1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 llvm::Function *Fn = dyn_cast<llvm::Function>(Addr); 1129 if (!Fn) 1130 return; 1131 1132 llvm::Module &M = CGM.getModule(); 1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1134 1135 // Get "nvvm.annotations" metadata node. 1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1137 1138 llvm::Metadata *MDVals[] = { 1139 llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"), 1140 llvm::ConstantAsMetadata::get( 1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1142 // Append metadata to nvvm.annotations. 1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1144 1145 // Add a function attribute for the kernel. 1146 Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel")); 1147 } 1148 1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1150 const OMPExecutableDirective &D, StringRef ParentName, 1151 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1152 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1153 if (!IsOffloadEntry) // Nothing to do. 1154 return; 1155 1156 assert(!ParentName.empty() && "Invalid target region parent name!"); 1157 1158 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1159 if (Mode) 1160 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1161 CodeGen); 1162 else 1163 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1164 CodeGen); 1165 1166 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1167 } 1168 1169 namespace { 1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1171 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1172 enum ModeFlagsTy : unsigned { 1173 /// Bit set to 1 when in SPMD mode. 1174 KMP_IDENT_SPMD_MODE = 0x01, 1175 /// Bit set to 1 when a simplified runtime is used. 1176 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1177 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1178 }; 1179 1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1181 static const ModeFlagsTy UndefinedMode = 1182 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1183 } // anonymous namespace 1184 1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1186 switch (getExecutionMode()) { 1187 case EM_SPMD: 1188 if (requiresFullRuntime()) 1189 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1190 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1191 case EM_NonSPMD: 1192 assert(requiresFullRuntime() && "Expected full runtime."); 1193 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1194 case EM_Unknown: 1195 return UndefinedMode; 1196 } 1197 llvm_unreachable("Unknown flags are requested."); 1198 } 1199 1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1201 : CGOpenMPRuntime(CGM, "_", "$") { 1202 if (!CGM.getLangOpts().OpenMPIsDevice) 1203 llvm_unreachable("OpenMP can only handle device code."); 1204 1205 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1206 if (!CGM.getLangOpts().OMPHostIRFile.empty()) { 1207 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1208 "__omp_rtl_debug_kind"); 1209 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1210 "__omp_rtl_assume_teams_oversubscription"); 1211 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1212 "__omp_rtl_assume_threads_oversubscription"); 1213 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState, 1214 "__omp_rtl_assume_no_thread_state"); 1215 } 1216 } 1217 1218 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1219 ProcBindKind ProcBind, 1220 SourceLocation Loc) { 1221 // Do nothing in case of SPMD mode and L0 parallel. 1222 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1223 return; 1224 1225 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1226 } 1227 1228 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1229 llvm::Value *NumThreads, 1230 SourceLocation Loc) { 1231 // Nothing to do. 1232 } 1233 1234 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1235 const Expr *NumTeams, 1236 const Expr *ThreadLimit, 1237 SourceLocation Loc) {} 1238 1239 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1240 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1241 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1242 // Emit target region as a standalone region. 1243 class NVPTXPrePostActionTy : public PrePostActionTy { 1244 bool &IsInParallelRegion; 1245 bool PrevIsInParallelRegion; 1246 1247 public: 1248 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1249 : IsInParallelRegion(IsInParallelRegion) {} 1250 void Enter(CodeGenFunction &CGF) override { 1251 PrevIsInParallelRegion = IsInParallelRegion; 1252 IsInParallelRegion = true; 1253 } 1254 void Exit(CodeGenFunction &CGF) override { 1255 IsInParallelRegion = PrevIsInParallelRegion; 1256 } 1257 } Action(IsInParallelRegion); 1258 CodeGen.setAction(Action); 1259 bool PrevIsInTTDRegion = IsInTTDRegion; 1260 IsInTTDRegion = false; 1261 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1262 IsInTargetMasterThreadRegion = false; 1263 auto *OutlinedFun = 1264 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1265 D, ThreadIDVar, InnermostKind, CodeGen)); 1266 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1267 IsInTTDRegion = PrevIsInTTDRegion; 1268 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1269 !IsInParallelRegion) { 1270 llvm::Function *WrapperFun = 1271 createParallelDataSharingWrapper(OutlinedFun, D); 1272 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1273 } 1274 1275 return OutlinedFun; 1276 } 1277 1278 /// Get list of lastprivate variables from the teams distribute ... or 1279 /// teams {distribute ...} directives. 1280 static void 1281 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1282 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1283 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1284 "expected teams directive."); 1285 const OMPExecutableDirective *Dir = &D; 1286 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1287 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1288 Ctx, 1289 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1290 /*IgnoreCaptured=*/true))) { 1291 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1292 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1293 Dir = nullptr; 1294 } 1295 } 1296 if (!Dir) 1297 return; 1298 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1299 for (const Expr *E : C->getVarRefs()) 1300 Vars.push_back(getPrivateItem(E)); 1301 } 1302 } 1303 1304 /// Get list of reduction variables from the teams ... directives. 1305 static void 1306 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1307 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1308 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1309 "expected teams directive."); 1310 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1311 for (const Expr *E : C->privates()) 1312 Vars.push_back(getPrivateItem(E)); 1313 } 1314 } 1315 1316 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1317 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1318 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1319 SourceLocation Loc = D.getBeginLoc(); 1320 1321 const RecordDecl *GlobalizedRD = nullptr; 1322 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1323 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1324 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1325 // Globalize team reductions variable unconditionally in all modes. 1326 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1327 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1328 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1329 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1330 if (!LastPrivatesReductions.empty()) { 1331 GlobalizedRD = ::buildRecordForGlobalizedVars( 1332 CGM.getContext(), llvm::None, LastPrivatesReductions, 1333 MappedDeclsFields, WarpSize); 1334 } 1335 } else if (!LastPrivatesReductions.empty()) { 1336 assert(!TeamAndReductions.first && 1337 "Previous team declaration is not expected."); 1338 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1339 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1340 } 1341 1342 // Emit target region as a standalone region. 1343 class NVPTXPrePostActionTy : public PrePostActionTy { 1344 SourceLocation &Loc; 1345 const RecordDecl *GlobalizedRD; 1346 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1347 &MappedDeclsFields; 1348 1349 public: 1350 NVPTXPrePostActionTy( 1351 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1352 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1353 &MappedDeclsFields) 1354 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1355 MappedDeclsFields(MappedDeclsFields) {} 1356 void Enter(CodeGenFunction &CGF) override { 1357 auto &Rt = 1358 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1359 if (GlobalizedRD) { 1360 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1361 I->getSecond().MappedParams = 1362 std::make_unique<CodeGenFunction::OMPMapVars>(); 1363 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1364 for (const auto &Pair : MappedDeclsFields) { 1365 assert(Pair.getFirst()->isCanonicalDecl() && 1366 "Expected canonical declaration"); 1367 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1368 } 1369 } 1370 Rt.emitGenericVarsProlog(CGF, Loc); 1371 } 1372 void Exit(CodeGenFunction &CGF) override { 1373 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1374 .emitGenericVarsEpilog(CGF); 1375 } 1376 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1377 CodeGen.setAction(Action); 1378 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1379 D, ThreadIDVar, InnermostKind, CodeGen); 1380 1381 return OutlinedFun; 1382 } 1383 1384 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1385 SourceLocation Loc, 1386 bool WithSPMDCheck) { 1387 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1388 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1389 return; 1390 1391 CGBuilderTy &Bld = CGF.Builder; 1392 1393 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1394 if (I == FunctionGlobalizedDecls.end()) 1395 return; 1396 1397 for (auto &Rec : I->getSecond().LocalVarData) { 1398 const auto *VD = cast<VarDecl>(Rec.first); 1399 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1400 QualType VarTy = VD->getType(); 1401 1402 // Get the local allocation of a firstprivate variable before sharing 1403 llvm::Value *ParValue; 1404 if (EscapedParam) { 1405 LValue ParLVal = 1406 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1407 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1408 } 1409 1410 // Allocate space for the variable to be globalized 1411 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1412 llvm::CallBase *VoidPtr = 1413 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1414 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1415 AllocArgs, VD->getName()); 1416 // FIXME: We should use the variables actual alignment as an argument. 1417 VoidPtr->addRetAttr(llvm::Attribute::get( 1418 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1419 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1420 1421 // Cast the void pointer and get the address of the globalized variable. 1422 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1423 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1424 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1425 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1426 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1427 Rec.second.GlobalizedVal = VoidPtr; 1428 1429 // Assign the local allocation to the newly globalized location. 1430 if (EscapedParam) { 1431 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1432 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1433 } 1434 if (auto *DI = CGF.getDebugInfo()) 1435 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1436 } 1437 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1438 // Use actual memory size of the VLA object including the padding 1439 // for alignment purposes. 1440 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1441 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1442 Size = Bld.CreateNUWAdd( 1443 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1444 llvm::Value *AlignVal = 1445 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1446 1447 Size = Bld.CreateUDiv(Size, AlignVal); 1448 Size = Bld.CreateNUWMul(Size, AlignVal); 1449 1450 // Allocate space for this VLA object to be globalized. 1451 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1452 llvm::CallBase *VoidPtr = 1453 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1454 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1455 AllocArgs, VD->getName()); 1456 VoidPtr->addRetAttr( 1457 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1458 CGM.getContext().getTargetInfo().getNewAlign())); 1459 1460 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1461 std::pair<llvm::Value *, llvm::Value *>( 1462 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1463 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1464 CGM.getContext().getDeclAlign(VD), 1465 AlignmentSource::Decl); 1466 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1467 Base.getAddress(CGF)); 1468 } 1469 I->getSecond().MappedParams->apply(CGF); 1470 } 1471 1472 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1473 bool WithSPMDCheck) { 1474 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1475 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1476 return; 1477 1478 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1479 if (I != FunctionGlobalizedDecls.end()) { 1480 // Deallocate the memory for each globalized VLA object 1481 for (auto AddrSizePair : 1482 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1483 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1484 CGM.getModule(), OMPRTL___kmpc_free_shared), 1485 {AddrSizePair.first, AddrSizePair.second}); 1486 } 1487 // Deallocate the memory for each globalized value 1488 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1489 const auto *VD = cast<VarDecl>(Rec.first); 1490 I->getSecond().MappedParams->restore(CGF); 1491 1492 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1493 CGF.getTypeSize(VD->getType())}; 1494 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1495 CGM.getModule(), OMPRTL___kmpc_free_shared), 1496 FreeArgs); 1497 } 1498 } 1499 } 1500 1501 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1502 const OMPExecutableDirective &D, 1503 SourceLocation Loc, 1504 llvm::Function *OutlinedFn, 1505 ArrayRef<llvm::Value *> CapturedVars) { 1506 if (!CGF.HaveInsertPoint()) 1507 return; 1508 1509 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1510 /*Name=*/".zero.addr"); 1511 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1512 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1513 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1514 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1515 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1516 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1517 } 1518 1519 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1520 SourceLocation Loc, 1521 llvm::Function *OutlinedFn, 1522 ArrayRef<llvm::Value *> CapturedVars, 1523 const Expr *IfCond, 1524 llvm::Value *NumThreads) { 1525 if (!CGF.HaveInsertPoint()) 1526 return; 1527 1528 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1529 NumThreads](CodeGenFunction &CGF, 1530 PrePostActionTy &Action) { 1531 CGBuilderTy &Bld = CGF.Builder; 1532 llvm::Value *NumThreadsVal = NumThreads; 1533 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1534 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1535 if (WFn) 1536 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1537 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1538 1539 // Create a private scope that will globalize the arguments 1540 // passed from the outside of the target region. 