1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32 llvm::FunctionCallee EnterCallee = nullptr;
33 ArrayRef<llvm::Value *> EnterArgs;
34 llvm::FunctionCallee ExitCallee = nullptr;
35 ArrayRef<llvm::Value *> ExitArgs;
36 bool Conditional = false;
37 llvm::BasicBlock *ContBlock = nullptr;
38
39 public:
NVPTXActionTy(llvm::FunctionCallee EnterCallee,ArrayRef<llvm::Value * > EnterArgs,llvm::FunctionCallee ExitCallee,ArrayRef<llvm::Value * > ExitArgs,bool Conditional=false)40 NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41 ArrayRef<llvm::Value *> EnterArgs,
42 llvm::FunctionCallee ExitCallee,
43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45 ExitArgs(ExitArgs), Conditional(Conditional) {}
Enter(CodeGenFunction & CGF)46 void Enter(CodeGenFunction &CGF) override {
47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48 if (Conditional) {
49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51 ContBlock = CGF.createBasicBlock("omp_if.end");
52 // Generate the branch (If-stmt)
53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54 CGF.EmitBlock(ThenBlock);
55 }
56 }
Done(CodeGenFunction & CGF)57 void Done(CodeGenFunction &CGF) {
58 // Emit the rest of blocks/branches
59 CGF.EmitBranch(ContBlock);
60 CGF.EmitBlock(ContBlock, true);
61 }
Exit(CodeGenFunction & CGF)62 void Exit(CodeGenFunction &CGF) override {
63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64 }
65 };
66
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74 CGOpenMPRuntimeGPU::EM_Unknown;
75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76 bool SavedRuntimeMode = false;
77 bool *RuntimeMode = nullptr;
78
79 public:
80 /// Constructor for Non-SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode)81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82 : ExecMode(ExecMode) {
83 SavedExecMode = ExecMode;
84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85 }
86 /// Constructor for SPMD mode.
ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode & ExecMode,bool & RuntimeMode,bool FullRuntimeMode)87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88 bool &RuntimeMode, bool FullRuntimeMode)
89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90 SavedExecMode = ExecMode;
91 SavedRuntimeMode = RuntimeMode;
92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93 RuntimeMode = FullRuntimeMode;
94 }
~ExecutionRuntimeModesRAII()95 ~ExecutionRuntimeModesRAII() {
96 ExecMode = SavedExecMode;
97 if (RuntimeMode)
98 *RuntimeMode = SavedRuntimeMode;
99 }
100 };
101
102 /// GPU Configuration: This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code. For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109
110 /// Global memory alignment for performance.
111 GlobalMemoryAlignment = 128,
112
113 /// Maximal size of the shared memory buffer.
114 SharedMemorySize = 128,
115 };
116
getPrivateItem(const Expr * RefExpr)117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118 RefExpr = RefExpr->IgnoreParens();
119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122 Base = TempASE->getBase()->IgnoreParenImpCasts();
123 RefExpr = Base;
124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127 Base = TempOASE->getBase()->IgnoreParenImpCasts();
128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129 Base = TempASE->getBase()->IgnoreParenImpCasts();
130 RefExpr = Base;
131 }
132 RefExpr = RefExpr->IgnoreParenImpCasts();
133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135 const auto *ME = cast<MemberExpr>(RefExpr);
136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138
139
buildRecordForGlobalizedVars(ASTContext & C,ArrayRef<const ValueDecl * > EscapedDecls,ArrayRef<const ValueDecl * > EscapedDeclsForTeams,llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & MappedDeclsFields,int BufSize)140 static RecordDecl *buildRecordForGlobalizedVars(
141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144 &MappedDeclsFields, int BufSize) {
145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147 return nullptr;
148 SmallVector<VarsDataTy, 4> GlobalizedVars;
149 for (const ValueDecl *D : EscapedDecls)
150 GlobalizedVars.emplace_back(
151 CharUnits::fromQuantity(std::max(
152 C.getDeclAlign(D).getQuantity(),
153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154 D);
155 for (const ValueDecl *D : EscapedDeclsForTeams)
156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158 return L.first > R.first;
159 });
160
161 // Build struct _globalized_locals_ty {
162 // /* globalized vars */[WarSize] align (max(decl_align,
163 // GlobalMemoryAlignment))
164 // /* globalized vars */ for EscapedDeclsForTeams
165 // };
166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167 GlobalizedRD->startDefinition();
168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170 for (const auto &Pair : GlobalizedVars) {
171 const ValueDecl *VD = Pair.second;
172 QualType Type = VD->getType();
173 if (Type->isLValueReferenceType())
174 Type = C.getPointerType(Type.getNonReferenceType());
175 else
176 Type = Type.getNonReferenceType();
177 SourceLocation Loc = VD->getLocation();
178 FieldDecl *Field;
179 if (SingleEscaped.count(VD)) {
180 Field = FieldDecl::Create(
181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183 /*BW=*/nullptr, /*Mutable=*/false,
184 /*InitStyle=*/ICIS_NoInit);
185 Field->setAccess(AS_public);
186 if (VD->hasAttrs()) {
187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188 E(VD->getAttrs().end());
189 I != E; ++I)
190 Field->addAttr(*I);
191 }
192 } else {
193 llvm::APInt ArraySize(32, BufSize);
194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195 0);
196 Field = FieldDecl::Create(
197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198 C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199 /*BW=*/nullptr, /*Mutable=*/false,
200 /*InitStyle=*/ICIS_NoInit);
201 Field->setAccess(AS_public);
202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203 static_cast<CharUnits::QuantityType>(
204 GlobalMemoryAlignment)));
205 Field->addAttr(AlignedAttr::CreateImplicit(
206 C, /*IsAlignmentExpr=*/true,
207 IntegerLiteral::Create(C, Align,
208 C.getIntTypeForBitwidth(32, /*Signed=*/0),
209 SourceLocation()),
210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211 }
212 GlobalizedRD->addDecl(Field);
213 MappedDeclsFields.try_emplace(VD, Field);
214 }
215 GlobalizedRD->completeDefinition();
216 return GlobalizedRD;
217 }
218
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222 CodeGenFunction &CGF;
223 llvm::SetVector<const ValueDecl *> EscapedDecls;
224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226 RecordDecl *GlobalizedRD = nullptr;
227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228 bool AllEscaped = false;
229 bool IsForCombinedParallelRegion = false;
230
markAsEscaped(const ValueDecl * VD)231 void markAsEscaped(const ValueDecl *VD) {
232 // Do not globalize declare target variables.
233 if (!isa<VarDecl>(VD) ||
234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235 return;
236 VD = cast<ValueDecl>(VD->getCanonicalDecl());
237 // Use user-specified allocation.
238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239 return;
240 // Variables captured by value must be globalized.
241 if (auto *CSI = CGF.CapturedStmtInfo) {
242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243 // Check if need to capture the variable that was already captured by
244 // value in the outer region.
245 if (!IsForCombinedParallelRegion) {
246 if (!FD->hasAttrs())
247 return;
248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249 if (!Attr)
250 return;
251 if (((Attr->getCaptureKind() != OMPC_map) &&
252 !isOpenMPPrivate(Attr->getCaptureKind())) ||
253 ((Attr->getCaptureKind() == OMPC_map) &&
254 !FD->getType()->isAnyPointerType()))
255 return;
256 }
257 if (!FD->getType()->isReferenceType()) {
258 assert(!VD->getType()->isVariablyModifiedType() &&
259 "Parameter captured by value with variably modified type");
260 EscapedParameters.insert(VD);
261 } else if (!IsForCombinedParallelRegion) {
262 return;
263 }
264 }
265 }
266 if ((!CGF.CapturedStmtInfo ||
267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268 VD->getType()->isReferenceType())
269 // Do not globalize variables with reference type.
270 return;
271 if (VD->getType()->isVariablyModifiedType())
272 EscapedVariableLengthDecls.insert(VD);
273 else
274 EscapedDecls.insert(VD);
275 }
276
VisitValueDecl(const ValueDecl * VD)277 void VisitValueDecl(const ValueDecl *VD) {
278 if (VD->getType()->isLValueReferenceType())
279 markAsEscaped(VD);
280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282 const bool SavedAllEscaped = AllEscaped;
283 AllEscaped = VD->getType()->isLValueReferenceType();
284 Visit(VarD->getInit());
285 AllEscaped = SavedAllEscaped;
286 }
287 }
288 }
VisitOpenMPCapturedStmt(const CapturedStmt * S,ArrayRef<OMPClause * > Clauses,bool IsCombinedParallelRegion)289 void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290 ArrayRef<OMPClause *> Clauses,
291 bool IsCombinedParallelRegion) {
292 if (!S)
293 return;
294 for (const CapturedStmt::Capture &C : S->captures()) {
295 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296 const ValueDecl *VD = C.getCapturedVar();
297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298 if (IsCombinedParallelRegion) {
299 // Check if the variable is privatized in the combined construct and
300 // those private copies must be shared in the inner parallel
301 // directive.
302 IsForCombinedParallelRegion = false;
303 for (const OMPClause *C : Clauses) {
304 if (!isOpenMPPrivate(C->getClauseKind()) ||
305 C->getClauseKind() == OMPC_reduction ||
306 C->getClauseKind() == OMPC_linear ||
307 C->getClauseKind() == OMPC_private)
308 continue;
309 ArrayRef<const Expr *> Vars;
310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311 Vars = PC->getVarRefs();
312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313 Vars = PC->getVarRefs();
314 else
315 llvm_unreachable("Unexpected clause.");
316 for (const auto *E : Vars) {
317 const Decl *D =
318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319 if (D == VD->getCanonicalDecl()) {
320 IsForCombinedParallelRegion = true;
321 break;
322 }
323 }
324 if (IsForCombinedParallelRegion)
325 break;
326 }
327 }
328 markAsEscaped(VD);
329 if (isa<OMPCapturedExprDecl>(VD))
330 VisitValueDecl(VD);
331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332 }
333 }
334 }
335
buildRecordForGlobalizedVars(bool IsInTTDRegion)336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337 assert(!GlobalizedRD &&
338 "Record for globalized variables is built already.");
339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341 if (IsInTTDRegion)
342 EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343 else
344 EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345 GlobalizedRD = ::buildRecordForGlobalizedVars(
346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347 MappedDeclsFields, WarpSize);
348 }
349
350 public:
CheckVarsEscapingDeclContext(CodeGenFunction & CGF,ArrayRef<const ValueDecl * > TeamsReductions)351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352 ArrayRef<const ValueDecl *> TeamsReductions)
353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354 }
355 virtual ~CheckVarsEscapingDeclContext() = default;
VisitDeclStmt(const DeclStmt * S)356 void VisitDeclStmt(const DeclStmt *S) {
357 if (!S)
358 return;
359 for (const Decl *D : S->decls())
360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361 VisitValueDecl(VD);
362 }
VisitOMPExecutableDirective(const OMPExecutableDirective * D)363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364 if (!D)
365 return;
366 if (!D->hasAssociatedStmt())
367 return;
368 if (const auto *S =
369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370 // Do not analyze directives that do not actually require capturing,
371 // like `omp for` or `omp simd` directives.
372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375 VisitStmt(S->getCapturedStmt());
376 return;
377 }
378 VisitOpenMPCapturedStmt(
379 S, D->clauses(),
380 CaptureRegions.back() == OMPD_parallel &&
381 isOpenMPDistributeDirective(D->getDirectiveKind()));
382 }
383 }
VisitCapturedStmt(const CapturedStmt * S)384 void VisitCapturedStmt(const CapturedStmt *S) {
385 if (!S)
386 return;
387 for (const CapturedStmt::Capture &C : S->captures()) {
388 if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389 const ValueDecl *VD = C.getCapturedVar();
390 markAsEscaped(VD);
391 if (isa<OMPCapturedExprDecl>(VD))
392 VisitValueDecl(VD);
393 }
394 }
395 }
VisitLambdaExpr(const LambdaExpr * E)396 void VisitLambdaExpr(const LambdaExpr *E) {
397 if (!E)
398 return;
399 for (const LambdaCapture &C : E->captures()) {
400 if (C.capturesVariable()) {
401 if (C.getCaptureKind() == LCK_ByRef) {
402 const ValueDecl *VD = C.getCapturedVar();
403 markAsEscaped(VD);
404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405 VisitValueDecl(VD);
406 }
407 }
408 }
409 }
VisitBlockExpr(const BlockExpr * E)410 void VisitBlockExpr(const BlockExpr *E) {
411 if (!E)
412 return;
413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414 if (C.isByRef()) {
415 const VarDecl *VD = C.getVariable();
416 markAsEscaped(VD);
417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418 VisitValueDecl(VD);
419 }
420 }
421 }
VisitCallExpr(const CallExpr * E)422 void VisitCallExpr(const CallExpr *E) {
423 if (!E)
424 return;
425 for (const Expr *Arg : E->arguments()) {
426 if (!Arg)
427 continue;
428 if (Arg->isLValue()) {
429 const bool SavedAllEscaped = AllEscaped;
430 AllEscaped = true;
431 Visit(Arg);
432 AllEscaped = SavedAllEscaped;
433 } else {
434 Visit(Arg);
435 }
436 }
437 Visit(E->getCallee());
438 }
VisitDeclRefExpr(const DeclRefExpr * E)439 void VisitDeclRefExpr(const DeclRefExpr *E) {
440 if (!E)
441 return;
442 const ValueDecl *VD = E->getDecl();
443 if (AllEscaped)
444 markAsEscaped(VD);
445 if (isa<OMPCapturedExprDecl>(VD))
446 VisitValueDecl(VD);
447 else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448 if (VarD->isInitCapture())
449 VisitValueDecl(VD);
450 }
VisitUnaryOperator(const UnaryOperator * E)451 void VisitUnaryOperator(const UnaryOperator *E) {
452 if (!E)
453 return;
454 if (E->getOpcode() == UO_AddrOf) {
455 const bool SavedAllEscaped = AllEscaped;
456 AllEscaped = true;
457 Visit(E->getSubExpr());
458 AllEscaped = SavedAllEscaped;
459 } else {
460 Visit(E->getSubExpr());
461 }
462 }
VisitImplicitCastExpr(const ImplicitCastExpr * E)463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464 if (!E)
465 return;
466 if (E->getCastKind() == CK_ArrayToPointerDecay) {
467 const bool SavedAllEscaped = AllEscaped;
468 AllEscaped = true;
469 Visit(E->getSubExpr());
470 AllEscaped = SavedAllEscaped;
471 } else {
472 Visit(E->getSubExpr());
473 }
474 }
VisitExpr(const Expr * E)475 void VisitExpr(const Expr *E) {
476 if (!E)
477 return;
478 bool SavedAllEscaped = AllEscaped;
479 if (!E->isLValue())
480 AllEscaped = false;
481 for (const Stmt *Child : E->children())
482 if (Child)
483 Visit(Child);
484 AllEscaped = SavedAllEscaped;
485 }
VisitStmt(const Stmt * S)486 void VisitStmt(const Stmt *S) {
487 if (!S)
488 return;
489 for (const Stmt *Child : S->children())
490 if (Child)
491 Visit(Child);
492 }
493
494 /// Returns the record that handles all the escaped local variables and used
495 /// instead of their original storage.
getGlobalizedRecord(bool IsInTTDRegion)496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497 if (!GlobalizedRD)
498 buildRecordForGlobalizedVars(IsInTTDRegion);
499 return GlobalizedRD;
500 }
501
502 /// Returns the field in the globalized record for the escaped variable.
getFieldForGlobalizedVar(const ValueDecl * VD) const503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504 assert(GlobalizedRD &&
505 "Record for globalized variables must be generated already.");
506 auto I = MappedDeclsFields.find(VD);
507 if (I == MappedDeclsFields.end())
508 return nullptr;
509 return I->getSecond();
510 }
511
512 /// Returns the list of the escaped local variables/parameters.
getEscapedDecls() const513 ArrayRef<const ValueDecl *> getEscapedDecls() const {
514 return EscapedDecls.getArrayRef();
515 }
516
517 /// Checks if the escaped local variable is actually a parameter passed by
518 /// value.
getEscapedParameters() const519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520 return EscapedParameters;
521 }
522
523 /// Returns the list of the escaped variables with the variably modified
524 /// types.
