1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   if (!isa<llvm::Function>(Addr))
1129     return;
1130   llvm::Module &M = CGM.getModule();
1131   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1132 
1133   // Get "nvvm.annotations" metadata node
1134   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1135 
1136   llvm::Metadata *MDVals[] = {
1137       llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
1138       llvm::ConstantAsMetadata::get(
1139           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1140   // Append metadata to nvvm.annotations
1141   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1142 }
1143 
1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1145     const OMPExecutableDirective &D, StringRef ParentName,
1146     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1147     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1148   if (!IsOffloadEntry) // Nothing to do.
1149     return;
1150 
1151   assert(!ParentName.empty() && "Invalid target region parent name!");
1152 
1153   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1154   if (Mode)
1155     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1156                    CodeGen);
1157   else
1158     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1159                       CodeGen);
1160 
1161   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1162 }
1163 
1164 namespace {
1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1166 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1167 enum ModeFlagsTy : unsigned {
1168   /// Bit set to 1 when in SPMD mode.
1169   KMP_IDENT_SPMD_MODE = 0x01,
1170   /// Bit set to 1 when a simplified runtime is used.
1171   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1172   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1173 };
1174 
1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1176 static const ModeFlagsTy UndefinedMode =
1177     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1178 } // anonymous namespace
1179 
1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1181   switch (getExecutionMode()) {
1182   case EM_SPMD:
1183     if (requiresFullRuntime())
1184       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1185     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1186   case EM_NonSPMD:
1187     assert(requiresFullRuntime() && "Expected full runtime.");
1188     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1189   case EM_Unknown:
1190     return UndefinedMode;
1191   }
1192   llvm_unreachable("Unknown flags are requested.");
1193 }
1194 
1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1196     : CGOpenMPRuntime(CGM, "_", "$") {
1197   if (!CGM.getLangOpts().OpenMPIsDevice)
1198     llvm_unreachable("OpenMP can only handle device code.");
1199 
1200   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1201   if (CGM.getLangOpts().OpenMPTargetNewRuntime) {
1202     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1203                                 "__omp_rtl_debug_kind");
1204     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1205                                 "__omp_rtl_assume_teams_oversubscription");
1206     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1207                                 "__omp_rtl_assume_threads_oversubscription");
1208   }
1209 }
1210 
1211 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1212                                               ProcBindKind ProcBind,
1213                                               SourceLocation Loc) {
1214   // Do nothing in case of SPMD mode and L0 parallel.
1215   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1216     return;
1217 
1218   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1219 }
1220 
1221 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1222                                                 llvm::Value *NumThreads,
1223                                                 SourceLocation Loc) {
1224   // Nothing to do.
1225 }
1226 
1227 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1228                                               const Expr *NumTeams,
1229                                               const Expr *ThreadLimit,
1230                                               SourceLocation Loc) {}
1231 
1232 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1233     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1234     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1235   // Emit target region as a standalone region.
1236   class NVPTXPrePostActionTy : public PrePostActionTy {
1237     bool &IsInParallelRegion;
1238     bool PrevIsInParallelRegion;
1239 
1240   public:
1241     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1242         : IsInParallelRegion(IsInParallelRegion) {}
1243     void Enter(CodeGenFunction &CGF) override {
1244       PrevIsInParallelRegion = IsInParallelRegion;
1245       IsInParallelRegion = true;
1246     }
1247     void Exit(CodeGenFunction &CGF) override {
1248       IsInParallelRegion = PrevIsInParallelRegion;
1249     }
1250   } Action(IsInParallelRegion);
1251   CodeGen.setAction(Action);
1252   bool PrevIsInTTDRegion = IsInTTDRegion;
1253   IsInTTDRegion = false;
1254   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1255   IsInTargetMasterThreadRegion = false;
1256   auto *OutlinedFun =
1257       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1258           D, ThreadIDVar, InnermostKind, CodeGen));
1259   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1260   IsInTTDRegion = PrevIsInTTDRegion;
1261   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1262       !IsInParallelRegion) {
1263     llvm::Function *WrapperFun =
1264         createParallelDataSharingWrapper(OutlinedFun, D);
1265     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1266   }
1267 
1268   return OutlinedFun;
1269 }
1270 
1271 /// Get list of lastprivate variables from the teams distribute ... or
1272 /// teams {distribute ...} directives.
1273 static void
1274 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1275                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1276   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1277          "expected teams directive.");
1278   const OMPExecutableDirective *Dir = &D;
1279   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1280     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1281             Ctx,
1282             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1283                 /*IgnoreCaptured=*/true))) {
1284       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1285       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1286         Dir = nullptr;
1287     }
1288   }
1289   if (!Dir)
1290     return;
1291   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1292     for (const Expr *E : C->getVarRefs())
1293       Vars.push_back(getPrivateItem(E));
1294   }
1295 }
1296 
1297 /// Get list of reduction variables from the teams ... directives.
1298 static void
1299 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1300                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1301   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1302          "expected teams directive.");
1303   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1304     for (const Expr *E : C->privates())
1305       Vars.push_back(getPrivateItem(E));
1306   }
1307 }
1308 
1309 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1310     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1311     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1312   SourceLocation Loc = D.getBeginLoc();
1313 
1314   const RecordDecl *GlobalizedRD = nullptr;
1315   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1316   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1317   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1318   // Globalize team reductions variable unconditionally in all modes.
1319   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1320     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1321   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1322     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1323     if (!LastPrivatesReductions.empty()) {
1324       GlobalizedRD = ::buildRecordForGlobalizedVars(
1325           CGM.getContext(), llvm::None, LastPrivatesReductions,
1326           MappedDeclsFields, WarpSize);
1327     }
1328   } else if (!LastPrivatesReductions.empty()) {
1329     assert(!TeamAndReductions.first &&
1330            "Previous team declaration is not expected.");
1331     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1332     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1333   }
1334 
1335   // Emit target region as a standalone region.
1336   class NVPTXPrePostActionTy : public PrePostActionTy {
1337     SourceLocation &Loc;
1338     const RecordDecl *GlobalizedRD;
1339     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1340         &MappedDeclsFields;
1341 
1342   public:
1343     NVPTXPrePostActionTy(
1344         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1345         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1346             &MappedDeclsFields)
1347         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1348           MappedDeclsFields(MappedDeclsFields) {}
1349     void Enter(CodeGenFunction &CGF) override {
1350       auto &Rt =
1351           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1352       if (GlobalizedRD) {
1353         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1354         I->getSecond().MappedParams =
1355             std::make_unique<CodeGenFunction::OMPMapVars>();
1356         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1357         for (const auto &Pair : MappedDeclsFields) {
1358           assert(Pair.getFirst()->isCanonicalDecl() &&
1359                  "Expected canonical declaration");
1360           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1361         }
1362       }
1363       Rt.emitGenericVarsProlog(CGF, Loc);
1364     }
1365     void Exit(CodeGenFunction &CGF) override {
1366       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1367           .emitGenericVarsEpilog(CGF);
1368     }
1369   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1370   CodeGen.setAction(Action);
1371   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1372       D, ThreadIDVar, InnermostKind, CodeGen);
1373 
1374   return OutlinedFun;
1375 }
1376 
1377 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1378                                                  SourceLocation Loc,
1379                                                  bool WithSPMDCheck) {
1380   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1381       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1382     return;
1383 
1384   CGBuilderTy &Bld = CGF.Builder;
1385 
1386   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1387   if (I == FunctionGlobalizedDecls.end())
1388     return;
1389 
1390   for (auto &Rec : I->getSecond().LocalVarData) {
1391     const auto *VD = cast<VarDecl>(Rec.first);
1392     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1393     QualType VarTy = VD->getType();
1394 
1395     // Get the local allocation of a firstprivate variable before sharing
1396     llvm::Value *ParValue;
1397     if (EscapedParam) {
1398       LValue ParLVal =
1399           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1400       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1401     }
1402 
1403     // Allocate space for the variable to be globalized
1404     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1405     llvm::CallBase *VoidPtr =
1406         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1407                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1408                             AllocArgs, VD->getName());
1409     // FIXME: We should use the variables actual alignment as an argument.
1410     VoidPtr->addRetAttr(llvm::Attribute::get(
1411         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1412         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1413 
1414     // Cast the void pointer and get the address of the globalized variable.
1415     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1416     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1417         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1418     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1419     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1420     Rec.second.GlobalizedVal = VoidPtr;
1421 
1422     // Assign the local allocation to the newly globalized location.
1423     if (EscapedParam) {
1424       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1425       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1426     }
1427     if (auto *DI = CGF.getDebugInfo())
1428       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1429   }
1430   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1431     // Use actual memory size of the VLA object including the padding
1432     // for alignment purposes.
1433     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1434     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1435     Size = Bld.CreateNUWAdd(
1436         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1437     llvm::Value *AlignVal =
1438         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1439 
1440     Size = Bld.CreateUDiv(Size, AlignVal);
1441     Size = Bld.CreateNUWMul(Size, AlignVal);
1442 
1443     // Allocate space for this VLA object to be globalized.
1444     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1445     llvm::CallBase *VoidPtr =
1446         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1447                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1448                             AllocArgs, VD->getName());
1449     VoidPtr->addRetAttr(
1450         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1451                              CGM.getContext().getTargetInfo().getNewAlign()));
1452 
1453     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1454         std::pair<llvm::Value *, llvm::Value *>(
1455             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1456     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1457                                      CGM.getContext().getDeclAlign(VD),
1458                                      AlignmentSource::Decl);
1459     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1460                                             Base.getAddress(CGF));
1461   }
1462   I->getSecond().MappedParams->apply(CGF);
1463 }
1464 
1465 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1466                                                  bool WithSPMDCheck) {
1467   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1468       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1469     return;
1470 
1471   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1472   if (I != FunctionGlobalizedDecls.end()) {
1473     // Deallocate the memory for each globalized VLA object
1474     for (auto AddrSizePair :
1475          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1476       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1477                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1478                           {AddrSizePair.first, AddrSizePair.second});
1479     }
1480     // Deallocate the memory for each globalized value
1481     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1482       const auto *VD = cast<VarDecl>(Rec.first);
1483       I->getSecond().MappedParams->restore(CGF);
1484 
1485       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1486                                  CGF.getTypeSize(VD->getType())};
1487       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1488                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1489                           FreeArgs);
1490     }
1491   }
1492 }
1493 
1494 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1495                                          const OMPExecutableDirective &D,
1496                                          SourceLocation Loc,
1497                                          llvm::Function *OutlinedFn,
1498                                          ArrayRef<llvm::Value *> CapturedVars) {
1499   if (!CGF.HaveInsertPoint())
1500     return;
1501 
1502   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1503                                                       /*Name=*/".zero.addr");
1504   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1505   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1506   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1507   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1508   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1509   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1510 }
1511 
1512 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1513                                           SourceLocation Loc,
1514                                           llvm::Function *OutlinedFn,
1515                                           ArrayRef<llvm::Value *> CapturedVars,
1516                                           const Expr *IfCond,
1517                                           llvm::Value *NumThreads) {
1518   if (!CGF.HaveInsertPoint())
1519     return;
1520 
1521   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1522                         NumThreads](CodeGenFunction &CGF,
1523                                     PrePostActionTy &Action) {
1524     CGBuilderTy &Bld = CGF.Builder;
1525     llvm::Value *NumThreadsVal = NumThreads;
1526     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1527     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1528     if (WFn)
1529       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1530     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1531 
1532     // Create a private scope that will globalize the arguments
1533     // passed from the outside of the target region.
