1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129   if (!Fn)
1130     return;
1131 
1132   llvm::Module &M = CGM.getModule();
1133   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134 
1135   // Get "nvvm.annotations" metadata node.
1136   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137 
1138   llvm::Metadata *MDVals[] = {
1139       llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140       llvm::ConstantAsMetadata::get(
1141           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142   // Append metadata to nvvm.annotations.
1143   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144 
1145   // Add a function attribute for the kernel.
1146   Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147 }
1148 
1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150     const OMPExecutableDirective &D, StringRef ParentName,
1151     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153   if (!IsOffloadEntry) // Nothing to do.
1154     return;
1155 
1156   assert(!ParentName.empty() && "Invalid target region parent name!");
1157 
1158   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159   if (Mode)
1160     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161                    CodeGen);
1162   else
1163     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164                       CodeGen);
1165 
1166   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167 }
1168 
1169 namespace {
1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1171 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1172 enum ModeFlagsTy : unsigned {
1173   /// Bit set to 1 when in SPMD mode.
1174   KMP_IDENT_SPMD_MODE = 0x01,
1175   /// Bit set to 1 when a simplified runtime is used.
1176   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1178 };
1179 
1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181 static const ModeFlagsTy UndefinedMode =
1182     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183 } // anonymous namespace
1184 
1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186   switch (getExecutionMode()) {
1187   case EM_SPMD:
1188     if (requiresFullRuntime())
1189       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191   case EM_NonSPMD:
1192     assert(requiresFullRuntime() && "Expected full runtime.");
1193     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194   case EM_Unknown:
1195     return UndefinedMode;
1196   }
1197   llvm_unreachable("Unknown flags are requested.");
1198 }
1199 
1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201     : CGOpenMPRuntime(CGM, "_", "$") {
1202   if (!CGM.getLangOpts().OpenMPIsDevice)
1203     llvm_unreachable("OpenMP can only handle device code.");
1204 
1205   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206   if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
1207     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1208                                 "__omp_rtl_debug_kind");
1209     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1210                                 "__omp_rtl_assume_teams_oversubscription");
1211     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1212                                 "__omp_rtl_assume_threads_oversubscription");
1213     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
1214                                 "__omp_rtl_assume_no_thread_state");
1215   }
1216 }
1217 
1218 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1219                                               ProcBindKind ProcBind,
1220                                               SourceLocation Loc) {
1221   // Do nothing in case of SPMD mode and L0 parallel.
1222   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1223     return;
1224 
1225   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1226 }
1227 
1228 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1229                                                 llvm::Value *NumThreads,
1230                                                 SourceLocation Loc) {
1231   // Nothing to do.
1232 }
1233 
1234 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1235                                               const Expr *NumTeams,
1236                                               const Expr *ThreadLimit,
1237                                               SourceLocation Loc) {}
1238 
1239 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1240     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1241     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1242   // Emit target region as a standalone region.
1243   class NVPTXPrePostActionTy : public PrePostActionTy {
1244     bool &IsInParallelRegion;
1245     bool PrevIsInParallelRegion;
1246 
1247   public:
1248     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1249         : IsInParallelRegion(IsInParallelRegion) {}
1250     void Enter(CodeGenFunction &CGF) override {
1251       PrevIsInParallelRegion = IsInParallelRegion;
1252       IsInParallelRegion = true;
1253     }
1254     void Exit(CodeGenFunction &CGF) override {
1255       IsInParallelRegion = PrevIsInParallelRegion;
1256     }
1257   } Action(IsInParallelRegion);
1258   CodeGen.setAction(Action);
1259   bool PrevIsInTTDRegion = IsInTTDRegion;
1260   IsInTTDRegion = false;
1261   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1262   IsInTargetMasterThreadRegion = false;
1263   auto *OutlinedFun =
1264       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1265           D, ThreadIDVar, InnermostKind, CodeGen));
1266   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1267   IsInTTDRegion = PrevIsInTTDRegion;
1268   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1269       !IsInParallelRegion) {
1270     llvm::Function *WrapperFun =
1271         createParallelDataSharingWrapper(OutlinedFun, D);
1272     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1273   }
1274 
1275   return OutlinedFun;
1276 }
1277 
1278 /// Get list of lastprivate variables from the teams distribute ... or
1279 /// teams {distribute ...} directives.
1280 static void
1281 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1282                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1283   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1284          "expected teams directive.");
1285   const OMPExecutableDirective *Dir = &D;
1286   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1287     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1288             Ctx,
1289             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1290                 /*IgnoreCaptured=*/true))) {
1291       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1292       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1293         Dir = nullptr;
1294     }
1295   }
1296   if (!Dir)
1297     return;
1298   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1299     for (const Expr *E : C->getVarRefs())
1300       Vars.push_back(getPrivateItem(E));
1301   }
1302 }
1303 
1304 /// Get list of reduction variables from the teams ... directives.
1305 static void
1306 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1307                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1308   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1309          "expected teams directive.");
1310   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1311     for (const Expr *E : C->privates())
1312       Vars.push_back(getPrivateItem(E));
1313   }
1314 }
1315 
1316 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1317     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1318     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1319   SourceLocation Loc = D.getBeginLoc();
1320 
1321   const RecordDecl *GlobalizedRD = nullptr;
1322   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1323   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1324   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1325   // Globalize team reductions variable unconditionally in all modes.
1326   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1327     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1328   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1329     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1330     if (!LastPrivatesReductions.empty()) {
1331       GlobalizedRD = ::buildRecordForGlobalizedVars(
1332           CGM.getContext(), llvm::None, LastPrivatesReductions,
1333           MappedDeclsFields, WarpSize);
1334     }
1335   } else if (!LastPrivatesReductions.empty()) {
1336     assert(!TeamAndReductions.first &&
1337            "Previous team declaration is not expected.");
1338     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1339     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1340   }
1341 
1342   // Emit target region as a standalone region.
1343   class NVPTXPrePostActionTy : public PrePostActionTy {
1344     SourceLocation &Loc;
1345     const RecordDecl *GlobalizedRD;
1346     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1347         &MappedDeclsFields;
1348 
1349   public:
1350     NVPTXPrePostActionTy(
1351         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1352         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1353             &MappedDeclsFields)
1354         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1355           MappedDeclsFields(MappedDeclsFields) {}
1356     void Enter(CodeGenFunction &CGF) override {
1357       auto &Rt =
1358           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1359       if (GlobalizedRD) {
1360         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1361         I->getSecond().MappedParams =
1362             std::make_unique<CodeGenFunction::OMPMapVars>();
1363         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1364         for (const auto &Pair : MappedDeclsFields) {
1365           assert(Pair.getFirst()->isCanonicalDecl() &&
1366                  "Expected canonical declaration");
1367           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1368         }
1369       }
1370       Rt.emitGenericVarsProlog(CGF, Loc);
1371     }
1372     void Exit(CodeGenFunction &CGF) override {
1373       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1374           .emitGenericVarsEpilog(CGF);
1375     }
1376   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1377   CodeGen.setAction(Action);
1378   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1379       D, ThreadIDVar, InnermostKind, CodeGen);
1380 
1381   return OutlinedFun;
1382 }
1383 
1384 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1385                                                  SourceLocation Loc,
1386                                                  bool WithSPMDCheck) {
1387   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1388       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1389     return;
1390 
1391   CGBuilderTy &Bld = CGF.Builder;
1392 
1393   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1394   if (I == FunctionGlobalizedDecls.end())
1395     return;
1396 
1397   for (auto &Rec : I->getSecond().LocalVarData) {
1398     const auto *VD = cast<VarDecl>(Rec.first);
1399     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1400     QualType VarTy = VD->getType();
1401 
1402     // Get the local allocation of a firstprivate variable before sharing
1403     llvm::Value *ParValue;
1404     if (EscapedParam) {
1405       LValue ParLVal =
1406           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1407       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1408     }
1409 
1410     // Allocate space for the variable to be globalized
1411     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1412     llvm::CallBase *VoidPtr =
1413         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1414                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1415                             AllocArgs, VD->getName());
1416     // FIXME: We should use the variables actual alignment as an argument.
1417     VoidPtr->addRetAttr(llvm::Attribute::get(
1418         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1419         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1420 
1421     // Cast the void pointer and get the address of the globalized variable.
1422     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1423     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1424         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1425     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1426     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1427     Rec.second.GlobalizedVal = VoidPtr;
1428 
1429     // Assign the local allocation to the newly globalized location.
1430     if (EscapedParam) {
1431       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1432       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1433     }
1434     if (auto *DI = CGF.getDebugInfo())
1435       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1436   }
1437   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1438     // Use actual memory size of the VLA object including the padding
1439     // for alignment purposes.
1440     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1441     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1442     Size = Bld.CreateNUWAdd(
1443         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1444     llvm::Value *AlignVal =
1445         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1446 
1447     Size = Bld.CreateUDiv(Size, AlignVal);
1448     Size = Bld.CreateNUWMul(Size, AlignVal);
1449 
1450     // Allocate space for this VLA object to be globalized.
1451     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1452     llvm::CallBase *VoidPtr =
1453         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1454                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1455                             AllocArgs, VD->getName());
1456     VoidPtr->addRetAttr(
1457         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1458                              CGM.getContext().getTargetInfo().getNewAlign()));
1459 
1460     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1461         std::pair<llvm::Value *, llvm::Value *>(
1462             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1463     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1464                                      CGM.getContext().getDeclAlign(VD),
1465                                      AlignmentSource::Decl);
1466     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1467                                             Base.getAddress(CGF));
1468   }
1469   I->getSecond().MappedParams->apply(CGF);
1470 }
1471 
1472 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1473                                                  bool WithSPMDCheck) {
1474   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1475       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1476     return;
1477 
1478   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1479   if (I != FunctionGlobalizedDecls.end()) {
1480     // Deallocate the memory for each globalized VLA object
1481     for (auto AddrSizePair :
1482          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1483       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1484                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1485                           {AddrSizePair.first, AddrSizePair.second});
1486     }
1487     // Deallocate the memory for each globalized value
1488     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1489       const auto *VD = cast<VarDecl>(Rec.first);
1490       I->getSecond().MappedParams->restore(CGF);
1491 
1492       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1493                                  CGF.getTypeSize(VD->getType())};
1494       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1495                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1496                           FreeArgs);
1497     }
1498   }
1499 }
1500 
1501 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1502                                          const OMPExecutableDirective &D,
1503                                          SourceLocation Loc,
1504                                          llvm::Function *OutlinedFn,
1505                                          ArrayRef<llvm::Value *> CapturedVars) {
1506   if (!CGF.HaveInsertPoint())
1507     return;
1508 
1509   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1510                                                       /*Name=*/".zero.addr");
1511   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1512   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1513   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1514   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1515   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1516   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1517 }
1518 
1519 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1520                                           SourceLocation Loc,
1521                                           llvm::Function *OutlinedFn,
1522                                           ArrayRef<llvm::Value *> CapturedVars,
1523                                           const Expr *IfCond,
1524                                           llvm::Value *NumThreads) {
1525   if (!CGF.HaveInsertPoint())
1526     return;
1527 
1528   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1529                         NumThreads](CodeGenFunction &CGF,
1530                                     PrePostActionTy &Action) {
1531     CGBuilderTy &Bld = CGF.Builder;
1532     llvm::Value *NumThreadsVal = NumThreads;
1533     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1534     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1535     if (WFn)
1536       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1537     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1538 
1539     // Create a private scope that will globalize the arguments
1540     // passed from the outside of the target region.