getEscapedVariableLengthDecls() const525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526 return EscapedVariableLengthDecls.getArrayRef();
527 }
528 };
529 } // anonymous namespace
530
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
getNVPTXWarpID(CodeGenFunction & CGF)534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535 CGBuilderTy &Bld = CGF.Builder;
536 unsigned LaneIDBits =
537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
getNVPTXLaneID(CodeGenFunction & CGF)545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546 CGBuilderTy &Bld = CGF.Builder;
547 unsigned LaneIDBits =
548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552 "nvptx_lane_id");
553 }
554
555 CGOpenMPRuntimeGPU::ExecutionMode
getExecutionMode() const556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557 return CurrentExecutionMode;
558 }
559
560 static CGOpenMPRuntimeGPU::DataSharingMode
getDataSharingMode(CodeGenModule & CGM)561 getDataSharingMode(CodeGenModule &CGM) {
562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563 : CGOpenMPRuntimeGPU::Generic;
564 }
565
566 /// Check for inner (nested) SPMD construct, if any
hasNestedSPMDDirective(ASTContext & Ctx,const OMPExecutableDirective & D)567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568 const OMPExecutableDirective &D) {
569 const auto *CS = D.getInnermostCapturedStmt();
570 const auto *Body =
571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573
574 if (const auto *NestedDir =
575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577 switch (D.getDirectiveKind()) {
578 case OMPD_target:
579 if (isOpenMPParallelDirective(DKind))
580 return true;
581 if (DKind == OMPD_teams) {
582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583 /*IgnoreCaptured=*/true);
584 if (!Body)
585 return false;
586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587 if (const auto *NND =
588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589 DKind = NND->getDirectiveKind();
590 if (isOpenMPParallelDirective(DKind))
591 return true;
592 }
593 }
594 return false;
595 case OMPD_target_teams:
596 return isOpenMPParallelDirective(DKind);
597 case OMPD_target_simd:
598 case OMPD_target_parallel:
599 case OMPD_target_parallel_for:
600 case OMPD_target_parallel_for_simd:
601 case OMPD_target_teams_distribute:
602 case OMPD_target_teams_distribute_simd:
603 case OMPD_target_teams_distribute_parallel_for:
604 case OMPD_target_teams_distribute_parallel_for_simd:
605 case OMPD_parallel:
606 case OMPD_for:
607 case OMPD_parallel_for:
608 case OMPD_parallel_master:
609 case OMPD_parallel_sections:
610 case OMPD_for_simd:
611 case OMPD_parallel_for_simd:
612 case OMPD_cancel:
613 case OMPD_cancellation_point:
614 case OMPD_ordered:
615 case OMPD_threadprivate:
616 case OMPD_allocate:
617 case OMPD_task:
618 case OMPD_simd:
619 case OMPD_sections:
620 case OMPD_section:
621 case OMPD_single:
622 case OMPD_master:
623 case OMPD_critical:
624 case OMPD_taskyield:
625 case OMPD_barrier:
626 case OMPD_taskwait:
627 case OMPD_taskgroup:
628 case OMPD_atomic:
629 case OMPD_flush:
630 case OMPD_depobj:
631 case OMPD_scan:
632 case OMPD_teams:
633 case OMPD_target_data:
634 case OMPD_target_exit_data:
635 case OMPD_target_enter_data:
636 case OMPD_distribute:
637 case OMPD_distribute_simd:
638 case OMPD_distribute_parallel_for:
639 case OMPD_distribute_parallel_for_simd:
640 case OMPD_teams_distribute:
641 case OMPD_teams_distribute_simd:
642 case OMPD_teams_distribute_parallel_for:
643 case OMPD_teams_distribute_parallel_for_simd:
644 case OMPD_target_update:
645 case OMPD_declare_simd:
646 case OMPD_declare_variant:
647 case OMPD_begin_declare_variant:
648 case OMPD_end_declare_variant:
649 case OMPD_declare_target:
650 case OMPD_end_declare_target:
651 case OMPD_declare_reduction:
652 case OMPD_declare_mapper:
653 case OMPD_taskloop:
654 case OMPD_taskloop_simd:
655 case OMPD_master_taskloop:
656 case OMPD_master_taskloop_simd:
657 case OMPD_parallel_master_taskloop:
658 case OMPD_parallel_master_taskloop_simd:
659 case OMPD_requires:
660 case OMPD_unknown:
661 default:
662 llvm_unreachable("Unexpected directive.");
663 }
664 }
665
666 return false;
667 }
668
supportsSPMDExecutionMode(ASTContext & Ctx,const OMPExecutableDirective & D)669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670 const OMPExecutableDirective &D) {
671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672 switch (DirectiveKind) {
673 case OMPD_target:
674 case OMPD_target_teams:
675 return hasNestedSPMDDirective(Ctx, D);
676 case OMPD_target_parallel:
677 case OMPD_target_parallel_for:
678 case OMPD_target_parallel_for_simd:
679 case OMPD_target_teams_distribute_parallel_for:
680 case OMPD_target_teams_distribute_parallel_for_simd:
681 case OMPD_target_simd:
682 case OMPD_target_teams_distribute_simd:
683 return true;
684 case OMPD_target_teams_distribute:
685 return false;
686 case OMPD_parallel:
687 case OMPD_for:
688 case OMPD_parallel_for:
689 case OMPD_parallel_master:
690 case OMPD_parallel_sections:
691 case OMPD_for_simd:
692 case OMPD_parallel_for_simd:
693 case OMPD_cancel:
694 case OMPD_cancellation_point:
695 case OMPD_ordered:
696 case OMPD_threadprivate:
697 case OMPD_allocate:
698 case OMPD_task:
699 case OMPD_simd:
700 case OMPD_sections:
701 case OMPD_section:
702 case OMPD_single:
703 case OMPD_master:
704 case OMPD_critical:
705 case OMPD_taskyield:
706 case OMPD_barrier:
707 case OMPD_taskwait:
708 case OMPD_taskgroup:
709 case OMPD_atomic:
710 case OMPD_flush:
711 case OMPD_depobj:
712 case OMPD_scan:
713 case OMPD_teams:
714 case OMPD_target_data:
715 case OMPD_target_exit_data:
716 case OMPD_target_enter_data:
717 case OMPD_distribute:
718 case OMPD_distribute_simd:
719 case OMPD_distribute_parallel_for:
720 case OMPD_distribute_parallel_for_simd:
721 case OMPD_teams_distribute:
722 case OMPD_teams_distribute_simd:
723 case OMPD_teams_distribute_parallel_for:
724 case OMPD_teams_distribute_parallel_for_simd:
725 case OMPD_target_update:
726 case OMPD_declare_simd:
727 case OMPD_declare_variant:
728 case OMPD_begin_declare_variant:
729 case OMPD_end_declare_variant:
730 case OMPD_declare_target:
731 case OMPD_end_declare_target:
732 case OMPD_declare_reduction:
733 case OMPD_declare_mapper:
734 case OMPD_taskloop:
735 case OMPD_taskloop_simd:
736 case OMPD_master_taskloop:
737 case OMPD_master_taskloop_simd:
738 case OMPD_parallel_master_taskloop:
739 case OMPD_parallel_master_taskloop_simd:
740 case OMPD_requires:
741 case OMPD_unknown:
742 default:
743 break;
744 }
745 llvm_unreachable(
746 "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
hasStaticScheduling(const OMPExecutableDirective & D)751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753 isOpenMPLoopDirective(D.getDirectiveKind()) &&
754 "Expected loop-based directive.");
755 return !D.hasClausesOfKind<OMPOrderedClause>() &&
756 (!D.hasClausesOfKind<OMPScheduleClause>() ||
757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758 [](const OMPScheduleClause *C) {
759 return C->getScheduleKind() == OMPC_SCHEDULE_static;
760 }));
761 }
762
763 /// Check for inner (nested) lightweight runtime construct, if any
hasNestedLightweightDirective(ASTContext & Ctx,const OMPExecutableDirective & D)764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765 const OMPExecutableDirective &D) {
766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767 const auto *CS = D.getInnermostCapturedStmt();
768 const auto *Body =
769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771
772 if (const auto *NestedDir =
773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775 switch (D.getDirectiveKind()) {
776 case OMPD_target:
777 if (isOpenMPParallelDirective(DKind) &&
778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779 hasStaticScheduling(*NestedDir))
780 return true;
781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782 return true;
783 if (DKind == OMPD_parallel) {
784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785 /*IgnoreCaptured=*/true);
786 if (!Body)
787 return false;
788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789 if (const auto *NND =
790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791 DKind = NND->getDirectiveKind();
792 if (isOpenMPWorksharingDirective(DKind) &&
793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794 return true;
795 }
796 } else if (DKind == OMPD_teams) {
797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798 /*IgnoreCaptured=*/true);
799 if (!Body)
800 return false;
801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802 if (const auto *NND =
803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804 DKind = NND->getDirectiveKind();
805 if (isOpenMPParallelDirective(DKind) &&
806 isOpenMPWorksharingDirective(DKind) &&
807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808 return true;
809 if (DKind == OMPD_parallel) {
810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811 /*IgnoreCaptured=*/true);
812 if (!Body)
813 return false;
814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815 if (const auto *NND =
816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817 DKind = NND->getDirectiveKind();
818 if (isOpenMPWorksharingDirective(DKind) &&
819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820 return true;
821 }
822 }
823 }
824 }
825 return false;
826 case OMPD_target_teams:
827 if (isOpenMPParallelDirective(DKind) &&
828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829 hasStaticScheduling(*NestedDir))
830 return true;
831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832 return true;
833 if (DKind == OMPD_parallel) {
834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835 /*IgnoreCaptured=*/true);
836 if (!Body)
837 return false;
838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839 if (const auto *NND =
840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841 DKind = NND->getDirectiveKind();
842 if (isOpenMPWorksharingDirective(DKind) &&
843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844 return true;
845 }
846 }
847 return false;
848 case OMPD_target_parallel:
849 if (DKind == OMPD_simd)
850 return true;
851 return isOpenMPWorksharingDirective(DKind) &&
852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853 case OMPD_target_teams_distribute:
854 case OMPD_target_simd:
855 case OMPD_target_parallel_for:
856 case OMPD_target_parallel_for_simd:
857 case OMPD_target_teams_distribute_simd:
858 case OMPD_target_teams_distribute_parallel_for:
859 case OMPD_target_teams_distribute_parallel_for_simd:
860 case OMPD_parallel:
861 case OMPD_for:
862 case OMPD_parallel_for:
863 case OMPD_parallel_master:
864 case OMPD_parallel_sections:
865 case OMPD_for_simd:
866 case OMPD_parallel_for_simd:
867 case OMPD_cancel:
868 case OMPD_cancellation_point:
869 case OMPD_ordered:
870 case OMPD_threadprivate:
871 case OMPD_allocate:
872 case OMPD_task:
873 case OMPD_simd:
874 case OMPD_sections:
875 case OMPD_section:
876 case OMPD_single:
877 case OMPD_master:
878 case OMPD_critical:
879 case OMPD_taskyield:
880 case OMPD_barrier:
881 case OMPD_taskwait:
882 case OMPD_taskgroup:
883 case OMPD_atomic:
884 case OMPD_flush:
885 case OMPD_depobj:
886 case OMPD_scan:
887 case OMPD_teams:
888 case OMPD_target_data:
889 case OMPD_target_exit_data:
890 case OMPD_target_enter_data:
891 case OMPD_distribute:
892 case OMPD_distribute_simd:
893 case OMPD_distribute_parallel_for:
894 case OMPD_distribute_parallel_for_simd:
895 case OMPD_teams_distribute:
896 case OMPD_teams_distribute_simd:
897 case OMPD_teams_distribute_parallel_for:
898 case OMPD_teams_distribute_parallel_for_simd:
899 case OMPD_target_update:
900 case OMPD_declare_simd:
901 case OMPD_declare_variant:
902 case OMPD_begin_declare_variant:
903 case OMPD_end_declare_variant:
904 case OMPD_declare_target:
905 case OMPD_end_declare_target:
906 case OMPD_declare_reduction:
907 case OMPD_declare_mapper:
908 case OMPD_taskloop:
909 case OMPD_taskloop_simd:
910 case OMPD_master_taskloop:
911 case OMPD_master_taskloop_simd:
912 case OMPD_parallel_master_taskloop:
913 case OMPD_parallel_master_taskloop_simd:
914 case OMPD_requires:
915 case OMPD_unknown:
916 default:
917 llvm_unreachable("Unexpected directive.");
918 }
919 }
920
921 return false;
922 }
923
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
supportsLightweightRuntime(ASTContext & Ctx,const OMPExecutableDirective & D)926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927 const OMPExecutableDirective &D) {
928 if (!supportsSPMDExecutionMode(Ctx, D))
929 return false;
930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931 switch (DirectiveKind) {
932 case OMPD_target:
933 case OMPD_target_teams:
934 case OMPD_target_parallel:
935 return hasNestedLightweightDirective(Ctx, D);
936 case OMPD_target_parallel_for:
937 case OMPD_target_parallel_for_simd:
938 case OMPD_target_teams_distribute_parallel_for:
939 case OMPD_target_teams_distribute_parallel_for_simd:
940 // (Last|First)-privates must be shared in parallel region.
941 return hasStaticScheduling(D);
942 case OMPD_target_simd:
943 case OMPD_target_teams_distribute_simd:
944 return true;
945 case OMPD_target_teams_distribute:
946 return false;
947 case OMPD_parallel:
948 case OMPD_for:
949 case OMPD_parallel_for:
950 case OMPD_parallel_master:
951 case OMPD_parallel_sections:
952 case OMPD_for_simd:
953 case OMPD_parallel_for_simd:
954 case OMPD_cancel:
955 case OMPD_cancellation_point:
956 case OMPD_ordered:
957 case OMPD_threadprivate:
958 case OMPD_allocate:
959 case OMPD_task:
960 case OMPD_simd:
961 case OMPD_sections:
962 case OMPD_section:
963 case OMPD_single:
964 case OMPD_master:
965 case OMPD_critical:
966 case OMPD_taskyield:
967 case OMPD_barrier:
968 case OMPD_taskwait:
969 case OMPD_taskgroup:
970 case OMPD_atomic:
971 case OMPD_flush:
972 case OMPD_depobj:
973 case OMPD_scan:
974 case OMPD_teams:
975 case OMPD_target_data:
976 case OMPD_target_exit_data:
977 case OMPD_target_enter_data:
978 case OMPD_distribute:
979 case OMPD_distribute_simd:
980 case OMPD_distribute_parallel_for:
981 case OMPD_distribute_parallel_for_simd:
982 case OMPD_teams_distribute:
983 case OMPD_teams_distribute_simd:
984 case OMPD_teams_distribute_parallel_for:
985 case OMPD_teams_distribute_parallel_for_simd:
986 case OMPD_target_update:
987 case OMPD_declare_simd:
988 case OMPD_declare_variant:
989 case OMPD_begin_declare_variant:
990 case OMPD_end_declare_variant:
991 case OMPD_declare_target:
992 case OMPD_end_declare_target:
993 case OMPD_declare_reduction:
994 case OMPD_declare_mapper:
995 case OMPD_taskloop:
996 case OMPD_taskloop_simd:
997 case OMPD_master_taskloop:
998 case OMPD_master_taskloop_simd:
999 case OMPD_parallel_master_taskloop:
1000 case OMPD_parallel_master_taskloop_simd:
1001 case OMPD_requires:
1002 case OMPD_unknown:
1003 default:
1004 break;
1005 }
1006 llvm_unreachable(
1007 "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009
emitNonSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011 StringRef ParentName,
1012 llvm::Function *&OutlinedFn,
1013 llvm::Constant *&OutlinedFnID,
1014 bool IsOffloadEntry,
1015 const RegionCodeGenTy &CodeGen) {
1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017 EntryFunctionState EST;
1018 WrapperFunctionsMap.clear();
1019
1020 // Emit target region as a standalone region.
1021 class NVPTXPrePostActionTy : public PrePostActionTy {
1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023
1024 public:
1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026 : EST(EST) {}
1027 void Enter(CodeGenFunction &CGF) override {
1028 auto &RT =
1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031 // Skip target region initialization.
1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033 }
1034 void Exit(CodeGenFunction &CGF) override {
1035 auto &RT =
1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037 RT.clearLocThreadIdInsertPt(CGF);
1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039 }
1040 } Action(EST);
1041 CodeGen.setAction(Action);
1042 IsInTTDRegion = true;
1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044 IsOffloadEntry, CodeGen);
1045 IsInTTDRegion = false;
1046 }
1047
emitKernelInit(CodeGenFunction & CGF,EntryFunctionState & EST,bool IsSPMD)1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049 EntryFunctionState &EST, bool IsSPMD) {
1050 CGBuilderTy &Bld = CGF.Builder;
1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052 IsInTargetMasterThreadRegion = IsSPMD;
1053 if (!IsSPMD)
1054 emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056
emitKernelDeinit(CodeGenFunction & CGF,EntryFunctionState & EST,bool IsSPMD)1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058 EntryFunctionState &EST,
1059 bool IsSPMD) {
1060 if (!IsSPMD)
1061 emitGenericVarsEpilog(CGF);
1062
1063 CGBuilderTy &Bld = CGF.Builder;
1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066
emitSPMDKernel(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068 StringRef ParentName,
1069 llvm::Function *&OutlinedFn,
1070 llvm::Constant *&OutlinedFnID,
1071 bool IsOffloadEntry,
1072 const RegionCodeGenTy &CodeGen) {
1073 ExecutionRuntimeModesRAII ModeRAII(
1074 CurrentExecutionMode, RequiresFullRuntime,
1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076 !supportsLightweightRuntime(CGM.getContext(), D));
1077 EntryFunctionState EST;
1078
1079 // Emit target region as a standalone region.