1534     // TODO: Is that needed?
1535     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1536 
1537     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1538         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1539         "captured_vars_addrs");
1540     // There's something to share.
1541     if (!CapturedVars.empty()) {
1542       // Prepare for parallel region. Indicate the outlined function.
1543       ASTContext &Ctx = CGF.getContext();
1544       unsigned Idx = 0;
1545       for (llvm::Value *V : CapturedVars) {
1546         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1547         llvm::Value *PtrV;
1548         if (V->getType()->isIntegerTy())
1549           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1550         else
1551           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1552         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1553                               Ctx.getPointerType(Ctx.VoidPtrTy));
1554         ++Idx;
1555       }
1556     }
1557 
1558     llvm::Value *IfCondVal = nullptr;
1559     if (IfCond)
1560       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1561                                     /* isSigned */ false);
1562     else
1563       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1564 
1565     if (!NumThreadsVal)
1566       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1567     else
1568       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1569 
1570       assert(IfCondVal && "Expected a value");
1571     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1572     llvm::Value *Args[] = {
1573         RTLoc,
1574         getThreadID(CGF, Loc),
1575         IfCondVal,
1576         NumThreadsVal,
1577         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1578         FnPtr,
1579         ID,
1580         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1581                                    CGF.VoidPtrPtrTy),
1582         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1583     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1584                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1585                         Args);
1586   };
1587 
1588   RegionCodeGenTy RCG(ParallelGen);
1589   RCG(CGF);
1590 }
1591 
1592 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1593   // Always emit simple barriers!
1594   if (!CGF.HaveInsertPoint())
1595     return;
1596   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1597   // This function does not use parameters, so we can emit just default values.
1598   llvm::Value *Args[] = {
1599       llvm::ConstantPointerNull::get(
1600           cast<llvm::PointerType>(getIdentTyPointerTy())),
1601       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1602   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1603                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1604                       Args);
1605 }
1606 
1607 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1608                                            SourceLocation Loc,
1609                                            OpenMPDirectiveKind Kind, bool,
1610                                            bool) {
1611   // Always emit simple barriers!
1612   if (!CGF.HaveInsertPoint())
1613     return;
1614   // Build call __kmpc_cancel_barrier(loc, thread_id);
1615   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1616   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1617                          getThreadID(CGF, Loc)};
1618 
1619   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1620                           CGM.getModule(), OMPRTL___kmpc_barrier),
1621                       Args);
1622 }
1623 
1624 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1625     CodeGenFunction &CGF, StringRef CriticalName,
1626     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1627     const Expr *Hint) {
1628   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1629   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1630   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1631   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1632   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1633 
1634   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1635 
1636   // Get the mask of active threads in the warp.
1637   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1638       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1639   // Fetch team-local id of the thread.
1640   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1641 
1642   // Get the width of the team.
1643   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1644 
1645   // Initialize the counter variable for the loop.
1646   QualType Int32Ty =
1647       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1648   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1649   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1650   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1651                         /*isInit=*/true);
1652 
1653   // Block checks if loop counter exceeds upper bound.
1654   CGF.EmitBlock(LoopBB);
1655   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1656   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1657   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1658 
1659   // Block tests which single thread should execute region, and which threads
1660   // should go straight to synchronisation point.
1661   CGF.EmitBlock(TestBB);
1662   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663   llvm::Value *CmpThreadToCounter =
1664       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1665   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1666 
1667   // Block emits the body of the critical region.
1668   CGF.EmitBlock(BodyBB);
1669 
1670   // Output the critical statement.
1671   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1672                                       Hint);
1673 
1674   // After the body surrounded by the critical region, the single executing
1675   // thread will jump to the synchronisation point.
1676   // Block waits for all threads in current team to finish then increments the
1677   // counter variable and returns to the loop.
1678   CGF.EmitBlock(SyncBB);
1679   // Reconverge active threads in the warp.
1680   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1681                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1682                             Mask);
1683 
1684   llvm::Value *IncCounterVal =
1685       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1686   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1687   CGF.EmitBranch(LoopBB);
1688 
1689   // Block that is reached when  all threads in the team complete the region.
1690   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1691 }
1692 
1693 /// Cast value to the specified type.
1694 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1695                                     QualType ValTy, QualType CastTy,
1696                                     SourceLocation Loc) {
1697   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1698          "Cast type must sized.");
1699   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1700          "Val type must sized.");
1701   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1702   if (ValTy == CastTy)
1703     return Val;
1704   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1705       CGF.getContext().getTypeSizeInChars(CastTy))
1706     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1707   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1708     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1709                                      CastTy->hasSignedIntegerRepresentation());
1710   Address CastItem = CGF.CreateMemTemp(CastTy);
1711   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1712       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
1713   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1714                         LValueBaseInfo(AlignmentSource::Type),
1715                         TBAAAccessInfo());
1716   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1717                               LValueBaseInfo(AlignmentSource::Type),
1718                               TBAAAccessInfo());
1719 }
1720 
1721 /// This function creates calls to one of two shuffle functions to copy
1722 /// variables between lanes in a warp.
1723 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1724                                                  llvm::Value *Elem,
1725                                                  QualType ElemType,
1726                                                  llvm::Value *Offset,
1727                                                  SourceLocation Loc) {
1728   CodeGenModule &CGM = CGF.CGM;
1729   CGBuilderTy &Bld = CGF.Builder;
1730   CGOpenMPRuntimeGPU &RT =
1731       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1732   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1733 
1734   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1735   assert(Size.getQuantity() <= 8 &&
1736          "Unsupported bitwidth in shuffle instruction.");
1737 
1738   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1739                                   ? OMPRTL___kmpc_shuffle_int32
1740                                   : OMPRTL___kmpc_shuffle_int64;
1741 
1742   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1743   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1744       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1745   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1746   llvm::Value *WarpSize =
1747       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1748 
1749   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1750       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1751       {ElemCast, Offset, WarpSize});
1752 
1753   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1754 }
1755 
1756 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1757                             Address DestAddr, QualType ElemType,
1758                             llvm::Value *Offset, SourceLocation Loc) {
1759   CGBuilderTy &Bld = CGF.Builder;
1760 
1761   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1762   // Create the loop over the big sized data.
1763   // ptr = (void*)Elem;
1764   // ptrEnd = (void*) Elem + 1;
1765   // Step = 8;
1766   // while (ptr + Step < ptrEnd)
1767   //   shuffle((int64_t)*ptr);
1768   // Step = 4;
1769   // while (ptr + Step < ptrEnd)
1770   //   shuffle((int32_t)*ptr);
1771   // ...
1772   Address ElemPtr = DestAddr;
1773   Address Ptr = SrcAddr;
1774   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1775       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
1776   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1777     if (Size < CharUnits::fromQuantity(IntSize))
1778       continue;
1779     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1780         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1781         /*Signed=*/1);
1782     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1783     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
1784     ElemPtr =
1785         Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
1786     if (Size.getQuantity() / IntSize > 1) {
1787       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1788       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1789       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1790       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1791       CGF.EmitBlock(PreCondBB);
1792       llvm::PHINode *PhiSrc =
1793           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1794       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1795       llvm::PHINode *PhiDest =
1796           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1797       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1798       Ptr = Address(PhiSrc, Ptr.getAlignment());
1799       ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
1800       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1801           PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
1802                                    Ptr.getPointer(), CGF.VoidPtrTy));
1803       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1804                        ThenBB, ExitBB);
1805       CGF.EmitBlock(ThenBB);
1806       llvm::Value *Res = createRuntimeShuffleFunction(
1807           CGF,
1808           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1809                                LValueBaseInfo(AlignmentSource::Type),
1810                                TBAAAccessInfo()),
1811           IntType, Offset, Loc);
1812       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1813                             LValueBaseInfo(AlignmentSource::Type),
1814                             TBAAAccessInfo());
1815       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1816       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1817       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1818       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1819       CGF.EmitBranch(PreCondBB);
1820       CGF.EmitBlock(ExitBB);
1821     } else {
1822       llvm::Value *Res = createRuntimeShuffleFunction(
1823           CGF,
1824           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1825                                LValueBaseInfo(AlignmentSource::Type),
1826                                TBAAAccessInfo()),
1827           IntType, Offset, Loc);
1828       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1829                             LValueBaseInfo(AlignmentSource::Type),
1830                             TBAAAccessInfo());
1831       Ptr = Bld.CreateConstGEP(Ptr, 1);
1832       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1833     }
1834     Size = Size % IntSize;
1835   }
1836 }
1837 
1838 namespace {
1839 enum CopyAction : unsigned {
1840   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1841   // the warp using shuffle instructions.
1842   RemoteLaneToThread,
1843   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1844   ThreadCopy,
1845   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1846   ThreadToScratchpad,
1847   // ScratchpadToThread: Copy from a scratchpad array in global memory
1848   // containing team-reduced data to a thread's stack.
1849   ScratchpadToThread,
1850 };
1851 } // namespace
1852 
1853 struct CopyOptionsTy {
1854   llvm::Value *RemoteLaneOffset;
1855   llvm::Value *ScratchpadIndex;
1856   llvm::Value *ScratchpadWidth;
1857 };
1858 
1859 /// Emit instructions to copy a Reduce list, which contains partially
1860 /// aggregated values, in the specified direction.
1861 static void emitReductionListCopy(
1862     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1863     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1864     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1865 
1866   CodeGenModule &CGM = CGF.CGM;
1867   ASTContext &C = CGM.getContext();
1868   CGBuilderTy &Bld = CGF.Builder;
1869 
1870   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1871   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1872   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1873 
1874   // Iterates, element-by-element, through the source Reduce list and
1875   // make a copy.
1876   unsigned Idx = 0;
1877   unsigned Size = Privates.size();
1878   for (const Expr *Private : Privates) {
1879     Address SrcElementAddr = Address::invalid();
1880     Address DestElementAddr = Address::invalid();
1881     Address DestElementPtrAddr = Address::invalid();
1882     // Should we shuffle in an element from a remote lane?
1883     bool ShuffleInElement = false;
1884     // Set to true to update the pointer in the dest Reduce list to a
1885     // newly created element.
1886     bool UpdateDestListPtr = false;
1887     // Increment the src or dest pointer to the scratchpad, for each
1888     // new element.
1889     bool IncrScratchpadSrc = false;
1890     bool IncrScratchpadDest = false;
1891 
1892     switch (Action) {
1893     case RemoteLaneToThread: {
1894       // Step 1.1: Get the address for the src element in the Reduce list.
1895       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1896       SrcElementAddr = CGF.EmitLoadOfPointer(
1897           SrcElementPtrAddr,
1898           C.getPointerType(Private->getType())->castAs<PointerType>());
1899 
1900       // Step 1.2: Create a temporary to store the element in the destination
1901       // Reduce list.
