1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 if (!isa<llvm::Function>(Addr)) 1129 return; 1130 llvm::Module &M = CGM.getModule(); 1131 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1132 1133 // Get "nvvm.annotations" metadata node 1134 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1135 1136 llvm::Metadata *MDVals[] = { 1137 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1138 llvm::ConstantAsMetadata::get( 1139 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1140 // Append metadata to nvvm.annotations 1141 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1142 } 1143 1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1145 const OMPExecutableDirective &D, StringRef ParentName, 1146 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1147 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1148 if (!IsOffloadEntry) // Nothing to do. 1149 return; 1150 1151 assert(!ParentName.empty() && "Invalid target region parent name!"); 1152 1153 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1154 if (Mode) 1155 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1156 CodeGen); 1157 else 1158 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1159 CodeGen); 1160 1161 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1162 } 1163 1164 namespace { 1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1166 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1167 enum ModeFlagsTy : unsigned { 1168 /// Bit set to 1 when in SPMD mode. 1169 KMP_IDENT_SPMD_MODE = 0x01, 1170 /// Bit set to 1 when a simplified runtime is used. 1171 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1172 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1173 }; 1174 1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1176 static const ModeFlagsTy UndefinedMode = 1177 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1178 } // anonymous namespace 1179 1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1181 switch (getExecutionMode()) { 1182 case EM_SPMD: 1183 if (requiresFullRuntime()) 1184 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1185 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1186 case EM_NonSPMD: 1187 assert(requiresFullRuntime() && "Expected full runtime."); 1188 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1189 case EM_Unknown: 1190 return UndefinedMode; 1191 } 1192 llvm_unreachable("Unknown flags are requested."); 1193 } 1194 1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1196 : CGOpenMPRuntime(CGM, "_", "$") { 1197 if (!CGM.getLangOpts().OpenMPIsDevice) 1198 llvm_unreachable("OpenMP can only handle device code."); 1199 1200 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1201 if (CGM.getLangOpts().OpenMPTargetNewRuntime) { 1202 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1203 "__omp_rtl_debug_kind"); 1204 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1205 "__omp_rtl_assume_teams_oversubscription"); 1206 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1207 "__omp_rtl_assume_threads_oversubscription"); 1208 } 1209 } 1210 1211 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1212 ProcBindKind ProcBind, 1213 SourceLocation Loc) { 1214 // Do nothing in case of SPMD mode and L0 parallel. 1215 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1216 return; 1217 1218 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1219 } 1220 1221 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1222 llvm::Value *NumThreads, 1223 SourceLocation Loc) { 1224 // Nothing to do. 1225 } 1226 1227 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1228 const Expr *NumTeams, 1229 const Expr *ThreadLimit, 1230 SourceLocation Loc) {} 1231 1232 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1233 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1234 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1235 // Emit target region as a standalone region. 1236 class NVPTXPrePostActionTy : public PrePostActionTy { 1237 bool &IsInParallelRegion; 1238 bool PrevIsInParallelRegion; 1239 1240 public: 1241 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1242 : IsInParallelRegion(IsInParallelRegion) {} 1243 void Enter(CodeGenFunction &CGF) override { 1244 PrevIsInParallelRegion = IsInParallelRegion; 1245 IsInParallelRegion = true; 1246 } 1247 void Exit(CodeGenFunction &CGF) override { 1248 IsInParallelRegion = PrevIsInParallelRegion; 1249 } 1250 } Action(IsInParallelRegion); 1251 CodeGen.setAction(Action); 1252 bool PrevIsInTTDRegion = IsInTTDRegion; 1253 IsInTTDRegion = false; 1254 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1255 IsInTargetMasterThreadRegion = false; 1256 auto *OutlinedFun = 1257 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1258 D, ThreadIDVar, InnermostKind, CodeGen)); 1259 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1260 IsInTTDRegion = PrevIsInTTDRegion; 1261 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1262 !IsInParallelRegion) { 1263 llvm::Function *WrapperFun = 1264 createParallelDataSharingWrapper(OutlinedFun, D); 1265 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1266 } 1267 1268 return OutlinedFun; 1269 } 1270 1271 /// Get list of lastprivate variables from the teams distribute ... or 1272 /// teams {distribute ...} directives. 1273 static void 1274 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1275 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1276 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1277 "expected teams directive."); 1278 const OMPExecutableDirective *Dir = &D; 1279 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1280 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1281 Ctx, 1282 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1283 /*IgnoreCaptured=*/true))) { 1284 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1285 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1286 Dir = nullptr; 1287 } 1288 } 1289 if (!Dir) 1290 return; 1291 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1292 for (const Expr *E : C->getVarRefs()) 1293 Vars.push_back(getPrivateItem(E)); 1294 } 1295 } 1296 1297 /// Get list of reduction variables from the teams ... directives. 1298 static void 1299 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1300 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1301 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1302 "expected teams directive."); 1303 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1304 for (const Expr *E : C->privates()) 1305 Vars.push_back(getPrivateItem(E)); 1306 } 1307 } 1308 1309 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1310 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1311 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1312 SourceLocation Loc = D.getBeginLoc(); 1313 1314 const RecordDecl *GlobalizedRD = nullptr; 1315 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1316 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1317 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1318 // Globalize team reductions variable unconditionally in all modes. 1319 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1320 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1321 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1322 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1323 if (!LastPrivatesReductions.empty()) { 1324 GlobalizedRD = ::buildRecordForGlobalizedVars( 1325 CGM.getContext(), llvm::None, LastPrivatesReductions, 1326 MappedDeclsFields, WarpSize); 1327 } 1328 } else if (!LastPrivatesReductions.empty()) { 1329 assert(!TeamAndReductions.first && 1330 "Previous team declaration is not expected."); 1331 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1332 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1333 } 1334 1335 // Emit target region as a standalone region. 1336 class NVPTXPrePostActionTy : public PrePostActionTy { 1337 SourceLocation &Loc; 1338 const RecordDecl *GlobalizedRD; 1339 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1340 &MappedDeclsFields; 1341 1342 public: 1343 NVPTXPrePostActionTy( 1344 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1345 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1346 &MappedDeclsFields) 1347 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1348 MappedDeclsFields(MappedDeclsFields) {} 1349 void Enter(CodeGenFunction &CGF) override { 1350 auto &Rt = 1351 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1352 if (GlobalizedRD) { 1353 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1354 I->getSecond().MappedParams = 1355 std::make_unique<CodeGenFunction::OMPMapVars>(); 1356 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1357 for (const auto &Pair : MappedDeclsFields) { 1358 assert(Pair.getFirst()->isCanonicalDecl() && 1359 "Expected canonical declaration"); 1360 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1361 } 1362 } 1363 Rt.emitGenericVarsProlog(CGF, Loc); 1364 } 1365 void Exit(CodeGenFunction &CGF) override { 1366 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1367 .emitGenericVarsEpilog(CGF); 1368 } 1369 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1370 CodeGen.setAction(Action); 1371 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1372 D, ThreadIDVar, InnermostKind, CodeGen); 1373 1374 return OutlinedFun; 1375 } 1376 1377 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1378 SourceLocation Loc, 1379 bool WithSPMDCheck) { 1380 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1381 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1382 return; 1383 1384 CGBuilderTy &Bld = CGF.Builder; 1385 1386 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1387 if (I == FunctionGlobalizedDecls.end()) 1388 return; 1389 1390 for (auto &Rec : I->getSecond().LocalVarData) { 1391 const auto *VD = cast<VarDecl>(Rec.first); 1392 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1393 QualType VarTy = VD->getType(); 1394 1395 // Get the local allocation of a firstprivate variable before sharing 1396 llvm::Value *ParValue; 1397 if (EscapedParam) { 1398 LValue ParLVal = 1399 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1400 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1401 } 1402 1403 // Allocate space for the variable to be globalized 1404 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1405 llvm::CallBase *VoidPtr = 1406 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1407 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1408 AllocArgs, VD->getName()); 1409 // FIXME: We should use the variables actual alignment as an argument. 1410 VoidPtr->addRetAttr(llvm::Attribute::get( 1411 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1412 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1413 1414 // Cast the void pointer and get the address of the globalized variable. 1415 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1416 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1417 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1418 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1419 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1420 Rec.second.GlobalizedVal = VoidPtr; 1421 1422 // Assign the local allocation to the newly globalized location. 1423 if (EscapedParam) { 1424 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1425 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1426 } 1427 if (auto *DI = CGF.getDebugInfo()) 1428 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1429 } 1430 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1431 // Use actual memory size of the VLA object including the padding 1432 // for alignment purposes. 1433 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1434 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1435 Size = Bld.CreateNUWAdd( 1436 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1437 llvm::Value *AlignVal = 1438 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1439 1440 Size = Bld.CreateUDiv(Size, AlignVal); 1441 Size = Bld.CreateNUWMul(Size, AlignVal); 1442 1443 // Allocate space for this VLA object to be globalized. 1444 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1445 llvm::CallBase *VoidPtr = 1446 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1447 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1448 AllocArgs, VD->getName()); 1449 VoidPtr->addRetAttr( 1450 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1451 CGM.getContext().getTargetInfo().getNewAlign())); 1452 1453 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1454 std::pair<llvm::Value *, llvm::Value *>( 1455 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1456 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1457 CGM.getContext().getDeclAlign(VD), 1458 AlignmentSource::Decl); 1459 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1460 Base.getAddress(CGF)); 1461 } 1462 I->getSecond().MappedParams->apply(CGF); 1463 } 1464 1465 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1466 bool WithSPMDCheck) { 1467 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1468 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1469 return; 1470 1471 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1472 if (I != FunctionGlobalizedDecls.end()) { 1473 // Deallocate the memory for each globalized VLA object 1474 for (auto AddrSizePair : 1475 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1476 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1477 CGM.getModule(), OMPRTL___kmpc_free_shared), 1478 {AddrSizePair.first, AddrSizePair.second}); 1479 } 1480 // Deallocate the memory for each globalized value 1481 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1482 const auto *VD = cast<VarDecl>(Rec.first); 1483 I->getSecond().MappedParams->restore(CGF); 1484 1485 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1486 CGF.getTypeSize(VD->getType())}; 1487 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1488 CGM.getModule(), OMPRTL___kmpc_free_shared), 1489 FreeArgs); 1490 } 1491 } 1492 } 1493 1494 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1495 const OMPExecutableDirective &D, 1496 SourceLocation Loc, 1497 llvm::Function *OutlinedFn, 1498 ArrayRef<llvm::Value *> CapturedVars) { 1499 if (!CGF.HaveInsertPoint()) 1500 return; 1501 1502 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1503 /*Name=*/".zero.addr"); 1504 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1505 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1506 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1507 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1508 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1509 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1510 } 1511 1512 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1513 SourceLocation Loc, 1514 llvm::Function *OutlinedFn, 1515 ArrayRef<llvm::Value *> CapturedVars, 1516 const Expr *IfCond, 1517 llvm::Value *NumThreads) { 1518 if (!CGF.HaveInsertPoint()) 1519 return; 1520 1521 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1522 NumThreads](CodeGenFunction &CGF, 1523 PrePostActionTy &Action) { 1524 CGBuilderTy &Bld = CGF.Builder; 1525 llvm::Value *NumThreadsVal = NumThreads; 1526 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1527 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1528 if (WFn) 1529 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1530 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1531 1532 // Create a private scope that will globalize the arguments 1533 // passed from the outside of the target region. 