1080 class NVPTXPrePostActionTy : public PrePostActionTy {
1081 CGOpenMPRuntimeGPU &RT;
1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083
1084 public:
1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087 : RT(RT), EST(EST) {}
1088 void Enter(CodeGenFunction &CGF) override {
1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090 // Skip target region initialization.
1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092 }
1093 void Exit(CodeGenFunction &CGF) override {
1094 RT.clearLocThreadIdInsertPt(CGF);
1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096 }
1097 } Action(*this, EST);
1098 CodeGen.setAction(Action);
1099 IsInTTDRegion = true;
1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101 IsOffloadEntry, CodeGen);
1102 IsInTTDRegion = false;
1103 }
1104
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
setPropertyExecutionMode(CodeGenModule & CGM,StringRef Name,bool Mode)1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112 bool Mode) {
1113 auto *GVMode = new llvm::GlobalVariable(
1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115 llvm::GlobalValue::WeakAnyLinkage,
1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117 : OMP_TGT_EXEC_MODE_GENERIC),
1118 Twine(Name, "_exec_mode"));
1119 CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121
createOffloadEntry(llvm::Constant * ID,llvm::Constant * Addr,uint64_t Size,int32_t,llvm::GlobalValue::LinkageTypes)1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123 llvm::Constant *Addr,
1124 uint64_t Size, int32_t,
1125 llvm::GlobalValue::LinkageTypes) {
1126 // TODO: Add support for global variables on the device after declare target
1127 // support.
1128 llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129 if (!Fn)
1130 return;
1131
1132 llvm::Module &M = CGM.getModule();
1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134
1135 // Get "nvvm.annotations" metadata node.
1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137
1138 llvm::Metadata *MDVals[] = {
1139 llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140 llvm::ConstantAsMetadata::get(
1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142 // Append metadata to nvvm.annotations.
1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144
1145 // Add a function attribute for the kernel.
1146 Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147 }
1148
emitTargetOutlinedFunction(const OMPExecutableDirective & D,StringRef ParentName,llvm::Function * & OutlinedFn,llvm::Constant * & OutlinedFnID,bool IsOffloadEntry,const RegionCodeGenTy & CodeGen)1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150 const OMPExecutableDirective &D, StringRef ParentName,
1151 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153 if (!IsOffloadEntry) // Nothing to do.
1154 return;
1155
1156 assert(!ParentName.empty() && "Invalid target region parent name!");
1157
1158 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159 if (Mode)
1160 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161 CodeGen);
1162 else
1163 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164 CodeGen);
1165
1166 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167 }
1168
1169 namespace {
1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1171 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1172 enum ModeFlagsTy : unsigned {
1173 /// Bit set to 1 when in SPMD mode.
1174 KMP_IDENT_SPMD_MODE = 0x01,
1175 /// Bit set to 1 when a simplified runtime is used.
1176 KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1178 };
1179
1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181 static const ModeFlagsTy UndefinedMode =
1182 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183 } // anonymous namespace
1184
getDefaultLocationReserved2Flags() const1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186 switch (getExecutionMode()) {
1187 case EM_SPMD:
1188 if (requiresFullRuntime())
1189 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191 case EM_NonSPMD:
1192 assert(requiresFullRuntime() && "Expected full runtime.");
1193 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194 case EM_Unknown:
1195 return UndefinedMode;
1196 }
1197 llvm_unreachable("Unknown flags are requested.");
1198 }
1199
CGOpenMPRuntimeGPU(CodeGenModule & CGM)1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201 : CGOpenMPRuntime(CGM, "_", "$") {
1202 if (!CGM.getLangOpts().OpenMPIsDevice)
1203 llvm_unreachable("OpenMP can only handle device code.");
1204
1205 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206 if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty())
1207 return;
1208
1209 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1210 "__omp_rtl_debug_kind");
1211 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1212 "__omp_rtl_assume_teams_oversubscription");
1213 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1214 "__omp_rtl_assume_threads_oversubscription");
1215 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
1216 "__omp_rtl_assume_no_thread_state");
1217 }
1218
emitProcBindClause(CodeGenFunction & CGF,ProcBindKind ProcBind,SourceLocation Loc)1219 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1220 ProcBindKind ProcBind,
1221 SourceLocation Loc) {
1222 // Do nothing in case of SPMD mode and L0 parallel.
1223 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1224 return;
1225
1226 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1227 }
1228
emitNumThreadsClause(CodeGenFunction & CGF,llvm::Value * NumThreads,SourceLocation Loc)1229 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1230 llvm::Value *NumThreads,
1231 SourceLocation Loc) {
1232 // Nothing to do.
1233 }
1234
emitNumTeamsClause(CodeGenFunction & CGF,const Expr * NumTeams,const Expr * ThreadLimit,SourceLocation Loc)1235 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1236 const Expr *NumTeams,
1237 const Expr *ThreadLimit,
1238 SourceLocation Loc) {}
1239
emitParallelOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1240 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1241 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1242 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1243 // Emit target region as a standalone region.
1244 class NVPTXPrePostActionTy : public PrePostActionTy {
1245 bool &IsInParallelRegion;
1246 bool PrevIsInParallelRegion;
1247
1248 public:
1249 NVPTXPrePostActionTy(bool &IsInParallelRegion)
1250 : IsInParallelRegion(IsInParallelRegion) {}
1251 void Enter(CodeGenFunction &CGF) override {
1252 PrevIsInParallelRegion = IsInParallelRegion;
1253 IsInParallelRegion = true;
1254 }
1255 void Exit(CodeGenFunction &CGF) override {
1256 IsInParallelRegion = PrevIsInParallelRegion;
1257 }
1258 } Action(IsInParallelRegion);
1259 CodeGen.setAction(Action);
1260 bool PrevIsInTTDRegion = IsInTTDRegion;
1261 IsInTTDRegion = false;
1262 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1263 IsInTargetMasterThreadRegion = false;
1264 auto *OutlinedFun =
1265 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1266 D, ThreadIDVar, InnermostKind, CodeGen));
1267 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1268 IsInTTDRegion = PrevIsInTTDRegion;
1269 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1270 !IsInParallelRegion) {
1271 llvm::Function *WrapperFun =
1272 createParallelDataSharingWrapper(OutlinedFun, D);
1273 WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1274 }
1275
1276 return OutlinedFun;
1277 }
1278
1279 /// Get list of lastprivate variables from the teams distribute ... or
1280 /// teams {distribute ...} directives.
1281 static void
getDistributeLastprivateVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)1282 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1283 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1284 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1285 "expected teams directive.");
1286 const OMPExecutableDirective *Dir = &D;
1287 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1288 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1289 Ctx,
1290 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1291 /*IgnoreCaptured=*/true))) {
1292 Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1293 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1294 Dir = nullptr;
1295 }
1296 }
1297 if (!Dir)
1298 return;
1299 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1300 for (const Expr *E : C->getVarRefs())
1301 Vars.push_back(getPrivateItem(E));
1302 }
1303 }
1304
1305 /// Get list of reduction variables from the teams ... directives.
1306 static void
getTeamsReductionVars(ASTContext & Ctx,const OMPExecutableDirective & D,llvm::SmallVectorImpl<const ValueDecl * > & Vars)1307 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1308 llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1309 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1310 "expected teams directive.");
1311 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1312 for (const Expr *E : C->privates())
1313 Vars.push_back(getPrivateItem(E));
1314 }
1315 }
1316
emitTeamsOutlinedFunction(const OMPExecutableDirective & D,const VarDecl * ThreadIDVar,OpenMPDirectiveKind InnermostKind,const RegionCodeGenTy & CodeGen)1317 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1318 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1319 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1320 SourceLocation Loc = D.getBeginLoc();
1321
1322 const RecordDecl *GlobalizedRD = nullptr;
1323 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1324 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1325 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1326 // Globalize team reductions variable unconditionally in all modes.
1327 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1328 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1329 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1330 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1331 if (!LastPrivatesReductions.empty()) {
1332 GlobalizedRD = ::buildRecordForGlobalizedVars(
1333 CGM.getContext(), llvm::None, LastPrivatesReductions,
1334 MappedDeclsFields, WarpSize);
1335 }
1336 } else if (!LastPrivatesReductions.empty()) {
1337 assert(!TeamAndReductions.first &&
1338 "Previous team declaration is not expected.");
1339 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1340 std::swap(TeamAndReductions.second, LastPrivatesReductions);
1341 }
1342
1343 // Emit target region as a standalone region.
1344 class NVPTXPrePostActionTy : public PrePostActionTy {
1345 SourceLocation &Loc;
1346 const RecordDecl *GlobalizedRD;
1347 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1348 &MappedDeclsFields;
1349
1350 public:
1351 NVPTXPrePostActionTy(
1352 SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1353 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1354 &MappedDeclsFields)
1355 : Loc(Loc), GlobalizedRD(GlobalizedRD),
1356 MappedDeclsFields(MappedDeclsFields) {}
1357 void Enter(CodeGenFunction &CGF) override {
1358 auto &Rt =
1359 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1360 if (GlobalizedRD) {
1361 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1362 I->getSecond().MappedParams =
1363 std::make_unique<CodeGenFunction::OMPMapVars>();
1364 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1365 for (const auto &Pair : MappedDeclsFields) {
1366 assert(Pair.getFirst()->isCanonicalDecl() &&
1367 "Expected canonical declaration");
1368 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1369 }
1370 }
1371 Rt.emitGenericVarsProlog(CGF, Loc);
1372 }
1373 void Exit(CodeGenFunction &CGF) override {
1374 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1375 .emitGenericVarsEpilog(CGF);
1376 }
1377 } Action(Loc, GlobalizedRD, MappedDeclsFields);
1378 CodeGen.setAction(Action);
1379 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1380 D, ThreadIDVar, InnermostKind, CodeGen);
1381
1382 return OutlinedFun;
1383 }
1384
emitGenericVarsProlog(CodeGenFunction & CGF,SourceLocation Loc,bool WithSPMDCheck)1385 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1386 SourceLocation Loc,
1387 bool WithSPMDCheck) {
1388 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1389 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1390 return;
1391
1392 CGBuilderTy &Bld = CGF.Builder;
1393
1394 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1395 if (I == FunctionGlobalizedDecls.end())
1396 return;
1397
1398 for (auto &Rec : I->getSecond().LocalVarData) {
1399 const auto *VD = cast<VarDecl>(Rec.first);
1400 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1401 QualType VarTy = VD->getType();
1402
1403 // Get the local allocation of a firstprivate variable before sharing
1404 llvm::Value *ParValue;
1405 if (EscapedParam) {
1406 LValue ParLVal =
1407 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1408 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1409 }
1410
1411 // Allocate space for the variable to be globalized
1412 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1413 llvm::CallBase *VoidPtr =
1414 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1415 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1416 AllocArgs, VD->getName());
1417 // FIXME: We should use the variables actual alignment as an argument.
1418 VoidPtr->addRetAttr(llvm::Attribute::get(
1419 CGM.getLLVMContext(), llvm::Attribute::Alignment,
1420 CGM.getContext().getTargetInfo().getNewAlign() / 8));
1421
1422 // Cast the void pointer and get the address of the globalized variable.
1423 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1424 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1425 VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1426 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1427 Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1428 Rec.second.GlobalizedVal = VoidPtr;
1429
1430 // Assign the local allocation to the newly globalized location.
1431 if (EscapedParam) {
1432 CGF.EmitStoreOfScalar(ParValue, VarAddr);
1433 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1434 }
1435 if (auto *DI = CGF.getDebugInfo())
1436 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1437 }
1438 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1439 // Use actual memory size of the VLA object including the padding
1440 // for alignment purposes.
1441 llvm::Value *Size = CGF.getTypeSize(VD->getType());
1442 CharUnits Align = CGM.getContext().getDeclAlign(VD);
1443 Size = Bld.CreateNUWAdd(
1444 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1445 llvm::Value *AlignVal =
1446 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1447
1448 Size = Bld.CreateUDiv(Size, AlignVal);
1449 Size = Bld.CreateNUWMul(Size, AlignVal);
1450
1451 // Allocate space for this VLA object to be globalized.
1452 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1453 llvm::CallBase *VoidPtr =
1454 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1455 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1456 AllocArgs, VD->getName());
1457 VoidPtr->addRetAttr(
1458 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1459 CGM.getContext().getTargetInfo().getNewAlign()));
1460
1461 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1462 std::pair<llvm::Value *, llvm::Value *>(
1463 {VoidPtr, CGF.getTypeSize(VD->getType())}));
1464 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1465 CGM.getContext().getDeclAlign(VD),
1466 AlignmentSource::Decl);
1467 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1468 Base.getAddress(CGF));
1469 }
1470 I->getSecond().MappedParams->apply(CGF);
1471 }
1472
emitGenericVarsEpilog(CodeGenFunction & CGF,bool WithSPMDCheck)1473 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1474 bool WithSPMDCheck) {
1475 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1476 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1477 return;
1478
1479 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1480 if (I != FunctionGlobalizedDecls.end()) {
1481 // Deallocate the memory for each globalized VLA object
1482 for (auto AddrSizePair :
1483 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1484 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1485 CGM.getModule(), OMPRTL___kmpc_free_shared),
1486 {AddrSizePair.first, AddrSizePair.second});
1487 }
1488 // Deallocate the memory for each globalized value
1489 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1490 const auto *VD = cast<VarDecl>(Rec.first);
1491 I->getSecond().MappedParams->restore(CGF);
1492
1493 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1494 CGF.getTypeSize(VD->getType())};
1495 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1496 CGM.getModule(), OMPRTL___kmpc_free_shared),
1497 FreeArgs);
1498 }
1499 }
1500 }
1501
emitTeamsCall(CodeGenFunction & CGF,const OMPExecutableDirective & D,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars)1502 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1503 const OMPExecutableDirective &D,
1504 SourceLocation Loc,
1505 llvm::Function *OutlinedFn,
1506 ArrayRef<llvm::Value *> CapturedVars) {
1507 if (!CGF.HaveInsertPoint())
1508 return;
1509
1510 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1511 /*Name=*/".zero.addr");
1512 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1513 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1514 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1515 OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1516 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1517 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1518 }
1519
emitParallelCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::Function * OutlinedFn,ArrayRef<llvm::Value * > CapturedVars,const Expr * IfCond,llvm::Value * NumThreads)1520 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1521 SourceLocation Loc,
1522 llvm::Function *OutlinedFn,
1523 ArrayRef<llvm::Value *> CapturedVars,
1524 const Expr *IfCond,
1525 llvm::Value *NumThreads) {
1526 if (!CGF.HaveInsertPoint())
1527 return;
1528
1529 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1530 NumThreads](CodeGenFunction &CGF,
1531 PrePostActionTy &Action) {
1532 CGBuilderTy &Bld = CGF.Builder;
1533 llvm::Value *NumThreadsVal = NumThreads;
1534 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1535 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1536 if (WFn)
1537 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1538 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1539
1540 // Create a private scope that will globalize the arguments
1541 // passed from the outside of the target region.
1542 // TODO: Is that needed?
1543 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1544
1545 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1546 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1547 "captured_vars_addrs");
1548 // There's something to share.
1549 if (!CapturedVars.empty()) {
1550 // Prepare for parallel region. Indicate the outlined function.
1551 ASTContext &Ctx = CGF.getContext();
1552 unsigned Idx = 0;
1553 for (llvm::Value *V : CapturedVars) {
1554 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1555 llvm::Value *PtrV;
1556 if (V->getType()->isIntegerTy())
1557 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1558 else
1559 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1560 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1561 Ctx.getPointerType(Ctx.VoidPtrTy));
1562 ++Idx;
1563 }
1564 }
1565
1566 llvm::Value *IfCondVal = nullptr;
1567 if (IfCond)
1568 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1569 /* isSigned */ false);
1570 else
1571 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1572
1573 if (!NumThreadsVal)
1574 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1575 else
1576 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1577
1578 assert(IfCondVal && "Expected a value");
1579 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1580 llvm::Value *Args[] = {
1581 RTLoc,
1582 getThreadID(CGF, Loc),
1583 IfCondVal,
1584 NumThreadsVal,
1585 llvm::ConstantInt::get(CGF.Int32Ty, -1),
1586 FnPtr,
1587 ID,
1588 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1589 CGF.VoidPtrPtrTy),
1590 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1591 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1592 CGM.getModule(), OMPRTL___kmpc_parallel_51),
1593 Args);
1594 };
1595
1596 RegionCodeGenTy RCG(ParallelGen);
1597 RCG(CGF);
1598 }
1599
syncCTAThreads(CodeGenFunction & CGF)1600 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1601 // Always emit simple barriers!