1902       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1903       DestElementAddr =
1904           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1905       ShuffleInElement = true;
1906       UpdateDestListPtr = true;
1907       break;
1908     }
1909     case ThreadCopy: {
1910       // Step 1.1: Get the address for the src element in the Reduce list.
1911       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1912       SrcElementAddr = CGF.EmitLoadOfPointer(
1913           SrcElementPtrAddr,
1914           C.getPointerType(Private->getType())->castAs<PointerType>());
1915 
1916       // Step 1.2: Get the address for dest element.  The destination
1917       // element has already been created on the thread's stack.
1918       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1919       DestElementAddr = CGF.EmitLoadOfPointer(
1920           DestElementPtrAddr,
1921           C.getPointerType(Private->getType())->castAs<PointerType>());
1922       break;
1923     }
1924     case ThreadToScratchpad: {
1925       // Step 1.1: Get the address for the src element in the Reduce list.
1926       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1927       SrcElementAddr = CGF.EmitLoadOfPointer(
1928           SrcElementPtrAddr,
1929           C.getPointerType(Private->getType())->castAs<PointerType>());
1930 
1931       // Step 1.2: Get the address for dest element:
1932       // address = base + index * ElementSizeInChars.
1933       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1934       llvm::Value *CurrentOffset =
1935           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1936       llvm::Value *ScratchPadElemAbsolutePtrVal =
1937           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1938       ScratchPadElemAbsolutePtrVal =
1939           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1940       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1941                                 C.getTypeAlignInChars(Private->getType()));
1942       IncrScratchpadDest = true;
1943       break;
1944     }
1945     case ScratchpadToThread: {
1946       // Step 1.1: Get the address for the src element in the scratchpad.
1947       // address = base + index * ElementSizeInChars.
1948       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1949       llvm::Value *CurrentOffset =
1950           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1951       llvm::Value *ScratchPadElemAbsolutePtrVal =
1952           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1953       ScratchPadElemAbsolutePtrVal =
1954           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1955       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1956                                C.getTypeAlignInChars(Private->getType()));
1957       IncrScratchpadSrc = true;
1958 
1959       // Step 1.2: Create a temporary to store the element in the destination
1960       // Reduce list.
1961       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1962       DestElementAddr =
1963           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1964       UpdateDestListPtr = true;
1965       break;
1966     }
1967     }
1968 
1969     // Regardless of src and dest of copy, we emit the load of src
1970     // element as this is required in all directions
1971     SrcElementAddr = Bld.CreateElementBitCast(
1972         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1973     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1974                                                SrcElementAddr.getElementType());
1975 
1976     // Now that all active lanes have read the element in the
1977     // Reduce list, shuffle over the value from the remote lane.
1978     if (ShuffleInElement) {
1979       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1980                       RemoteLaneOffset, Private->getExprLoc());
1981     } else {
1982       switch (CGF.getEvaluationKind(Private->getType())) {
1983       case TEK_Scalar: {
1984         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1985             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1986             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1987             TBAAAccessInfo());
1988         // Store the source element value to the dest element address.
1989         CGF.EmitStoreOfScalar(
1990             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1991             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1992         break;
1993       }
1994       case TEK_Complex: {
1995         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1996             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1997             Private->getExprLoc());
1998         CGF.EmitStoreOfComplex(
1999             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2000             /*isInit=*/false);
2001         break;
2002       }
2003       case TEK_Aggregate:
2004         CGF.EmitAggregateCopy(
2005             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2006             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2007             Private->getType(), AggValueSlot::DoesNotOverlap);
2008         break;
2009       }
2010     }
2011 
2012     // Step 3.1: Modify reference in dest Reduce list as needed.
2013     // Modifying the reference in Reduce list to point to the newly
2014     // created element.  The element is live in the current function
2015     // scope and that of functions it invokes (i.e., reduce_function).
2016     // RemoteReduceData[i] = (void*)&RemoteElem
2017     if (UpdateDestListPtr) {
2018       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2019                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2020                             DestElementPtrAddr, /*Volatile=*/false,
2021                             C.VoidPtrTy);
2022     }
2023 
2024     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2025     // address of the next element in scratchpad memory, unless we're currently
2026     // processing the last one.  Memory alignment is also taken care of here.
2027     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2028       llvm::Value *ScratchpadBasePtr =
2029           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2030       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2031       ScratchpadBasePtr = Bld.CreateNUWAdd(
2032           ScratchpadBasePtr,
2033           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2034 
2035       // Take care of global memory alignment for performance
2036       ScratchpadBasePtr = Bld.CreateNUWSub(
2037           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2038       ScratchpadBasePtr = Bld.CreateUDiv(
2039           ScratchpadBasePtr,
2040           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2041       ScratchpadBasePtr = Bld.CreateNUWAdd(
2042           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2043       ScratchpadBasePtr = Bld.CreateNUWMul(
2044           ScratchpadBasePtr,
2045           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2046 
2047       if (IncrScratchpadDest)
2048         DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2049       else /* IncrScratchpadSrc = true */
2050         SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2051     }
2052 
2053     ++Idx;
2054   }
2055 }
2056 
2057 /// This function emits a helper that gathers Reduce lists from the first
2058 /// lane of every active warp to lanes in the first warp.
2059 ///
2060 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2061 ///   shared smem[warp_size];
2062 ///   For all data entries D in reduce_data:
2063 ///     sync
2064 ///     If (I am the first lane in each warp)
2065 ///       Copy my local D to smem[warp_id]
2066 ///     sync
2067 ///     if (I am the first warp)
2068 ///       Copy smem[thread_id] to my local D
2069 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2070                                               ArrayRef<const Expr *> Privates,
2071                                               QualType ReductionArrayTy,
2072                                               SourceLocation Loc) {
2073   ASTContext &C = CGM.getContext();
2074   llvm::Module &M = CGM.getModule();
2075 
2076   // ReduceList: thread local Reduce list.
2077   // At the stage of the computation when this function is called, partially
2078   // aggregated values reside in the first lane of every active warp.
2079   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2080                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2081   // NumWarps: number of warps active in the parallel region.  This could
2082   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2083   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2084                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2085                                 ImplicitParamDecl::Other);
2086   FunctionArgList Args;
2087   Args.push_back(&ReduceListArg);
2088   Args.push_back(&NumWarpsArg);
2089 
2090   const CGFunctionInfo &CGFI =
2091       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2092   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2093                                     llvm::GlobalValue::InternalLinkage,
2094                                     "_omp_reduction_inter_warp_copy_func", &M);
2095   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2096   Fn->setDoesNotRecurse();
2097   CodeGenFunction CGF(CGM);
2098   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2099 
2100   CGBuilderTy &Bld = CGF.Builder;
2101 
2102   // This array is used as a medium to transfer, one reduce element at a time,
2103   // the data from the first lane of every warp to lanes in the first warp
2104   // in order to perform the final step of a reduction in a parallel region
2105   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2106   // for reduced latency, as well as to have a distinct copy for concurrently
2107   // executing target regions.  The array is declared with common linkage so
2108   // as to be shared across compilation units.
2109   StringRef TransferMediumName =
2110       "__openmp_nvptx_data_transfer_temporary_storage";
2111   llvm::GlobalVariable *TransferMedium =
2112       M.getGlobalVariable(TransferMediumName);
2113   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2114   if (!TransferMedium) {
2115     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2116     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2117     TransferMedium = new llvm::GlobalVariable(
2118         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2119         llvm::UndefValue::get(Ty), TransferMediumName,
2120         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2121         SharedAddressSpace);
2122     CGM.addCompilerUsedGlobal(TransferMedium);
2123   }
2124 
2125   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2126   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2127   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2128   // nvptx_lane_id = nvptx_id % warpsize
2129   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2130   // nvptx_warp_id = nvptx_id / warpsize
2131   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2132 
2133   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2134   Address LocalReduceList(
2135       Bld.CreatePointerBitCastOrAddrSpaceCast(
2136           CGF.EmitLoadOfScalar(
2137               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2138               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2139           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2140       CGF.getPointerAlign());
2141 
2142   unsigned Idx = 0;
2143   for (const Expr *Private : Privates) {
2144     //
2145     // Warp master copies reduce element to transfer medium in __shared__
2146     // memory.
2147     //
2148     unsigned RealTySize =
2149         C.getTypeSizeInChars(Private->getType())
2150             .alignTo(C.getTypeAlignInChars(Private->getType()))
2151             .getQuantity();
2152     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2153       unsigned NumIters = RealTySize / TySize;
2154       if (NumIters == 0)
2155         continue;
2156       QualType CType = C.getIntTypeForBitwidth(
2157           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2158       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2159       CharUnits Align = CharUnits::fromQuantity(TySize);
2160       llvm::Value *Cnt = nullptr;
2161       Address CntAddr = Address::invalid();
2162       llvm::BasicBlock *PrecondBB = nullptr;
2163       llvm::BasicBlock *ExitBB = nullptr;
2164       if (NumIters > 1) {
2165         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2166         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2167                               /*Volatile=*/false, C.IntTy);
2168         PrecondBB = CGF.createBasicBlock("precond");
2169         ExitBB = CGF.createBasicBlock("exit");
2170         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2171         // There is no need to emit line number for unconditional branch.
2172         (void)ApplyDebugLocation::CreateEmpty(CGF);
2173         CGF.EmitBlock(PrecondBB);
2174         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2175         llvm::Value *Cmp =
2176             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2177         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2178         CGF.EmitBlock(BodyBB);
2179       }
2180       // kmpc_barrier.
2181       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2182                                              /*EmitChecks=*/false,
2183                                              /*ForceSimpleCall=*/true);
2184       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2185       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2186       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2187 
2188       // if (lane_id == 0)
2189       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2190       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2191       CGF.EmitBlock(ThenBB);
2192 
2193       // Reduce element = LocalReduceList[i]
2194       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2195       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2196           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2197       // elemptr = ((CopyType*)(elemptrptr)) + I
2198       Address ElemPtr = Address(ElemPtrPtr, Align);
2199       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2200       if (NumIters > 1)
2201         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2202 
2203       // Get pointer to location in transfer medium.
2204       // MediumPtr = &medium[warp_id]
2205       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2206           TransferMedium->getValueType(), TransferMedium,
2207           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2208       Address MediumPtr(MediumPtrVal, Align);
2209       // Casting to actual data type.
2210       // MediumPtr = (CopyType*)MediumPtrAddr;
2211       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2212 
2213       // elem = *elemptr
2214       //*MediumPtr = elem
2215       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2216           ElemPtr, /*Volatile=*/false, CType, Loc,
2217           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2218       // Store the source element value to the dest element address.
2219       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2220                             LValueBaseInfo(AlignmentSource::Type),
2221                             TBAAAccessInfo());
2222 
2223       Bld.CreateBr(MergeBB);
2224 
2225       CGF.EmitBlock(ElseBB);
2226       Bld.CreateBr(MergeBB);
2227 
2228       CGF.EmitBlock(MergeBB);
2229 
2230       // kmpc_barrier.
2231       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2232                                              /*EmitChecks=*/false,
2233                                              /*ForceSimpleCall=*/true);
2234 
2235       //
2236       // Warp 0 copies reduce element from transfer medium.