1534 // TODO: Is that needed? 1535 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1536 1537 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1538 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1539 "captured_vars_addrs"); 1540 // There's something to share. 1541 if (!CapturedVars.empty()) { 1542 // Prepare for parallel region. Indicate the outlined function. 1543 ASTContext &Ctx = CGF.getContext(); 1544 unsigned Idx = 0; 1545 for (llvm::Value *V : CapturedVars) { 1546 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1547 llvm::Value *PtrV; 1548 if (V->getType()->isIntegerTy()) 1549 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1550 else 1551 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1552 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1553 Ctx.getPointerType(Ctx.VoidPtrTy)); 1554 ++Idx; 1555 } 1556 } 1557 1558 llvm::Value *IfCondVal = nullptr; 1559 if (IfCond) 1560 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1561 /* isSigned */ false); 1562 else 1563 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1564 1565 if (!NumThreadsVal) 1566 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1567 else 1568 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1569 1570 assert(IfCondVal && "Expected a value"); 1571 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1572 llvm::Value *Args[] = { 1573 RTLoc, 1574 getThreadID(CGF, Loc), 1575 IfCondVal, 1576 NumThreadsVal, 1577 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1578 FnPtr, 1579 ID, 1580 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1581 CGF.VoidPtrPtrTy), 1582 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1583 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1584 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1585 Args); 1586 }; 1587 1588 RegionCodeGenTy RCG(ParallelGen); 1589 RCG(CGF); 1590 } 1591 1592 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1593 // Always emit simple barriers! 1594 if (!CGF.HaveInsertPoint()) 1595 return; 1596 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1597 // This function does not use parameters, so we can emit just default values. 1598 llvm::Value *Args[] = { 1599 llvm::ConstantPointerNull::get( 1600 cast<llvm::PointerType>(getIdentTyPointerTy())), 1601 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1602 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1603 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1604 Args); 1605 } 1606 1607 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1608 SourceLocation Loc, 1609 OpenMPDirectiveKind Kind, bool, 1610 bool) { 1611 // Always emit simple barriers! 1612 if (!CGF.HaveInsertPoint()) 1613 return; 1614 // Build call __kmpc_cancel_barrier(loc, thread_id); 1615 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1616 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1617 getThreadID(CGF, Loc)}; 1618 1619 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1620 CGM.getModule(), OMPRTL___kmpc_barrier), 1621 Args); 1622 } 1623 1624 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1625 CodeGenFunction &CGF, StringRef CriticalName, 1626 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1627 const Expr *Hint) { 1628 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1629 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1630 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1631 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1632 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1633 1634 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1635 1636 // Get the mask of active threads in the warp. 1637 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1638 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1639 // Fetch team-local id of the thread. 1640 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1641 1642 // Get the width of the team. 1643 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1644 1645 // Initialize the counter variable for the loop. 1646 QualType Int32Ty = 1647 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1648 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1649 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1650 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1651 /*isInit=*/true); 1652 1653 // Block checks if loop counter exceeds upper bound. 1654 CGF.EmitBlock(LoopBB); 1655 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1656 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1657 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1658 1659 // Block tests which single thread should execute region, and which threads 1660 // should go straight to synchronisation point. 1661 CGF.EmitBlock(TestBB); 1662 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1663 llvm::Value *CmpThreadToCounter = 1664 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1665 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1666 1667 // Block emits the body of the critical region. 1668 CGF.EmitBlock(BodyBB); 1669 1670 // Output the critical statement. 1671 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1672 Hint); 1673 1674 // After the body surrounded by the critical region, the single executing 1675 // thread will jump to the synchronisation point. 1676 // Block waits for all threads in current team to finish then increments the 1677 // counter variable and returns to the loop. 1678 CGF.EmitBlock(SyncBB); 1679 // Reconverge active threads in the warp. 1680 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1681 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1682 Mask); 1683 1684 llvm::Value *IncCounterVal = 1685 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1686 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1687 CGF.EmitBranch(LoopBB); 1688 1689 // Block that is reached when all threads in the team complete the region. 1690 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1691 } 1692 1693 /// Cast value to the specified type. 1694 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1695 QualType ValTy, QualType CastTy, 1696 SourceLocation Loc) { 1697 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1698 "Cast type must sized."); 1699 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1700 "Val type must sized."); 1701 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1702 if (ValTy == CastTy) 1703 return Val; 1704 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1705 CGF.getContext().getTypeSizeInChars(CastTy)) 1706 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1707 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1708 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1709 CastTy->hasSignedIntegerRepresentation()); 1710 Address CastItem = CGF.CreateMemTemp(CastTy); 1711 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1712 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1713 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1714 LValueBaseInfo(AlignmentSource::Type), 1715 TBAAAccessInfo()); 1716 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1717 LValueBaseInfo(AlignmentSource::Type), 1718 TBAAAccessInfo()); 1719 } 1720 1721 /// This function creates calls to one of two shuffle functions to copy 1722 /// variables between lanes in a warp. 1723 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1724 llvm::Value *Elem, 1725 QualType ElemType, 1726 llvm::Value *Offset, 1727 SourceLocation Loc) { 1728 CodeGenModule &CGM = CGF.CGM; 1729 CGBuilderTy &Bld = CGF.Builder; 1730 CGOpenMPRuntimeGPU &RT = 1731 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1732 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1733 1734 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1735 assert(Size.getQuantity() <= 8 && 1736 "Unsupported bitwidth in shuffle instruction."); 1737 1738 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1739 ? OMPRTL___kmpc_shuffle_int32 1740 : OMPRTL___kmpc_shuffle_int64; 1741 1742 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1743 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1744 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1745 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1746 llvm::Value *WarpSize = 1747 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1748 1749 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1750 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1751 {ElemCast, Offset, WarpSize}); 1752 1753 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1754 } 1755 1756 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1757 Address DestAddr, QualType ElemType, 1758 llvm::Value *Offset, SourceLocation Loc) { 1759 CGBuilderTy &Bld = CGF.Builder; 1760 1761 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1762 // Create the loop over the big sized data. 1763 // ptr = (void*)Elem; 1764 // ptrEnd = (void*) Elem + 1; 1765 // Step = 8; 1766 // while (ptr + Step < ptrEnd) 1767 // shuffle((int64_t)*ptr); 1768 // Step = 4; 1769 // while (ptr + Step < ptrEnd) 1770 // shuffle((int32_t)*ptr); 1771 // ... 1772 Address ElemPtr = DestAddr; 1773 Address Ptr = SrcAddr; 1774 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1775 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1776 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1777 if (Size < CharUnits::fromQuantity(IntSize)) 1778 continue; 1779 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1780 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1781 /*Signed=*/1); 1782 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1783 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1784 ElemPtr = 1785 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1786 if (Size.getQuantity() / IntSize > 1) { 1787 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1788 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1789 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1790 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1791 CGF.EmitBlock(PreCondBB); 1792 llvm::PHINode *PhiSrc = 1793 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1794 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1795 llvm::PHINode *PhiDest = 1796 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1797 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1798 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1799 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1800 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1801 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1802 Ptr.getPointer(), CGF.VoidPtrTy)); 1803 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1804 ThenBB, ExitBB); 1805 CGF.EmitBlock(ThenBB); 1806 llvm::Value *Res = createRuntimeShuffleFunction( 1807 CGF, 1808 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1809 LValueBaseInfo(AlignmentSource::Type), 1810 TBAAAccessInfo()), 1811 IntType, Offset, Loc); 1812 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1813 LValueBaseInfo(AlignmentSource::Type), 1814 TBAAAccessInfo()); 1815 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1816 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1817 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1818 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1819 CGF.EmitBranch(PreCondBB); 1820 CGF.EmitBlock(ExitBB); 1821 } else { 1822 llvm::Value *Res = createRuntimeShuffleFunction( 1823 CGF, 1824 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1825 LValueBaseInfo(AlignmentSource::Type), 1826 TBAAAccessInfo()), 1827 IntType, Offset, Loc); 1828 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1829 LValueBaseInfo(AlignmentSource::Type), 1830 TBAAAccessInfo()); 1831 Ptr = Bld.CreateConstGEP(Ptr, 1); 1832 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1833 } 1834 Size = Size % IntSize; 1835 } 1836 } 1837 1838 namespace { 1839 enum CopyAction : unsigned { 1840 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1841 // the warp using shuffle instructions. 1842 RemoteLaneToThread, 1843 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1844 ThreadCopy, 1845 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1846 ThreadToScratchpad, 1847 // ScratchpadToThread: Copy from a scratchpad array in global memory 1848 // containing team-reduced data to a thread's stack. 1849 ScratchpadToThread, 1850 }; 1851 } // namespace 1852 1853 struct CopyOptionsTy { 1854 llvm::Value *RemoteLaneOffset; 1855 llvm::Value *ScratchpadIndex; 1856 llvm::Value *ScratchpadWidth; 1857 }; 1858 1859 /// Emit instructions to copy a Reduce list, which contains partially 1860 /// aggregated values, in the specified direction. 