1541     // TODO: Is that needed?
1542     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1543 
1544     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1545         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1546         "captured_vars_addrs");
1547     // There's something to share.
1548     if (!CapturedVars.empty()) {
1549       // Prepare for parallel region. Indicate the outlined function.
1550       ASTContext &Ctx = CGF.getContext();
1551       unsigned Idx = 0;
1552       for (llvm::Value *V : CapturedVars) {
1553         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1554         llvm::Value *PtrV;
1555         if (V->getType()->isIntegerTy())
1556           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1557         else
1558           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1559         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1560                               Ctx.getPointerType(Ctx.VoidPtrTy));
1561         ++Idx;
1562       }
1563     }
1564 
1565     llvm::Value *IfCondVal = nullptr;
1566     if (IfCond)
1567       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1568                                     /* isSigned */ false);
1569     else
1570       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1571 
1572     if (!NumThreadsVal)
1573       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1574     else
1575       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1576 
1577       assert(IfCondVal && "Expected a value");
1578     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1579     llvm::Value *Args[] = {
1580         RTLoc,
1581         getThreadID(CGF, Loc),
1582         IfCondVal,
1583         NumThreadsVal,
1584         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1585         FnPtr,
1586         ID,
1587         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1588                                    CGF.VoidPtrPtrTy),
1589         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1590     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1591                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1592                         Args);
1593   };
1594 
1595   RegionCodeGenTy RCG(ParallelGen);
1596   RCG(CGF);
1597 }
1598 
1599 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1600   // Always emit simple barriers!
1601   if (!CGF.HaveInsertPoint())
1602     return;
1603   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1604   // This function does not use parameters, so we can emit just default values.
1605   llvm::Value *Args[] = {
1606       llvm::ConstantPointerNull::get(
1607           cast<llvm::PointerType>(getIdentTyPointerTy())),
1608       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1609   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1610                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1611                       Args);
1612 }
1613 
1614 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1615                                            SourceLocation Loc,
1616                                            OpenMPDirectiveKind Kind, bool,
1617                                            bool) {
1618   // Always emit simple barriers!
1619   if (!CGF.HaveInsertPoint())
1620     return;
1621   // Build call __kmpc_cancel_barrier(loc, thread_id);
1622   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1623   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1624                          getThreadID(CGF, Loc)};
1625 
1626   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1627                           CGM.getModule(), OMPRTL___kmpc_barrier),
1628                       Args);
1629 }
1630 
1631 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1632     CodeGenFunction &CGF, StringRef CriticalName,
1633     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1634     const Expr *Hint) {
1635   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1636   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1637   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1638   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1639   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1640 
1641   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1642 
1643   // Get the mask of active threads in the warp.
1644   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1645       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1646   // Fetch team-local id of the thread.
1647   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1648 
1649   // Get the width of the team.
1650   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1651 
1652   // Initialize the counter variable for the loop.
1653   QualType Int32Ty =
1654       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1655   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1656   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1657   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1658                         /*isInit=*/true);
1659 
1660   // Block checks if loop counter exceeds upper bound.
1661   CGF.EmitBlock(LoopBB);
1662   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1664   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1665 
1666   // Block tests which single thread should execute region, and which threads
1667   // should go straight to synchronisation point.
1668   CGF.EmitBlock(TestBB);
1669   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1670   llvm::Value *CmpThreadToCounter =
1671       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1672   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1673 
1674   // Block emits the body of the critical region.
1675   CGF.EmitBlock(BodyBB);
1676 
1677   // Output the critical statement.
1678   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1679                                       Hint);
1680 
1681   // After the body surrounded by the critical region, the single executing
1682   // thread will jump to the synchronisation point.
1683   // Block waits for all threads in current team to finish then increments the
1684   // counter variable and returns to the loop.
1685   CGF.EmitBlock(SyncBB);
1686   // Reconverge active threads in the warp.
1687   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1688                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1689                             Mask);
1690 
1691   llvm::Value *IncCounterVal =
1692       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1693   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1694   CGF.EmitBranch(LoopBB);
1695 
1696   // Block that is reached when  all threads in the team complete the region.
1697   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1698 }
1699 
1700 /// Cast value to the specified type.
1701 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1702                                     QualType ValTy, QualType CastTy,
1703                                     SourceLocation Loc) {
1704   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1705          "Cast type must sized.");
1706   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1707          "Val type must sized.");
1708   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1709   if (ValTy == CastTy)
1710     return Val;
1711   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1712       CGF.getContext().getTypeSizeInChars(CastTy))
1713     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1714   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1715     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1716                                      CastTy->hasSignedIntegerRepresentation());
1717   Address CastItem = CGF.CreateMemTemp(CastTy);
1718   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1719       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
1720   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1721                         LValueBaseInfo(AlignmentSource::Type),
1722                         TBAAAccessInfo());
1723   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1724                               LValueBaseInfo(AlignmentSource::Type),
1725                               TBAAAccessInfo());
1726 }
1727 
1728 /// This function creates calls to one of two shuffle functions to copy
1729 /// variables between lanes in a warp.
1730 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1731                                                  llvm::Value *Elem,
1732                                                  QualType ElemType,
1733                                                  llvm::Value *Offset,
1734                                                  SourceLocation Loc) {
1735   CodeGenModule &CGM = CGF.CGM;
1736   CGBuilderTy &Bld = CGF.Builder;
1737   CGOpenMPRuntimeGPU &RT =
1738       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1739   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1740 
1741   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1742   assert(Size.getQuantity() <= 8 &&
1743          "Unsupported bitwidth in shuffle instruction.");
1744 
1745   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1746                                   ? OMPRTL___kmpc_shuffle_int32
1747                                   : OMPRTL___kmpc_shuffle_int64;
1748 
1749   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1750   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1751       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1752   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1753   llvm::Value *WarpSize =
1754       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1755 
1756   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1757       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1758       {ElemCast, Offset, WarpSize});
1759 
1760   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1761 }
1762 
1763 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1764                             Address DestAddr, QualType ElemType,
1765                             llvm::Value *Offset, SourceLocation Loc) {
1766   CGBuilderTy &Bld = CGF.Builder;
1767 
1768   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1769   // Create the loop over the big sized data.
1770   // ptr = (void*)Elem;
1771   // ptrEnd = (void*) Elem + 1;
1772   // Step = 8;
1773   // while (ptr + Step < ptrEnd)
1774   //   shuffle((int64_t)*ptr);
1775   // Step = 4;
1776   // while (ptr + Step < ptrEnd)
1777   //   shuffle((int32_t)*ptr);
1778   // ...
1779   Address ElemPtr = DestAddr;
1780   Address Ptr = SrcAddr;
1781   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1782       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
1783   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1784     if (Size < CharUnits::fromQuantity(IntSize))
1785       continue;
1786     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1787         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1788         /*Signed=*/1);
1789     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1790     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
1791     ElemPtr =
1792         Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
1793     if (Size.getQuantity() / IntSize > 1) {
1794       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1795       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1796       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1797       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1798       CGF.EmitBlock(PreCondBB);
1799       llvm::PHINode *PhiSrc =
1800           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1801       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1802       llvm::PHINode *PhiDest =
1803           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1804       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1805       Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1806       ElemPtr =
1807           Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1808       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1809           CGF.Int8Ty, PtrEnd.getPointer(),
1810           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1811                                                   CGF.VoidPtrTy));
1812       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1813                        ThenBB, ExitBB);
1814       CGF.EmitBlock(ThenBB);
1815       llvm::Value *Res = createRuntimeShuffleFunction(
1816           CGF,
1817           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1818                                LValueBaseInfo(AlignmentSource::Type),
1819                                TBAAAccessInfo()),
1820           IntType, Offset, Loc);
1821       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1822                             LValueBaseInfo(AlignmentSource::Type),
1823                             TBAAAccessInfo());
1824       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1825       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1826       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1827       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1828       CGF.EmitBranch(PreCondBB);
1829       CGF.EmitBlock(ExitBB);
1830     } else {
1831       llvm::Value *Res = createRuntimeShuffleFunction(
1832           CGF,
1833           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1834                                LValueBaseInfo(AlignmentSource::Type),
1835                                TBAAAccessInfo()),
1836           IntType, Offset, Loc);
1837       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1838                             LValueBaseInfo(AlignmentSource::Type),
1839                             TBAAAccessInfo());
1840       Ptr = Bld.CreateConstGEP(Ptr, 1);
1841       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1842     }
1843     Size = Size % IntSize;
1844   }
1845 }
1846 
1847 namespace {
1848 enum CopyAction : unsigned {
1849   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1850   // the warp using shuffle instructions.
1851   RemoteLaneToThread,
1852   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1853   ThreadCopy,
1854   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1855   ThreadToScratchpad,
1856   // ScratchpadToThread: Copy from a scratchpad array in global memory
1857   // containing team-reduced data to a thread's stack.
1858   ScratchpadToThread,
1859 };
1860 } // namespace
1861 
1862 struct CopyOptionsTy {
1863   llvm::Value *RemoteLaneOffset;
1864   llvm::Value *ScratchpadIndex;
1865   llvm::Value *ScratchpadWidth;
1866 };
1867 
1868 /// Emit instructions to copy a Reduce list, which contains partially
1869 /// aggregated values, in the specified direction.
1870 static void emitReductionListCopy(
1871     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1872     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1873     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1874 
1875   CodeGenModule &CGM = CGF.CGM;
1876   ASTContext &C = CGM.getContext();
1877   CGBuilderTy &Bld = CGF.Builder;
1878 
1879   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1880   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1881   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1882 
1883   // Iterates, element-by-element, through the source Reduce list and
1884   // make a copy.
1885   unsigned Idx = 0;
1886   unsigned Size = Privates.size();
1887   for (const Expr *Private : Privates) {
1888     Address SrcElementAddr = Address::invalid();
1889     Address DestElementAddr = Address::invalid();
1890     Address DestElementPtrAddr = Address::invalid();
1891     // Should we shuffle in an element from a remote lane?
1892     bool ShuffleInElement = false;
1893     // Set to true to update the pointer in the dest Reduce list to a
1894     // newly created element.
1895     bool UpdateDestListPtr = false;
1896     // Increment the src or dest pointer to the scratchpad, for each
1897     // new element.
1898     bool IncrScratchpadSrc = false;
1899     bool IncrScratchpadDest = false;
1900 
1901     switch (Action) {
1902     case RemoteLaneToThread: {
1903       // Step 1.1: Get the address for the src element in the Reduce list.
1904       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1905       SrcElementAddr = CGF.EmitLoadOfPointer(
1906           SrcElementPtrAddr,
1907           C.getPointerType(Private->getType())->castAs<PointerType>());
1908 
1909       // Step 1.2: Create a temporary to store the element in the destination
1910       // Reduce list.
1911       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1912       DestElementAddr =
1913           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1914       ShuffleInElement = true;
1915       UpdateDestListPtr = true;
1916       break;
1917     }
1918     case ThreadCopy: {
1919       // Step 1.1: Get the address for the src element in the Reduce list.
