1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 #include "llvm/Support/MathExtras.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 using namespace llvm::omp; 30 31 namespace { 32 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 33 class NVPTXActionTy final : public PrePostActionTy { 34 llvm::FunctionCallee EnterCallee = nullptr; 35 ArrayRef<llvm::Value *> EnterArgs; 36 llvm::FunctionCallee ExitCallee = nullptr; 37 ArrayRef<llvm::Value *> ExitArgs; 38 bool Conditional = false; 39 llvm::BasicBlock *ContBlock = nullptr; 40 41 public: 42 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 43 ArrayRef<llvm::Value *> EnterArgs, 44 llvm::FunctionCallee ExitCallee, 45 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 46 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 47 ExitArgs(ExitArgs), Conditional(Conditional) {} 48 void Enter(CodeGenFunction &CGF) override { 49 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 50 if (Conditional) { 51 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 52 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 53 ContBlock = CGF.createBasicBlock("omp_if.end"); 54 // Generate the branch (If-stmt) 55 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 56 CGF.EmitBlock(ThenBlock); 57 } 58 } 59 void Done(CodeGenFunction &CGF) { 60 // Emit the rest of blocks/branches 61 CGF.EmitBranch(ContBlock); 62 CGF.EmitBlock(ContBlock, true); 63 } 64 void Exit(CodeGenFunction &CGF) override { 65 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 66 } 67 }; 68 69 /// A class to track the execution mode when codegening directives within 70 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 71 /// to the target region and used by containing directives such as 'parallel' 72 /// to emit optimized code. 73 class ExecutionRuntimeModesRAII { 74 private: 75 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 76 CGOpenMPRuntimeGPU::EM_Unknown; 77 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 78 bool SavedRuntimeMode = false; 79 bool *RuntimeMode = nullptr; 80 81 public: 82 /// Constructor for Non-SPMD mode. 83 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 84 : ExecMode(ExecMode) { 85 SavedExecMode = ExecMode; 86 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 87 } 88 /// Constructor for SPMD mode. 89 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 90 bool &RuntimeMode, bool FullRuntimeMode) 91 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 92 SavedExecMode = ExecMode; 93 SavedRuntimeMode = RuntimeMode; 94 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 95 RuntimeMode = FullRuntimeMode; 96 } 97 ~ExecutionRuntimeModesRAII() { 98 ExecMode = SavedExecMode; 99 if (RuntimeMode) 100 *RuntimeMode = SavedRuntimeMode; 101 } 102 }; 103 104 /// GPU Configuration: This information can be derived from cuda registers, 105 /// however, providing compile time constants helps generate more efficient 106 /// code. For all practical purposes this is fine because the configuration 107 /// is the same for all known NVPTX architectures. 108 enum MachineConfiguration : unsigned { 109 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 110 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDBits = 550 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 551 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 552 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 553 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 554 "nvptx_lane_id"); 555 } 556 557 CGOpenMPRuntimeGPU::ExecutionMode 558 CGOpenMPRuntimeGPU::getExecutionMode() const { 559 return CurrentExecutionMode; 560 } 561 562 static CGOpenMPRuntimeGPU::DataSharingMode 563 getDataSharingMode(CodeGenModule &CGM) { 564 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 565 : CGOpenMPRuntimeGPU::Generic; 566 } 567 568 /// Check for inner (nested) SPMD construct, if any 569 static bool hasNestedSPMDDirective(ASTContext &Ctx, 570 const OMPExecutableDirective &D) { 571 const auto *CS = D.getInnermostCapturedStmt(); 572 const auto *Body = 573 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 574 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 575 576 if (const auto *NestedDir = 577 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 578 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 579 switch (D.getDirectiveKind()) { 580 case OMPD_target: 581 if (isOpenMPParallelDirective(DKind)) 582 return true; 583 if (DKind == OMPD_teams) { 584 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 