1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 #include "llvm/Support/MathExtras.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 using namespace llvm::omp; 30 31 namespace { 32 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 33 class NVPTXActionTy final : public PrePostActionTy { 34 llvm::FunctionCallee EnterCallee = nullptr; 35 ArrayRef<llvm::Value *> EnterArgs; 36 llvm::FunctionCallee ExitCallee = nullptr; 37 ArrayRef<llvm::Value *> ExitArgs; 38 bool Conditional = false; 39 llvm::BasicBlock *ContBlock = nullptr; 40 41 public: 42 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 43 ArrayRef<llvm::Value *> EnterArgs, 44 llvm::FunctionCallee ExitCallee, 45 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 46 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 47 ExitArgs(ExitArgs), Conditional(Conditional) {} 48 void Enter(CodeGenFunction &CGF) override { 49 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 50 if (Conditional) { 51 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 52 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 53 ContBlock = CGF.createBasicBlock("omp_if.end"); 54 // Generate the branch (If-stmt) 55 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 56 CGF.EmitBlock(ThenBlock); 57 } 58 } 59 void Done(CodeGenFunction &CGF) { 60 // Emit the rest of blocks/branches 61 CGF.EmitBranch(ContBlock); 62 CGF.EmitBlock(ContBlock, true); 63 } 64 void Exit(CodeGenFunction &CGF) override { 65 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 66 } 67 }; 68 69 /// A class to track the execution mode when codegening directives within 70 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 71 /// to the target region and used by containing directives such as 'parallel' 72 /// to emit optimized code. 73 class ExecutionRuntimeModesRAII { 74 private: 75 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 76 CGOpenMPRuntimeGPU::EM_Unknown; 77 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 78 bool SavedRuntimeMode = false; 79 bool *RuntimeMode = nullptr; 80 81 public: 82 /// Constructor for Non-SPMD mode. 83 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 84 : ExecMode(ExecMode) { 85 SavedExecMode = ExecMode; 86 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 87 } 88 /// Constructor for SPMD mode. 89 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 90 bool &RuntimeMode, bool FullRuntimeMode) 91 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 92 SavedExecMode = ExecMode; 93 SavedRuntimeMode = RuntimeMode; 94 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 95 RuntimeMode = FullRuntimeMode; 96 } 97 ~ExecutionRuntimeModesRAII() { 98 ExecMode = SavedExecMode; 99 if (RuntimeMode) 100 *RuntimeMode = SavedRuntimeMode; 101 } 102 }; 103 104 /// GPU Configuration: This information can be derived from cuda registers, 105 /// however, providing compile time constants helps generate more efficient 106 /// code. For all practical purposes this is fine because the configuration 107 /// is the same for all known NVPTX architectures. 108 enum MachineConfiguration : unsigned { 109 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 110 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDBits = 550 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 551 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 552 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 553 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 554 "nvptx_lane_id"); 555 } 556 557 CGOpenMPRuntimeGPU::ExecutionMode 558 CGOpenMPRuntimeGPU::getExecutionMode() const { 559 return CurrentExecutionMode; 560 } 561 562 static CGOpenMPRuntimeGPU::DataSharingMode 563 getDataSharingMode(CodeGenModule &CGM) { 564 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 565 : CGOpenMPRuntimeGPU::Generic; 566 } 567 568 /// Check for inner (nested) SPMD construct, if any 569 static bool hasNestedSPMDDirective(ASTContext &Ctx, 570 const OMPExecutableDirective &D) { 571 const auto *CS = D.getInnermostCapturedStmt(); 572 const auto *Body = 573 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 574 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 575 576 if (const auto *NestedDir = 577 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 578 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 579 switch (D.getDirectiveKind()) { 580 case OMPD_target: 581 if (isOpenMPParallelDirective(DKind)) 582 return true; 583 if (DKind == OMPD_teams) { 584 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 585 /*IgnoreCaptured=*/true); 586 if (!Body) 587 return false; 588 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 589 if (const auto *NND = 590 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 591 DKind = NND->getDirectiveKind(); 592 if (isOpenMPParallelDirective(DKind)) 593 return true; 594 } 595 } 596 return false; 597 case OMPD_target_teams: 598 return isOpenMPParallelDirective(DKind); 599 case OMPD_target_simd: 600 case OMPD_target_parallel: 601 case OMPD_target_parallel_for: 602 case OMPD_target_parallel_for_simd: 603 case OMPD_target_teams_distribute: 604 case OMPD_target_teams_distribute_simd: 605 case OMPD_target_teams_distribute_parallel_for: 606 case OMPD_target_teams_distribute_parallel_for_simd: 607 case OMPD_parallel: 608 case OMPD_for: 609 case OMPD_parallel_for: 610 case OMPD_parallel_master: 611 case OMPD_parallel_sections: 612 case OMPD_for_simd: 613 case OMPD_parallel_for_simd: 614 case OMPD_cancel: 615 case OMPD_cancellation_point: 616 case OMPD_ordered: 617 case OMPD_threadprivate: 618 case OMPD_allocate: 619 case OMPD_task: 620 case OMPD_simd: 621 case OMPD_sections: 622 case OMPD_section: 623 case OMPD_single: 624 case OMPD_master: 625 case OMPD_critical: 626 case OMPD_taskyield: 627 case OMPD_barrier: 628 case OMPD_taskwait: 629 case OMPD_taskgroup: 630 case OMPD_atomic: 631 case OMPD_flush: 632 case OMPD_depobj: 633 case OMPD_scan: 634 case OMPD_teams: 635 case OMPD_target_data: 636 case OMPD_target_exit_data: 637 case OMPD_target_enter_data: 638 case OMPD_distribute: 639 case OMPD_distribute_simd: 640 case OMPD_distribute_parallel_for: 641 case OMPD_distribute_parallel_for_simd: 642 case OMPD_teams_distribute: 643 case OMPD_teams_distribute_simd: 644 case OMPD_teams_distribute_parallel_for: 645 case OMPD_teams_distribute_parallel_for_simd: 646 case OMPD_target_update: 647 case OMPD_declare_simd: 648 case OMPD_declare_variant: 649 case OMPD_begin_declare_variant: 650 case OMPD_end_declare_variant: 651 case OMPD_declare_target: 652 case OMPD_end_declare_target: 653 case OMPD_declare_reduction: 654 case OMPD_declare_mapper: 655 case OMPD_taskloop: 656 case OMPD_taskloop_simd: 657 case OMPD_master_taskloop: 658 case OMPD_master_taskloop_simd: 659 case OMPD_parallel_master_taskloop: 660 case OMPD_parallel_master_taskloop_simd: 661 case OMPD_requires: 662 case OMPD_unknown: 663 default: 664 llvm_unreachable("Unexpected directive."); 665 } 666 } 667 668 return false; 669 } 670 671 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 672 const OMPExecutableDirective &D) { 673 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 674 switch (DirectiveKind) { 675 case OMPD_target: 676 case OMPD_target_teams: 677 return hasNestedSPMDDirective(Ctx, D); 678 case OMPD_target_parallel: 679 case OMPD_target_parallel_for: 680 case OMPD_target_parallel_for_simd: 681 case OMPD_target_teams_distribute_parallel_for: 682 case OMPD_target_teams_distribute_parallel_for_simd: 683 case OMPD_target_simd: 684 case OMPD_target_teams_distribute_simd: 685 return true; 686 case OMPD_target_teams_distribute: 687 return false; 688 case OMPD_parallel: 689 case OMPD_for: 690 case OMPD_parallel_for: 691 case OMPD_parallel_master: 692 case OMPD_parallel_sections: 693 case OMPD_for_simd: 694 case OMPD_parallel_for_simd: 695 case OMPD_cancel: 696 case OMPD_cancellation_point: 697 case OMPD_ordered: 698 case OMPD_threadprivate: 699 case OMPD_allocate: 700 case OMPD_task: 701 case OMPD_simd: 702 case OMPD_sections: 703 case OMPD_section: 704 case OMPD_single: 705 case OMPD_master: 706 case OMPD_critical: 707 case OMPD_taskyield: 708 case OMPD_barrier: 709 case OMPD_taskwait: 710 case OMPD_taskgroup: 711 case OMPD_atomic: 712 case OMPD_flush: 713 case OMPD_depobj: 714 case OMPD_scan: 715 case OMPD_teams: 716 case OMPD_target_data: 717 case OMPD_target_exit_data: 718 case OMPD_target_enter_data: 719 case OMPD_distribute: 720 case OMPD_distribute_simd: 721 case OMPD_distribute_parallel_for: 722 case OMPD_distribute_parallel_for_simd: 723 case OMPD_teams_distribute: 724 case OMPD_teams_distribute_simd: 725 case OMPD_teams_distribute_parallel_for: 726 case OMPD_teams_distribute_parallel_for_simd: 727 case OMPD_target_update: 728 case OMPD_declare_simd: 729 case OMPD_declare_variant: 730 case OMPD_begin_declare_variant: 731 case OMPD_end_declare_variant: 732 case OMPD_declare_target: 733 case OMPD_end_declare_target: 734 case OMPD_declare_reduction: 735 case OMPD_declare_mapper: 736 case OMPD_taskloop: 737 case OMPD_taskloop_simd: 738 case OMPD_master_taskloop: 739 case OMPD_master_taskloop_simd: 740 case OMPD_parallel_master_taskloop: 741 case OMPD_parallel_master_taskloop_simd: 742 case OMPD_requires: 743 case OMPD_unknown: 744 default: 745 break; 746 } 747 llvm_unreachable( 748 "Unknown programming model for OpenMP directive on NVPTX target."); 749 } 750 751 /// Check if the directive is loops based and has schedule clause at all or has 752 /// static scheduling. 753 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 754 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 755 isOpenMPLoopDirective(D.getDirectiveKind()) && 756 "Expected loop-based directive."); 757 return !D.hasClausesOfKind<OMPOrderedClause>() && 758 (!D.hasClausesOfKind<OMPScheduleClause>() || 759 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 760 [](const OMPScheduleClause *C) { 761 return C->getScheduleKind() == OMPC_SCHEDULE_static; 762 })); 763 } 764 765 /// Check for inner (nested) lightweight runtime construct, if any 766 static bool hasNestedLightweightDirective(ASTContext &Ctx, 767 const OMPExecutableDirective &D) { 768 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 769 const auto *CS = D.getInnermostCapturedStmt(); 770 const auto *Body = 771 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 772 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 773 774 if (const auto *NestedDir = 775 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 776 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 777 switch (D.getDirectiveKind()) { 778 case OMPD_target: 779 if (isOpenMPParallelDirective(DKind) && 780 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 781 hasStaticScheduling(*NestedDir)) 782 return true; 783 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 784 return true; 785 if (DKind == OMPD_parallel) { 786 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 787 /*IgnoreCaptured=*/true); 788 if (!Body) 789 return false; 790 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 791 if (const auto *NND = 792 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 793 DKind = NND->getDirectiveKind(); 794 if (isOpenMPWorksharingDirective(DKind) && 795 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 796 return true; 797 } 798 } else if (DKind == OMPD_teams) { 799 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 800 /*IgnoreCaptured=*/true); 801 if (!Body) 802 return false; 803 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 804 if (const auto *NND = 805 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 806 DKind = NND->getDirectiveKind(); 807 if (isOpenMPParallelDirective(DKind) && 808 isOpenMPWorksharingDirective(DKind) && 809 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 810 return true; 811 if (DKind == OMPD_parallel) { 812 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 813 /*IgnoreCaptured=*/true); 814 if (!Body) 815 return false; 816 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 817 if (const auto *NND = 818 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 819 DKind = NND->getDirectiveKind(); 820 if (isOpenMPWorksharingDirective(DKind) && 821 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 822 return true; 823 } 824 } 825 } 826 } 827 return false; 828 case OMPD_target_teams: 829 if (isOpenMPParallelDirective(DKind) && 830 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 831 hasStaticScheduling(*NestedDir)) 832 return true; 833 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 834 return true; 835 if (DKind == OMPD_parallel) { 836 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 837 /*IgnoreCaptured=*/true); 838 if (!Body) 839 return false; 840 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 841 if (const auto *NND = 842 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 843 DKind = NND->getDirectiveKind(); 844 if (isOpenMPWorksharingDirective(DKind) && 845 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 846 return true; 847 } 848 } 849 return false; 850 case OMPD_target_parallel: 851 if (DKind == OMPD_simd) 852 return true; 853 return isOpenMPWorksharingDirective(DKind) && 854 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 855 case OMPD_target_teams_distribute: 856 case OMPD_target_simd: 857 case OMPD_target_parallel_for: 858 case OMPD_target_parallel_for_simd: 859 case OMPD_target_teams_distribute_simd: 860 case OMPD_target_teams_distribute_parallel_for: 861 case OMPD_target_teams_distribute_parallel_for_simd: 862 case OMPD_parallel: 863 case OMPD_for: 864 case OMPD_parallel_for: 865 case OMPD_parallel_master: 866 case OMPD_parallel_sections: 867 case OMPD_for_simd: 868 case OMPD_parallel_for_simd: 869 case OMPD_cancel: 870 case OMPD_cancellation_point: 871 case OMPD_ordered: 872 case OMPD_threadprivate: 873 case OMPD_allocate: 874 case OMPD_task: 875 case OMPD_simd: 876 case OMPD_sections: 877 case OMPD_section: 878 case OMPD_single: 879 case OMPD_master: 880 case OMPD_critical: 881 case OMPD_taskyield: 882 case OMPD_barrier: 883 case OMPD_taskwait: 884 case OMPD_taskgroup: 885 case OMPD_atomic: 886 case OMPD_flush: 887 case OMPD_depobj: 888 case OMPD_scan: 889 case OMPD_teams: 890 case OMPD_target_data: 891 case OMPD_target_exit_data: 892 case OMPD_target_enter_data: 893 case OMPD_distribute: 894 case OMPD_distribute_simd: 895 case OMPD_distribute_parallel_for: 896 case OMPD_distribute_parallel_for_simd: 897 case OMPD_teams_distribute: 898 case OMPD_teams_distribute_simd: 899 case OMPD_teams_distribute_parallel_for: 900 case OMPD_teams_distribute_parallel_for_simd: 901 case OMPD_target_update: 902 case OMPD_declare_simd: 903 case OMPD_declare_variant: 904 case OMPD_begin_declare_variant: 905 case OMPD_end_declare_variant: 906 case OMPD_declare_target: 907 case OMPD_end_declare_target: 908 case OMPD_declare_reduction: 909 case OMPD_declare_mapper: 910 case OMPD_taskloop: 911 case OMPD_taskloop_simd: 912 case OMPD_master_taskloop: 913 case OMPD_master_taskloop_simd: 914 case OMPD_parallel_master_taskloop: 915 case OMPD_parallel_master_taskloop_simd: 916 case OMPD_requires: 917 case OMPD_unknown: 918 default: 919 llvm_unreachable("Unexpected directive."); 920 } 921 } 922 923 return false; 924 } 925 926 /// Checks if the construct supports lightweight runtime. It must be SPMD 927 /// construct + inner loop-based construct with static scheduling. 928 static bool supportsLightweightRuntime(ASTContext &Ctx, 929 const OMPExecutableDirective &D) { 930 if (!supportsSPMDExecutionMode(Ctx, D)) 931 return false; 932 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 933 switch (DirectiveKind) { 934 case OMPD_target: 935 case OMPD_target_teams: 936 case OMPD_target_parallel: 937 return hasNestedLightweightDirective(Ctx, D); 938 case OMPD_target_parallel_for: 939 case OMPD_target_parallel_for_simd: 940 case OMPD_target_teams_distribute_parallel_for: 941 case OMPD_target_teams_distribute_parallel_for_simd: 942 // (Last|First)-privates must be shared in parallel region. 