1920       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1921       SrcElementAddr = CGF.EmitLoadOfPointer(
1922           SrcElementPtrAddr,
1923           C.getPointerType(Private->getType())->castAs<PointerType>());
1924 
1925       // Step 1.2: Get the address for dest element.  The destination
1926       // element has already been created on the thread's stack.
1927       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1928       DestElementAddr = CGF.EmitLoadOfPointer(
1929           DestElementPtrAddr,
1930           C.getPointerType(Private->getType())->castAs<PointerType>());
1931       break;
1932     }
1933     case ThreadToScratchpad: {
1934       // Step 1.1: Get the address for the src element in the Reduce list.
1935       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1936       SrcElementAddr = CGF.EmitLoadOfPointer(
1937           SrcElementPtrAddr,
1938           C.getPointerType(Private->getType())->castAs<PointerType>());
1939 
1940       // Step 1.2: Get the address for dest element:
1941       // address = base + index * ElementSizeInChars.
1942       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1943       llvm::Value *CurrentOffset =
1944           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1945       llvm::Value *ScratchPadElemAbsolutePtrVal =
1946           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1947       ScratchPadElemAbsolutePtrVal =
1948           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1949       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1950                                 C.getTypeAlignInChars(Private->getType()));
1951       IncrScratchpadDest = true;
1952       break;
1953     }
1954     case ScratchpadToThread: {
1955       // Step 1.1: Get the address for the src element in the scratchpad.
1956       // address = base + index * ElementSizeInChars.
1957       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1958       llvm::Value *CurrentOffset =
1959           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1960       llvm::Value *ScratchPadElemAbsolutePtrVal =
1961           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1962       ScratchPadElemAbsolutePtrVal =
1963           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1964       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1965                                C.getTypeAlignInChars(Private->getType()));
1966       IncrScratchpadSrc = true;
1967 
1968       // Step 1.2: Create a temporary to store the element in the destination
1969       // Reduce list.
1970       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1971       DestElementAddr =
1972           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1973       UpdateDestListPtr = true;
1974       break;
1975     }
1976     }
1977 
1978     // Regardless of src and dest of copy, we emit the load of src
1979     // element as this is required in all directions
1980     SrcElementAddr = Bld.CreateElementBitCast(
1981         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1982     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1983                                                SrcElementAddr.getElementType());
1984 
1985     // Now that all active lanes have read the element in the
1986     // Reduce list, shuffle over the value from the remote lane.
1987     if (ShuffleInElement) {
1988       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1989                       RemoteLaneOffset, Private->getExprLoc());
1990     } else {
1991       switch (CGF.getEvaluationKind(Private->getType())) {
1992       case TEK_Scalar: {
1993         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1994             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1995             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1996             TBAAAccessInfo());
1997         // Store the source element value to the dest element address.
1998         CGF.EmitStoreOfScalar(
1999             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2000             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2001         break;
2002       }
2003       case TEK_Complex: {
2004         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2005             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2006             Private->getExprLoc());
2007         CGF.EmitStoreOfComplex(
2008             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2009             /*isInit=*/false);
2010         break;
2011       }
2012       case TEK_Aggregate:
2013         CGF.EmitAggregateCopy(
2014             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2015             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2016             Private->getType(), AggValueSlot::DoesNotOverlap);
2017         break;
2018       }
2019     }
2020 
2021     // Step 3.1: Modify reference in dest Reduce list as needed.
2022     // Modifying the reference in Reduce list to point to the newly
2023     // created element.  The element is live in the current function
2024     // scope and that of functions it invokes (i.e., reduce_function).
2025     // RemoteReduceData[i] = (void*)&RemoteElem
2026     if (UpdateDestListPtr) {
2027       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2028                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2029                             DestElementPtrAddr, /*Volatile=*/false,
2030                             C.VoidPtrTy);
2031     }
2032 
2033     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2034     // address of the next element in scratchpad memory, unless we're currently
2035     // processing the last one.  Memory alignment is also taken care of here.
2036     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2037       llvm::Value *ScratchpadBasePtr =
2038           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2039       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2040       ScratchpadBasePtr = Bld.CreateNUWAdd(
2041           ScratchpadBasePtr,
2042           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2043 
2044       // Take care of global memory alignment for performance
2045       ScratchpadBasePtr = Bld.CreateNUWSub(
2046           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2047       ScratchpadBasePtr = Bld.CreateUDiv(
2048           ScratchpadBasePtr,
2049           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2050       ScratchpadBasePtr = Bld.CreateNUWAdd(
2051           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2052       ScratchpadBasePtr = Bld.CreateNUWMul(
2053           ScratchpadBasePtr,
2054           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2055 
2056       if (IncrScratchpadDest)
2057         DestBase =
2058             Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2059       else /* IncrScratchpadSrc = true */
2060         SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2061     }
2062 
2063     ++Idx;
2064   }
2065 }
2066 
2067 /// This function emits a helper that gathers Reduce lists from the first
2068 /// lane of every active warp to lanes in the first warp.
2069 ///
2070 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2071 ///   shared smem[warp_size];
2072 ///   For all data entries D in reduce_data:
2073 ///     sync
2074 ///     If (I am the first lane in each warp)
2075 ///       Copy my local D to smem[warp_id]
2076 ///     sync
2077 ///     if (I am the first warp)
2078 ///       Copy smem[thread_id] to my local D
2079 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2080                                               ArrayRef<const Expr *> Privates,
2081                                               QualType ReductionArrayTy,
2082                                               SourceLocation Loc) {
2083   ASTContext &C = CGM.getContext();
2084   llvm::Module &M = CGM.getModule();
2085 
2086   // ReduceList: thread local Reduce list.
2087   // At the stage of the computation when this function is called, partially
2088   // aggregated values reside in the first lane of every active warp.
2089   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2090                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2091   // NumWarps: number of warps active in the parallel region.  This could
2092   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2093   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2094                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2095                                 ImplicitParamDecl::Other);
2096   FunctionArgList Args;
2097   Args.push_back(&ReduceListArg);
2098   Args.push_back(&NumWarpsArg);
2099 
2100   const CGFunctionInfo &CGFI =
2101       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2102   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2103                                     llvm::GlobalValue::InternalLinkage,
2104                                     "_omp_reduction_inter_warp_copy_func", &M);
2105   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2106   Fn->setDoesNotRecurse();
2107   CodeGenFunction CGF(CGM);
2108   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2109 
2110   CGBuilderTy &Bld = CGF.Builder;
2111 
2112   // This array is used as a medium to transfer, one reduce element at a time,
2113   // the data from the first lane of every warp to lanes in the first warp
2114   // in order to perform the final step of a reduction in a parallel region
2115   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2116   // for reduced latency, as well as to have a distinct copy for concurrently
2117   // executing target regions.  The array is declared with common linkage so
2118   // as to be shared across compilation units.
2119   StringRef TransferMediumName =
2120       "__openmp_nvptx_data_transfer_temporary_storage";
2121   llvm::GlobalVariable *TransferMedium =
2122       M.getGlobalVariable(TransferMediumName);
2123   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2124   if (!TransferMedium) {
2125     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2126     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2127     TransferMedium = new llvm::GlobalVariable(
2128         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2129         llvm::UndefValue::get(Ty), TransferMediumName,
2130         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2131         SharedAddressSpace);
2132     CGM.addCompilerUsedGlobal(TransferMedium);
2133   }
2134 
2135   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2136   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2137   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2138   // nvptx_lane_id = nvptx_id % warpsize
2139   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2140   // nvptx_warp_id = nvptx_id / warpsize
2141   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2142 
2143   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2144   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2145   Address LocalReduceList(
2146       Bld.CreatePointerBitCastOrAddrSpaceCast(
2147           CGF.EmitLoadOfScalar(
2148               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2149               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2150           ElemTy->getPointerTo()),
2151       ElemTy, CGF.getPointerAlign());
2152 
2153   unsigned Idx = 0;
2154   for (const Expr *Private : Privates) {
2155     //
2156     // Warp master copies reduce element to transfer medium in __shared__
2157     // memory.
2158     //
2159     unsigned RealTySize =
2160         C.getTypeSizeInChars(Private->getType())
2161             .alignTo(C.getTypeAlignInChars(Private->getType()))
2162             .getQuantity();
2163     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2164       unsigned NumIters = RealTySize / TySize;
2165       if (NumIters == 0)
2166         continue;
2167       QualType CType = C.getIntTypeForBitwidth(
2168           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2169       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2170       CharUnits Align = CharUnits::fromQuantity(TySize);
2171       llvm::Value *Cnt = nullptr;
2172       Address CntAddr = Address::invalid();
2173       llvm::BasicBlock *PrecondBB = nullptr;
2174       llvm::BasicBlock *ExitBB = nullptr;
2175       if (NumIters > 1) {
2176         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2177         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2178                               /*Volatile=*/false, C.IntTy);
2179         PrecondBB = CGF.createBasicBlock("precond");
2180         ExitBB = CGF.createBasicBlock("exit");
2181         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2182         // There is no need to emit line number for unconditional branch.
2183         (void)ApplyDebugLocation::CreateEmpty(CGF);
2184         CGF.EmitBlock(PrecondBB);
2185         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2186         llvm::Value *Cmp =
2187             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2188         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2189         CGF.EmitBlock(BodyBB);
2190       }
2191       // kmpc_barrier.
2192       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2193                                              /*EmitChecks=*/false,
2194                                              /*ForceSimpleCall=*/true);
2195       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2196       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2197       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2198 
2199       // if (lane_id == 0)
2200       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2201       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2202       CGF.EmitBlock(ThenBB);
2203 
2204       // Reduce element = LocalReduceList[i]
2205       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2206       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2207           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2208       // elemptr = ((CopyType*)(elemptrptr)) + I
2209       Address ElemPtr = Address::deprecated(ElemPtrPtr, Align);
2210       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2211       if (NumIters > 1)
2212         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2213 
2214       // Get pointer to location in transfer medium.
2215       // MediumPtr = &medium[warp_id]
2216       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2217           TransferMedium->getValueType(), TransferMedium,
2218           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2219       Address MediumPtr = Address::deprecated(MediumPtrVal, Align);
2220       // Casting to actual data type.
2221       // MediumPtr = (CopyType*)MediumPtrAddr;
2222       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2223 
2224       // elem = *elemptr
2225       //*MediumPtr = elem
2226       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2227           ElemPtr, /*Volatile=*/false, CType, Loc,
2228           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2229       // Store the source element value to the dest element address.
2230       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2231                             LValueBaseInfo(AlignmentSource::Type),
2232                             TBAAAccessInfo());
2233 
2234       Bld.CreateBr(MergeBB);
2235 
2236       CGF.EmitBlock(ElseBB);
2237       Bld.CreateBr(MergeBB);
2238 
2239       CGF.EmitBlock(MergeBB);
2240 
2241       // kmpc_barrier.
2242       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2243                                              /*EmitChecks=*/false,
2244                                              /*ForceSimpleCall=*/true);
2245 
2246       //
2247       // Warp 0 copies reduce element from transfer medium.