1602 if (!CGF.HaveInsertPoint())
1603 return;
1604 // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1605 // This function does not use parameters, so we can emit just default values.
1606 llvm::Value *Args[] = {
1607 llvm::ConstantPointerNull::get(
1608 cast<llvm::PointerType>(getIdentTyPointerTy())),
1609 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1610 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1611 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1612 Args);
1613 }
1614
emitBarrierCall(CodeGenFunction & CGF,SourceLocation Loc,OpenMPDirectiveKind Kind,bool,bool)1615 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1616 SourceLocation Loc,
1617 OpenMPDirectiveKind Kind, bool,
1618 bool) {
1619 // Always emit simple barriers!
1620 if (!CGF.HaveInsertPoint())
1621 return;
1622 // Build call __kmpc_cancel_barrier(loc, thread_id);
1623 unsigned Flags = getDefaultFlagsForBarriers(Kind);
1624 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1625 getThreadID(CGF, Loc)};
1626
1627 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1628 CGM.getModule(), OMPRTL___kmpc_barrier),
1629 Args);
1630 }
1631
emitCriticalRegion(CodeGenFunction & CGF,StringRef CriticalName,const RegionCodeGenTy & CriticalOpGen,SourceLocation Loc,const Expr * Hint)1632 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1633 CodeGenFunction &CGF, StringRef CriticalName,
1634 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1635 const Expr *Hint) {
1636 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1637 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1638 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1639 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1640 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1641
1642 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1643
1644 // Get the mask of active threads in the warp.
1645 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1646 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1647 // Fetch team-local id of the thread.
1648 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1649
1650 // Get the width of the team.
1651 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1652
1653 // Initialize the counter variable for the loop.
1654 QualType Int32Ty =
1655 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1656 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1657 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1658 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1659 /*isInit=*/true);
1660
1661 // Block checks if loop counter exceeds upper bound.
1662 CGF.EmitBlock(LoopBB);
1663 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1664 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1665 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1666
1667 // Block tests which single thread should execute region, and which threads
1668 // should go straight to synchronisation point.
1669 CGF.EmitBlock(TestBB);
1670 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1671 llvm::Value *CmpThreadToCounter =
1672 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1673 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1674
1675 // Block emits the body of the critical region.
1676 CGF.EmitBlock(BodyBB);
1677
1678 // Output the critical statement.
1679 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1680 Hint);
1681
1682 // After the body surrounded by the critical region, the single executing
1683 // thread will jump to the synchronisation point.
1684 // Block waits for all threads in current team to finish then increments the
1685 // counter variable and returns to the loop.
1686 CGF.EmitBlock(SyncBB);
1687 // Reconverge active threads in the warp.
1688 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1689 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1690 Mask);
1691
1692 llvm::Value *IncCounterVal =
1693 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1694 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1695 CGF.EmitBranch(LoopBB);
1696
1697 // Block that is reached when all threads in the team complete the region.
1698 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1699 }
1700
1701 /// Cast value to the specified type.
castValueToType(CodeGenFunction & CGF,llvm::Value * Val,QualType ValTy,QualType CastTy,SourceLocation Loc)1702 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1703 QualType ValTy, QualType CastTy,
1704 SourceLocation Loc) {
1705 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1706 "Cast type must sized.");
1707 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1708 "Val type must sized.");
1709 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1710 if (ValTy == CastTy)
1711 return Val;
1712 if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1713 CGF.getContext().getTypeSizeInChars(CastTy))
1714 return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1715 if (CastTy->isIntegerType() && ValTy->isIntegerType())
1716 return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1717 CastTy->hasSignedIntegerRepresentation());
1718 Address CastItem = CGF.CreateMemTemp(CastTy);
1719 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1720 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1721 Val->getType());
1722 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1723 LValueBaseInfo(AlignmentSource::Type),
1724 TBAAAccessInfo());
1725 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1726 LValueBaseInfo(AlignmentSource::Type),
1727 TBAAAccessInfo());
1728 }
1729
1730 /// This function creates calls to one of two shuffle functions to copy
1731 /// variables between lanes in a warp.
createRuntimeShuffleFunction(CodeGenFunction & CGF,llvm::Value * Elem,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)1732 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1733 llvm::Value *Elem,
1734 QualType ElemType,
1735 llvm::Value *Offset,
1736 SourceLocation Loc) {
1737 CodeGenModule &CGM = CGF.CGM;
1738 CGBuilderTy &Bld = CGF.Builder;
1739 CGOpenMPRuntimeGPU &RT =
1740 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1741 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1742
1743 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1744 assert(Size.getQuantity() <= 8 &&
1745 "Unsupported bitwidth in shuffle instruction.");
1746
1747 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1748 ? OMPRTL___kmpc_shuffle_int32
1749 : OMPRTL___kmpc_shuffle_int64;
1750
1751 // Cast all types to 32- or 64-bit values before calling shuffle routines.
1752 QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1753 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1754 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1755 llvm::Value *WarpSize =
1756 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1757
1758 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1759 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1760 {ElemCast, Offset, WarpSize});
1761
1762 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1763 }
1764
shuffleAndStore(CodeGenFunction & CGF,Address SrcAddr,Address DestAddr,QualType ElemType,llvm::Value * Offset,SourceLocation Loc)1765 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1766 Address DestAddr, QualType ElemType,
1767 llvm::Value *Offset, SourceLocation Loc) {
1768 CGBuilderTy &Bld = CGF.Builder;
1769
1770 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1771 // Create the loop over the big sized data.
1772 // ptr = (void*)Elem;
1773 // ptrEnd = (void*) Elem + 1;
1774 // Step = 8;
1775 // while (ptr + Step < ptrEnd)
1776 // shuffle((int64_t)*ptr);
1777 // Step = 4;
1778 // while (ptr + Step < ptrEnd)
1779 // shuffle((int32_t)*ptr);
1780 // ...
1781 Address ElemPtr = DestAddr;
1782 Address Ptr = SrcAddr;
1783 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1784 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1785 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1786 if (Size < CharUnits::fromQuantity(IntSize))
1787 continue;
1788 QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1789 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1790 /*Signed=*/1);
1791 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1792 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1793 IntTy);
1794 ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1795 ElemPtr, IntTy->getPointerTo(), IntTy);
1796 if (Size.getQuantity() / IntSize > 1) {
1797 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1798 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1799 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1800 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1801 CGF.EmitBlock(PreCondBB);
1802 llvm::PHINode *PhiSrc =
1803 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1804 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1805 llvm::PHINode *PhiDest =
1806 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1807 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1808 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1809 ElemPtr =
1810 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1811 llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1812 CGF.Int8Ty, PtrEnd.getPointer(),
1813 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1814 CGF.VoidPtrTy));
1815 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1816 ThenBB, ExitBB);
1817 CGF.EmitBlock(ThenBB);
1818 llvm::Value *Res = createRuntimeShuffleFunction(
1819 CGF,
1820 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1821 LValueBaseInfo(AlignmentSource::Type),
1822 TBAAAccessInfo()),
1823 IntType, Offset, Loc);
1824 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1825 LValueBaseInfo(AlignmentSource::Type),
1826 TBAAAccessInfo());
1827 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1828 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1829 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1830 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1831 CGF.EmitBranch(PreCondBB);
1832 CGF.EmitBlock(ExitBB);
1833 } else {
1834 llvm::Value *Res = createRuntimeShuffleFunction(
1835 CGF,
1836 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1837 LValueBaseInfo(AlignmentSource::Type),
1838 TBAAAccessInfo()),
1839 IntType, Offset, Loc);
1840 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1841 LValueBaseInfo(AlignmentSource::Type),
1842 TBAAAccessInfo());
1843 Ptr = Bld.CreateConstGEP(Ptr, 1);
1844 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1845 }
1846 Size = Size % IntSize;
1847 }
1848 }
1849
1850 namespace {
1851 enum CopyAction : unsigned {
1852 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1853 // the warp using shuffle instructions.
1854 RemoteLaneToThread,
1855 // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1856 ThreadCopy,
1857 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1858 ThreadToScratchpad,
1859 // ScratchpadToThread: Copy from a scratchpad array in global memory
1860 // containing team-reduced data to a thread's stack.
1861 ScratchpadToThread,
1862 };
1863 } // namespace
1864
1865 struct CopyOptionsTy {
1866 llvm::Value *RemoteLaneOffset;
1867 llvm::Value *ScratchpadIndex;
1868 llvm::Value *ScratchpadWidth;
1869 };
1870
1871 /// Emit instructions to copy a Reduce list, which contains partially
1872 /// aggregated values, in the specified direction.
emitReductionListCopy(CopyAction Action,CodeGenFunction & CGF,QualType ReductionArrayTy,ArrayRef<const Expr * > Privates,Address SrcBase,Address DestBase,CopyOptionsTy CopyOptions={nullptr, nullptr, nullptr})1873 static void emitReductionListCopy(
1874 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1875 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1876 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1877
1878 CodeGenModule &CGM = CGF.CGM;
1879 ASTContext &C = CGM.getContext();
1880 CGBuilderTy &Bld = CGF.Builder;
1881
1882 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1883 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1884 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1885
1886 // Iterates, element-by-element, through the source Reduce list and
1887 // make a copy.
1888 unsigned Idx = 0;
1889 unsigned Size = Privates.size();
1890 for (const Expr *Private : Privates) {
1891 Address SrcElementAddr = Address::invalid();
1892 Address DestElementAddr = Address::invalid();
1893 Address DestElementPtrAddr = Address::invalid();
1894 // Should we shuffle in an element from a remote lane?
1895 bool ShuffleInElement = false;
1896 // Set to true to update the pointer in the dest Reduce list to a
1897 // newly created element.
1898 bool UpdateDestListPtr = false;
1899 // Increment the src or dest pointer to the scratchpad, for each
1900 // new element.
1901 bool IncrScratchpadSrc = false;
1902 bool IncrScratchpadDest = false;
1903 QualType PrivatePtrType = C.getPointerType(Private->getType());
1904 llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1905
1906 switch (Action) {
1907 case RemoteLaneToThread: {
1908 // Step 1.1: Get the address for the src element in the Reduce list.
1909 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1910 SrcElementAddr =
1911 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1912 SrcElementPtrAddr, PrivateLlvmPtrType),
1913 PrivatePtrType->castAs<PointerType>());
1914
1915 // Step 1.2: Create a temporary to store the element in the destination
1916 // Reduce list.
1917 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1918 DestElementAddr =
1919 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1920 ShuffleInElement = true;
1921 UpdateDestListPtr = true;
1922 break;
1923 }
1924 case ThreadCopy: {
1925 // Step 1.1: Get the address for the src element in the Reduce list.
1926 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1927 SrcElementAddr =
1928 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1929 SrcElementPtrAddr, PrivateLlvmPtrType),
1930 PrivatePtrType->castAs<PointerType>());
1931
1932 // Step 1.2: Get the address for dest element. The destination
1933 // element has already been created on the thread's stack.
1934 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1935 DestElementAddr =
1936 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1937 DestElementPtrAddr, PrivateLlvmPtrType),
1938 PrivatePtrType->castAs<PointerType>());
1939 break;
1940 }
1941 case ThreadToScratchpad: {
1942 // Step 1.1: Get the address for the src element in the Reduce list.
1943 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1944 SrcElementAddr =
1945 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1946 SrcElementPtrAddr, PrivateLlvmPtrType),
1947 PrivatePtrType->castAs<PointerType>());
1948
1949 // Step 1.2: Get the address for dest element:
1950 // address = base + index * ElementSizeInChars.
1951 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1952 llvm::Value *CurrentOffset =
1953 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1954 llvm::Value *ScratchPadElemAbsolutePtrVal =
1955 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1956 ScratchPadElemAbsolutePtrVal =
1957 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1958 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1959 C.getTypeAlignInChars(Private->getType()));
1960 IncrScratchpadDest = true;
1961 break;
1962 }
1963 case ScratchpadToThread: {
1964 // Step 1.1: Get the address for the src element in the scratchpad.
1965 // address = base + index * ElementSizeInChars.
1966 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1967 llvm::Value *CurrentOffset =
1968 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1969 llvm::Value *ScratchPadElemAbsolutePtrVal =
1970 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1971 ScratchPadElemAbsolutePtrVal =
1972 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1973 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1974 C.getTypeAlignInChars(Private->getType()));
1975 IncrScratchpadSrc = true;
1976
1977 // Step 1.2: Create a temporary to store the element in the destination
1978 // Reduce list.
1979 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1980 DestElementAddr =
1981 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1982 UpdateDestListPtr = true;
1983 break;
1984 }
1985 }
1986
1987 // Regardless of src and dest of copy, we emit the load of src
1988 // element as this is required in all directions
1989 SrcElementAddr = Bld.CreateElementBitCast(
1990 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1991 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1992 SrcElementAddr.getElementType());
1993
1994 // Now that all active lanes have read the element in the
1995 // Reduce list, shuffle over the value from the remote lane.
1996 if (ShuffleInElement) {
1997 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1998 RemoteLaneOffset, Private->getExprLoc());
1999 } else {
2000 switch (CGF.getEvaluationKind(Private->getType())) {
2001 case TEK_Scalar: {
2002 llvm::Value *Elem = CGF.EmitLoadOfScalar(
2003 SrcElementAddr, /*Volatile=*/false, Private->getType(),
2004 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
2005 TBAAAccessInfo());
2006 // Store the source element value to the dest element address.
2007 CGF.EmitStoreOfScalar(
2008 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2009 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2010 break;
2011 }
2012 case TEK_Complex: {
2013 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2014 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2015 Private->getExprLoc());
2016 CGF.EmitStoreOfComplex(
2017 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2018 /*isInit=*/false);
2019 break;
2020 }
2021 case TEK_Aggregate:
2022 CGF.EmitAggregateCopy(
2023 CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2024 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2025 Private->getType(), AggValueSlot::DoesNotOverlap);
2026 break;
2027 }
2028 }
2029
2030 // Step 3.1: Modify reference in dest Reduce list as needed.
2031 // Modifying the reference in Reduce list to point to the newly
2032 // created element. The element is live in the current function
2033 // scope and that of functions it invokes (i.e., reduce_function).
2034 // RemoteReduceData[i] = (void*)&RemoteElem
2035 if (UpdateDestListPtr) {
2036 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2037 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2038 DestElementPtrAddr, /*Volatile=*/false,
2039 C.VoidPtrTy);
2040 }
2041
2042 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2043 // address of the next element in scratchpad memory, unless we're currently
2044 // processing the last one. Memory alignment is also taken care of here.
2045 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2046 // FIXME: This code doesn't make any sense, it's trying to perform
2047 // integer arithmetic on pointers.
2048 llvm::Value *ScratchpadBasePtr =
2049 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2050 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2051 ScratchpadBasePtr = Bld.CreateNUWAdd(
2052 ScratchpadBasePtr,
2053 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2054
2055 // Take care of global memory alignment for performance
2056 ScratchpadBasePtr = Bld.CreateNUWSub(
2057 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2058 ScratchpadBasePtr = Bld.CreateUDiv(
2059 ScratchpadBasePtr,
2060 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2061 ScratchpadBasePtr = Bld.CreateNUWAdd(
2062 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2063 ScratchpadBasePtr = Bld.CreateNUWMul(
2064 ScratchpadBasePtr,
2065 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2066
2067 if (IncrScratchpadDest)
2068 DestBase =
2069 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
2070 else /* IncrScratchpadSrc = true */
2071 SrcBase =
2072 Address(ScratchpadBasePtr, CGF.VoidPtrTy, CGF.getPointerAlign());
2073 }
2074
2075 ++Idx;
2076 }
2077 }
2078
2079 /// This function emits a helper that gathers Reduce lists from the first
2080 /// lane of every active warp to lanes in the first warp.
2081 ///
2082 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2083 /// shared smem[warp_size];
2084 /// For all data entries D in reduce_data:
2085 /// sync
2086 /// If (I am the first lane in each warp)
2087 /// Copy my local D to smem[warp_id]
2088 /// sync
2089 /// if (I am the first warp)
2090 /// Copy smem[thread_id] to my local D
emitInterWarpCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc)2091 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2092 ArrayRef<const Expr *> Privates,
2093 QualType ReductionArrayTy,
2094 SourceLocation Loc) {
2095 ASTContext &C = CGM.getContext();
2096 llvm::Module &M = CGM.getModule();
2097
2098 // ReduceList: thread local Reduce list.