1861 static void emitReductionListCopy( 1862 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1863 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1864 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1865 1866 CodeGenModule &CGM = CGF.CGM; 1867 ASTContext &C = CGM.getContext(); 1868 CGBuilderTy &Bld = CGF.Builder; 1869 1870 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1871 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1872 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1873 1874 // Iterates, element-by-element, through the source Reduce list and 1875 // make a copy. 1876 unsigned Idx = 0; 1877 unsigned Size = Privates.size(); 1878 for (const Expr *Private : Privates) { 1879 Address SrcElementAddr = Address::invalid(); 1880 Address DestElementAddr = Address::invalid(); 1881 Address DestElementPtrAddr = Address::invalid(); 1882 // Should we shuffle in an element from a remote lane? 1883 bool ShuffleInElement = false; 1884 // Set to true to update the pointer in the dest Reduce list to a 1885 // newly created element. 1886 bool UpdateDestListPtr = false; 1887 // Increment the src or dest pointer to the scratchpad, for each 1888 // new element. 1889 bool IncrScratchpadSrc = false; 1890 bool IncrScratchpadDest = false; 1891 1892 switch (Action) { 1893 case RemoteLaneToThread: { 1894 // Step 1.1: Get the address for the src element in the Reduce list. 1895 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1896 SrcElementAddr = CGF.EmitLoadOfPointer( 1897 SrcElementPtrAddr, 1898 C.getPointerType(Private->getType())->castAs<PointerType>()); 1899 1900 // Step 1.2: Create a temporary to store the element in the destination 1901 // Reduce list. 1902 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1903 DestElementAddr = 1904 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1905 ShuffleInElement = true; 1906 UpdateDestListPtr = true; 1907 break; 1908 } 1909 case ThreadCopy: { 1910 // Step 1.1: Get the address for the src element in the Reduce list. 1911 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1912 SrcElementAddr = CGF.EmitLoadOfPointer( 1913 SrcElementPtrAddr, 1914 C.getPointerType(Private->getType())->castAs<PointerType>()); 1915 1916 // Step 1.2: Get the address for dest element. The destination 1917 // element has already been created on the thread's stack. 1918 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1919 DestElementAddr = CGF.EmitLoadOfPointer( 1920 DestElementPtrAddr, 1921 C.getPointerType(Private->getType())->castAs<PointerType>()); 1922 break; 1923 } 1924 case ThreadToScratchpad: { 1925 // Step 1.1: Get the address for the src element in the Reduce list. 1926 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1927 SrcElementAddr = CGF.EmitLoadOfPointer( 1928 SrcElementPtrAddr, 1929 C.getPointerType(Private->getType())->castAs<PointerType>()); 1930 1931 // Step 1.2: Get the address for dest element: 1932 // address = base + index * ElementSizeInChars. 1933 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1934 llvm::Value *CurrentOffset = 1935 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1936 llvm::Value *ScratchPadElemAbsolutePtrVal = 1937 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1938 ScratchPadElemAbsolutePtrVal = 1939 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1940 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1941 C.getTypeAlignInChars(Private->getType())); 1942 IncrScratchpadDest = true; 1943 break; 1944 } 1945 case ScratchpadToThread: { 1946 // Step 1.1: Get the address for the src element in the scratchpad. 1947 // address = base + index * ElementSizeInChars. 1948 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1949 llvm::Value *CurrentOffset = 1950 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1951 llvm::Value *ScratchPadElemAbsolutePtrVal = 1952 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1953 ScratchPadElemAbsolutePtrVal = 1954 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1955 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1956 C.getTypeAlignInChars(Private->getType())); 1957 IncrScratchpadSrc = true; 1958 1959 // Step 1.2: Create a temporary to store the element in the destination 1960 // Reduce list. 1961 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1962 DestElementAddr = 1963 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1964 UpdateDestListPtr = true; 1965 break; 1966 } 1967 } 1968 1969 // Regardless of src and dest of copy, we emit the load of src 1970 // element as this is required in all directions 1971 SrcElementAddr = Bld.CreateElementBitCast( 1972 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1973 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1974 SrcElementAddr.getElementType()); 1975 1976 // Now that all active lanes have read the element in the 1977 // Reduce list, shuffle over the value from the remote lane. 1978 if (ShuffleInElement) { 1979 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1980 RemoteLaneOffset, Private->getExprLoc()); 1981 } else { 1982 switch (CGF.getEvaluationKind(Private->getType())) { 1983 case TEK_Scalar: { 1984 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1985 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1986 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1987 TBAAAccessInfo()); 1988 // Store the source element value to the dest element address. 1989 CGF.EmitStoreOfScalar( 1990 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1991 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1992 break; 1993 } 1994 case TEK_Complex: { 1995 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1996 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1997 Private->getExprLoc()); 1998 CGF.EmitStoreOfComplex( 1999 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2000 /*isInit=*/false); 2001 break; 2002 } 2003 case TEK_Aggregate: 2004 CGF.EmitAggregateCopy( 2005 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2006 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2007 Private->getType(), AggValueSlot::DoesNotOverlap); 2008 break; 2009 } 2010 } 2011 2012 // Step 3.1: Modify reference in dest Reduce list as needed. 2013 // Modifying the reference in Reduce list to point to the newly 2014 // created element. The element is live in the current function 2015 // scope and that of functions it invokes (i.e., reduce_function). 2016 // RemoteReduceData[i] = (void*)&RemoteElem 2017 if (UpdateDestListPtr) { 2018 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2019 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2020 DestElementPtrAddr, /*Volatile=*/false, 2021 C.VoidPtrTy); 2022 } 2023 2024 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2025 // address of the next element in scratchpad memory, unless we're currently 2026 // processing the last one. Memory alignment is also taken care of here. 2027 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2028 llvm::Value *ScratchpadBasePtr = 2029 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2030 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2031 ScratchpadBasePtr = Bld.CreateNUWAdd( 2032 ScratchpadBasePtr, 2033 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2034 2035 // Take care of global memory alignment for performance 2036 ScratchpadBasePtr = Bld.CreateNUWSub( 2037 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2038 ScratchpadBasePtr = Bld.CreateUDiv( 2039 ScratchpadBasePtr, 2040 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2041 ScratchpadBasePtr = Bld.CreateNUWAdd( 2042 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2043 ScratchpadBasePtr = Bld.CreateNUWMul( 2044 ScratchpadBasePtr, 2045 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2046 2047 if (IncrScratchpadDest) 2048 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2049 else /* IncrScratchpadSrc = true */ 2050 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2051 } 2052 2053 ++Idx; 2054 } 2055 } 2056 2057 /// This function emits a helper that gathers Reduce lists from the first 2058 /// lane of every active warp to lanes in the first warp. 2059 /// 2060 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2061 /// shared smem[warp_size]; 2062 /// For all data entries D in reduce_data: 2063 /// sync 2064 /// If (I am the first lane in each warp) 2065 /// Copy my local D to smem[warp_id] 2066 /// sync 2067 /// if (I am the first warp) 2068 /// Copy smem[thread_id] to my local D 2069 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2070 ArrayRef<const Expr *> Privates, 2071 QualType ReductionArrayTy, 2072 SourceLocation Loc) { 2073 ASTContext &C = CGM.getContext(); 2074 llvm::Module &M = CGM.getModule(); 2075 2076 // ReduceList: thread local Reduce list. 2077 // At the stage of the computation when this function is called, partially 2078 // aggregated values reside in the first lane of every active warp. 2079 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2080 C.VoidPtrTy, ImplicitParamDecl::Other); 2081 // NumWarps: number of warps active in the parallel region. This could 2082 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2083 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2084 C.getIntTypeForBitwidth(32, /* Signed */ true), 2085 ImplicitParamDecl::Other); 2086 FunctionArgList Args; 2087 Args.push_back(&ReduceListArg); 2088 Args.push_back(&NumWarpsArg); 2089 2090 const CGFunctionInfo &CGFI = 2091 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2092 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2093 llvm::GlobalValue::InternalLinkage, 2094 "_omp_reduction_inter_warp_copy_func", &M); 2095 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2096 Fn->setDoesNotRecurse(); 2097 CodeGenFunction CGF(CGM); 2098 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2099 2100 CGBuilderTy &Bld = CGF.Builder; 2101 2102 // This array is used as a medium to transfer, one reduce element at a time, 2103 // the data from the first lane of every warp to lanes in the first warp 2104 // in order to perform the final step of a reduction in a parallel region 2105 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2106 // for reduced latency, as well as to have a distinct copy for concurrently 2107 // executing target regions. The array is declared with common linkage so 2108 // as to be shared across compilation units. 2109 StringRef TransferMediumName = 2110 "__openmp_nvptx_data_transfer_temporary_storage"; 2111 llvm::GlobalVariable *TransferMedium = 2112 M.getGlobalVariable(TransferMediumName); 2113 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2114 if (!TransferMedium) { 2115 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2116 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2117 TransferMedium = new llvm::GlobalVariable( 2118 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2119 llvm::UndefValue::get(Ty), TransferMediumName, 2120 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2121 SharedAddressSpace); 2122 CGM.addCompilerUsedGlobal(TransferMedium); 2123 } 2124 2125 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2126 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2127 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2128 // nvptx_lane_id = nvptx_id % warpsize 2129 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2130 // nvptx_warp_id = nvptx_id / warpsize 2131 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2132 2133 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2134 Address LocalReduceList( 2135 Bld.CreatePointerBitCastOrAddrSpaceCast( 2136 CGF.EmitLoadOfScalar( 2137 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2138 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2139 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2140 CGF.getPointerAlign()); 2141 2142 unsigned Idx = 0; 2143 for (const Expr *Private : Privates) { 2144 // 2145 // Warp master copies reduce element to transfer medium in __shared__ 2146 // memory. 2147 // 2148 unsigned RealTySize = 2149 C.getTypeSizeInChars(Private->getType()) 2150 .alignTo(C.getTypeAlignInChars(Private->getType())) 2151 .getQuantity(); 2152 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2153 unsigned NumIters = RealTySize / TySize; 2154 if (NumIters == 0) 2155 continue; 2156 QualType CType = C.getIntTypeForBitwidth( 2157 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2158 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2159 CharUnits Align = CharUnits::fromQuantity(TySize); 2160 llvm::Value *Cnt = nullptr; 2161 Address CntAddr = Address::invalid(); 2162 llvm::BasicBlock *PrecondBB = nullptr; 2163 llvm::BasicBlock *ExitBB = nullptr; 2164 if (NumIters > 1) { 2165 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2166 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2167 /*Volatile=*/false, C.IntTy); 2168 PrecondBB = CGF.createBasicBlock("precond"); 2169 ExitBB = CGF.createBasicBlock("exit"); 2170 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2171 // There is no need to emit line number for unconditional branch. 2172 (void)ApplyDebugLocation::CreateEmpty(CGF); 2173 CGF.EmitBlock(PrecondBB); 2174 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2175 llvm::Value *Cmp = 2176 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2177 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2178 CGF.EmitBlock(BodyBB); 2179 } 2180 // kmpc_barrier. 2181 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2182 /*EmitChecks=*/false, 2183 /*ForceSimpleCall=*/true); 2184 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2185 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2186 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2187 2188 // if (lane_id == 0) 2189 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2190 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2191 CGF.EmitBlock(ThenBB); 2192 2193 // Reduce element = LocalReduceList[i] 2194 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2195 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2196 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2197 // elemptr = ((CopyType*)(elemptrptr)) + I 2198 Address ElemPtr = Address(ElemPtrPtr, Align); 2199 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2200 if (NumIters > 1) 2201 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 2202 2203 // Get pointer to location in transfer medium. 