943 return hasStaticScheduling(D); 944 case OMPD_target_simd: 945 case OMPD_target_teams_distribute_simd: 946 return true; 947 case OMPD_target_teams_distribute: 948 return false; 949 case OMPD_parallel: 950 case OMPD_for: 951 case OMPD_parallel_for: 952 case OMPD_parallel_master: 953 case OMPD_parallel_sections: 954 case OMPD_for_simd: 955 case OMPD_parallel_for_simd: 956 case OMPD_cancel: 957 case OMPD_cancellation_point: 958 case OMPD_ordered: 959 case OMPD_threadprivate: 960 case OMPD_allocate: 961 case OMPD_task: 962 case OMPD_simd: 963 case OMPD_sections: 964 case OMPD_section: 965 case OMPD_single: 966 case OMPD_master: 967 case OMPD_critical: 968 case OMPD_taskyield: 969 case OMPD_barrier: 970 case OMPD_taskwait: 971 case OMPD_taskgroup: 972 case OMPD_atomic: 973 case OMPD_flush: 974 case OMPD_depobj: 975 case OMPD_scan: 976 case OMPD_teams: 977 case OMPD_target_data: 978 case OMPD_target_exit_data: 979 case OMPD_target_enter_data: 980 case OMPD_distribute: 981 case OMPD_distribute_simd: 982 case OMPD_distribute_parallel_for: 983 case OMPD_distribute_parallel_for_simd: 984 case OMPD_teams_distribute: 985 case OMPD_teams_distribute_simd: 986 case OMPD_teams_distribute_parallel_for: 987 case OMPD_teams_distribute_parallel_for_simd: 988 case OMPD_target_update: 989 case OMPD_declare_simd: 990 case OMPD_declare_variant: 991 case OMPD_begin_declare_variant: 992 case OMPD_end_declare_variant: 993 case OMPD_declare_target: 994 case OMPD_end_declare_target: 995 case OMPD_declare_reduction: 996 case OMPD_declare_mapper: 997 case OMPD_taskloop: 998 case OMPD_taskloop_simd: 999 case OMPD_master_taskloop: 1000 case OMPD_master_taskloop_simd: 1001 case OMPD_parallel_master_taskloop: 1002 case OMPD_parallel_master_taskloop_simd: 1003 case OMPD_requires: 1004 case OMPD_unknown: 1005 default: 1006 break; 1007 } 1008 llvm_unreachable( 1009 "Unknown programming model for OpenMP directive on NVPTX target."); 1010 } 1011 1012 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1013 StringRef ParentName, 1014 llvm::Function *&OutlinedFn, 1015 llvm::Constant *&OutlinedFnID, 1016 bool IsOffloadEntry, 1017 const RegionCodeGenTy &CodeGen) { 1018 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1019 EntryFunctionState EST; 1020 WrapperFunctionsMap.clear(); 1021 1022 // Emit target region as a standalone region. 1023 class NVPTXPrePostActionTy : public PrePostActionTy { 1024 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1025 1026 public: 1027 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1028 : EST(EST) {} 1029 void Enter(CodeGenFunction &CGF) override { 1030 auto &RT = 1031 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1032 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1033 // Skip target region initialization. 1034 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1035 } 1036 void Exit(CodeGenFunction &CGF) override { 1037 auto &RT = 1038 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1039 RT.clearLocThreadIdInsertPt(CGF); 1040 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1041 } 1042 } Action(EST); 1043 CodeGen.setAction(Action); 1044 IsInTTDRegion = true; 1045 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1046 IsOffloadEntry, CodeGen); 1047 IsInTTDRegion = false; 1048 } 1049 1050 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1051 EntryFunctionState &EST, bool IsSPMD) { 1052 CGBuilderTy &Bld = CGF.Builder; 1053 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1054 IsInTargetMasterThreadRegion = IsSPMD; 1055 if (!IsSPMD) 1056 emitGenericVarsProlog(CGF, EST.Loc); 1057 } 1058 1059 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1060 EntryFunctionState &EST, 1061 bool IsSPMD) { 1062 if (!IsSPMD) 1063 emitGenericVarsEpilog(CGF); 1064 1065 CGBuilderTy &Bld = CGF.Builder; 1066 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1067 } 1068 1069 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1070 StringRef ParentName, 1071 llvm::Function *&OutlinedFn, 1072 llvm::Constant *&OutlinedFnID, 1073 bool IsOffloadEntry, 1074 const RegionCodeGenTy &CodeGen) { 1075 ExecutionRuntimeModesRAII ModeRAII( 1076 CurrentExecutionMode, RequiresFullRuntime, 1077 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1078 !supportsLightweightRuntime(CGM.getContext(), D)); 1079 EntryFunctionState EST; 1080 1081 // Emit target region as a standalone region. 1082 class NVPTXPrePostActionTy : public PrePostActionTy { 1083 CGOpenMPRuntimeGPU &RT; 1084 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1085 1086 public: 1087 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1088 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1089 : RT(RT), EST(EST) {} 1090 void Enter(CodeGenFunction &CGF) override { 1091 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1092 // Skip target region initialization. 1093 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1094 } 1095 void Exit(CodeGenFunction &CGF) override { 1096 RT.clearLocThreadIdInsertPt(CGF); 1097 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1098 } 1099 } Action(*this, EST); 1100 CodeGen.setAction(Action); 1101 IsInTTDRegion = true; 1102 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1103 IsOffloadEntry, CodeGen); 1104 IsInTTDRegion = false; 1105 } 1106 1107 // Create a unique global variable to indicate the execution mode of this target 1108 // region. The execution mode is either 'generic', or 'spmd' depending on the 1109 // target directive. This variable is picked up by the offload library to setup 1110 // the device appropriately before kernel launch. If the execution mode is 1111 // 'generic', the runtime reserves one warp for the master, otherwise, all 1112 // warps participate in parallel work. 1113 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1114 bool Mode) { 1115 auto *GVMode = 1116 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1117 llvm::GlobalValue::WeakAnyLinkage, 1118 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1119 Twine(Name, "_exec_mode")); 1120 CGM.addCompilerUsedGlobal(GVMode); 1121 } 1122 1123 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1124 llvm::Constant *Addr, 1125 uint64_t Size, int32_t, 1126 llvm::GlobalValue::LinkageTypes) { 1127 // TODO: Add support for global variables on the device after declare target 1128 // support. 1129 if (!isa<llvm::Function>(Addr)) 1130 return; 1131 llvm::Module &M = CGM.getModule(); 1132 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1133 1134 // Get "nvvm.annotations" metadata node 1135 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1136 1137 llvm::Metadata *MDVals[] = { 1138 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1139 llvm::ConstantAsMetadata::get( 1140 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1141 // Append metadata to nvvm.annotations 1142 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1143 } 1144 1145 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1146 const OMPExecutableDirective &D, StringRef ParentName, 1147 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1148 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1149 if (!IsOffloadEntry) // Nothing to do. 1150 return; 1151 1152 assert(!ParentName.empty() && "Invalid target region parent name!"); 1153 1154 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1155 if (Mode) 1156 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1157 CodeGen); 1158 else 1159 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1160 CodeGen); 1161 1162 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1163 } 1164 1165 namespace { 1166 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1167 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1168 enum ModeFlagsTy : unsigned { 1169 /// Bit set to 1 when in SPMD mode. 1170 KMP_IDENT_SPMD_MODE = 0x01, 1171 /// Bit set to 1 when a simplified runtime is used. 1172 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1173 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1174 }; 1175 1176 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1177 static const ModeFlagsTy UndefinedMode = 1178 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1179 } // anonymous namespace 1180 1181 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1182 switch (getExecutionMode()) { 1183 case EM_SPMD: 1184 if (requiresFullRuntime()) 1185 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1186 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1187 case EM_NonSPMD: 1188 assert(requiresFullRuntime() && "Expected full runtime."); 1189 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1190 case EM_Unknown: 1191 return UndefinedMode; 1192 } 1193 llvm_unreachable("Unknown flags are requested."); 1194 } 1195 1196 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1197 : CGOpenMPRuntime(CGM, "_", "$") { 1198 if (!CGM.getLangOpts().OpenMPIsDevice) 1199 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1200 1201 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1202 if (CGM.getLangOpts().OpenMPTargetNewRuntime) 1203 OMPBuilder.createDebugKind(CGM.getLangOpts().OpenMPTargetDebug); 1204 } 1205 1206 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1207 ProcBindKind ProcBind, 1208 SourceLocation Loc) { 1209 // Do nothing in case of SPMD mode and L0 parallel. 1210 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1211 return; 1212 1213 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1214 } 1215 1216 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1217 llvm::Value *NumThreads, 1218 SourceLocation Loc) { 1219 // Do nothing in case of SPMD mode and L0 parallel. 1220 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1221 return; 1222 1223 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1224 } 1225 1226 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1227 const Expr *NumTeams, 1228 const Expr *ThreadLimit, 1229 SourceLocation Loc) {} 1230 1231 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1232 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1233 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1234 // Emit target region as a standalone region. 1235 class NVPTXPrePostActionTy : public PrePostActionTy { 1236 bool &IsInParallelRegion; 1237 bool PrevIsInParallelRegion; 1238 1239 public: 1240 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1241 : IsInParallelRegion(IsInParallelRegion) {} 1242 void Enter(CodeGenFunction &CGF) override { 1243 PrevIsInParallelRegion = IsInParallelRegion; 1244 IsInParallelRegion = true; 1245 } 1246 void Exit(CodeGenFunction &CGF) override { 1247 IsInParallelRegion = PrevIsInParallelRegion; 1248 } 1249 } Action(IsInParallelRegion); 1250 CodeGen.setAction(Action); 1251 bool PrevIsInTTDRegion = IsInTTDRegion; 1252 IsInTTDRegion = false; 1253 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1254 IsInTargetMasterThreadRegion = false; 1255 auto *OutlinedFun = 1256 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1257 D, ThreadIDVar, InnermostKind, CodeGen)); 1258 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1259 IsInTTDRegion = PrevIsInTTDRegion; 1260 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1261 !IsInParallelRegion) { 1262 llvm::Function *WrapperFun = 1263 createParallelDataSharingWrapper(OutlinedFun, D); 1264 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1265 } 1266 1267 return OutlinedFun; 1268 } 1269 1270 /// Get list of lastprivate variables from the teams distribute ... or 1271 /// teams {distribute ...} directives. 1272 static void 1273 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1274 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1275 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1276 "expected teams directive."); 1277 const OMPExecutableDirective *Dir = &D; 1278 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1279 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1280 Ctx, 1281 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1282 /*IgnoreCaptured=*/true))) { 1283 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1284 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1285 Dir = nullptr; 1286 } 1287 } 1288 if (!Dir) 1289 return; 1290 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1291 for (const Expr *E : C->getVarRefs()) 1292 Vars.push_back(getPrivateItem(E)); 1293 } 1294 } 1295 1296 /// Get list of reduction variables from the teams ... directives. 1297 static void 1298 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1299 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1300 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1301 "expected teams directive."); 1302 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1303 for (const Expr *E : C->privates()) 1304 Vars.push_back(getPrivateItem(E)); 1305 } 1306 } 1307 1308 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1309 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1310 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1311 SourceLocation Loc = D.getBeginLoc(); 1312 1313 const RecordDecl *GlobalizedRD = nullptr; 1314 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1315 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1316 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1317 // Globalize team reductions variable unconditionally in all modes. 1318 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1319 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1320 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1321 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1322 if (!LastPrivatesReductions.empty()) { 1323 GlobalizedRD = ::buildRecordForGlobalizedVars( 1324 CGM.getContext(), llvm::None, LastPrivatesReductions, 1325 MappedDeclsFields, WarpSize); 1326 } 1327 } else if (!LastPrivatesReductions.empty()) { 1328 assert(!TeamAndReductions.first && 1329 "Previous team declaration is not expected."); 1330 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1331 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1332 } 1333 1334 // Emit target region as a standalone region. 1335 class NVPTXPrePostActionTy : public PrePostActionTy { 1336 SourceLocation &Loc; 1337 const RecordDecl *GlobalizedRD; 1338 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1339 &MappedDeclsFields; 1340 1341 public: 1342 NVPTXPrePostActionTy( 1343 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1344 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1345 &MappedDeclsFields) 1346 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1347 MappedDeclsFields(MappedDeclsFields) {} 1348 void Enter(CodeGenFunction &CGF) override { 1349 auto &Rt = 1350 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1351 if (GlobalizedRD) { 1352 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1353 I->getSecond().MappedParams = 1354 std::make_unique<CodeGenFunction::OMPMapVars>(); 1355 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1356 for (const auto &Pair : MappedDeclsFields) { 1357 assert(Pair.getFirst()->isCanonicalDecl() && 1358 "Expected canonical declaration"); 1359 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1360 } 1361 } 1362 Rt.emitGenericVarsProlog(CGF, Loc); 1363 } 1364 void Exit(CodeGenFunction &CGF) override { 1365 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1366 .emitGenericVarsEpilog(CGF); 1367 } 1368 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1369 CodeGen.setAction(Action); 1370 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1371 D, ThreadIDVar, InnermostKind, CodeGen); 1372 1373 return OutlinedFun; 1374 } 1375 1376 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1377 SourceLocation Loc, 1378 bool WithSPMDCheck) { 1379 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1380 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1381 return; 1382 1383 CGBuilderTy &Bld = CGF.Builder; 1384 1385 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1386 if (I == FunctionGlobalizedDecls.end()) 1387 return; 1388 1389 for (auto &Rec : I->getSecond().LocalVarData) { 1390 const auto *VD = cast<VarDecl>(Rec.first); 1391 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1392 QualType VarTy = VD->getType(); 1393 1394 // Get the local allocation of a firstprivate variable before sharing 1395 llvm::Value *ParValue; 1396 if (EscapedParam) { 1397 LValue ParLVal = 1398 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1399 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1400 } 1401 1402 // Allocate space for the variable to be globalized 1403 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1404 llvm::Instruction *VoidPtr = 1405 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1406 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1407 AllocArgs, VD->getName()); 1408 1409 // Cast the void pointer and get the address of the globalized variable. 1410 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1411 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1412 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1413 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1414 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1415 Rec.second.GlobalizedVal = VoidPtr; 1416 1417 // Assign the local allocation to the newly globalized location. 1418 if (EscapedParam) { 1419 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1420 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1421 } 1422 if (auto *DI = CGF.getDebugInfo()) 1423 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1424 } 1425 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1426 // Use actual memory size of the VLA object including the padding 1427 // for alignment purposes. 