2099 // At the stage of the computation when this function is called, partially
2100 // aggregated values reside in the first lane of every active warp.
2101 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2102 C.VoidPtrTy, ImplicitParamDecl::Other);
2103 // NumWarps: number of warps active in the parallel region. This could
2104 // be smaller than 32 (max warps in a CTA) for partial block reduction.
2105 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2106 C.getIntTypeForBitwidth(32, /* Signed */ true),
2107 ImplicitParamDecl::Other);
2108 FunctionArgList Args;
2109 Args.push_back(&ReduceListArg);
2110 Args.push_back(&NumWarpsArg);
2111
2112 const CGFunctionInfo &CGFI =
2113 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2114 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2115 llvm::GlobalValue::InternalLinkage,
2116 "_omp_reduction_inter_warp_copy_func", &M);
2117 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2118 Fn->setDoesNotRecurse();
2119 CodeGenFunction CGF(CGM);
2120 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2121
2122 CGBuilderTy &Bld = CGF.Builder;
2123
2124 // This array is used as a medium to transfer, one reduce element at a time,
2125 // the data from the first lane of every warp to lanes in the first warp
2126 // in order to perform the final step of a reduction in a parallel region
2127 // (reduction across warps). The array is placed in NVPTX __shared__ memory
2128 // for reduced latency, as well as to have a distinct copy for concurrently
2129 // executing target regions. The array is declared with common linkage so
2130 // as to be shared across compilation units.
2131 StringRef TransferMediumName =
2132 "__openmp_nvptx_data_transfer_temporary_storage";
2133 llvm::GlobalVariable *TransferMedium =
2134 M.getGlobalVariable(TransferMediumName);
2135 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2136 if (!TransferMedium) {
2137 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2138 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2139 TransferMedium = new llvm::GlobalVariable(
2140 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2141 llvm::UndefValue::get(Ty), TransferMediumName,
2142 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2143 SharedAddressSpace);
2144 CGM.addCompilerUsedGlobal(TransferMedium);
2145 }
2146
2147 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2148 // Get the CUDA thread id of the current OpenMP thread on the GPU.
2149 llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2150 // nvptx_lane_id = nvptx_id % warpsize
2151 llvm::Value *LaneID = getNVPTXLaneID(CGF);
2152 // nvptx_warp_id = nvptx_id / warpsize
2153 llvm::Value *WarpID = getNVPTXWarpID(CGF);
2154
2155 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2156 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2157 Address LocalReduceList(
2158 Bld.CreatePointerBitCastOrAddrSpaceCast(
2159 CGF.EmitLoadOfScalar(
2160 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2161 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2162 ElemTy->getPointerTo()),
2163 ElemTy, CGF.getPointerAlign());
2164
2165 unsigned Idx = 0;
2166 for (const Expr *Private : Privates) {
2167 //
2168 // Warp master copies reduce element to transfer medium in __shared__
2169 // memory.
2170 //
2171 unsigned RealTySize =
2172 C.getTypeSizeInChars(Private->getType())
2173 .alignTo(C.getTypeAlignInChars(Private->getType()))
2174 .getQuantity();
2175 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2176 unsigned NumIters = RealTySize / TySize;
2177 if (NumIters == 0)
2178 continue;
2179 QualType CType = C.getIntTypeForBitwidth(
2180 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2181 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2182 CharUnits Align = CharUnits::fromQuantity(TySize);
2183 llvm::Value *Cnt = nullptr;
2184 Address CntAddr = Address::invalid();
2185 llvm::BasicBlock *PrecondBB = nullptr;
2186 llvm::BasicBlock *ExitBB = nullptr;
2187 if (NumIters > 1) {
2188 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2189 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2190 /*Volatile=*/false, C.IntTy);
2191 PrecondBB = CGF.createBasicBlock("precond");
2192 ExitBB = CGF.createBasicBlock("exit");
2193 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2194 // There is no need to emit line number for unconditional branch.
2195 (void)ApplyDebugLocation::CreateEmpty(CGF);
2196 CGF.EmitBlock(PrecondBB);
2197 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2198 llvm::Value *Cmp =
2199 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2200 Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2201 CGF.EmitBlock(BodyBB);
2202 }
2203 // kmpc_barrier.
2204 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2205 /*EmitChecks=*/false,
2206 /*ForceSimpleCall=*/true);
2207 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2208 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2209 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2210
2211 // if (lane_id == 0)
2212 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2213 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2214 CGF.EmitBlock(ThenBB);
2215
2216 // Reduce element = LocalReduceList[i]
2217 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2218 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2219 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2220 // elemptr = ((CopyType*)(elemptrptr)) + I
2221 Address ElemPtr(ElemPtrPtr, CGF.Int8Ty, Align);
2222 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2223 if (NumIters > 1)
2224 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2225
2226 // Get pointer to location in transfer medium.
2227 // MediumPtr = &medium[warp_id]
2228 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2229 TransferMedium->getValueType(), TransferMedium,
2230 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2231 // Casting to actual data type.
2232 // MediumPtr = (CopyType*)MediumPtrAddr;
2233 Address MediumPtr(
2234 Bld.CreateBitCast(
2235 MediumPtrVal,
2236 CopyType->getPointerTo(
2237 MediumPtrVal->getType()->getPointerAddressSpace())),
2238 CopyType, Align);
2239
2240 // elem = *elemptr
2241 //*MediumPtr = elem
2242 llvm::Value *Elem = CGF.EmitLoadOfScalar(
2243 ElemPtr, /*Volatile=*/false, CType, Loc,
2244 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2245 // Store the source element value to the dest element address.
2246 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2247 LValueBaseInfo(AlignmentSource::Type),
2248 TBAAAccessInfo());
2249
2250 Bld.CreateBr(MergeBB);
2251
2252 CGF.EmitBlock(ElseBB);
2253 Bld.CreateBr(MergeBB);
2254
2255 CGF.EmitBlock(MergeBB);
2256
2257 // kmpc_barrier.
2258 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2259 /*EmitChecks=*/false,
2260 /*ForceSimpleCall=*/true);
2261
2262 //
2263 // Warp 0 copies reduce element from transfer medium.
2264 //
2265 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2266 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2267 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2268
2269 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2270 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2271 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2272
2273 // Up to 32 threads in warp 0 are active.
2274 llvm::Value *IsActiveThread =
2275 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2276 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2277
2278 CGF.EmitBlock(W0ThenBB);
2279
2280 // SrcMediumPtr = &medium[tid]
2281 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2282 TransferMedium->getValueType(), TransferMedium,
2283 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2284 // SrcMediumVal = *SrcMediumPtr;
2285 Address SrcMediumPtr(
2286 Bld.CreateBitCast(
2287 SrcMediumPtrVal,
2288 CopyType->getPointerTo(
2289 SrcMediumPtrVal->getType()->getPointerAddressSpace())),
2290 CopyType, Align);
2291
2292 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2293 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2294 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2295 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2296 Address TargetElemPtr(TargetElemPtrVal, CGF.Int8Ty, Align);
2297 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2298 if (NumIters > 1)
2299 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2300
2301 // *TargetElemPtr = SrcMediumVal;
2302 llvm::Value *SrcMediumValue =
2303 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2304 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2305 CType);
2306 Bld.CreateBr(W0MergeBB);
2307
2308 CGF.EmitBlock(W0ElseBB);
2309 Bld.CreateBr(W0MergeBB);
2310
2311 CGF.EmitBlock(W0MergeBB);
2312
2313 if (NumIters > 1) {
2314 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2315 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2316 CGF.EmitBranch(PrecondBB);
2317 (void)ApplyDebugLocation::CreateEmpty(CGF);
2318 CGF.EmitBlock(ExitBB);
2319 }
2320 RealTySize %= TySize;
2321 }
2322 ++Idx;
2323 }
2324
2325 CGF.FinishFunction();
2326 return Fn;
2327 }
2328
2329 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2330 /// in the same warp. It uses shuffle instructions to copy over data from
2331 /// a remote lane's stack. The reduction algorithm performed is specified
2332 /// by the fourth parameter.
2333 ///
2334 /// Algorithm Versions.
2335 /// Full Warp Reduce (argument value 0):
2336 /// This algorithm assumes that all 32 lanes are active and gathers
2337 /// data from these 32 lanes, producing a single resultant value.
2338 /// Contiguous Partial Warp Reduce (argument value 1):
2339 /// This algorithm assumes that only a *contiguous* subset of lanes
2340 /// are active. This happens for the last warp in a parallel region
2341 /// when the user specified num_threads is not an integer multiple of
2342 /// 32. This contiguous subset always starts with the zeroth lane.
2343 /// Partial Warp Reduce (argument value 2):
2344 /// This algorithm gathers data from any number of lanes at any position.
2345 /// All reduced values are stored in the lowest possible lane. The set
2346 /// of problems every algorithm addresses is a super set of those
2347 /// addressable by algorithms with a lower version number. Overhead
2348 /// increases as algorithm version increases.
2349 ///
2350 /// Terminology
2351 /// Reduce element:
2352 /// Reduce element refers to the individual data field with primitive
2353 /// data types to be combined and reduced across threads.
2354 /// Reduce list:
2355 /// Reduce list refers to a collection of local, thread-private
2356 /// reduce elements.
2357 /// Remote Reduce list:
2358 /// Remote Reduce list refers to a collection of remote (relative to
2359 /// the current thread) reduce elements.
2360 ///
2361 /// We distinguish between three states of threads that are important to
2362 /// the implementation of this function.
2363 /// Alive threads:
2364 /// Threads in a warp executing the SIMT instruction, as distinguished from
2365 /// threads that are inactive due to divergent control flow.
2366 /// Active threads:
2367 /// The minimal set of threads that has to be alive upon entry to this
2368 /// function. The computation is correct iff active threads are alive.
2369 /// Some threads are alive but they are not active because they do not
2370 /// contribute to the computation in any useful manner. Turning them off
2371 /// may introduce control flow overheads without any tangible benefits.
2372 /// Effective threads:
2373 /// In order to comply with the argument requirements of the shuffle
2374 /// function, we must keep all lanes holding data alive. But at most
2375 /// half of them perform value aggregation; we refer to this half of
2376 /// threads as effective. The other half is simply handing off their
2377 /// data.
2378 ///
2379 /// Procedure
2380 /// Value shuffle:
2381 /// In this step active threads transfer data from higher lane positions
2382 /// in the warp to lower lane positions, creating Remote Reduce list.
2383 /// Value aggregation:
2384 /// In this step, effective threads combine their thread local Reduce list
2385 /// with Remote Reduce list and store the result in the thread local
2386 /// Reduce list.
2387 /// Value copy:
2388 /// In this step, we deal with the assumption made by algorithm 2
2389 /// (i.e. contiguity assumption). When we have an odd number of lanes
2390 /// active, say 2k+1, only k threads will be effective and therefore k
2391 /// new values will be produced. However, the Reduce list owned by the
2392 /// (2k+1)th thread is ignored in the value aggregation. Therefore
2393 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2394 /// that the contiguity assumption still holds.
emitShuffleAndReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,llvm::Function * ReduceFn,SourceLocation Loc)2395 static llvm::Function *emitShuffleAndReduceFunction(
2396 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2397 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2398 ASTContext &C = CGM.getContext();
2399
2400 // Thread local Reduce list used to host the values of data to be reduced.
2401 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2402 C.VoidPtrTy, ImplicitParamDecl::Other);
2403 // Current lane id; could be logical.
2404 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2405 ImplicitParamDecl::Other);
2406 // Offset of the remote source lane relative to the current lane.
2407 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2408 C.ShortTy, ImplicitParamDecl::Other);
2409 // Algorithm version. This is expected to be known at compile time.
2410 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2411 C.ShortTy, ImplicitParamDecl::Other);
2412 FunctionArgList Args;
2413 Args.push_back(&ReduceListArg);
2414 Args.push_back(&LaneIDArg);
2415 Args.push_back(&RemoteLaneOffsetArg);
2416 Args.push_back(&AlgoVerArg);
2417
2418 const CGFunctionInfo &CGFI =
2419 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2420 auto *Fn = llvm::Function::Create(
2421 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2422 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2423 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2424 Fn->setDoesNotRecurse();
2425
2426 CodeGenFunction CGF(CGM);
2427 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2428
2429 CGBuilderTy &Bld = CGF.Builder;
2430
2431 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2432 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2433 Address LocalReduceList(
2434 Bld.CreatePointerBitCastOrAddrSpaceCast(
2435 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2436 C.VoidPtrTy, SourceLocation()),
2437 ElemTy->getPointerTo()),
2438 ElemTy, CGF.getPointerAlign());
2439
2440 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2441 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2442 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2443
2444 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2445 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2446 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2447
2448 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2449 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2450 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2451
2452 // Create a local thread-private variable to host the Reduce list
2453 // from a remote lane.
2454 Address RemoteReduceList =
2455 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2456
2457 // This loop iterates through the list of reduce elements and copies,
2458 // element by element, from a remote lane in the warp to RemoteReduceList,
2459 // hosted on the thread's stack.
2460 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2461 LocalReduceList, RemoteReduceList,
2462 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2463 /*ScratchpadIndex=*/nullptr,
2464 /*ScratchpadWidth=*/nullptr});
2465
2466 // The actions to be performed on the Remote Reduce list is dependent
2467 // on the algorithm version.
2468 //
2469 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2470 // LaneId % 2 == 0 && Offset > 0):
2471 // do the reduction value aggregation
2472 //
2473 // The thread local variable Reduce list is mutated in place to host the
2474 // reduced data, which is the aggregated value produced from local and
2475 // remote lanes.
2476 //
2477 // Note that AlgoVer is expected to be a constant integer known at compile
2478 // time.
2479 // When AlgoVer==0, the first conjunction evaluates to true, making
2480 // the entire predicate true during compile time.
2481 // When AlgoVer==1, the second conjunction has only the second part to be
2482 // evaluated during runtime. Other conjunctions evaluates to false
2483 // during compile time.
2484 // When AlgoVer==2, the third conjunction has only the second part to be
2485 // evaluated during runtime. Other conjunctions evaluates to false
2486 // during compile time.
2487 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2488
2489 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2490 llvm::Value *CondAlgo1 = Bld.CreateAnd(
2491 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2492
2493 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2494 llvm::Value *CondAlgo2 = Bld.CreateAnd(
2495 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2496 CondAlgo2 = Bld.CreateAnd(
2497 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2498
2499 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2500 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2501
2502 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2503 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2504 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2505 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2506
2507 CGF.EmitBlock(ThenBB);
2508 // reduce_function(LocalReduceList, RemoteReduceList)
2509 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2510 LocalReduceList.getPointer(), CGF.VoidPtrTy);
2511 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2512 RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2513 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2514 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2515 Bld.CreateBr(MergeBB);
2516
2517 CGF.EmitBlock(ElseBB);
2518 Bld.CreateBr(MergeBB);
2519
2520 CGF.EmitBlock(MergeBB);
2521
2522 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2523 // Reduce list.
2524 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2525 llvm::Value *CondCopy = Bld.CreateAnd(
2526 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2527
2528 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2529 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2530 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2531 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2532
2533 CGF.EmitBlock(CpyThenBB);
2534 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2535 RemoteReduceList, LocalReduceList);
2536 Bld.CreateBr(CpyMergeBB);
2537
2538 CGF.EmitBlock(CpyElseBB);
2539 Bld.CreateBr(CpyMergeBB);
2540
2541 CGF.EmitBlock(CpyMergeBB);
2542
2543 CGF.FinishFunction();
2544 return Fn;
2545 }
2546
2547 /// This function emits a helper that copies all the reduction variables from
2548 /// the team into the provided global buffer for the reduction variables.
2549 ///
2550 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2551 /// For all data entries D in reduce_data:
2552 /// Copy local D to buffer.D[Idx]
emitListToGlobalCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)2553 static llvm::Value *emitListToGlobalCopyFunction(
2554 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2555 QualType ReductionArrayTy, SourceLocation Loc,
2556 const RecordDecl *TeamReductionRec,
2557 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2558 &VarFieldMap) {
2559 ASTContext &C = CGM.getContext();
2560
2561 // Buffer: global reduction buffer.
2562 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2563 C.VoidPtrTy, ImplicitParamDecl::Other);
2564 // Idx: index of the buffer.
2565 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2566 ImplicitParamDecl::Other);
2567 // ReduceList: thread local Reduce list.
