1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/LoopHint.h" 23 #include "clang/Sema/SemaDiagnostic.h" 24 #include "llvm/ADT/StringExtras.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/IR/Intrinsics.h" 29 #include "llvm/IR/MDBuilder.h" 30 31 using namespace clang; 32 using namespace CodeGen; 33 34 //===----------------------------------------------------------------------===// 35 // Statement Emission 36 //===----------------------------------------------------------------------===// 37 38 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 39 if (CGDebugInfo *DI = getDebugInfo()) { 40 SourceLocation Loc; 41 Loc = S->getLocStart(); 42 DI->EmitLocation(Builder, Loc); 43 44 LastStopPoint = Loc; 45 } 46 } 47 48 void CodeGenFunction::EmitStmt(const Stmt *S) { 49 assert(S && "Null statement?"); 50 PGO.setCurrentStmt(S); 51 52 // These statements have their own debug info handling. 53 if (EmitSimpleStmt(S)) 54 return; 55 56 // Check if we are generating unreachable code. 57 if (!HaveInsertPoint()) { 58 // If so, and the statement doesn't contain a label, then we do not need to 59 // generate actual code. This is safe because (1) the current point is 60 // unreachable, so we don't need to execute the code, and (2) we've already 61 // handled the statements which update internal data structures (like the 62 // local variable map) which could be used by subsequent statements. 63 if (!ContainsLabel(S)) { 64 // Verify that any decl statements were handled as simple, they may be in 65 // scope of subsequent reachable statements. 66 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 67 return; 68 } 69 70 // Otherwise, make a new block to hold the code. 71 EnsureInsertPoint(); 72 } 73 74 // Generate a stoppoint if we are emitting debug info. 75 EmitStopPoint(S); 76 77 switch (S->getStmtClass()) { 78 case Stmt::NoStmtClass: 79 case Stmt::CXXCatchStmtClass: 80 case Stmt::SEHExceptStmtClass: 81 case Stmt::SEHFinallyStmtClass: 82 case Stmt::MSDependentExistsStmtClass: 83 llvm_unreachable("invalid statement class to emit generically"); 84 case Stmt::NullStmtClass: 85 case Stmt::CompoundStmtClass: 86 case Stmt::DeclStmtClass: 87 case Stmt::LabelStmtClass: 88 case Stmt::AttributedStmtClass: 89 case Stmt::GotoStmtClass: 90 case Stmt::BreakStmtClass: 91 case Stmt::ContinueStmtClass: 92 case Stmt::DefaultStmtClass: 93 case Stmt::CaseStmtClass: 94 case Stmt::SEHLeaveStmtClass: 95 llvm_unreachable("should have emitted these statements as simple"); 96 97 #define STMT(Type, Base) 98 #define ABSTRACT_STMT(Op) 99 #define EXPR(Type, Base) \ 100 case Stmt::Type##Class: 101 #include "clang/AST/StmtNodes.inc" 102 { 103 // Remember the block we came in on. 104 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 105 assert(incoming && "expression emission must have an insertion point"); 106 107 EmitIgnoredExpr(cast<Expr>(S)); 108 109 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 110 assert(outgoing && "expression emission cleared block!"); 111 112 // The expression emitters assume (reasonably!) that the insertion 113 // point is always set. To maintain that, the call-emission code 114 // for noreturn functions has to enter a new block with no 115 // predecessors. We want to kill that block and mark the current 116 // insertion point unreachable in the common case of a call like 117 // "exit();". Since expression emission doesn't otherwise create 118 // blocks with no predecessors, we can just test for that. 119 // However, we must be careful not to do this to our incoming 120 // block, because *statement* emission does sometimes create 121 // reachable blocks which will have no predecessors until later in 122 // the function. This occurs with, e.g., labels that are not 123 // reachable by fallthrough. 124 if (incoming != outgoing && outgoing->use_empty()) { 125 outgoing->eraseFromParent(); 126 Builder.ClearInsertionPoint(); 127 } 128 break; 129 } 130 131 case Stmt::IndirectGotoStmtClass: 132 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 133 134 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 135 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break; 136 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break; 137 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break; 138 139 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 140 141 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 142 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 143 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 144 case Stmt::CoroutineBodyStmtClass: 145 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 146 break; 147 case Stmt::CoreturnStmtClass: 148 CGM.ErrorUnsupported(S, "coroutine"); 149 break; 150 case Stmt::CapturedStmtClass: { 151 const CapturedStmt *CS = cast<CapturedStmt>(S); 152 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 153 } 154 break; 155 case Stmt::ObjCAtTryStmtClass: 156 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 157 break; 158 case Stmt::ObjCAtCatchStmtClass: 159 llvm_unreachable( 160 "@catch statements should be handled by EmitObjCAtTryStmt"); 161 case Stmt::ObjCAtFinallyStmtClass: 162 llvm_unreachable( 163 "@finally statements should be handled by EmitObjCAtTryStmt"); 164 case Stmt::ObjCAtThrowStmtClass: 165 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 166 break; 167 case Stmt::ObjCAtSynchronizedStmtClass: 168 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 169 break; 170 case Stmt::ObjCForCollectionStmtClass: 171 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 172 break; 173 case Stmt::ObjCAutoreleasePoolStmtClass: 174 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 175 break; 176 177 case Stmt::CXXTryStmtClass: 178 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 179 break; 180 case Stmt::CXXForRangeStmtClass: 181 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S)); 182 break; 183 case Stmt::SEHTryStmtClass: 184 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 185 break; 186 case Stmt::OMPParallelDirectiveClass: 187 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 188 break; 189 case Stmt::OMPSimdDirectiveClass: 190 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 191 break; 192 case Stmt::OMPForDirectiveClass: 193 EmitOMPForDirective(cast<OMPForDirective>(*S)); 194 break; 195 case Stmt::OMPForSimdDirectiveClass: 196 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 197 break; 198 case Stmt::OMPSectionsDirectiveClass: 199 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 200 break; 201 case Stmt::OMPSectionDirectiveClass: 202 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 203 break; 204 case Stmt::OMPSingleDirectiveClass: 205 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 206 break; 207 case Stmt::OMPMasterDirectiveClass: 208 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 209 break; 210 case Stmt::OMPCriticalDirectiveClass: 211 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 212 break; 213 case Stmt::OMPParallelForDirectiveClass: 214 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 215 break; 216 case Stmt::OMPParallelForSimdDirectiveClass: 217 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 218 break; 219 case Stmt::OMPParallelSectionsDirectiveClass: 220 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 221 break; 222 case Stmt::OMPTaskDirectiveClass: 223 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 224 break; 225 case Stmt::OMPTaskyieldDirectiveClass: 226 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 227 break; 228 case Stmt::OMPBarrierDirectiveClass: 229 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 230 break; 231 case Stmt::OMPTaskwaitDirectiveClass: 232 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 233 break; 234 case Stmt::OMPTaskgroupDirectiveClass: 235 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 236 break; 237 case Stmt::OMPFlushDirectiveClass: 238 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 239 break; 240 case Stmt::OMPOrderedDirectiveClass: 241 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 242 break; 243 case Stmt::OMPAtomicDirectiveClass: 244 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 245 break; 246 case Stmt::OMPTargetDirectiveClass: 247 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 248 break; 249 case Stmt::OMPTeamsDirectiveClass: 250 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 251 break; 252 case Stmt::OMPCancellationPointDirectiveClass: 253 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 254 break; 255 case Stmt::OMPCancelDirectiveClass: 256 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 257 break; 258 case Stmt::OMPTargetDataDirectiveClass: 259 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 260 break; 261 case Stmt::OMPTargetEnterDataDirectiveClass: 262 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 263 break; 264 case Stmt::OMPTargetExitDataDirectiveClass: 265 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 266 break; 267 case Stmt::OMPTargetParallelDirectiveClass: 268 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 269 break; 270 case Stmt::OMPTargetParallelForDirectiveClass: 271 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 272 break; 273 case Stmt::OMPTaskLoopDirectiveClass: 274 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 275 break; 276 case Stmt::OMPTaskLoopSimdDirectiveClass: 277 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 278 break; 279 case Stmt::OMPDistributeDirectiveClass: 280 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 281 break; 282 case Stmt::OMPTargetUpdateDirectiveClass: 283 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 284 break; 285 case Stmt::OMPDistributeParallelForDirectiveClass: 286 EmitOMPDistributeParallelForDirective( 287 cast<OMPDistributeParallelForDirective>(*S)); 288 break; 289 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 290 EmitOMPDistributeParallelForSimdDirective( 291 cast<OMPDistributeParallelForSimdDirective>(*S)); 292 break; 293 case Stmt::OMPDistributeSimdDirectiveClass: 294 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 295 break; 296 case Stmt::OMPTargetParallelForSimdDirectiveClass: 297 EmitOMPTargetParallelForSimdDirective( 298 cast<OMPTargetParallelForSimdDirective>(*S)); 299 break; 300 case Stmt::OMPTargetSimdDirectiveClass: 301 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 302 break; 303 case Stmt::OMPTeamsDistributeDirectiveClass: 304 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 305 break; 306 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 307 EmitOMPTeamsDistributeSimdDirective( 308 cast<OMPTeamsDistributeSimdDirective>(*S)); 309 break; 310 } 311 } 312 313 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 314 switch (S->getStmtClass()) { 315 default: return false; 316 case Stmt::NullStmtClass: break; 317 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 318 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 319 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 320 case Stmt::AttributedStmtClass: 321 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 322 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 323 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 324 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 325 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 326 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 327 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 328 } 329 330 return true; 331 } 332 333 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 334 /// this captures the expression result of the last sub-statement and returns it 335 /// (for use by the statement expression extension). 