2237       //
2238       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2239       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2240       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2241 
2242       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2243       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2244           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2245 
2246       // Up to 32 threads in warp 0 are active.
2247       llvm::Value *IsActiveThread =
2248           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2249       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2250 
2251       CGF.EmitBlock(W0ThenBB);
2252 
2253       // SrcMediumPtr = &medium[tid]
2254       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2255           TransferMedium->getValueType(), TransferMedium,
2256           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2257       Address SrcMediumPtr(SrcMediumPtrVal, Align);
2258       // SrcMediumVal = *SrcMediumPtr;
2259       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2260 
2261       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2262       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2263       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2264           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2265       Address TargetElemPtr = Address(TargetElemPtrVal, Align);
2266       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2267       if (NumIters > 1)
2268         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2269 
2270       // *TargetElemPtr = SrcMediumVal;
2271       llvm::Value *SrcMediumValue =
2272           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2273       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2274                             CType);
2275       Bld.CreateBr(W0MergeBB);
2276 
2277       CGF.EmitBlock(W0ElseBB);
2278       Bld.CreateBr(W0MergeBB);
2279 
2280       CGF.EmitBlock(W0MergeBB);
2281 
2282       if (NumIters > 1) {
2283         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2284         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2285         CGF.EmitBranch(PrecondBB);
2286         (void)ApplyDebugLocation::CreateEmpty(CGF);
2287         CGF.EmitBlock(ExitBB);
2288       }
2289       RealTySize %= TySize;
2290     }
2291     ++Idx;
2292   }
2293 
2294   CGF.FinishFunction();
2295   return Fn;
2296 }
2297 
2298 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2299 /// in the same warp.  It uses shuffle instructions to copy over data from
2300 /// a remote lane's stack.  The reduction algorithm performed is specified
2301 /// by the fourth parameter.
2302 ///
2303 /// Algorithm Versions.
2304 /// Full Warp Reduce (argument value 0):
2305 ///   This algorithm assumes that all 32 lanes are active and gathers
2306 ///   data from these 32 lanes, producing a single resultant value.
2307 /// Contiguous Partial Warp Reduce (argument value 1):
2308 ///   This algorithm assumes that only a *contiguous* subset of lanes
2309 ///   are active.  This happens for the last warp in a parallel region
2310 ///   when the user specified num_threads is not an integer multiple of
2311 ///   32.  This contiguous subset always starts with the zeroth lane.
2312 /// Partial Warp Reduce (argument value 2):
2313 ///   This algorithm gathers data from any number of lanes at any position.
2314 /// All reduced values are stored in the lowest possible lane.  The set
2315 /// of problems every algorithm addresses is a super set of those
2316 /// addressable by algorithms with a lower version number.  Overhead
2317 /// increases as algorithm version increases.
2318 ///
2319 /// Terminology
2320 /// Reduce element:
2321 ///   Reduce element refers to the individual data field with primitive
2322 ///   data types to be combined and reduced across threads.
2323 /// Reduce list:
2324 ///   Reduce list refers to a collection of local, thread-private
2325 ///   reduce elements.
2326 /// Remote Reduce list:
2327 ///   Remote Reduce list refers to a collection of remote (relative to
2328 ///   the current thread) reduce elements.
2329 ///
2330 /// We distinguish between three states of threads that are important to
2331 /// the implementation of this function.
2332 /// Alive threads:
2333 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2334 ///   threads that are inactive due to divergent control flow.
2335 /// Active threads:
2336 ///   The minimal set of threads that has to be alive upon entry to this
2337 ///   function.  The computation is correct iff active threads are alive.
2338 ///   Some threads are alive but they are not active because they do not
2339 ///   contribute to the computation in any useful manner.  Turning them off
2340 ///   may introduce control flow overheads without any tangible benefits.
2341 /// Effective threads:
2342 ///   In order to comply with the argument requirements of the shuffle
2343 ///   function, we must keep all lanes holding data alive.  But at most
2344 ///   half of them perform value aggregation; we refer to this half of
2345 ///   threads as effective. The other half is simply handing off their
2346 ///   data.
2347 ///
2348 /// Procedure
2349 /// Value shuffle:
2350 ///   In this step active threads transfer data from higher lane positions
2351 ///   in the warp to lower lane positions, creating Remote Reduce list.
2352 /// Value aggregation:
2353 ///   In this step, effective threads combine their thread local Reduce list
2354 ///   with Remote Reduce list and store the result in the thread local
2355 ///   Reduce list.
2356 /// Value copy:
2357 ///   In this step, we deal with the assumption made by algorithm 2
2358 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2359 ///   active, say 2k+1, only k threads will be effective and therefore k
2360 ///   new values will be produced.  However, the Reduce list owned by the
2361 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2362 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2363 ///   that the contiguity assumption still holds.
2364 static llvm::Function *emitShuffleAndReduceFunction(
2365     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2366     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2367   ASTContext &C = CGM.getContext();
2368 
2369   // Thread local Reduce list used to host the values of data to be reduced.
2370   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2371                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2372   // Current lane id; could be logical.
2373   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2374                               ImplicitParamDecl::Other);
2375   // Offset of the remote source lane relative to the current lane.
2376   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2377                                         C.ShortTy, ImplicitParamDecl::Other);
2378   // Algorithm version.  This is expected to be known at compile time.
2379   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2380                                C.ShortTy, ImplicitParamDecl::Other);
2381   FunctionArgList Args;
2382   Args.push_back(&ReduceListArg);
2383   Args.push_back(&LaneIDArg);
2384   Args.push_back(&RemoteLaneOffsetArg);
2385   Args.push_back(&AlgoVerArg);
2386 
2387   const CGFunctionInfo &CGFI =
2388       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2389   auto *Fn = llvm::Function::Create(
2390       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2391       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2392   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2393   Fn->setDoesNotRecurse();
2394 
2395   CodeGenFunction CGF(CGM);
2396   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2397 
2398   CGBuilderTy &Bld = CGF.Builder;
2399 
2400   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2401   Address LocalReduceList(
2402       Bld.CreatePointerBitCastOrAddrSpaceCast(
2403           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2404                                C.VoidPtrTy, SourceLocation()),
2405           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2406       CGF.getPointerAlign());
2407 
2408   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2409   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2410       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2411 
2412   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2413   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2414       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2415 
2416   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2417   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2418       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2419 
2420   // Create a local thread-private variable to host the Reduce list
2421   // from a remote lane.
2422   Address RemoteReduceList =
2423       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2424 
2425   // This loop iterates through the list of reduce elements and copies,
2426   // element by element, from a remote lane in the warp to RemoteReduceList,
2427   // hosted on the thread's stack.
2428   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2429                         LocalReduceList, RemoteReduceList,
2430                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2431                          /*ScratchpadIndex=*/nullptr,
2432                          /*ScratchpadWidth=*/nullptr});
2433 
2434   // The actions to be performed on the Remote Reduce list is dependent
2435   // on the algorithm version.
2436   //
2437   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2438   //  LaneId % 2 == 0 && Offset > 0):
2439   //    do the reduction value aggregation
2440   //
2441   //  The thread local variable Reduce list is mutated in place to host the
2442   //  reduced data, which is the aggregated value produced from local and
2443   //  remote lanes.
2444   //
2445   //  Note that AlgoVer is expected to be a constant integer known at compile
2446   //  time.
2447   //  When AlgoVer==0, the first conjunction evaluates to true, making
2448   //    the entire predicate true during compile time.
2449   //  When AlgoVer==1, the second conjunction has only the second part to be
2450   //    evaluated during runtime.  Other conjunctions evaluates to false
2451   //    during compile time.
2452   //  When AlgoVer==2, the third conjunction has only the second part to be
2453   //    evaluated during runtime.  Other conjunctions evaluates to false
2454   //    during compile time.
2455   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2456 
2457   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2458   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2459       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2460 
2461   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2462   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2463       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2464   CondAlgo2 = Bld.CreateAnd(
2465       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2466 
2467   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2468   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2469 
2470   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2471   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2472   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2473   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2474 
2475   CGF.EmitBlock(ThenBB);
2476   // reduce_function(LocalReduceList, RemoteReduceList)
2477   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2478       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2479   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2480       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2481   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2482       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2483   Bld.CreateBr(MergeBB);
2484 
2485   CGF.EmitBlock(ElseBB);
2486   Bld.CreateBr(MergeBB);
2487 
2488   CGF.EmitBlock(MergeBB);
2489 
2490   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2491   // Reduce list.
2492   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2493   llvm::Value *CondCopy = Bld.CreateAnd(
2494       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2495 
2496   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2497   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2498   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2499   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2500 
2501   CGF.EmitBlock(CpyThenBB);
2502   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2503                         RemoteReduceList, LocalReduceList);
2504   Bld.CreateBr(CpyMergeBB);
2505 
2506   CGF.EmitBlock(CpyElseBB);
2507   Bld.CreateBr(CpyMergeBB);
2508 
2509   CGF.EmitBlock(CpyMergeBB);
2510 
2511   CGF.FinishFunction();
2512   return Fn;
2513 }
2514 
2515 /// This function emits a helper that copies all the reduction variables from
2516 /// the team into the provided global buffer for the reduction variables.
2517 ///
2518 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2519 ///   For all data entries D in reduce_data:
2520 ///     Copy local D to buffer.D[Idx]
2521 static llvm::Value *emitListToGlobalCopyFunction(
2522     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2523     QualType ReductionArrayTy, SourceLocation Loc,
2524     const RecordDecl *TeamReductionRec,
2525     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2526         &VarFieldMap) {
2527   ASTContext &C = CGM.getContext();
2528 
2529   // Buffer: global reduction buffer.
2530   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2531                               C.VoidPtrTy, ImplicitParamDecl::Other);
2532   // Idx: index of the buffer.
2533   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2534                            ImplicitParamDecl::Other);
2535   // ReduceList: thread local Reduce list.