2568 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2569 C.VoidPtrTy, ImplicitParamDecl::Other);
2570 FunctionArgList Args;
2571 Args.push_back(&BufferArg);
2572 Args.push_back(&IdxArg);
2573 Args.push_back(&ReduceListArg);
2574
2575 const CGFunctionInfo &CGFI =
2576 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2577 auto *Fn = llvm::Function::Create(
2578 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2579 "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2580 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2581 Fn->setDoesNotRecurse();
2582 CodeGenFunction CGF(CGM);
2583 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2584
2585 CGBuilderTy &Bld = CGF.Builder;
2586
2587 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2588 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2589 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2590 Address LocalReduceList(
2591 Bld.CreatePointerBitCastOrAddrSpaceCast(
2592 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2593 C.VoidPtrTy, Loc),
2594 ElemTy->getPointerTo()),
2595 ElemTy, CGF.getPointerAlign());
2596 QualType StaticTy = C.getRecordType(TeamReductionRec);
2597 llvm::Type *LLVMReductionsBufferTy =
2598 CGM.getTypes().ConvertTypeForMem(StaticTy);
2599 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2600 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2601 LLVMReductionsBufferTy->getPointerTo());
2602 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2603 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2604 /*Volatile=*/false, C.IntTy,
2605 Loc)};
2606 unsigned Idx = 0;
2607 for (const Expr *Private : Privates) {
2608 // Reduce element = LocalReduceList[i]
2609 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2610 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2611 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2612 // elemptr = ((CopyType*)(elemptrptr)) + I
2613 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2614 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2615 ElemPtrPtr, ElemTy->getPointerTo());
2616 Address ElemPtr =
2617 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2618 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2619 // Global = Buffer.VD[Idx];
2620 const FieldDecl *FD = VarFieldMap.lookup(VD);
2621 LValue GlobLVal = CGF.EmitLValueForField(
2622 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2623 Address GlobAddr = GlobLVal.getAddress(CGF);
2624 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2625 GlobAddr.getPointer(), Idxs);
2626 GlobLVal.setAddress(Address(BufferPtr,
2627 CGF.ConvertTypeForMem(Private->getType()),
2628 GlobAddr.getAlignment()));
2629 switch (CGF.getEvaluationKind(Private->getType())) {
2630 case TEK_Scalar: {
2631 llvm::Value *V = CGF.EmitLoadOfScalar(
2632 ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2633 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2634 CGF.EmitStoreOfScalar(V, GlobLVal);
2635 break;
2636 }
2637 case TEK_Complex: {
2638 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2639 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2640 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2641 break;
2642 }
2643 case TEK_Aggregate:
2644 CGF.EmitAggregateCopy(GlobLVal,
2645 CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2646 Private->getType(), AggValueSlot::DoesNotOverlap);
2647 break;
2648 }
2649 ++Idx;
2650 }
2651
2652 CGF.FinishFunction();
2653 return Fn;
2654 }
2655
2656 /// This function emits a helper that reduces all the reduction variables from
2657 /// the team into the provided global buffer for the reduction variables.
2658 ///
2659 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2660 /// void *GlobPtrs[];
2661 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2662 /// ...
2663 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2664 /// reduce_function(GlobPtrs, reduce_data);
emitListToGlobalReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)2665 static llvm::Value *emitListToGlobalReduceFunction(
2666 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2667 QualType ReductionArrayTy, SourceLocation Loc,
2668 const RecordDecl *TeamReductionRec,
2669 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2670 &VarFieldMap,
2671 llvm::Function *ReduceFn) {
2672 ASTContext &C = CGM.getContext();
2673
2674 // Buffer: global reduction buffer.
2675 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2676 C.VoidPtrTy, ImplicitParamDecl::Other);
2677 // Idx: index of the buffer.
2678 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2679 ImplicitParamDecl::Other);
2680 // ReduceList: thread local Reduce list.
2681 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2682 C.VoidPtrTy, ImplicitParamDecl::Other);
2683 FunctionArgList Args;
2684 Args.push_back(&BufferArg);
2685 Args.push_back(&IdxArg);
2686 Args.push_back(&ReduceListArg);
2687
2688 const CGFunctionInfo &CGFI =
2689 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2690 auto *Fn = llvm::Function::Create(
2691 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2692 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2693 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2694 Fn->setDoesNotRecurse();
2695 CodeGenFunction CGF(CGM);
2696 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2697
2698 CGBuilderTy &Bld = CGF.Builder;
2699
2700 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2701 QualType StaticTy = C.getRecordType(TeamReductionRec);
2702 llvm::Type *LLVMReductionsBufferTy =
2703 CGM.getTypes().ConvertTypeForMem(StaticTy);
2704 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2705 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2706 LLVMReductionsBufferTy->getPointerTo());
2707
2708 // 1. Build a list of reduction variables.
2709 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2710 Address ReductionList =
2711 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2712 auto IPriv = Privates.begin();
2713 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2714 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2715 /*Volatile=*/false, C.IntTy,
2716 Loc)};
2717 unsigned Idx = 0;
2718 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2719 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2720 // Global = Buffer.VD[Idx];
2721 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2722 const FieldDecl *FD = VarFieldMap.lookup(VD);
2723 LValue GlobLVal = CGF.EmitLValueForField(
2724 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2725 Address GlobAddr = GlobLVal.getAddress(CGF);
2726 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2727 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2728 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2729 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2730 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2731 // Store array size.
2732 ++Idx;
2733 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2734 llvm::Value *Size = CGF.Builder.CreateIntCast(
2735 CGF.getVLASize(
2736 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2737 .NumElts,
2738 CGF.SizeTy, /*isSigned=*/false);
2739 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2740 Elem);
2741 }
2742 }
2743
2744 // Call reduce_function(GlobalReduceList, ReduceList)
2745 llvm::Value *GlobalReduceList =
2746 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2747 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2748 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2749 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2750 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2751 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2752 CGF.FinishFunction();
2753 return Fn;
2754 }
2755
2756 /// This function emits a helper that copies all the reduction variables from
2757 /// the team into the provided global buffer for the reduction variables.
2758 ///
2759 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2760 /// For all data entries D in reduce_data:
2761 /// Copy buffer.D[Idx] to local D;
emitGlobalToListCopyFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap)2762 static llvm::Value *emitGlobalToListCopyFunction(
2763 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2764 QualType ReductionArrayTy, SourceLocation Loc,
2765 const RecordDecl *TeamReductionRec,
2766 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2767 &VarFieldMap) {
2768 ASTContext &C = CGM.getContext();
2769
2770 // Buffer: global reduction buffer.
2771 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2772 C.VoidPtrTy, ImplicitParamDecl::Other);
2773 // Idx: index of the buffer.
2774 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2775 ImplicitParamDecl::Other);
2776 // ReduceList: thread local Reduce list.
2777 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2778 C.VoidPtrTy, ImplicitParamDecl::Other);
2779 FunctionArgList Args;
2780 Args.push_back(&BufferArg);
2781 Args.push_back(&IdxArg);
2782 Args.push_back(&ReduceListArg);
2783
2784 const CGFunctionInfo &CGFI =
2785 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2786 auto *Fn = llvm::Function::Create(
2787 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2788 "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2789 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2790 Fn->setDoesNotRecurse();
2791 CodeGenFunction CGF(CGM);
2792 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2793
2794 CGBuilderTy &Bld = CGF.Builder;
2795
2796 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2797 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2798 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2799 Address LocalReduceList(
2800 Bld.CreatePointerBitCastOrAddrSpaceCast(
2801 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2802 C.VoidPtrTy, Loc),
2803 ElemTy->getPointerTo()),
2804 ElemTy, CGF.getPointerAlign());
2805 QualType StaticTy = C.getRecordType(TeamReductionRec);
2806 llvm::Type *LLVMReductionsBufferTy =
2807 CGM.getTypes().ConvertTypeForMem(StaticTy);
2808 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2809 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2810 LLVMReductionsBufferTy->getPointerTo());
2811
2812 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2813 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2814 /*Volatile=*/false, C.IntTy,
2815 Loc)};
2816 unsigned Idx = 0;
2817 for (const Expr *Private : Privates) {
2818 // Reduce element = LocalReduceList[i]
2819 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2820 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2821 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2822 // elemptr = ((CopyType*)(elemptrptr)) + I
2823 ElemTy = CGF.ConvertTypeForMem(Private->getType());
2824 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2825 ElemPtrPtr, ElemTy->getPointerTo());
2826 Address ElemPtr =
2827 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2828 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2829 // Global = Buffer.VD[Idx];
2830 const FieldDecl *FD = VarFieldMap.lookup(VD);
2831 LValue GlobLVal = CGF.EmitLValueForField(
2832 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2833 Address GlobAddr = GlobLVal.getAddress(CGF);
2834 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(GlobAddr.getElementType(),
2835 GlobAddr.getPointer(), Idxs);
2836 GlobLVal.setAddress(Address(BufferPtr,
2837 CGF.ConvertTypeForMem(Private->getType()),
2838 GlobAddr.getAlignment()));
2839 switch (CGF.getEvaluationKind(Private->getType())) {
2840 case TEK_Scalar: {
2841 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2842 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2843 LValueBaseInfo(AlignmentSource::Type),
2844 TBAAAccessInfo());
2845 break;
2846 }
2847 case TEK_Complex: {
2848 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2849 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2850 /*isInit=*/false);
2851 break;
2852 }
2853 case TEK_Aggregate:
2854 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2855 GlobLVal, Private->getType(),
2856 AggValueSlot::DoesNotOverlap);
2857 break;
2858 }
2859 ++Idx;
2860 }
2861
2862 CGF.FinishFunction();
2863 return Fn;
2864 }
2865
2866 /// This function emits a helper that reduces all the reduction variables from
2867 /// the team into the provided global buffer for the reduction variables.
2868 ///
2869 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2870 /// void *GlobPtrs[];
2871 /// GlobPtrs[0] = (void*)&buffer.D0[Idx];
2872 /// ...
2873 /// GlobPtrs[N] = (void*)&buffer.DN[Idx];
2874 /// reduce_function(reduce_data, GlobPtrs);
emitGlobalToListReduceFunction(CodeGenModule & CGM,ArrayRef<const Expr * > Privates,QualType ReductionArrayTy,SourceLocation Loc,const RecordDecl * TeamReductionRec,const llvm::SmallDenseMap<const ValueDecl *,const FieldDecl * > & VarFieldMap,llvm::Function * ReduceFn)2875 static llvm::Value *emitGlobalToListReduceFunction(
2876 CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2877 QualType ReductionArrayTy, SourceLocation Loc,
2878 const RecordDecl *TeamReductionRec,
2879 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2880 &VarFieldMap,
2881 llvm::Function *ReduceFn) {
2882 ASTContext &C = CGM.getContext();
2883
2884 // Buffer: global reduction buffer.
2885 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2886 C.VoidPtrTy, ImplicitParamDecl::Other);
2887 // Idx: index of the buffer.
2888 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2889 ImplicitParamDecl::Other);
2890 // ReduceList: thread local Reduce list.
2891 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2892 C.VoidPtrTy, ImplicitParamDecl::Other);
2893 FunctionArgList Args;
2894 Args.push_back(&BufferArg);
2895 Args.push_back(&IdxArg);
2896 Args.push_back(&ReduceListArg);
2897
2898 const CGFunctionInfo &CGFI =
2899 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2900 auto *Fn = llvm::Function::Create(
2901 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2902 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2903 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2904 Fn->setDoesNotRecurse();
2905 CodeGenFunction CGF(CGM);
2906 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2907
2908 CGBuilderTy &Bld = CGF.Builder;
2909
2910 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2911 QualType StaticTy = C.getRecordType(TeamReductionRec);
2912 llvm::Type *LLVMReductionsBufferTy =
2913 CGM.getTypes().ConvertTypeForMem(StaticTy);
2914 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2915 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2916 LLVMReductionsBufferTy->getPointerTo());
2917
2918 // 1. Build a list of reduction variables.
2919 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2920 Address ReductionList =
2921 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2922 auto IPriv = Privates.begin();
2923 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2924 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2925 /*Volatile=*/false, C.IntTy,
2926 Loc)};
2927 unsigned Idx = 0;
2928 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2929 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2930 // Global = Buffer.VD[Idx];
2931 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2932 const FieldDecl *FD = VarFieldMap.lookup(VD);
2933 LValue GlobLVal = CGF.EmitLValueForField(
2934 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2935 Address GlobAddr = GlobLVal.getAddress(CGF);
2936 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2937 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2938 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2939 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2940 if ((*IPriv)->getType()->isVariablyModifiedType()) {
2941 // Store array size.
2942 ++Idx;
2943 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2944 llvm::Value *Size = CGF.Builder.CreateIntCast(
2945 CGF.getVLASize(
2946 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2947 .NumElts,
2948 CGF.SizeTy, /*isSigned=*/false);
2949 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2950 Elem);
2951 }
2952 }
2953
2954 // Call reduce_function(ReduceList, GlobalReduceList)
2955 llvm::Value *GlobalReduceList =
2956 CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2957 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2958 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2959 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2960 CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2961 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2962 CGF.FinishFunction();
2963 return Fn;
2964 }
2965
2966 ///
2967 /// Design of OpenMP reductions on the GPU
2968 ///
2969 /// Consider a typical OpenMP program with one or more reduction
2970 /// clauses:
2971 ///
2972 /// float foo;
2973 /// double bar;
2974 /// #pragma omp target teams distribute parallel for \
2975 /// reduction(+:foo) reduction(*:bar)
2976 /// for (int i = 0; i < N; i++) {
2977 /// foo += A[i]; bar *= B[i];
2978 /// }
2979 ///
2980 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2981 /// all teams. In our OpenMP implementation on the NVPTX device an
2982 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2983 /// within a team are mapped to CUDA threads within a threadblock.
2984 /// Our goal is to efficiently aggregate values across all OpenMP
2985 /// threads such that:
2986 ///
2987 /// - the compiler and runtime are logically concise, and
2988 /// - the reduction is performed efficiently in a hierarchical
2989 /// manner as follows: within OpenMP threads in the same warp,
2990 /// across warps in a threadblock, and finally across teams on
2991 /// the NVPTX device.
2992 ///
2993 /// Introduction to Decoupling
2994 ///
2995 /// We would like to decouple the compiler and the runtime so that the
2996 /// latter is ignorant of the reduction variables (number, data types)
2997 /// and the reduction operators. This allows a simpler interface
2998 /// and implementation while still attaining good performance.
2999 ///
3000 /// Pseudocode for the aforementioned OpenMP program generated by the
3001 /// compiler is as follows:
3002 ///
3003 /// 1. Create private copies of reduction variables on each OpenMP
3004 /// thread: 'foo_private', 'bar_private'
3005 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
3006 /// to it and writes the result in 'foo_private' and 'bar_private'
3007 /// respectively.
3008 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
3009 /// and store the result on the team master:
3010 ///
3011 /// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
3012 /// reduceData, shuffleReduceFn, interWarpCpyFn)
3013 ///
3014 /// where:
3015 /// struct ReduceData {
3016 /// double *foo;
3017 /// double *bar;
3018 /// } reduceData
3019 /// reduceData.foo = &foo_private
3020 /// reduceData.bar = &bar_private
3021 ///
3022 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3023 /// auxiliary functions generated by the compiler that operate on
3024 /// variables of type 'ReduceData'. They aid the runtime perform
3025 /// algorithmic steps in a data agnostic manner.
3026 ///
3027 /// 'shuffleReduceFn' is a pointer to a function that reduces data
3028 /// of type 'ReduceData' across two OpenMP threads (lanes) in the
3029 /// same warp. It takes the following arguments as input:
3030 ///
3031 /// a. variable of type 'ReduceData' on the calling lane,
3032 /// b. its lane_id,
3033 /// c. an offset relative to the current lane_id to generate a
3034 /// remote_lane_id. The remote lane contains the second
3035 /// variable of type 'ReduceData' that is to be reduced.
3036 /// d. an algorithm version parameter determining which reduction
3037 /// algorithm to use.
3038 ///
3039 /// 'shuffleReduceFn' retrieves data from the remote lane using
3040 /// efficient GPU shuffle intrinsics and reduces, using the
3041 /// algorithm specified by the 4th parameter, the two operands
3042 /// element-wise. The result is written to the first operand.
3043 ///
3044 /// Different reduction algorithms are implemented in different
3045 /// runtime functions, all calling 'shuffleReduceFn' to perform
3046 /// the essential reduction step. Therefore, based on the 4th
3047 /// parameter, this function behaves slightly differently to
3048 /// cooperate with the runtime to ensure correctness under
3049 /// different circumstances.
3050 ///
3051 /// 'InterWarpCpyFn' is a pointer to a function that transfers
3052 /// reduced variables across warps. It tunnels, through CUDA
3053 /// shared memory, the thread-private data of type 'ReduceData'
3054 /// from lane 0 of each warp to a lane in the first warp.
3055 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3056 /// The last team writes the global reduced value to memory.