336 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 337 AggValueSlot AggSlot) { 338 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 339 "LLVM IR generation of compound statement ('{}')"); 340 341 // Keep track of the current cleanup stack depth, including debug scopes. 342 LexicalScope Scope(*this, S.getSourceRange()); 343 344 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 345 } 346 347 Address 348 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 349 bool GetLast, 350 AggValueSlot AggSlot) { 351 352 for (CompoundStmt::const_body_iterator I = S.body_begin(), 353 E = S.body_end()-GetLast; I != E; ++I) 354 EmitStmt(*I); 355 356 Address RetAlloca = Address::invalid(); 357 if (GetLast) { 358 // We have to special case labels here. They are statements, but when put 359 // at the end of a statement expression, they yield the value of their 360 // subexpression. Handle this by walking through all labels we encounter, 361 // emitting them before we evaluate the subexpr. 362 const Stmt *LastStmt = S.body_back(); 363 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 364 EmitLabel(LS->getDecl()); 365 LastStmt = LS->getSubStmt(); 366 } 367 368 EnsureInsertPoint(); 369 370 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 371 if (hasAggregateEvaluationKind(ExprTy)) { 372 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 373 } else { 374 // We can't return an RValue here because there might be cleanups at 375 // the end of the StmtExpr. Because of that, we have to emit the result 376 // here into a temporary alloca. 377 RetAlloca = CreateMemTemp(ExprTy); 378 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 379 /*IsInit*/false); 380 } 381 382 } 383 384 return RetAlloca; 385 } 386 387 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 388 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 389 390 // If there is a cleanup stack, then we it isn't worth trying to 391 // simplify this block (we would need to remove it from the scope map 392 // and cleanup entry). 393 if (!EHStack.empty()) 394 return; 395 396 // Can only simplify direct branches. 397 if (!BI || !BI->isUnconditional()) 398 return; 399 400 // Can only simplify empty blocks. 401 if (BI->getIterator() != BB->begin()) 402 return; 403 404 BB->replaceAllUsesWith(BI->getSuccessor(0)); 405 BI->eraseFromParent(); 406 BB->eraseFromParent(); 407 } 408 409 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 410 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 411 412 // Fall out of the current block (if necessary). 413 EmitBranch(BB); 414 415 if (IsFinished && BB->use_empty()) { 416 delete BB; 417 return; 418 } 419 420 // Place the block after the current block, if possible, or else at 421 // the end of the function. 422 if (CurBB && CurBB->getParent()) 423 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 424 else 425 CurFn->getBasicBlockList().push_back(BB); 426 Builder.SetInsertPoint(BB); 427 } 428 429 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 430 // Emit a branch from the current block to the target one if this 431 // was a real block. If this was just a fall-through block after a 432 // terminator, don't emit it. 433 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 434 435 if (!CurBB || CurBB->getTerminator()) { 436 // If there is no insert point or the previous block is already 437 // terminated, don't touch it. 438 } else { 439 // Otherwise, create a fall-through branch. 440 Builder.CreateBr(Target); 441 } 442 443 Builder.ClearInsertionPoint(); 444 } 445 446 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 447 bool inserted = false; 448 for (llvm::User *u : block->users()) { 449 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 450 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 451 block); 452 inserted = true; 453 break; 454 } 455 } 456 457 if (!inserted) 458 CurFn->getBasicBlockList().push_back(block); 459 460 Builder.SetInsertPoint(block); 461 } 462 463 CodeGenFunction::JumpDest 464 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 465 JumpDest &Dest = LabelMap[D]; 466 if (Dest.isValid()) return Dest; 467 468 // Create, but don't insert, the new block. 469 Dest = JumpDest(createBasicBlock(D->getName()), 470 EHScopeStack::stable_iterator::invalid(), 471 NextCleanupDestIndex++); 472 return Dest; 473 } 474 475 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 476 // Add this label to the current lexical scope if we're within any 477 // normal cleanups. Jumps "in" to this label --- when permitted by 478 // the language --- may need to be routed around such cleanups. 479 if (EHStack.hasNormalCleanups() && CurLexicalScope) 480 CurLexicalScope->addLabel(D); 481 482 JumpDest &Dest = LabelMap[D]; 483 484 // If we didn't need a forward reference to this label, just go 485 // ahead and create a destination at the current scope. 486 if (!Dest.isValid()) { 487 Dest = getJumpDestInCurrentScope(D->getName()); 488 489 // Otherwise, we need to give this label a target depth and remove 490 // it from the branch-fixups list. 491 } else { 492 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 493 Dest.setScopeDepth(EHStack.stable_begin()); 494 ResolveBranchFixups(Dest.getBlock()); 495 } 496 497 EmitBlock(Dest.getBlock()); 498 incrementProfileCounter(D->getStmt()); 499 } 500 501 /// Change the cleanup scope of the labels in this lexical scope to 502 /// match the scope of the enclosing context. 503 void CodeGenFunction::LexicalScope::rescopeLabels() { 504 assert(!Labels.empty()); 505 EHScopeStack::stable_iterator innermostScope 506 = CGF.EHStack.getInnermostNormalCleanup(); 507 508 // Change the scope depth of all the labels. 509 for (SmallVectorImpl<const LabelDecl*>::const_iterator 510 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 511 assert(CGF.LabelMap.count(*i)); 512 JumpDest &dest = CGF.LabelMap.find(*i)->second; 513 assert(dest.getScopeDepth().isValid()); 514 assert(innermostScope.encloses(dest.getScopeDepth())); 515 dest.setScopeDepth(innermostScope); 516 } 517 518 // Reparent the labels if the new scope also has cleanups. 519 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 520 ParentScope->Labels.append(Labels.begin(), Labels.end()); 521 } 522 } 523 524 525 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 526 EmitLabel(S.getDecl()); 527 EmitStmt(S.getSubStmt()); 528 } 529 530 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 531 const Stmt *SubStmt = S.getSubStmt(); 532 switch (SubStmt->getStmtClass()) { 533 case Stmt::DoStmtClass: 534 EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs()); 535 break; 536 case Stmt::ForStmtClass: 537 EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs()); 538 break; 539 case Stmt::WhileStmtClass: 540 EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs()); 541 break; 542 case Stmt::CXXForRangeStmtClass: 543 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs()); 544 break; 545 default: 546 EmitStmt(SubStmt); 547 } 548 } 549 550 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 551 // If this code is reachable then emit a stop point (if generating 552 // debug info). We have to do this ourselves because we are on the 553 // "simple" statement path. 554 if (HaveInsertPoint()) 555 EmitStopPoint(&S); 556 557 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 558 } 559 560 561 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 562 if (const LabelDecl *Target = S.getConstantTarget()) { 563 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 564 return; 565 } 566 567 // Ensure that we have an i8* for our PHI node. 568 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 569 Int8PtrTy, "addr"); 570 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 571 572 // Get the basic block for the indirect goto. 573 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 574 575 // The first instruction in the block has to be the PHI for the switch dest, 576 // add an entry for this branch. 577 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 578 579 EmitBranch(IndGotoBB); 580 } 581 582 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 583 // C99 6.8.4.1: The first substatement is executed if the expression compares 584 // unequal to 0. The condition must be a scalar type. 585 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 586 587 if (S.getInit()) 588 EmitStmt(S.getInit()); 589 590 if (S.getConditionVariable()) 591 EmitAutoVarDecl(*S.getConditionVariable()); 592 593 // If the condition constant folds and can be elided, try to avoid emitting 594 // the condition and the dead arm of the if/else. 595 bool CondConstant; 596 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 597 S.isConstexpr())) { 598 // Figure out which block (then or else) is executed. 599 const Stmt *Executed = S.getThen(); 600 const Stmt *Skipped = S.getElse(); 601 if (!CondConstant) // Condition false? 602 std::swap(Executed, Skipped); 603 604 // If the skipped block has no labels in it, just emit the executed block. 