2536   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2537                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2538   FunctionArgList Args;
2539   Args.push_back(&BufferArg);
2540   Args.push_back(&IdxArg);
2541   Args.push_back(&ReduceListArg);
2542 
2543   const CGFunctionInfo &CGFI =
2544       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2545   auto *Fn = llvm::Function::Create(
2546       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2547       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2548   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2549   Fn->setDoesNotRecurse();
2550   CodeGenFunction CGF(CGM);
2551   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2552 
2553   CGBuilderTy &Bld = CGF.Builder;
2554 
2555   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2556   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2557   Address LocalReduceList(
2558       Bld.CreatePointerBitCastOrAddrSpaceCast(
2559           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2560                                C.VoidPtrTy, Loc),
2561           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2562       CGF.getPointerAlign());
2563   QualType StaticTy = C.getRecordType(TeamReductionRec);
2564   llvm::Type *LLVMReductionsBufferTy =
2565       CGM.getTypes().ConvertTypeForMem(StaticTy);
2566   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2567       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2568       LLVMReductionsBufferTy->getPointerTo());
2569   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2570                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2571                                               /*Volatile=*/false, C.IntTy,
2572                                               Loc)};
2573   unsigned Idx = 0;
2574   for (const Expr *Private : Privates) {
2575     // Reduce element = LocalReduceList[i]
2576     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2577     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2578         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2579     // elemptr = ((CopyType*)(elemptrptr)) + I
2580     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2581         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
2582     Address ElemPtr =
2583         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
2584     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2585     // Global = Buffer.VD[Idx];
2586     const FieldDecl *FD = VarFieldMap.lookup(VD);
2587     LValue GlobLVal = CGF.EmitLValueForField(
2588         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2589     Address GlobAddr = GlobLVal.getAddress(CGF);
2590     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2591         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2592     GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
2593     switch (CGF.getEvaluationKind(Private->getType())) {
2594     case TEK_Scalar: {
2595       llvm::Value *V = CGF.EmitLoadOfScalar(
2596           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2597           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2598       CGF.EmitStoreOfScalar(V, GlobLVal);
2599       break;
2600     }
2601     case TEK_Complex: {
2602       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2603           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2604       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2605       break;
2606     }
2607     case TEK_Aggregate:
2608       CGF.EmitAggregateCopy(GlobLVal,
2609                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2610                             Private->getType(), AggValueSlot::DoesNotOverlap);
2611       break;
2612     }
2613     ++Idx;
2614   }
2615 
2616   CGF.FinishFunction();
2617   return Fn;
2618 }
2619 
2620 /// This function emits a helper that reduces all the reduction variables from
2621 /// the team into the provided global buffer for the reduction variables.
2622 ///
2623 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2624 ///  void *GlobPtrs[];
2625 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2626 ///  ...
2627 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2628 ///  reduce_function(GlobPtrs, reduce_data);
2629 static llvm::Value *emitListToGlobalReduceFunction(
2630     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2631     QualType ReductionArrayTy, SourceLocation Loc,
2632     const RecordDecl *TeamReductionRec,
2633     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2634         &VarFieldMap,
2635     llvm::Function *ReduceFn) {
2636   ASTContext &C = CGM.getContext();
2637 
2638   // Buffer: global reduction buffer.
2639   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2640                               C.VoidPtrTy, ImplicitParamDecl::Other);
2641   // Idx: index of the buffer.
2642   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2643                            ImplicitParamDecl::Other);
2644   // ReduceList: thread local Reduce list.
2645   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2646                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2647   FunctionArgList Args;
2648   Args.push_back(&BufferArg);
2649   Args.push_back(&IdxArg);
2650   Args.push_back(&ReduceListArg);
2651 
2652   const CGFunctionInfo &CGFI =
2653       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2654   auto *Fn = llvm::Function::Create(
2655       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2656       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2657   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2658   Fn->setDoesNotRecurse();
2659   CodeGenFunction CGF(CGM);
2660   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2661 
2662   CGBuilderTy &Bld = CGF.Builder;
2663 
2664   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2665   QualType StaticTy = C.getRecordType(TeamReductionRec);
2666   llvm::Type *LLVMReductionsBufferTy =
2667       CGM.getTypes().ConvertTypeForMem(StaticTy);
2668   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2669       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2670       LLVMReductionsBufferTy->getPointerTo());
2671 
2672   // 1. Build a list of reduction variables.
2673   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2674   Address ReductionList =
2675       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2676   auto IPriv = Privates.begin();
2677   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2678                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2679                                               /*Volatile=*/false, C.IntTy,
2680                                               Loc)};
2681   unsigned Idx = 0;
2682   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2683     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2684     // Global = Buffer.VD[Idx];
2685     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2686     const FieldDecl *FD = VarFieldMap.lookup(VD);
2687     LValue GlobLVal = CGF.EmitLValueForField(
2688         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2689     Address GlobAddr = GlobLVal.getAddress(CGF);
2690     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2691         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2692     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2693     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2694     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2695       // Store array size.
2696       ++Idx;
2697       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2698       llvm::Value *Size = CGF.Builder.CreateIntCast(
2699           CGF.getVLASize(
2700                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2701               .NumElts,
2702           CGF.SizeTy, /*isSigned=*/false);
2703       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2704                               Elem);
2705     }
2706   }
2707 
2708   // Call reduce_function(GlobalReduceList, ReduceList)
2709   llvm::Value *GlobalReduceList =
2710       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2711   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2712   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2713       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2714   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2715       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2716   CGF.FinishFunction();
2717   return Fn;
2718 }
2719 
2720 /// This function emits a helper that copies all the reduction variables from
2721 /// the team into the provided global buffer for the reduction variables.
2722 ///
2723 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2724 ///   For all data entries D in reduce_data:
2725 ///     Copy buffer.D[Idx] to local D;
2726 static llvm::Value *emitGlobalToListCopyFunction(
2727     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2728     QualType ReductionArrayTy, SourceLocation Loc,
2729     const RecordDecl *TeamReductionRec,
2730     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2731         &VarFieldMap) {
2732   ASTContext &C = CGM.getContext();
2733 
2734   // Buffer: global reduction buffer.
2735   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2736                               C.VoidPtrTy, ImplicitParamDecl::Other);
2737   // Idx: index of the buffer.
2738   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2739                            ImplicitParamDecl::Other);
2740   // ReduceList: thread local Reduce list.
2741   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2742                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2743   FunctionArgList Args;
2744   Args.push_back(&BufferArg);
2745   Args.push_back(&IdxArg);
2746   Args.push_back(&ReduceListArg);
2747 
2748   const CGFunctionInfo &CGFI =
2749       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2750   auto *Fn = llvm::Function::Create(
2751       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2752       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2753   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2754   Fn->setDoesNotRecurse();
2755   CodeGenFunction CGF(CGM);
2756   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2757 
2758   CGBuilderTy &Bld = CGF.Builder;
2759 
2760   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2761   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2762   Address LocalReduceList(
2763       Bld.CreatePointerBitCastOrAddrSpaceCast(
2764           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2765                                C.VoidPtrTy, Loc),
2766           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2767       CGF.getPointerAlign());
2768   QualType StaticTy = C.getRecordType(TeamReductionRec);
2769   llvm::Type *LLVMReductionsBufferTy =
2770       CGM.getTypes().ConvertTypeForMem(StaticTy);
2771   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2772       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2773       LLVMReductionsBufferTy->getPointerTo());
2774 
2775   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2776                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2777                                               /*Volatile=*/false, C.IntTy,
2778                                               Loc)};
2779   unsigned Idx = 0;
2780   for (const Expr *Private : Privates) {
2781     // Reduce element = LocalReduceList[i]
2782     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2783     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2784         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2785     // elemptr = ((CopyType*)(elemptrptr)) + I
2786     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2787         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
2788     Address ElemPtr =
2789         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
2790     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2791     // Global = Buffer.VD[Idx];
2792     const FieldDecl *FD = VarFieldMap.lookup(VD);
2793     LValue GlobLVal = CGF.EmitLValueForField(
2794         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2795     Address GlobAddr = GlobLVal.getAddress(CGF);
2796     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2797         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2798     GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
2799     switch (CGF.getEvaluationKind(Private->getType())) {
2800     case TEK_Scalar: {
2801       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2802       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2803                             LValueBaseInfo(AlignmentSource::Type),
2804                             TBAAAccessInfo());
2805       break;
2806     }
2807     case TEK_Complex: {
2808       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2809       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2810                              /*isInit=*/false);
2811       break;
2812     }
2813     case TEK_Aggregate:
2814       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2815                             GlobLVal, Private->getType(),
2816                             AggValueSlot::DoesNotOverlap);
2817       break;
2818     }
2819     ++Idx;
2820   }
2821 
2822   CGF.FinishFunction();
2823   return Fn;
2824 }
2825 
2826 /// This function emits a helper that reduces all the reduction variables from
2827 /// the team into the provided global buffer for the reduction variables.
2828 ///
2829 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2830 ///  void *GlobPtrs[];
2831 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2832 ///  ...
2833 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2834 ///  reduce_function(reduce_data, GlobPtrs);
2835 static llvm::Value *emitGlobalToListReduceFunction(
2836     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2837     QualType ReductionArrayTy, SourceLocation Loc,
2838     const RecordDecl *TeamReductionRec,
2839     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2840         &VarFieldMap,
2841     llvm::Function *ReduceFn) {
2842   ASTContext &C = CGM.getContext();
2843 
2844   // Buffer: global reduction buffer.
2845   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2846                               C.VoidPtrTy, ImplicitParamDecl::Other);
2847   // Idx: index of the buffer.
2848   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2849                            ImplicitParamDecl::Other);
2850   // ReduceList: thread local Reduce list.
2851   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2852                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2853   FunctionArgList Args;
2854   Args.push_back(&BufferArg);
2855   Args.push_back(&IdxArg);
2856   Args.push_back(&ReduceListArg);
2857 
2858   const CGFunctionInfo &CGFI =
2859       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2860   auto *Fn = llvm::Function::Create(
2861       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2862       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2863   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2864   Fn->setDoesNotRecurse();
2865   CodeGenFunction CGF(CGM);
2866   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2867 
2868   CGBuilderTy &Bld = CGF.Builder;
2869 
2870   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2871   QualType StaticTy = C.getRecordType(TeamReductionRec);
2872   llvm::Type *LLVMReductionsBufferTy =
2873       CGM.getTypes().ConvertTypeForMem(StaticTy);
2874   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2875       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2876       LLVMReductionsBufferTy->getPointerTo());
2877 
2878   // 1. Build a list of reduction variables.
2879   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2880   Address ReductionList =
2881       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2882   auto IPriv = Privates.begin();
2883   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2884                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2885                                               /*Volatile=*/false, C.IntTy,
2886                                               Loc)};
2887   unsigned Idx = 0;
2888   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2889     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2890     // Global = Buffer.VD[Idx];
2891     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2892     const FieldDecl *FD = VarFieldMap.lookup(VD);
2893     LValue GlobLVal = CGF.EmitLValueForField(
2894         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2895     Address GlobAddr = GlobLVal.getAddress(CGF);
2896     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2897         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2898     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2899     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2900     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2901       // Store array size.
2902       ++Idx;
2903       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2904       llvm::Value *Size = CGF.Builder.CreateIntCast(
2905           CGF.getVLASize(
2906                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2907               .NumElts,
2908           CGF.SizeTy, /*isSigned=*/false);
2909       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2910                               Elem);
2911     }
2912   }
2913 
2914   // Call reduce_function(ReduceList, GlobalReduceList)
2915   llvm::Value *GlobalReduceList =
2916       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2917   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2918   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2919       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2920   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2921       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2922   CGF.FinishFunction();
2923   return Fn;
2924 }
2925 
2926 ///
2927 /// Design of OpenMP reductions on the GPU
2928 ///
2929 /// Consider a typical OpenMP program with one or more reduction
2930 /// clauses:
2931 ///
2932 /// float foo;
2933 /// double bar;
2934 /// #pragma omp target teams distribute parallel for \
2935 ///             reduction(+:foo) reduction(*:bar)
2936 /// for (int i = 0; i < N; i++) {
2937 ///   foo += A[i]; bar *= B[i];
2938 /// }
2939 ///
2940 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2941 /// all teams.  In our OpenMP implementation on the NVPTX device an
2942 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2943 /// within a team are mapped to CUDA threads within a threadblock.