1541 // TODO: Is that needed? 1542 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1543 1544 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1545 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1546 "captured_vars_addrs"); 1547 // There's something to share. 1548 if (!CapturedVars.empty()) { 1549 // Prepare for parallel region. Indicate the outlined function. 1550 ASTContext &Ctx = CGF.getContext(); 1551 unsigned Idx = 0; 1552 for (llvm::Value *V : CapturedVars) { 1553 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1554 llvm::Value *PtrV; 1555 if (V->getType()->isIntegerTy()) 1556 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1557 else 1558 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1559 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1560 Ctx.getPointerType(Ctx.VoidPtrTy)); 1561 ++Idx; 1562 } 1563 } 1564 1565 llvm::Value *IfCondVal = nullptr; 1566 if (IfCond) 1567 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1568 /* isSigned */ false); 1569 else 1570 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1571 1572 if (!NumThreadsVal) 1573 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1574 else 1575 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1576 1577 assert(IfCondVal && "Expected a value"); 1578 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1579 llvm::Value *Args[] = { 1580 RTLoc, 1581 getThreadID(CGF, Loc), 1582 IfCondVal, 1583 NumThreadsVal, 1584 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1585 FnPtr, 1586 ID, 1587 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1588 CGF.VoidPtrPtrTy), 1589 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1590 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1591 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1592 Args); 1593 }; 1594 1595 RegionCodeGenTy RCG(ParallelGen); 1596 RCG(CGF); 1597 } 1598 1599 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1600 // Always emit simple barriers! 1601 if (!CGF.HaveInsertPoint()) 1602 return; 1603 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1604 // This function does not use parameters, so we can emit just default values. 1605 llvm::Value *Args[] = { 1606 llvm::ConstantPointerNull::get( 1607 cast<llvm::PointerType>(getIdentTyPointerTy())), 1608 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1609 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1610 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1611 Args); 1612 } 1613 1614 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1615 SourceLocation Loc, 1616 OpenMPDirectiveKind Kind, bool, 1617 bool) { 1618 // Always emit simple barriers! 1619 if (!CGF.HaveInsertPoint()) 1620 return; 1621 // Build call __kmpc_cancel_barrier(loc, thread_id); 1622 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1623 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1624 getThreadID(CGF, Loc)}; 1625 1626 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1627 CGM.getModule(), OMPRTL___kmpc_barrier), 1628 Args); 1629 } 1630 1631 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1632 CodeGenFunction &CGF, StringRef CriticalName, 1633 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1634 const Expr *Hint) { 1635 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1636 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1637 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1638 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1639 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1640 1641 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1642 1643 // Get the mask of active threads in the warp. 1644 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1645 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1646 // Fetch team-local id of the thread. 1647 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1648 1649 // Get the width of the team. 1650 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1651 1652 // Initialize the counter variable for the loop. 1653 QualType Int32Ty = 1654 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1655 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1656 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1657 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1658 /*isInit=*/true); 1659 1660 // Block checks if loop counter exceeds upper bound. 1661 CGF.EmitBlock(LoopBB); 1662 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1663 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1664 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1665 1666 // Block tests which single thread should execute region, and which threads 1667 // should go straight to synchronisation point. 1668 CGF.EmitBlock(TestBB); 1669 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1670 llvm::Value *CmpThreadToCounter = 1671 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1672 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1673 1674 // Block emits the body of the critical region. 1675 CGF.EmitBlock(BodyBB); 1676 1677 // Output the critical statement. 1678 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1679 Hint); 1680 1681 // After the body surrounded by the critical region, the single executing 1682 // thread will jump to the synchronisation point. 1683 // Block waits for all threads in current team to finish then increments the 1684 // counter variable and returns to the loop. 1685 CGF.EmitBlock(SyncBB); 1686 // Reconverge active threads in the warp. 1687 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1688 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1689 Mask); 1690 1691 llvm::Value *IncCounterVal = 1692 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1693 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1694 CGF.EmitBranch(LoopBB); 1695 1696 // Block that is reached when all threads in the team complete the region. 1697 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1698 } 1699 1700 /// Cast value to the specified type. 1701 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1702 QualType ValTy, QualType CastTy, 1703 SourceLocation Loc) { 1704 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1705 "Cast type must sized."); 1706 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1707 "Val type must sized."); 1708 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1709 if (ValTy == CastTy) 1710 return Val; 1711 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1712 CGF.getContext().getTypeSizeInChars(CastTy)) 1713 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1714 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1715 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1716 CastTy->hasSignedIntegerRepresentation()); 1717 Address CastItem = CGF.CreateMemTemp(CastTy); 1718 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1719 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1720 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1721 LValueBaseInfo(AlignmentSource::Type), 1722 TBAAAccessInfo()); 1723 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1724 LValueBaseInfo(AlignmentSource::Type), 1725 TBAAAccessInfo()); 1726 } 1727 1728 /// This function creates calls to one of two shuffle functions to copy 1729 /// variables between lanes in a warp. 1730 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1731 llvm::Value *Elem, 1732 QualType ElemType, 1733 llvm::Value *Offset, 1734 SourceLocation Loc) { 1735 CodeGenModule &CGM = CGF.CGM; 1736 CGBuilderTy &Bld = CGF.Builder; 1737 CGOpenMPRuntimeGPU &RT = 1738 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1739 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1740 1741 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1742 assert(Size.getQuantity() <= 8 && 1743 "Unsupported bitwidth in shuffle instruction."); 1744 1745 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1746 ? OMPRTL___kmpc_shuffle_int32 1747 : OMPRTL___kmpc_shuffle_int64; 1748 1749 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1750 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1751 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1752 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1753 llvm::Value *WarpSize = 1754 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1755 1756 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1757 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1758 {ElemCast, Offset, WarpSize}); 1759 1760 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1761 } 1762 1763 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1764 Address DestAddr, QualType ElemType, 1765 llvm::Value *Offset, SourceLocation Loc) { 1766 CGBuilderTy &Bld = CGF.Builder; 1767 1768 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1769 // Create the loop over the big sized data. 1770 // ptr = (void*)Elem; 1771 // ptrEnd = (void*) Elem + 1; 1772 // Step = 8; 1773 // while (ptr + Step < ptrEnd) 1774 // shuffle((int64_t)*ptr); 1775 // Step = 4; 1776 // while (ptr + Step < ptrEnd) 1777 // shuffle((int32_t)*ptr); 1778 // ... 1779 Address ElemPtr = DestAddr; 1780 Address Ptr = SrcAddr; 1781 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1782 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1783 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1784 if (Size < CharUnits::fromQuantity(IntSize)) 1785 continue; 1786 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1787 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1788 /*Signed=*/1); 1789 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1790 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1791 ElemPtr = 1792 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1793 if (Size.getQuantity() / IntSize > 1) { 1794 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1795 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1796 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1797 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1798 CGF.EmitBlock(PreCondBB); 1799 llvm::PHINode *PhiSrc = 1800 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1801 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1802 llvm::PHINode *PhiDest = 1803 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1804 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1805 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment()); 1806 ElemPtr = 1807 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment()); 1808 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1809 CGF.Int8Ty, PtrEnd.getPointer(), 1810 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), 1811 CGF.VoidPtrTy)); 1812 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1813 ThenBB, ExitBB); 1814 CGF.EmitBlock(ThenBB); 1815 llvm::Value *Res = createRuntimeShuffleFunction( 1816 CGF, 1817 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1818 LValueBaseInfo(AlignmentSource::Type), 1819 TBAAAccessInfo()), 1820 IntType, Offset, Loc); 1821 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1822 LValueBaseInfo(AlignmentSource::Type), 1823 TBAAAccessInfo()); 1824 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1825 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1826 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1827 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1828 CGF.EmitBranch(PreCondBB); 1829 CGF.EmitBlock(ExitBB); 1830 } else { 1831 llvm::Value *Res = createRuntimeShuffleFunction( 1832 CGF, 1833 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1834 LValueBaseInfo(AlignmentSource::Type), 1835 TBAAAccessInfo()), 1836 IntType, Offset, Loc); 1837 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1838 LValueBaseInfo(AlignmentSource::Type), 1839 TBAAAccessInfo()); 1840 Ptr = Bld.CreateConstGEP(Ptr, 1); 1841 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1842 } 1843 Size = Size % IntSize; 1844 } 1845 } 1846 1847 namespace { 1848 enum CopyAction : unsigned { 1849 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1850 // the warp using shuffle instructions. 1851 RemoteLaneToThread, 1852 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1853 ThreadCopy, 1854 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1855 ThreadToScratchpad, 1856 // ScratchpadToThread: Copy from a scratchpad array in global memory 1857 // containing team-reduced data to a thread's stack. 1858 ScratchpadToThread, 1859 }; 1860 } // namespace 1861 1862 struct CopyOptionsTy { 1863 llvm::Value *RemoteLaneOffset; 1864 llvm::Value *ScratchpadIndex; 1865 llvm::Value *ScratchpadWidth; 1866 }; 1867 1868 /// Emit instructions to copy a Reduce list, which contains partially 1869 /// aggregated values, in the specified direction. 