605 // This avoids emitting dead code and simplifies the CFG substantially. 606 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 607 if (CondConstant) 608 incrementProfileCounter(&S); 609 if (Executed) { 610 RunCleanupsScope ExecutedScope(*this); 611 EmitStmt(Executed); 612 } 613 return; 614 } 615 } 616 617 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 618 // the conditional branch. 619 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 620 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 621 llvm::BasicBlock *ElseBlock = ContBlock; 622 if (S.getElse()) 623 ElseBlock = createBasicBlock("if.else"); 624 625 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 626 getProfileCount(S.getThen())); 627 628 // Emit the 'then' code. 629 EmitBlock(ThenBlock); 630 incrementProfileCounter(&S); 631 { 632 RunCleanupsScope ThenScope(*this); 633 EmitStmt(S.getThen()); 634 } 635 EmitBranch(ContBlock); 636 637 // Emit the 'else' code if present. 638 if (const Stmt *Else = S.getElse()) { 639 { 640 // There is no need to emit line number for an unconditional branch. 641 auto NL = ApplyDebugLocation::CreateEmpty(*this); 642 EmitBlock(ElseBlock); 643 } 644 { 645 RunCleanupsScope ElseScope(*this); 646 EmitStmt(Else); 647 } 648 { 649 // There is no need to emit line number for an unconditional branch. 650 auto NL = ApplyDebugLocation::CreateEmpty(*this); 651 EmitBranch(ContBlock); 652 } 653 } 654 655 // Emit the continuation block for code after the if. 656 EmitBlock(ContBlock, true); 657 } 658 659 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 660 ArrayRef<const Attr *> WhileAttrs) { 661 // Emit the header for the loop, which will also become 662 // the continue target. 663 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 664 EmitBlock(LoopHeader.getBlock()); 665 666 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 667 Builder.getCurrentDebugLocation()); 668 669 // Create an exit block for when the condition fails, which will 670 // also become the break target. 671 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 672 673 // Store the blocks to use for break and continue. 674 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 675 676 // C++ [stmt.while]p2: 677 // When the condition of a while statement is a declaration, the 678 // scope of the variable that is declared extends from its point 679 // of declaration (3.3.2) to the end of the while statement. 680 // [...] 681 // The object created in a condition is destroyed and created 682 // with each iteration of the loop. 683 RunCleanupsScope ConditionScope(*this); 684 685 if (S.getConditionVariable()) 686 EmitAutoVarDecl(*S.getConditionVariable()); 687 688 // Evaluate the conditional in the while header. C99 6.8.5.1: The 689 // evaluation of the controlling expression takes place before each 690 // execution of the loop body. 691 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 692 693 // while(1) is common, avoid extra exit blocks. Be sure 694 // to correctly handle break/continue though. 695 bool EmitBoolCondBranch = true; 696 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 697 if (C->isOne()) 698 EmitBoolCondBranch = false; 699 700 // As long as the condition is true, go to the loop body. 701 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 702 if (EmitBoolCondBranch) { 703 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 704 if (ConditionScope.requiresCleanups()) 705 ExitBlock = createBasicBlock("while.exit"); 706 Builder.CreateCondBr( 707 BoolCondVal, LoopBody, ExitBlock, 708 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 709 710 if (ExitBlock != LoopExit.getBlock()) { 711 EmitBlock(ExitBlock); 712 EmitBranchThroughCleanup(LoopExit); 713 } 714 } 715 716 // Emit the loop body. We have to emit this in a cleanup scope 717 // because it might be a singleton DeclStmt. 718 { 719 RunCleanupsScope BodyScope(*this); 720 EmitBlock(LoopBody); 721 incrementProfileCounter(&S); 722 EmitStmt(S.getBody()); 723 } 724 725 BreakContinueStack.pop_back(); 726 727 // Immediately force cleanup. 728 ConditionScope.ForceCleanup(); 729 730 EmitStopPoint(&S); 731 // Branch to the loop header again. 732 EmitBranch(LoopHeader.getBlock()); 733 734 LoopStack.pop(); 735 736 // Emit the exit block. 737 EmitBlock(LoopExit.getBlock(), true); 738 739 // The LoopHeader typically is just a branch if we skipped emitting 740 // a branch, try to erase it. 741 if (!EmitBoolCondBranch) 742 SimplifyForwardingBlocks(LoopHeader.getBlock()); 743 } 744 745 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 746 ArrayRef<const Attr *> DoAttrs) { 747 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 748 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 749 750 uint64_t ParentCount = getCurrentProfileCount(); 751 752 // Store the blocks to use for break and continue. 753 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 754 755 // Emit the body of the loop. 756 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 757 758 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 759 Builder.getCurrentDebugLocation()); 760 761 EmitBlockWithFallThrough(LoopBody, &S); 762 { 763 RunCleanupsScope BodyScope(*this); 764 EmitStmt(S.getBody()); 765 } 766 767 EmitBlock(LoopCond.getBlock()); 768 769 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 770 // after each execution of the loop body." 771 772 // Evaluate the conditional in the while header. 773 // C99 6.8.5p2/p4: The first substatement is executed if the expression 774 // compares unequal to 0. The condition must be a scalar type. 775 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 776 777 BreakContinueStack.pop_back(); 778 779 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 780 // to correctly handle break/continue though. 781 bool EmitBoolCondBranch = true; 782 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 783 if (C->isZero()) 784 EmitBoolCondBranch = false; 785 786 // As long as the condition is true, iterate the loop. 787 if (EmitBoolCondBranch) { 788 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 789 Builder.CreateCondBr( 790 BoolCondVal, LoopBody, LoopExit.getBlock(), 791 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 792 } 793 794 LoopStack.pop(); 795 796 // Emit the exit block. 797 EmitBlock(LoopExit.getBlock()); 798 799 // The DoCond block typically is just a branch if we skipped 800 // emitting a branch, try to erase it. 801 if (!EmitBoolCondBranch) 802 SimplifyForwardingBlocks(LoopCond.getBlock()); 803 } 804 805 void CodeGenFunction::EmitForStmt(const ForStmt &S, 806 ArrayRef<const Attr *> ForAttrs) { 807 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 808 809 LexicalScope ForScope(*this, S.getSourceRange()); 810 811 llvm::DebugLoc DL = Builder.getCurrentDebugLocation(); 812 813 // Evaluate the first part before the loop. 814 if (S.getInit()) 815 EmitStmt(S.getInit()); 816 817 // Start the loop with a block that tests the condition. 818 // If there's an increment, the continue scope will be overwritten 819 // later. 820 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 821 llvm::BasicBlock *CondBlock = Continue.getBlock(); 822 EmitBlock(CondBlock); 823 824 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL); 825 826 // If the for loop doesn't have an increment we can just use the 827 // condition as the continue block. Otherwise we'll need to create 828 // a block for it (in the current scope, i.e. in the scope of the 829 // condition), and that we will become our continue block. 830 if (S.getInc()) 831 Continue = getJumpDestInCurrentScope("for.inc"); 832 833 // Store the blocks to use for break and continue. 834 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 835 836 // Create a cleanup scope for the condition variable cleanups. 837 LexicalScope ConditionScope(*this, S.getSourceRange()); 838 839 if (S.getCond()) { 840 // If the for statement has a condition scope, emit the local variable 841 // declaration. 842 if (S.getConditionVariable()) { 843 EmitAutoVarDecl(*S.getConditionVariable()); 844 } 845 846 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 847 // If there are any cleanups between here and the loop-exit scope, 848 // create a block to stage a loop exit along. 849 if (ForScope.requiresCleanups()) 850 ExitBlock = createBasicBlock("for.cond.cleanup"); 851 852 // As long as the condition is true, iterate the loop. 853 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 854 855 // C99 6.8.5p2/p4: The first substatement is executed if the expression 856 // compares unequal to 0. The condition must be a scalar type. 857 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 858 Builder.CreateCondBr( 859 BoolCondVal, ForBody, ExitBlock, 860 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 861 862 if (ExitBlock != LoopExit.getBlock()) { 863 EmitBlock(ExitBlock); 864 EmitBranchThroughCleanup(LoopExit); 865 } 866 867 EmitBlock(ForBody); 868 } else { 869 // Treat it as a non-zero constant. Don't even create a new block for the 870 // body, just fall into it. 871 } 872 incrementProfileCounter(&S); 873 874 { 875 // Create a separate cleanup scope for the body, in case it is not 876 // a compound statement. 877 RunCleanupsScope BodyScope(*this); 878 EmitStmt(S.getBody()); 879 } 880 881 // If there is an increment, emit it next. 882 if (S.getInc()) { 883 EmitBlock(Continue.getBlock()); 884 EmitStmt(S.getInc()); 885 } 886 887 BreakContinueStack.pop_back(); 888 889 ConditionScope.ForceCleanup(); 890 891 EmitStopPoint(&S); 892 EmitBranch(CondBlock); 893 894 ForScope.ForceCleanup(); 895 896 LoopStack.pop(); 897 898 // Emit the fall-through block. 899 EmitBlock(LoopExit.getBlock(), true); 900 } 901 902 void 903 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 904 ArrayRef<const Attr *> ForAttrs) { 905 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 906 907 LexicalScope ForScope(*this, S.getSourceRange()); 908 909 llvm::DebugLoc DL = Builder.getCurrentDebugLocation(); 910 911 // Evaluate the first pieces before the loop. 912 EmitStmt(S.getRangeStmt()); 913 EmitStmt(S.getBeginStmt()); 914 EmitStmt(S.getEndStmt()); 915 916 // Start the loop with a block that tests the condition. 917 // If there's an increment, the continue scope will be overwritten 918 // later. 