585 /*IgnoreCaptured=*/true); 586 if (!Body) 587 return false; 588 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 589 if (const auto *NND = 590 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 591 DKind = NND->getDirectiveKind(); 592 if (isOpenMPParallelDirective(DKind)) 593 return true; 594 } 595 } 596 return false; 597 case OMPD_target_teams: 598 return isOpenMPParallelDirective(DKind); 599 case OMPD_target_simd: 600 case OMPD_target_parallel: 601 case OMPD_target_parallel_for: 602 case OMPD_target_parallel_for_simd: 603 case OMPD_target_teams_distribute: 604 case OMPD_target_teams_distribute_simd: 605 case OMPD_target_teams_distribute_parallel_for: 606 case OMPD_target_teams_distribute_parallel_for_simd: 607 case OMPD_parallel: 608 case OMPD_for: 609 case OMPD_parallel_for: 610 case OMPD_parallel_master: 611 case OMPD_parallel_sections: 612 case OMPD_for_simd: 613 case OMPD_parallel_for_simd: 614 case OMPD_cancel: 615 case OMPD_cancellation_point: 616 case OMPD_ordered: 617 case OMPD_threadprivate: 618 case OMPD_allocate: 619 case OMPD_task: 620 case OMPD_simd: 621 case OMPD_sections: 622 case OMPD_section: 623 case OMPD_single: 624 case OMPD_master: 625 case OMPD_critical: 626 case OMPD_taskyield: 627 case OMPD_barrier: 628 case OMPD_taskwait: 629 case OMPD_taskgroup: 630 case OMPD_atomic: 631 case OMPD_flush: 632 case OMPD_depobj: 633 case OMPD_scan: 634 case OMPD_teams: 635 case OMPD_target_data: 636 case OMPD_target_exit_data: 637 case OMPD_target_enter_data: 638 case OMPD_distribute: 639 case OMPD_distribute_simd: 640 case OMPD_distribute_parallel_for: 641 case OMPD_distribute_parallel_for_simd: 642 case OMPD_teams_distribute: 643 case OMPD_teams_distribute_simd: 644 case OMPD_teams_distribute_parallel_for: 645 case OMPD_teams_distribute_parallel_for_simd: 646 case OMPD_target_update: 647 case OMPD_declare_simd: 648 case OMPD_declare_variant: 649 case OMPD_begin_declare_variant: 650 case OMPD_end_declare_variant: 651 case OMPD_declare_target: 652 case OMPD_end_declare_target: 653 case OMPD_declare_reduction: 654 case OMPD_declare_mapper: 655 case OMPD_taskloop: 656 case OMPD_taskloop_simd: 657 case OMPD_master_taskloop: 658 case OMPD_master_taskloop_simd: 659 case OMPD_parallel_master_taskloop: 660 case OMPD_parallel_master_taskloop_simd: 661 case OMPD_requires: 662 case OMPD_unknown: 663 default: 664 llvm_unreachable("Unexpected directive."); 665 } 666 } 667 668 return false; 669 } 670 671 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 672 const OMPExecutableDirective &D) { 673 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 674 switch (DirectiveKind) { 675 case OMPD_target: 676 case OMPD_target_teams: 677 return hasNestedSPMDDirective(Ctx, D); 678 case OMPD_target_parallel: 679 case OMPD_target_parallel_for: 680 case OMPD_target_parallel_for_simd: 681 case OMPD_target_teams_distribute_parallel_for: 682 case OMPD_target_teams_distribute_parallel_for_simd: 683 case OMPD_target_simd: 684 case OMPD_target_teams_distribute_simd: 685 return true; 686 case OMPD_target_teams_distribute: 687 return false; 688 case OMPD_parallel: 689 case OMPD_for: 690 case OMPD_parallel_for: 691 case OMPD_parallel_master: 692 case OMPD_parallel_sections: 693 case OMPD_for_simd: 694 case OMPD_parallel_for_simd: 695 case OMPD_cancel: 696 case OMPD_cancellation_point: 697 case OMPD_ordered: 698 case OMPD_threadprivate: 699 case OMPD_allocate: 700 case OMPD_task: 701 case OMPD_simd: 702 case OMPD_sections: 703 case OMPD_section: 704 case OMPD_single: 705 case OMPD_master: 706 case OMPD_critical: 707 case OMPD_taskyield: 708 case OMPD_barrier: 709 case OMPD_taskwait: 710 case OMPD_taskgroup: 711 case OMPD_atomic: 712 case OMPD_flush: 713 case OMPD_depobj: 714 case OMPD_scan: 715 case OMPD_teams: 716 case OMPD_target_data: 717 case OMPD_target_exit_data: 718 case OMPD_target_enter_data: 719 case OMPD_distribute: 720 case OMPD_distribute_simd: 721 case OMPD_distribute_parallel_for: 722 case OMPD_distribute_parallel_for_simd: 723 case OMPD_teams_distribute: 724 case OMPD_teams_distribute_simd: 725 case OMPD_teams_distribute_parallel_for: 726 case OMPD_teams_distribute_parallel_for_simd: 727 case OMPD_target_update: 728 case OMPD_declare_simd: 729 case OMPD_declare_variant: 730 case OMPD_begin_declare_variant: 731 case OMPD_end_declare_variant: 732 case OMPD_declare_target: 733 case OMPD_end_declare_target: 734 case OMPD_declare_reduction: 735 case OMPD_declare_mapper: 736 case OMPD_taskloop: 737 case OMPD_taskloop_simd: 738 case OMPD_master_taskloop: 739 case OMPD_master_taskloop_simd: 740 case OMPD_parallel_master_taskloop: 741 case OMPD_parallel_master_taskloop_simd: 742 case OMPD_requires: 743 case OMPD_unknown: 744 default: 745 break; 746 } 747 llvm_unreachable( 748 "Unknown programming model for OpenMP directive on NVPTX target."); 749 } 750 751 /// Check if the directive is loops based and has schedule clause at all or has 752 /// static scheduling. 