1870 static void emitReductionListCopy( 1871 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1872 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1873 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1874 1875 CodeGenModule &CGM = CGF.CGM; 1876 ASTContext &C = CGM.getContext(); 1877 CGBuilderTy &Bld = CGF.Builder; 1878 1879 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1880 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1881 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1882 1883 // Iterates, element-by-element, through the source Reduce list and 1884 // make a copy. 1885 unsigned Idx = 0; 1886 unsigned Size = Privates.size(); 1887 for (const Expr *Private : Privates) { 1888 Address SrcElementAddr = Address::invalid(); 1889 Address DestElementAddr = Address::invalid(); 1890 Address DestElementPtrAddr = Address::invalid(); 1891 // Should we shuffle in an element from a remote lane? 1892 bool ShuffleInElement = false; 1893 // Set to true to update the pointer in the dest Reduce list to a 1894 // newly created element. 1895 bool UpdateDestListPtr = false; 1896 // Increment the src or dest pointer to the scratchpad, for each 1897 // new element. 1898 bool IncrScratchpadSrc = false; 1899 bool IncrScratchpadDest = false; 1900 1901 switch (Action) { 1902 case RemoteLaneToThread: { 1903 // Step 1.1: Get the address for the src element in the Reduce list. 1904 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1905 SrcElementAddr = CGF.EmitLoadOfPointer( 1906 SrcElementPtrAddr, 1907 C.getPointerType(Private->getType())->castAs<PointerType>()); 1908 1909 // Step 1.2: Create a temporary to store the element in the destination 1910 // Reduce list. 1911 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1912 DestElementAddr = 1913 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1914 ShuffleInElement = true; 1915 UpdateDestListPtr = true; 1916 break; 1917 } 1918 case ThreadCopy: { 1919 // Step 1.1: Get the address for the src element in the Reduce list. 1920 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1921 SrcElementAddr = CGF.EmitLoadOfPointer( 1922 SrcElementPtrAddr, 1923 C.getPointerType(Private->getType())->castAs<PointerType>()); 1924 1925 // Step 1.2: Get the address for dest element. The destination 1926 // element has already been created on the thread's stack. 1927 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1928 DestElementAddr = CGF.EmitLoadOfPointer( 1929 DestElementPtrAddr, 1930 C.getPointerType(Private->getType())->castAs<PointerType>()); 1931 break; 1932 } 1933 case ThreadToScratchpad: { 1934 // Step 1.1: Get the address for the src element in the Reduce list. 1935 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1936 SrcElementAddr = CGF.EmitLoadOfPointer( 1937 SrcElementPtrAddr, 1938 C.getPointerType(Private->getType())->castAs<PointerType>()); 1939 1940 // Step 1.2: Get the address for dest element: 1941 // address = base + index * ElementSizeInChars. 1942 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1943 llvm::Value *CurrentOffset = 1944 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1945 llvm::Value *ScratchPadElemAbsolutePtrVal = 1946 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1947 ScratchPadElemAbsolutePtrVal = 1948 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1949 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1950 C.getTypeAlignInChars(Private->getType())); 1951 IncrScratchpadDest = true; 1952 break; 1953 } 1954 case ScratchpadToThread: { 1955 // Step 1.1: Get the address for the src element in the scratchpad. 1956 // address = base + index * ElementSizeInChars. 1957 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1958 llvm::Value *CurrentOffset = 1959 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1960 llvm::Value *ScratchPadElemAbsolutePtrVal = 1961 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1962 ScratchPadElemAbsolutePtrVal = 1963 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1964 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1965 C.getTypeAlignInChars(Private->getType())); 1966 IncrScratchpadSrc = true; 1967 1968 // Step 1.2: Create a temporary to store the element in the destination 1969 // Reduce list. 1970 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1971 DestElementAddr = 1972 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1973 UpdateDestListPtr = true; 1974 break; 1975 } 1976 } 1977 1978 // Regardless of src and dest of copy, we emit the load of src 1979 // element as this is required in all directions 1980 SrcElementAddr = Bld.CreateElementBitCast( 1981 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1982 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1983 SrcElementAddr.getElementType()); 1984 1985 // Now that all active lanes have read the element in the 1986 // Reduce list, shuffle over the value from the remote lane. 1987 if (ShuffleInElement) { 1988 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1989 RemoteLaneOffset, Private->getExprLoc()); 1990 } else { 1991 switch (CGF.getEvaluationKind(Private->getType())) { 1992 case TEK_Scalar: { 1993 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1994 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1995 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1996 TBAAAccessInfo()); 1997 // Store the source element value to the dest element address. 1998 CGF.EmitStoreOfScalar( 1999 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 2000 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2001 break; 2002 } 2003 case TEK_Complex: { 2004 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2005 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2006 Private->getExprLoc()); 2007 CGF.EmitStoreOfComplex( 2008 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2009 /*isInit=*/false); 2010 break; 2011 } 2012 case TEK_Aggregate: 2013 CGF.EmitAggregateCopy( 2014 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2015 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2016 Private->getType(), AggValueSlot::DoesNotOverlap); 2017 break; 2018 } 2019 } 2020 2021 // Step 3.1: Modify reference in dest Reduce list as needed. 2022 // Modifying the reference in Reduce list to point to the newly 2023 // created element. The element is live in the current function 2024 // scope and that of functions it invokes (i.e., reduce_function). 2025 // RemoteReduceData[i] = (void*)&RemoteElem 2026 if (UpdateDestListPtr) { 2027 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2028 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2029 DestElementPtrAddr, /*Volatile=*/false, 2030 C.VoidPtrTy); 2031 } 2032 2033 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2034 // address of the next element in scratchpad memory, unless we're currently 2035 // processing the last one. Memory alignment is also taken care of here. 2036 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2037 llvm::Value *ScratchpadBasePtr = 2038 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2039 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2040 ScratchpadBasePtr = Bld.CreateNUWAdd( 2041 ScratchpadBasePtr, 2042 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2043 2044 // Take care of global memory alignment for performance 2045 ScratchpadBasePtr = Bld.CreateNUWSub( 2046 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2047 ScratchpadBasePtr = Bld.CreateUDiv( 2048 ScratchpadBasePtr, 2049 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2050 ScratchpadBasePtr = Bld.CreateNUWAdd( 2051 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2052 ScratchpadBasePtr = Bld.CreateNUWMul( 2053 ScratchpadBasePtr, 2054 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2055 2056 if (IncrScratchpadDest) 2057 DestBase = 2058 Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign()); 2059 else /* IncrScratchpadSrc = true */ 2060 SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign()); 2061 } 2062 2063 ++Idx; 2064 } 2065 } 2066 2067 /// This function emits a helper that gathers Reduce lists from the first 2068 /// lane of every active warp to lanes in the first warp. 2069 /// 2070 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2071 /// shared smem[warp_size]; 2072 /// For all data entries D in reduce_data: 2073 /// sync 2074 /// If (I am the first lane in each warp) 2075 /// Copy my local D to smem[warp_id] 2076 /// sync 2077 /// if (I am the first warp) 2078 /// Copy smem[thread_id] to my local D 2079 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2080 ArrayRef<const Expr *> Privates, 2081 QualType ReductionArrayTy, 2082 SourceLocation Loc) { 2083 ASTContext &C = CGM.getContext(); 2084 llvm::Module &M = CGM.getModule(); 2085 2086 // ReduceList: thread local Reduce list. 2087 // At the stage of the computation when this function is called, partially 2088 // aggregated values reside in the first lane of every active warp. 2089 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2090 C.VoidPtrTy, ImplicitParamDecl::Other); 2091 // NumWarps: number of warps active in the parallel region. This could 2092 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2093 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2094 C.getIntTypeForBitwidth(32, /* Signed */ true), 2095 ImplicitParamDecl::Other); 2096 FunctionArgList Args; 2097 Args.push_back(&ReduceListArg); 2098 Args.push_back(&NumWarpsArg); 2099 2100 const CGFunctionInfo &CGFI = 2101 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2102 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2103 llvm::GlobalValue::InternalLinkage, 2104 "_omp_reduction_inter_warp_copy_func", &M); 2105 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2106 Fn->setDoesNotRecurse(); 2107 CodeGenFunction CGF(CGM); 2108 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2109 2110 CGBuilderTy &Bld = CGF.Builder; 2111 2112 // This array is used as a medium to transfer, one reduce element at a time, 2113 // the data from the first lane of every warp to lanes in the first warp 2114 // in order to perform the final step of a reduction in a parallel region 2115 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2116 // for reduced latency, as well as to have a distinct copy for concurrently 2117 // executing target regions. The array is declared with common linkage so 2118 // as to be shared across compilation units. 2119 StringRef TransferMediumName = 2120 "__openmp_nvptx_data_transfer_temporary_storage"; 2121 llvm::GlobalVariable *TransferMedium = 2122 M.getGlobalVariable(TransferMediumName); 2123 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2124 if (!TransferMedium) { 2125 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2126 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2127 TransferMedium = new llvm::GlobalVariable( 2128 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2129 llvm::UndefValue::get(Ty), TransferMediumName, 2130 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2131 SharedAddressSpace); 2132 CGM.addCompilerUsedGlobal(TransferMedium); 2133 } 2134 2135 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2136 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2137 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2138 // nvptx_lane_id = nvptx_id % warpsize 2139 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2140 // nvptx_warp_id = nvptx_id / warpsize 2141 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2142 2143 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2144 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2145 Address LocalReduceList( 2146 Bld.CreatePointerBitCastOrAddrSpaceCast( 2147 CGF.EmitLoadOfScalar( 2148 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2149 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2150 ElemTy->getPointerTo()), 2151 ElemTy, CGF.getPointerAlign()); 2152 2153 unsigned Idx = 0; 2154 for (const Expr *Private : Privates) { 2155 // 2156 // Warp master copies reduce element to transfer medium in __shared__ 2157 // memory. 2158 // 2159 unsigned RealTySize = 2160 C.getTypeSizeInChars(Private->getType()) 2161 .alignTo(C.getTypeAlignInChars(Private->getType())) 2162 .getQuantity(); 2163 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2164 unsigned NumIters = RealTySize / TySize; 2165 if (NumIters == 0) 2166 continue; 2167 QualType CType = C.getIntTypeForBitwidth( 2168 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2169 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2170 CharUnits Align = CharUnits::fromQuantity(TySize); 2171 llvm::Value *Cnt = nullptr; 2172 Address CntAddr = Address::invalid(); 2173 llvm::BasicBlock *PrecondBB = nullptr; 2174 llvm::BasicBlock *ExitBB = nullptr; 2175 if (NumIters > 1) { 2176 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2177 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2178 /*Volatile=*/false, C.IntTy); 2179 PrecondBB = CGF.createBasicBlock("precond"); 2180 ExitBB = CGF.createBasicBlock("exit"); 2181 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2182 // There is no need to emit line number for unconditional branch. 2183 (void)ApplyDebugLocation::CreateEmpty(CGF); 2184 CGF.EmitBlock(PrecondBB); 2185 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2186 llvm::Value *Cmp = 2187 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2188 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2189 CGF.EmitBlock(BodyBB); 2190 } 2191 // kmpc_barrier. 2192 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2193 /*EmitChecks=*/false, 2194 /*ForceSimpleCall=*/true); 2195 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2196 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2197 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2198 2199 // if (lane_id == 0) 2200 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2201 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2202 CGF.EmitBlock(ThenBB); 2203 2204 // Reduce element = LocalReduceList[i] 2205 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2206 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2207 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2208 // elemptr = ((CopyType*)(elemptrptr)) + I 2209 Address ElemPtr = Address::deprecated(ElemPtrPtr, Align); 2210 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2211 if (NumIters > 1) 2212 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 2213 2214 // Get pointer to location in transfer medium. 