919 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 920 EmitBlock(CondBlock); 921 922 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, DL); 923 924 // If there are any cleanups between here and the loop-exit scope, 925 // create a block to stage a loop exit along. 926 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 927 if (ForScope.requiresCleanups()) 928 ExitBlock = createBasicBlock("for.cond.cleanup"); 929 930 // The loop body, consisting of the specified body and the loop variable. 931 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 932 933 // The body is executed if the expression, contextually converted 934 // to bool, is true. 935 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 936 Builder.CreateCondBr( 937 BoolCondVal, ForBody, ExitBlock, 938 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 939 940 if (ExitBlock != LoopExit.getBlock()) { 941 EmitBlock(ExitBlock); 942 EmitBranchThroughCleanup(LoopExit); 943 } 944 945 EmitBlock(ForBody); 946 incrementProfileCounter(&S); 947 948 // Create a block for the increment. In case of a 'continue', we jump there. 949 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 950 951 // Store the blocks to use for break and continue. 952 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 953 954 { 955 // Create a separate cleanup scope for the loop variable and body. 956 LexicalScope BodyScope(*this, S.getSourceRange()); 957 EmitStmt(S.getLoopVarStmt()); 958 EmitStmt(S.getBody()); 959 } 960 961 EmitStopPoint(&S); 962 // If there is an increment, emit it next. 963 EmitBlock(Continue.getBlock()); 964 EmitStmt(S.getInc()); 965 966 BreakContinueStack.pop_back(); 967 968 EmitBranch(CondBlock); 969 970 ForScope.ForceCleanup(); 971 972 LoopStack.pop(); 973 974 // Emit the fall-through block. 975 EmitBlock(LoopExit.getBlock(), true); 976 } 977 978 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 979 if (RV.isScalar()) { 980 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 981 } else if (RV.isAggregate()) { 982 EmitAggregateCopy(ReturnValue, RV.getAggregateAddress(), Ty); 983 } else { 984 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 985 /*init*/ true); 986 } 987 EmitBranchThroughCleanup(ReturnBlock); 988 } 989 990 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 991 /// if the function returns void, or may be missing one if the function returns 992 /// non-void. Fun stuff :). 993 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 994 // Returning from an outlined SEH helper is UB, and we already warn on it. 995 if (IsOutlinedSEHHelper) { 996 Builder.CreateUnreachable(); 997 Builder.ClearInsertionPoint(); 998 } 999 1000 // Emit the result value, even if unused, to evalute the side effects. 1001 const Expr *RV = S.getRetValue(); 1002 1003 // Treat block literals in a return expression as if they appeared 1004 // in their own scope. This permits a small, easily-implemented 1005 // exception to our over-conservative rules about not jumping to 1006 // statements following block literals with non-trivial cleanups. 1007 RunCleanupsScope cleanupScope(*this); 1008 if (const ExprWithCleanups *cleanups = 1009 dyn_cast_or_null<ExprWithCleanups>(RV)) { 1010 enterFullExpression(cleanups); 1011 RV = cleanups->getSubExpr(); 1012 } 1013 1014 // FIXME: Clean this up by using an LValue for ReturnTemp, 1015 // EmitStoreThroughLValue, and EmitAnyExpr. 1016 if (getLangOpts().ElideConstructors && 1017 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1018 // Apply the named return value optimization for this return statement, 1019 // which means doing nothing: the appropriate result has already been 1020 // constructed into the NRVO variable. 1021 1022 // If there is an NRVO flag for this variable, set it to 1 into indicate 1023 // that the cleanup code should not destroy the variable. 1024 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1025 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1026 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1027 // Make sure not to return anything, but evaluate the expression 1028 // for side effects. 1029 if (RV) 1030 EmitAnyExpr(RV); 1031 } else if (!RV) { 1032 // Do nothing (return value is left uninitialized) 1033 } else if (FnRetTy->isReferenceType()) { 1034 // If this function returns a reference, take the address of the expression 1035 // rather than the value. 1036 RValue Result = EmitReferenceBindingToExpr(RV); 1037 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1038 } else { 1039 switch (getEvaluationKind(RV->getType())) { 1040 case TEK_Scalar: 1041 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1042 break; 1043 case TEK_Complex: 1044 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1045 /*isInit*/ true); 1046 break; 1047 case TEK_Aggregate: 1048 EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, 1049 Qualifiers(), 1050 AggValueSlot::IsDestructed, 1051 AggValueSlot::DoesNotNeedGCBarriers, 1052 AggValueSlot::IsNotAliased)); 1053 break; 1054 } 1055 } 1056 1057 ++NumReturnExprs; 1058 if (!RV || RV->isEvaluatable(getContext())) 1059 ++NumSimpleReturnExprs; 1060 1061 cleanupScope.ForceCleanup(); 1062 EmitBranchThroughCleanup(ReturnBlock); 1063 } 1064 1065 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1066 // As long as debug info is modeled with instructions, we have to ensure we 1067 // have a place to insert here and write the stop point here. 1068 if (HaveInsertPoint()) 1069 EmitStopPoint(&S); 1070 1071 for (const auto *I : S.decls()) 1072 EmitDecl(*I); 1073 } 1074 1075 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1076 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1077 1078 // If this code is reachable then emit a stop point (if generating 1079 // debug info). We have to do this ourselves because we are on the 1080 // "simple" statement path. 1081 if (HaveInsertPoint()) 1082 EmitStopPoint(&S); 1083 1084 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1085 } 1086 1087 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1088 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1089 1090 // If this code is reachable then emit a stop point (if generating 1091 // debug info). We have to do this ourselves because we are on the 1092 // "simple" statement path. 1093 if (HaveInsertPoint()) 1094 EmitStopPoint(&S); 1095 1096 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1097 } 1098 1099 /// EmitCaseStmtRange - If case statement range is not too big then 1100 /// add multiple cases to switch instruction, one for each value within 1101 /// the range. If range is too big then emit "if" condition check. 1102 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1103 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1104 1105 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1106 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1107 1108 // Emit the code for this case. We do this first to make sure it is 1109 // properly chained from our predecessor before generating the 1110 // switch machinery to enter this block. 1111 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1112 EmitBlockWithFallThrough(CaseDest, &S); 1113 EmitStmt(S.getSubStmt()); 1114 1115 // If range is empty, do nothing. 1116 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1117 return; 1118 1119 llvm::APInt Range = RHS - LHS; 1120 // FIXME: parameters such as this should not be hardcoded. 1121 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1122 // Range is small enough to add multiple switch instruction cases. 1123 uint64_t Total = getProfileCount(&S); 1124 unsigned NCases = Range.getZExtValue() + 1; 1125 // We only have one region counter for the entire set of cases here, so we 1126 // need to divide the weights evenly between the generated cases, ensuring 1127 // that the total weight is preserved. E.g., a weight of 5 over three cases 1128 // will be distributed as weights of 2, 2, and 1. 1129 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1130 for (unsigned I = 0; I != NCases; ++I) { 1131 if (SwitchWeights) 1132 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1133 if (Rem) 1134 Rem--; 1135 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1136 LHS++; 1137 } 1138 return; 1139 } 1140 1141 // The range is too big. Emit "if" condition into a new block, 1142 // making sure to save and restore the current insertion point. 1143 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1144 1145 // Push this test onto the chain of range checks (which terminates 1146 // in the default basic block). The switch's default will be changed 1147 // to the top of this chain after switch emission is complete. 1148 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1149 CaseRangeBlock = createBasicBlock("sw.caserange"); 1150 1151 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1152 Builder.SetInsertPoint(CaseRangeBlock); 1153 1154 // Emit range check. 1155 llvm::Value *Diff = 1156 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1157 llvm::Value *Cond = 1158 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1159 1160 llvm::MDNode *Weights = nullptr; 1161 if (SwitchWeights) { 1162 uint64_t ThisCount = getProfileCount(&S); 1163 uint64_t DefaultCount = (*SwitchWeights)[0]; 1164 Weights = createProfileWeights(ThisCount, DefaultCount); 1165 1166 // Since we're chaining the switch default through each large case range, we 1167 // need to update the weight for the default, ie, the first case, to include 1168 // this case. 1169 (*SwitchWeights)[0] += ThisCount; 1170 } 1171 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1172 1173 // Restore the appropriate insertion point. 1174 if (RestoreBB) 1175 Builder.SetInsertPoint(RestoreBB); 1176 else 1177 Builder.ClearInsertionPoint(); 1178 } 1179 1180 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1181 // If there is no enclosing switch instance that we're aware of, then this 1182 // case statement and its block can be elided. This situation only happens 1183 // when we've constant-folded the switch, are emitting the constant case, 1184 // and part of the constant case includes another case statement. For 1185 // instance: switch (4) { case 4: do { case 5: } while (1); } 1186 if (!SwitchInsn) { 1187 EmitStmt(S.getSubStmt()); 1188 return; 1189 } 1190 1191 // Handle case ranges. 