753 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 754 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 755 isOpenMPLoopDirective(D.getDirectiveKind()) && 756 "Expected loop-based directive."); 757 return !D.hasClausesOfKind<OMPOrderedClause>() && 758 (!D.hasClausesOfKind<OMPScheduleClause>() || 759 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 760 [](const OMPScheduleClause *C) { 761 return C->getScheduleKind() == OMPC_SCHEDULE_static; 762 })); 763 } 764 765 /// Check for inner (nested) lightweight runtime construct, if any 766 static bool hasNestedLightweightDirective(ASTContext &Ctx, 767 const OMPExecutableDirective &D) { 768 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 769 const auto *CS = D.getInnermostCapturedStmt(); 770 const auto *Body = 771 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 772 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 773 774 if (const auto *NestedDir = 775 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 776 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 777 switch (D.getDirectiveKind()) { 778 case OMPD_target: 779 if (isOpenMPParallelDirective(DKind) && 780 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 781 hasStaticScheduling(*NestedDir)) 782 return true; 783 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 784 return true; 785 if (DKind == OMPD_parallel) { 786 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 787 /*IgnoreCaptured=*/true); 788 if (!Body) 789 return false; 790 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 791 if (const auto *NND = 792 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 793 DKind = NND->getDirectiveKind(); 794 if (isOpenMPWorksharingDirective(DKind) && 795 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 796 return true; 797 } 798 } else if (DKind == OMPD_teams) { 799 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 800 /*IgnoreCaptured=*/true); 801 if (!Body) 802 return false; 803 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 804 if (const auto *NND = 805 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 806 DKind = NND->getDirectiveKind(); 807 if (isOpenMPParallelDirective(DKind) && 808 isOpenMPWorksharingDirective(DKind) && 809 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 810 return true; 811 if (DKind == OMPD_parallel) { 812 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 813 /*IgnoreCaptured=*/true); 814 if (!Body) 815 return false; 816 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 817 if (const auto *NND = 818 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 819 DKind = NND->getDirectiveKind(); 820 if (isOpenMPWorksharingDirective(DKind) && 821 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 822 return true; 823 } 824 } 825 } 826 } 827 return false; 828 case OMPD_target_teams: 829 if (isOpenMPParallelDirective(DKind) && 830 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 831 hasStaticScheduling(*NestedDir)) 832 return true; 833 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 834 return true; 835 if (DKind == OMPD_parallel) { 836 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 837 /*IgnoreCaptured=*/true); 838 if (!Body) 839 return false; 840 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 841 if (const auto *NND = 842 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 843 DKind = NND->getDirectiveKind(); 844 if (isOpenMPWorksharingDirective(DKind) && 845 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 846 return true; 847 } 848 } 849 return false; 850 case OMPD_target_parallel: 851 if (DKind == OMPD_simd) 852 return true; 853 return isOpenMPWorksharingDirective(DKind) && 854 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 855 case OMPD_target_teams_distribute: 856 case OMPD_target_simd: 857 case OMPD_target_parallel_for: 858 case OMPD_target_parallel_for_simd: 859 case OMPD_target_teams_distribute_simd: 860 case OMPD_target_teams_distribute_parallel_for: 861 case OMPD_target_teams_distribute_parallel_for_simd: 862 case OMPD_parallel: 863 case OMPD_for: 