2204 // MediumPtr = &medium[warp_id] 2205 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2206 TransferMedium->getValueType(), TransferMedium, 2207 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2208 Address MediumPtr(MediumPtrVal, Align); 2209 // Casting to actual data type. 2210 // MediumPtr = (CopyType*)MediumPtrAddr; 2211 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2212 2213 // elem = *elemptr 2214 //*MediumPtr = elem 2215 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2216 ElemPtr, /*Volatile=*/false, CType, Loc, 2217 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2218 // Store the source element value to the dest element address. 2219 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2220 LValueBaseInfo(AlignmentSource::Type), 2221 TBAAAccessInfo()); 2222 2223 Bld.CreateBr(MergeBB); 2224 2225 CGF.EmitBlock(ElseBB); 2226 Bld.CreateBr(MergeBB); 2227 2228 CGF.EmitBlock(MergeBB); 2229 2230 // kmpc_barrier. 2231 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2232 /*EmitChecks=*/false, 2233 /*ForceSimpleCall=*/true); 2234 2235 // 2236 // Warp 0 copies reduce element from transfer medium. 2237 // 2238 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2239 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2240 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2241 2242 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2243 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2244 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2245 2246 // Up to 32 threads in warp 0 are active. 2247 llvm::Value *IsActiveThread = 2248 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2249 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2250 2251 CGF.EmitBlock(W0ThenBB); 2252 2253 // SrcMediumPtr = &medium[tid] 2254 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2255 TransferMedium->getValueType(), TransferMedium, 2256 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2257 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2258 // SrcMediumVal = *SrcMediumPtr; 2259 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2260 2261 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2262 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2263 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2264 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2265 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2266 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2267 if (NumIters > 1) 2268 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 2269 2270 // *TargetElemPtr = SrcMediumVal; 2271 llvm::Value *SrcMediumValue = 2272 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2273 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2274 CType); 2275 Bld.CreateBr(W0MergeBB); 2276 2277 CGF.EmitBlock(W0ElseBB); 2278 Bld.CreateBr(W0MergeBB); 2279 2280 CGF.EmitBlock(W0MergeBB); 2281 2282 if (NumIters > 1) { 2283 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2284 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2285 CGF.EmitBranch(PrecondBB); 2286 (void)ApplyDebugLocation::CreateEmpty(CGF); 2287 CGF.EmitBlock(ExitBB); 2288 } 2289 RealTySize %= TySize; 2290 } 2291 ++Idx; 2292 } 2293 2294 CGF.FinishFunction(); 2295 return Fn; 2296 } 2297 2298 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2299 /// in the same warp. It uses shuffle instructions to copy over data from 2300 /// a remote lane's stack. The reduction algorithm performed is specified 2301 /// by the fourth parameter. 2302 /// 2303 /// Algorithm Versions. 2304 /// Full Warp Reduce (argument value 0): 2305 /// This algorithm assumes that all 32 lanes are active and gathers 2306 /// data from these 32 lanes, producing a single resultant value. 2307 /// Contiguous Partial Warp Reduce (argument value 1): 2308 /// This algorithm assumes that only a *contiguous* subset of lanes 2309 /// are active. This happens for the last warp in a parallel region 2310 /// when the user specified num_threads is not an integer multiple of 2311 /// 32. This contiguous subset always starts with the zeroth lane. 2312 /// Partial Warp Reduce (argument value 2): 2313 /// This algorithm gathers data from any number of lanes at any position. 2314 /// All reduced values are stored in the lowest possible lane. The set 2315 /// of problems every algorithm addresses is a super set of those 2316 /// addressable by algorithms with a lower version number. Overhead 2317 /// increases as algorithm version increases. 2318 /// 2319 /// Terminology 2320 /// Reduce element: 2321 /// Reduce element refers to the individual data field with primitive 2322 /// data types to be combined and reduced across threads. 2323 /// Reduce list: 2324 /// Reduce list refers to a collection of local, thread-private 2325 /// reduce elements. 2326 /// Remote Reduce list: 2327 /// Remote Reduce list refers to a collection of remote (relative to 2328 /// the current thread) reduce elements. 2329 /// 2330 /// We distinguish between three states of threads that are important to 2331 /// the implementation of this function. 2332 /// Alive threads: 2333 /// Threads in a warp executing the SIMT instruction, as distinguished from 2334 /// threads that are inactive due to divergent control flow. 2335 /// Active threads: 2336 /// The minimal set of threads that has to be alive upon entry to this 2337 /// function. The computation is correct iff active threads are alive. 2338 /// Some threads are alive but they are not active because they do not 2339 /// contribute to the computation in any useful manner. Turning them off 2340 /// may introduce control flow overheads without any tangible benefits. 2341 /// Effective threads: 2342 /// In order to comply with the argument requirements of the shuffle 2343 /// function, we must keep all lanes holding data alive. But at most 2344 /// half of them perform value aggregation; we refer to this half of 2345 /// threads as effective. The other half is simply handing off their 2346 /// data. 2347 /// 2348 /// Procedure 2349 /// Value shuffle: 2350 /// In this step active threads transfer data from higher lane positions 2351 /// in the warp to lower lane positions, creating Remote Reduce list. 2352 /// Value aggregation: 2353 /// In this step, effective threads combine their thread local Reduce list 2354 /// with Remote Reduce list and store the result in the thread local 2355 /// Reduce list. 2356 /// Value copy: 2357 /// In this step, we deal with the assumption made by algorithm 2 2358 /// (i.e. contiguity assumption). When we have an odd number of lanes 2359 /// active, say 2k+1, only k threads will be effective and therefore k 2360 /// new values will be produced. However, the Reduce list owned by the 2361 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2362 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2363 /// that the contiguity assumption still holds. 2364 static llvm::Function *emitShuffleAndReduceFunction( 2365 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2366 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2367 ASTContext &C = CGM.getContext(); 2368 2369 // Thread local Reduce list used to host the values of data to be reduced. 2370 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2371 C.VoidPtrTy, ImplicitParamDecl::Other); 2372 // Current lane id; could be logical. 2373 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2374 ImplicitParamDecl::Other); 2375 // Offset of the remote source lane relative to the current lane. 2376 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2377 C.ShortTy, ImplicitParamDecl::Other); 2378 // Algorithm version. This is expected to be known at compile time. 2379 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2380 C.ShortTy, ImplicitParamDecl::Other); 2381 FunctionArgList Args; 2382 Args.push_back(&ReduceListArg); 2383 Args.push_back(&LaneIDArg); 2384 Args.push_back(&RemoteLaneOffsetArg); 2385 Args.push_back(&AlgoVerArg); 2386 2387 const CGFunctionInfo &CGFI = 2388 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2389 auto *Fn = llvm::Function::Create( 2390 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2391 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2392 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2393 Fn->setDoesNotRecurse(); 2394 2395 CodeGenFunction CGF(CGM); 2396 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2397 2398 CGBuilderTy &Bld = CGF.Builder; 2399 2400 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2401 Address LocalReduceList( 2402 Bld.CreatePointerBitCastOrAddrSpaceCast( 2403 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2404 C.VoidPtrTy, SourceLocation()), 2405 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2406 CGF.getPointerAlign()); 2407 2408 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2409 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2410 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2411 2412 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2413 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2414 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2415 2416 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2417 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2418 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2419 2420 // Create a local thread-private variable to host the Reduce list 2421 // from a remote lane. 2422 Address RemoteReduceList = 2423 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2424 2425 // This loop iterates through the list of reduce elements and copies, 2426 // element by element, from a remote lane in the warp to RemoteReduceList, 2427 // hosted on the thread's stack. 2428 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2429 LocalReduceList, RemoteReduceList, 2430 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2431 /*ScratchpadIndex=*/nullptr, 2432 /*ScratchpadWidth=*/nullptr}); 2433 2434 // The actions to be performed on the Remote Reduce list is dependent 2435 // on the algorithm version. 2436 // 2437 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2438 // LaneId % 2 == 0 && Offset > 0): 2439 // do the reduction value aggregation 2440 // 2441 // The thread local variable Reduce list is mutated in place to host the 2442 // reduced data, which is the aggregated value produced from local and 2443 // remote lanes. 2444 // 2445 // Note that AlgoVer is expected to be a constant integer known at compile 2446 // time. 2447 // When AlgoVer==0, the first conjunction evaluates to true, making 2448 // the entire predicate true during compile time. 2449 // When AlgoVer==1, the second conjunction has only the second part to be 2450 // evaluated during runtime. Other conjunctions evaluates to false 2451 // during compile time. 2452 // When AlgoVer==2, the third conjunction has only the second part to be 2453 // evaluated during runtime. Other conjunctions evaluates to false 2454 // during compile time. 2455 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2456 2457 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2458 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2459 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2460 2461 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2462 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2463 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2464 CondAlgo2 = Bld.CreateAnd( 2465 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2466 2467 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2468 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2469 2470 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2471 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2472 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2473 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2474 2475 CGF.EmitBlock(ThenBB); 2476 // reduce_function(LocalReduceList, RemoteReduceList) 2477 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2478 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2479 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2480 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2481 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2482 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2483 Bld.CreateBr(MergeBB); 2484 2485 CGF.EmitBlock(ElseBB); 2486 Bld.CreateBr(MergeBB); 2487 2488 CGF.EmitBlock(MergeBB); 2489 2490 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2491 // Reduce list. 2492 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2493 llvm::Value *CondCopy = Bld.CreateAnd( 2494 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2495 2496 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2497 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2498 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2499 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2500 2501 CGF.EmitBlock(CpyThenBB); 2502 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2503 RemoteReduceList, LocalReduceList); 2504 Bld.CreateBr(CpyMergeBB); 2505 2506 CGF.EmitBlock(CpyElseBB); 2507 Bld.CreateBr(CpyMergeBB); 2508 2509 CGF.EmitBlock(CpyMergeBB); 2510 2511 CGF.FinishFunction(); 2512 return Fn; 2513 } 2514 2515 /// This function emits a helper that copies all the reduction variables from 2516 /// the team into the provided global buffer for the reduction variables. 2517 /// 2518 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2519 /// For all data entries D in reduce_data: 2520 /// Copy local D to buffer.D[Idx] 2521 static llvm::Value *emitListToGlobalCopyFunction( 2522 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2523 QualType ReductionArrayTy, SourceLocation Loc, 2524 const RecordDecl *TeamReductionRec, 2525 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2526 &VarFieldMap) { 2527 ASTContext &C = CGM.getContext(); 2528 2529 // Buffer: global reduction buffer. 2530 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2531 C.VoidPtrTy, ImplicitParamDecl::Other); 2532 // Idx: index of the buffer. 