2248       //
2249       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2250       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2251       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2252 
2253       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2254       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2255           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2256 
2257       // Up to 32 threads in warp 0 are active.
2258       llvm::Value *IsActiveThread =
2259           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2260       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2261 
2262       CGF.EmitBlock(W0ThenBB);
2263 
2264       // SrcMediumPtr = &medium[tid]
2265       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2266           TransferMedium->getValueType(), TransferMedium,
2267           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2268       Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align);
2269       // SrcMediumVal = *SrcMediumPtr;
2270       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2271 
2272       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2273       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2274       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2275           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2276       Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align);
2277       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2278       if (NumIters > 1)
2279         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2280 
2281       // *TargetElemPtr = SrcMediumVal;
2282       llvm::Value *SrcMediumValue =
2283           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2284       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2285                             CType);
2286       Bld.CreateBr(W0MergeBB);
2287 
2288       CGF.EmitBlock(W0ElseBB);
2289       Bld.CreateBr(W0MergeBB);
2290 
2291       CGF.EmitBlock(W0MergeBB);
2292 
2293       if (NumIters > 1) {
2294         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2295         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2296         CGF.EmitBranch(PrecondBB);
2297         (void)ApplyDebugLocation::CreateEmpty(CGF);
2298         CGF.EmitBlock(ExitBB);
2299       }
2300       RealTySize %= TySize;
2301     }
2302     ++Idx;
2303   }
2304 
2305   CGF.FinishFunction();
2306   return Fn;
2307 }
2308 
2309 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2310 /// in the same warp.  It uses shuffle instructions to copy over data from
2311 /// a remote lane's stack.  The reduction algorithm performed is specified
2312 /// by the fourth parameter.
2313 ///
2314 /// Algorithm Versions.
2315 /// Full Warp Reduce (argument value 0):
2316 ///   This algorithm assumes that all 32 lanes are active and gathers
2317 ///   data from these 32 lanes, producing a single resultant value.
2318 /// Contiguous Partial Warp Reduce (argument value 1):
2319 ///   This algorithm assumes that only a *contiguous* subset of lanes
2320 ///   are active.  This happens for the last warp in a parallel region
2321 ///   when the user specified num_threads is not an integer multiple of
2322 ///   32.  This contiguous subset always starts with the zeroth lane.
2323 /// Partial Warp Reduce (argument value 2):
2324 ///   This algorithm gathers data from any number of lanes at any position.
2325 /// All reduced values are stored in the lowest possible lane.  The set
2326 /// of problems every algorithm addresses is a super set of those
2327 /// addressable by algorithms with a lower version number.  Overhead
2328 /// increases as algorithm version increases.
2329 ///
2330 /// Terminology
2331 /// Reduce element:
2332 ///   Reduce element refers to the individual data field with primitive
2333 ///   data types to be combined and reduced across threads.
2334 /// Reduce list:
2335 ///   Reduce list refers to a collection of local, thread-private
2336 ///   reduce elements.
2337 /// Remote Reduce list:
2338 ///   Remote Reduce list refers to a collection of remote (relative to
2339 ///   the current thread) reduce elements.
2340 ///
2341 /// We distinguish between three states of threads that are important to
2342 /// the implementation of this function.
2343 /// Alive threads:
2344 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2345 ///   threads that are inactive due to divergent control flow.
2346 /// Active threads:
2347 ///   The minimal set of threads that has to be alive upon entry to this
2348 ///   function.  The computation is correct iff active threads are alive.
2349 ///   Some threads are alive but they are not active because they do not
2350 ///   contribute to the computation in any useful manner.  Turning them off
2351 ///   may introduce control flow overheads without any tangible benefits.
2352 /// Effective threads:
2353 ///   In order to comply with the argument requirements of the shuffle
2354 ///   function, we must keep all lanes holding data alive.  But at most
2355 ///   half of them perform value aggregation; we refer to this half of
2356 ///   threads as effective. The other half is simply handing off their
2357 ///   data.
2358 ///
2359 /// Procedure
2360 /// Value shuffle:
2361 ///   In this step active threads transfer data from higher lane positions
2362 ///   in the warp to lower lane positions, creating Remote Reduce list.
2363 /// Value aggregation:
2364 ///   In this step, effective threads combine their thread local Reduce list
2365 ///   with Remote Reduce list and store the result in the thread local
2366 ///   Reduce list.
2367 /// Value copy:
2368 ///   In this step, we deal with the assumption made by algorithm 2
2369 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2370 ///   active, say 2k+1, only k threads will be effective and therefore k
2371 ///   new values will be produced.  However, the Reduce list owned by the
2372 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2373 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2374 ///   that the contiguity assumption still holds.
2375 static llvm::Function *emitShuffleAndReduceFunction(
2376     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2377     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2378   ASTContext &C = CGM.getContext();
2379 
2380   // Thread local Reduce list used to host the values of data to be reduced.
2381   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2382                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2383   // Current lane id; could be logical.
2384   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2385                               ImplicitParamDecl::Other);
2386   // Offset of the remote source lane relative to the current lane.
2387   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2388                                         C.ShortTy, ImplicitParamDecl::Other);
2389   // Algorithm version.  This is expected to be known at compile time.
2390   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2391                                C.ShortTy, ImplicitParamDecl::Other);
2392   FunctionArgList Args;
2393   Args.push_back(&ReduceListArg);
2394   Args.push_back(&LaneIDArg);
2395   Args.push_back(&RemoteLaneOffsetArg);
2396   Args.push_back(&AlgoVerArg);
2397 
2398   const CGFunctionInfo &CGFI =
2399       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2400   auto *Fn = llvm::Function::Create(
2401       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2402       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2403   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2404   Fn->setDoesNotRecurse();
2405 
2406   CodeGenFunction CGF(CGM);
2407   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2408 
2409   CGBuilderTy &Bld = CGF.Builder;
2410 
2411   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2412   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2413   Address LocalReduceList(
2414       Bld.CreatePointerBitCastOrAddrSpaceCast(
2415           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2416                                C.VoidPtrTy, SourceLocation()),
2417           ElemTy->getPointerTo()),
2418       ElemTy, CGF.getPointerAlign());
2419 
2420   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2421   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2422       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2423 
2424   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2425   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2426       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2427 
2428   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2429   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2430       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2431 
2432   // Create a local thread-private variable to host the Reduce list
2433   // from a remote lane.
2434   Address RemoteReduceList =
2435       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2436 
2437   // This loop iterates through the list of reduce elements and copies,
2438   // element by element, from a remote lane in the warp to RemoteReduceList,
2439   // hosted on the thread's stack.
2440   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2441                         LocalReduceList, RemoteReduceList,
2442                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2443                          /*ScratchpadIndex=*/nullptr,
2444                          /*ScratchpadWidth=*/nullptr});
2445 
2446   // The actions to be performed on the Remote Reduce list is dependent
2447   // on the algorithm version.
2448   //
2449   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2450   //  LaneId % 2 == 0 && Offset > 0):
2451   //    do the reduction value aggregation
2452   //
2453   //  The thread local variable Reduce list is mutated in place to host the
2454   //  reduced data, which is the aggregated value produced from local and
2455   //  remote lanes.
2456   //
2457   //  Note that AlgoVer is expected to be a constant integer known at compile
2458   //  time.
2459   //  When AlgoVer==0, the first conjunction evaluates to true, making
2460   //    the entire predicate true during compile time.
2461   //  When AlgoVer==1, the second conjunction has only the second part to be
2462   //    evaluated during runtime.  Other conjunctions evaluates to false
2463   //    during compile time.
2464   //  When AlgoVer==2, the third conjunction has only the second part to be
2465   //    evaluated during runtime.  Other conjunctions evaluates to false
2466   //    during compile time.
2467   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2468 
2469   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2470   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2471       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2472 
2473   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2474   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2475       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2476   CondAlgo2 = Bld.CreateAnd(
2477       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2478 
2479   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2480   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2481 
2482   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2483   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2484   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2485   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2486 
2487   CGF.EmitBlock(ThenBB);
2488   // reduce_function(LocalReduceList, RemoteReduceList)
2489   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2490       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2491   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2492       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2493   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2494       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2495   Bld.CreateBr(MergeBB);
2496 
2497   CGF.EmitBlock(ElseBB);
2498   Bld.CreateBr(MergeBB);
2499 
2500   CGF.EmitBlock(MergeBB);
2501 
2502   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2503   // Reduce list.
2504   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2505   llvm::Value *CondCopy = Bld.CreateAnd(
2506       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2507 
2508   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2509   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2510   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2511   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2512 
2513   CGF.EmitBlock(CpyThenBB);
2514   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2515                         RemoteReduceList, LocalReduceList);
2516   Bld.CreateBr(CpyMergeBB);
2517 
2518   CGF.EmitBlock(CpyElseBB);
2519   Bld.CreateBr(CpyMergeBB);
2520 
2521   CGF.EmitBlock(CpyMergeBB);
2522 
2523   CGF.FinishFunction();
2524   return Fn;
2525 }
2526 
2527 /// This function emits a helper that copies all the reduction variables from
2528 /// the team into the provided global buffer for the reduction variables.
2529 ///
2530 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2531 ///   For all data entries D in reduce_data:
2532 ///     Copy local D to buffer.D[Idx]
2533 static llvm::Value *emitListToGlobalCopyFunction(
2534     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2535     QualType ReductionArrayTy, SourceLocation Loc,
2536     const RecordDecl *TeamReductionRec,
2537     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2538         &VarFieldMap) {
2539   ASTContext &C = CGM.getContext();
2540 
2541   // Buffer: global reduction buffer.
2542   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2543                               C.VoidPtrTy, ImplicitParamDecl::Other);
2544   // Idx: index of the buffer.
2545   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2546                            ImplicitParamDecl::Other);
2547   // ReduceList: thread local Reduce list.
2548   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2549                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2550   FunctionArgList Args;
2551   Args.push_back(&BufferArg);
2552   Args.push_back(&IdxArg);
2553   Args.push_back(&ReduceListArg);
2554 
2555   const CGFunctionInfo &CGFI =
2556       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2557   auto *Fn = llvm::Function::Create(
2558       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2559       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2560   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2561   Fn->setDoesNotRecurse();
2562   CodeGenFunction CGF(CGM);
2563   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2564 
2565   CGBuilderTy &Bld = CGF.Builder;
2566 
2567   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2568   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2569   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2570   Address LocalReduceList(
2571       Bld.CreatePointerBitCastOrAddrSpaceCast(
2572           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2573                                C.VoidPtrTy, Loc),
2574           ElemTy->getPointerTo()),
2575       ElemTy, CGF.getPointerAlign());
2576   QualType StaticTy = C.getRecordType(TeamReductionRec);
2577   llvm::Type *LLVMReductionsBufferTy =
2578       CGM.getTypes().ConvertTypeForMem(StaticTy);
2579   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2580       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2581       LLVMReductionsBufferTy->getPointerTo());
2582   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2583                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2584                                               /*Volatile=*/false, C.IntTy,
2585                                               Loc)};
2586   unsigned Idx = 0;
2587   for (const Expr *Private : Privates) {
2588     // Reduce element = LocalReduceList[i]
2589     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2590     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2591         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2592     // elemptr = ((CopyType*)(elemptrptr)) + I
2593     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2594     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2595         ElemPtrPtr, ElemTy->getPointerTo());
2596     Address ElemPtr =
2597         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2598     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2599     // Global = Buffer.VD[Idx];
2600     const FieldDecl *FD = VarFieldMap.lookup(VD);
2601     LValue GlobLVal = CGF.EmitLValueForField(
2602         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2603     Address GlobAddr = GlobLVal.getAddress(CGF);
2604     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2605         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2606     GlobLVal.setAddress(
2607         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2608     switch (CGF.getEvaluationKind(Private->getType())) {
2609     case TEK_Scalar: {
2610       llvm::Value *V = CGF.EmitLoadOfScalar(
2611           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2612           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2613       CGF.EmitStoreOfScalar(V, GlobLVal);
2614       break;
2615     }
2616     case TEK_Complex: {
2617       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2618           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2619       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2620       break;
2621     }
2622     case TEK_Aggregate:
2623       CGF.EmitAggregateCopy(GlobLVal,
2624                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2625                             Private->getType(), AggValueSlot::DoesNotOverlap);
2626       break;
2627     }
2628     ++Idx;
2629   }
2630 
2631   CGF.FinishFunction();
2632   return Fn;
2633 }
2634 
2635 /// This function emits a helper that reduces all the reduction variables from
2636 /// the team into the provided global buffer for the reduction variables.