864 case OMPD_parallel_for: 865 case OMPD_parallel_master: 866 case OMPD_parallel_sections: 867 case OMPD_for_simd: 868 case OMPD_parallel_for_simd: 869 case OMPD_cancel: 870 case OMPD_cancellation_point: 871 case OMPD_ordered: 872 case OMPD_threadprivate: 873 case OMPD_allocate: 874 case OMPD_task: 875 case OMPD_simd: 876 case OMPD_sections: 877 case OMPD_section: 878 case OMPD_single: 879 case OMPD_master: 880 case OMPD_critical: 881 case OMPD_taskyield: 882 case OMPD_barrier: 883 case OMPD_taskwait: 884 case OMPD_taskgroup: 885 case OMPD_atomic: 886 case OMPD_flush: 887 case OMPD_depobj: 888 case OMPD_scan: 889 case OMPD_teams: 890 case OMPD_target_data: 891 case OMPD_target_exit_data: 892 case OMPD_target_enter_data: 893 case OMPD_distribute: 894 case OMPD_distribute_simd: 895 case OMPD_distribute_parallel_for: 896 case OMPD_distribute_parallel_for_simd: 897 case OMPD_teams_distribute: 898 case OMPD_teams_distribute_simd: 899 case OMPD_teams_distribute_parallel_for: 900 case OMPD_teams_distribute_parallel_for_simd: 901 case OMPD_target_update: 902 case OMPD_declare_simd: 903 case OMPD_declare_variant: 904 case OMPD_begin_declare_variant: 905 case OMPD_end_declare_variant: 906 case OMPD_declare_target: 907 case OMPD_end_declare_target: 908 case OMPD_declare_reduction: 909 case OMPD_declare_mapper: 910 case OMPD_taskloop: 911 case OMPD_taskloop_simd: 912 case OMPD_master_taskloop: 913 case OMPD_master_taskloop_simd: 914 case OMPD_parallel_master_taskloop: 915 case OMPD_parallel_master_taskloop_simd: 916 case OMPD_requires: 917 case OMPD_unknown: 918 default: 919 llvm_unreachable("Unexpected directive."); 920 } 921 } 922 923 return false; 924 } 925 926 /// Checks if the construct supports lightweight runtime. It must be SPMD 927 /// construct + inner loop-based construct with static scheduling. 928 static bool supportsLightweightRuntime(ASTContext &Ctx, 929 const OMPExecutableDirective &D) { 930 if (!supportsSPMDExecutionMode(Ctx, D)) 931 return false; 932 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 933 switch (DirectiveKind) { 934 case OMPD_target: 935 case OMPD_target_teams: 936 case OMPD_target_parallel: 937 return hasNestedLightweightDirective(Ctx, D); 938 case OMPD_target_parallel_for: 939 case OMPD_target_parallel_for_simd: 940 case OMPD_target_teams_distribute_parallel_for: 941 case OMPD_target_teams_distribute_parallel_for_simd: 942 // (Last|First)-privates must be shared in parallel region. 943 return hasStaticScheduling(D); 944 case OMPD_target_simd: 945 case OMPD_target_teams_distribute_simd: 946 return true; 947 case OMPD_target_teams_distribute: 948 return false; 949 case OMPD_parallel: 950 case OMPD_for: 951 case OMPD_parallel_for: 952 case OMPD_parallel_master: 953 case OMPD_parallel_sections: 954 case OMPD_for_simd: 955 case OMPD_parallel_for_simd: 956 case OMPD_cancel: 957 case OMPD_cancellation_point: 958 case OMPD_ordered: 959 case OMPD_threadprivate: 960 case OMPD_allocate: 961 case OMPD_task: 962 case OMPD_simd: 963 case OMPD_sections: 964 case OMPD_section: 965 case OMPD_single: 966 case OMPD_master: 967 case OMPD_critical: 968 case OMPD_taskyield: 969 case OMPD_barrier: 970 case OMPD_taskwait: 971 case OMPD_taskgroup: 972 case OMPD_atomic: 973 case OMPD_flush: 974 case OMPD_depobj: 975 case OMPD_scan: 976 case OMPD_teams: 977 case OMPD_target_data: 978 case OMPD_target_exit_data: 979 case OMPD_target_enter_data: 980 case OMPD_distribute: 981 case OMPD_distribute_simd: 982 case OMPD_distribute_parallel_for: 983 case OMPD_distribute_parallel_for_simd: 984 case OMPD_teams_distribute: 985 case OMPD_teams_distribute_simd: 986 case OMPD_teams_distribute_parallel_for: 987 case OMPD_teams_distribute_parallel_for_simd: 988 case OMPD_target_update: 989 case OMPD_declare_simd: 990 case OMPD_declare_variant: 991 case OMPD_begin_declare_variant: 992 case OMPD_end_declare_variant: 993 case OMPD_declare_target: 994 case OMPD_end_declare_target: 995 case OMPD_declare_reduction: 996 case OMPD_declare_mapper: 997 case OMPD_taskloop: 998 case OMPD_taskloop_simd: 999 case OMPD_master_taskloop: 1000 case OMPD_master_taskloop_simd: 1001 case OMPD_parallel_master_taskloop: 1002 case OMPD_parallel_master_taskloop_simd: 1003 case OMPD_requires: 1004 case OMPD_unknown: 1005 default: 1006 break; 1007 } 1008 llvm_unreachable( 1009 "Unknown programming model for OpenMP directive on NVPTX target."); 1010 } 1011 1012 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1013 StringRef ParentName, 1014 llvm::Function *&OutlinedFn, 1015 llvm::Constant *&OutlinedFnID, 1016 bool IsOffloadEntry, 1017 const RegionCodeGenTy &CodeGen) { 1018 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1019 EntryFunctionState EST; 1020 WrapperFunctionsMap.clear(); 1021 1022 // Emit target region as a standalone region. 