1192 if (S.getRHS()) { 1193 EmitCaseStmtRange(S); 1194 return; 1195 } 1196 1197 llvm::ConstantInt *CaseVal = 1198 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1199 1200 // If the body of the case is just a 'break', try to not emit an empty block. 1201 // If we're profiling or we're not optimizing, leave the block in for better 1202 // debug and coverage analysis. 1203 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1204 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1205 isa<BreakStmt>(S.getSubStmt())) { 1206 JumpDest Block = BreakContinueStack.back().BreakBlock; 1207 1208 // Only do this optimization if there are no cleanups that need emitting. 1209 if (isObviouslyBranchWithoutCleanups(Block)) { 1210 if (SwitchWeights) 1211 SwitchWeights->push_back(getProfileCount(&S)); 1212 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1213 1214 // If there was a fallthrough into this case, make sure to redirect it to 1215 // the end of the switch as well. 1216 if (Builder.GetInsertBlock()) { 1217 Builder.CreateBr(Block.getBlock()); 1218 Builder.ClearInsertionPoint(); 1219 } 1220 return; 1221 } 1222 } 1223 1224 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1225 EmitBlockWithFallThrough(CaseDest, &S); 1226 if (SwitchWeights) 1227 SwitchWeights->push_back(getProfileCount(&S)); 1228 SwitchInsn->addCase(CaseVal, CaseDest); 1229 1230 // Recursively emitting the statement is acceptable, but is not wonderful for 1231 // code where we have many case statements nested together, i.e.: 1232 // case 1: 1233 // case 2: 1234 // case 3: etc. 1235 // Handling this recursively will create a new block for each case statement 1236 // that falls through to the next case which is IR intensive. It also causes 1237 // deep recursion which can run into stack depth limitations. Handle 1238 // sequential non-range case statements specially. 1239 const CaseStmt *CurCase = &S; 1240 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1241 1242 // Otherwise, iteratively add consecutive cases to this switch stmt. 1243 while (NextCase && NextCase->getRHS() == nullptr) { 1244 CurCase = NextCase; 1245 llvm::ConstantInt *CaseVal = 1246 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1247 1248 if (SwitchWeights) 1249 SwitchWeights->push_back(getProfileCount(NextCase)); 1250 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1251 CaseDest = createBasicBlock("sw.bb"); 1252 EmitBlockWithFallThrough(CaseDest, &S); 1253 } 1254 1255 SwitchInsn->addCase(CaseVal, CaseDest); 1256 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1257 } 1258 1259 // Normal default recursion for non-cases. 1260 EmitStmt(CurCase->getSubStmt()); 1261 } 1262 1263 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1264 // If there is no enclosing switch instance that we're aware of, then this 1265 // default statement can be elided. This situation only happens when we've 1266 // constant-folded the switch. 1267 if (!SwitchInsn) { 1268 EmitStmt(S.getSubStmt()); 1269 return; 1270 } 1271 1272 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1273 assert(DefaultBlock->empty() && 1274 "EmitDefaultStmt: Default block already defined?"); 1275 1276 EmitBlockWithFallThrough(DefaultBlock, &S); 1277 1278 EmitStmt(S.getSubStmt()); 1279 } 1280 1281 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1282 /// constant value that is being switched on, see if we can dead code eliminate 1283 /// the body of the switch to a simple series of statements to emit. Basically, 1284 /// on a switch (5) we want to find these statements: 1285 /// case 5: 1286 /// printf(...); <-- 1287 /// ++i; <-- 1288 /// break; 1289 /// 1290 /// and add them to the ResultStmts vector. If it is unsafe to do this 1291 /// transformation (for example, one of the elided statements contains a label 1292 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1293 /// should include statements after it (e.g. the printf() line is a substmt of 1294 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1295 /// statement, then return CSFC_Success. 1296 /// 1297 /// If Case is non-null, then we are looking for the specified case, checking 1298 /// that nothing we jump over contains labels. If Case is null, then we found 1299 /// the case and are looking for the break. 1300 /// 1301 /// If the recursive walk actually finds our Case, then we set FoundCase to 1302 /// true. 1303 /// 1304 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1305 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1306 const SwitchCase *Case, 1307 bool &FoundCase, 1308 SmallVectorImpl<const Stmt*> &ResultStmts) { 1309 // If this is a null statement, just succeed. 1310 if (!S) 1311 return Case ? CSFC_Success : CSFC_FallThrough; 1312 1313 // If this is the switchcase (case 4: or default) that we're looking for, then 1314 // we're in business. Just add the substatement. 1315 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1316 if (S == Case) { 1317 FoundCase = true; 1318 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1319 ResultStmts); 1320 } 1321 1322 // Otherwise, this is some other case or default statement, just ignore it. 1323 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1324 ResultStmts); 1325 } 1326 1327 // If we are in the live part of the code and we found our break statement, 1328 // return a success! 1329 if (!Case && isa<BreakStmt>(S)) 1330 return CSFC_Success; 1331 1332 // If this is a switch statement, then it might contain the SwitchCase, the 1333 // break, or neither. 1334 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1335 // Handle this as two cases: we might be looking for the SwitchCase (if so 1336 // the skipped statements must be skippable) or we might already have it. 1337 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1338 bool StartedInLiveCode = FoundCase; 1339 unsigned StartSize = ResultStmts.size(); 1340 1341 // If we've not found the case yet, scan through looking for it. 1342 if (Case) { 1343 // Keep track of whether we see a skipped declaration. The code could be 1344 // using the declaration even if it is skipped, so we can't optimize out 1345 // the decl if the kept statements might refer to it. 1346 bool HadSkippedDecl = false; 1347 1348 // If we're looking for the case, just see if we can skip each of the 1349 // substatements. 1350 for (; Case && I != E; ++I) { 1351 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1352 1353 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1354 case CSFC_Failure: return CSFC_Failure; 1355 case CSFC_Success: 1356 // A successful result means that either 1) that the statement doesn't 1357 // have the case and is skippable, or 2) does contain the case value 1358 // and also contains the break to exit the switch. In the later case, 1359 // we just verify the rest of the statements are elidable. 1360 if (FoundCase) { 1361 // If we found the case and skipped declarations, we can't do the 1362 // optimization. 1363 if (HadSkippedDecl) 1364 return CSFC_Failure; 1365 1366 for (++I; I != E; ++I) 1367 if (CodeGenFunction::ContainsLabel(*I, true)) 1368 return CSFC_Failure; 1369 return CSFC_Success; 1370 } 1371 break; 1372 case CSFC_FallThrough: 1373 // If we have a fallthrough condition, then we must have found the 1374 // case started to include statements. Consider the rest of the 1375 // statements in the compound statement as candidates for inclusion. 1376 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1377 // We recursively found Case, so we're not looking for it anymore. 1378 Case = nullptr; 1379 1380 // If we found the case and skipped declarations, we can't do the 1381 // optimization. 1382 if (HadSkippedDecl) 1383 return CSFC_Failure; 1384 break; 1385 } 1386 } 1387 1388 if (!FoundCase) 1389 return CSFC_Success; 1390 1391 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1392 } 1393 1394 // If we have statements in our range, then we know that the statements are 1395 // live and need to be added to the set of statements we're tracking. 1396 bool AnyDecls = false; 1397 for (; I != E; ++I) { 1398 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1399 1400 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1401 case CSFC_Failure: return CSFC_Failure; 1402 case CSFC_FallThrough: 1403 // A fallthrough result means that the statement was simple and just 1404 // included in ResultStmt, keep adding them afterwards. 1405 break; 1406 case CSFC_Success: 1407 // A successful result means that we found the break statement and 1408 // stopped statement inclusion. We just ensure that any leftover stmts 1409 // are skippable and return success ourselves. 1410 for (++I; I != E; ++I) 1411 if (CodeGenFunction::ContainsLabel(*I, true)) 1412 return CSFC_Failure; 1413 return CSFC_Success; 1414 } 1415 } 1416 1417 // If we're about to fall out of a scope without hitting a 'break;', we 1418 // can't perform the optimization if there were any decls in that scope 1419 // (we'd lose their end-of-lifetime). 1420 if (AnyDecls) { 1421 // If the entire compound statement was live, there's one more thing we 1422 // can try before giving up: emit the whole thing as a single statement. 1423 // We can do that unless the statement contains a 'break;'. 1424 // FIXME: Such a break must be at the end of a construct within this one. 1425 // We could emit this by just ignoring the BreakStmts entirely. 1426 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1427 ResultStmts.resize(StartSize); 1428 ResultStmts.push_back(S); 1429 } else { 1430 return CSFC_Failure; 1431 } 1432 } 1433 1434 return CSFC_FallThrough; 1435 } 1436 1437 // Okay, this is some other statement that we don't handle explicitly, like a 1438 // for statement or increment etc. If we are skipping over this statement, 1439 // just verify it doesn't have labels, which would make it invalid to elide. 1440 if (Case) { 1441 if (CodeGenFunction::ContainsLabel(S, true)) 1442 return CSFC_Failure; 1443 return CSFC_Success; 1444 } 1445 1446 // Otherwise, we want to include this statement. Everything is cool with that 1447 // so long as it doesn't contain a break out of the switch we're in. 1448 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1449 1450 // Otherwise, everything is great. Include the statement and tell the caller 1451 // that we fall through and include the next statement as well. 1452 ResultStmts.push_back(S); 1453 return CSFC_FallThrough; 1454 } 1455 1456 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1457 /// then invoke CollectStatementsForCase to find the list of statements to emit 1458 /// for a switch on constant. See the comment above CollectStatementsForCase 1459 /// for more details. 