2215 // MediumPtr = &medium[warp_id] 2216 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2217 TransferMedium->getValueType(), TransferMedium, 2218 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2219 Address MediumPtr = Address::deprecated(MediumPtrVal, Align); 2220 // Casting to actual data type. 2221 // MediumPtr = (CopyType*)MediumPtrAddr; 2222 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2223 2224 // elem = *elemptr 2225 //*MediumPtr = elem 2226 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2227 ElemPtr, /*Volatile=*/false, CType, Loc, 2228 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2229 // Store the source element value to the dest element address. 2230 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2231 LValueBaseInfo(AlignmentSource::Type), 2232 TBAAAccessInfo()); 2233 2234 Bld.CreateBr(MergeBB); 2235 2236 CGF.EmitBlock(ElseBB); 2237 Bld.CreateBr(MergeBB); 2238 2239 CGF.EmitBlock(MergeBB); 2240 2241 // kmpc_barrier. 2242 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2243 /*EmitChecks=*/false, 2244 /*ForceSimpleCall=*/true); 2245 2246 // 2247 // Warp 0 copies reduce element from transfer medium. 2248 // 2249 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2250 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2251 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2252 2253 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2254 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2255 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2256 2257 // Up to 32 threads in warp 0 are active. 2258 llvm::Value *IsActiveThread = 2259 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2260 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2261 2262 CGF.EmitBlock(W0ThenBB); 2263 2264 // SrcMediumPtr = &medium[tid] 2265 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2266 TransferMedium->getValueType(), TransferMedium, 2267 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2268 Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align); 2269 // SrcMediumVal = *SrcMediumPtr; 2270 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2271 2272 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2273 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2274 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2275 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2276 Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align); 2277 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2278 if (NumIters > 1) 2279 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 2280 2281 // *TargetElemPtr = SrcMediumVal; 2282 llvm::Value *SrcMediumValue = 2283 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2284 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2285 CType); 2286 Bld.CreateBr(W0MergeBB); 2287 2288 CGF.EmitBlock(W0ElseBB); 2289 Bld.CreateBr(W0MergeBB); 2290 2291 CGF.EmitBlock(W0MergeBB); 2292 2293 if (NumIters > 1) { 2294 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2295 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2296 CGF.EmitBranch(PrecondBB); 2297 (void)ApplyDebugLocation::CreateEmpty(CGF); 2298 CGF.EmitBlock(ExitBB); 2299 } 2300 RealTySize %= TySize; 2301 } 2302 ++Idx; 2303 } 2304 2305 CGF.FinishFunction(); 2306 return Fn; 2307 } 2308 2309 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2310 /// in the same warp. It uses shuffle instructions to copy over data from 2311 /// a remote lane's stack. The reduction algorithm performed is specified 2312 /// by the fourth parameter. 2313 /// 2314 /// Algorithm Versions. 2315 /// Full Warp Reduce (argument value 0): 2316 /// This algorithm assumes that all 32 lanes are active and gathers 2317 /// data from these 32 lanes, producing a single resultant value. 2318 /// Contiguous Partial Warp Reduce (argument value 1): 2319 /// This algorithm assumes that only a *contiguous* subset of lanes 2320 /// are active. This happens for the last warp in a parallel region 2321 /// when the user specified num_threads is not an integer multiple of 2322 /// 32. This contiguous subset always starts with the zeroth lane. 2323 /// Partial Warp Reduce (argument value 2): 2324 /// This algorithm gathers data from any number of lanes at any position. 2325 /// All reduced values are stored in the lowest possible lane. The set 2326 /// of problems every algorithm addresses is a super set of those 2327 /// addressable by algorithms with a lower version number. Overhead 2328 /// increases as algorithm version increases. 2329 /// 2330 /// Terminology 2331 /// Reduce element: 2332 /// Reduce element refers to the individual data field with primitive 2333 /// data types to be combined and reduced across threads. 2334 /// Reduce list: 2335 /// Reduce list refers to a collection of local, thread-private 2336 /// reduce elements. 2337 /// Remote Reduce list: 2338 /// Remote Reduce list refers to a collection of remote (relative to 2339 /// the current thread) reduce elements. 2340 /// 2341 /// We distinguish between three states of threads that are important to 2342 /// the implementation of this function. 2343 /// Alive threads: 2344 /// Threads in a warp executing the SIMT instruction, as distinguished from 2345 /// threads that are inactive due to divergent control flow. 2346 /// Active threads: 2347 /// The minimal set of threads that has to be alive upon entry to this 2348 /// function. The computation is correct iff active threads are alive. 2349 /// Some threads are alive but they are not active because they do not 2350 /// contribute to the computation in any useful manner. Turning them off 2351 /// may introduce control flow overheads without any tangible benefits. 2352 /// Effective threads: 2353 /// In order to comply with the argument requirements of the shuffle 2354 /// function, we must keep all lanes holding data alive. But at most 2355 /// half of them perform value aggregation; we refer to this half of 2356 /// threads as effective. The other half is simply handing off their 2357 /// data. 2358 /// 2359 /// Procedure 2360 /// Value shuffle: 2361 /// In this step active threads transfer data from higher lane positions 2362 /// in the warp to lower lane positions, creating Remote Reduce list. 2363 /// Value aggregation: 2364 /// In this step, effective threads combine their thread local Reduce list 2365 /// with Remote Reduce list and store the result in the thread local 2366 /// Reduce list. 2367 /// Value copy: 2368 /// In this step, we deal with the assumption made by algorithm 2 2369 /// (i.e. contiguity assumption). When we have an odd number of lanes 2370 /// active, say 2k+1, only k threads will be effective and therefore k 2371 /// new values will be produced. However, the Reduce list owned by the 2372 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2373 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2374 /// that the contiguity assumption still holds. 2375 static llvm::Function *emitShuffleAndReduceFunction( 2376 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2377 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2378 ASTContext &C = CGM.getContext(); 2379 2380 // Thread local Reduce list used to host the values of data to be reduced. 2381 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2382 C.VoidPtrTy, ImplicitParamDecl::Other); 2383 // Current lane id; could be logical. 2384 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2385 ImplicitParamDecl::Other); 2386 // Offset of the remote source lane relative to the current lane. 2387 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2388 C.ShortTy, ImplicitParamDecl::Other); 2389 // Algorithm version. This is expected to be known at compile time. 2390 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2391 C.ShortTy, ImplicitParamDecl::Other); 2392 FunctionArgList Args; 2393 Args.push_back(&ReduceListArg); 2394 Args.push_back(&LaneIDArg); 2395 Args.push_back(&RemoteLaneOffsetArg); 2396 Args.push_back(&AlgoVerArg); 2397 2398 const CGFunctionInfo &CGFI = 2399 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2400 auto *Fn = llvm::Function::Create( 2401 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2402 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2403 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2404 Fn->setDoesNotRecurse(); 2405 2406 CodeGenFunction CGF(CGM); 2407 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2408 2409 CGBuilderTy &Bld = CGF.Builder; 2410 2411 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2412 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2413 Address LocalReduceList( 2414 Bld.CreatePointerBitCastOrAddrSpaceCast( 2415 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2416 C.VoidPtrTy, SourceLocation()), 2417 ElemTy->getPointerTo()), 2418 ElemTy, CGF.getPointerAlign()); 2419 2420 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2421 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2422 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2423 2424 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2425 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2426 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2427 2428 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2429 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2430 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2431 2432 // Create a local thread-private variable to host the Reduce list 2433 // from a remote lane. 2434 Address RemoteReduceList = 2435 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2436 2437 // This loop iterates through the list of reduce elements and copies, 2438 // element by element, from a remote lane in the warp to RemoteReduceList, 2439 // hosted on the thread's stack. 2440 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2441 LocalReduceList, RemoteReduceList, 2442 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2443 /*ScratchpadIndex=*/nullptr, 2444 /*ScratchpadWidth=*/nullptr}); 2445 2446 // The actions to be performed on the Remote Reduce list is dependent 2447 // on the algorithm version. 2448 // 2449 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2450 // LaneId % 2 == 0 && Offset > 0): 2451 // do the reduction value aggregation 2452 // 2453 // The thread local variable Reduce list is mutated in place to host the 2454 // reduced data, which is the aggregated value produced from local and 2455 // remote lanes. 2456 // 2457 // Note that AlgoVer is expected to be a constant integer known at compile 2458 // time. 2459 // When AlgoVer==0, the first conjunction evaluates to true, making 2460 // the entire predicate true during compile time. 2461 // When AlgoVer==1, the second conjunction has only the second part to be 2462 // evaluated during runtime. Other conjunctions evaluates to false 2463 // during compile time. 2464 // When AlgoVer==2, the third conjunction has only the second part to be 2465 // evaluated during runtime. Other conjunctions evaluates to false 2466 // during compile time. 2467 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2468 2469 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2470 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2471 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2472 2473 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2474 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2475 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2476 CondAlgo2 = Bld.CreateAnd( 2477 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2478 2479 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2480 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2481 2482 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2483 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2484 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2485 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2486 2487 CGF.EmitBlock(ThenBB); 2488 // reduce_function(LocalReduceList, RemoteReduceList) 2489 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2490 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2491 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2492 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2493 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2494 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2495 Bld.CreateBr(MergeBB); 2496 2497 CGF.EmitBlock(ElseBB); 2498 Bld.CreateBr(MergeBB); 2499 2500 CGF.EmitBlock(MergeBB); 2501 2502 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2503 // Reduce list. 2504 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2505 llvm::Value *CondCopy = Bld.CreateAnd( 2506 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2507 2508 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2509 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2510 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2511 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2512 2513 CGF.EmitBlock(CpyThenBB); 2514 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2515 RemoteReduceList, LocalReduceList); 2516 Bld.CreateBr(CpyMergeBB); 2517 2518 CGF.EmitBlock(CpyElseBB); 2519 Bld.CreateBr(CpyMergeBB); 2520 2521 CGF.EmitBlock(CpyMergeBB); 2522 2523 CGF.FinishFunction(); 2524 return Fn; 2525 } 2526 2527 /// This function emits a helper that copies all the reduction variables from 2528 /// the team into the provided global buffer for the reduction variables. 2529 /// 2530 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2531 /// For all data entries D in reduce_data: 2532 /// Copy local D to buffer.D[Idx] 2533 static llvm::Value *emitListToGlobalCopyFunction( 2534 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2535 QualType ReductionArrayTy, SourceLocation Loc, 2536 const RecordDecl *TeamReductionRec, 2537 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2538 &VarFieldMap) { 2539 ASTContext &C = CGM.getContext(); 2540 2541 // Buffer: global reduction buffer. 2542 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2543 C.VoidPtrTy, ImplicitParamDecl::Other); 2544 // Idx: index of the buffer. 