2637 ///
2638 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2639 ///  void *GlobPtrs[];
2640 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2641 ///  ...
2642 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2643 ///  reduce_function(GlobPtrs, reduce_data);
2644 static llvm::Value *emitListToGlobalReduceFunction(
2645     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2646     QualType ReductionArrayTy, SourceLocation Loc,
2647     const RecordDecl *TeamReductionRec,
2648     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2649         &VarFieldMap,
2650     llvm::Function *ReduceFn) {
2651   ASTContext &C = CGM.getContext();
2652 
2653   // Buffer: global reduction buffer.
2654   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2655                               C.VoidPtrTy, ImplicitParamDecl::Other);
2656   // Idx: index of the buffer.
2657   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2658                            ImplicitParamDecl::Other);
2659   // ReduceList: thread local Reduce list.
2660   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2661                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2662   FunctionArgList Args;
2663   Args.push_back(&BufferArg);
2664   Args.push_back(&IdxArg);
2665   Args.push_back(&ReduceListArg);
2666 
2667   const CGFunctionInfo &CGFI =
2668       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2669   auto *Fn = llvm::Function::Create(
2670       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2671       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2672   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2673   Fn->setDoesNotRecurse();
2674   CodeGenFunction CGF(CGM);
2675   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2676 
2677   CGBuilderTy &Bld = CGF.Builder;
2678 
2679   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2680   QualType StaticTy = C.getRecordType(TeamReductionRec);
2681   llvm::Type *LLVMReductionsBufferTy =
2682       CGM.getTypes().ConvertTypeForMem(StaticTy);
2683   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2684       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2685       LLVMReductionsBufferTy->getPointerTo());
2686 
2687   // 1. Build a list of reduction variables.
2688   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2689   Address ReductionList =
2690       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2691   auto IPriv = Privates.begin();
2692   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2693                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2694                                               /*Volatile=*/false, C.IntTy,
2695                                               Loc)};
2696   unsigned Idx = 0;
2697   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2698     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2699     // Global = Buffer.VD[Idx];
2700     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2701     const FieldDecl *FD = VarFieldMap.lookup(VD);
2702     LValue GlobLVal = CGF.EmitLValueForField(
2703         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2704     Address GlobAddr = GlobLVal.getAddress(CGF);
2705     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2706         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2707     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2708     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2709     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2710       // Store array size.
2711       ++Idx;
2712       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2713       llvm::Value *Size = CGF.Builder.CreateIntCast(
2714           CGF.getVLASize(
2715                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2716               .NumElts,
2717           CGF.SizeTy, /*isSigned=*/false);
2718       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2719                               Elem);
2720     }
2721   }
2722 
2723   // Call reduce_function(GlobalReduceList, ReduceList)
2724   llvm::Value *GlobalReduceList =
2725       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2726   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2727   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2728       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2729   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2730       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2731   CGF.FinishFunction();
2732   return Fn;
2733 }
2734 
2735 /// This function emits a helper that copies all the reduction variables from
2736 /// the team into the provided global buffer for the reduction variables.
2737 ///
2738 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2739 ///   For all data entries D in reduce_data:
2740 ///     Copy buffer.D[Idx] to local D;
2741 static llvm::Value *emitGlobalToListCopyFunction(
2742     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2743     QualType ReductionArrayTy, SourceLocation Loc,
2744     const RecordDecl *TeamReductionRec,
2745     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2746         &VarFieldMap) {
2747   ASTContext &C = CGM.getContext();
2748 
2749   // Buffer: global reduction buffer.
2750   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2751                               C.VoidPtrTy, ImplicitParamDecl::Other);
2752   // Idx: index of the buffer.
2753   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2754                            ImplicitParamDecl::Other);
2755   // ReduceList: thread local Reduce list.
2756   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2757                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2758   FunctionArgList Args;
2759   Args.push_back(&BufferArg);
2760   Args.push_back(&IdxArg);
2761   Args.push_back(&ReduceListArg);
2762 
2763   const CGFunctionInfo &CGFI =
2764       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2765   auto *Fn = llvm::Function::Create(
2766       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2767       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2768   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2769   Fn->setDoesNotRecurse();
2770   CodeGenFunction CGF(CGM);
2771   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2772 
2773   CGBuilderTy &Bld = CGF.Builder;
2774 
2775   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2776   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2777   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2778   Address LocalReduceList(
2779       Bld.CreatePointerBitCastOrAddrSpaceCast(
2780           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2781                                C.VoidPtrTy, Loc),
2782           ElemTy->getPointerTo()),
2783       ElemTy, CGF.getPointerAlign());
2784   QualType StaticTy = C.getRecordType(TeamReductionRec);
2785   llvm::Type *LLVMReductionsBufferTy =
2786       CGM.getTypes().ConvertTypeForMem(StaticTy);
2787   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2788       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2789       LLVMReductionsBufferTy->getPointerTo());
2790 
2791   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2792                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2793                                               /*Volatile=*/false, C.IntTy,
2794                                               Loc)};
2795   unsigned Idx = 0;
2796   for (const Expr *Private : Privates) {
2797     // Reduce element = LocalReduceList[i]
2798     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2799     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2800         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2801     // elemptr = ((CopyType*)(elemptrptr)) + I
2802     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2803     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2804         ElemPtrPtr, ElemTy->getPointerTo());
2805     Address ElemPtr =
2806         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2807     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2808     // Global = Buffer.VD[Idx];
2809     const FieldDecl *FD = VarFieldMap.lookup(VD);
2810     LValue GlobLVal = CGF.EmitLValueForField(
2811         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2812     Address GlobAddr = GlobLVal.getAddress(CGF);
2813     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2814         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2815     GlobLVal.setAddress(
2816         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2817     switch (CGF.getEvaluationKind(Private->getType())) {
2818     case TEK_Scalar: {
2819       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2820       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2821                             LValueBaseInfo(AlignmentSource::Type),
2822                             TBAAAccessInfo());
2823       break;
2824     }
2825     case TEK_Complex: {
2826       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2827       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2828                              /*isInit=*/false);
2829       break;
2830     }
2831     case TEK_Aggregate:
2832       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2833                             GlobLVal, Private->getType(),
2834                             AggValueSlot::DoesNotOverlap);
2835       break;
2836     }
2837     ++Idx;
2838   }
2839 
2840   CGF.FinishFunction();
2841   return Fn;
2842 }
2843 
2844 /// This function emits a helper that reduces all the reduction variables from
2845 /// the team into the provided global buffer for the reduction variables.
2846 ///
2847 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2848 ///  void *GlobPtrs[];
2849 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2850 ///  ...
2851 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2852 ///  reduce_function(reduce_data, GlobPtrs);
2853 static llvm::Value *emitGlobalToListReduceFunction(
2854     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2855     QualType ReductionArrayTy, SourceLocation Loc,
2856     const RecordDecl *TeamReductionRec,
2857     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2858         &VarFieldMap,
2859     llvm::Function *ReduceFn) {
2860   ASTContext &C = CGM.getContext();
2861 
2862   // Buffer: global reduction buffer.
2863   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2864                               C.VoidPtrTy, ImplicitParamDecl::Other);
2865   // Idx: index of the buffer.
2866   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2867                            ImplicitParamDecl::Other);
2868   // ReduceList: thread local Reduce list.
2869   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2870                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2871   FunctionArgList Args;
2872   Args.push_back(&BufferArg);
2873   Args.push_back(&IdxArg);
2874   Args.push_back(&ReduceListArg);
2875 
2876   const CGFunctionInfo &CGFI =
2877       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2878   auto *Fn = llvm::Function::Create(
2879       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2880       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2881   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2882   Fn->setDoesNotRecurse();
2883   CodeGenFunction CGF(CGM);
2884   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2885 
2886   CGBuilderTy &Bld = CGF.Builder;
2887 
2888   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2889   QualType StaticTy = C.getRecordType(TeamReductionRec);
2890   llvm::Type *LLVMReductionsBufferTy =
2891       CGM.getTypes().ConvertTypeForMem(StaticTy);
2892   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2893       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2894       LLVMReductionsBufferTy->getPointerTo());
2895 
2896   // 1. Build a list of reduction variables.
2897   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2898   Address ReductionList =
2899       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2900   auto IPriv = Privates.begin();
2901   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2902                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2903                                               /*Volatile=*/false, C.IntTy,
2904                                               Loc)};
2905   unsigned Idx = 0;
2906   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2907     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2908     // Global = Buffer.VD[Idx];
2909     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2910     const FieldDecl *FD = VarFieldMap.lookup(VD);
2911     LValue GlobLVal = CGF.EmitLValueForField(
2912         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2913     Address GlobAddr = GlobLVal.getAddress(CGF);
2914     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2915         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2916     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2917     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2918     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2919       // Store array size.
2920       ++Idx;
2921       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2922       llvm::Value *Size = CGF.Builder.CreateIntCast(
2923           CGF.getVLASize(
2924                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2925               .NumElts,
2926           CGF.SizeTy, /*isSigned=*/false);
2927       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2928                               Elem);
2929     }
2930   }
2931 
2932   // Call reduce_function(ReduceList, GlobalReduceList)
2933   llvm::Value *GlobalReduceList =
2934       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2935   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2936   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2937       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2938   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2939       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2940   CGF.FinishFunction();
2941   return Fn;
2942 }
2943 
2944 ///
2945 /// Design of OpenMP reductions on the GPU
2946 ///
2947 /// Consider a typical OpenMP program with one or more reduction
2948 /// clauses:
2949 ///
2950 /// float foo;
2951 /// double bar;
2952 /// #pragma omp target teams distribute parallel for \
2953 ///             reduction(+:foo) reduction(*:bar)
2954 /// for (int i = 0; i < N; i++) {
2955 ///   foo += A[i]; bar *= B[i];
2956 /// }
2957 ///
2958 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2959 /// all teams.  In our OpenMP implementation on the NVPTX device an
2960 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2961 /// within a team are mapped to CUDA threads within a threadblock.