1428 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1429 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1430 Size = Bld.CreateNUWAdd( 1431 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1432 llvm::Value *AlignVal = 1433 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1434 1435 Size = Bld.CreateUDiv(Size, AlignVal); 1436 Size = Bld.CreateNUWMul(Size, AlignVal); 1437 1438 // Allocate space for this VLA object to be globalized. 1439 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1440 llvm::Instruction *VoidPtr = 1441 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1442 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1443 AllocArgs, VD->getName()); 1444 1445 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1446 std::pair<llvm::Value *, llvm::Value *>( 1447 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1448 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1449 CGM.getContext().getDeclAlign(VD), 1450 AlignmentSource::Decl); 1451 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1452 Base.getAddress(CGF)); 1453 } 1454 I->getSecond().MappedParams->apply(CGF); 1455 } 1456 1457 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1458 bool WithSPMDCheck) { 1459 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1460 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1461 return; 1462 1463 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1464 if (I != FunctionGlobalizedDecls.end()) { 1465 // Deallocate the memory for each globalized VLA object 1466 for (auto AddrSizePair : 1467 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1468 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1469 CGM.getModule(), OMPRTL___kmpc_free_shared), 1470 {AddrSizePair.first, AddrSizePair.second}); 1471 } 1472 // Deallocate the memory for each globalized value 1473 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1474 const auto *VD = cast<VarDecl>(Rec.first); 1475 I->getSecond().MappedParams->restore(CGF); 1476 1477 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1478 CGF.getTypeSize(VD->getType())}; 1479 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1480 CGM.getModule(), OMPRTL___kmpc_free_shared), 1481 FreeArgs); 1482 } 1483 } 1484 } 1485 1486 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1487 const OMPExecutableDirective &D, 1488 SourceLocation Loc, 1489 llvm::Function *OutlinedFn, 1490 ArrayRef<llvm::Value *> CapturedVars) { 1491 if (!CGF.HaveInsertPoint()) 1492 return; 1493 1494 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1495 /*Name=*/".zero.addr"); 1496 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 1497 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1498 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1499 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1500 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1501 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1502 } 1503 1504 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1505 SourceLocation Loc, 1506 llvm::Function *OutlinedFn, 1507 ArrayRef<llvm::Value *> CapturedVars, 1508 const Expr *IfCond) { 1509 if (!CGF.HaveInsertPoint()) 1510 return; 1511 1512 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1513 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1514 CGBuilderTy &Bld = CGF.Builder; 1515 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1516 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1517 if (WFn) 1518 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1519 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1520 1521 // Create a private scope that will globalize the arguments 1522 // passed from the outside of the target region. 1523 // TODO: Is that needed? 1524 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1525 1526 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1527 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1528 "captured_vars_addrs"); 1529 // There's something to share. 1530 if (!CapturedVars.empty()) { 1531 // Prepare for parallel region. Indicate the outlined function. 1532 ASTContext &Ctx = CGF.getContext(); 1533 unsigned Idx = 0; 1534 for (llvm::Value *V : CapturedVars) { 1535 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1536 llvm::Value *PtrV; 1537 if (V->getType()->isIntegerTy()) 1538 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1539 else 1540 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1541 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1542 Ctx.getPointerType(Ctx.VoidPtrTy)); 1543 ++Idx; 1544 } 1545 } 1546 1547 llvm::Value *IfCondVal = nullptr; 1548 if (IfCond) 1549 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1550 /* isSigned */ false); 1551 else 1552 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1553 1554 assert(IfCondVal && "Expected a value"); 1555 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1556 llvm::Value *Args[] = { 1557 RTLoc, 1558 getThreadID(CGF, Loc), 1559 IfCondVal, 1560 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1561 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1562 FnPtr, 1563 ID, 1564 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1565 CGF.VoidPtrPtrTy), 1566 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1567 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1568 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1569 Args); 1570 }; 1571 1572 RegionCodeGenTy RCG(ParallelGen); 1573 RCG(CGF); 1574 } 1575 1576 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1577 // Always emit simple barriers! 1578 if (!CGF.HaveInsertPoint()) 1579 return; 1580 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1581 // This function does not use parameters, so we can emit just default values. 1582 llvm::Value *Args[] = { 1583 llvm::ConstantPointerNull::get( 1584 cast<llvm::PointerType>(getIdentTyPointerTy())), 1585 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1586 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1587 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1588 Args); 1589 } 1590 1591 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1592 SourceLocation Loc, 1593 OpenMPDirectiveKind Kind, bool, 1594 bool) { 1595 // Always emit simple barriers! 1596 if (!CGF.HaveInsertPoint()) 1597 return; 1598 // Build call __kmpc_cancel_barrier(loc, thread_id); 1599 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1600 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1601 getThreadID(CGF, Loc)}; 1602 1603 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1604 CGM.getModule(), OMPRTL___kmpc_barrier), 1605 Args); 1606 } 1607 1608 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1609 CodeGenFunction &CGF, StringRef CriticalName, 1610 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1611 const Expr *Hint) { 1612 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1613 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1614 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1615 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1616 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1617 1618 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1619 1620 // Get the mask of active threads in the warp. 1621 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1622 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1623 // Fetch team-local id of the thread. 1624 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1625 1626 // Get the width of the team. 1627 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1628 1629 // Initialize the counter variable for the loop. 1630 QualType Int32Ty = 1631 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1632 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1633 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1634 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1635 /*isInit=*/true); 1636 1637 // Block checks if loop counter exceeds upper bound. 1638 CGF.EmitBlock(LoopBB); 1639 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1640 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1641 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1642 1643 // Block tests which single thread should execute region, and which threads 1644 // should go straight to synchronisation point. 1645 CGF.EmitBlock(TestBB); 1646 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1647 llvm::Value *CmpThreadToCounter = 1648 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1649 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1650 1651 // Block emits the body of the critical region. 1652 CGF.EmitBlock(BodyBB); 1653 1654 // Output the critical statement. 1655 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1656 Hint); 1657 1658 // After the body surrounded by the critical region, the single executing 1659 // thread will jump to the synchronisation point. 1660 // Block waits for all threads in current team to finish then increments the 1661 // counter variable and returns to the loop. 1662 CGF.EmitBlock(SyncBB); 1663 // Reconverge active threads in the warp. 1664 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1665 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1666 Mask); 1667 1668 llvm::Value *IncCounterVal = 1669 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1670 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1671 CGF.EmitBranch(LoopBB); 1672 1673 // Block that is reached when all threads in the team complete the region. 1674 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1675 } 1676 1677 /// Cast value to the specified type. 1678 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1679 QualType ValTy, QualType CastTy, 1680 SourceLocation Loc) { 1681 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1682 "Cast type must sized."); 1683 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1684 "Val type must sized."); 1685 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1686 if (ValTy == CastTy) 1687 return Val; 1688 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1689 CGF.getContext().getTypeSizeInChars(CastTy)) 1690 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1691 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1692 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1693 CastTy->hasSignedIntegerRepresentation()); 1694 Address CastItem = CGF.CreateMemTemp(CastTy); 1695 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1696 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1697 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1698 LValueBaseInfo(AlignmentSource::Type), 1699 TBAAAccessInfo()); 1700 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1701 LValueBaseInfo(AlignmentSource::Type), 1702 TBAAAccessInfo()); 1703 } 1704 1705 /// This function creates calls to one of two shuffle functions to copy 1706 /// variables between lanes in a warp. 1707 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1708 llvm::Value *Elem, 1709 QualType ElemType, 1710 llvm::Value *Offset, 1711 SourceLocation Loc) { 1712 CodeGenModule &CGM = CGF.CGM; 1713 CGBuilderTy &Bld = CGF.Builder; 1714 CGOpenMPRuntimeGPU &RT = 1715 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1716 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1717 1718 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1719 assert(Size.getQuantity() <= 8 && 1720 "Unsupported bitwidth in shuffle instruction."); 1721 1722 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1723 ? OMPRTL___kmpc_shuffle_int32 1724 : OMPRTL___kmpc_shuffle_int64; 1725 1726 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1727 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1728 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1729 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1730 llvm::Value *WarpSize = 1731 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1732 1733 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1734 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1735 {ElemCast, Offset, WarpSize}); 1736 1737 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1738 } 1739 1740 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1741 Address DestAddr, QualType ElemType, 1742 llvm::Value *Offset, SourceLocation Loc) { 1743 CGBuilderTy &Bld = CGF.Builder; 1744 1745 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1746 // Create the loop over the big sized data. 1747 // ptr = (void*)Elem; 1748 // ptrEnd = (void*) Elem + 1; 1749 // Step = 8; 1750 // while (ptr + Step < ptrEnd) 1751 // shuffle((int64_t)*ptr); 1752 // Step = 4; 1753 // while (ptr + Step < ptrEnd) 1754 // shuffle((int32_t)*ptr); 1755 // ... 1756 Address ElemPtr = DestAddr; 1757 Address Ptr = SrcAddr; 1758 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1759 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1760 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1761 if (Size < CharUnits::fromQuantity(IntSize)) 1762 continue; 1763 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1764 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1765 /*Signed=*/1); 1766 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1767 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1768 ElemPtr = 1769 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1770 if (Size.getQuantity() / IntSize > 1) { 1771 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1772 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1773 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1774 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1775 CGF.EmitBlock(PreCondBB); 1776 llvm::PHINode *PhiSrc = 1777 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1778 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1779 llvm::PHINode *PhiDest = 1780 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1781 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1782 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1783 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1784 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1785 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1786 Ptr.getPointer(), CGF.VoidPtrTy)); 1787 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1788 ThenBB, ExitBB); 1789 CGF.EmitBlock(ThenBB); 1790 llvm::Value *Res = createRuntimeShuffleFunction( 1791 CGF, 1792 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1793 LValueBaseInfo(AlignmentSource::Type), 1794 TBAAAccessInfo()), 1795 IntType, Offset, Loc); 1796 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1797 LValueBaseInfo(AlignmentSource::Type), 1798 TBAAAccessInfo()); 1799 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1800 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1801 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1802 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1803 CGF.EmitBranch(PreCondBB); 1804 CGF.EmitBlock(ExitBB); 1805 } else { 1806 llvm::Value *Res = createRuntimeShuffleFunction( 1807 CGF, 1808 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1809 LValueBaseInfo(AlignmentSource::Type), 1810 TBAAAccessInfo()), 1811 IntType, Offset, Loc); 1812 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1813 LValueBaseInfo(AlignmentSource::Type), 1814 TBAAAccessInfo()); 1815 Ptr = Bld.CreateConstGEP(Ptr, 1); 1816 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1817 } 1818 Size = Size % IntSize; 1819 } 1820 } 1821 1822 namespace { 1823 enum CopyAction : unsigned { 1824 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1825 // the warp using shuffle instructions. 1826 RemoteLaneToThread, 1827 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1828 ThreadCopy, 1829 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1830 ThreadToScratchpad, 1831 // ScratchpadToThread: Copy from a scratchpad array in global memory 1832 // containing team-reduced data to a thread's stack. 1833 ScratchpadToThread, 1834 }; 1835 } // namespace 1836 1837 struct CopyOptionsTy { 1838 llvm::Value *RemoteLaneOffset; 1839 llvm::Value *ScratchpadIndex; 1840 llvm::Value *ScratchpadWidth; 1841 }; 1842 1843 /// Emit instructions to copy a Reduce list, which contains partially 1844 /// aggregated values, in the specified direction. 1845 static void emitReductionListCopy( 1846 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1847 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1848 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1849 1850 CodeGenModule &CGM = CGF.CGM; 1851 ASTContext &C = CGM.getContext(); 1852 CGBuilderTy &Bld = CGF.Builder; 1853 1854 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1855 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1856 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1857 1858 // Iterates, element-by-element, through the source Reduce list and 1859 // make a copy. 1860 unsigned Idx = 0; 1861 unsigned Size = Privates.size(); 1862 for (const Expr *Private : Privates) { 1863 Address SrcElementAddr = Address::invalid(); 1864 Address DestElementAddr = Address::invalid(); 1865 Address DestElementPtrAddr = Address::invalid(); 1866 // Should we shuffle in an element from a remote lane? 1867 bool ShuffleInElement = false; 1868 // Set to true to update the pointer in the dest Reduce list to a 1869 // newly created element. 