2545 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2546 ImplicitParamDecl::Other); 2547 // ReduceList: thread local Reduce list. 2548 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2549 C.VoidPtrTy, ImplicitParamDecl::Other); 2550 FunctionArgList Args; 2551 Args.push_back(&BufferArg); 2552 Args.push_back(&IdxArg); 2553 Args.push_back(&ReduceListArg); 2554 2555 const CGFunctionInfo &CGFI = 2556 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2557 auto *Fn = llvm::Function::Create( 2558 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2559 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2560 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2561 Fn->setDoesNotRecurse(); 2562 CodeGenFunction CGF(CGM); 2563 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2564 2565 CGBuilderTy &Bld = CGF.Builder; 2566 2567 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2568 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2569 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2570 Address LocalReduceList( 2571 Bld.CreatePointerBitCastOrAddrSpaceCast( 2572 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2573 C.VoidPtrTy, Loc), 2574 ElemTy->getPointerTo()), 2575 ElemTy, CGF.getPointerAlign()); 2576 QualType StaticTy = C.getRecordType(TeamReductionRec); 2577 llvm::Type *LLVMReductionsBufferTy = 2578 CGM.getTypes().ConvertTypeForMem(StaticTy); 2579 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2580 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2581 LLVMReductionsBufferTy->getPointerTo()); 2582 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2583 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2584 /*Volatile=*/false, C.IntTy, 2585 Loc)}; 2586 unsigned Idx = 0; 2587 for (const Expr *Private : Privates) { 2588 // Reduce element = LocalReduceList[i] 2589 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2590 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2591 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2592 // elemptr = ((CopyType*)(elemptrptr)) + I 2593 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2594 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2595 ElemPtrPtr, ElemTy->getPointerTo()); 2596 Address ElemPtr = 2597 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2598 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2599 // Global = Buffer.VD[Idx]; 2600 const FieldDecl *FD = VarFieldMap.lookup(VD); 2601 LValue GlobLVal = CGF.EmitLValueForField( 2602 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2603 Address GlobAddr = GlobLVal.getAddress(CGF); 2604 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2605 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2606 GlobLVal.setAddress( 2607 Address::deprecated(BufferPtr, GlobAddr.getAlignment())); 2608 switch (CGF.getEvaluationKind(Private->getType())) { 2609 case TEK_Scalar: { 2610 llvm::Value *V = CGF.EmitLoadOfScalar( 2611 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2612 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2613 CGF.EmitStoreOfScalar(V, GlobLVal); 2614 break; 2615 } 2616 case TEK_Complex: { 2617 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2618 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2619 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2620 break; 2621 } 2622 case TEK_Aggregate: 2623 CGF.EmitAggregateCopy(GlobLVal, 2624 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2625 Private->getType(), AggValueSlot::DoesNotOverlap); 2626 break; 2627 } 2628 ++Idx; 2629 } 2630 2631 CGF.FinishFunction(); 2632 return Fn; 2633 } 2634 2635 /// This function emits a helper that reduces all the reduction variables from 2636 /// the team into the provided global buffer for the reduction variables. 2637 /// 2638 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2639 /// void *GlobPtrs[]; 2640 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2641 /// ... 2642 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2643 /// reduce_function(GlobPtrs, reduce_data); 2644 static llvm::Value *emitListToGlobalReduceFunction( 2645 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2646 QualType ReductionArrayTy, SourceLocation Loc, 2647 const RecordDecl *TeamReductionRec, 2648 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2649 &VarFieldMap, 2650 llvm::Function *ReduceFn) { 2651 ASTContext &C = CGM.getContext(); 2652 2653 // Buffer: global reduction buffer. 2654 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2655 C.VoidPtrTy, ImplicitParamDecl::Other); 2656 // Idx: index of the buffer. 2657 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2658 ImplicitParamDecl::Other); 2659 // ReduceList: thread local Reduce list. 2660 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2661 C.VoidPtrTy, ImplicitParamDecl::Other); 2662 FunctionArgList Args; 2663 Args.push_back(&BufferArg); 2664 Args.push_back(&IdxArg); 2665 Args.push_back(&ReduceListArg); 2666 2667 const CGFunctionInfo &CGFI = 2668 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2669 auto *Fn = llvm::Function::Create( 2670 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2671 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2672 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2673 Fn->setDoesNotRecurse(); 2674 CodeGenFunction CGF(CGM); 2675 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2676 2677 CGBuilderTy &Bld = CGF.Builder; 2678 2679 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2680 QualType StaticTy = C.getRecordType(TeamReductionRec); 2681 llvm::Type *LLVMReductionsBufferTy = 2682 CGM.getTypes().ConvertTypeForMem(StaticTy); 2683 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2684 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2685 LLVMReductionsBufferTy->getPointerTo()); 2686 2687 // 1. Build a list of reduction variables. 2688 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2689 Address ReductionList = 2690 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2691 auto IPriv = Privates.begin(); 2692 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2693 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2694 /*Volatile=*/false, C.IntTy, 2695 Loc)}; 2696 unsigned Idx = 0; 2697 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2698 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2699 // Global = Buffer.VD[Idx]; 2700 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2701 const FieldDecl *FD = VarFieldMap.lookup(VD); 2702 LValue GlobLVal = CGF.EmitLValueForField( 2703 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2704 Address GlobAddr = GlobLVal.getAddress(CGF); 2705 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2706 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2707 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2708 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2709 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2710 // Store array size. 2711 ++Idx; 2712 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2713 llvm::Value *Size = CGF.Builder.CreateIntCast( 2714 CGF.getVLASize( 2715 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2716 .NumElts, 2717 CGF.SizeTy, /*isSigned=*/false); 2718 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2719 Elem); 2720 } 2721 } 2722 2723 // Call reduce_function(GlobalReduceList, ReduceList) 2724 llvm::Value *GlobalReduceList = 2725 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2726 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2727 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2728 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2729 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2730 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2731 CGF.FinishFunction(); 2732 return Fn; 2733 } 2734 2735 /// This function emits a helper that copies all the reduction variables from 2736 /// the team into the provided global buffer for the reduction variables. 2737 /// 2738 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2739 /// For all data entries D in reduce_data: 2740 /// Copy buffer.D[Idx] to local D; 2741 static llvm::Value *emitGlobalToListCopyFunction( 2742 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2743 QualType ReductionArrayTy, SourceLocation Loc, 2744 const RecordDecl *TeamReductionRec, 2745 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2746 &VarFieldMap) { 2747 ASTContext &C = CGM.getContext(); 2748 2749 // Buffer: global reduction buffer. 2750 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2751 C.VoidPtrTy, ImplicitParamDecl::Other); 2752 // Idx: index of the buffer. 2753 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2754 ImplicitParamDecl::Other); 2755 // ReduceList: thread local Reduce list. 2756 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2757 C.VoidPtrTy, ImplicitParamDecl::Other); 2758 FunctionArgList Args; 2759 Args.push_back(&BufferArg); 2760 Args.push_back(&IdxArg); 2761 Args.push_back(&ReduceListArg); 2762 2763 const CGFunctionInfo &CGFI = 2764 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2765 auto *Fn = llvm::Function::Create( 2766 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2767 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2768 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2769 Fn->setDoesNotRecurse(); 2770 CodeGenFunction CGF(CGM); 2771 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2772 2773 CGBuilderTy &Bld = CGF.Builder; 2774 2775 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2776 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2777 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2778 Address LocalReduceList( 2779 Bld.CreatePointerBitCastOrAddrSpaceCast( 2780 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2781 C.VoidPtrTy, Loc), 2782 ElemTy->getPointerTo()), 2783 ElemTy, CGF.getPointerAlign()); 2784 QualType StaticTy = C.getRecordType(TeamReductionRec); 2785 llvm::Type *LLVMReductionsBufferTy = 2786 CGM.getTypes().ConvertTypeForMem(StaticTy); 2787 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2788 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2789 LLVMReductionsBufferTy->getPointerTo()); 2790 2791 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2792 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2793 /*Volatile=*/false, C.IntTy, 2794 Loc)}; 2795 unsigned Idx = 0; 2796 for (const Expr *Private : Privates) { 2797 // Reduce element = LocalReduceList[i] 2798 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2799 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2800 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2801 // elemptr = ((CopyType*)(elemptrptr)) + I 2802 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2803 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2804 ElemPtrPtr, ElemTy->getPointerTo()); 2805 Address ElemPtr = 2806 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2807 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2808 // Global = Buffer.VD[Idx]; 2809 const FieldDecl *FD = VarFieldMap.lookup(VD); 2810 LValue GlobLVal = CGF.EmitLValueForField( 2811 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2812 Address GlobAddr = GlobLVal.getAddress(CGF); 2813 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2814 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2815 GlobLVal.setAddress( 2816 Address::deprecated(BufferPtr, GlobAddr.getAlignment())); 2817 switch (CGF.getEvaluationKind(Private->getType())) { 2818 case TEK_Scalar: { 2819 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2820 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2821 LValueBaseInfo(AlignmentSource::Type), 2822 TBAAAccessInfo()); 2823 break; 2824 } 2825 case TEK_Complex: { 2826 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2827 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2828 /*isInit=*/false); 2829 break; 2830 } 2831 case TEK_Aggregate: 2832 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2833 GlobLVal, Private->getType(), 2834 AggValueSlot::DoesNotOverlap); 2835 break; 2836 } 2837 ++Idx; 2838 } 2839 2840 CGF.FinishFunction(); 2841 return Fn; 2842 } 2843 2844 /// This function emits a helper that reduces all the reduction variables from 2845 /// the team into the provided global buffer for the reduction variables. 2846 /// 2847 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2848 /// void *GlobPtrs[]; 2849 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2850 /// ... 2851 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2852 /// reduce_function(reduce_data, GlobPtrs); 2853 static llvm::Value *emitGlobalToListReduceFunction( 2854 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2855 QualType ReductionArrayTy, SourceLocation Loc, 2856 const RecordDecl *TeamReductionRec, 2857 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2858 &VarFieldMap, 2859 llvm::Function *ReduceFn) { 2860 ASTContext &C = CGM.getContext(); 2861 2862 // Buffer: global reduction buffer. 2863 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2864 C.VoidPtrTy, ImplicitParamDecl::Other); 2865 // Idx: index of the buffer. 2866 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2867 ImplicitParamDecl::Other); 2868 // ReduceList: thread local Reduce list. 2869 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2870 C.VoidPtrTy, ImplicitParamDecl::Other); 2871 FunctionArgList Args; 2872 Args.push_back(&BufferArg); 2873 Args.push_back(&IdxArg); 2874 Args.push_back(&ReduceListArg); 2875 2876 const CGFunctionInfo &CGFI = 2877 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2878 auto *Fn = llvm::Function::Create( 2879 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2880 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2881 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2882 Fn->setDoesNotRecurse(); 2883 CodeGenFunction CGF(CGM); 2884 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2885 2886 CGBuilderTy &Bld = CGF.Builder; 2887 2888 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2889 QualType StaticTy = C.getRecordType(TeamReductionRec); 2890 llvm::Type *LLVMReductionsBufferTy = 2891 CGM.getTypes().ConvertTypeForMem(StaticTy); 2892 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2893 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2894 LLVMReductionsBufferTy->getPointerTo()); 2895 2896 // 1. Build a list of reduction variables. 