2533 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2534 ImplicitParamDecl::Other); 2535 // ReduceList: thread local Reduce list. 2536 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2537 C.VoidPtrTy, ImplicitParamDecl::Other); 2538 FunctionArgList Args; 2539 Args.push_back(&BufferArg); 2540 Args.push_back(&IdxArg); 2541 Args.push_back(&ReduceListArg); 2542 2543 const CGFunctionInfo &CGFI = 2544 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2545 auto *Fn = llvm::Function::Create( 2546 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2547 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2548 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2549 Fn->setDoesNotRecurse(); 2550 CodeGenFunction CGF(CGM); 2551 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2552 2553 CGBuilderTy &Bld = CGF.Builder; 2554 2555 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2556 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2557 Address LocalReduceList( 2558 Bld.CreatePointerBitCastOrAddrSpaceCast( 2559 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2560 C.VoidPtrTy, Loc), 2561 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2562 CGF.getPointerAlign()); 2563 QualType StaticTy = C.getRecordType(TeamReductionRec); 2564 llvm::Type *LLVMReductionsBufferTy = 2565 CGM.getTypes().ConvertTypeForMem(StaticTy); 2566 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2567 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2568 LLVMReductionsBufferTy->getPointerTo()); 2569 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2570 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2571 /*Volatile=*/false, C.IntTy, 2572 Loc)}; 2573 unsigned Idx = 0; 2574 for (const Expr *Private : Privates) { 2575 // Reduce element = LocalReduceList[i] 2576 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2577 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2578 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2579 // elemptr = ((CopyType*)(elemptrptr)) + I 2580 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2581 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2582 Address ElemPtr = 2583 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2584 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2585 // Global = Buffer.VD[Idx]; 2586 const FieldDecl *FD = VarFieldMap.lookup(VD); 2587 LValue GlobLVal = CGF.EmitLValueForField( 2588 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2589 Address GlobAddr = GlobLVal.getAddress(CGF); 2590 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2591 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2592 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2593 switch (CGF.getEvaluationKind(Private->getType())) { 2594 case TEK_Scalar: { 2595 llvm::Value *V = CGF.EmitLoadOfScalar( 2596 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2597 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2598 CGF.EmitStoreOfScalar(V, GlobLVal); 2599 break; 2600 } 2601 case TEK_Complex: { 2602 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2603 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2604 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2605 break; 2606 } 2607 case TEK_Aggregate: 2608 CGF.EmitAggregateCopy(GlobLVal, 2609 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2610 Private->getType(), AggValueSlot::DoesNotOverlap); 2611 break; 2612 } 2613 ++Idx; 2614 } 2615 2616 CGF.FinishFunction(); 2617 return Fn; 2618 } 2619 2620 /// This function emits a helper that reduces all the reduction variables from 2621 /// the team into the provided global buffer for the reduction variables. 2622 /// 2623 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2624 /// void *GlobPtrs[]; 2625 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2626 /// ... 2627 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2628 /// reduce_function(GlobPtrs, reduce_data); 2629 static llvm::Value *emitListToGlobalReduceFunction( 2630 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2631 QualType ReductionArrayTy, SourceLocation Loc, 2632 const RecordDecl *TeamReductionRec, 2633 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2634 &VarFieldMap, 2635 llvm::Function *ReduceFn) { 2636 ASTContext &C = CGM.getContext(); 2637 2638 // Buffer: global reduction buffer. 2639 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2640 C.VoidPtrTy, ImplicitParamDecl::Other); 2641 // Idx: index of the buffer. 2642 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2643 ImplicitParamDecl::Other); 2644 // ReduceList: thread local Reduce list. 2645 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2646 C.VoidPtrTy, ImplicitParamDecl::Other); 2647 FunctionArgList Args; 2648 Args.push_back(&BufferArg); 2649 Args.push_back(&IdxArg); 2650 Args.push_back(&ReduceListArg); 2651 2652 const CGFunctionInfo &CGFI = 2653 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2654 auto *Fn = llvm::Function::Create( 2655 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2656 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2657 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2658 Fn->setDoesNotRecurse(); 2659 CodeGenFunction CGF(CGM); 2660 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2661 2662 CGBuilderTy &Bld = CGF.Builder; 2663 2664 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2665 QualType StaticTy = C.getRecordType(TeamReductionRec); 2666 llvm::Type *LLVMReductionsBufferTy = 2667 CGM.getTypes().ConvertTypeForMem(StaticTy); 2668 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2669 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2670 LLVMReductionsBufferTy->getPointerTo()); 2671 2672 // 1. Build a list of reduction variables. 2673 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2674 Address ReductionList = 2675 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2676 auto IPriv = Privates.begin(); 2677 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2678 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2679 /*Volatile=*/false, C.IntTy, 2680 Loc)}; 2681 unsigned Idx = 0; 2682 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2683 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2684 // Global = Buffer.VD[Idx]; 2685 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2686 const FieldDecl *FD = VarFieldMap.lookup(VD); 2687 LValue GlobLVal = CGF.EmitLValueForField( 2688 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2689 Address GlobAddr = GlobLVal.getAddress(CGF); 2690 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2691 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2692 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2693 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2694 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2695 // Store array size. 2696 ++Idx; 2697 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2698 llvm::Value *Size = CGF.Builder.CreateIntCast( 2699 CGF.getVLASize( 2700 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2701 .NumElts, 2702 CGF.SizeTy, /*isSigned=*/false); 2703 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2704 Elem); 2705 } 2706 } 2707 2708 // Call reduce_function(GlobalReduceList, ReduceList) 2709 llvm::Value *GlobalReduceList = 2710 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2711 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2712 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2713 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2714 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2715 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2716 CGF.FinishFunction(); 2717 return Fn; 2718 } 2719 2720 /// This function emits a helper that copies all the reduction variables from 2721 /// the team into the provided global buffer for the reduction variables. 2722 /// 2723 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2724 /// For all data entries D in reduce_data: 2725 /// Copy buffer.D[Idx] to local D; 2726 static llvm::Value *emitGlobalToListCopyFunction( 2727 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2728 QualType ReductionArrayTy, SourceLocation Loc, 2729 const RecordDecl *TeamReductionRec, 2730 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2731 &VarFieldMap) { 2732 ASTContext &C = CGM.getContext(); 2733 2734 // Buffer: global reduction buffer. 2735 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2736 C.VoidPtrTy, ImplicitParamDecl::Other); 2737 // Idx: index of the buffer. 2738 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2739 ImplicitParamDecl::Other); 2740 // ReduceList: thread local Reduce list. 2741 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2742 C.VoidPtrTy, ImplicitParamDecl::Other); 2743 FunctionArgList Args; 2744 Args.push_back(&BufferArg); 2745 Args.push_back(&IdxArg); 2746 Args.push_back(&ReduceListArg); 2747 2748 const CGFunctionInfo &CGFI = 2749 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2750 auto *Fn = llvm::Function::Create( 2751 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2752 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2753 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2754 Fn->setDoesNotRecurse(); 2755 CodeGenFunction CGF(CGM); 2756 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2757 2758 CGBuilderTy &Bld = CGF.Builder; 2759 2760 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2761 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2762 Address LocalReduceList( 2763 Bld.CreatePointerBitCastOrAddrSpaceCast( 2764 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2765 C.VoidPtrTy, Loc), 2766 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2767 CGF.getPointerAlign()); 2768 QualType StaticTy = C.getRecordType(TeamReductionRec); 2769 llvm::Type *LLVMReductionsBufferTy = 2770 CGM.getTypes().ConvertTypeForMem(StaticTy); 2771 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2772 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2773 LLVMReductionsBufferTy->getPointerTo()); 2774 2775 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2776 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2777 /*Volatile=*/false, C.IntTy, 2778 Loc)}; 2779 unsigned Idx = 0; 2780 for (const Expr *Private : Privates) { 2781 // Reduce element = LocalReduceList[i] 2782 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2783 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2784 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2785 // elemptr = ((CopyType*)(elemptrptr)) + I 2786 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2787 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2788 Address ElemPtr = 2789 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2790 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2791 // Global = Buffer.VD[Idx]; 2792 const FieldDecl *FD = VarFieldMap.lookup(VD); 2793 LValue GlobLVal = CGF.EmitLValueForField( 2794 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2795 Address GlobAddr = GlobLVal.getAddress(CGF); 2796 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2797 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2798 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2799 switch (CGF.getEvaluationKind(Private->getType())) { 2800 case TEK_Scalar: { 2801 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2802 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2803 LValueBaseInfo(AlignmentSource::Type), 2804 TBAAAccessInfo()); 2805 break; 2806 } 2807 case TEK_Complex: { 2808 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2809 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2810 /*isInit=*/false); 2811 break; 2812 } 2813 case TEK_Aggregate: 2814 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2815 GlobLVal, Private->getType(), 2816 AggValueSlot::DoesNotOverlap); 2817 break; 2818 } 2819 ++Idx; 2820 } 2821 2822 CGF.FinishFunction(); 2823 return Fn; 2824 } 2825 2826 /// This function emits a helper that reduces all the reduction variables from 2827 /// the team into the provided global buffer for the reduction variables. 2828 /// 2829 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2830 /// void *GlobPtrs[]; 2831 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2832 /// ... 2833 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2834 /// reduce_function(reduce_data, GlobPtrs); 2835 static llvm::Value *emitGlobalToListReduceFunction( 2836 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2837 QualType ReductionArrayTy, SourceLocation Loc, 2838 const RecordDecl *TeamReductionRec, 2839 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2840 &VarFieldMap, 2841 llvm::Function *ReduceFn) { 2842 ASTContext &C = CGM.getContext(); 2843 2844 // Buffer: global reduction buffer. 2845 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2846 C.VoidPtrTy, ImplicitParamDecl::Other); 2847 // Idx: index of the buffer. 2848 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2849 ImplicitParamDecl::Other); 2850 // ReduceList: thread local Reduce list. 2851 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2852 C.VoidPtrTy, ImplicitParamDecl::Other); 2853 FunctionArgList Args; 2854 Args.push_back(&BufferArg); 2855 Args.push_back(&IdxArg); 2856 Args.push_back(&ReduceListArg); 2857 2858 const CGFunctionInfo &CGFI = 2859 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2860 auto *Fn = llvm::Function::Create( 2861 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2862 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2863 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2864 Fn->setDoesNotRecurse(); 2865 CodeGenFunction CGF(CGM); 2866 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2867 2868 CGBuilderTy &Bld = CGF.Builder; 2869 2870 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2871 QualType StaticTy = C.getRecordType(TeamReductionRec); 2872 llvm::Type *LLVMReductionsBufferTy = 2873 CGM.getTypes().ConvertTypeForMem(StaticTy); 2874 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2875 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2876 LLVMReductionsBufferTy->getPointerTo()); 2877 2878 // 1. Build a list of reduction variables. 