResultRegDests.size());
2697   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2698     llvm::Value *Tmp = RegResults[i];
2699     llvm::Type *TruncTy = ResultTruncRegTypes[i];
2700 
2701     // If the result type of the LLVM IR asm doesn't match the result type of
2702     // the expression, do the conversion.
2703     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2704 
2705       // Truncate the integer result to the right size, note that TruncTy can be
2706       // a pointer.
2707       if (TruncTy->isFloatingPointTy())
2708         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2709       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2710         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2711         Tmp = Builder.CreateTrunc(Tmp,
2712                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2713         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2714       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2715         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2716         Tmp = Builder.CreatePtrToInt(Tmp,
2717                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2718         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2719       } else if (TruncTy->isIntegerTy()) {
2720         Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy);
2721       } else if (TruncTy->isVectorTy()) {
2722         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2723       }
2724     }
2725 
2726     LValue Dest = ResultRegDests[i];
2727     // ResultTypeRequiresCast elements correspond to the first
2728     // ResultTypeRequiresCast.size() elements of RegResults.
2729     if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) {
2730       unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]);
2731       Address A = Builder.CreateElementBitCast(Dest.getAddress(*this),
2732                                                ResultRegTypes[i]);
2733       if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) {
2734         Builder.CreateStore(Tmp, A);
2735         continue;
2736       }
2737 
2738       QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false);
2739       if (Ty.isNull()) {
2740         const Expr *OutExpr = S.getOutputExpr(i);
2741         CGM.Error(
2742             OutExpr->getExprLoc(),
2743             "impossible constraint in asm: can't store value into a register");
2744         return;
2745       }
2746       Dest = MakeAddrLValue(A, Ty);
2747     }
2748     EmitStoreThroughLValue(RValue::get(Tmp), Dest);
2749   }
2750 }
2751 
2752 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2753   const RecordDecl *RD = S.getCapturedRecordDecl();
2754   QualType RecordTy = getContext().getRecordType(RD);
2755 
2756   // Initialize the captured struct.
2757   LValue SlotLV =
2758     MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2759 
2760   RecordDecl::field_iterator CurField = RD->field_begin();
2761   for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(),
2762                                                  E = S.capture_init_end();
2763        I != E; ++I, ++CurField) {
2764     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2765     if (CurField->hasCapturedVLAType()) {
2766       EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV);
2767     } else {
2768       EmitInitializerForField(*CurField, LV, *I);
2769     }
2770   }
2771 
2772   return SlotLV;
2773 }
2774 
2775 /// Generate an outlined function for the body of a CapturedStmt, store any
2776 /// captured variables into the captured struct, and call the outlined function.
2777 llvm::Function *
2778 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2779   LValue CapStruct = InitCapturedStruct(S);
2780 
2781   // Emit the CapturedDecl
2782   CodeGenFunction CGF(CGM, true);
2783   CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K));
2784   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2785   delete CGF.CapturedStmtInfo;
2786 
2787   // Emit call to the helper function.
2788   EmitCallOrInvoke(F, CapStruct.getPointer(*this));
2789 
2790   return F;
2791 }
2792 
2793 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2794   LValue CapStruct = InitCapturedStruct(S);
2795   return CapStruct.getAddress(*this);
2796 }
2797 
2798 /// Creates the outlined function for a CapturedStmt.
2799 llvm::Function *
2800 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2801   assert(CapturedStmtInfo &&
2802     "CapturedStmtInfo should be set when generating the captured function");
2803   const CapturedDecl *CD = S.getCapturedDecl();
2804   const RecordDecl *RD = S.getCapturedRecordDecl();
2805   SourceLocation Loc = S.getBeginLoc();
2806   assert(CD->hasBody() && "missing CapturedDecl body");
2807 
2808   // Build the argument list.
2809   ASTContext &Ctx = CGM.getContext();
2810   FunctionArgList Args;
2811   Args.append(CD->param_begin(), CD->param_end());
2812 
2813   // Create the function declaration.
2814   const CGFunctionInfo &FuncInfo =
2815     CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args);
2816   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2817 
2818   llvm::Function *F =
2819     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2820                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2821   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2822   if (CD->isNothrow())
2823     F->addFnAttr(llvm::Attribute::NoUnwind);
2824 
2825   // Generate the function.
2826   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(),
2827                 CD->getBody()->getBeginLoc());
2828   // Set the context parameter in CapturedStmtInfo.
2829   Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam());
2830   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2831 
2832   // Initialize variable-length arrays.
2833   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2834                                            Ctx.getTagDeclType(RD));
2835   for (auto *FD : RD->fields()) {
2836     if (FD->hasCapturedVLAType()) {
2837       auto *ExprArg =
2838           EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc())
2839               .getScalarVal();
2840       auto VAT = FD->getCapturedVLAType();
2841       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2842     }
2843   }
2844 
2845   // If 'this' is captured, load it into CXXThisValue.
2846   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2847     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2848     LValue ThisLValue = EmitLValueForField(Base, FD);
2849     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2850   }
2851 
2852   PGO.assignRegionCounters(GlobalDecl(CD), F);
2853   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2854   FinishFunction(CD->getBodyRBrace());
2855 
2856   return F;
2857 }
2858