2897 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2898 Address ReductionList = 2899 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2900 auto IPriv = Privates.begin(); 2901 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2902 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2903 /*Volatile=*/false, C.IntTy, 2904 Loc)}; 2905 unsigned Idx = 0; 2906 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2907 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2908 // Global = Buffer.VD[Idx]; 2909 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2910 const FieldDecl *FD = VarFieldMap.lookup(VD); 2911 LValue GlobLVal = CGF.EmitLValueForField( 2912 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2913 Address GlobAddr = GlobLVal.getAddress(CGF); 2914 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2915 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2916 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2917 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2918 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2919 // Store array size. 2920 ++Idx; 2921 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2922 llvm::Value *Size = CGF.Builder.CreateIntCast( 2923 CGF.getVLASize( 2924 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2925 .NumElts, 2926 CGF.SizeTy, /*isSigned=*/false); 2927 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2928 Elem); 2929 } 2930 } 2931 2932 // Call reduce_function(ReduceList, GlobalReduceList) 2933 llvm::Value *GlobalReduceList = 2934 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2935 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2936 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2937 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2938 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2939 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2940 CGF.FinishFunction(); 2941 return Fn; 2942 } 2943 2944 /// 2945 /// Design of OpenMP reductions on the GPU 2946 /// 2947 /// Consider a typical OpenMP program with one or more reduction 2948 /// clauses: 2949 /// 2950 /// float foo; 2951 /// double bar; 2952 /// #pragma omp target teams distribute parallel for \ 2953 /// reduction(+:foo) reduction(*:bar) 2954 /// for (int i = 0; i < N; i++) { 2955 /// foo += A[i]; bar *= B[i]; 2956 /// } 2957 /// 2958 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2959 /// all teams. In our OpenMP implementation on the NVPTX device an 2960 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2961 /// within a team are mapped to CUDA threads within a threadblock. 2962 /// Our goal is to efficiently aggregate values across all OpenMP 2963 /// threads such that: 2964 /// 2965 /// - the compiler and runtime are logically concise, and 2966 /// - the reduction is performed efficiently in a hierarchical 2967 /// manner as follows: within OpenMP threads in the same warp, 2968 /// across warps in a threadblock, and finally across teams on 2969 /// the NVPTX device. 2970 /// 2971 /// Introduction to Decoupling 2972 /// 2973 /// We would like to decouple the compiler and the runtime so that the 2974 /// latter is ignorant of the reduction variables (number, data types) 2975 /// and the reduction operators. This allows a simpler interface 2976 /// and implementation while still attaining good performance. 2977 /// 2978 /// Pseudocode for the aforementioned OpenMP program generated by the 2979 /// compiler is as follows: 2980 /// 2981 /// 1. Create private copies of reduction variables on each OpenMP 2982 /// thread: 'foo_private', 'bar_private' 2983 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2984 /// to it and writes the result in 'foo_private' and 'bar_private' 2985 /// respectively. 2986 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2987 /// and store the result on the team master: 2988 /// 2989 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2990 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2991 /// 2992 /// where: 2993 /// struct ReduceData { 2994 /// double *foo; 2995 /// double *bar; 2996 /// } reduceData 2997 /// reduceData.foo = &foo_private 2998 /// reduceData.bar = &bar_private 2999 /// 3000 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 3001 /// auxiliary functions generated by the compiler that operate on 3002 /// variables of type 'ReduceData'. They aid the runtime perform 3003 /// algorithmic steps in a data agnostic manner. 3004 /// 3005 /// 'shuffleReduceFn' is a pointer to a function that reduces data 3006 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 3007 /// same warp. It takes the following arguments as input: 3008 /// 3009 /// a. variable of type 'ReduceData' on the calling lane, 3010 /// b. its lane_id, 3011 /// c. an offset relative to the current lane_id to generate a 3012 /// remote_lane_id. The remote lane contains the second 3013 /// variable of type 'ReduceData' that is to be reduced. 3014 /// d. an algorithm version parameter determining which reduction 3015 /// algorithm to use. 3016 /// 3017 /// 'shuffleReduceFn' retrieves data from the remote lane using 3018 /// efficient GPU shuffle intrinsics and reduces, using the 3019 /// algorithm specified by the 4th parameter, the two operands 3020 /// element-wise. The result is written to the first operand. 3021 /// 3022 /// Different reduction algorithms are implemented in different 3023 /// runtime functions, all calling 'shuffleReduceFn' to perform 3024 /// the essential reduction step. Therefore, based on the 4th 3025 /// parameter, this function behaves slightly differently to 3026 /// cooperate with the runtime to ensure correctness under 3027 /// different circumstances. 3028 /// 3029 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3030 /// reduced variables across warps. It tunnels, through CUDA 3031 /// shared memory, the thread-private data of type 'ReduceData' 3032 /// from lane 0 of each warp to a lane in the first warp. 3033 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3034 /// The last team writes the global reduced value to memory. 3035 /// 3036 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3037 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3038 /// scratchpadCopyFn, loadAndReduceFn) 3039 /// 3040 /// 'scratchpadCopyFn' is a helper that stores reduced 3041 /// data from the team master to a scratchpad array in 3042 /// global memory. 3043 /// 3044 /// 'loadAndReduceFn' is a helper that loads data from 3045 /// the scratchpad array and reduces it with the input 3046 /// operand. 3047 /// 3048 /// These compiler generated functions hide address 3049 /// calculation and alignment information from the runtime. 3050 /// 5. if ret == 1: 3051 /// The team master of the last team stores the reduced 3052 /// result to the globals in memory. 3053 /// foo += reduceData.foo; bar *= reduceData.bar 3054 /// 3055 /// 3056 /// Warp Reduction Algorithms 3057 /// 3058 /// On the warp level, we have three algorithms implemented in the 3059 /// OpenMP runtime depending on the number of active lanes: 3060 /// 3061 /// Full Warp Reduction 3062 /// 3063 /// The reduce algorithm within a warp where all lanes are active 3064 /// is implemented in the runtime as follows: 3065 /// 3066 /// full_warp_reduce(void *reduce_data, 3067 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3068 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3069 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3070 /// } 3071 /// 3072 /// The algorithm completes in log(2, WARPSIZE) steps. 3073 /// 3074 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3075 /// not used therefore we save instructions by not retrieving lane_id 3076 /// from the corresponding special registers. The 4th parameter, which 3077 /// represents the version of the algorithm being used, is set to 0 to 3078 /// signify full warp reduction. 3079 /// 3080 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3081 /// 3082 /// #reduce_elem refers to an element in the local lane's data structure 3083 /// #remote_elem is retrieved from a remote lane 3084 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3085 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3086 /// 3087 /// Contiguous Partial Warp Reduction 3088 /// 3089 /// This reduce algorithm is used within a warp where only the first 3090 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3091 /// number of OpenMP threads in a parallel region is not a multiple of 3092 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3093 /// 3094 /// void 3095 /// contiguous_partial_reduce(void *reduce_data, 3096 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3097 /// int size, int lane_id) { 3098 /// int curr_size; 3099 /// int offset; 3100 /// curr_size = size; 3101 /// mask = curr_size/2; 3102 /// while (offset>0) { 3103 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3104 /// curr_size = (curr_size+1)/2; 3105 /// offset = curr_size/2; 3106 /// } 3107 /// } 3108 /// 3109 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3110 /// 3111 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3112 /// if (lane_id < offset) 3113 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3114 /// else 3115 /// reduce_elem = remote_elem 3116 /// 3117 /// This algorithm assumes that the data to be reduced are located in a 3118 /// contiguous subset of lanes starting from the first. When there is 3119 /// an odd number of active lanes, the data in the last lane is not 3120 /// aggregated with any other lane's dat but is instead copied over. 3121 /// 3122 /// Dispersed Partial Warp Reduction 3123 /// 3124 /// This algorithm is used within a warp when any discontiguous subset of 3125 /// lanes are active. It is used to implement the reduction operation 3126 /// across lanes in an OpenMP simd region or in a nested parallel region. 3127 /// 3128 /// void 3129 /// dispersed_partial_reduce(void *reduce_data, 3130 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3131 /// int size, remote_id; 3132 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3133 /// do { 3134 /// remote_id = next_active_lane_id_right_after_me(); 3135 /// # the above function returns 0 of no active lane 3136 /// # is present right after the current lane. 3137 /// size = number_of_active_lanes_in_this_warp(); 3138 /// logical_lane_id /= 2; 3139 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3140 /// remote_id-1-threadIdx.x, 2); 3141 /// } while (logical_lane_id % 2 == 0 && size > 1); 3142 /// } 3143 /// 3144 /// There is no assumption made about the initial state of the reduction. 3145 /// Any number of lanes (>=1) could be active at any position. The reduction 3146 /// result is returned in the first active lane. 3147 /// 3148 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3149 /// 3150 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3151 /// if (lane_id % 2 == 0 && offset > 0) 3152 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3153 /// else 3154 /// reduce_elem = remote_elem 3155 /// 3156 /// 3157 /// Intra-Team Reduction 3158 /// 3159 /// This function, as implemented in the runtime call 3160 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3161 /// threads in a team. It first reduces within a warp using the 3162 /// aforementioned algorithms. We then proceed to gather all such 3163 /// reduced values at the first warp. 3164 /// 3165 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3166 /// data from each of the "warp master" (zeroth lane of each warp, where 3167 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3168 /// a mathematical sense) the problem of reduction across warp masters in 3169 /// a block to the problem of warp reduction. 3170 /// 3171 /// 3172 /// Inter-Team Reduction 3173 /// 3174 /// Once a team has reduced its data to a single value, it is stored in 3175 /// a global scratchpad array. Since each team has a distinct slot, this 3176 /// can be done without locking. 3177 /// 3178 /// The last team to write to the scratchpad array proceeds to reduce the 3179 /// scratchpad array. One or more workers in the last team use the helper 3180 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3181 /// the k'th worker reduces every k'th element. 3182 /// 3183 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3184 /// reduce across workers and compute a globally reduced value. 3185 /// 3186 void CGOpenMPRuntimeGPU::emitReduction( 3187 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3188 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3189 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3190 if (!CGF.HaveInsertPoint()) 3191 return; 3192 3193 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3194 #ifndef NDEBUG 3195 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3196 #endif 3197 3198 if (Options.SimpleReduction) { 3199 assert(!TeamsReduction && !ParallelReduction && 3200 "Invalid reduction selection in emitReduction."); 3201 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3202 ReductionOps, Options); 3203 return; 3204 } 3205 3206 assert((TeamsReduction || ParallelReduction) && 3207 "Invalid reduction selection in emitReduction."); 3208 3209 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3210 // RedList, shuffle_reduce_func, interwarp_copy_func); 3211 // or 3212 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3213 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3214 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3215 3216 llvm::Value *Res; 3217 ASTContext &C = CGM.getContext(); 3218 // 1. Build a list of reduction variables. 