2962 /// Our goal is to efficiently aggregate values across all OpenMP
2963 /// threads such that:
2964 ///
2965 ///   - the compiler and runtime are logically concise, and
2966 ///   - the reduction is performed efficiently in a hierarchical
2967 ///     manner as follows: within OpenMP threads in the same warp,
2968 ///     across warps in a threadblock, and finally across teams on
2969 ///     the NVPTX device.
2970 ///
2971 /// Introduction to Decoupling
2972 ///
2973 /// We would like to decouple the compiler and the runtime so that the
2974 /// latter is ignorant of the reduction variables (number, data types)
2975 /// and the reduction operators.  This allows a simpler interface
2976 /// and implementation while still attaining good performance.
2977 ///
2978 /// Pseudocode for the aforementioned OpenMP program generated by the
2979 /// compiler is as follows:
2980 ///
2981 /// 1. Create private copies of reduction variables on each OpenMP
2982 ///    thread: 'foo_private', 'bar_private'
2983 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2984 ///    to it and writes the result in 'foo_private' and 'bar_private'
2985 ///    respectively.
2986 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2987 ///    and store the result on the team master:
2988 ///
2989 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2990 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2991 ///
2992 ///     where:
2993 ///       struct ReduceData {
2994 ///         double *foo;
2995 ///         double *bar;
2996 ///       } reduceData
2997 ///       reduceData.foo = &foo_private
2998 ///       reduceData.bar = &bar_private
2999 ///
3000 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3001 ///     auxiliary functions generated by the compiler that operate on
3002 ///     variables of type 'ReduceData'.  They aid the runtime perform
3003 ///     algorithmic steps in a data agnostic manner.
3004 ///
3005 ///     'shuffleReduceFn' is a pointer to a function that reduces data
3006 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
3007 ///     same warp.  It takes the following arguments as input:
3008 ///
3009 ///     a. variable of type 'ReduceData' on the calling lane,
3010 ///     b. its lane_id,
3011 ///     c. an offset relative to the current lane_id to generate a
3012 ///        remote_lane_id.  The remote lane contains the second
3013 ///        variable of type 'ReduceData' that is to be reduced.
3014 ///     d. an algorithm version parameter determining which reduction
3015 ///        algorithm to use.
3016 ///
3017 ///     'shuffleReduceFn' retrieves data from the remote lane using
3018 ///     efficient GPU shuffle intrinsics and reduces, using the
3019 ///     algorithm specified by the 4th parameter, the two operands
3020 ///     element-wise.  The result is written to the first operand.
3021 ///
3022 ///     Different reduction algorithms are implemented in different
3023 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3024 ///     the essential reduction step.  Therefore, based on the 4th
3025 ///     parameter, this function behaves slightly differently to
3026 ///     cooperate with the runtime to ensure correctness under
3027 ///     different circumstances.
3028 ///
3029 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3030 ///     reduced variables across warps.  It tunnels, through CUDA
3031 ///     shared memory, the thread-private data of type 'ReduceData'
3032 ///     from lane 0 of each warp to a lane in the first warp.
3033 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3034 ///    The last team writes the global reduced value to memory.
3035 ///
3036 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3037 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3038 ///             scratchpadCopyFn, loadAndReduceFn)
3039 ///
3040 ///     'scratchpadCopyFn' is a helper that stores reduced
3041 ///     data from the team master to a scratchpad array in
3042 ///     global memory.
3043 ///
3044 ///     'loadAndReduceFn' is a helper that loads data from
3045 ///     the scratchpad array and reduces it with the input
3046 ///     operand.
3047 ///
3048 ///     These compiler generated functions hide address
3049 ///     calculation and alignment information from the runtime.
3050 /// 5. if ret == 1:
3051 ///     The team master of the last team stores the reduced
3052 ///     result to the globals in memory.
3053 ///     foo += reduceData.foo; bar *= reduceData.bar
3054 ///
3055 ///
3056 /// Warp Reduction Algorithms
3057 ///
3058 /// On the warp level, we have three algorithms implemented in the
3059 /// OpenMP runtime depending on the number of active lanes:
3060 ///
3061 /// Full Warp Reduction
3062 ///
3063 /// The reduce algorithm within a warp where all lanes are active
3064 /// is implemented in the runtime as follows:
3065 ///
3066 /// full_warp_reduce(void *reduce_data,
3067 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3068 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3069 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3070 /// }
3071 ///
3072 /// The algorithm completes in log(2, WARPSIZE) steps.
3073 ///
3074 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3075 /// not used therefore we save instructions by not retrieving lane_id
3076 /// from the corresponding special registers.  The 4th parameter, which
3077 /// represents the version of the algorithm being used, is set to 0 to
3078 /// signify full warp reduction.
3079 ///
3080 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3081 ///
3082 /// #reduce_elem refers to an element in the local lane's data structure
3083 /// #remote_elem is retrieved from a remote lane
3084 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3085 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3086 ///
3087 /// Contiguous Partial Warp Reduction
3088 ///
3089 /// This reduce algorithm is used within a warp where only the first
3090 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3091 /// number of OpenMP threads in a parallel region is not a multiple of
3092 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3093 ///
3094 /// void
3095 /// contiguous_partial_reduce(void *reduce_data,
3096 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3097 ///                           int size, int lane_id) {
3098 ///   int curr_size;
3099 ///   int offset;
3100 ///   curr_size = size;
3101 ///   mask = curr_size/2;
3102 ///   while (offset>0) {
3103 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3104 ///     curr_size = (curr_size+1)/2;
3105 ///     offset = curr_size/2;
3106 ///   }
3107 /// }
3108 ///
3109 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3110 ///
3111 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3112 /// if (lane_id < offset)
3113 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3114 /// else
3115 ///     reduce_elem = remote_elem
3116 ///
3117 /// This algorithm assumes that the data to be reduced are located in a
3118 /// contiguous subset of lanes starting from the first.  When there is
3119 /// an odd number of active lanes, the data in the last lane is not
3120 /// aggregated with any other lane's dat but is instead copied over.
3121 ///
3122 /// Dispersed Partial Warp Reduction
3123 ///
3124 /// This algorithm is used within a warp when any discontiguous subset of
3125 /// lanes are active.  It is used to implement the reduction operation
3126 /// across lanes in an OpenMP simd region or in a nested parallel region.
3127 ///
3128 /// void
3129 /// dispersed_partial_reduce(void *reduce_data,
3130 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3131 ///   int size, remote_id;
3132 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3133 ///   do {
3134 ///       remote_id = next_active_lane_id_right_after_me();
3135 ///       # the above function returns 0 of no active lane
3136 ///       # is present right after the current lane.
3137 ///       size = number_of_active_lanes_in_this_warp();
3138 ///       logical_lane_id /= 2;
3139 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3140 ///                       remote_id-1-threadIdx.x, 2);
3141 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3142 /// }
3143 ///
3144 /// There is no assumption made about the initial state of the reduction.
3145 /// Any number of lanes (>=1) could be active at any position.  The reduction
3146 /// result is returned in the first active lane.
3147 ///
3148 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3149 ///
3150 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3151 /// if (lane_id % 2 == 0 && offset > 0)
3152 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3153 /// else
3154 ///     reduce_elem = remote_elem
3155 ///
3156 ///
3157 /// Intra-Team Reduction
3158 ///
3159 /// This function, as implemented in the runtime call
3160 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3161 /// threads in a team.  It first reduces within a warp using the
3162 /// aforementioned algorithms.  We then proceed to gather all such
3163 /// reduced values at the first warp.
3164 ///
3165 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3166 /// data from each of the "warp master" (zeroth lane of each warp, where
3167 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3168 /// a mathematical sense) the problem of reduction across warp masters in
3169 /// a block to the problem of warp reduction.
3170 ///
3171 ///
3172 /// Inter-Team Reduction
3173 ///
3174 /// Once a team has reduced its data to a single value, it is stored in
3175 /// a global scratchpad array.  Since each team has a distinct slot, this
3176 /// can be done without locking.
3177 ///
3178 /// The last team to write to the scratchpad array proceeds to reduce the
3179 /// scratchpad array.  One or more workers in the last team use the helper
3180 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3181 /// the k'th worker reduces every k'th element.
3182 ///
3183 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3184 /// reduce across workers and compute a globally reduced value.
3185 ///
3186 void CGOpenMPRuntimeGPU::emitReduction(
3187     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3188     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3189     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3190   if (!CGF.HaveInsertPoint())
3191     return;
3192 
3193   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3194 #ifndef NDEBUG
3195   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3196 #endif
3197 
3198   if (Options.SimpleReduction) {
3199     assert(!TeamsReduction && !ParallelReduction &&
3200            "Invalid reduction selection in emitReduction.");
3201     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3202                                    ReductionOps, Options);
3203     return;
3204   }
3205 
3206   assert((TeamsReduction || ParallelReduction) &&
3207          "Invalid reduction selection in emitReduction.");
3208 
3209   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3210   // RedList, shuffle_reduce_func, interwarp_copy_func);
3211   // or
3212   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3213   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3214   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3215 
3216   llvm::Value *Res;
3217   ASTContext &C = CGM.getContext();
3218   // 1. Build a list of reduction variables.
3219   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3220   auto Size = RHSExprs.size();
3221   for (const Expr *E : Privates) {
3222     if (E->getType()->isVariablyModifiedType())
3223       // Reserve place for array size.
3224       ++Size;
3225   }
3226   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3227   QualType ReductionArrayTy =
3228       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3229                              /*IndexTypeQuals=*/0);
3230   Address ReductionList =
3231       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3232   auto IPriv = Privates.begin();
3233   unsigned Idx = 0;
3234   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3235     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3236     CGF.Builder.CreateStore(
3237         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3238             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3239         Elem);
3240     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3241       // Store array size.
3242       ++Idx;
3243       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3244       llvm::Value *Size = CGF.Builder.CreateIntCast(
3245           CGF.getVLASize(
3246                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3247               .NumElts,
3248           CGF.SizeTy, /*isSigned=*/false);
3249       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3250                               Elem);
3251     }
3252   }
3253 
3254   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3255       ReductionList.getPointer(), CGF.VoidPtrTy);
3256   llvm::Function *ReductionFn = emitReductionFunction(
3257       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3258       LHSExprs, RHSExprs, ReductionOps);
3259   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3260   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3261       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3262   llvm::Value *InterWarpCopyFn =
3263       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3264 
3265   if (ParallelReduction) {
3266     llvm::Value *Args[] = {RTLoc,
3267                            ThreadId,
3268                            CGF.Builder.getInt32(RHSExprs.size()),
3269                            ReductionArrayTySize,
3270                            RL,
3271                            ShuffleAndReduceFn,
3272                            InterWarpCopyFn};
3273 
3274     Res = CGF.EmitRuntimeCall(
3275         OMPBuilder.getOrCreateRuntimeFunction(
3276             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3277         Args);
3278   } else {
3279     assert(TeamsReduction && "expected teams reduction.");
3280     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3281     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3282     int Cnt = 0;
3283     for (const Expr *DRE : Privates) {
3284       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3285       ++Cnt;
3286     }
3287     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3288         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3289         C.getLangOpts().OpenMPCUDAReductionBufNum);
3290     TeamsReductions.push_back(TeamReductionRec);
3291     if (!KernelTeamsReductionPtr) {
3292       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3293           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3294           llvm::GlobalValue::InternalLinkage, nullptr,
3295           "_openmp_teams_reductions_buffer_$_$ptr");
3296     }
3297     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3298         Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3299         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3300     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3301         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3302     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3303         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3304         ReductionFn);
3305     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3306         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3307     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3308         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3309         ReductionFn);
3310 
3311     llvm::Value *Args[] = {
3312         RTLoc,
3313         ThreadId,
3314         GlobalBufferPtr,
3315         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3316         RL,
3317         ShuffleAndReduceFn,
3318         InterWarpCopyFn,
3319         GlobalToBufferCpyFn,
3320         GlobalToBufferRedFn,
3321         BufferToGlobalCpyFn,
3322         BufferToGlobalRedFn};
3323 
3324     Res = CGF.EmitRuntimeCall(
3325         OMPBuilder.getOrCreateRuntimeFunction(
3326             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3327         Args);
3328   }
3329 
3330   // 5. Build if (res == 1)
3331   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3332   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3333   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3334       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3335   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3336 
3337   // 6. Build then branch: where we have reduced values in the master
3338   //    thread in each team.