1870 bool UpdateDestListPtr = false; 1871 // Increment the src or dest pointer to the scratchpad, for each 1872 // new element. 1873 bool IncrScratchpadSrc = false; 1874 bool IncrScratchpadDest = false; 1875 1876 switch (Action) { 1877 case RemoteLaneToThread: { 1878 // Step 1.1: Get the address for the src element in the Reduce list. 1879 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1880 SrcElementAddr = CGF.EmitLoadOfPointer( 1881 SrcElementPtrAddr, 1882 C.getPointerType(Private->getType())->castAs<PointerType>()); 1883 1884 // Step 1.2: Create a temporary to store the element in the destination 1885 // Reduce list. 1886 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1887 DestElementAddr = 1888 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1889 ShuffleInElement = true; 1890 UpdateDestListPtr = true; 1891 break; 1892 } 1893 case ThreadCopy: { 1894 // Step 1.1: Get the address for the src element in the Reduce list. 1895 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1896 SrcElementAddr = CGF.EmitLoadOfPointer( 1897 SrcElementPtrAddr, 1898 C.getPointerType(Private->getType())->castAs<PointerType>()); 1899 1900 // Step 1.2: Get the address for dest element. The destination 1901 // element has already been created on the thread's stack. 1902 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1903 DestElementAddr = CGF.EmitLoadOfPointer( 1904 DestElementPtrAddr, 1905 C.getPointerType(Private->getType())->castAs<PointerType>()); 1906 break; 1907 } 1908 case ThreadToScratchpad: { 1909 // Step 1.1: Get the address for the src element in the Reduce list. 1910 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1911 SrcElementAddr = CGF.EmitLoadOfPointer( 1912 SrcElementPtrAddr, 1913 C.getPointerType(Private->getType())->castAs<PointerType>()); 1914 1915 // Step 1.2: Get the address for dest element: 1916 // address = base + index * ElementSizeInChars. 1917 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1918 llvm::Value *CurrentOffset = 1919 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1920 llvm::Value *ScratchPadElemAbsolutePtrVal = 1921 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1922 ScratchPadElemAbsolutePtrVal = 1923 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1924 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1925 C.getTypeAlignInChars(Private->getType())); 1926 IncrScratchpadDest = true; 1927 break; 1928 } 1929 case ScratchpadToThread: { 1930 // Step 1.1: Get the address for the src element in the scratchpad. 1931 // address = base + index * ElementSizeInChars. 1932 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1933 llvm::Value *CurrentOffset = 1934 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1935 llvm::Value *ScratchPadElemAbsolutePtrVal = 1936 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1937 ScratchPadElemAbsolutePtrVal = 1938 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1939 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1940 C.getTypeAlignInChars(Private->getType())); 1941 IncrScratchpadSrc = true; 1942 1943 // Step 1.2: Create a temporary to store the element in the destination 1944 // Reduce list. 1945 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1946 DestElementAddr = 1947 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1948 UpdateDestListPtr = true; 1949 break; 1950 } 1951 } 1952 1953 // Regardless of src and dest of copy, we emit the load of src 1954 // element as this is required in all directions 1955 SrcElementAddr = Bld.CreateElementBitCast( 1956 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1957 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1958 SrcElementAddr.getElementType()); 1959 1960 // Now that all active lanes have read the element in the 1961 // Reduce list, shuffle over the value from the remote lane. 1962 if (ShuffleInElement) { 1963 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1964 RemoteLaneOffset, Private->getExprLoc()); 1965 } else { 1966 switch (CGF.getEvaluationKind(Private->getType())) { 1967 case TEK_Scalar: { 1968 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1969 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1970 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1971 TBAAAccessInfo()); 1972 // Store the source element value to the dest element address. 1973 CGF.EmitStoreOfScalar( 1974 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1975 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1976 break; 1977 } 1978 case TEK_Complex: { 1979 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1980 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1981 Private->getExprLoc()); 1982 CGF.EmitStoreOfComplex( 1983 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1984 /*isInit=*/false); 1985 break; 1986 } 1987 case TEK_Aggregate: 1988 CGF.EmitAggregateCopy( 1989 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1990 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1991 Private->getType(), AggValueSlot::DoesNotOverlap); 1992 break; 1993 } 1994 } 1995 1996 // Step 3.1: Modify reference in dest Reduce list as needed. 1997 // Modifying the reference in Reduce list to point to the newly 1998 // created element. The element is live in the current function 1999 // scope and that of functions it invokes (i.e., reduce_function). 2000 // RemoteReduceData[i] = (void*)&RemoteElem 2001 if (UpdateDestListPtr) { 2002 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2003 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2004 DestElementPtrAddr, /*Volatile=*/false, 2005 C.VoidPtrTy); 2006 } 2007 2008 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2009 // address of the next element in scratchpad memory, unless we're currently 2010 // processing the last one. Memory alignment is also taken care of here. 2011 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2012 llvm::Value *ScratchpadBasePtr = 2013 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2014 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2015 ScratchpadBasePtr = Bld.CreateNUWAdd( 2016 ScratchpadBasePtr, 2017 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2018 2019 // Take care of global memory alignment for performance 2020 ScratchpadBasePtr = Bld.CreateNUWSub( 2021 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2022 ScratchpadBasePtr = Bld.CreateUDiv( 2023 ScratchpadBasePtr, 2024 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2025 ScratchpadBasePtr = Bld.CreateNUWAdd( 2026 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2027 ScratchpadBasePtr = Bld.CreateNUWMul( 2028 ScratchpadBasePtr, 2029 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2030 2031 if (IncrScratchpadDest) 2032 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2033 else /* IncrScratchpadSrc = true */ 2034 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2035 } 2036 2037 ++Idx; 2038 } 2039 } 2040 2041 /// This function emits a helper that gathers Reduce lists from the first 2042 /// lane of every active warp to lanes in the first warp. 2043 /// 2044 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2045 /// shared smem[warp_size]; 2046 /// For all data entries D in reduce_data: 2047 /// sync 2048 /// If (I am the first lane in each warp) 2049 /// Copy my local D to smem[warp_id] 2050 /// sync 2051 /// if (I am the first warp) 2052 /// Copy smem[thread_id] to my local D 2053 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2054 ArrayRef<const Expr *> Privates, 2055 QualType ReductionArrayTy, 2056 SourceLocation Loc) { 2057 ASTContext &C = CGM.getContext(); 2058 llvm::Module &M = CGM.getModule(); 2059 2060 // ReduceList: thread local Reduce list. 2061 // At the stage of the computation when this function is called, partially 2062 // aggregated values reside in the first lane of every active warp. 2063 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2064 C.VoidPtrTy, ImplicitParamDecl::Other); 2065 // NumWarps: number of warps active in the parallel region. This could 2066 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2067 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2068 C.getIntTypeForBitwidth(32, /* Signed */ true), 2069 ImplicitParamDecl::Other); 2070 FunctionArgList Args; 2071 Args.push_back(&ReduceListArg); 2072 Args.push_back(&NumWarpsArg); 2073 2074 const CGFunctionInfo &CGFI = 2075 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2076 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2077 llvm::GlobalValue::InternalLinkage, 2078 "_omp_reduction_inter_warp_copy_func", &M); 2079 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2080 Fn->setDoesNotRecurse(); 2081 CodeGenFunction CGF(CGM); 2082 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2083 2084 CGBuilderTy &Bld = CGF.Builder; 2085 2086 // This array is used as a medium to transfer, one reduce element at a time, 2087 // the data from the first lane of every warp to lanes in the first warp 2088 // in order to perform the final step of a reduction in a parallel region 2089 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2090 // for reduced latency, as well as to have a distinct copy for concurrently 2091 // executing target regions. The array is declared with common linkage so 2092 // as to be shared across compilation units. 2093 StringRef TransferMediumName = 2094 "__openmp_nvptx_data_transfer_temporary_storage"; 2095 llvm::GlobalVariable *TransferMedium = 2096 M.getGlobalVariable(TransferMediumName); 2097 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2098 if (!TransferMedium) { 2099 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2100 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2101 TransferMedium = new llvm::GlobalVariable( 2102 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2103 llvm::UndefValue::get(Ty), TransferMediumName, 2104 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2105 SharedAddressSpace); 2106 CGM.addCompilerUsedGlobal(TransferMedium); 2107 } 2108 2109 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2110 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2111 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2112 // nvptx_lane_id = nvptx_id % warpsize 2113 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2114 // nvptx_warp_id = nvptx_id / warpsize 2115 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2116 2117 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2118 Address LocalReduceList( 2119 Bld.CreatePointerBitCastOrAddrSpaceCast( 2120 CGF.EmitLoadOfScalar( 2121 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2122 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2123 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2124 CGF.getPointerAlign()); 2125 2126 unsigned Idx = 0; 2127 for (const Expr *Private : Privates) { 2128 // 2129 // Warp master copies reduce element to transfer medium in __shared__ 2130 // memory. 2131 // 2132 unsigned RealTySize = 2133 C.getTypeSizeInChars(Private->getType()) 2134 .alignTo(C.getTypeAlignInChars(Private->getType())) 2135 .getQuantity(); 2136 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2137 unsigned NumIters = RealTySize / TySize; 2138 if (NumIters == 0) 2139 continue; 2140 QualType CType = C.getIntTypeForBitwidth( 2141 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2142 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2143 CharUnits Align = CharUnits::fromQuantity(TySize); 2144 llvm::Value *Cnt = nullptr; 2145 Address CntAddr = Address::invalid(); 2146 llvm::BasicBlock *PrecondBB = nullptr; 2147 llvm::BasicBlock *ExitBB = nullptr; 2148 if (NumIters > 1) { 2149 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2150 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2151 /*Volatile=*/false, C.IntTy); 2152 PrecondBB = CGF.createBasicBlock("precond"); 2153 ExitBB = CGF.createBasicBlock("exit"); 2154 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2155 // There is no need to emit line number for unconditional branch. 2156 (void)ApplyDebugLocation::CreateEmpty(CGF); 2157 CGF.EmitBlock(PrecondBB); 2158 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2159 llvm::Value *Cmp = 2160 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2161 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2162 CGF.EmitBlock(BodyBB); 2163 } 2164 // kmpc_barrier. 2165 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2166 /*EmitChecks=*/false, 2167 /*ForceSimpleCall=*/true); 2168 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2169 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2170 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2171 2172 // if (lane_id == 0) 2173 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2174 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2175 CGF.EmitBlock(ThenBB); 2176 2177 // Reduce element = LocalReduceList[i] 2178 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2179 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2180 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2181 // elemptr = ((CopyType*)(elemptrptr)) + I 2182 Address ElemPtr = Address(ElemPtrPtr, Align); 2183 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2184 if (NumIters > 1) { 2185 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2186 ElemPtr.getPointer(), Cnt), 2187 ElemPtr.getAlignment()); 2188 } 2189 2190 // Get pointer to location in transfer medium. 2191 // MediumPtr = &medium[warp_id] 2192 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2193 TransferMedium->getValueType(), TransferMedium, 2194 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2195 Address MediumPtr(MediumPtrVal, Align); 2196 // Casting to actual data type. 2197 // MediumPtr = (CopyType*)MediumPtrAddr; 2198 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2199 2200 // elem = *elemptr 2201 //*MediumPtr = elem 2202 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2203 ElemPtr, /*Volatile=*/false, CType, Loc, 2204 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2205 // Store the source element value to the dest element address. 2206 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2207 LValueBaseInfo(AlignmentSource::Type), 2208 TBAAAccessInfo()); 2209 2210 Bld.CreateBr(MergeBB); 2211 2212 CGF.EmitBlock(ElseBB); 2213 Bld.CreateBr(MergeBB); 2214 2215 CGF.EmitBlock(MergeBB); 2216 2217 // kmpc_barrier. 2218 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2219 /*EmitChecks=*/false, 2220 /*ForceSimpleCall=*/true); 2221 2222 // 2223 // Warp 0 copies reduce element from transfer medium. 2224 // 2225 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2226 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2227 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2228 2229 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2230 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2231 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2232 2233 // Up to 32 threads in warp 0 are active. 2234 llvm::Value *IsActiveThread = 2235 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2236 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2237 2238 CGF.EmitBlock(W0ThenBB); 2239 2240 // SrcMediumPtr = &medium[tid] 2241 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2242 TransferMedium->getValueType(), TransferMedium, 2243 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2244 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2245 // SrcMediumVal = *SrcMediumPtr; 2246 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2247 2248 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2249 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2250 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2251 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2252 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2253 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2254 if (NumIters > 1) { 2255 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2256 TargetElemPtr.getPointer(), Cnt), 2257 TargetElemPtr.getAlignment()); 2258 } 2259 2260 // *TargetElemPtr = SrcMediumVal; 2261 llvm::Value *SrcMediumValue = 2262 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2263 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2264 CType); 2265 Bld.CreateBr(W0MergeBB); 2266 2267 CGF.EmitBlock(W0ElseBB); 2268 Bld.CreateBr(W0MergeBB); 2269 2270 CGF.EmitBlock(W0MergeBB); 2271 2272 if (NumIters > 1) { 2273 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2274 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2275 CGF.EmitBranch(PrecondBB); 2276 (void)ApplyDebugLocation::CreateEmpty(CGF); 2277 CGF.EmitBlock(ExitBB); 2278 } 2279 RealTySize %= TySize; 2280 } 2281 ++Idx; 2282 } 2283 2284 CGF.FinishFunction(); 2285 return Fn; 2286 } 2287 2288 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2289 /// in the same warp. It uses shuffle instructions to copy over data from 2290 /// a remote lane's stack. The reduction algorithm performed is specified 2291 /// by the fourth parameter. 