3219 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3220 auto Size = RHSExprs.size(); 3221 for (const Expr *E : Privates) { 3222 if (E->getType()->isVariablyModifiedType()) 3223 // Reserve place for array size. 3224 ++Size; 3225 } 3226 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3227 QualType ReductionArrayTy = 3228 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3229 /*IndexTypeQuals=*/0); 3230 Address ReductionList = 3231 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3232 auto IPriv = Privates.begin(); 3233 unsigned Idx = 0; 3234 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3235 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3236 CGF.Builder.CreateStore( 3237 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3238 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3239 Elem); 3240 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3241 // Store array size. 3242 ++Idx; 3243 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3244 llvm::Value *Size = CGF.Builder.CreateIntCast( 3245 CGF.getVLASize( 3246 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3247 .NumElts, 3248 CGF.SizeTy, /*isSigned=*/false); 3249 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3250 Elem); 3251 } 3252 } 3253 3254 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3255 ReductionList.getPointer(), CGF.VoidPtrTy); 3256 llvm::Function *ReductionFn = emitReductionFunction( 3257 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3258 LHSExprs, RHSExprs, ReductionOps); 3259 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3260 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3261 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3262 llvm::Value *InterWarpCopyFn = 3263 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3264 3265 if (ParallelReduction) { 3266 llvm::Value *Args[] = {RTLoc, 3267 ThreadId, 3268 CGF.Builder.getInt32(RHSExprs.size()), 3269 ReductionArrayTySize, 3270 RL, 3271 ShuffleAndReduceFn, 3272 InterWarpCopyFn}; 3273 3274 Res = CGF.EmitRuntimeCall( 3275 OMPBuilder.getOrCreateRuntimeFunction( 3276 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3277 Args); 3278 } else { 3279 assert(TeamsReduction && "expected teams reduction."); 3280 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3281 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3282 int Cnt = 0; 3283 for (const Expr *DRE : Privates) { 3284 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3285 ++Cnt; 3286 } 3287 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3288 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3289 C.getLangOpts().OpenMPCUDAReductionBufNum); 3290 TeamsReductions.push_back(TeamReductionRec); 3291 if (!KernelTeamsReductionPtr) { 3292 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3293 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3294 llvm::GlobalValue::InternalLinkage, nullptr, 3295 "_openmp_teams_reductions_buffer_$_$ptr"); 3296 } 3297 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3298 Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3299 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3300 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3301 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3302 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3303 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3304 ReductionFn); 3305 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3306 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3307 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3308 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3309 ReductionFn); 3310 3311 llvm::Value *Args[] = { 3312 RTLoc, 3313 ThreadId, 3314 GlobalBufferPtr, 3315 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3316 RL, 3317 ShuffleAndReduceFn, 3318 InterWarpCopyFn, 3319 GlobalToBufferCpyFn, 3320 GlobalToBufferRedFn, 3321 BufferToGlobalCpyFn, 3322 BufferToGlobalRedFn}; 3323 3324 Res = CGF.EmitRuntimeCall( 3325 OMPBuilder.getOrCreateRuntimeFunction( 3326 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3327 Args); 3328 } 3329 3330 // 5. Build if (res == 1) 3331 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3332 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3333 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3334 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3335 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3336 3337 // 6. Build then branch: where we have reduced values in the master 3338 // thread in each team. 3339 // __kmpc_end_reduce{_nowait}(<gtid>); 3340 // break; 3341 CGF.EmitBlock(ThenBB); 3342 3343 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3344 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3345 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3346 auto IPriv = Privates.begin(); 3347 auto ILHS = LHSExprs.begin(); 3348 auto IRHS = RHSExprs.begin(); 3349 for (const Expr *E : ReductionOps) { 3350 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3351 cast<DeclRefExpr>(*IRHS)); 3352 ++IPriv; 3353 ++ILHS; 3354 ++IRHS; 3355 } 3356 }; 3357 llvm::Value *EndArgs[] = {ThreadId}; 3358 RegionCodeGenTy RCG(CodeGen); 3359 NVPTXActionTy Action( 3360 nullptr, llvm::None, 3361 OMPBuilder.getOrCreateRuntimeFunction( 3362 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3363 EndArgs); 3364 RCG.setAction(Action); 3365 RCG(CGF); 3366 // There is no need to emit line number for unconditional branch. 3367 (void)ApplyDebugLocation::CreateEmpty(CGF); 3368 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3369 } 3370 3371 const VarDecl * 3372 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3373 const VarDecl *NativeParam) const { 3374 if (!NativeParam->getType()->isReferenceType()) 3375 return NativeParam; 3376 QualType ArgType = NativeParam->getType(); 3377 QualifierCollector QC; 3378 const Type *NonQualTy = QC.strip(ArgType); 3379 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3380 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3381 if (Attr->getCaptureKind() == OMPC_map) { 3382 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3383 LangAS::opencl_global); 3384 } 3385 } 3386 ArgType = CGM.getContext().getPointerType(PointeeTy); 3387 QC.addRestrict(); 3388 enum { NVPTX_local_addr = 5 }; 3389 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3390 ArgType = QC.apply(CGM.getContext(), ArgType); 3391 if (isa<ImplicitParamDecl>(NativeParam)) 3392 return ImplicitParamDecl::Create( 3393 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3394 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3395 return ParmVarDecl::Create( 3396 CGM.getContext(), 3397 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3398 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3399 NativeParam->getIdentifier(), ArgType, 3400 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3401 } 3402 3403 Address 3404 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3405 const VarDecl *NativeParam, 3406 const VarDecl *TargetParam) const { 3407 assert(NativeParam != TargetParam && 3408 NativeParam->getType()->isReferenceType() && 3409 "Native arg must not be the same as target arg."); 3410 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3411 QualType NativeParamType = NativeParam->getType(); 3412 QualifierCollector QC; 3413 const Type *NonQualTy = QC.strip(NativeParamType); 3414 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3415 unsigned NativePointeeAddrSpace = 3416 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3417 QualType TargetTy = TargetParam->getType(); 3418 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3419 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3420 // First cast to generic. 3421 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3422 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3423 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0)); 3424 // Cast from generic to native address space. 3425 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3426 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3427 cast<llvm::PointerType>(TargetAddr->getType()), 3428 NativePointeeAddrSpace)); 3429 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3430 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3431 NativeParamType); 3432 return NativeParamAddr; 3433 } 3434 3435 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3436 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3437 ArrayRef<llvm::Value *> Args) const { 3438 SmallVector<llvm::Value *, 4> TargetArgs; 3439 TargetArgs.reserve(Args.size()); 3440 auto *FnType = OutlinedFn.getFunctionType(); 3441 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3442 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3443 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3444 break; 3445 } 3446 llvm::Type *TargetType = FnType->getParamType(I); 3447 llvm::Value *NativeArg = Args[I]; 3448 if (!TargetType->isPointerTy()) { 3449 TargetArgs.emplace_back(NativeArg); 3450 continue; 3451 } 3452 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3453 NativeArg, llvm::PointerType::getWithSamePointeeType( 3454 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0)); 3455 TargetArgs.emplace_back( 3456 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3457 } 3458 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3459 } 3460 3461 /// Emit function which wraps the outline parallel region 3462 /// and controls the arguments which are passed to this function. 3463 /// The wrapper ensures that the outlined function is called 3464 /// with the correct arguments when data is shared. 3465 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3466 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3467 ASTContext &Ctx = CGM.getContext(); 3468 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3469 3470 // Create a function that takes as argument the source thread. 3471 FunctionArgList WrapperArgs; 3472 QualType Int16QTy = 3473 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3474 QualType Int32QTy = 3475 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3476 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3477 /*Id=*/nullptr, Int16QTy, 3478 ImplicitParamDecl::Other); 3479 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3480 /*Id=*/nullptr, Int32QTy, 3481 ImplicitParamDecl::Other); 3482 WrapperArgs.emplace_back(&ParallelLevelArg); 3483 WrapperArgs.emplace_back(&WrapperArg); 3484 3485 const CGFunctionInfo &CGFI = 3486 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3487 3488 auto *Fn = llvm::Function::Create( 3489 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3490 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3491 3492 // Ensure we do not inline the function. This is trivially true for the ones 3493 // passed to __kmpc_fork_call but the ones calles in serialized regions 3494 // could be inlined. This is not a perfect but it is closer to the invariant 3495 // we want, namely, every data environment starts with a new function. 3496 // TODO: We should pass the if condition to the runtime function and do the 3497 // handling there. Much cleaner code. 3498 Fn->addFnAttr(llvm::Attribute::NoInline); 3499 3500 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3501 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3502 Fn->setDoesNotRecurse(); 3503 3504 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3505 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3506 D.getBeginLoc(), D.getBeginLoc()); 3507 3508 const auto *RD = CS.getCapturedRecordDecl(); 3509 auto CurField = RD->field_begin(); 3510 3511 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3512 /*Name=*/".zero.addr"); 3513 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3514 // Get the array of arguments. 3515 SmallVector<llvm::Value *, 8> Args; 3516 3517 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3518 Args.emplace_back(ZeroAddr.getPointer()); 3519 3520 CGBuilderTy &Bld = CGF.Builder; 3521 auto CI = CS.capture_begin(); 3522 3523 // Use global memory for data sharing. 3524 // Handle passing of global args to workers. 3525 Address GlobalArgs = 3526 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3527 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3528 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3529 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3530 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3531 DataSharingArgs); 3532 3533 // Retrieve the shared variables from the list of references returned 3534 // by the runtime. Pass the variables to the outlined function. 3535 Address SharedArgListAddress = Address::invalid(); 3536 if (CS.capture_size() > 0 || 3537 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3538 SharedArgListAddress = CGF.EmitLoadOfPointer( 3539 GlobalArgs, CGF.getContext() 3540 .getPointerType(CGF.getContext().getPointerType( 3541 CGF.getContext().VoidPtrTy)) 3542 .castAs<PointerType>()); 3543 } 3544 unsigned Idx = 0; 3545 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3546 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3547 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3548 Src, CGF.SizeTy->getPointerTo()); 3549 llvm::Value *LB = CGF.EmitLoadOfScalar( 3550 TypedAddress, 3551 /*Volatile=*/false, 3552 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3553 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3554 Args.emplace_back(LB); 3555 ++Idx; 3556 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3557 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3558 Src, CGF.SizeTy->getPointerTo()); 3559 llvm::Value *UB = CGF.EmitLoadOfScalar( 3560 TypedAddress, 3561 /*Volatile=*/false, 3562 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3563 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3564 Args.emplace_back(UB); 3565 ++Idx; 3566 } 3567 if (CS.capture_size() > 0) { 3568 ASTContext &CGFContext = CGF.getContext(); 3569 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3570 QualType ElemTy = CurField->getType(); 3571 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3572 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3573 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3574 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3575 /*Volatile=*/false, 3576 CGFContext.getPointerType(ElemTy), 3577 CI->getLocation()); 3578 if (CI->capturesVariableByCopy() && 3579 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3580 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3581 CI->getLocation()); 3582 } 3583 Args.emplace_back(Arg); 3584 } 3585 } 3586 3587 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3588 CGF.FinishFunction(); 3589 return Fn; 3590 } 3591 3592 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3593 const Decl *D) { 3594 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3595 return; 3596 3597 assert(D && "Expected function or captured|block decl."); 3598 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3599 "Function is registered already."); 3600 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3601 "Team is set but not processed."); 3602 const Stmt *Body = nullptr; 3603 bool NeedToDelayGlobalization = false; 3604 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3605 Body = FD->getBody(); 3606 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3607 Body = BD->getBody(); 3608 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3609 Body = CD->getBody(); 3610 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3611 if (NeedToDelayGlobalization && 3612 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3613 return; 3614 } 3615 if (!Body) 3616 return; 3617 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3618 VarChecker.Visit(Body); 3619 const