2944 /// Our goal is to efficiently aggregate values across all OpenMP
2945 /// threads such that:
2946 ///
2947 ///   - the compiler and runtime are logically concise, and
2948 ///   - the reduction is performed efficiently in a hierarchical
2949 ///     manner as follows: within OpenMP threads in the same warp,
2950 ///     across warps in a threadblock, and finally across teams on
2951 ///     the NVPTX device.
2952 ///
2953 /// Introduction to Decoupling
2954 ///
2955 /// We would like to decouple the compiler and the runtime so that the
2956 /// latter is ignorant of the reduction variables (number, data types)
2957 /// and the reduction operators.  This allows a simpler interface
2958 /// and implementation while still attaining good performance.
2959 ///
2960 /// Pseudocode for the aforementioned OpenMP program generated by the
2961 /// compiler is as follows:
2962 ///
2963 /// 1. Create private copies of reduction variables on each OpenMP
2964 ///    thread: 'foo_private', 'bar_private'
2965 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2966 ///    to it and writes the result in 'foo_private' and 'bar_private'
2967 ///    respectively.
2968 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2969 ///    and store the result on the team master:
2970 ///
2971 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2972 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2973 ///
2974 ///     where:
2975 ///       struct ReduceData {
2976 ///         double *foo;
2977 ///         double *bar;
2978 ///       } reduceData
2979 ///       reduceData.foo = &foo_private
2980 ///       reduceData.bar = &bar_private
2981 ///
2982 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2983 ///     auxiliary functions generated by the compiler that operate on
2984 ///     variables of type 'ReduceData'.  They aid the runtime perform
2985 ///     algorithmic steps in a data agnostic manner.
2986 ///
2987 ///     'shuffleReduceFn' is a pointer to a function that reduces data
2988 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
2989 ///     same warp.  It takes the following arguments as input:
2990 ///
2991 ///     a. variable of type 'ReduceData' on the calling lane,
2992 ///     b. its lane_id,
2993 ///     c. an offset relative to the current lane_id to generate a
2994 ///        remote_lane_id.  The remote lane contains the second
2995 ///        variable of type 'ReduceData' that is to be reduced.
2996 ///     d. an algorithm version parameter determining which reduction
2997 ///        algorithm to use.
2998 ///
2999 ///     'shuffleReduceFn' retrieves data from the remote lane using
3000 ///     efficient GPU shuffle intrinsics and reduces, using the
3001 ///     algorithm specified by the 4th parameter, the two operands
3002 ///     element-wise.  The result is written to the first operand.
3003 ///
3004 ///     Different reduction algorithms are implemented in different
3005 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3006 ///     the essential reduction step.  Therefore, based on the 4th
3007 ///     parameter, this function behaves slightly differently to
3008 ///     cooperate with the runtime to ensure correctness under
3009 ///     different circumstances.
3010 ///
3011 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3012 ///     reduced variables across warps.  It tunnels, through CUDA
3013 ///     shared memory, the thread-private data of type 'ReduceData'
3014 ///     from lane 0 of each warp to a lane in the first warp.
3015 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3016 ///    The last team writes the global reduced value to memory.
3017 ///
3018 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3019 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3020 ///             scratchpadCopyFn, loadAndReduceFn)
3021 ///
3022 ///     'scratchpadCopyFn' is a helper that stores reduced
3023 ///     data from the team master to a scratchpad array in
3024 ///     global memory.
3025 ///
3026 ///     'loadAndReduceFn' is a helper that loads data from
3027 ///     the scratchpad array and reduces it with the input
3028 ///     operand.
3029 ///
3030 ///     These compiler generated functions hide address
3031 ///     calculation and alignment information from the runtime.
3032 /// 5. if ret == 1:
3033 ///     The team master of the last team stores the reduced
3034 ///     result to the globals in memory.
3035 ///     foo += reduceData.foo; bar *= reduceData.bar
3036 ///
3037 ///
3038 /// Warp Reduction Algorithms
3039 ///
3040 /// On the warp level, we have three algorithms implemented in the
3041 /// OpenMP runtime depending on the number of active lanes:
3042 ///
3043 /// Full Warp Reduction
3044 ///
3045 /// The reduce algorithm within a warp where all lanes are active
3046 /// is implemented in the runtime as follows:
3047 ///
3048 /// full_warp_reduce(void *reduce_data,
3049 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3050 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3051 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3052 /// }
3053 ///
3054 /// The algorithm completes in log(2, WARPSIZE) steps.
3055 ///
3056 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3057 /// not used therefore we save instructions by not retrieving lane_id
3058 /// from the corresponding special registers.  The 4th parameter, which
3059 /// represents the version of the algorithm being used, is set to 0 to
3060 /// signify full warp reduction.
3061 ///
3062 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3063 ///
3064 /// #reduce_elem refers to an element in the local lane's data structure
3065 /// #remote_elem is retrieved from a remote lane
3066 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3067 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3068 ///
3069 /// Contiguous Partial Warp Reduction
3070 ///
3071 /// This reduce algorithm is used within a warp where only the first
3072 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3073 /// number of OpenMP threads in a parallel region is not a multiple of
3074 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3075 ///
3076 /// void
3077 /// contiguous_partial_reduce(void *reduce_data,
3078 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3079 ///                           int size, int lane_id) {
3080 ///   int curr_size;
3081 ///   int offset;
3082 ///   curr_size = size;
3083 ///   mask = curr_size/2;
3084 ///   while (offset>0) {
3085 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3086 ///     curr_size = (curr_size+1)/2;
3087 ///     offset = curr_size/2;
3088 ///   }
3089 /// }
3090 ///
3091 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3092 ///
3093 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3094 /// if (lane_id < offset)
3095 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3096 /// else
3097 ///     reduce_elem = remote_elem
3098 ///
3099 /// This algorithm assumes that the data to be reduced are located in a
3100 /// contiguous subset of lanes starting from the first.  When there is
3101 /// an odd number of active lanes, the data in the last lane is not
3102 /// aggregated with any other lane's dat but is instead copied over.
3103 ///
3104 /// Dispersed Partial Warp Reduction
3105 ///
3106 /// This algorithm is used within a warp when any discontiguous subset of
3107 /// lanes are active.  It is used to implement the reduction operation
3108 /// across lanes in an OpenMP simd region or in a nested parallel region.
3109 ///
3110 /// void
3111 /// dispersed_partial_reduce(void *reduce_data,
3112 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3113 ///   int size, remote_id;
3114 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3115 ///   do {
3116 ///       remote_id = next_active_lane_id_right_after_me();
3117 ///       # the above function returns 0 of no active lane
3118 ///       # is present right after the current lane.
3119 ///       size = number_of_active_lanes_in_this_warp();
3120 ///       logical_lane_id /= 2;
3121 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3122 ///                       remote_id-1-threadIdx.x, 2);
3123 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3124 /// }
3125 ///
3126 /// There is no assumption made about the initial state of the reduction.
3127 /// Any number of lanes (>=1) could be active at any position.  The reduction
3128 /// result is returned in the first active lane.
3129 ///
3130 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3131 ///
3132 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3133 /// if (lane_id % 2 == 0 && offset > 0)
3134 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3135 /// else
3136 ///     reduce_elem = remote_elem
3137 ///
3138 ///
3139 /// Intra-Team Reduction
3140 ///
3141 /// This function, as implemented in the runtime call
3142 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3143 /// threads in a team.  It first reduces within a warp using the
3144 /// aforementioned algorithms.  We then proceed to gather all such
3145 /// reduced values at the first warp.
3146 ///
3147 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3148 /// data from each of the "warp master" (zeroth lane of each warp, where
3149 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3150 /// a mathematical sense) the problem of reduction across warp masters in
3151 /// a block to the problem of warp reduction.
3152 ///
3153 ///
3154 /// Inter-Team Reduction
3155 ///
3156 /// Once a team has reduced its data to a single value, it is stored in
3157 /// a global scratchpad array.  Since each team has a distinct slot, this
3158 /// can be done without locking.
3159 ///
3160 /// The last team to write to the scratchpad array proceeds to reduce the
3161 /// scratchpad array.  One or more workers in the last team use the helper
3162 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3163 /// the k'th worker reduces every k'th element.
3164 ///
3165 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3166 /// reduce across workers and compute a globally reduced value.
3167 ///
3168 void CGOpenMPRuntimeGPU::emitReduction(
3169     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3170     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3171     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3172   if (!CGF.HaveInsertPoint())
3173     return;
3174 
3175   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3176 #ifndef NDEBUG
3177   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3178 #endif
3179 
3180   if (Options.SimpleReduction) {
3181     assert(!TeamsReduction && !ParallelReduction &&
3182            "Invalid reduction selection in emitReduction.");
3183     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3184                                    ReductionOps, Options);
3185     return;
3186   }
3187 
3188   assert((TeamsReduction || ParallelReduction) &&
3189          "Invalid reduction selection in emitReduction.");
3190 
3191   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3192   // RedList, shuffle_reduce_func, interwarp_copy_func);
3193   // or
3194   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3195   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3196   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3197 
3198   llvm::Value *Res;
3199   ASTContext &C = CGM.getContext();
3200   // 1. Build a list of reduction variables.
3201   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3202   auto Size = RHSExprs.size();
3203   for (const Expr *E : Privates) {
3204     if (E->getType()->isVariablyModifiedType())
3205       // Reserve place for array size.
3206       ++Size;
3207   }
3208   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3209   QualType ReductionArrayTy =
3210       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3211                              /*IndexTypeQuals=*/0);
3212   Address ReductionList =
3213       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3214   auto IPriv = Privates.begin();
3215   unsigned Idx = 0;
3216   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3217     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3218     CGF.Builder.CreateStore(
3219         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3220             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3221         Elem);
3222     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3223       // Store array size.
3224       ++Idx;
3225       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3226       llvm::Value *Size = CGF.Builder.CreateIntCast(
3227           CGF.getVLASize(
3228                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3229               .NumElts,
3230           CGF.SizeTy, /*isSigned=*/false);
3231       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3232                               Elem);
3233     }
3234   }
3235 
3236   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3237       ReductionList.getPointer(), CGF.VoidPtrTy);
3238   llvm::Function *ReductionFn = emitReductionFunction(
3239       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3240       LHSExprs, RHSExprs, ReductionOps);
3241   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3242   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3243       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3244   llvm::Value *InterWarpCopyFn =
3245       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3246 
3247   if (ParallelReduction) {
3248     llvm::Value *Args[] = {RTLoc,
3249                            ThreadId,
3250                            CGF.Builder.getInt32(RHSExprs.size()),
3251                            ReductionArrayTySize,
3252                            RL,
3253                            ShuffleAndReduceFn,
3254                            InterWarpCopyFn};
3255 
3256     Res = CGF.EmitRuntimeCall(
3257         OMPBuilder.getOrCreateRuntimeFunction(
3258             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3259         Args);
3260   } else {
3261     assert(TeamsReduction && "expected teams reduction.");
3262     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3263     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3264     int Cnt = 0;
3265     for (const Expr *DRE : Privates) {
3266       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3267       ++Cnt;
3268     }
3269     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3270         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3271         C.getLangOpts().OpenMPCUDAReductionBufNum);
3272     TeamsReductions.push_back(TeamReductionRec);
3273     if (!KernelTeamsReductionPtr) {
3274       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3275           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3276           llvm::GlobalValue::InternalLinkage, nullptr,
3277           "_openmp_teams_reductions_buffer_$_$ptr");
3278     }
3279     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3280         Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3281         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3282     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3283         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3284     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3285         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3286         ReductionFn);
3287     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3288         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3289     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3290         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3291         ReductionFn);
3292 
3293     llvm::Value *Args[] = {
3294         RTLoc,
3295         ThreadId,
3296         GlobalBufferPtr,
3297         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3298         RL,
3299         ShuffleAndReduceFn,
3300         InterWarpCopyFn,
3301         GlobalToBufferCpyFn,
3302         GlobalToBufferRedFn,
3303         BufferToGlobalCpyFn,
3304         BufferToGlobalRedFn};
3305 
3306     Res = CGF.EmitRuntimeCall(
3307         OMPBuilder.getOrCreateRuntimeFunction(
3308             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3309         Args);
3310   }
3311 
3312   // 5. Build if (res == 1)
3313   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3314   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3315   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3316       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3317   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3318 
3319   // 6. Build then branch: where we have reduced values in the master
3320   //    thread in each team.