3339   //    __kmpc_end_reduce{_nowait}(<gtid>);
3340   //    break;
3341   CGF.EmitBlock(ThenBB);
3342 
3343   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3344   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3345                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3346     auto IPriv = Privates.begin();
3347     auto ILHS = LHSExprs.begin();
3348     auto IRHS = RHSExprs.begin();
3349     for (const Expr *E : ReductionOps) {
3350       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3351                                   cast<DeclRefExpr>(*IRHS));
3352       ++IPriv;
3353       ++ILHS;
3354       ++IRHS;
3355     }
3356   };
3357   llvm::Value *EndArgs[] = {ThreadId};
3358   RegionCodeGenTy RCG(CodeGen);
3359   NVPTXActionTy Action(
3360       nullptr, llvm::None,
3361       OMPBuilder.getOrCreateRuntimeFunction(
3362           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3363       EndArgs);
3364   RCG.setAction(Action);
3365   RCG(CGF);
3366   // There is no need to emit line number for unconditional branch.
3367   (void)ApplyDebugLocation::CreateEmpty(CGF);
3368   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3369 }
3370 
3371 const VarDecl *
3372 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3373                                        const VarDecl *NativeParam) const {
3374   if (!NativeParam->getType()->isReferenceType())
3375     return NativeParam;
3376   QualType ArgType = NativeParam->getType();
3377   QualifierCollector QC;
3378   const Type *NonQualTy = QC.strip(ArgType);
3379   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3380   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3381     if (Attr->getCaptureKind() == OMPC_map) {
3382       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3383                                                         LangAS::opencl_global);
3384     }
3385   }
3386   ArgType = CGM.getContext().getPointerType(PointeeTy);
3387   QC.addRestrict();
3388   enum { NVPTX_local_addr = 5 };
3389   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3390   ArgType = QC.apply(CGM.getContext(), ArgType);
3391   if (isa<ImplicitParamDecl>(NativeParam))
3392     return ImplicitParamDecl::Create(
3393         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3394         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3395   return ParmVarDecl::Create(
3396       CGM.getContext(),
3397       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3398       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3399       NativeParam->getIdentifier(), ArgType,
3400       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3401 }
3402 
3403 Address
3404 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3405                                           const VarDecl *NativeParam,
3406                                           const VarDecl *TargetParam) const {
3407   assert(NativeParam != TargetParam &&
3408          NativeParam->getType()->isReferenceType() &&
3409          "Native arg must not be the same as target arg.");
3410   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3411   QualType NativeParamType = NativeParam->getType();
3412   QualifierCollector QC;
3413   const Type *NonQualTy = QC.strip(NativeParamType);
3414   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3415   unsigned NativePointeeAddrSpace =
3416       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3417   QualType TargetTy = TargetParam->getType();
3418   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3419       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3420   // First cast to generic.
3421   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3422       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3423           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3424   // Cast from generic to native address space.
3425   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3426       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3427           cast<llvm::PointerType>(TargetAddr->getType()),
3428                                   NativePointeeAddrSpace));
3429   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3430   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3431                         NativeParamType);
3432   return NativeParamAddr;
3433 }
3434 
3435 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3436     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3437     ArrayRef<llvm::Value *> Args) const {
3438   SmallVector<llvm::Value *, 4> TargetArgs;
3439   TargetArgs.reserve(Args.size());
3440   auto *FnType = OutlinedFn.getFunctionType();
3441   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3442     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3443       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3444       break;
3445     }
3446     llvm::Type *TargetType = FnType->getParamType(I);
3447     llvm::Value *NativeArg = Args[I];
3448     if (!TargetType->isPointerTy()) {
3449       TargetArgs.emplace_back(NativeArg);
3450       continue;
3451     }
3452     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3453         NativeArg, llvm::PointerType::getWithSamePointeeType(
3454             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3455     TargetArgs.emplace_back(
3456         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3457   }
3458   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3459 }
3460 
3461 /// Emit function which wraps the outline parallel region
3462 /// and controls the arguments which are passed to this function.
3463 /// The wrapper ensures that the outlined function is called
3464 /// with the correct arguments when data is shared.
3465 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3466     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3467   ASTContext &Ctx = CGM.getContext();
3468   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3469 
3470   // Create a function that takes as argument the source thread.
3471   FunctionArgList WrapperArgs;
3472   QualType Int16QTy =
3473       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3474   QualType Int32QTy =
3475       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3476   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3477                                      /*Id=*/nullptr, Int16QTy,
3478                                      ImplicitParamDecl::Other);
3479   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3480                                /*Id=*/nullptr, Int32QTy,
3481                                ImplicitParamDecl::Other);
3482   WrapperArgs.emplace_back(&ParallelLevelArg);
3483   WrapperArgs.emplace_back(&WrapperArg);
3484 
3485   const CGFunctionInfo &CGFI =
3486       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3487 
3488   auto *Fn = llvm::Function::Create(
3489       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3490       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3491 
3492   // Ensure we do not inline the function. This is trivially true for the ones
3493   // passed to __kmpc_fork_call but the ones calles in serialized regions
3494   // could be inlined. This is not a perfect but it is closer to the invariant
3495   // we want, namely, every data environment starts with a new function.
3496   // TODO: We should pass the if condition to the runtime function and do the
3497   //       handling there. Much cleaner code.
3498   Fn->addFnAttr(llvm::Attribute::NoInline);
3499 
3500   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3501   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3502   Fn->setDoesNotRecurse();
3503 
3504   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3505   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3506                     D.getBeginLoc(), D.getBeginLoc());
3507 
3508   const auto *RD = CS.getCapturedRecordDecl();
3509   auto CurField = RD->field_begin();
3510 
3511   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3512                                                       /*Name=*/".zero.addr");
3513   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3514   // Get the array of arguments.
3515   SmallVector<llvm::Value *, 8> Args;
3516 
3517   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3518   Args.emplace_back(ZeroAddr.getPointer());
3519 
3520   CGBuilderTy &Bld = CGF.Builder;
3521   auto CI = CS.capture_begin();
3522 
3523   // Use global memory for data sharing.
3524   // Handle passing of global args to workers.
3525   Address GlobalArgs =
3526       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3527   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3528   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3529   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3530                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3531                       DataSharingArgs);
3532 
3533   // Retrieve the shared variables from the list of references returned
3534   // by the runtime. Pass the variables to the outlined function.
3535   Address SharedArgListAddress = Address::invalid();
3536   if (CS.capture_size() > 0 ||
3537       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3538     SharedArgListAddress = CGF.EmitLoadOfPointer(
3539         GlobalArgs, CGF.getContext()
3540                         .getPointerType(CGF.getContext().getPointerType(
3541                             CGF.getContext().VoidPtrTy))
3542                         .castAs<PointerType>());
3543   }
3544   unsigned Idx = 0;
3545   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3546     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3547     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3548         Src, CGF.SizeTy->getPointerTo());
3549     llvm::Value *LB = CGF.EmitLoadOfScalar(
3550         TypedAddress,
3551         /*Volatile=*/false,
3552         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3553         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3554     Args.emplace_back(LB);
3555     ++Idx;
3556     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3557     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3558         Src, CGF.SizeTy->getPointerTo());
3559     llvm::Value *UB = CGF.EmitLoadOfScalar(
3560         TypedAddress,
3561         /*Volatile=*/false,
3562         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3563         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3564     Args.emplace_back(UB);
3565     ++Idx;
3566   }
3567   if (CS.capture_size() > 0) {
3568     ASTContext &CGFContext = CGF.getContext();
3569     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3570       QualType ElemTy = CurField->getType();
3571       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3572       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3573           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
3574       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3575                                               /*Volatile=*/false,
3576                                               CGFContext.getPointerType(ElemTy),
3577                                               CI->getLocation());
3578       if (CI->capturesVariableByCopy() &&
3579           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3580         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3581                               CI->getLocation());
3582       }
3583       Args.emplace_back(Arg);
3584     }
3585   }
3586 
3587   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3588   CGF.FinishFunction();
3589   return Fn;
3590 }
3591 
3592 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3593                                               const Decl *D) {
3594   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3595     return;
3596 
3597   assert(D && "Expected function or captured|block decl.");
3598   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3599          "Function is registered already.");
3600   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3601          "Team is set but not processed.");
3602   const Stmt *Body = nullptr;
3603   bool NeedToDelayGlobalization = false;
3604   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3605     Body = FD->getBody();
3606   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3607     Body = BD->getBody();
3608   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3609     Body = CD->getBody();
3610     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3611     if (NeedToDelayGlobalization &&
3612         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3613       return;
3614   }
3615   if (!Body)
3616     return;
3617   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3618   VarChecker.Visit(Body);
3619   const RecordDecl *GlobalizedVarsRecord =
3620       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3621   TeamAndReductions.first = nullptr;
3622   TeamAndReductions.second.clear();
3623   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3624       VarChecker.getEscapedVariableLengthDecls();
3625   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3626     return;
3627   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3628   I->getSecond().MappedParams =
3629       std::make_unique<CodeGenFunction::OMPMapVars>();
3630   I->getSecond().EscapedParameters.insert(
3631       VarChecker.getEscapedParameters().begin(),
3632       VarChecker.getEscapedParameters().end());
3633   I->getSecond().EscapedVariableLengthDecls.append(
3634       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3635   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3636   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3637     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3638     Data.insert(std::make_pair(VD, MappedVarData()));
3639   }
3640   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3641     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3642     VarChecker.Visit(Body);
3643     I->getSecond().SecondaryLocalVarData.emplace();
3644     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3645     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3646       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3647       Data.insert(std::make_pair(VD, MappedVarData()));
3648     }
3649   }
3650   if (!NeedToDelayGlobalization) {
3651     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3652     struct GlobalizationScope final : EHScopeStack::Cleanup {
3653       GlobalizationScope() = default;
3654 
3655       void Emit(CodeGenFunction &CGF, Flags flags) override {
3656         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3657             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3658       }
3659     };
3660     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3661   }
3662 }
3663 
3664 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3665                                                         const VarDecl *VD) {
3666   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3667     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3668     auto AS = LangAS::Default;
3669     switch (A->getAllocatorType()) {
3670       // Use the default allocator here as by default local vars are
3671       // threadlocal.