3057 ///
3058 /// ret = __kmpc_nvptx_teams_reduce_nowait(...,
3059 /// reduceData, shuffleReduceFn, interWarpCpyFn,
3060 /// scratchpadCopyFn, loadAndReduceFn)
3061 ///
3062 /// 'scratchpadCopyFn' is a helper that stores reduced
3063 /// data from the team master to a scratchpad array in
3064 /// global memory.
3065 ///
3066 /// 'loadAndReduceFn' is a helper that loads data from
3067 /// the scratchpad array and reduces it with the input
3068 /// operand.
3069 ///
3070 /// These compiler generated functions hide address
3071 /// calculation and alignment information from the runtime.
3072 /// 5. if ret == 1:
3073 /// The team master of the last team stores the reduced
3074 /// result to the globals in memory.
3075 /// foo += reduceData.foo; bar *= reduceData.bar
3076 ///
3077 ///
3078 /// Warp Reduction Algorithms
3079 ///
3080 /// On the warp level, we have three algorithms implemented in the
3081 /// OpenMP runtime depending on the number of active lanes:
3082 ///
3083 /// Full Warp Reduction
3084 ///
3085 /// The reduce algorithm within a warp where all lanes are active
3086 /// is implemented in the runtime as follows:
3087 ///
3088 /// full_warp_reduce(void *reduce_data,
3089 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3090 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3091 /// ShuffleReduceFn(reduce_data, 0, offset, 0);
3092 /// }
3093 ///
3094 /// The algorithm completes in log(2, WARPSIZE) steps.
3095 ///
3096 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3097 /// not used therefore we save instructions by not retrieving lane_id
3098 /// from the corresponding special registers. The 4th parameter, which
3099 /// represents the version of the algorithm being used, is set to 0 to
3100 /// signify full warp reduction.
3101 ///
3102 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3103 ///
3104 /// #reduce_elem refers to an element in the local lane's data structure
3105 /// #remote_elem is retrieved from a remote lane
3106 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3107 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3108 ///
3109 /// Contiguous Partial Warp Reduction
3110 ///
3111 /// This reduce algorithm is used within a warp where only the first
3112 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
3113 /// number of OpenMP threads in a parallel region is not a multiple of
3114 /// WARPSIZE. The algorithm is implemented in the runtime as follows:
3115 ///
3116 /// void
3117 /// contiguous_partial_reduce(void *reduce_data,
3118 /// kmp_ShuffleReductFctPtr ShuffleReduceFn,
3119 /// int size, int lane_id) {
3120 /// int curr_size;
3121 /// int offset;
3122 /// curr_size = size;
3123 /// mask = curr_size/2;
3124 /// while (offset>0) {
3125 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3126 /// curr_size = (curr_size+1)/2;
3127 /// offset = curr_size/2;
3128 /// }
3129 /// }
3130 ///
3131 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3132 ///
3133 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3134 /// if (lane_id < offset)
3135 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
3136 /// else
3137 /// reduce_elem = remote_elem
3138 ///
3139 /// This algorithm assumes that the data to be reduced are located in a
3140 /// contiguous subset of lanes starting from the first. When there is
3141 /// an odd number of active lanes, the data in the last lane is not
3142 /// aggregated with any other lane's dat but is instead copied over.
3143 ///
3144 /// Dispersed Partial Warp Reduction
3145 ///
3146 /// This algorithm is used within a warp when any discontiguous subset of
3147 /// lanes are active. It is used to implement the reduction operation
3148 /// across lanes in an OpenMP simd region or in a nested parallel region.
3149 ///
3150 /// void
3151 /// dispersed_partial_reduce(void *reduce_data,
3152 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3153 /// int size, remote_id;
3154 /// int logical_lane_id = number_of_active_lanes_before_me() * 2;
3155 /// do {
3156 /// remote_id = next_active_lane_id_right_after_me();
3157 /// # the above function returns 0 of no active lane
3158 /// # is present right after the current lane.
3159 /// size = number_of_active_lanes_in_this_warp();
3160 /// logical_lane_id /= 2;
3161 /// ShuffleReduceFn(reduce_data, logical_lane_id,
3162 /// remote_id-1-threadIdx.x, 2);
3163 /// } while (logical_lane_id % 2 == 0 && size > 1);
3164 /// }
3165 ///
3166 /// There is no assumption made about the initial state of the reduction.
3167 /// Any number of lanes (>=1) could be active at any position. The reduction
3168 /// result is returned in the first active lane.
3169 ///
3170 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3171 ///
3172 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3173 /// if (lane_id % 2 == 0 && offset > 0)
3174 /// reduce_elem = reduce_elem REDUCE_OP remote_elem
3175 /// else
3176 /// reduce_elem = remote_elem
3177 ///
3178 ///
3179 /// Intra-Team Reduction
3180 ///
3181 /// This function, as implemented in the runtime call
3182 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3183 /// threads in a team. It first reduces within a warp using the
3184 /// aforementioned algorithms. We then proceed to gather all such
3185 /// reduced values at the first warp.
3186 ///
3187 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3188 /// data from each of the "warp master" (zeroth lane of each warp, where
3189 /// warp-reduced data is held) to the zeroth warp. This step reduces (in
3190 /// a mathematical sense) the problem of reduction across warp masters in
3191 /// a block to the problem of warp reduction.
3192 ///
3193 ///
3194 /// Inter-Team Reduction
3195 ///
3196 /// Once a team has reduced its data to a single value, it is stored in
3197 /// a global scratchpad array. Since each team has a distinct slot, this
3198 /// can be done without locking.
3199 ///
3200 /// The last team to write to the scratchpad array proceeds to reduce the
3201 /// scratchpad array. One or more workers in the last team use the helper
3202 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3203 /// the k'th worker reduces every k'th element.
3204 ///
3205 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3206 /// reduce across workers and compute a globally reduced value.
3207 ///
emitReduction(CodeGenFunction & CGF,SourceLocation Loc,ArrayRef<const Expr * > Privates,ArrayRef<const Expr * > LHSExprs,ArrayRef<const Expr * > RHSExprs,ArrayRef<const Expr * > ReductionOps,ReductionOptionsTy Options)3208 void CGOpenMPRuntimeGPU::emitReduction(
3209 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3210 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3211 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3212 if (!CGF.HaveInsertPoint())
3213 return;
3214
3215 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3216 #ifndef NDEBUG
3217 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3218 #endif
3219
3220 if (Options.SimpleReduction) {
3221 assert(!TeamsReduction && !ParallelReduction &&
3222 "Invalid reduction selection in emitReduction.");
3223 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3224 ReductionOps, Options);
3225 return;
3226 }
3227
3228 assert((TeamsReduction || ParallelReduction) &&
3229 "Invalid reduction selection in emitReduction.");
3230
3231 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3232 // RedList, shuffle_reduce_func, interwarp_copy_func);
3233 // or
3234 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3235 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3236 llvm::Value *ThreadId = getThreadID(CGF, Loc);
3237
3238 llvm::Value *Res;
3239 ASTContext &C = CGM.getContext();
3240 // 1. Build a list of reduction variables.
3241 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3242 auto Size = RHSExprs.size();
3243 for (const Expr *E : Privates) {
3244 if (E->getType()->isVariablyModifiedType())
3245 // Reserve place for array size.
3246 ++Size;
3247 }
3248 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3249 QualType ReductionArrayTy =
3250 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3251 /*IndexTypeQuals=*/0);
3252 Address ReductionList =
3253 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3254 auto IPriv = Privates.begin();
3255 unsigned Idx = 0;
3256 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3257 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3258 CGF.Builder.CreateStore(
3259 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3260 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3261 Elem);
3262 if ((*IPriv)->getType()->isVariablyModifiedType()) {
3263 // Store array size.
3264 ++Idx;
3265 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3266 llvm::Value *Size = CGF.Builder.CreateIntCast(
3267 CGF.getVLASize(
3268 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3269 .NumElts,
3270 CGF.SizeTy, /*isSigned=*/false);
3271 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3272 Elem);
3273 }
3274 }
3275
3276 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3277 ReductionList.getPointer(), CGF.VoidPtrTy);
3278 llvm::Function *ReductionFn =
3279 emitReductionFunction(Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
3280 Privates, LHSExprs, RHSExprs, ReductionOps);
3281 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3282 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3283 CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3284 llvm::Value *InterWarpCopyFn =
3285 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3286
3287 if (ParallelReduction) {
3288 llvm::Value *Args[] = {RTLoc,
3289 ThreadId,
3290 CGF.Builder.getInt32(RHSExprs.size()),
3291 ReductionArrayTySize,
3292 RL,
3293 ShuffleAndReduceFn,
3294 InterWarpCopyFn};
3295
3296 Res = CGF.EmitRuntimeCall(
3297 OMPBuilder.getOrCreateRuntimeFunction(
3298 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3299 Args);
3300 } else {
3301 assert(TeamsReduction && "expected teams reduction.");
3302 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3303 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3304 int Cnt = 0;
3305 for (const Expr *DRE : Privates) {
3306 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3307 ++Cnt;
3308 }
3309 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3310 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3311 C.getLangOpts().OpenMPCUDAReductionBufNum);
3312 TeamsReductions.push_back(TeamReductionRec);
3313 if (!KernelTeamsReductionPtr) {
3314 KernelTeamsReductionPtr = new llvm::GlobalVariable(
3315 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3316 llvm::GlobalValue::InternalLinkage, nullptr,
3317 "_openmp_teams_reductions_buffer_$_$ptr");
3318 }
3319 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3320 Address(KernelTeamsReductionPtr, CGF.VoidPtrTy, CGM.getPointerAlign()),
3321 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3322 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3323 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3324 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3325 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3326 ReductionFn);
3327 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3328 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3329 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3330 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3331 ReductionFn);
3332
3333 llvm::Value *Args[] = {
3334 RTLoc,
3335 ThreadId,
3336 GlobalBufferPtr,
3337 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3338 RL,
3339 ShuffleAndReduceFn,
3340 InterWarpCopyFn,
3341 GlobalToBufferCpyFn,
3342 GlobalToBufferRedFn,
3343 BufferToGlobalCpyFn,
3344 BufferToGlobalRedFn};
3345
3346 Res = CGF.EmitRuntimeCall(
3347 OMPBuilder.getOrCreateRuntimeFunction(
3348 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3349 Args);
3350 }
3351
3352 // 5. Build if (res == 1)
3353 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3354 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3355 llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3356 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3357 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3358
3359 // 6. Build then branch: where we have reduced values in the master
3360 // thread in each team.
3361 // __kmpc_end_reduce{_nowait}(<gtid>);
3362 // break;
3363 CGF.EmitBlock(ThenBB);
3364
3365 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3366 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3367 this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3368 auto IPriv = Privates.begin();
3369 auto ILHS = LHSExprs.begin();
3370 auto IRHS = RHSExprs.begin();
3371 for (const Expr *E : ReductionOps) {
3372 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3373 cast<DeclRefExpr>(*IRHS));
3374 ++IPriv;
3375 ++ILHS;
3376 ++IRHS;
3377 }
3378 };
3379 llvm::Value *EndArgs[] = {ThreadId};
3380 RegionCodeGenTy RCG(CodeGen);
3381 NVPTXActionTy Action(
3382 nullptr, llvm::None,
3383 OMPBuilder.getOrCreateRuntimeFunction(
3384 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3385 EndArgs);
3386 RCG.setAction(Action);
3387 RCG(CGF);
3388 // There is no need to emit line number for unconditional branch.
3389 (void)ApplyDebugLocation::CreateEmpty(CGF);
3390 CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3391 }
3392
3393 const VarDecl *
translateParameter(const FieldDecl * FD,const VarDecl * NativeParam) const3394 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3395 const VarDecl *NativeParam) const {
3396 if (!NativeParam->getType()->isReferenceType())
3397 return NativeParam;
3398 QualType ArgType = NativeParam->getType();
3399 QualifierCollector QC;
3400 const Type *NonQualTy = QC.strip(ArgType);
3401 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3402 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3403 if (Attr->getCaptureKind() == OMPC_map) {
3404 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3405 LangAS::opencl_global);
3406 }
3407 }
3408 ArgType = CGM.getContext().getPointerType(PointeeTy);
3409 QC.addRestrict();
3410 enum { NVPTX_local_addr = 5 };
3411 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3412 ArgType = QC.apply(CGM.getContext(), ArgType);
3413 if (isa<ImplicitParamDecl>(NativeParam))
3414 return ImplicitParamDecl::Create(
3415 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3416 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3417 return ParmVarDecl::Create(
3418 CGM.getContext(),
3419 const_cast<DeclContext *>(NativeParam->getDeclContext()),
3420 NativeParam->getBeginLoc(), NativeParam->getLocation(),
3421 NativeParam->getIdentifier(), ArgType,
3422 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3423 }
3424
3425 Address
getParameterAddress(CodeGenFunction & CGF,const VarDecl * NativeParam,const VarDecl * TargetParam) const3426 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3427 const VarDecl *NativeParam,
3428 const VarDecl *TargetParam) const {
3429 assert(NativeParam != TargetParam &&
3430 NativeParam->getType()->isReferenceType() &&
3431 "Native arg must not be the same as target arg.");
3432 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3433 QualType NativeParamType = NativeParam->getType();
3434 QualifierCollector QC;
3435 const Type *NonQualTy = QC.strip(NativeParamType);
3436 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3437 unsigned NativePointeeAddrSpace =
3438 CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3439 QualType TargetTy = TargetParam->getType();
3440 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3441 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3442 // First cast to generic.
3443 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3444 TargetAddr, llvm::PointerType::getWithSamePointeeType(
3445 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3446 // Cast from generic to native address space.
3447 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3448 TargetAddr, llvm::PointerType::getWithSamePointeeType(
3449 cast<llvm::PointerType>(TargetAddr->getType()),
3450 NativePointeeAddrSpace));
3451 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3452 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3453 NativeParamType);
3454 return NativeParamAddr;
3455 }
3456
emitOutlinedFunctionCall(CodeGenFunction & CGF,SourceLocation Loc,llvm::FunctionCallee OutlinedFn,ArrayRef<llvm::Value * > Args) const3457 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3458 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3459 ArrayRef<llvm::Value *> Args) const {
3460 SmallVector<llvm::Value *, 4> TargetArgs;
3461 TargetArgs.reserve(Args.size());
3462 auto *FnType = OutlinedFn.getFunctionType();
3463 for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3464 if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3465 TargetArgs.append(std::next(Args.begin(), I), Args.end());
3466 break;
3467 }
3468 llvm::Type *TargetType = FnType->getParamType(I);
3469 llvm::Value *NativeArg = Args[I];
3470 if (!TargetType->isPointerTy()) {
3471 TargetArgs.emplace_back(NativeArg);
3472 continue;
3473 }
3474 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3475 NativeArg, llvm::PointerType::getWithSamePointeeType(
3476 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3477 TargetArgs.emplace_back(
3478 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3479 }
3480 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3481 }
3482
3483 /// Emit function which wraps the outline parallel region
3484 /// and controls the arguments which are passed to this function.
3485 /// The wrapper ensures that the outlined function is called
3486 /// with the correct arguments when data is shared.
createParallelDataSharingWrapper(llvm::Function * OutlinedParallelFn,const OMPExecutableDirective & D)3487 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3488 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3489 ASTContext &Ctx = CGM.getContext();
3490 const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3491
3492 // Create a function that takes as argument the source thread.
3493 FunctionArgList WrapperArgs;
3494 QualType Int16QTy =
3495 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3496 QualType Int32QTy =
3497 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3498 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3499 /*Id=*/nullptr, Int16QTy,
3500 ImplicitParamDecl::Other);
3501 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3502 /*Id=*/nullptr, Int32QTy,
3503 ImplicitParamDecl::Other);
3504 WrapperArgs.emplace_back(&ParallelLevelArg);
3505 WrapperArgs.emplace_back(&WrapperArg);
3506
3507 const CGFunctionInfo &CGFI =
3508 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3509
3510 auto *Fn = llvm::Function::Create(
3511 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3512 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3513
3514 // Ensure we do not inline the function. This is trivially true for the ones
3515 // passed to __kmpc_fork_call but the ones calles in serialized regions
3516 // could be inlined. This is not a perfect but it is closer to the invariant
3517 // we want, namely, every data environment starts with a new function.
3518 // TODO: We should pass the if condition to the runtime function and do the
3519 // handling there. Much cleaner code.
3520 Fn->addFnAttr(llvm::Attribute::NoInline);
3521
3522 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3523 Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3524 Fn->setDoesNotRecurse();
3525
3526 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3527 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3528 D.getBeginLoc(), D.getBeginLoc());
3529
3530 const auto *RD = CS.getCapturedRecordDecl();
3531 auto CurField = RD->field_begin();
3532
3533 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3534 /*Name=*/".zero.addr");
3535 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3536 // Get the array of arguments.