2292 /// 2293 /// Algorithm Versions. 2294 /// Full Warp Reduce (argument value 0): 2295 /// This algorithm assumes that all 32 lanes are active and gathers 2296 /// data from these 32 lanes, producing a single resultant value. 2297 /// Contiguous Partial Warp Reduce (argument value 1): 2298 /// This algorithm assumes that only a *contiguous* subset of lanes 2299 /// are active. This happens for the last warp in a parallel region 2300 /// when the user specified num_threads is not an integer multiple of 2301 /// 32. This contiguous subset always starts with the zeroth lane. 2302 /// Partial Warp Reduce (argument value 2): 2303 /// This algorithm gathers data from any number of lanes at any position. 2304 /// All reduced values are stored in the lowest possible lane. The set 2305 /// of problems every algorithm addresses is a super set of those 2306 /// addressable by algorithms with a lower version number. Overhead 2307 /// increases as algorithm version increases. 2308 /// 2309 /// Terminology 2310 /// Reduce element: 2311 /// Reduce element refers to the individual data field with primitive 2312 /// data types to be combined and reduced across threads. 2313 /// Reduce list: 2314 /// Reduce list refers to a collection of local, thread-private 2315 /// reduce elements. 2316 /// Remote Reduce list: 2317 /// Remote Reduce list refers to a collection of remote (relative to 2318 /// the current thread) reduce elements. 2319 /// 2320 /// We distinguish between three states of threads that are important to 2321 /// the implementation of this function. 2322 /// Alive threads: 2323 /// Threads in a warp executing the SIMT instruction, as distinguished from 2324 /// threads that are inactive due to divergent control flow. 2325 /// Active threads: 2326 /// The minimal set of threads that has to be alive upon entry to this 2327 /// function. The computation is correct iff active threads are alive. 2328 /// Some threads are alive but they are not active because they do not 2329 /// contribute to the computation in any useful manner. Turning them off 2330 /// may introduce control flow overheads without any tangible benefits. 2331 /// Effective threads: 2332 /// In order to comply with the argument requirements of the shuffle 2333 /// function, we must keep all lanes holding data alive. But at most 2334 /// half of them perform value aggregation; we refer to this half of 2335 /// threads as effective. The other half is simply handing off their 2336 /// data. 2337 /// 2338 /// Procedure 2339 /// Value shuffle: 2340 /// In this step active threads transfer data from higher lane positions 2341 /// in the warp to lower lane positions, creating Remote Reduce list. 2342 /// Value aggregation: 2343 /// In this step, effective threads combine their thread local Reduce list 2344 /// with Remote Reduce list and store the result in the thread local 2345 /// Reduce list. 2346 /// Value copy: 2347 /// In this step, we deal with the assumption made by algorithm 2 2348 /// (i.e. contiguity assumption). When we have an odd number of lanes 2349 /// active, say 2k+1, only k threads will be effective and therefore k 2350 /// new values will be produced. However, the Reduce list owned by the 2351 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2352 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2353 /// that the contiguity assumption still holds. 2354 static llvm::Function *emitShuffleAndReduceFunction( 2355 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2356 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2357 ASTContext &C = CGM.getContext(); 2358 2359 // Thread local Reduce list used to host the values of data to be reduced. 2360 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2361 C.VoidPtrTy, ImplicitParamDecl::Other); 2362 // Current lane id; could be logical. 2363 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2364 ImplicitParamDecl::Other); 2365 // Offset of the remote source lane relative to the current lane. 2366 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2367 C.ShortTy, ImplicitParamDecl::Other); 2368 // Algorithm version. This is expected to be known at compile time. 2369 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2370 C.ShortTy, ImplicitParamDecl::Other); 2371 FunctionArgList Args; 2372 Args.push_back(&ReduceListArg); 2373 Args.push_back(&LaneIDArg); 2374 Args.push_back(&RemoteLaneOffsetArg); 2375 Args.push_back(&AlgoVerArg); 2376 2377 const CGFunctionInfo &CGFI = 2378 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2379 auto *Fn = llvm::Function::Create( 2380 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2381 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2382 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2383 Fn->setDoesNotRecurse(); 2384 2385 CodeGenFunction CGF(CGM); 2386 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2387 2388 CGBuilderTy &Bld = CGF.Builder; 2389 2390 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2391 Address LocalReduceList( 2392 Bld.CreatePointerBitCastOrAddrSpaceCast( 2393 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2394 C.VoidPtrTy, SourceLocation()), 2395 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2396 CGF.getPointerAlign()); 2397 2398 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2399 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2400 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2401 2402 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2403 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2404 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2405 2406 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2407 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2408 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2409 2410 // Create a local thread-private variable to host the Reduce list 2411 // from a remote lane. 2412 Address RemoteReduceList = 2413 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2414 2415 // This loop iterates through the list of reduce elements and copies, 2416 // element by element, from a remote lane in the warp to RemoteReduceList, 2417 // hosted on the thread's stack. 2418 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2419 LocalReduceList, RemoteReduceList, 2420 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2421 /*ScratchpadIndex=*/nullptr, 2422 /*ScratchpadWidth=*/nullptr}); 2423 2424 // The actions to be performed on the Remote Reduce list is dependent 2425 // on the algorithm version. 2426 // 2427 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2428 // LaneId % 2 == 0 && Offset > 0): 2429 // do the reduction value aggregation 2430 // 2431 // The thread local variable Reduce list is mutated in place to host the 2432 // reduced data, which is the aggregated value produced from local and 2433 // remote lanes. 2434 // 2435 // Note that AlgoVer is expected to be a constant integer known at compile 2436 // time. 2437 // When AlgoVer==0, the first conjunction evaluates to true, making 2438 // the entire predicate true during compile time. 2439 // When AlgoVer==1, the second conjunction has only the second part to be 2440 // evaluated during runtime. Other conjunctions evaluates to false 2441 // during compile time. 2442 // When AlgoVer==2, the third conjunction has only the second part to be 2443 // evaluated during runtime. Other conjunctions evaluates to false 2444 // during compile time. 2445 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2446 2447 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2448 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2449 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2450 2451 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2452 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2453 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2454 CondAlgo2 = Bld.CreateAnd( 2455 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2456 2457 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2458 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2459 2460 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2461 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2462 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2463 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2464 2465 CGF.EmitBlock(ThenBB); 2466 // reduce_function(LocalReduceList, RemoteReduceList) 2467 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2468 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2469 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2470 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2471 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2472 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2473 Bld.CreateBr(MergeBB); 2474 2475 CGF.EmitBlock(ElseBB); 2476 Bld.CreateBr(MergeBB); 2477 2478 CGF.EmitBlock(MergeBB); 2479 2480 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2481 // Reduce list. 2482 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2483 llvm::Value *CondCopy = Bld.CreateAnd( 2484 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2485 2486 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2487 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2488 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2489 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2490 2491 CGF.EmitBlock(CpyThenBB); 2492 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2493 RemoteReduceList, LocalReduceList); 2494 Bld.CreateBr(CpyMergeBB); 2495 2496 CGF.EmitBlock(CpyElseBB); 2497 Bld.CreateBr(CpyMergeBB); 2498 2499 CGF.EmitBlock(CpyMergeBB); 2500 2501 CGF.FinishFunction(); 2502 return Fn; 2503 } 2504 2505 /// This function emits a helper that copies all the reduction variables from 2506 /// the team into the provided global buffer for the reduction variables. 2507 /// 2508 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2509 /// For all data entries D in reduce_data: 2510 /// Copy local D to buffer.D[Idx] 2511 static llvm::Value *emitListToGlobalCopyFunction( 2512 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2513 QualType ReductionArrayTy, SourceLocation Loc, 2514 const RecordDecl *TeamReductionRec, 2515 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2516 &VarFieldMap) { 2517 ASTContext &C = CGM.getContext(); 2518 2519 // Buffer: global reduction buffer. 2520 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2521 C.VoidPtrTy, ImplicitParamDecl::Other); 2522 // Idx: index of the buffer. 2523 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2524 ImplicitParamDecl::Other); 2525 // ReduceList: thread local Reduce list. 2526 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2527 C.VoidPtrTy, ImplicitParamDecl::Other); 2528 FunctionArgList Args; 2529 Args.push_back(&BufferArg); 2530 Args.push_back(&IdxArg); 2531 Args.push_back(&ReduceListArg); 2532 2533 const CGFunctionInfo &CGFI = 2534 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2535 auto *Fn = llvm::Function::Create( 2536 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2537 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2538 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2539 Fn->setDoesNotRecurse(); 2540 CodeGenFunction CGF(CGM); 2541 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2542 2543 CGBuilderTy &Bld = CGF.Builder; 2544 2545 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2546 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2547 Address LocalReduceList( 2548 Bld.CreatePointerBitCastOrAddrSpaceCast( 2549 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2550 C.VoidPtrTy, Loc), 2551 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2552 CGF.getPointerAlign()); 2553 QualType StaticTy = C.getRecordType(TeamReductionRec); 2554 llvm::Type *LLVMReductionsBufferTy = 2555 CGM.getTypes().ConvertTypeForMem(StaticTy); 2556 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2557 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2558 LLVMReductionsBufferTy->getPointerTo()); 2559 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2560 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2561 /*Volatile=*/false, C.IntTy, 2562 Loc)}; 2563 unsigned Idx = 0; 2564 for (const Expr *Private : Privates) { 2565 // Reduce element = LocalReduceList[i] 2566 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2567 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2568 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2569 // elemptr = ((CopyType*)(elemptrptr)) + I 2570 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2571 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2572 Address ElemPtr = 2573 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2574 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2575 // Global = Buffer.VD[Idx]; 2576 const FieldDecl *FD = VarFieldMap.lookup(VD); 2577 LValue GlobLVal = CGF.EmitLValueForField( 2578 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2579 Address GlobAddr = GlobLVal.getAddress(CGF); 2580 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2581 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2582 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2583 switch (CGF.getEvaluationKind(Private->getType())) { 2584 case TEK_Scalar: { 2585 llvm::Value *V = CGF.EmitLoadOfScalar( 2586 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2587 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2588 CGF.EmitStoreOfScalar(V, GlobLVal); 2589 break; 2590 } 2591 case TEK_Complex: { 2592 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2593 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2594 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2595 break; 2596 } 2597 case TEK_Aggregate: 2598 CGF.EmitAggregateCopy(GlobLVal, 2599 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2600 Private->getType(), AggValueSlot::DoesNotOverlap); 2601 break; 2602 } 2603 ++Idx; 2604 } 2605 2606 CGF.FinishFunction(); 2607 return Fn; 2608 } 2609 2610 /// This function emits a helper that reduces all the reduction variables from 2611 /// the team into the provided global buffer for the reduction variables. 2612 /// 2613 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2614 /// void *GlobPtrs[]; 2615 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2616 /// ... 2617 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2618 /// reduce_function(GlobPtrs, reduce_data); 2619 static llvm::Value *emitListToGlobalReduceFunction( 2620 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2621 QualType ReductionArrayTy, SourceLocation Loc, 2622 const RecordDecl *TeamReductionRec, 2623 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2624 &VarFieldMap, 2625 llvm::Function *ReduceFn) { 2626 ASTContext &C = CGM.getContext(); 2627 2628 // Buffer: global reduction buffer. 2629 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2630 C.VoidPtrTy, ImplicitParamDecl::Other); 2631 // Idx: index of the buffer. 2632 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2633 ImplicitParamDecl::Other); 2634 // ReduceList: thread local Reduce list. 2635 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2636 C.VoidPtrTy, ImplicitParamDecl::Other); 2637 FunctionArgList Args; 2638 Args.push_back(&BufferArg); 2639 Args.push_back(&IdxArg); 2640 Args.push_back(&ReduceListArg); 2641 2642 const CGFunctionInfo &CGFI = 2643 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2644 auto *Fn = llvm::Function::Create( 2645 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2646 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2647 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2648 Fn->setDoesNotRecurse(); 2649 CodeGenFunction CGF(CGM); 2650 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2651 2652 CGBuilderTy &Bld = CGF.Builder; 2653 2654 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2655 QualType StaticTy = C.getRecordType(TeamReductionRec); 2656 llvm::Type *LLVMReductionsBufferTy = 2657 CGM.getTypes().ConvertTypeForMem(StaticTy); 2658 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2659 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2660 LLVMReductionsBufferTy->getPointerTo()); 2661 2662 // 1. Build a list of reduction variables. 