2879 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2880 Address ReductionList = 2881 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2882 auto IPriv = Privates.begin(); 2883 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2884 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2885 /*Volatile=*/false, C.IntTy, 2886 Loc)}; 2887 unsigned Idx = 0; 2888 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2889 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2890 // Global = Buffer.VD[Idx]; 2891 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2892 const FieldDecl *FD = VarFieldMap.lookup(VD); 2893 LValue GlobLVal = CGF.EmitLValueForField( 2894 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2895 Address GlobAddr = GlobLVal.getAddress(CGF); 2896 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2897 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2898 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2899 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2900 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2901 // Store array size. 2902 ++Idx; 2903 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2904 llvm::Value *Size = CGF.Builder.CreateIntCast( 2905 CGF.getVLASize( 2906 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2907 .NumElts, 2908 CGF.SizeTy, /*isSigned=*/false); 2909 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2910 Elem); 2911 } 2912 } 2913 2914 // Call reduce_function(ReduceList, GlobalReduceList) 2915 llvm::Value *GlobalReduceList = 2916 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2917 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2918 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2919 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2920 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2921 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2922 CGF.FinishFunction(); 2923 return Fn; 2924 } 2925 2926 /// 2927 /// Design of OpenMP reductions on the GPU 2928 /// 2929 /// Consider a typical OpenMP program with one or more reduction 2930 /// clauses: 2931 /// 2932 /// float foo; 2933 /// double bar; 2934 /// #pragma omp target teams distribute parallel for \ 2935 /// reduction(+:foo) reduction(*:bar) 2936 /// for (int i = 0; i < N; i++) { 2937 /// foo += A[i]; bar *= B[i]; 2938 /// } 2939 /// 2940 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2941 /// all teams. In our OpenMP implementation on the NVPTX device an 2942 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2943 /// within a team are mapped to CUDA threads within a threadblock. 2944 /// Our goal is to efficiently aggregate values across all OpenMP 2945 /// threads such that: 2946 /// 2947 /// - the compiler and runtime are logically concise, and 2948 /// - the reduction is performed efficiently in a hierarchical 2949 /// manner as follows: within OpenMP threads in the same warp, 2950 /// across warps in a threadblock, and finally across teams on 2951 /// the NVPTX device. 2952 /// 2953 /// Introduction to Decoupling 2954 /// 2955 /// We would like to decouple the compiler and the runtime so that the 2956 /// latter is ignorant of the reduction variables (number, data types) 2957 /// and the reduction operators. This allows a simpler interface 2958 /// and implementation while still attaining good performance. 2959 /// 2960 /// Pseudocode for the aforementioned OpenMP program generated by the 2961 /// compiler is as follows: 2962 /// 2963 /// 1. Create private copies of reduction variables on each OpenMP 2964 /// thread: 'foo_private', 'bar_private' 2965 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2966 /// to it and writes the result in 'foo_private' and 'bar_private' 2967 /// respectively. 2968 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2969 /// and store the result on the team master: 2970 /// 2971 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2972 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2973 /// 2974 /// where: 2975 /// struct ReduceData { 2976 /// double *foo; 2977 /// double *bar; 2978 /// } reduceData 2979 /// reduceData.foo = &foo_private 2980 /// reduceData.bar = &bar_private 2981 /// 2982 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2983 /// auxiliary functions generated by the compiler that operate on 2984 /// variables of type 'ReduceData'. They aid the runtime perform 2985 /// algorithmic steps in a data agnostic manner. 2986 /// 2987 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2988 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2989 /// same warp. It takes the following arguments as input: 2990 /// 2991 /// a. variable of type 'ReduceData' on the calling lane, 2992 /// b. its lane_id, 2993 /// c. an offset relative to the current lane_id to generate a 2994 /// remote_lane_id. The remote lane contains the second 2995 /// variable of type 'ReduceData' that is to be reduced. 2996 /// d. an algorithm version parameter determining which reduction 2997 /// algorithm to use. 2998 /// 2999 /// 'shuffleReduceFn' retrieves data from the remote lane using 3000 /// efficient GPU shuffle intrinsics and reduces, using the 3001 /// algorithm specified by the 4th parameter, the two operands 3002 /// element-wise. The result is written to the first operand. 3003 /// 3004 /// Different reduction algorithms are implemented in different 3005 /// runtime functions, all calling 'shuffleReduceFn' to perform 3006 /// the essential reduction step. Therefore, based on the 4th 3007 /// parameter, this function behaves slightly differently to 3008 /// cooperate with the runtime to ensure correctness under 3009 /// different circumstances. 3010 /// 3011 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3012 /// reduced variables across warps. It tunnels, through CUDA 3013 /// shared memory, the thread-private data of type 'ReduceData' 3014 /// from lane 0 of each warp to a lane in the first warp. 3015 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3016 /// The last team writes the global reduced value to memory. 3017 /// 3018 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3019 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3020 /// scratchpadCopyFn, loadAndReduceFn) 3021 /// 3022 /// 'scratchpadCopyFn' is a helper that stores reduced 3023 /// data from the team master to a scratchpad array in 3024 /// global memory. 3025 /// 3026 /// 'loadAndReduceFn' is a helper that loads data from 3027 /// the scratchpad array and reduces it with the input 3028 /// operand. 3029 /// 3030 /// These compiler generated functions hide address 3031 /// calculation and alignment information from the runtime. 3032 /// 5. if ret == 1: 3033 /// The team master of the last team stores the reduced 3034 /// result to the globals in memory. 3035 /// foo += reduceData.foo; bar *= reduceData.bar 3036 /// 3037 /// 3038 /// Warp Reduction Algorithms 3039 /// 3040 /// On the warp level, we have three algorithms implemented in the 3041 /// OpenMP runtime depending on the number of active lanes: 3042 /// 3043 /// Full Warp Reduction 3044 /// 3045 /// The reduce algorithm within a warp where all lanes are active 3046 /// is implemented in the runtime as follows: 3047 /// 3048 /// full_warp_reduce(void *reduce_data, 3049 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3050 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3051 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3052 /// } 3053 /// 3054 /// The algorithm completes in log(2, WARPSIZE) steps. 3055 /// 3056 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3057 /// not used therefore we save instructions by not retrieving lane_id 3058 /// from the corresponding special registers. The 4th parameter, which 3059 /// represents the version of the algorithm being used, is set to 0 to 3060 /// signify full warp reduction. 3061 /// 3062 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3063 /// 3064 /// #reduce_elem refers to an element in the local lane's data structure 3065 /// #remote_elem is retrieved from a remote lane 3066 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3067 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3068 /// 3069 /// Contiguous Partial Warp Reduction 3070 /// 3071 /// This reduce algorithm is used within a warp where only the first 3072 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3073 /// number of OpenMP threads in a parallel region is not a multiple of 3074 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3075 /// 3076 /// void 3077 /// contiguous_partial_reduce(void *reduce_data, 3078 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3079 /// int size, int lane_id) { 3080 /// int curr_size; 3081 /// int offset; 3082 /// curr_size = size; 3083 /// mask = curr_size/2; 3084 /// while (offset>0) { 3085 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3086 /// curr_size = (curr_size+1)/2; 3087 /// offset = curr_size/2; 3088 /// } 3089 /// } 3090 /// 3091 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3092 /// 3093 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3094 /// if (lane_id < offset) 3095 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3096 /// else 3097 /// reduce_elem = remote_elem 3098 /// 3099 /// This algorithm assumes that the data to be reduced are located in a 3100 /// contiguous subset of lanes starting from the first. When there is 3101 /// an odd number of active lanes, the data in the last lane is not 3102 /// aggregated with any other lane's dat but is instead copied over. 3103 /// 3104 /// Dispersed Partial Warp Reduction 3105 /// 3106 /// This algorithm is used within a warp when any discontiguous subset of 3107 /// lanes are active. It is used to implement the reduction operation 3108 /// across lanes in an OpenMP simd region or in a nested parallel region. 3109 /// 3110 /// void 3111 /// dispersed_partial_reduce(void *reduce_data, 3112 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3113 /// int size, remote_id; 3114 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3115 /// do { 3116 /// remote_id = next_active_lane_id_right_after_me(); 3117 /// # the above function returns 0 of no active lane 3118 /// # is present right after the current lane. 3119 /// size = number_of_active_lanes_in_this_warp(); 3120 /// logical_lane_id /= 2; 3121 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3122 /// remote_id-1-threadIdx.x, 2); 3123 /// } while (logical_lane_id % 2 == 0 && size > 1); 3124 /// } 3125 /// 3126 /// There is no assumption made about the initial state of the reduction. 3127 /// Any number of lanes (>=1) could be active at any position. The reduction 3128 /// result is returned in the first active lane. 3129 /// 3130 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3131 /// 3132 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3133 /// if (lane_id % 2 == 0 && offset > 0) 3134 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3135 /// else 3136 /// reduce_elem = remote_elem 3137 /// 3138 /// 3139 /// Intra-Team Reduction 3140 /// 3141 /// This function, as implemented in the runtime call 3142 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3143 /// threads in a team. It first reduces within a warp using the 3144 /// aforementioned algorithms. We then proceed to gather all such 3145 /// reduced values at the first warp. 3146 /// 3147 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3148 /// data from each of the "warp master" (zeroth lane of each warp, where 3149 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3150 /// a mathematical sense) the problem of reduction across warp masters in 3151 /// a block to the problem of warp reduction. 3152 /// 3153 /// 3154 /// Inter-Team Reduction 3155 /// 3156 /// Once a team has reduced its data to a single value, it is stored in 3157 /// a global scratchpad array. Since each team has a distinct slot, this 3158 /// can be done without locking. 3159 /// 3160 /// The last team to write to the scratchpad array proceeds to reduce the 3161 /// scratchpad array. One or more workers in the last team use the helper 3162 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3163 /// the k'th worker reduces every k'th element. 3164 /// 3165 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3166 /// reduce across workers and compute a globally reduced value. 3167 /// 3168 void CGOpenMPRuntimeGPU::emitReduction( 3169 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3170 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3171 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3172 if (!CGF.HaveInsertPoint()) 3173 return; 3174 3175 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3176 #ifndef NDEBUG 3177 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3178 #endif 3179 3180 if (Options.SimpleReduction) { 3181 assert(!TeamsReduction && !ParallelReduction && 3182 "Invalid reduction selection in emitReduction."); 3183 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3184 ReductionOps, Options); 3185 return; 3186 } 3187 3188 assert((TeamsReduction || ParallelReduction) && 3189 "Invalid reduction selection in emitReduction."); 3190 3191 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3192 // RedList, shuffle_reduce_func, interwarp_copy_func); 3193 // or 3194 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3195 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3196 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3197 3198 llvm::Value *Res; 3199 ASTContext &C = CGM.getContext(); 3200 // 1. Build a list of reduction variables. 