3672     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3673     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3674     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3675     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3676     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3677       // Follow the user decision - use default allocation.
3678       return Address::invalid();
3679     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3680       // TODO: implement aupport for user-defined allocators.
3681       return Address::invalid();
3682     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3683       AS = LangAS::cuda_constant;
3684       break;
3685     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3686       AS = LangAS::cuda_shared;
3687       break;
3688     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3689     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3690       break;
3691     }
3692     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3693     auto *GV = new llvm::GlobalVariable(
3694         CGM.getModule(), VarTy, /*isConstant=*/false,
3695         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3696         VD->getName(),
3697         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3698         CGM.getContext().getTargetAddressSpace(AS));
3699     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3700     GV->setAlignment(Align.getAsAlign());
3701     return Address(
3702         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3703             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3704                     VD->getType().getAddressSpace()))),
3705         VarTy, Align);
3706   }
3707 
3708   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3709     return Address::invalid();
3710 
3711   VD = VD->getCanonicalDecl();
3712   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3713   if (I == FunctionGlobalizedDecls.end())
3714     return Address::invalid();
3715   auto VDI = I->getSecond().LocalVarData.find(VD);
3716   if (VDI != I->getSecond().LocalVarData.end())
3717     return VDI->second.PrivateAddr;
3718   if (VD->hasAttrs()) {
3719     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3720          E(VD->attr_end());
3721          IT != E; ++IT) {
3722       auto VDI = I->getSecond().LocalVarData.find(
3723           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3724               ->getCanonicalDecl());
3725       if (VDI != I->getSecond().LocalVarData.end())
3726         return VDI->second.PrivateAddr;
3727     }
3728   }
3729 
3730   return Address::invalid();
3731 }
3732 
3733 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3734   FunctionGlobalizedDecls.erase(CGF.CurFn);
3735   CGOpenMPRuntime::functionFinished(CGF);
3736 }
3737 
3738 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3739     CodeGenFunction &CGF, const OMPLoopDirective &S,
3740     OpenMPDistScheduleClauseKind &ScheduleKind,
3741     llvm::Value *&Chunk) const {
3742   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3743   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3744     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3745     Chunk = CGF.EmitScalarConversion(
3746         RT.getGPUNumThreads(CGF),
3747         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3748         S.getIterationVariable()->getType(), S.getBeginLoc());
3749     return;
3750   }
3751   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3752       CGF, S, ScheduleKind, Chunk);
3753 }
3754 
3755 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3756     CodeGenFunction &CGF, const OMPLoopDirective &S,
3757     OpenMPScheduleClauseKind &ScheduleKind,
3758     const Expr *&ChunkExpr) const {
3759   ScheduleKind = OMPC_SCHEDULE_static;
3760   // Chunk size is 1 in this case.
3761   llvm::APInt ChunkSize(32, 1);
3762   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3763       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3764       SourceLocation());
3765 }
3766 
3767 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3768     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3769   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3770          " Expected target-based directive.");
3771   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3772   for (const CapturedStmt::Capture &C : CS->captures()) {
3773     // Capture variables captured by reference in lambdas for target-based
3774     // directives.
3775     if (!C.capturesVariable())
3776       continue;
3777     const VarDecl *VD = C.getCapturedVar();
3778     const auto *RD = VD->getType()
3779                          .getCanonicalType()
3780                          .getNonReferenceType()
3781                          ->getAsCXXRecordDecl();
3782     if (!RD || !RD->isLambda())
3783       continue;
3784     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3785     LValue VDLVal;
3786     if (VD->getType().getCanonicalType()->isReferenceType())
3787       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3788     else
3789       VDLVal = CGF.MakeAddrLValue(
3790           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3791     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3792     FieldDecl *ThisCapture = nullptr;
3793     RD->getCaptureFields(Captures, ThisCapture);
3794     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3795       LValue ThisLVal =
3796           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3797       llvm::Value *CXXThis = CGF.LoadCXXThis();
3798       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3799     }
3800     for (const LambdaCapture &LC : RD->captures()) {
3801       if (LC.getCaptureKind() != LCK_ByRef)
3802         continue;
3803       const VarDecl *VD = LC.getCapturedVar();
3804       if (!CS->capturesVariable(VD))
3805         continue;
3806       auto It = Captures.find(VD);
3807       assert(It != Captures.end() && "Found lambda capture without field.");
3808       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3809       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3810       if (VD->getType().getCanonicalType()->isReferenceType())
3811         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3812                                                VD->getType().getCanonicalType())
3813                      .getAddress(CGF);
3814       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3815     }
3816   }
3817 }
3818 
3819 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3820                                                             LangAS &AS) {
3821   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3822     return false;
3823   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3824   switch(A->getAllocatorType()) {
3825   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3826   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3827   // Not supported, fallback to the default mem space.
3828   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3829   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3830   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3831   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3832   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3833     AS = LangAS::Default;
3834     return true;
3835   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3836     AS = LangAS::cuda_constant;
3837     return true;
3838   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3839     AS = LangAS::cuda_shared;
3840     return true;
3841   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3842     llvm_unreachable("Expected predefined allocator for the variables with the "
3843                      "static storage.");
3844   }
3845   return false;
3846 }
3847 
3848 // Get current CudaArch and ignore any unknown values
3849 static CudaArch getCudaArch(CodeGenModule &CGM) {
3850   if (!CGM.getTarget().hasFeature("ptx"))
3851     return CudaArch::UNKNOWN;
3852   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3853     if (Feature.getValue()) {
3854       CudaArch Arch = StringToCudaArch(Feature.getKey());
3855       if (Arch != CudaArch::UNKNOWN)
3856         return Arch;
3857     }
3858   }
3859   return CudaArch::UNKNOWN;
3860 }
3861 
3862 /// Check to see if target architecture supports unified addressing which is
3863 /// a restriction for OpenMP requires clause "unified_shared_memory".
3864 void CGOpenMPRuntimeGPU::processRequiresDirective(
3865     const OMPRequiresDecl *D) {
3866   for (const OMPClause *Clause : D->clauselists()) {
3867     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3868       CudaArch Arch = getCudaArch(CGM);
3869       switch (Arch) {
3870       case CudaArch::SM_20:
3871       case CudaArch::SM_21:
3872       case CudaArch::SM_30:
3873       case CudaArch::SM_32:
3874       case CudaArch::SM_35:
3875       case CudaArch::SM_37:
3876       case CudaArch::SM_50:
3877       case CudaArch::SM_52:
3878       case CudaArch::SM_53: {
3879         SmallString<256> Buffer;
3880         llvm::raw_svector_ostream Out(Buffer);
3881         Out << "Target architecture " << CudaArchToString(Arch)
3882             << " does not support unified addressing";
3883         CGM.Error(Clause->getBeginLoc(), Out.str());
3884         return;
3885       }
3886       case CudaArch::SM_60:
3887       case CudaArch::SM_61:
3888       case CudaArch::SM_62:
3889       case CudaArch::SM_70:
3890       case CudaArch::SM_72:
3891       case CudaArch::SM_75:
3892       case CudaArch::SM_80:
3893       case CudaArch::SM_86:
3894       case CudaArch::GFX600:
3895       case CudaArch::GFX601:
3896       case CudaArch::GFX602:
3897       case CudaArch::GFX700:
3898       case CudaArch::GFX701:
3899       case CudaArch::GFX702:
3900       case CudaArch::GFX703:
3901       case CudaArch::GFX704:
3902       case CudaArch::GFX705:
3903       case CudaArch::GFX801:
3904       case CudaArch::GFX802:
3905       case CudaArch::GFX803:
3906       case CudaArch::GFX805:
3907       case CudaArch::GFX810:
3908       case CudaArch::GFX900:
3909       case CudaArch::GFX902:
3910       case CudaArch::GFX904:
3911       case CudaArch::GFX906:
3912       case CudaArch::GFX908:
3913       case CudaArch::GFX909:
3914       case CudaArch::GFX90a:
3915       case CudaArch::GFX90c:
3916       case CudaArch::GFX1010:
3917       case CudaArch::GFX1011:
3918       case CudaArch::GFX1012:
3919       case CudaArch::GFX1013:
3920       case CudaArch::GFX1030:
3921       case CudaArch::GFX1031:
3922       case CudaArch::GFX1032:
3923       case CudaArch::GFX1033:
3924       case CudaArch::GFX1034:
3925       case CudaArch::GFX1035:
3926       case CudaArch::Generic:
3927       case CudaArch::UNUSED:
3928       case CudaArch::UNKNOWN:
3929         break;
3930       case CudaArch::LAST:
3931         llvm_unreachable("Unexpected Cuda arch.");
3932       }
3933     }
3934   }
3935   CGOpenMPRuntime::processRequiresDirective(D);
3936 }
3937 
3938 void CGOpenMPRuntimeGPU::clear() {
3939 
3940   if (!TeamsReductions.empty()) {
3941     ASTContext &C = CGM.getContext();
3942     RecordDecl *StaticRD = C.buildImplicitRecord(
3943         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3944     StaticRD->startDefinition();
3945     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3946       QualType RecTy = C.getRecordType(TeamReductionRec);
3947       auto *Field = FieldDecl::Create(
3948           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3949           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3950           /*BW=*/nullptr, /*Mutable=*/false,
3951           /*InitStyle=*/ICIS_NoInit);
3952       Field->setAccess(AS_public);
3953       StaticRD->addDecl(Field);
3954     }
3955     StaticRD->completeDefinition();
3956     QualType StaticTy = C.getRecordType(StaticRD);
3957     llvm::Type *LLVMReductionsBufferTy =
3958         CGM.getTypes().ConvertTypeForMem(StaticTy);
3959     // FIXME: nvlink does not handle weak linkage correctly (object with the
3960     // different size are reported as erroneous).
3961     // Restore CommonLinkage as soon as nvlink is fixed.
3962     auto *GV = new llvm::GlobalVariable(
3963         CGM.getModule(), LLVMReductionsBufferTy,
3964         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3965         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3966         "_openmp_teams_reductions_buffer_$_");
3967     KernelTeamsReductionPtr->setInitializer(
3968         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3969                                                              CGM.VoidPtrTy));
3970   }
3971   CGOpenMPRuntime::clear();
3972 }
3973 
3974 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3975   CGBuilderTy &Bld = CGF.Builder;
3976   llvm::Module *M = &CGF.CGM.getModule();
3977   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3978   llvm::Function *F = M->getFunction(LocSize);
3979   if (!F) {
3980     F = llvm::Function::Create(
3981         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3982         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3983   }
3984   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3985 }
3986 
3987 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3988   ArrayRef<llvm::Value *> Args{};
3989   return CGF.EmitRuntimeCall(
3990       OMPBuilder.getOrCreateRuntimeFunction(
3991           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3992       Args);
3993 }
3994 
3995 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3996   ArrayRef<llvm::Value *> Args{};
3997   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3998                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3999                              Args);
4000 }
4001