2663 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2664 Address ReductionList = 2665 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2666 auto IPriv = Privates.begin(); 2667 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2668 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2669 /*Volatile=*/false, C.IntTy, 2670 Loc)}; 2671 unsigned Idx = 0; 2672 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2673 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2674 // Global = Buffer.VD[Idx]; 2675 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2676 const FieldDecl *FD = VarFieldMap.lookup(VD); 2677 LValue GlobLVal = CGF.EmitLValueForField( 2678 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2679 Address GlobAddr = GlobLVal.getAddress(CGF); 2680 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2681 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2682 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2683 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2684 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2685 // Store array size. 2686 ++Idx; 2687 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2688 llvm::Value *Size = CGF.Builder.CreateIntCast( 2689 CGF.getVLASize( 2690 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2691 .NumElts, 2692 CGF.SizeTy, /*isSigned=*/false); 2693 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2694 Elem); 2695 } 2696 } 2697 2698 // Call reduce_function(GlobalReduceList, ReduceList) 2699 llvm::Value *GlobalReduceList = 2700 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2701 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2702 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2703 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2704 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2705 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2706 CGF.FinishFunction(); 2707 return Fn; 2708 } 2709 2710 /// This function emits a helper that copies all the reduction variables from 2711 /// the team into the provided global buffer for the reduction variables. 2712 /// 2713 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2714 /// For all data entries D in reduce_data: 2715 /// Copy buffer.D[Idx] to local D; 2716 static llvm::Value *emitGlobalToListCopyFunction( 2717 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2718 QualType ReductionArrayTy, SourceLocation Loc, 2719 const RecordDecl *TeamReductionRec, 2720 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2721 &VarFieldMap) { 2722 ASTContext &C = CGM.getContext(); 2723 2724 // Buffer: global reduction buffer. 2725 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2726 C.VoidPtrTy, ImplicitParamDecl::Other); 2727 // Idx: index of the buffer. 2728 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2729 ImplicitParamDecl::Other); 2730 // ReduceList: thread local Reduce list. 2731 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2732 C.VoidPtrTy, ImplicitParamDecl::Other); 2733 FunctionArgList Args; 2734 Args.push_back(&BufferArg); 2735 Args.push_back(&IdxArg); 2736 Args.push_back(&ReduceListArg); 2737 2738 const CGFunctionInfo &CGFI = 2739 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2740 auto *Fn = llvm::Function::Create( 2741 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2742 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2743 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2744 Fn->setDoesNotRecurse(); 2745 CodeGenFunction CGF(CGM); 2746 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2747 2748 CGBuilderTy &Bld = CGF.Builder; 2749 2750 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2751 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2752 Address LocalReduceList( 2753 Bld.CreatePointerBitCastOrAddrSpaceCast( 2754 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2755 C.VoidPtrTy, Loc), 2756 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2757 CGF.getPointerAlign()); 2758 QualType StaticTy = C.getRecordType(TeamReductionRec); 2759 llvm::Type *LLVMReductionsBufferTy = 2760 CGM.getTypes().ConvertTypeForMem(StaticTy); 2761 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2762 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2763 LLVMReductionsBufferTy->getPointerTo()); 2764 2765 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2766 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2767 /*Volatile=*/false, C.IntTy, 2768 Loc)}; 2769 unsigned Idx = 0; 2770 for (const Expr *Private : Privates) { 2771 // Reduce element = LocalReduceList[i] 2772 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2773 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2774 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2775 // elemptr = ((CopyType*)(elemptrptr)) + I 2776 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2777 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2778 Address ElemPtr = 2779 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2780 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2781 // Global = Buffer.VD[Idx]; 2782 const FieldDecl *FD = VarFieldMap.lookup(VD); 2783 LValue GlobLVal = CGF.EmitLValueForField( 2784 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2785 Address GlobAddr = GlobLVal.getAddress(CGF); 2786 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2787 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2788 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2789 switch (CGF.getEvaluationKind(Private->getType())) { 2790 case TEK_Scalar: { 2791 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2792 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2793 LValueBaseInfo(AlignmentSource::Type), 2794 TBAAAccessInfo()); 2795 break; 2796 } 2797 case TEK_Complex: { 2798 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2799 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2800 /*isInit=*/false); 2801 break; 2802 } 2803 case TEK_Aggregate: 2804 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2805 GlobLVal, Private->getType(), 2806 AggValueSlot::DoesNotOverlap); 2807 break; 2808 } 2809 ++Idx; 2810 } 2811 2812 CGF.FinishFunction(); 2813 return Fn; 2814 } 2815 2816 /// This function emits a helper that reduces all the reduction variables from 2817 /// the team into the provided global buffer for the reduction variables. 2818 /// 2819 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2820 /// void *GlobPtrs[]; 2821 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2822 /// ... 2823 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2824 /// reduce_function(reduce_data, GlobPtrs); 2825 static llvm::Value *emitGlobalToListReduceFunction( 2826 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2827 QualType ReductionArrayTy, SourceLocation Loc, 2828 const RecordDecl *TeamReductionRec, 2829 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2830 &VarFieldMap, 2831 llvm::Function *ReduceFn) { 2832 ASTContext &C = CGM.getContext(); 2833 2834 // Buffer: global reduction buffer. 2835 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2836 C.VoidPtrTy, ImplicitParamDecl::Other); 2837 // Idx: index of the buffer. 2838 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2839 ImplicitParamDecl::Other); 2840 // ReduceList: thread local Reduce list. 2841 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2842 C.VoidPtrTy, ImplicitParamDecl::Other); 2843 FunctionArgList Args; 2844 Args.push_back(&BufferArg); 2845 Args.push_back(&IdxArg); 2846 Args.push_back(&ReduceListArg); 2847 2848 const CGFunctionInfo &CGFI = 2849 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2850 auto *Fn = llvm::Function::Create( 2851 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2852 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2853 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2854 Fn->setDoesNotRecurse(); 2855 CodeGenFunction CGF(CGM); 2856 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2857 2858 CGBuilderTy &Bld = CGF.Builder; 2859 2860 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2861 QualType StaticTy = C.getRecordType(TeamReductionRec); 2862 llvm::Type *LLVMReductionsBufferTy = 2863 CGM.getTypes().ConvertTypeForMem(StaticTy); 2864 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2865 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2866 LLVMReductionsBufferTy->getPointerTo()); 2867 2868 // 1. Build a list of reduction variables. 2869 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2870 Address ReductionList = 2871 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2872 auto IPriv = Privates.begin(); 2873 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2874 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2875 /*Volatile=*/false, C.IntTy, 2876 Loc)}; 2877 unsigned Idx = 0; 2878 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2879 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2880 // Global = Buffer.VD[Idx]; 2881 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2882 const FieldDecl *FD = VarFieldMap.lookup(VD); 2883 LValue GlobLVal = CGF.EmitLValueForField( 2884 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2885 Address GlobAddr = GlobLVal.getAddress(CGF); 2886 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2887 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2888 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2889 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2890 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2891 // Store array size. 2892 ++Idx; 2893 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2894 llvm::Value *Size = CGF.Builder.CreateIntCast( 2895 CGF.getVLASize( 2896 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2897 .NumElts, 2898 CGF.SizeTy, /*isSigned=*/false); 2899 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2900 Elem); 2901 } 2902 } 2903 2904 // Call reduce_function(ReduceList, GlobalReduceList) 2905 llvm::Value *GlobalReduceList = 2906 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2907 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2908 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2909 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2910 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2911 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2912 CGF.FinishFunction(); 2913 return Fn; 2914 } 2915 2916 /// 2917 /// Design of OpenMP reductions on the GPU 2918 /// 2919 /// Consider a typical OpenMP program with one or more reduction 2920 /// clauses: 2921 /// 2922 /// float foo; 2923 /// double bar; 2924 /// #pragma omp target teams distribute parallel for \ 2925 /// reduction(+:foo) reduction(*:bar) 2926 /// for (int i = 0; i < N; i++) { 2927 /// foo += A[i]; bar *= B[i]; 2928 /// } 2929 /// 2930 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2931 /// all teams. In our OpenMP implementation on the NVPTX device an 2932 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2933 /// within a team are mapped to CUDA threads within a threadblock. 2934 /// Our goal is to efficiently aggregate values across all OpenMP 2935 /// threads such that: 2936 /// 2937 /// - the compiler and runtime are logically concise, and 2938 /// - the reduction is performed efficiently in a hierarchical 2939 /// manner as follows: within OpenMP threads in the same warp, 2940 /// across warps in a threadblock, and finally across teams on 2941 /// the NVPTX device. 2942 /// 2943 /// Introduction to Decoupling 2944 /// 2945 /// We would like to decouple the compiler and the runtime so that the 2946 /// latter is ignorant of the reduction variables (number, data types) 2947 /// and the reduction operators. This allows a simpler interface 2948 /// and implementation while still attaining good performance. 2949 /// 2950 /// Pseudocode for the aforementioned OpenMP program generated by the 2951 /// compiler is as follows: 2952 /// 2953 /// 1. Create private copies of reduction variables on each OpenMP 2954 /// thread: 'foo_private', 'bar_private' 2955 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2956 /// to it and writes the result in 'foo_private' and 'bar_private' 2957 /// respectively. 2958 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2959 /// and store the result on the team master: 2960 /// 2961 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2962 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2963 /// 2964 /// where: 2965 /// struct ReduceData { 2966 /// double *foo; 2967 /// double *bar; 2968 /// } reduceData 2969 /// reduceData.foo = &foo_private 2970 /// reduceData.bar = &bar_private 2971 /// 2972 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2973 /// auxiliary functions generated by the compiler that operate on 2974 /// variables of type 'ReduceData'. They aid the runtime perform 2975 /// algorithmic steps in a data agnostic manner. 2976 /// 2977 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2978 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2979 /// same warp. It takes the following arguments as input: 2980 /// 2981 /// a. variable of type 'ReduceData' on the calling lane, 2982 /// b. its lane_id, 2983 /// c. an offset relative to the current lane_id to generate a 2984 /// remote_lane_id. The remote lane contains the second 2985 /// variable of type 'ReduceData' that is to be reduced. 2986 /// d. an algorithm version parameter determining which reduction 2987 /// algorithm to use. 2988 /// 2989 /// 'shuffleReduceFn' retrieves data from the remote lane using 2990 /// efficient GPU shuffle intrinsics and reduces, using the 2991 /// algorithm specified by the 4th parameter, the two operands 2992 /// element-wise. The result is written to the first operand. 2993 /// 2994 /// Different reduction algorithms are implemented in different 2995 /// runtime functions, all calling 'shuffleReduceFn' to perform 2996 /// the essential reduction step. Therefore, based on the 4th 2997 /// parameter, this function behaves slightly differently to 2998 /// cooperate with the runtime to ensure correctness under 2999 /// different circumstances. 3000 /// 3001 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3002 /// reduced variables across warps. It tunnels, through CUDA 3003 /// shared memory, the thread-private data of type 'ReduceData' 3004 /// from lane 0 of each warp to a lane in the first warp. 3005 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3006 /// The last team writes the global reduced value to memory. 3007 /// 3008 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3009 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3010 /// scratchpadCopyFn, loadAndReduceFn) 3011 /// 3012 /// 'scratchpadCopyFn' is a helper that stores reduced 3013 /// data from the team master to a scratchpad array in 3014 /// global memory. 3015 /// 3016 /// 'loadAndReduceFn' is a helper that loads data from 3017 /// the scratchpad array and reduces it with the input 3018 /// operand. 3019 /// 3020 /// These compiler generated functions hide address 3021 /// calculation and alignment information from the runtime. 3022 /// 5. if ret == 1: 3023 /// The team master of the last team stores the reduced 3024 /// result to the globals in memory. 3025 /// foo += reduceData.foo; bar *= reduceData.bar 3026 /// 3027 /// 3028 /// Warp Reduction Algorithms 3029 /// 3030 /// On the warp level, we have three algorithms implemented in the 3031 /// OpenMP runtime depending on the number of active lanes: 3032 /// 3033 /// Full Warp Reduction 3034 /// 3035 /// The reduce algorithm within a warp where all lanes are active 3036 /// is implemented in the runtime as follows: 3037 /// 3038 /// full_warp_reduce(void *reduce_data, 3039 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3040 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3041 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3042 /// } 3043 /// 3044 /// The algorithm completes in log(2, WARPSIZE) steps. 3045 /// 3046 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3047 /// not used therefore we save instructions by not retrieving lane_id 3048 /// from the corresponding special registers. The 4th parameter, which 3049 /// represents the version of the algorithm being used, is set to 0 to 3050 /// signify full warp reduction. 