3321   //    __kmpc_end_reduce{_nowait}(<gtid>);
3322   //    break;
3323   CGF.EmitBlock(ThenBB);
3324 
3325   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3326   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3327                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3328     auto IPriv = Privates.begin();
3329     auto ILHS = LHSExprs.begin();
3330     auto IRHS = RHSExprs.begin();
3331     for (const Expr *E : ReductionOps) {
3332       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3333                                   cast<DeclRefExpr>(*IRHS));
3334       ++IPriv;
3335       ++ILHS;
3336       ++IRHS;
3337     }
3338   };
3339   llvm::Value *EndArgs[] = {ThreadId};
3340   RegionCodeGenTy RCG(CodeGen);
3341   NVPTXActionTy Action(
3342       nullptr, llvm::None,
3343       OMPBuilder.getOrCreateRuntimeFunction(
3344           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3345       EndArgs);
3346   RCG.setAction(Action);
3347   RCG(CGF);
3348   // There is no need to emit line number for unconditional branch.
3349   (void)ApplyDebugLocation::CreateEmpty(CGF);
3350   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3351 }
3352 
3353 const VarDecl *
3354 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3355                                        const VarDecl *NativeParam) const {
3356   if (!NativeParam->getType()->isReferenceType())
3357     return NativeParam;
3358   QualType ArgType = NativeParam->getType();
3359   QualifierCollector QC;
3360   const Type *NonQualTy = QC.strip(ArgType);
3361   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3362   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3363     if (Attr->getCaptureKind() == OMPC_map) {
3364       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3365                                                         LangAS::opencl_global);
3366     }
3367   }
3368   ArgType = CGM.getContext().getPointerType(PointeeTy);
3369   QC.addRestrict();
3370   enum { NVPTX_local_addr = 5 };
3371   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3372   ArgType = QC.apply(CGM.getContext(), ArgType);
3373   if (isa<ImplicitParamDecl>(NativeParam))
3374     return ImplicitParamDecl::Create(
3375         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3376         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3377   return ParmVarDecl::Create(
3378       CGM.getContext(),
3379       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3380       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3381       NativeParam->getIdentifier(), ArgType,
3382       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3383 }
3384 
3385 Address
3386 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3387                                           const VarDecl *NativeParam,
3388                                           const VarDecl *TargetParam) const {
3389   assert(NativeParam != TargetParam &&
3390          NativeParam->getType()->isReferenceType() &&
3391          "Native arg must not be the same as target arg.");
3392   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3393   QualType NativeParamType = NativeParam->getType();
3394   QualifierCollector QC;
3395   const Type *NonQualTy = QC.strip(NativeParamType);
3396   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3397   unsigned NativePointeeAddrSpace =
3398       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3399   QualType TargetTy = TargetParam->getType();
3400   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3401       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3402   // First cast to generic.
3403   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3404       TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
3405                       /*AddrSpace=*/0));
3406   // Cast from generic to native address space.
3407   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3408       TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
3409                       NativePointeeAddrSpace));
3410   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3411   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3412                         NativeParamType);
3413   return NativeParamAddr;
3414 }
3415 
3416 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3417     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3418     ArrayRef<llvm::Value *> Args) const {
3419   SmallVector<llvm::Value *, 4> TargetArgs;
3420   TargetArgs.reserve(Args.size());
3421   auto *FnType = OutlinedFn.getFunctionType();
3422   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3423     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3424       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3425       break;
3426     }
3427     llvm::Type *TargetType = FnType->getParamType(I);
3428     llvm::Value *NativeArg = Args[I];
3429     if (!TargetType->isPointerTy()) {
3430       TargetArgs.emplace_back(NativeArg);
3431       continue;
3432     }
3433     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3434         NativeArg,
3435         NativeArg->getType()->getPointerElementType()->getPointerTo());
3436     TargetArgs.emplace_back(
3437         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3438   }
3439   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3440 }
3441 
3442 /// Emit function which wraps the outline parallel region
3443 /// and controls the arguments which are passed to this function.
3444 /// The wrapper ensures that the outlined function is called
3445 /// with the correct arguments when data is shared.
3446 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3447     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3448   ASTContext &Ctx = CGM.getContext();
3449   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3450 
3451   // Create a function that takes as argument the source thread.
3452   FunctionArgList WrapperArgs;
3453   QualType Int16QTy =
3454       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3455   QualType Int32QTy =
3456       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3457   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3458                                      /*Id=*/nullptr, Int16QTy,
3459                                      ImplicitParamDecl::Other);
3460   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3461                                /*Id=*/nullptr, Int32QTy,
3462                                ImplicitParamDecl::Other);
3463   WrapperArgs.emplace_back(&ParallelLevelArg);
3464   WrapperArgs.emplace_back(&WrapperArg);
3465 
3466   const CGFunctionInfo &CGFI =
3467       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3468 
3469   auto *Fn = llvm::Function::Create(
3470       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3471       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3472 
3473   // Ensure we do not inline the function. This is trivially true for the ones
3474   // passed to __kmpc_fork_call but the ones calles in serialized regions
3475   // could be inlined. This is not a perfect but it is closer to the invariant
3476   // we want, namely, every data environment starts with a new function.
3477   // TODO: We should pass the if condition to the runtime function and do the
3478   //       handling there. Much cleaner code.
3479   Fn->addFnAttr(llvm::Attribute::NoInline);
3480 
3481   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3482   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3483   Fn->setDoesNotRecurse();
3484 
3485   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3486   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3487                     D.getBeginLoc(), D.getBeginLoc());
3488 
3489   const auto *RD = CS.getCapturedRecordDecl();
3490   auto CurField = RD->field_begin();
3491 
3492   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3493                                                       /*Name=*/".zero.addr");
3494   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3495   // Get the array of arguments.
3496   SmallVector<llvm::Value *, 8> Args;
3497 
3498   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3499   Args.emplace_back(ZeroAddr.getPointer());
3500 
3501   CGBuilderTy &Bld = CGF.Builder;
3502   auto CI = CS.capture_begin();
3503 
3504   // Use global memory for data sharing.
3505   // Handle passing of global args to workers.
3506   Address GlobalArgs =
3507       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3508   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3509   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3510   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3511                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3512                       DataSharingArgs);
3513 
3514   // Retrieve the shared variables from the list of references returned
3515   // by the runtime. Pass the variables to the outlined function.
3516   Address SharedArgListAddress = Address::invalid();
3517   if (CS.capture_size() > 0 ||
3518       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3519     SharedArgListAddress = CGF.EmitLoadOfPointer(
3520         GlobalArgs, CGF.getContext()
3521                         .getPointerType(CGF.getContext().getPointerType(
3522                             CGF.getContext().VoidPtrTy))
3523                         .castAs<PointerType>());
3524   }
3525   unsigned Idx = 0;
3526   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3527     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3528     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3529         Src, CGF.SizeTy->getPointerTo());
3530     llvm::Value *LB = CGF.EmitLoadOfScalar(
3531         TypedAddress,
3532         /*Volatile=*/false,
3533         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3534         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3535     Args.emplace_back(LB);
3536     ++Idx;
3537     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3538     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3539         Src, CGF.SizeTy->getPointerTo());
3540     llvm::Value *UB = CGF.EmitLoadOfScalar(
3541         TypedAddress,
3542         /*Volatile=*/false,
3543         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3544         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3545     Args.emplace_back(UB);
3546     ++Idx;
3547   }
3548   if (CS.capture_size() > 0) {
3549     ASTContext &CGFContext = CGF.getContext();
3550     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3551       QualType ElemTy = CurField->getType();
3552       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3553       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3554           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
3555       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3556                                               /*Volatile=*/false,
3557                                               CGFContext.getPointerType(ElemTy),
3558                                               CI->getLocation());
3559       if (CI->capturesVariableByCopy() &&
3560           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3561         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3562                               CI->getLocation());
3563       }
3564       Args.emplace_back(Arg);
3565     }
3566   }
3567 
3568   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3569   CGF.FinishFunction();
3570   return Fn;
3571 }
3572 
3573 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3574                                               const Decl *D) {
3575   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3576     return;
3577 
3578   assert(D && "Expected function or captured|block decl.");
3579   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3580          "Function is registered already.");
3581   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3582          "Team is set but not processed.");
3583   const Stmt *Body = nullptr;
3584   bool NeedToDelayGlobalization = false;
3585   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3586     Body = FD->getBody();
3587   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3588     Body = BD->getBody();
3589   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3590     Body = CD->getBody();
3591     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3592     if (NeedToDelayGlobalization &&
3593         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3594       return;
3595   }
3596   if (!Body)
3597     return;
3598   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3599   VarChecker.Visit(Body);
3600   const RecordDecl *GlobalizedVarsRecord =
3601       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3602   TeamAndReductions.first = nullptr;
3603   TeamAndReductions.second.clear();
3604   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3605       VarChecker.getEscapedVariableLengthDecls();
3606   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3607     return;
3608   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3609   I->getSecond().MappedParams =
3610       std::make_unique<CodeGenFunction::OMPMapVars>();
3611   I->getSecond().EscapedParameters.insert(
3612       VarChecker.getEscapedParameters().begin(),
3613       VarChecker.getEscapedParameters().end());
3614   I->getSecond().EscapedVariableLengthDecls.append(
3615       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3616   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3617   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3618     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3619     Data.insert(std::make_pair(VD, MappedVarData()));
3620   }
3621   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3622     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3623     VarChecker.Visit(Body);
3624     I->getSecond().SecondaryLocalVarData.emplace();
3625     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3626     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3627       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3628       Data.insert(std::make_pair(VD, MappedVarData()));
3629     }
3630   }
3631   if (!NeedToDelayGlobalization) {
3632     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3633     struct GlobalizationScope final : EHScopeStack::Cleanup {
3634       GlobalizationScope() = default;
3635 
3636       void Emit(CodeGenFunction &CGF, Flags flags) override {
3637         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3638             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3639       }
3640     };
3641     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3642   }
3643 }
3644 
3645 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3646                                                         const VarDecl *VD) {
3647   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3648     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3649     auto AS = LangAS::Default;
3650     switch (A->getAllocatorType()) {
3651       // Use the default allocator here as by default local vars are
3652       // threadlocal.