3537 SmallVector<llvm::Value *, 8> Args;
3538
3539 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3540 Args.emplace_back(ZeroAddr.getPointer());
3541
3542 CGBuilderTy &Bld = CGF.Builder;
3543 auto CI = CS.capture_begin();
3544
3545 // Use global memory for data sharing.
3546 // Handle passing of global args to workers.
3547 Address GlobalArgs =
3548 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3549 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3550 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3551 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3552 CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3553 DataSharingArgs);
3554
3555 // Retrieve the shared variables from the list of references returned
3556 // by the runtime. Pass the variables to the outlined function.
3557 Address SharedArgListAddress = Address::invalid();
3558 if (CS.capture_size() > 0 ||
3559 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3560 SharedArgListAddress = CGF.EmitLoadOfPointer(
3561 GlobalArgs, CGF.getContext()
3562 .getPointerType(CGF.getContext().VoidPtrTy)
3563 .castAs<PointerType>());
3564 }
3565 unsigned Idx = 0;
3566 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3567 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3568 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3569 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3570 llvm::Value *LB = CGF.EmitLoadOfScalar(
3571 TypedAddress,
3572 /*Volatile=*/false,
3573 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3574 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3575 Args.emplace_back(LB);
3576 ++Idx;
3577 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3578 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3579 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3580 llvm::Value *UB = CGF.EmitLoadOfScalar(
3581 TypedAddress,
3582 /*Volatile=*/false,
3583 CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3584 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3585 Args.emplace_back(UB);
3586 ++Idx;
3587 }
3588 if (CS.capture_size() > 0) {
3589 ASTContext &CGFContext = CGF.getContext();
3590 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3591 QualType ElemTy = CurField->getType();
3592 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3593 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3594 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3595 CGF.ConvertTypeForMem(ElemTy));
3596 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3597 /*Volatile=*/false,
3598 CGFContext.getPointerType(ElemTy),
3599 CI->getLocation());
3600 if (CI->capturesVariableByCopy() &&
3601 !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3602 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3603 CI->getLocation());
3604 }
3605 Args.emplace_back(Arg);
3606 }
3607 }
3608
3609 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3610 CGF.FinishFunction();
3611 return Fn;
3612 }
3613
emitFunctionProlog(CodeGenFunction & CGF,const Decl * D)3614 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3615 const Decl *D) {
3616 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3617 return;
3618
3619 assert(D && "Expected function or captured|block decl.");
3620 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3621 "Function is registered already.");
3622 assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3623 "Team is set but not processed.");
3624 const Stmt *Body = nullptr;
3625 bool NeedToDelayGlobalization = false;
3626 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3627 Body = FD->getBody();
3628 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3629 Body = BD->getBody();
3630 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3631 Body = CD->getBody();
3632 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3633 if (NeedToDelayGlobalization &&
3634 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3635 return;
3636 }
3637 if (!Body)
3638 return;
3639 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3640 VarChecker.Visit(Body);
3641 const RecordDecl *GlobalizedVarsRecord =
3642 VarChecker.getGlobalizedRecord(IsInTTDRegion);
3643 TeamAndReductions.first = nullptr;
3644 TeamAndReductions.second.clear();
3645 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3646 VarChecker.getEscapedVariableLengthDecls();
3647 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3648 return;
3649 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3650 I->getSecond().MappedParams =
3651 std::make_unique<CodeGenFunction::OMPMapVars>();
3652 I->getSecond().EscapedParameters.insert(
3653 VarChecker.getEscapedParameters().begin(),
3654 VarChecker.getEscapedParameters().end());
3655 I->getSecond().EscapedVariableLengthDecls.append(
3656 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3657 DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3658 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3659 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3660 Data.insert(std::make_pair(VD, MappedVarData()));
3661 }
3662 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3663 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3664 VarChecker.Visit(Body);
3665 I->getSecond().SecondaryLocalVarData.emplace();
3666 DeclToAddrMapTy &Data = *I->getSecond().SecondaryLocalVarData;
3667 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3668 assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3669 Data.insert(std::make_pair(VD, MappedVarData()));
3670 }
3671 }
3672 if (!NeedToDelayGlobalization) {
3673 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3674 struct GlobalizationScope final : EHScopeStack::Cleanup {
3675 GlobalizationScope() = default;
3676
3677 void Emit(CodeGenFunction &CGF, Flags flags) override {
3678 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3679 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3680 }
3681 };
3682 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3683 }
3684 }
3685
getAddressOfLocalVariable(CodeGenFunction & CGF,const VarDecl * VD)3686 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3687 const VarDecl *VD) {
3688 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3689 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3690 auto AS = LangAS::Default;
3691 switch (A->getAllocatorType()) {
3692 // Use the default allocator here as by default local vars are
3693 // threadlocal.
3694 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3695 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3696 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3697 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3698 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3699 // Follow the user decision - use default allocation.
3700 return Address::invalid();
3701 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3702 // TODO: implement aupport for user-defined allocators.
3703 return Address::invalid();
3704 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3705 AS = LangAS::cuda_constant;
3706 break;
3707 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3708 AS = LangAS::cuda_shared;
3709 break;
3710 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3711 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3712 break;
3713 }
3714 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3715 auto *GV = new llvm::GlobalVariable(
3716 CGM.getModule(), VarTy, /*isConstant=*/false,
3717 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3718 VD->getName(),
3719 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3720 CGM.getContext().getTargetAddressSpace(AS));
3721 CharUnits Align = CGM.getContext().getDeclAlign(VD);
3722 GV->setAlignment(Align.getAsAlign());
3723 return Address(
3724 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3725 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3726 VD->getType().getAddressSpace()))),
3727 VarTy, Align);
3728 }
3729
3730 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3731 return Address::invalid();
3732
3733 VD = VD->getCanonicalDecl();
3734 auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3735 if (I == FunctionGlobalizedDecls.end())
3736 return Address::invalid();
3737 auto VDI = I->getSecond().LocalVarData.find(VD);
3738 if (VDI != I->getSecond().LocalVarData.end())
3739 return VDI->second.PrivateAddr;
3740 if (VD->hasAttrs()) {
3741 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3742 E(VD->attr_end());
3743 IT != E; ++IT) {
3744 auto VDI = I->getSecond().LocalVarData.find(
3745 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3746 ->getCanonicalDecl());
3747 if (VDI != I->getSecond().LocalVarData.end())
3748 return VDI->second.PrivateAddr;
3749 }
3750 }
3751
3752 return Address::invalid();
3753 }
3754
functionFinished(CodeGenFunction & CGF)3755 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3756 FunctionGlobalizedDecls.erase(CGF.CurFn);
3757 CGOpenMPRuntime::functionFinished(CGF);
3758 }
3759
getDefaultDistScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPDistScheduleClauseKind & ScheduleKind,llvm::Value * & Chunk) const3760 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3761 CodeGenFunction &CGF, const OMPLoopDirective &S,
3762 OpenMPDistScheduleClauseKind &ScheduleKind,
3763 llvm::Value *&Chunk) const {
3764 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3765 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3766 ScheduleKind = OMPC_DIST_SCHEDULE_static;
3767 Chunk = CGF.EmitScalarConversion(
3768 RT.getGPUNumThreads(CGF),
3769 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3770 S.getIterationVariable()->getType(), S.getBeginLoc());
3771 return;
3772 }
3773 CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3774 CGF, S, ScheduleKind, Chunk);
3775 }
3776
getDefaultScheduleAndChunk(CodeGenFunction & CGF,const OMPLoopDirective & S,OpenMPScheduleClauseKind & ScheduleKind,const Expr * & ChunkExpr) const3777 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3778 CodeGenFunction &CGF, const OMPLoopDirective &S,
3779 OpenMPScheduleClauseKind &ScheduleKind,
3780 const Expr *&ChunkExpr) const {
3781 ScheduleKind = OMPC_SCHEDULE_static;
3782 // Chunk size is 1 in this case.
3783 llvm::APInt ChunkSize(32, 1);
3784 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3785 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3786 SourceLocation());
3787 }
3788
adjustTargetSpecificDataForLambdas(CodeGenFunction & CGF,const OMPExecutableDirective & D) const3789 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3790 CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3791 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3792 " Expected target-based directive.");
3793 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3794 for (const CapturedStmt::Capture &C : CS->captures()) {
3795 // Capture variables captured by reference in lambdas for target-based
3796 // directives.
3797 if (!C.capturesVariable())
3798 continue;
3799 const VarDecl *VD = C.getCapturedVar();
3800 const auto *RD = VD->getType()
3801 .getCanonicalType()
3802 .getNonReferenceType()
3803 ->getAsCXXRecordDecl();
3804 if (!RD || !RD->isLambda())
3805 continue;
3806 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3807 LValue VDLVal;
3808 if (VD->getType().getCanonicalType()->isReferenceType())
3809 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3810 else
3811 VDLVal = CGF.MakeAddrLValue(
3812 VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3813 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3814 FieldDecl *ThisCapture = nullptr;
3815 RD->getCaptureFields(Captures, ThisCapture);
3816 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3817 LValue ThisLVal =
3818 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3819 llvm::Value *CXXThis = CGF.LoadCXXThis();
3820 CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3821 }
3822 for (const LambdaCapture &LC : RD->captures()) {
3823 if (LC.getCaptureKind() != LCK_ByRef)
3824 continue;
3825 const VarDecl *VD = LC.getCapturedVar();
3826 if (!CS->capturesVariable(VD))
3827 continue;
3828 auto It = Captures.find(VD);
3829 assert(It != Captures.end() && "Found lambda capture without field.");
3830 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3831 Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3832 if (VD->getType().getCanonicalType()->isReferenceType())
3833 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3834 VD->getType().getCanonicalType())
3835 .getAddress(CGF);
3836 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3837 }
3838 }
3839 }
3840
hasAllocateAttributeForGlobalVar(const VarDecl * VD,LangAS & AS)3841 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3842 LangAS &AS) {
3843 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3844 return false;
3845 const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3846 switch(A->getAllocatorType()) {
3847 case OMPAllocateDeclAttr::OMPNullMemAlloc:
3848 case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3849 // Not supported, fallback to the default mem space.
3850 case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3851 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3852 case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3853 case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3854 case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3855 AS = LangAS::Default;
3856 return true;
3857 case OMPAllocateDeclAttr::OMPConstMemAlloc:
3858 AS = LangAS::cuda_constant;
3859 return true;
3860 case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3861 AS = LangAS::cuda_shared;
3862 return true;
3863 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3864 llvm_unreachable("Expected predefined allocator for the variables with the "
3865 "static storage.");
3866 }
3867 return false;
3868 }
3869
3870 // Get current CudaArch and ignore any unknown values
getCudaArch(CodeGenModule & CGM)3871 static CudaArch getCudaArch(CodeGenModule &CGM) {
3872 if (!CGM.getTarget().hasFeature("ptx"))
3873 return CudaArch::UNKNOWN;
3874 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3875 if (Feature.getValue()) {
3876 CudaArch Arch = StringToCudaArch(Feature.getKey());
3877 if (Arch != CudaArch::UNKNOWN)
3878 return Arch;
3879 }
3880 }
3881 return CudaArch::UNKNOWN;
3882 }
3883
3884 /// Check to see if target architecture supports unified addressing which is
3885 /// a restriction for OpenMP requires clause "unified_shared_memory".
processRequiresDirective(const OMPRequiresDecl * D)3886 void CGOpenMPRuntimeGPU::processRequiresDirective(
3887 const OMPRequiresDecl *D) {
3888 for (const OMPClause *Clause : D->clauselists()) {
3889 if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3890 CudaArch Arch = getCudaArch(CGM);
3891 switch (Arch) {
3892 case CudaArch::SM_20:
3893 case CudaArch::SM_21:
3894 case CudaArch::SM_30:
3895 case CudaArch::SM_32:
3896 case CudaArch::SM_35:
3897 case CudaArch::SM_37:
3898 case CudaArch::SM_50:
3899 case CudaArch::SM_52:
3900 case CudaArch::SM_53: {
3901 SmallString<256> Buffer;
3902 llvm::raw_svector_ostream Out(Buffer);
3903 Out << "Target architecture " << CudaArchToString(Arch)
3904 << " does not support unified addressing";
3905 CGM.Error(Clause->getBeginLoc(), Out.str());
3906 return;
3907 }
3908 case CudaArch::SM_60:
3909 case CudaArch::SM_61:
3910 case CudaArch::SM_62:
3911 case CudaArch::SM_70:
3912 case CudaArch::SM_72:
3913 case CudaArch::SM_75:
3914 case CudaArch::SM_80:
3915 case CudaArch::SM_86:
3916 case CudaArch::GFX600:
3917 case CudaArch::GFX601:
3918 case CudaArch::GFX602:
3919 case CudaArch::GFX700:
3920 case CudaArch::GFX701:
3921 case CudaArch::GFX702:
3922 case CudaArch::GFX703:
3923 case CudaArch::GFX704:
3924 case CudaArch::GFX705:
3925 case CudaArch::GFX801:
3926 case CudaArch::GFX802:
3927 case CudaArch::GFX803:
3928 case CudaArch::GFX805:
3929 case CudaArch::GFX810:
3930 case CudaArch::GFX900:
3931 case CudaArch::GFX902:
3932 case CudaArch::GFX904:
3933 case CudaArch::GFX906:
3934 case CudaArch::GFX908:
3935 case CudaArch::GFX909:
3936 case CudaArch::GFX90a:
3937 case CudaArch::GFX90c:
3938 case CudaArch::GFX940:
3939 case CudaArch::GFX1010:
3940 case CudaArch::GFX1011:
3941 case CudaArch::GFX1012:
3942 case CudaArch::GFX1013:
3943 case CudaArch::GFX1030:
3944 case CudaArch::GFX1031:
3945 case CudaArch::GFX1032:
3946 case CudaArch::GFX1033:
3947 case CudaArch::GFX1034:
3948 case CudaArch::GFX1035:
3949 case CudaArch::GFX1036:
3950 case CudaArch::GFX1100:
3951 case CudaArch::GFX1101:
3952 case CudaArch::GFX1102:
3953 case CudaArch::GFX1103:
3954 case CudaArch::Generic:
3955 case CudaArch::UNUSED:
3956 case CudaArch::UNKNOWN:
3957 break;
3958 case CudaArch::LAST:
3959 llvm_unreachable("Unexpected Cuda arch.");
3960 }
3961 }
3962 }
3963 CGOpenMPRuntime::processRequiresDirective(D);
3964 }
3965
clear()3966 void CGOpenMPRuntimeGPU::clear() {
3967
3968 if (!TeamsReductions.empty()) {
3969 ASTContext &C = CGM.getContext();
3970 RecordDecl *StaticRD = C.buildImplicitRecord(
3971 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3972 StaticRD->startDefinition();
3973 for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3974 QualType RecTy = C.getRecordType(TeamReductionRec);
3975 auto *Field = FieldDecl::Create(
3976 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3977 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3978 /*BW=*/nullptr, /*Mutable=*/false,
3979 /*InitStyle=*/ICIS_NoInit);
3980 Field->setAccess(AS_public);
3981 StaticRD->addDecl(Field);
3982 }
3983 StaticRD->completeDefinition();
3984 QualType StaticTy = C.getRecordType(StaticRD);
3985 llvm::Type *LLVMReductionsBufferTy =
3986 CGM.getTypes().ConvertTypeForMem(StaticTy);
3987 // FIXME: nvlink does not handle weak linkage correctly (object with the
3988 // different size are reported as erroneous).
3989 // Restore CommonLinkage as soon as nvlink is fixed.
3990 auto *GV = new llvm::GlobalVariable(
3991 CGM.getModule(), LLVMReductionsBufferTy,
3992 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3993 llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3994 "_openmp_teams_reductions_buffer_$_");
3995 KernelTeamsReductionPtr->setInitializer(
3996 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3997 CGM.VoidPtrTy));
3998 }
3999 CGOpenMPRuntime::clear();
4000 }
4001
getGPUNumThreads(CodeGenFunction & CGF)4002 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
4003 CGBuilderTy &Bld = CGF.Builder;
4004 llvm::Module *M = &CGF.CGM.getModule();
4005 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
4006 llvm::Function *F = M->getFunction(LocSize);
4007 if (!F) {
4008 F = llvm::Function::Create(
4009 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
4010 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
4011 }
4012 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
4013 }
4014
getGPUThreadID(CodeGenFunction & CGF)4015 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
4016 ArrayRef<llvm::Value *> Args{};
4017 return CGF.EmitRuntimeCall(
4018 OMPBuilder.getOrCreateRuntimeFunction(
4019 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
4020 Args);
4021 }
4022
getGPUWarpSize(CodeGenFunction & CGF)4023 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
4024 ArrayRef<llvm::Value *> Args{};
4025 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4026 CGM.getModule(), OMPRTL___kmpc_get_warp_size),
4027 Args);
4028 }
4029