3051 /// 3052 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3053 /// 3054 /// #reduce_elem refers to an element in the local lane's data structure 3055 /// #remote_elem is retrieved from a remote lane 3056 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3057 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3058 /// 3059 /// Contiguous Partial Warp Reduction 3060 /// 3061 /// This reduce algorithm is used within a warp where only the first 3062 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3063 /// number of OpenMP threads in a parallel region is not a multiple of 3064 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3065 /// 3066 /// void 3067 /// contiguous_partial_reduce(void *reduce_data, 3068 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3069 /// int size, int lane_id) { 3070 /// int curr_size; 3071 /// int offset; 3072 /// curr_size = size; 3073 /// mask = curr_size/2; 3074 /// while (offset>0) { 3075 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3076 /// curr_size = (curr_size+1)/2; 3077 /// offset = curr_size/2; 3078 /// } 3079 /// } 3080 /// 3081 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3082 /// 3083 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3084 /// if (lane_id < offset) 3085 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3086 /// else 3087 /// reduce_elem = remote_elem 3088 /// 3089 /// This algorithm assumes that the data to be reduced are located in a 3090 /// contiguous subset of lanes starting from the first. When there is 3091 /// an odd number of active lanes, the data in the last lane is not 3092 /// aggregated with any other lane's dat but is instead copied over. 3093 /// 3094 /// Dispersed Partial Warp Reduction 3095 /// 3096 /// This algorithm is used within a warp when any discontiguous subset of 3097 /// lanes are active. It is used to implement the reduction operation 3098 /// across lanes in an OpenMP simd region or in a nested parallel region. 3099 /// 3100 /// void 3101 /// dispersed_partial_reduce(void *reduce_data, 3102 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3103 /// int size, remote_id; 3104 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3105 /// do { 3106 /// remote_id = next_active_lane_id_right_after_me(); 3107 /// # the above function returns 0 of no active lane 3108 /// # is present right after the current lane. 3109 /// size = number_of_active_lanes_in_this_warp(); 3110 /// logical_lane_id /= 2; 3111 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3112 /// remote_id-1-threadIdx.x, 2); 3113 /// } while (logical_lane_id % 2 == 0 && size > 1); 3114 /// } 3115 /// 3116 /// There is no assumption made about the initial state of the reduction. 3117 /// Any number of lanes (>=1) could be active at any position. The reduction 3118 /// result is returned in the first active lane. 3119 /// 3120 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3121 /// 3122 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3123 /// if (lane_id % 2 == 0 && offset > 0) 3124 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3125 /// else 3126 /// reduce_elem = remote_elem 3127 /// 3128 /// 3129 /// Intra-Team Reduction 3130 /// 3131 /// This function, as implemented in the runtime call 3132 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3133 /// threads in a team. It first reduces within a warp using the 3134 /// aforementioned algorithms. We then proceed to gather all such 3135 /// reduced values at the first warp. 3136 /// 3137 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3138 /// data from each of the "warp master" (zeroth lane of each warp, where 3139 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3140 /// a mathematical sense) the problem of reduction across warp masters in 3141 /// a block to the problem of warp reduction. 3142 /// 3143 /// 3144 /// Inter-Team Reduction 3145 /// 3146 /// Once a team has reduced its data to a single value, it is stored in 3147 /// a global scratchpad array. Since each team has a distinct slot, this 3148 /// can be done without locking. 3149 /// 3150 /// The last team to write to the scratchpad array proceeds to reduce the 3151 /// scratchpad array. One or more workers in the last team use the helper 3152 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3153 /// the k'th worker reduces every k'th element. 3154 /// 3155 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3156 /// reduce across workers and compute a globally reduced value. 3157 /// 3158 void CGOpenMPRuntimeGPU::emitReduction( 3159 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3160 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3161 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3162 if (!CGF.HaveInsertPoint()) 3163 return; 3164 3165 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3166 #ifndef NDEBUG 3167 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3168 #endif 3169 3170 if (Options.SimpleReduction) { 3171 assert(!TeamsReduction && !ParallelReduction && 3172 "Invalid reduction selection in emitReduction."); 3173 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3174 ReductionOps, Options); 3175 return; 3176 } 3177 3178 assert((TeamsReduction || ParallelReduction) && 3179 "Invalid reduction selection in emitReduction."); 3180 3181 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3182 // RedList, shuffle_reduce_func, interwarp_copy_func); 3183 // or 3184 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3185 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3186 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3187 3188 llvm::Value *Res; 3189 ASTContext &C = CGM.getContext(); 3190 // 1. Build a list of reduction variables. 3191 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3192 auto Size = RHSExprs.size(); 3193 for (const Expr *E : Privates) { 3194 if (E->getType()->isVariablyModifiedType()) 3195 // Reserve place for array size. 3196 ++Size; 3197 } 3198 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3199 QualType ReductionArrayTy = 3200 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3201 /*IndexTypeQuals=*/0); 3202 Address ReductionList = 3203 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3204 auto IPriv = Privates.begin(); 3205 unsigned Idx = 0; 3206 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3207 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3208 CGF.Builder.CreateStore( 3209 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3210 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3211 Elem); 3212 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3213 // Store array size. 3214 ++Idx; 3215 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3216 llvm::Value *Size = CGF.Builder.CreateIntCast( 3217 CGF.getVLASize( 3218 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3219 .NumElts, 3220 CGF.SizeTy, /*isSigned=*/false); 3221 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3222 Elem); 3223 } 3224 } 3225 3226 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3227 ReductionList.getPointer(), CGF.VoidPtrTy); 3228 llvm::Function *ReductionFn = emitReductionFunction( 3229 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3230 LHSExprs, RHSExprs, ReductionOps); 3231 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3232 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3233 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3234 llvm::Value *InterWarpCopyFn = 3235 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3236 3237 if (ParallelReduction) { 3238 llvm::Value *Args[] = {RTLoc, 3239 ThreadId, 3240 CGF.Builder.getInt32(RHSExprs.size()), 3241 ReductionArrayTySize, 3242 RL, 3243 ShuffleAndReduceFn, 3244 InterWarpCopyFn}; 3245 3246 Res = CGF.EmitRuntimeCall( 3247 OMPBuilder.getOrCreateRuntimeFunction( 3248 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3249 Args); 3250 } else { 3251 assert(TeamsReduction && "expected teams reduction."); 3252 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3253 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3254 int Cnt = 0; 3255 for (const Expr *DRE : Privates) { 3256 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3257 ++Cnt; 3258 } 3259 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3260 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3261 C.getLangOpts().OpenMPCUDAReductionBufNum); 3262 TeamsReductions.push_back(TeamReductionRec); 3263 if (!KernelTeamsReductionPtr) { 3264 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3265 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3266 llvm::GlobalValue::InternalLinkage, nullptr, 3267 "_openmp_teams_reductions_buffer_$_$ptr"); 3268 } 3269 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3270 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3271 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3272 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3273 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3274 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3275 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3276 ReductionFn); 3277 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3278 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3279 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3280 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3281 ReductionFn); 3282 3283 llvm::Value *Args[] = { 3284 RTLoc, 3285 ThreadId, 3286 GlobalBufferPtr, 3287 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3288 RL, 3289 ShuffleAndReduceFn, 3290 InterWarpCopyFn, 3291 GlobalToBufferCpyFn, 3292 GlobalToBufferRedFn, 3293 BufferToGlobalCpyFn, 3294 BufferToGlobalRedFn}; 3295 3296 Res = CGF.EmitRuntimeCall( 3297 OMPBuilder.getOrCreateRuntimeFunction( 3298 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3299 Args); 3300 } 3301 3302 // 5. Build if (res == 1) 3303 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3304 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3305 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3306 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3307 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3308 3309 // 6. Build then branch: where we have reduced values in the master 3310 // thread in each team. 3311 // __kmpc_end_reduce{_nowait}(<gtid>); 3312 // break; 3313 CGF.EmitBlock(ThenBB); 3314 3315 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3316 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3317 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3318 auto IPriv = Privates.begin(); 3319 auto ILHS = LHSExprs.begin(); 3320 auto IRHS = RHSExprs.begin(); 3321 for (const Expr *E : ReductionOps) { 3322 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3323 cast<DeclRefExpr>(*IRHS)); 3324 ++IPriv; 3325 ++ILHS; 3326 ++IRHS; 3327 } 3328 }; 3329 llvm::Value *EndArgs[] = {ThreadId}; 3330 RegionCodeGenTy RCG(CodeGen); 3331 NVPTXActionTy Action( 3332 nullptr, llvm::None, 3333 OMPBuilder.getOrCreateRuntimeFunction( 3334 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3335 EndArgs); 3336 RCG.setAction(Action); 3337 RCG(CGF); 3338 // There is no need to emit line number for unconditional branch. 3339 (void)ApplyDebugLocation::CreateEmpty(CGF); 3340 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3341 } 3342 3343 const VarDecl * 3344 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3345 const VarDecl *NativeParam) const { 3346 if (!NativeParam->getType()->isReferenceType()) 3347 return NativeParam; 3348 QualType ArgType = NativeParam->getType(); 3349 QualifierCollector QC; 3350 const Type *NonQualTy = QC.strip(ArgType); 3351 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3352 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3353 if (Attr->getCaptureKind() == OMPC_map) { 3354 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3355 LangAS::opencl_global); 3356 } 3357 } 3358 ArgType = CGM.getContext().getPointerType(PointeeTy); 3359 QC.addRestrict(); 3360 enum { NVPTX_local_addr = 5 }; 3361 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3362 ArgType = QC.apply(CGM.getContext(), ArgType); 3363 if (isa<ImplicitParamDecl>(NativeParam)) 3364 return ImplicitParamDecl::Create( 3365 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3366 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3367 return ParmVarDecl::Create( 3368 CGM.getContext(), 3369 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3370 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3371 NativeParam->getIdentifier(), ArgType, 3372 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3373 } 3374 3375 Address 3376 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3377 const VarDecl *NativeParam, 3378 const VarDecl *TargetParam) const { 3379 assert(NativeParam != TargetParam && 3380 NativeParam->getType()->isReferenceType() && 3381 "Native arg must not be the same as target arg."); 3382 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3383 QualType NativeParamType = NativeParam->getType(); 3384 QualifierCollector QC; 3385 const Type *NonQualTy = QC.strip(NativeParamType); 3386 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3387 unsigned NativePointeeAddrSpace = 3388 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3389 QualType TargetTy = TargetParam->getType(); 3390 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3391 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3392 // First cast to generic. 3393 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3394 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3395 /*AddrSpace=*/0)); 3396 // Cast from generic to native address space. 3397 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3398 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3399 NativePointeeAddrSpace)); 3400 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3401 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3402 NativeParamType); 3403 return NativeParamAddr; 3404 } 3405 3406 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3407 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3408 ArrayRef<llvm::Value *> Args) const { 3409 SmallVector<llvm::Value *, 4> TargetArgs; 3410 TargetArgs.reserve(Args.size()); 3411 auto *FnType = OutlinedFn.getFunctionType(); 3412 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3413 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3414 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3415 break; 3416 } 3417 llvm::Type *TargetType = FnType->getParamType(I); 3418 llvm::Value *NativeArg = Args[I]; 3419 if (!TargetType->isPointerTy()) { 3420 TargetArgs.emplace_back(NativeArg); 3421 continue; 3422 } 3423 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3424 NativeArg, 3425 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3426 TargetArgs.emplace_back( 3427 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3428 } 3429 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3430 } 3431 3432 /// Emit function which wraps the outline parallel region 3433 /// and controls the arguments which are passed to this function. 3434 /// The wrapper ensures that the outlined function is called 3435 /// with the correct arguments when data is shared. 3436 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3437 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3438 ASTContext &Ctx = CGM.getContext(); 3439 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3440 3441 // Create a function that takes as argument the source thread. 3442 FunctionArgList WrapperArgs; 3443 QualType Int16QTy = 3444 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3445 QualType Int32QTy = 3446 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3447 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3448 /*Id=*/nullptr, Int16QTy, 3449 ImplicitParamDecl::Other); 3450 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3451 /*Id=*/nullptr, Int32QTy, 3452 ImplicitParamDecl::Other); 3453 WrapperArgs.emplace_back(&ParallelLevelArg); 3454 WrapperArgs.emplace_back(&WrapperArg); 3455 3456 const CGFunctionInfo &CGFI = 3457 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3458 3459 auto *Fn = llvm::Function::Create( 3460 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3461 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3462 3463 // Ensure we do not inline the function. This is trivially true for the ones 3464 // passed to __kmpc_fork_call but the ones calles in serialized regions 3465 // could be inlined. This is not a perfect but it is closer to the invariant 3466 // we want, namely, every data environment starts with a new function. 3467 // TODO: We should pass the if condition to the runtime function and do the 3468 // handling there. Much cleaner code. 3469 Fn->addFnAttr(llvm::Attribute::NoInline); 3470 3471 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3472 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3473 Fn->setDoesNotRecurse(); 3474 3475 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3476 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3477 D.getBeginLoc(), D.getBeginLoc()); 3478 3479 const auto *RD = CS.getCapturedRecordDecl(); 3480 auto CurField = RD->field_begin(); 3481 3482 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3483 /*Name=*/".zero.addr"); 3484 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 3485 // Get the array of arguments. 3486 SmallVector<llvm::Value *, 8> Args; 3487 3488 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3489 Args.emplace_back(ZeroAddr.getPointer()); 3490 3491 CGBuilderTy &Bld = CGF.Builder; 3492 auto CI = CS.capture_begin(); 3493 3494 // Use global memory for data sharing. 3495 // Handle passing of global args to workers. 