RecordDecl *GlobalizedVarsRecord = 3620 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3621 TeamAndReductions.first = nullptr; 3622 TeamAndReductions.second.clear(); 3623 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3624 VarChecker.getEscapedVariableLengthDecls(); 3625 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3626 return; 3627 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3628 I->getSecond().MappedParams = 3629 std::make_unique<CodeGenFunction::OMPMapVars>(); 3630 I->getSecond().EscapedParameters.insert( 3631 VarChecker.getEscapedParameters().begin(), 3632 VarChecker.getEscapedParameters().end()); 3633 I->getSecond().EscapedVariableLengthDecls.append( 3634 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3635 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3636 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3637 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3638 Data.insert(std::make_pair(VD, MappedVarData())); 3639 } 3640 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3641 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3642 VarChecker.Visit(Body); 3643 I->getSecond().SecondaryLocalVarData.emplace(); 3644 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3645 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3646 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3647 Data.insert(std::make_pair(VD, MappedVarData())); 3648 } 3649 } 3650 if (!NeedToDelayGlobalization) { 3651 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3652 struct GlobalizationScope final : EHScopeStack::Cleanup { 3653 GlobalizationScope() = default; 3654 3655 void Emit(CodeGenFunction &CGF, Flags flags) override { 3656 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3657 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3658 } 3659 }; 3660 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3661 } 3662 } 3663 3664 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3665 const VarDecl *VD) { 3666 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3667 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3668 auto AS = LangAS::Default; 3669 switch (A->getAllocatorType()) { 3670 // Use the default allocator here as by default local vars are 3671 // threadlocal. 3672 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3673 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3674 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3675 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3676 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3677 // Follow the user decision - use default allocation. 3678 return Address::invalid(); 3679 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3680 // TODO: implement aupport for user-defined allocators. 3681 return Address::invalid(); 3682 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3683 AS = LangAS::cuda_constant; 3684 break; 3685 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3686 AS = LangAS::cuda_shared; 3687 break; 3688 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3689 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3690 break; 3691 } 3692 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3693 auto *GV = new llvm::GlobalVariable( 3694 CGM.getModule(), VarTy, /*isConstant=*/false, 3695 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3696 VD->getName(), 3697 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3698 CGM.getContext().getTargetAddressSpace(AS)); 3699 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3700 GV->setAlignment(Align.getAsAlign()); 3701 return Address( 3702 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3703 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3704 VD->getType().getAddressSpace()))), 3705 VarTy, Align); 3706 } 3707 3708 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3709 return Address::invalid(); 3710 3711 VD = VD->getCanonicalDecl(); 3712 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3713 if (I == FunctionGlobalizedDecls.end()) 3714 return Address::invalid(); 3715 auto VDI = I->getSecond().LocalVarData.find(VD); 3716 if (VDI != I->getSecond().LocalVarData.end()) 3717 return VDI->second.PrivateAddr; 3718 if (VD->hasAttrs()) { 3719 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3720 E(VD->attr_end()); 3721 IT != E; ++IT) { 3722 auto VDI = I->getSecond().LocalVarData.find( 3723 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3724 ->getCanonicalDecl()); 3725 if (VDI != I->getSecond().LocalVarData.end()) 3726 return VDI->second.PrivateAddr; 3727 } 3728 } 3729 3730 return Address::invalid(); 3731 } 3732 3733 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3734 FunctionGlobalizedDecls.erase(CGF.CurFn); 3735 CGOpenMPRuntime::functionFinished(CGF); 3736 } 3737 3738 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3739 CodeGenFunction &CGF, const OMPLoopDirective &S, 3740 OpenMPDistScheduleClauseKind &ScheduleKind, 3741 llvm::Value *&Chunk) const { 3742 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3743 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3744 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3745 Chunk = CGF.EmitScalarConversion( 3746 RT.getGPUNumThreads(CGF), 3747 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3748 S.getIterationVariable()->getType(), S.getBeginLoc()); 3749 return; 3750 } 3751 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3752 CGF, S, ScheduleKind, Chunk); 3753 } 3754 3755 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3756 CodeGenFunction &CGF, const OMPLoopDirective &S, 3757 OpenMPScheduleClauseKind &ScheduleKind, 3758 const Expr *&ChunkExpr) const { 3759 ScheduleKind = OMPC_SCHEDULE_static; 3760 // Chunk size is 1 in this case. 3761 llvm::APInt ChunkSize(32, 1); 3762 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3763 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3764 SourceLocation()); 3765 } 3766 3767 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3768 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3769 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3770 " Expected target-based directive."); 3771 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3772 for (const CapturedStmt::Capture &C : CS->captures()) { 3773 // Capture variables captured by reference in lambdas for target-based 3774 // directives. 3775 if (!C.capturesVariable()) 3776 continue; 3777 const VarDecl *VD = C.getCapturedVar(); 3778 const auto *RD = VD->getType() 3779 .getCanonicalType() 3780 .getNonReferenceType() 3781 ->getAsCXXRecordDecl(); 3782 if (!RD || !RD->isLambda()) 3783 continue; 3784 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3785 LValue VDLVal; 3786 if (VD->getType().getCanonicalType()->isReferenceType()) 3787 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3788 else 3789 VDLVal = CGF.MakeAddrLValue( 3790 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3791 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3792 FieldDecl *ThisCapture = nullptr; 3793 RD->getCaptureFields(Captures, ThisCapture); 3794 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3795 LValue ThisLVal = 3796 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3797 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3798 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3799 } 3800 for (const LambdaCapture &LC : RD->captures()) { 3801 if (LC.getCaptureKind() != LCK_ByRef) 3802 continue; 3803 const VarDecl *VD = LC.getCapturedVar(); 3804 if (!CS->capturesVariable(VD)) 3805 continue; 3806 auto It = Captures.find(VD); 3807 assert(It != Captures.end() && "Found lambda capture without field."); 3808 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3809 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3810 if (VD->getType().getCanonicalType()->isReferenceType()) 3811 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3812 VD->getType().getCanonicalType()) 3813 .getAddress(CGF); 3814 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3815 } 3816 } 3817 } 3818 3819 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3820 LangAS &AS) { 3821 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3822 return false; 3823 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3824 switch(A->getAllocatorType()) { 3825 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3826 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3827 // Not supported, fallback to the default mem space. 3828 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3829 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3830 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3831 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3832 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3833 AS = LangAS::Default; 3834 return true; 3835 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3836 AS = LangAS::cuda_constant; 3837 return true; 3838 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3839 AS = LangAS::cuda_shared; 3840 return true; 3841 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3842 llvm_unreachable("Expected predefined allocator for the variables with the " 3843 "static storage."); 3844 } 3845 return false; 3846 } 3847 3848 // Get current CudaArch and ignore any unknown values 3849 static CudaArch getCudaArch(CodeGenModule &CGM) { 3850 if (!CGM.getTarget().hasFeature("ptx")) 3851 return CudaArch::UNKNOWN; 3852 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3853 if (Feature.getValue()) { 3854 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3855 if (Arch != CudaArch::UNKNOWN) 3856 return Arch; 3857 } 3858 } 3859 return CudaArch::UNKNOWN; 3860 } 3861 3862 /// Check to see if target architecture supports unified addressing which is 3863 /// a restriction for OpenMP requires clause "unified_shared_memory". 3864 void CGOpenMPRuntimeGPU::processRequiresDirective( 3865 const OMPRequiresDecl *D) { 3866 for (const OMPClause *Clause : D->clauselists()) { 3867 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3868 CudaArch Arch = getCudaArch(CGM); 3869 switch (Arch) { 3870 case CudaArch::SM_20: 3871 case CudaArch::SM_21: 3872 case CudaArch::SM_30: 3873 case CudaArch::SM_32: 3874 case CudaArch::SM_35: 3875 case CudaArch::SM_37: 3876 case CudaArch::SM_50: 3877 case CudaArch::SM_52: 3878 case CudaArch::SM_53: { 3879 SmallString<256> Buffer; 3880 llvm::raw_svector_ostream Out(Buffer); 3881 Out << "Target architecture " << CudaArchToString(Arch) 3882 << " does not support unified addressing"; 3883 CGM.Error(Clause->getBeginLoc(), Out.str()); 3884 return; 3885 } 3886 case CudaArch::SM_60: 3887 case CudaArch::SM_61: 3888 case CudaArch::SM_62: 3889 case CudaArch::SM_70: 3890 case CudaArch::SM_72: 3891 case CudaArch::SM_75: 3892 case CudaArch::SM_80: 3893 case CudaArch::SM_86: 3894 case CudaArch::GFX600: 3895 case CudaArch::GFX601: 3896 case CudaArch::GFX602: 3897 case CudaArch::GFX700: 3898 case CudaArch::GFX701: 3899 case CudaArch::GFX702: 3900 case CudaArch::GFX703: 3901 case CudaArch::GFX704: 3902 case CudaArch::GFX705: 3903 case CudaArch::GFX801: 3904 case CudaArch::GFX802: 3905 case CudaArch::GFX803: 3906 case CudaArch::GFX805: 3907 case CudaArch::GFX810: 3908 case CudaArch::GFX900: 3909 case CudaArch::GFX902: 3910 case CudaArch::GFX904: 3911 case CudaArch::GFX906: 3912 case CudaArch::GFX908: 3913 case CudaArch::GFX909: 3914 case CudaArch::GFX90a: 3915 case CudaArch::GFX90c: 3916 case CudaArch::GFX1010: 3917 case CudaArch::GFX1011: 3918 case CudaArch::GFX1012: 3919 case CudaArch::GFX1013: 3920 case CudaArch::GFX1030: 3921 case CudaArch::GFX1031: 3922 case CudaArch::GFX1032: 3923 case CudaArch::GFX1033: 3924 case CudaArch::GFX1034: 3925 case CudaArch::GFX1035: 3926 case CudaArch::Generic: 3927 case CudaArch::UNUSED: 3928 case CudaArch::UNKNOWN: 3929 break; 3930 case CudaArch::LAST: 3931 llvm_unreachable("Unexpected Cuda arch."); 3932 } 3933 } 3934 } 3935 CGOpenMPRuntime::processRequiresDirective(D); 3936 } 3937 3938 void CGOpenMPRuntimeGPU::clear() { 3939 3940 if (!TeamsReductions.empty()) { 3941 ASTContext &C = CGM.getContext(); 3942 RecordDecl *StaticRD = C.buildImplicitRecord( 3943 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3944 StaticRD->startDefinition(); 3945 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3946 QualType RecTy = C.getRecordType(TeamReductionRec); 3947 auto *Field = FieldDecl::Create( 3948 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3949 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3950 /*BW=*/nullptr, /*Mutable=*/false, 3951 /*InitStyle=*/ICIS_NoInit); 3952 Field->setAccess(AS_public); 3953 StaticRD->addDecl(Field); 3954 } 3955 StaticRD->completeDefinition(); 3956 QualType StaticTy = C.getRecordType(StaticRD); 3957 llvm::Type *LLVMReductionsBufferTy = 3958 CGM.getTypes().ConvertTypeForMem(StaticTy); 3959 // FIXME: nvlink does not handle weak linkage correctly (object with the 3960 // different size are reported as erroneous). 3961 // Restore CommonLinkage as soon as nvlink is fixed. 3962 auto *GV = new llvm::GlobalVariable( 3963 CGM.getModule(), LLVMReductionsBufferTy, 3964 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3965 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3966 "_openmp_teams_reductions_buffer_$_"); 3967 KernelTeamsReductionPtr->setInitializer( 3968 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3969 CGM.VoidPtrTy)); 3970 } 3971 CGOpenMPRuntime::clear(); 3972 } 3973 3974 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3975 CGBuilderTy &Bld = CGF.Builder; 3976 llvm::Module *M = &CGF.CGM.getModule(); 3977 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3978 llvm::Function *F = M->getFunction(LocSize); 3979 if (!F) { 3980 F = llvm::Function::Create( 3981 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3982 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3983 } 3984 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3985 } 3986 3987 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3988 ArrayRef<llvm::Value *> Args{}; 3989 return CGF.EmitRuntimeCall( 3990 OMPBuilder.getOrCreateRuntimeFunction( 3991 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3992 Args); 3993 } 3994 3995 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3996 ArrayRef<llvm::Value *> Args{}; 3997 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3998 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3999 Args); 4000 } 4001