3201 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3202 auto Size = RHSExprs.size(); 3203 for (const Expr *E : Privates) { 3204 if (E->getType()->isVariablyModifiedType()) 3205 // Reserve place for array size. 3206 ++Size; 3207 } 3208 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3209 QualType ReductionArrayTy = 3210 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3211 /*IndexTypeQuals=*/0); 3212 Address ReductionList = 3213 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3214 auto IPriv = Privates.begin(); 3215 unsigned Idx = 0; 3216 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3217 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3218 CGF.Builder.CreateStore( 3219 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3220 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3221 Elem); 3222 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3223 // Store array size. 3224 ++Idx; 3225 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3226 llvm::Value *Size = CGF.Builder.CreateIntCast( 3227 CGF.getVLASize( 3228 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3229 .NumElts, 3230 CGF.SizeTy, /*isSigned=*/false); 3231 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3232 Elem); 3233 } 3234 } 3235 3236 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3237 ReductionList.getPointer(), CGF.VoidPtrTy); 3238 llvm::Function *ReductionFn = emitReductionFunction( 3239 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3240 LHSExprs, RHSExprs, ReductionOps); 3241 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3242 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3243 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3244 llvm::Value *InterWarpCopyFn = 3245 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3246 3247 if (ParallelReduction) { 3248 llvm::Value *Args[] = {RTLoc, 3249 ThreadId, 3250 CGF.Builder.getInt32(RHSExprs.size()), 3251 ReductionArrayTySize, 3252 RL, 3253 ShuffleAndReduceFn, 3254 InterWarpCopyFn}; 3255 3256 Res = CGF.EmitRuntimeCall( 3257 OMPBuilder.getOrCreateRuntimeFunction( 3258 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3259 Args); 3260 } else { 3261 assert(TeamsReduction && "expected teams reduction."); 3262 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3263 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3264 int Cnt = 0; 3265 for (const Expr *DRE : Privates) { 3266 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3267 ++Cnt; 3268 } 3269 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3270 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3271 C.getLangOpts().OpenMPCUDAReductionBufNum); 3272 TeamsReductions.push_back(TeamReductionRec); 3273 if (!KernelTeamsReductionPtr) { 3274 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3275 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3276 llvm::GlobalValue::InternalLinkage, nullptr, 3277 "_openmp_teams_reductions_buffer_$_$ptr"); 3278 } 3279 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3280 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3281 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3282 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3283 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3284 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3285 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3286 ReductionFn); 3287 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3288 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3289 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3290 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3291 ReductionFn); 3292 3293 llvm::Value *Args[] = { 3294 RTLoc, 3295 ThreadId, 3296 GlobalBufferPtr, 3297 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3298 RL, 3299 ShuffleAndReduceFn, 3300 InterWarpCopyFn, 3301 GlobalToBufferCpyFn, 3302 GlobalToBufferRedFn, 3303 BufferToGlobalCpyFn, 3304 BufferToGlobalRedFn}; 3305 3306 Res = CGF.EmitRuntimeCall( 3307 OMPBuilder.getOrCreateRuntimeFunction( 3308 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3309 Args); 3310 } 3311 3312 // 5. Build if (res == 1) 3313 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3314 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3315 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3316 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3317 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3318 3319 // 6. Build then branch: where we have reduced values in the master 3320 // thread in each team. 3321 // __kmpc_end_reduce{_nowait}(<gtid>); 3322 // break; 3323 CGF.EmitBlock(ThenBB); 3324 3325 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3326 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3327 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3328 auto IPriv = Privates.begin(); 3329 auto ILHS = LHSExprs.begin(); 3330 auto IRHS = RHSExprs.begin(); 3331 for (const Expr *E : ReductionOps) { 3332 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3333 cast<DeclRefExpr>(*IRHS)); 3334 ++IPriv; 3335 ++ILHS; 3336 ++IRHS; 3337 } 3338 }; 3339 llvm::Value *EndArgs[] = {ThreadId}; 3340 RegionCodeGenTy RCG(CodeGen); 3341 NVPTXActionTy Action( 3342 nullptr, llvm::None, 3343 OMPBuilder.getOrCreateRuntimeFunction( 3344 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3345 EndArgs); 3346 RCG.setAction(Action); 3347 RCG(CGF); 3348 // There is no need to emit line number for unconditional branch. 3349 (void)ApplyDebugLocation::CreateEmpty(CGF); 3350 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3351 } 3352 3353 const VarDecl * 3354 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3355 const VarDecl *NativeParam) const { 3356 if (!NativeParam->getType()->isReferenceType()) 3357 return NativeParam; 3358 QualType ArgType = NativeParam->getType(); 3359 QualifierCollector QC; 3360 const Type *NonQualTy = QC.strip(ArgType); 3361 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3362 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3363 if (Attr->getCaptureKind() == OMPC_map) { 3364 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3365 LangAS::opencl_global); 3366 } 3367 } 3368 ArgType = CGM.getContext().getPointerType(PointeeTy); 3369 QC.addRestrict(); 3370 enum { NVPTX_local_addr = 5 }; 3371 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3372 ArgType = QC.apply(CGM.getContext(), ArgType); 3373 if (isa<ImplicitParamDecl>(NativeParam)) 3374 return ImplicitParamDecl::Create( 3375 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3376 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3377 return ParmVarDecl::Create( 3378 CGM.getContext(), 3379 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3380 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3381 NativeParam->getIdentifier(), ArgType, 3382 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3383 } 3384 3385 Address 3386 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3387 const VarDecl *NativeParam, 3388 const VarDecl *TargetParam) const { 3389 assert(NativeParam != TargetParam && 3390 NativeParam->getType()->isReferenceType() && 3391 "Native arg must not be the same as target arg."); 3392 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3393 QualType NativeParamType = NativeParam->getType(); 3394 QualifierCollector QC; 3395 const Type *NonQualTy = QC.strip(NativeParamType); 3396 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3397 unsigned NativePointeeAddrSpace = 3398 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3399 QualType TargetTy = TargetParam->getType(); 3400 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3401 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3402 // First cast to generic. 3403 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3404 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3405 /*AddrSpace=*/0)); 3406 // Cast from generic to native address space. 3407 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3408 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3409 NativePointeeAddrSpace)); 3410 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3411 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3412 NativeParamType); 3413 return NativeParamAddr; 3414 } 3415 3416 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3417 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3418 ArrayRef<llvm::Value *> Args) const { 3419 SmallVector<llvm::Value *, 4> TargetArgs; 3420 TargetArgs.reserve(Args.size()); 3421 auto *FnType = OutlinedFn.getFunctionType(); 3422 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3423 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3424 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3425 break; 3426 } 3427 llvm::Type *TargetType = FnType->getParamType(I); 3428 llvm::Value *NativeArg = Args[I]; 3429 if (!TargetType->isPointerTy()) { 3430 TargetArgs.emplace_back(NativeArg); 3431 continue; 3432 } 3433 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3434 NativeArg, 3435 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3436 TargetArgs.emplace_back( 3437 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3438 } 3439 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3440 } 3441 3442 /// Emit function which wraps the outline parallel region 3443 /// and controls the arguments which are passed to this function. 3444 /// The wrapper ensures that the outlined function is called 3445 /// with the correct arguments when data is shared. 3446 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3447 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3448 ASTContext &Ctx = CGM.getContext(); 3449 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3450 3451 // Create a function that takes as argument the source thread. 3452 FunctionArgList WrapperArgs; 3453 QualType Int16QTy = 3454 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3455 QualType Int32QTy = 3456 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3457 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3458 /*Id=*/nullptr, Int16QTy, 3459 ImplicitParamDecl::Other); 3460 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3461 /*Id=*/nullptr, Int32QTy, 3462 ImplicitParamDecl::Other); 3463 WrapperArgs.emplace_back(&ParallelLevelArg); 3464 WrapperArgs.emplace_back(&WrapperArg); 3465 3466 const CGFunctionInfo &CGFI = 3467 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3468 3469 auto *Fn = llvm::Function::Create( 3470 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3471 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3472 3473 // Ensure we do not inline the function. This is trivially true for the ones 3474 // passed to __kmpc_fork_call but the ones calles in serialized regions 3475 // could be inlined. This is not a perfect but it is closer to the invariant 3476 // we want, namely, every data environment starts with a new function. 3477 // TODO: We should pass the if condition to the runtime function and do the 3478 // handling there. Much cleaner code. 3479 Fn->addFnAttr(llvm::Attribute::NoInline); 3480 3481 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3482 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3483 Fn->setDoesNotRecurse(); 3484 3485 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3486 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3487 D.getBeginLoc(), D.getBeginLoc()); 3488 3489 const auto *RD = CS.getCapturedRecordDecl(); 3490 auto CurField = RD->field_begin(); 3491 3492 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3493 /*Name=*/".zero.addr"); 3494 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3495 // Get the array of arguments. 3496 SmallVector<llvm::Value *, 8> Args; 3497 3498 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3499 Args.emplace_back(ZeroAddr.getPointer()); 3500 3501 CGBuilderTy &Bld = CGF.Builder; 3502 auto CI = CS.capture_begin(); 3503 3504 // Use global memory for data sharing. 3505 // Handle passing of global args to workers. 3506 Address GlobalArgs = 3507 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3508 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3509 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3510 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3511 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3512 DataSharingArgs); 3513 3514 // Retrieve the shared variables from the list of references returned 3515 // by the runtime. Pass the variables to the outlined function. 3516 Address SharedArgListAddress = Address::invalid(); 3517 if (CS.capture_size() > 0 || 3518 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3519 SharedArgListAddress = CGF.EmitLoadOfPointer( 3520 GlobalArgs, CGF.getContext() 3521 .getPointerType(CGF.getContext().getPointerType( 3522 CGF.getContext().VoidPtrTy)) 3523 .castAs<PointerType>()); 3524 } 3525 unsigned Idx = 0; 3526 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3527 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3528 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3529 Src, CGF.SizeTy->getPointerTo()); 3530 llvm::Value *LB = CGF.EmitLoadOfScalar( 3531 TypedAddress, 3532 /*Volatile=*/false, 3533 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3534 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3535 Args.emplace_back(LB); 3536 ++Idx; 3537 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3538 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3539 Src, CGF.SizeTy->getPointerTo()); 3540 llvm::Value *UB = CGF.EmitLoadOfScalar( 3541 TypedAddress, 3542 /*Volatile=*/false, 3543 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3544 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3545 Args.emplace_back(UB); 3546 ++Idx; 3547 } 3548 if (CS.capture_size() > 0) { 3549 ASTContext &CGFContext = CGF.getContext(); 3550 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3551 QualType ElemTy = CurField->getType(); 3552 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3553 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3554 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3555 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3556 /*Volatile=*/false, 3557 CGFContext.getPointerType(ElemTy), 3558 CI->getLocation()); 3559 if (CI->capturesVariableByCopy() && 3560 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3561 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3562 CI->getLocation()); 3563 } 3564 Args.emplace_back(Arg); 3565 } 3566 } 3567 3568 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3569 CGF.FinishFunction(); 3570 return Fn; 3571 } 3572 3573 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3574 const Decl *D) { 3575 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3576 return; 3577 3578 assert(D && "Expected function or captured|block decl."); 3579 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3580 "Function is registered already."); 3581 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3582 "Team is set but not processed."); 3583 const Stmt *Body = nullptr; 3584 bool NeedToDelayGlobalization = false; 3585 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3586 Body = FD->getBody(); 3587 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3588 Body = BD->getBody(); 3589 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3590 Body = CD->getBody(); 3591 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3592 if (NeedToDelayGlobalization && 3593 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3594 return; 3595 } 3596 if (!Body) 3597 return; 3598 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3599 VarChecker.Visit(Body); 3600 const RecordDecl *GlobalizedVarsRecord = 3601 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3602 