3496 Address GlobalArgs = 3497 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3498 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3499 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3500 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3501 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3502 DataSharingArgs); 3503 3504 // Retrieve the shared variables from the list of references returned 3505 // by the runtime. Pass the variables to the outlined function. 3506 Address SharedArgListAddress = Address::invalid(); 3507 if (CS.capture_size() > 0 || 3508 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3509 SharedArgListAddress = CGF.EmitLoadOfPointer( 3510 GlobalArgs, CGF.getContext() 3511 .getPointerType(CGF.getContext().getPointerType( 3512 CGF.getContext().VoidPtrTy)) 3513 .castAs<PointerType>()); 3514 } 3515 unsigned Idx = 0; 3516 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3517 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3518 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3519 Src, CGF.SizeTy->getPointerTo()); 3520 llvm::Value *LB = CGF.EmitLoadOfScalar( 3521 TypedAddress, 3522 /*Volatile=*/false, 3523 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3524 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3525 Args.emplace_back(LB); 3526 ++Idx; 3527 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3528 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3529 Src, CGF.SizeTy->getPointerTo()); 3530 llvm::Value *UB = CGF.EmitLoadOfScalar( 3531 TypedAddress, 3532 /*Volatile=*/false, 3533 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3534 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3535 Args.emplace_back(UB); 3536 ++Idx; 3537 } 3538 if (CS.capture_size() > 0) { 3539 ASTContext &CGFContext = CGF.getContext(); 3540 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3541 QualType ElemTy = CurField->getType(); 3542 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3543 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3544 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3545 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3546 /*Volatile=*/false, 3547 CGFContext.getPointerType(ElemTy), 3548 CI->getLocation()); 3549 if (CI->capturesVariableByCopy() && 3550 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3551 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3552 CI->getLocation()); 3553 } 3554 Args.emplace_back(Arg); 3555 } 3556 } 3557 3558 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3559 CGF.FinishFunction(); 3560 return Fn; 3561 } 3562 3563 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3564 const Decl *D) { 3565 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3566 return; 3567 3568 assert(D && "Expected function or captured|block decl."); 3569 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3570 "Function is registered already."); 3571 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3572 "Team is set but not processed."); 3573 const Stmt *Body = nullptr; 3574 bool NeedToDelayGlobalization = false; 3575 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3576 Body = FD->getBody(); 3577 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3578 Body = BD->getBody(); 3579 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3580 Body = CD->getBody(); 3581 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3582 if (NeedToDelayGlobalization && 3583 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3584 return; 3585 } 3586 if (!Body) 3587 return; 3588 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3589 VarChecker.Visit(Body); 3590 const RecordDecl *GlobalizedVarsRecord = 3591 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3592 TeamAndReductions.first = nullptr; 3593 TeamAndReductions.second.clear(); 3594 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3595 VarChecker.getEscapedVariableLengthDecls(); 3596 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3597 return; 3598 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3599 I->getSecond().MappedParams = 3600 std::make_unique<CodeGenFunction::OMPMapVars>(); 3601 I->getSecond().EscapedParameters.insert( 3602 VarChecker.getEscapedParameters().begin(), 3603 VarChecker.getEscapedParameters().end()); 3604 I->getSecond().EscapedVariableLengthDecls.append( 3605 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3606 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3607 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3608 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3609 Data.insert(std::make_pair(VD, MappedVarData())); 3610 } 3611 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3612 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3613 VarChecker.Visit(Body); 3614 I->getSecond().SecondaryLocalVarData.emplace(); 3615 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3616 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3617 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3618 Data.insert(std::make_pair(VD, MappedVarData())); 3619 } 3620 } 3621 if (!NeedToDelayGlobalization) { 3622 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3623 struct GlobalizationScope final : EHScopeStack::Cleanup { 3624 GlobalizationScope() = default; 3625 3626 void Emit(CodeGenFunction &CGF, Flags flags) override { 3627 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3628 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3629 } 3630 }; 3631 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3632 } 3633 } 3634 3635 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3636 const VarDecl *VD) { 3637 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3638 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3639 auto AS = LangAS::Default; 3640 switch (A->getAllocatorType()) { 3641 // Use the default allocator here as by default local vars are 3642 // threadlocal. 3643 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3644 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3645 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3646 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3647 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3648 // Follow the user decision - use default allocation. 3649 return Address::invalid(); 3650 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3651 // TODO: implement aupport for user-defined allocators. 3652 return Address::invalid(); 3653 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3654 AS = LangAS::cuda_constant; 3655 break; 3656 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3657 AS = LangAS::cuda_shared; 3658 break; 3659 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3660 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3661 break; 3662 } 3663 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3664 auto *GV = new llvm::GlobalVariable( 3665 CGM.getModule(), VarTy, /*isConstant=*/false, 3666 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3667 VD->getName(), 3668 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3669 CGM.getContext().getTargetAddressSpace(AS)); 3670 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3671 GV->setAlignment(Align.getAsAlign()); 3672 return Address( 3673 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3674 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3675 VD->getType().getAddressSpace()))), 3676 Align); 3677 } 3678 3679 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3680 return Address::invalid(); 3681 3682 VD = VD->getCanonicalDecl(); 3683 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3684 if (I == FunctionGlobalizedDecls.end()) 3685 return Address::invalid(); 3686 auto VDI = I->getSecond().LocalVarData.find(VD); 3687 if (VDI != I->getSecond().LocalVarData.end()) 3688 return VDI->second.PrivateAddr; 3689 if (VD->hasAttrs()) { 3690 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3691 E(VD->attr_end()); 3692 IT != E; ++IT) { 3693 auto VDI = I->getSecond().LocalVarData.find( 3694 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3695 ->getCanonicalDecl()); 3696 if (VDI != I->getSecond().LocalVarData.end()) 3697 return VDI->second.PrivateAddr; 3698 } 3699 } 3700 3701 return Address::invalid(); 3702 } 3703 3704 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3705 FunctionGlobalizedDecls.erase(CGF.CurFn); 3706 CGOpenMPRuntime::functionFinished(CGF); 3707 } 3708 3709 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3710 CodeGenFunction &CGF, const OMPLoopDirective &S, 3711 OpenMPDistScheduleClauseKind &ScheduleKind, 3712 llvm::Value *&Chunk) const { 3713 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3714 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3715 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3716 Chunk = CGF.EmitScalarConversion( 3717 RT.getGPUNumThreads(CGF), 3718 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3719 S.getIterationVariable()->getType(), S.getBeginLoc()); 3720 return; 3721 } 3722 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3723 CGF, S, ScheduleKind, Chunk); 3724 } 3725 3726 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3727 CodeGenFunction &CGF, const OMPLoopDirective &S, 3728 OpenMPScheduleClauseKind &ScheduleKind, 3729 const Expr *&ChunkExpr) const { 3730 ScheduleKind = OMPC_SCHEDULE_static; 3731 // Chunk size is 1 in this case. 3732 llvm::APInt ChunkSize(32, 1); 3733 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3734 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3735 SourceLocation()); 3736 } 3737 3738 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3739 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3740 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3741 " Expected target-based directive."); 3742 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3743 for (const CapturedStmt::Capture &C : CS->captures()) { 3744 // Capture variables captured by reference in lambdas for target-based 3745 // directives. 3746 if (!C.capturesVariable()) 3747 continue; 3748 const VarDecl *VD = C.getCapturedVar(); 3749 const auto *RD = VD->getType() 3750 .getCanonicalType() 3751 .getNonReferenceType() 3752 ->getAsCXXRecordDecl(); 3753 if (!RD || !RD->isLambda()) 3754 continue; 3755 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3756 LValue VDLVal; 3757 if (VD->getType().getCanonicalType()->isReferenceType()) 3758 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3759 else 3760 VDLVal = CGF.MakeAddrLValue( 3761 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3762 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3763 FieldDecl *ThisCapture = nullptr; 3764 RD->getCaptureFields(Captures, ThisCapture); 3765 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3766 LValue ThisLVal = 3767 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3768 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3769 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3770 } 3771 for (const LambdaCapture &LC : RD->captures()) { 3772 if (LC.getCaptureKind() != LCK_ByRef) 3773 continue; 3774 const VarDecl *VD = LC.getCapturedVar(); 3775 if (!CS->capturesVariable(VD)) 3776 continue; 3777 auto It = Captures.find(VD); 3778 assert(It != Captures.end() && "Found lambda capture without field."); 3779 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3780 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3781 if (VD->getType().getCanonicalType()->isReferenceType()) 3782 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3783 VD->getType().getCanonicalType()) 3784 .getAddress(CGF); 3785 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3786 } 3787 } 3788 } 3789 3790 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3791 LangAS &AS) { 3792 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3793 return false; 3794 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3795 switch(A->getAllocatorType()) { 3796 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3797 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3798 // Not supported, fallback to the default mem space. 3799 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3800 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3801 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3802 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3803 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3804 AS = LangAS::Default; 3805 return true; 3806 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3807 AS = LangAS::cuda_constant; 3808 return true; 3809 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3810 AS = LangAS::cuda_shared; 3811 return true; 3812 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3813 llvm_unreachable("Expected predefined allocator for the variables with the " 3814 "static storage."); 3815 } 3816 return false; 3817 } 3818 3819 // Get current CudaArch and ignore any unknown values 3820 static CudaArch getCudaArch(CodeGenModule &CGM) { 3821 if (!CGM.getTarget().hasFeature("ptx")) 3822 return CudaArch::UNKNOWN; 3823 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3824 if (Feature.getValue()) { 3825 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3826 if (Arch != CudaArch::UNKNOWN) 3827 return Arch; 3828 } 3829 } 3830 return CudaArch::UNKNOWN; 3831 } 3832 3833 /// Check to see if target architecture supports unified addressing which is 3834 /// a restriction for OpenMP requires clause "unified_shared_memory". 3835 void CGOpenMPRuntimeGPU::processRequiresDirective( 3836 const OMPRequiresDecl *D) { 3837 for (const OMPClause *Clause : D->clauselists()) { 3838 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3839 CudaArch Arch = getCudaArch(CGM); 3840 switch (Arch) { 3841 case CudaArch::SM_20: 3842 case CudaArch::SM_21: 3843 case CudaArch::SM_30: 3844 case CudaArch::SM_32: 3845 case CudaArch::SM_35: 3846 case CudaArch::SM_37: 3847 case CudaArch::SM_50: 3848 case CudaArch::SM_52: 3849 case CudaArch::SM_53: { 3850 SmallString<256> Buffer; 3851 llvm::raw_svector_ostream Out(Buffer); 3852 Out << "Target architecture " << CudaArchToString(Arch) 3853 << " does not support unified addressing"; 3854 CGM.Error(Clause->getBeginLoc(), Out.str()); 3855 return; 3856 } 3857 case CudaArch::SM_60: 3858 case CudaArch::SM_61: 3859 case CudaArch::SM_62: 3860 case CudaArch::SM_70: 3861 case CudaArch::SM_72: 3862 case CudaArch::SM_75: 3863 case CudaArch::SM_80: 3864 case CudaArch::SM_86: 3865 case CudaArch::GFX600: 3866 case CudaArch::GFX601: 3867 case CudaArch::GFX602: 3868 case CudaArch::GFX700: 3869 case CudaArch::GFX701: 3870 case CudaArch::GFX702: 3871 case CudaArch::GFX703: 3872 case CudaArch::GFX704: 3873 case CudaArch::GFX705: 3874 case CudaArch::GFX801: 3875 case CudaArch::GFX802: 3876 case CudaArch::GFX803: 3877 case CudaArch::GFX805: 3878 case CudaArch::GFX810: 3879 case CudaArch::GFX900: 3880 case CudaArch::GFX902: 3881 case CudaArch::GFX904: 3882 case CudaArch::GFX906: 3883 case CudaArch::GFX908: 3884 case CudaArch::GFX909: 3885 case CudaArch::GFX90a: 3886 case CudaArch::GFX90c: 3887 case CudaArch::GFX1010: 3888 case CudaArch::GFX1011: 3889 case CudaArch::GFX1012: 3890 case CudaArch::GFX1013: 3891 case CudaArch::GFX1030: 3892 case CudaArch::GFX1031: 3893 case CudaArch::GFX1032: 3894 case CudaArch::GFX1033: 3895 case CudaArch::GFX1034: 3896 case CudaArch::GFX1035: 3897 case CudaArch::UNUSED: 3898 case CudaArch::UNKNOWN: 3899 break; 3900 case CudaArch::LAST: 3901 llvm_unreachable("Unexpected Cuda arch."); 3902 } 3903 } 3904 } 3905 CGOpenMPRuntime::processRequiresDirective(D); 3906 } 3907 3908 void CGOpenMPRuntimeGPU::clear() { 3909 3910 if (!TeamsReductions.empty()) { 3911 ASTContext &C = CGM.getContext(); 3912 RecordDecl *StaticRD = C.buildImplicitRecord( 3913 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3914 StaticRD->startDefinition(); 3915 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3916 QualType RecTy = C.getRecordType(TeamReductionRec); 3917 auto *Field = FieldDecl::Create( 3918 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3919 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3920 /*BW=*/nullptr, /*Mutable=*/false, 3921 /*InitStyle=*/ICIS_NoInit); 3922 Field->setAccess(AS_public); 3923 StaticRD->addDecl(Field); 3924 } 3925 StaticRD->completeDefinition(); 3926 QualType StaticTy = C.getRecordType(StaticRD); 3927 llvm::Type *LLVMReductionsBufferTy = 3928 CGM.getTypes().ConvertTypeForMem(StaticTy); 3929 // FIXME: nvlink does not handle weak linkage correctly (object with the 3930 // different size are reported as erroneous). 3931 // Restore CommonLinkage as soon as nvlink is fixed. 3932 auto *GV = new llvm::GlobalVariable( 3933 CGM.getModule(), LLVMReductionsBufferTy, 3934 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3935 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3936 "_openmp_teams_reductions_buffer_$_"); 3937 KernelTeamsReductionPtr->setInitializer( 3938 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3939 CGM.VoidPtrTy)); 3940 } 3941 CGOpenMPRuntime::clear(); 3942 } 3943