1460 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1461 const llvm::APSInt &ConstantCondValue, 1462 SmallVectorImpl<const Stmt*> &ResultStmts, 1463 ASTContext &C, 1464 const SwitchCase *&ResultCase) { 1465 // First step, find the switch case that is being branched to. We can do this 1466 // efficiently by scanning the SwitchCase list. 1467 const SwitchCase *Case = S.getSwitchCaseList(); 1468 const DefaultStmt *DefaultCase = nullptr; 1469 1470 for (; Case; Case = Case->getNextSwitchCase()) { 1471 // It's either a default or case. Just remember the default statement in 1472 // case we're not jumping to any numbered cases. 1473 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1474 DefaultCase = DS; 1475 continue; 1476 } 1477 1478 // Check to see if this case is the one we're looking for. 1479 const CaseStmt *CS = cast<CaseStmt>(Case); 1480 // Don't handle case ranges yet. 1481 if (CS->getRHS()) return false; 1482 1483 // If we found our case, remember it as 'case'. 1484 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1485 break; 1486 } 1487 1488 // If we didn't find a matching case, we use a default if it exists, or we 1489 // elide the whole switch body! 1490 if (!Case) { 1491 // It is safe to elide the body of the switch if it doesn't contain labels 1492 // etc. If it is safe, return successfully with an empty ResultStmts list. 1493 if (!DefaultCase) 1494 return !CodeGenFunction::ContainsLabel(&S); 1495 Case = DefaultCase; 1496 } 1497 1498 // Ok, we know which case is being jumped to, try to collect all the 1499 // statements that follow it. This can fail for a variety of reasons. Also, 1500 // check to see that the recursive walk actually found our case statement. 1501 // Insane cases like this can fail to find it in the recursive walk since we 1502 // don't handle every stmt kind: 1503 // switch (4) { 1504 // while (1) { 1505 // case 4: ... 1506 bool FoundCase = false; 1507 ResultCase = Case; 1508 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1509 ResultStmts) != CSFC_Failure && 1510 FoundCase; 1511 } 1512 1513 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1514 // Handle nested switch statements. 1515 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1516 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1517 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1518 1519 // See if we can constant fold the condition of the switch and therefore only 1520 // emit the live case statement (if any) of the switch. 1521 llvm::APSInt ConstantCondValue; 1522 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1523 SmallVector<const Stmt*, 4> CaseStmts; 1524 const SwitchCase *Case = nullptr; 1525 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1526 getContext(), Case)) { 1527 if (Case) 1528 incrementProfileCounter(Case); 1529 RunCleanupsScope ExecutedScope(*this); 1530 1531 if (S.getInit()) 1532 EmitStmt(S.getInit()); 1533 1534 // Emit the condition variable if needed inside the entire cleanup scope 1535 // used by this special case for constant folded switches. 1536 if (S.getConditionVariable()) 1537 EmitAutoVarDecl(*S.getConditionVariable()); 1538 1539 // At this point, we are no longer "within" a switch instance, so 1540 // we can temporarily enforce this to ensure that any embedded case 1541 // statements are not emitted. 1542 SwitchInsn = nullptr; 1543 1544 // Okay, we can dead code eliminate everything except this case. Emit the 1545 // specified series of statements and we're good. 1546 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1547 EmitStmt(CaseStmts[i]); 1548 incrementProfileCounter(&S); 1549 1550 // Now we want to restore the saved switch instance so that nested 1551 // switches continue to function properly 1552 SwitchInsn = SavedSwitchInsn; 1553 1554 return; 1555 } 1556 } 1557 1558 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1559 1560 RunCleanupsScope ConditionScope(*this); 1561 1562 if (S.getInit()) 1563 EmitStmt(S.getInit()); 1564 1565 if (S.getConditionVariable()) 1566 EmitAutoVarDecl(*S.getConditionVariable()); 1567 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1568 1569 // Create basic block to hold stuff that comes after switch 1570 // statement. We also need to create a default block now so that 1571 // explicit case ranges tests can have a place to jump to on 1572 // failure. 1573 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1574 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1575 if (PGO.haveRegionCounts()) { 1576 // Walk the SwitchCase list to find how many there are. 1577 uint64_t DefaultCount = 0; 1578 unsigned NumCases = 0; 1579 for (const SwitchCase *Case = S.getSwitchCaseList(); 1580 Case; 1581 Case = Case->getNextSwitchCase()) { 1582 if (isa<DefaultStmt>(Case)) 1583 DefaultCount = getProfileCount(Case); 1584 NumCases += 1; 1585 } 1586 SwitchWeights = new SmallVector<uint64_t, 16>(); 1587 SwitchWeights->reserve(NumCases); 1588 // The default needs to be first. We store the edge count, so we already 1589 // know the right weight. 1590 SwitchWeights->push_back(DefaultCount); 1591 } 1592 CaseRangeBlock = DefaultBlock; 1593 1594 // Clear the insertion point to indicate we are in unreachable code. 1595 Builder.ClearInsertionPoint(); 1596 1597 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1598 // then reuse last ContinueBlock. 1599 JumpDest OuterContinue; 1600 if (!BreakContinueStack.empty()) 1601 OuterContinue = BreakContinueStack.back().ContinueBlock; 1602 1603 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1604 1605 // Emit switch body. 1606 EmitStmt(S.getBody()); 1607 1608 BreakContinueStack.pop_back(); 1609 1610 // Update the default block in case explicit case range tests have 1611 // been chained on top. 1612 SwitchInsn->setDefaultDest(CaseRangeBlock); 1613 1614 // If a default was never emitted: 1615 if (!DefaultBlock->getParent()) { 1616 // If we have cleanups, emit the default block so that there's a 1617 // place to jump through the cleanups from. 1618 if (ConditionScope.requiresCleanups()) { 1619 EmitBlock(DefaultBlock); 1620 1621 // Otherwise, just forward the default block to the switch end. 1622 } else { 1623 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1624 delete DefaultBlock; 1625 } 1626 } 1627 1628 ConditionScope.ForceCleanup(); 1629 1630 // Emit continuation. 1631 EmitBlock(SwitchExit.getBlock(), true); 1632 incrementProfileCounter(&S); 1633 1634 // If the switch has a condition wrapped by __builtin_unpredictable, 1635 // create metadata that specifies that the switch is unpredictable. 1636 // Don't bother if not optimizing because that metadata would not be used. 1637 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1638 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1639 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1640 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1641 llvm::MDBuilder MDHelper(getLLVMContext()); 1642 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1643 MDHelper.createUnpredictable()); 1644 } 1645 } 1646 1647 if (SwitchWeights) { 1648 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1649 "switch weights do not match switch cases"); 1650 // If there's only one jump destination there's no sense weighting it. 1651 if (SwitchWeights->size() > 1) 1652 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1653 createProfileWeights(*SwitchWeights)); 1654 delete SwitchWeights; 1655 } 1656 SwitchInsn = SavedSwitchInsn; 1657 SwitchWeights = SavedSwitchWeights; 1658 CaseRangeBlock = SavedCRBlock; 1659 } 1660 1661 static std::string 1662 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1663 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1664 std::string Result; 1665 1666 while (*Constraint) { 1667 switch (*Constraint) { 1668 default: 1669 Result += Target.convertConstraint(Constraint); 1670 break; 1671 // Ignore these 1672 case '*': 1673 case '?': 1674 case '!': 1675 case '=': // Will see this and the following in mult-alt constraints. 1676 case '+': 1677 break; 1678 case '#': // Ignore the rest of the constraint alternative. 1679 while (Constraint[1] && Constraint[1] != ',') 1680 Constraint++; 1681 break; 1682 case '&': 1683 case '%': 1684 Result += *Constraint; 1685 while (Constraint[1] && Constraint[1] == *Constraint) 1686 Constraint++; 1687 break; 1688 case ',': 1689 Result += "|"; 1690 break; 1691 case 'g': 1692 Result += "imr"; 1693 break; 1694 case '[': { 1695 assert(OutCons && 1696 "Must pass output names to constraints with a symbolic name"); 1697 unsigned Index; 1698 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1699 assert(result && "Could not resolve symbolic name"); (void)result; 1700 Result += llvm::utostr(Index); 1701 break; 1702 } 1703 } 1704 1705 Constraint++; 1706 } 1707 1708 return Result; 1709 } 1710 1711 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1712 /// as using a particular register add that as a constraint that will be used 1713 /// in this asm stmt. 1714 static std::string 1715 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1716 const TargetInfo &Target, CodeGenModule &CGM, 1717 const AsmStmt &Stmt, const bool EarlyClobber) { 1718 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1719 if (!AsmDeclRef) 1720 return Constraint; 1721 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1722 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1723 if (!Variable) 1724 return Constraint; 1725 if (Variable->getStorageClass() != SC_Register) 1726 return Constraint; 1727 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1728 if (!Attr) 1729 return Constraint; 1730 StringRef Register = Attr->getLabel(); 1731 assert(Target.isValidGCCRegisterName(Register)); 1732 // We're using validateOutputConstraint here because we only care if 1733 // this is a register constraint. 