3653     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3654     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3655     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3656     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3657     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3658       // Follow the user decision - use default allocation.
3659       return Address::invalid();
3660     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3661       // TODO: implement aupport for user-defined allocators.
3662       return Address::invalid();
3663     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3664       AS = LangAS::cuda_constant;
3665       break;
3666     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3667       AS = LangAS::cuda_shared;
3668       break;
3669     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3670     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3671       break;
3672     }
3673     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3674     auto *GV = new llvm::GlobalVariable(
3675         CGM.getModule(), VarTy, /*isConstant=*/false,
3676         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3677         VD->getName(),
3678         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3679         CGM.getContext().getTargetAddressSpace(AS));
3680     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3681     GV->setAlignment(Align.getAsAlign());
3682     return Address(
3683         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3684             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3685                     VD->getType().getAddressSpace()))),
3686         Align);
3687   }
3688 
3689   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3690     return Address::invalid();
3691 
3692   VD = VD->getCanonicalDecl();
3693   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3694   if (I == FunctionGlobalizedDecls.end())
3695     return Address::invalid();
3696   auto VDI = I->getSecond().LocalVarData.find(VD);
3697   if (VDI != I->getSecond().LocalVarData.end())
3698     return VDI->second.PrivateAddr;
3699   if (VD->hasAttrs()) {
3700     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3701          E(VD->attr_end());
3702          IT != E; ++IT) {
3703       auto VDI = I->getSecond().LocalVarData.find(
3704           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3705               ->getCanonicalDecl());
3706       if (VDI != I->getSecond().LocalVarData.end())
3707         return VDI->second.PrivateAddr;
3708     }
3709   }
3710 
3711   return Address::invalid();
3712 }
3713 
3714 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3715   FunctionGlobalizedDecls.erase(CGF.CurFn);
3716   CGOpenMPRuntime::functionFinished(CGF);
3717 }
3718 
3719 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3720     CodeGenFunction &CGF, const OMPLoopDirective &S,
3721     OpenMPDistScheduleClauseKind &ScheduleKind,
3722     llvm::Value *&Chunk) const {
3723   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3724   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3725     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3726     Chunk = CGF.EmitScalarConversion(
3727         RT.getGPUNumThreads(CGF),
3728         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3729         S.getIterationVariable()->getType(), S.getBeginLoc());
3730     return;
3731   }
3732   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3733       CGF, S, ScheduleKind, Chunk);
3734 }
3735 
3736 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3737     CodeGenFunction &CGF, const OMPLoopDirective &S,
3738     OpenMPScheduleClauseKind &ScheduleKind,
3739     const Expr *&ChunkExpr) const {
3740   ScheduleKind = OMPC_SCHEDULE_static;
3741   // Chunk size is 1 in this case.
3742   llvm::APInt ChunkSize(32, 1);
3743   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3744       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3745       SourceLocation());
3746 }
3747 
3748 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3749     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3750   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3751          " Expected target-based directive.");
3752   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3753   for (const CapturedStmt::Capture &C : CS->captures()) {
3754     // Capture variables captured by reference in lambdas for target-based
3755     // directives.
3756     if (!C.capturesVariable())
3757       continue;
3758     const VarDecl *VD = C.getCapturedVar();
3759     const auto *RD = VD->getType()
3760                          .getCanonicalType()
3761                          .getNonReferenceType()
3762                          ->getAsCXXRecordDecl();
3763     if (!RD || !RD->isLambda())
3764       continue;
3765     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3766     LValue VDLVal;
3767     if (VD->getType().getCanonicalType()->isReferenceType())
3768       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3769     else
3770       VDLVal = CGF.MakeAddrLValue(
3771           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3772     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3773     FieldDecl *ThisCapture = nullptr;
3774     RD->getCaptureFields(Captures, ThisCapture);
3775     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3776       LValue ThisLVal =
3777           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3778       llvm::Value *CXXThis = CGF.LoadCXXThis();
3779       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3780     }
3781     for (const LambdaCapture &LC : RD->captures()) {
3782       if (LC.getCaptureKind() != LCK_ByRef)
3783         continue;
3784       const VarDecl *VD = LC.getCapturedVar();
3785       if (!CS->capturesVariable(VD))
3786         continue;
3787       auto It = Captures.find(VD);
3788       assert(It != Captures.end() && "Found lambda capture without field.");
3789       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3790       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3791       if (VD->getType().getCanonicalType()->isReferenceType())
3792         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3793                                                VD->getType().getCanonicalType())
3794                      .getAddress(CGF);
3795       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3796     }
3797   }
3798 }
3799 
3800 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3801                                                             LangAS &AS) {
3802   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3803     return false;
3804   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3805   switch(A->getAllocatorType()) {
3806   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3807   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3808   // Not supported, fallback to the default mem space.
3809   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3810   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3811   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3812   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3813   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3814     AS = LangAS::Default;
3815     return true;
3816   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3817     AS = LangAS::cuda_constant;
3818     return true;
3819   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3820     AS = LangAS::cuda_shared;
3821     return true;
3822   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3823     llvm_unreachable("Expected predefined allocator for the variables with the "
3824                      "static storage.");
3825   }
3826   return false;
3827 }
3828 
3829 // Get current CudaArch and ignore any unknown values
3830 static CudaArch getCudaArch(CodeGenModule &CGM) {
3831   if (!CGM.getTarget().hasFeature("ptx"))
3832     return CudaArch::UNKNOWN;
3833   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3834     if (Feature.getValue()) {
3835       CudaArch Arch = StringToCudaArch(Feature.getKey());
3836       if (Arch != CudaArch::UNKNOWN)
3837         return Arch;
3838     }
3839   }
3840   return CudaArch::UNKNOWN;
3841 }
3842 
3843 /// Check to see if target architecture supports unified addressing which is
3844 /// a restriction for OpenMP requires clause "unified_shared_memory".
3845 void CGOpenMPRuntimeGPU::processRequiresDirective(
3846     const OMPRequiresDecl *D) {
3847   for (const OMPClause *Clause : D->clauselists()) {
3848     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3849       CudaArch Arch = getCudaArch(CGM);
3850       switch (Arch) {
3851       case CudaArch::SM_20:
3852       case CudaArch::SM_21:
3853       case CudaArch::SM_30:
3854       case CudaArch::SM_32:
3855       case CudaArch::SM_35:
3856       case CudaArch::SM_37:
3857       case CudaArch::SM_50:
3858       case CudaArch::SM_52:
3859       case CudaArch::SM_53: {
3860         SmallString<256> Buffer;
3861         llvm::raw_svector_ostream Out(Buffer);
3862         Out << "Target architecture " << CudaArchToString(Arch)
3863             << " does not support unified addressing";
3864         CGM.Error(Clause->getBeginLoc(), Out.str());
3865         return;
3866       }
3867       case CudaArch::SM_60:
3868       case CudaArch::SM_61:
3869       case CudaArch::SM_62:
3870       case CudaArch::SM_70:
3871       case CudaArch::SM_72:
3872       case CudaArch::SM_75:
3873       case CudaArch::SM_80:
3874       case CudaArch::SM_86:
3875       case CudaArch::GFX600:
3876       case CudaArch::GFX601:
3877       case CudaArch::GFX602:
3878       case CudaArch::GFX700:
3879       case CudaArch::GFX701:
3880       case CudaArch::GFX702:
3881       case CudaArch::GFX703:
3882       case CudaArch::GFX704:
3883       case CudaArch::GFX705:
3884       case CudaArch::GFX801:
3885       case CudaArch::GFX802:
3886       case CudaArch::GFX803:
3887       case CudaArch::GFX805:
3888       case CudaArch::GFX810:
3889       case CudaArch::GFX900:
3890       case CudaArch::GFX902:
3891       case CudaArch::GFX904:
3892       case CudaArch::GFX906:
3893       case CudaArch::GFX908:
3894       case CudaArch::GFX909:
3895       case CudaArch::GFX90a:
3896       case CudaArch::GFX90c:
3897       case CudaArch::GFX1010:
3898       case CudaArch::GFX1011:
3899       case CudaArch::GFX1012:
3900       case CudaArch::GFX1013:
3901       case CudaArch::GFX1030:
3902       case CudaArch::GFX1031:
3903       case CudaArch::GFX1032:
3904       case CudaArch::GFX1033:
3905       case CudaArch::GFX1034:
3906       case CudaArch::GFX1035:
3907       case CudaArch::Generic:
3908       case CudaArch::UNUSED:
3909       case CudaArch::UNKNOWN:
3910         break;
3911       case CudaArch::LAST:
3912         llvm_unreachable("Unexpected Cuda arch.");
3913       }
3914     }
3915   }
3916   CGOpenMPRuntime::processRequiresDirective(D);
3917 }
3918 
3919 void CGOpenMPRuntimeGPU::clear() {
3920 
3921   if (!TeamsReductions.empty()) {
3922     ASTContext &C = CGM.getContext();
3923     RecordDecl *StaticRD = C.buildImplicitRecord(
3924         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3925     StaticRD->startDefinition();
3926     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3927       QualType RecTy = C.getRecordType(TeamReductionRec);
3928       auto *Field = FieldDecl::Create(
3929           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3930           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3931           /*BW=*/nullptr, /*Mutable=*/false,
3932           /*InitStyle=*/ICIS_NoInit);
3933       Field->setAccess(AS_public);
3934       StaticRD->addDecl(Field);
3935     }
3936     StaticRD->completeDefinition();
3937     QualType StaticTy = C.getRecordType(StaticRD);
3938     llvm::Type *LLVMReductionsBufferTy =
3939         CGM.getTypes().ConvertTypeForMem(StaticTy);
3940     // FIXME: nvlink does not handle weak linkage correctly (object with the
3941     // different size are reported as erroneous).
3942     // Restore CommonLinkage as soon as nvlink is fixed.
3943     auto *GV = new llvm::GlobalVariable(
3944         CGM.getModule(), LLVMReductionsBufferTy,
3945         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3946         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3947         "_openmp_teams_reductions_buffer_$_");
3948     KernelTeamsReductionPtr->setInitializer(
3949         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3950                                                              CGM.VoidPtrTy));
3951   }
3952   CGOpenMPRuntime::clear();
3953 }
3954 
3955 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3956   CGBuilderTy &Bld = CGF.Builder;
3957   llvm::Module *M = &CGF.CGM.getModule();
3958   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3959   llvm::Function *F = M->getFunction(LocSize);
3960   if (!F) {
3961     F = llvm::Function::Create(
3962         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3963         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3964   }
3965   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3966 }
3967 
3968 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3969   ArrayRef<llvm::Value *> Args{};
3970   return CGF.EmitRuntimeCall(
3971       OMPBuilder.getOrCreateRuntimeFunction(
3972           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3973       Args);
3974 }
3975 
3976 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3977   ArrayRef<llvm::Value *> Args{};
3978   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3979                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3980                              Args);
3981 }
3982