TeamAndReductions.first = nullptr; 3603 TeamAndReductions.second.clear(); 3604 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3605 VarChecker.getEscapedVariableLengthDecls(); 3606 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3607 return; 3608 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3609 I->getSecond().MappedParams = 3610 std::make_unique<CodeGenFunction::OMPMapVars>(); 3611 I->getSecond().EscapedParameters.insert( 3612 VarChecker.getEscapedParameters().begin(), 3613 VarChecker.getEscapedParameters().end()); 3614 I->getSecond().EscapedVariableLengthDecls.append( 3615 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3616 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3617 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3618 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3619 Data.insert(std::make_pair(VD, MappedVarData())); 3620 } 3621 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3622 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3623 VarChecker.Visit(Body); 3624 I->getSecond().SecondaryLocalVarData.emplace(); 3625 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3626 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3627 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3628 Data.insert(std::make_pair(VD, MappedVarData())); 3629 } 3630 } 3631 if (!NeedToDelayGlobalization) { 3632 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3633 struct GlobalizationScope final : EHScopeStack::Cleanup { 3634 GlobalizationScope() = default; 3635 3636 void Emit(CodeGenFunction &CGF, Flags flags) override { 3637 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3638 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3639 } 3640 }; 3641 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3642 } 3643 } 3644 3645 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3646 const VarDecl *VD) { 3647 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3648 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3649 auto AS = LangAS::Default; 3650 switch (A->getAllocatorType()) { 3651 // Use the default allocator here as by default local vars are 3652 // threadlocal. 3653 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3654 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3655 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3656 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3657 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3658 // Follow the user decision - use default allocation. 3659 return Address::invalid(); 3660 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3661 // TODO: implement aupport for user-defined allocators. 3662 return Address::invalid(); 3663 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3664 AS = LangAS::cuda_constant; 3665 break; 3666 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3667 AS = LangAS::cuda_shared; 3668 break; 3669 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3670 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3671 break; 3672 } 3673 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3674 auto *GV = new llvm::GlobalVariable( 3675 CGM.getModule(), VarTy, /*isConstant=*/false, 3676 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3677 VD->getName(), 3678 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3679 CGM.getContext().getTargetAddressSpace(AS)); 3680 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3681 GV->setAlignment(Align.getAsAlign()); 3682 return Address( 3683 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3684 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3685 VD->getType().getAddressSpace()))), 3686 Align); 3687 } 3688 3689 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3690 return Address::invalid(); 3691 3692 VD = VD->getCanonicalDecl(); 3693 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3694 if (I == FunctionGlobalizedDecls.end()) 3695 return Address::invalid(); 3696 auto VDI = I->getSecond().LocalVarData.find(VD); 3697 if (VDI != I->getSecond().LocalVarData.end()) 3698 return VDI->second.PrivateAddr; 3699 if (VD->hasAttrs()) { 3700 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3701 E(VD->attr_end()); 3702 IT != E; ++IT) { 3703 auto VDI = I->getSecond().LocalVarData.find( 3704 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3705 ->getCanonicalDecl()); 3706 if (VDI != I->getSecond().LocalVarData.end()) 3707 return VDI->second.PrivateAddr; 3708 } 3709 } 3710 3711 return Address::invalid(); 3712 } 3713 3714 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3715 FunctionGlobalizedDecls.erase(CGF.CurFn); 3716 CGOpenMPRuntime::functionFinished(CGF); 3717 } 3718 3719 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3720 CodeGenFunction &CGF, const OMPLoopDirective &S, 3721 OpenMPDistScheduleClauseKind &ScheduleKind, 3722 llvm::Value *&Chunk) const { 3723 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3724 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3725 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3726 Chunk = CGF.EmitScalarConversion( 3727 RT.getGPUNumThreads(CGF), 3728 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3729 S.getIterationVariable()->getType(), S.getBeginLoc()); 3730 return; 3731 } 3732 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3733 CGF, S, ScheduleKind, Chunk); 3734 } 3735 3736 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3737 CodeGenFunction &CGF, const OMPLoopDirective &S, 3738 OpenMPScheduleClauseKind &ScheduleKind, 3739 const Expr *&ChunkExpr) const { 3740 ScheduleKind = OMPC_SCHEDULE_static; 3741 // Chunk size is 1 in this case. 3742 llvm::APInt ChunkSize(32, 1); 3743 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3744 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3745 SourceLocation()); 3746 } 3747 3748 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3749 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3750 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3751 " Expected target-based directive."); 3752 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3753 for (const CapturedStmt::Capture &C : CS->captures()) { 3754 // Capture variables captured by reference in lambdas for target-based 3755 // directives. 3756 if (!C.capturesVariable()) 3757 continue; 3758 const VarDecl *VD = C.getCapturedVar(); 3759 const auto *RD = VD->getType() 3760 .getCanonicalType() 3761 .getNonReferenceType() 3762 ->getAsCXXRecordDecl(); 3763 if (!RD || !RD->isLambda()) 3764 continue; 3765 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3766 LValue VDLVal; 3767 if (VD->getType().getCanonicalType()->isReferenceType()) 3768 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3769 else 3770 VDLVal = CGF.MakeAddrLValue( 3771 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3772 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3773 FieldDecl *ThisCapture = nullptr; 3774 RD->getCaptureFields(Captures, ThisCapture); 3775 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3776 LValue ThisLVal = 3777 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3778 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3779 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3780 } 3781 for (const LambdaCapture &LC : RD->captures()) { 3782 if (LC.getCaptureKind() != LCK_ByRef) 3783 continue; 3784 const VarDecl *VD = LC.getCapturedVar(); 3785 if (!CS->capturesVariable(VD)) 3786 continue; 3787 auto It = Captures.find(VD); 3788 assert(It != Captures.end() && "Found lambda capture without field."); 3789 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3790 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3791 if (VD->getType().getCanonicalType()->isReferenceType()) 3792 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3793 VD->getType().getCanonicalType()) 3794 .getAddress(CGF); 3795 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3796 } 3797 } 3798 } 3799 3800 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3801 LangAS &AS) { 3802 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3803 return false; 3804 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3805 switch(A->getAllocatorType()) { 3806 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3807 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3808 // Not supported, fallback to the default mem space. 3809 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3810 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3811 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3812 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3813 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3814 AS = LangAS::Default; 3815 return true; 3816 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3817 AS = LangAS::cuda_constant; 3818 return true; 3819 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3820 AS = LangAS::cuda_shared; 3821 return true; 3822 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3823 llvm_unreachable("Expected predefined allocator for the variables with the " 3824 "static storage."); 3825 } 3826 return false; 3827 } 3828 3829 // Get current CudaArch and ignore any unknown values 3830 static CudaArch getCudaArch(CodeGenModule &CGM) { 3831 if (!CGM.getTarget().hasFeature("ptx")) 3832 return CudaArch::UNKNOWN; 3833 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3834 if (Feature.getValue()) { 3835 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3836 if (Arch != CudaArch::UNKNOWN) 3837 return Arch; 3838 } 3839 } 3840 return CudaArch::UNKNOWN; 3841 } 3842 3843 /// Check to see if target architecture supports unified addressing which is 3844 /// a restriction for OpenMP requires clause "unified_shared_memory". 3845 void CGOpenMPRuntimeGPU::processRequiresDirective( 3846 const OMPRequiresDecl *D) { 3847 for (const OMPClause *Clause : D->clauselists()) { 3848 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3849 CudaArch Arch = getCudaArch(CGM); 3850 switch (Arch) { 3851 case CudaArch::SM_20: 3852 case CudaArch::SM_21: 3853 case CudaArch::SM_30: 3854 case CudaArch::SM_32: 3855 case CudaArch::SM_35: 3856 case CudaArch::SM_37: 3857 case CudaArch::SM_50: 3858 case CudaArch::SM_52: 3859 case CudaArch::SM_53: { 3860 SmallString<256> Buffer; 3861 llvm::raw_svector_ostream Out(Buffer); 3862 Out << "Target architecture " << CudaArchToString(Arch) 3863 << " does not support unified addressing"; 3864 CGM.Error(Clause->getBeginLoc(), Out.str()); 3865 return; 3866 } 3867 case CudaArch::SM_60: 3868 case CudaArch::SM_61: 3869 case CudaArch::SM_62: 3870 case CudaArch::SM_70: 3871 case CudaArch::SM_72: 3872 case CudaArch::SM_75: 3873 case CudaArch::SM_80: 3874 case CudaArch::SM_86: 3875 case CudaArch::GFX600: 3876 case CudaArch::GFX601: 3877 case CudaArch::GFX602: 3878 case CudaArch::GFX700: 3879 case CudaArch::GFX701: 3880 case CudaArch::GFX702: 3881 case CudaArch::GFX703: 3882 case CudaArch::GFX704: 3883 case CudaArch::GFX705: 3884 case CudaArch::GFX801: 3885 case CudaArch::GFX802: 3886 case CudaArch::GFX803: 3887 case CudaArch::GFX805: 3888 case CudaArch::GFX810: 3889 case CudaArch::GFX900: 3890 case CudaArch::GFX902: 3891 case CudaArch::GFX904: 3892 case CudaArch::GFX906: 3893 case CudaArch::GFX908: 3894 case CudaArch::GFX909: 3895 case CudaArch::GFX90a: 3896 case CudaArch::GFX90c: 3897 case CudaArch::GFX1010: 3898 case CudaArch::GFX1011: 3899 case CudaArch::GFX1012: 3900 case CudaArch::GFX1013: 3901 case CudaArch::GFX1030: 3902 case CudaArch::GFX1031: 3903 case CudaArch::GFX1032: 3904 case CudaArch::GFX1033: 3905 case CudaArch::GFX1034: 3906 case CudaArch::GFX1035: 3907 case CudaArch::Generic: 3908 case CudaArch::UNUSED: 3909 case CudaArch::UNKNOWN: 3910 break; 3911 case CudaArch::LAST: 3912 llvm_unreachable("Unexpected Cuda arch."); 3913 } 3914 } 3915 } 3916 CGOpenMPRuntime::processRequiresDirective(D); 3917 } 3918 3919 void CGOpenMPRuntimeGPU::clear() { 3920 3921 if (!TeamsReductions.empty()) { 3922 ASTContext &C = CGM.getContext(); 3923 RecordDecl *StaticRD = C.buildImplicitRecord( 3924 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3925 StaticRD->startDefinition(); 3926 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3927 QualType RecTy = C.getRecordType(TeamReductionRec); 3928 auto *Field = FieldDecl::Create( 3929 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3930 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3931 /*BW=*/nullptr, /*Mutable=*/false, 3932 /*InitStyle=*/ICIS_NoInit); 3933 Field->setAccess(AS_public); 3934 StaticRD->addDecl(Field); 3935 } 3936 StaticRD->completeDefinition(); 3937 QualType StaticTy = C.getRecordType(StaticRD); 3938 llvm::Type *LLVMReductionsBufferTy = 3939 CGM.getTypes().ConvertTypeForMem(StaticTy); 3940 // FIXME: nvlink does not handle weak linkage correctly (object with the 3941 // different size are reported as erroneous). 3942 // Restore CommonLinkage as soon as nvlink is fixed. 3943 auto *GV = new llvm::GlobalVariable( 3944 CGM.getModule(), LLVMReductionsBufferTy, 3945 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3946 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3947 "_openmp_teams_reductions_buffer_$_"); 3948 KernelTeamsReductionPtr->setInitializer( 3949 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3950 CGM.VoidPtrTy)); 3951 } 3952 CGOpenMPRuntime::clear(); 3953 } 3954 3955 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3956 CGBuilderTy &Bld = CGF.Builder; 3957 llvm::Module *M = &CGF.CGM.getModule(); 3958 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3959 llvm::Function *F = M->getFunction(LocSize); 3960 if (!F) { 3961 F = llvm::Function::Create( 3962 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3963 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3964 } 3965 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3966 } 3967 3968 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3969 ArrayRef<llvm::Value *> Args{}; 3970 return CGF.EmitRuntimeCall( 3971 OMPBuilder.getOrCreateRuntimeFunction( 3972 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3973 Args); 3974 } 3975 3976 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3977 ArrayRef<llvm::Value *> Args{}; 3978 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3979 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3980 Args); 3981 } 3982