1734 TargetInfo::ConstraintInfo Info(Constraint, ""); 1735 if (Target.validateOutputConstraint(Info) && 1736 !Info.allowsRegister()) { 1737 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1738 return Constraint; 1739 } 1740 // Canonicalize the register here before returning it. 1741 Register = Target.getNormalizedGCCRegisterName(Register); 1742 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1743 } 1744 1745 llvm::Value* 1746 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1747 LValue InputValue, QualType InputType, 1748 std::string &ConstraintStr, 1749 SourceLocation Loc) { 1750 llvm::Value *Arg; 1751 if (Info.allowsRegister() || !Info.allowsMemory()) { 1752 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1753 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1754 } else { 1755 llvm::Type *Ty = ConvertType(InputType); 1756 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1757 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1758 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1759 Ty = llvm::PointerType::getUnqual(Ty); 1760 1761 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1762 Ty)); 1763 } else { 1764 Arg = InputValue.getPointer(); 1765 ConstraintStr += '*'; 1766 } 1767 } 1768 } else { 1769 Arg = InputValue.getPointer(); 1770 ConstraintStr += '*'; 1771 } 1772 1773 return Arg; 1774 } 1775 1776 llvm::Value* CodeGenFunction::EmitAsmInput( 1777 const TargetInfo::ConstraintInfo &Info, 1778 const Expr *InputExpr, 1779 std::string &ConstraintStr) { 1780 // If this can't be a register or memory, i.e., has to be a constant 1781 // (immediate or symbolic), try to emit it as such. 1782 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1783 llvm::APSInt Result; 1784 if (InputExpr->EvaluateAsInt(Result, getContext())) 1785 return llvm::ConstantInt::get(getLLVMContext(), Result); 1786 assert(!Info.requiresImmediateConstant() && 1787 "Required-immediate inlineasm arg isn't constant?"); 1788 } 1789 1790 if (Info.allowsRegister() || !Info.allowsMemory()) 1791 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1792 return EmitScalarExpr(InputExpr); 1793 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1794 return EmitScalarExpr(InputExpr); 1795 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1796 LValue Dest = EmitLValue(InputExpr); 1797 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1798 InputExpr->getExprLoc()); 1799 } 1800 1801 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1802 /// asm call instruction. The !srcloc MDNode contains a list of constant 1803 /// integers which are the source locations of the start of each line in the 1804 /// asm. 1805 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1806 CodeGenFunction &CGF) { 1807 SmallVector<llvm::Metadata *, 8> Locs; 1808 // Add the location of the first line to the MDNode. 1809 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1810 CGF.Int32Ty, Str->getLocStart().getRawEncoding()))); 1811 StringRef StrVal = Str->getString(); 1812 if (!StrVal.empty()) { 1813 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1814 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1815 unsigned StartToken = 0; 1816 unsigned ByteOffset = 0; 1817 1818 // Add the location of the start of each subsequent line of the asm to the 1819 // MDNode. 1820 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1821 if (StrVal[i] != '\n') continue; 1822 SourceLocation LineLoc = Str->getLocationOfByte( 1823 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1824 Locs.push_back(llvm::ConstantAsMetadata::get( 1825 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1826 } 1827 } 1828 1829 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1830 } 1831 1832 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1833 // Assemble the final asm string. 1834 std::string AsmString = S.generateAsmString(getContext()); 1835 1836 // Get all the output and input constraints together. 1837 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1838 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1839 1840 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1841 StringRef Name; 1842 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1843 Name = GAS->getOutputName(i); 1844 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1845 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1846 assert(IsValid && "Failed to parse output constraint"); 1847 OutputConstraintInfos.push_back(Info); 1848 } 1849 1850 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1851 StringRef Name; 1852 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1853 Name = GAS->getInputName(i); 1854 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1855 bool IsValid = 1856 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1857 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1858 InputConstraintInfos.push_back(Info); 1859 } 1860 1861 std::string Constraints; 1862 1863 std::vector<LValue> ResultRegDests; 1864 std::vector<QualType> ResultRegQualTys; 1865 std::vector<llvm::Type *> ResultRegTypes; 1866 std::vector<llvm::Type *> ResultTruncRegTypes; 1867 std::vector<llvm::Type *> ArgTypes; 1868 std::vector<llvm::Value*> Args; 1869 1870 // Keep track of inout constraints. 1871 std::string InOutConstraints; 1872 std::vector<llvm::Value*> InOutArgs; 1873 std::vector<llvm::Type*> InOutArgTypes; 1874 1875 // An inline asm can be marked readonly if it meets the following conditions: 1876 // - it doesn't have any sideeffects 1877 // - it doesn't clobber memory 1878 // - it doesn't return a value by-reference 1879 // It can be marked readnone if it doesn't have any input memory constraints 1880 // in addition to meeting the conditions listed above. 1881 bool ReadOnly = true, ReadNone = true; 1882 1883 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1884 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1885 1886 // Simplify the output constraint. 1887 std::string OutputConstraint(S.getOutputConstraint(i)); 1888 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1889 getTarget()); 1890 1891 const Expr *OutExpr = S.getOutputExpr(i); 1892 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1893 1894 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1895 getTarget(), CGM, S, 1896 Info.earlyClobber()); 1897 1898 LValue Dest = EmitLValue(OutExpr); 1899 if (!Constraints.empty()) 1900 Constraints += ','; 1901 1902 // If this is a register output, then make the inline asm return it 1903 // by-value. If this is a memory result, return the value by-reference. 1904 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1905 Constraints += "=" + OutputConstraint; 1906 ResultRegQualTys.push_back(OutExpr->getType()); 1907 ResultRegDests.push_back(Dest); 1908 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1909 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1910 1911 // If this output is tied to an input, and if the input is larger, then 1912 // we need to set the actual result type of the inline asm node to be the 1913 // same as the input type. 1914 if (Info.hasMatchingInput()) { 1915 unsigned InputNo; 1916 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1917 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1918 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1919 break; 1920 } 1921 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1922 1923 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1924 QualType OutputType = OutExpr->getType(); 1925 1926 uint64_t InputSize = getContext().getTypeSize(InputTy); 1927 if (getContext().getTypeSize(OutputType) < InputSize) { 1928 // Form the asm to return the value as a larger integer or fp type. 1929 ResultRegTypes.back() = ConvertType(InputTy); 1930 } 1931 } 1932 if (llvm::Type* AdjTy = 1933 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1934 ResultRegTypes.back())) 1935 ResultRegTypes.back() = AdjTy; 1936 else { 1937 CGM.getDiags().Report(S.getAsmLoc(), 1938 diag::err_asm_invalid_type_in_input) 1939 << OutExpr->getType() << OutputConstraint; 1940 } 1941 } else { 1942 ArgTypes.push_back(Dest.getAddress().getType()); 1943 Args.push_back(Dest.getPointer()); 1944 Constraints += "=*"; 1945 Constraints += OutputConstraint; 1946 ReadOnly = ReadNone = false; 1947 } 1948 1949 if (Info.isReadWrite()) { 1950 InOutConstraints += ','; 1951 1952 const Expr *InputExpr = S.getOutputExpr(i); 1953 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 1954 InOutConstraints, 1955 InputExpr->getExprLoc()); 1956 1957 if (llvm::Type* AdjTy = 1958 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1959 Arg->getType())) 1960 Arg = Builder.CreateBitCast(Arg, AdjTy); 1961 1962 if (Info.allowsRegister()) 1963 InOutConstraints += llvm::utostr(i); 1964 else 1965 InOutConstraints += OutputConstraint; 1966 1967 InOutArgTypes.push_back(Arg->getType()); 1968 InOutArgs.push_back(Arg); 1969 } 1970 } 1971 1972 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 1973 // to the return value slot. Only do this when returning in registers. 1974 if (isa<MSAsmStmt>(&S)) { 1975 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 1976 if (RetAI.isDirect() || RetAI.isExtend()) { 1977 // Make a fake lvalue for the return value slot. 1978 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 1979 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 1980 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 1981 ResultRegDests, AsmString, S.getNumOutputs()); 1982 SawAsmBlock = true; 1983 } 1984 } 1985 1986 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1987 const Expr *InputExpr = S.getInputExpr(i); 1988 1989 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 1990 1991 if (Info.allowsMemory()) 1992 ReadNone = false; 1993 1994 if (!Constraints.empty()) 1995 Constraints += ','; 1996 1997 // Simplify the input constraint. 1998 std::string InputConstraint(S.getInputConstraint(i)); 1999 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2000 &OutputConstraintInfos); 2001 2002 InputConstraint = AddVariableConstraints( 2003 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2004 getTarget(), CGM, S, false /* No EarlyClobber */); 2005 2006 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2007 2008 // If this input argument is tied to a larger output result, extend the 2009 // input to be the same size as the output. The LLVM backend wants to see 2010 // the input and output of a matching constraint be the same size. Note 2011 // that GCC does not define what the top bits are here. We use zext because 2012 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2013 if (Info.hasTiedOperand()) { 2014 unsigned Output = Info.getTiedOperand(); 2015 QualType OutputType = S.getOutputExpr(Output)->getType(); 2016 QualType InputTy = InputExpr->getType(); 2017 2018 if (getContext().getTypeSize(OutputType) > 2019 getContext().getTypeSize(InputTy)) { 2020 // Use ptrtoint as appropriate so that we can do our extension. 2021 if (isa<llvm::PointerType>(Arg->getType())) 2022 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2023 llvm::Type *OutputTy = ConvertType(OutputType); 2024 if (isa<llvm::IntegerType>(OutputTy)) 2025 Arg = Builder.CreateZExt(Arg, OutputTy); 2026 else if (isa<llvm::PointerType>(OutputTy)) 2027 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2028 else { 2029 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2030 Arg = Builder.CreateFPExt(Arg, OutputTy); 2031 } 2032 } 2033 } 2034 if (llvm::Type* AdjTy = 2035 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2036 Arg->getType())) 2037 Arg = Builder.CreateBitCast(Arg, AdjTy); 2038 else 2039 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2040 << InputExpr->getType() << InputConstraint; 2041 2042 ArgTypes.push_back(Arg->getType()); 2043 Args.push_back(Arg); 2044 Constraints += InputConstraint; 2045 } 2046 2047 // Append the "input" part of inout constraints last. 2048 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2049 ArgTypes.push_back(InOutArgTypes[i]); 2050 Args.push_back(InOutArgs[i]); 2051 } 2052 Constraints += InOutConstraints; 2053 2054 // Clobbers 2055 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2056 StringRef Clobber = S.getClobber(i); 2057 2058 if (Clobber == "memory") 2059 ReadOnly = ReadNone = false; 2060 else if (Clobber != "cc") 2061 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2062 2063 if (!Constraints.empty()) 2064 Constraints += ','; 2065 2066 Constraints += "~{"; 2067 Constraints += Clobber; 2068 Constraints += '}'; 2069 } 2070 2071 // Add machine specific clobbers 2072 std::string MachineClobbers = getTarget().getClobbers(); 2073 if (!MachineClobbers.empty()) { 2074 if (!Constraints.empty()) 2075 Constraints += ','; 2076 Constraints += MachineClobbers; 2077 } 2078 2079 llvm::Type *ResultType; 2080 if (ResultRegTypes.empty()) 2081 ResultType = VoidTy; 2082 else if (ResultRegTypes.size() == 1) 2083 ResultType = ResultRegTypes[0]; 2084 else 2085 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2086 2087 llvm::FunctionType *FTy = 2088 llvm::FunctionType::get(ResultType, ArgTypes, false); 2089 2090 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2091 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2092 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2093 llvm::InlineAsm *IA = 2094 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2095 /* IsAlignStack */ false, AsmDialect); 2096 llvm::CallInst *Result = Builder.CreateCall(IA, Args); 2097 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2098 llvm::Attribute::NoUnwind); 2099 2100 if (isa<MSAsmStmt>(&S)) { 2101 // If the assembly contains any labels, mark the call noduplicate to prevent 2102 // defining the same ASM label twice (PR23715). This is pretty hacky, but it 2103 // works. 2104 if (AsmString.find("__MSASMLABEL_") != std::string::npos) 2105 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2106 llvm::Attribute::NoDuplicate); 2107 } 2108 2109 // Attach readnone and readonly attributes. 2110 if (!HasSideEffect) { 2111 if (ReadNone) 2112 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2113 llvm::Attribute::ReadNone); 2114 else if (ReadOnly) 2115 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2116 llvm::Attribute::ReadOnly); 2117 } 2118 2119 // Slap the source location of the inline asm into a !srcloc metadata on the 2120 // call. 2121 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2122 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2123 *this)); 2124 } else { 2125 // At least put the line number on MS inline asm blobs. 2126 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2127 Result->setMetadata("srcloc", 2128 llvm::MDNode::get(getLLVMContext(), 2129 llvm::ConstantAsMetadata::get(Loc))); 2130 } 2131 2132 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 2133 // Conservatively, mark all inline asm blocks in CUDA as convergent 2134 // (meaning, they may call an intrinsically convergent op, such as bar.sync, 2135 // and so can't have certain optimizations applied around them). 2136 Result->addAttribute(llvm::AttributeSet::FunctionIndex, 2137 llvm::Attribute::Convergent); 2138 } 2139 2140 // Extract all of the register value results from the asm. 2141 std::vector<llvm::Value*> RegResults; 2142 if (ResultRegTypes.size() == 1) { 2143 RegResults.push_back(Result); 2144 } else { 2145 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2146 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2147 RegResults.push_back(Tmp); 2148 } 2149 } 2150 2151 assert(RegResults.size() == ResultRegTypes.size()); 2152 assert(RegResults.size() == ResultTruncRegTypes.size()); 2153 assert(RegResults.size() == ResultRegDests.size()); 2154 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2155 llvm::Value *Tmp = RegResults[i]; 2156 2157 // If the result type of the LLVM IR asm doesn't match the result type of 2158 // the expression, do the conversion. 2159 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2160 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2161 2162 // Truncate the integer result to the right size, note that TruncTy can be 2163 // a pointer. 2164 if (TruncTy->isFloatingPointTy()) 2165 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2166 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2167 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2168 Tmp = Builder.CreateTrunc(Tmp, 2169 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2170 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2171 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2172 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2173 Tmp = Builder.CreatePtrToInt(Tmp, 2174 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2175 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2176 } else if (TruncTy->isIntegerTy()) { 2177 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2178 } else if (TruncTy->isVectorTy()) { 2179 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2180 } 2181 } 2182 2183 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2184 } 2185 } 2186 2187 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2188 const RecordDecl *RD = S.getCapturedRecordDecl(); 2189 QualType RecordTy = getContext().getRecordType(RD); 2190 2191 // Initialize the captured struct. 2192 LValue SlotLV = 2193 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2194 2195 RecordDecl::field_iterator CurField = RD->field_begin(); 2196 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2197 E = S.capture_init_end(); 2198 I != E; ++I, ++CurField) { 2199 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2200 if (CurField->hasCapturedVLAType()) { 2201 auto VAT = CurField->getCapturedVLAType(); 2202 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2203 } else { 2204 EmitInitializerForField(*CurField, LV, *I, None); 2205 } 2206 } 2207 2208 return SlotLV; 2209 } 2210 2211 /// Generate an outlined function for the body of a CapturedStmt, store any 2212 /// captured variables into the captured struct, and call the outlined function. 2213 llvm::Function * 2214 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2215 LValue CapStruct = InitCapturedStruct(S); 2216 2217 // Emit the CapturedDecl 2218 CodeGenFunction CGF(CGM, true); 2219 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2220 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2221 delete CGF.CapturedStmtInfo; 2222 2223 // Emit call to the helper function. 2224 EmitCallOrInvoke(F, CapStruct.getPointer()); 2225 2226 return F; 2227 } 2228 2229 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2230 LValue CapStruct = InitCapturedStruct(S); 2231 return CapStruct.getAddress(); 2232 } 2233 2234 /// Creates the outlined function for a CapturedStmt. 2235 llvm::Function * 2236 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2237 assert(CapturedStmtInfo && 2238 "CapturedStmtInfo should be set when generating the captured function"); 2239 const CapturedDecl *CD = S.getCapturedDecl(); 2240 const RecordDecl *RD = S.getCapturedRecordDecl(); 2241 SourceLocation Loc = S.getLocStart(); 2242 assert(CD->hasBody() && "missing CapturedDecl body"); 2243 2244 // Build the argument list. 2245 ASTContext &Ctx = CGM.getContext(); 2246 FunctionArgList Args; 2247 Args.append(CD->param_begin(), CD->param_end()); 2248 2249 // Create the function declaration. 2250 FunctionType::ExtInfo ExtInfo; 2251 const CGFunctionInfo &FuncInfo = 2252 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2253 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2254 2255 llvm::Function *F = 2256 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2257 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2258 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2259 if (CD->isNothrow()) 2260 F->addFnAttr(llvm::Attribute::NoUnwind); 2261 2262 // Generate the function. 2263 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, 2264 CD->getLocation(), 2265 CD->getBody()->getLocStart()); 2266 // Set the context parameter in CapturedStmtInfo. 2267 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2268 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2269 2270 // Initialize variable-length arrays. 2271 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2272 Ctx.getTagDeclType(RD)); 2273 for (auto *FD : RD->fields()) { 2274 if (FD->hasCapturedVLAType()) { 2275 auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD), 2276 S.getLocStart()).getScalarVal(); 2277 auto VAT = FD->getCapturedVLAType(); 2278 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2279 } 2280 } 2281 2282 // If 'this' is captured, load it into CXXThisValue. 2283 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2284 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2285 LValue ThisLValue = EmitLValueForField(Base, FD); 2286 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2287 } 2288 2289 PGO.assignRegionCounters(GlobalDecl(CD), F); 2290 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2291 FinishFunction(CD->getBodyRBrace()); 2292 2293 return F; 2294 } 2295