1023 class NVPTXPrePostActionTy : public PrePostActionTy { 1024 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1025 1026 public: 1027 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1028 : EST(EST) {} 1029 void Enter(CodeGenFunction &CGF) override { 1030 auto &RT = 1031 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1032 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1033 // Skip target region initialization. 1034 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1035 } 1036 void Exit(CodeGenFunction &CGF) override { 1037 auto &RT = 1038 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1039 RT.clearLocThreadIdInsertPt(CGF); 1040 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1041 } 1042 } Action(EST); 1043 CodeGen.setAction(Action); 1044 IsInTTDRegion = true; 1045 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1046 IsOffloadEntry, CodeGen); 1047 IsInTTDRegion = false; 1048 } 1049 1050 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1051 EntryFunctionState &EST, bool IsSPMD) { 1052 CGBuilderTy &Bld = CGF.Builder; 1053 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1054 IsInTargetMasterThreadRegion = IsSPMD; 1055 if (!IsSPMD) 1056 emitGenericVarsProlog(CGF, EST.Loc); 1057 } 1058 1059 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1060 EntryFunctionState &EST, 1061 bool IsSPMD) { 1062 if (!IsSPMD) 1063 emitGenericVarsEpilog(CGF); 1064 1065 CGBuilderTy &Bld = CGF.Builder; 1066 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1067 } 1068 1069 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1070 StringRef ParentName, 1071 llvm::Function *&OutlinedFn, 1072 llvm::Constant *&OutlinedFnID, 1073 bool IsOffloadEntry, 1074 const RegionCodeGenTy &CodeGen) { 1075 ExecutionRuntimeModesRAII ModeRAII( 1076 CurrentExecutionMode, RequiresFullRuntime, 1077 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1078 !supportsLightweightRuntime(CGM.getContext(), D)); 1079 EntryFunctionState EST; 1080 1081 // Emit target region as a standalone region. 1082 class NVPTXPrePostActionTy : public PrePostActionTy { 1083 CGOpenMPRuntimeGPU &RT; 1084 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1085 1086 public: 1087 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1088 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1089 : RT(RT), EST(EST) {} 1090 void Enter(CodeGenFunction &CGF) override { 1091 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1092 // Skip target region initialization. 1093 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1094 } 1095 void Exit(CodeGenFunction &CGF) override { 1096 RT.clearLocThreadIdInsertPt(CGF); 1097 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1098 } 1099 } Action(*this, EST); 1100 CodeGen.setAction(Action); 1101 IsInTTDRegion = true; 1102 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1103 IsOffloadEntry, CodeGen); 1104 IsInTTDRegion = false; 1105 } 1106 1107 // Create a unique global variable to indicate the execution mode of this target 1108 // region. The execution mode is either 'generic', or 'spmd' depending on the 1109 // target directive. This variable is picked up by the offload library to setup 1110 // the device appropriately before kernel launch. If the execution mode is 1111 // 'generic', the runtime reserves one warp for the master, otherwise, all 1112 // warps participate in parallel work. 1113 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1114 bool Mode) { 1115 auto *GVMode = 1116 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1117 llvm::GlobalValue::WeakAnyLinkage, 1118 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1119 Twine(Name, "_exec_mode")); 1120 CGM.addCompilerUsedGlobal(GVMode); 1121 } 1122 1123 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1124 llvm::Constant *Addr, 1125 uint64_t Size, int32_t, 1126 llvm::GlobalValue::LinkageTypes) { 1127 // TODO: Add support for global variables on the device after declare target 1128 // support. 1129 if (!isa<llvm::Function>(Addr)) 1130 return; 1131 llvm::Module &M = CGM.getModule(); 1132 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1133 1134 // Get "nvvm.annotations" metadata node 1135 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1136 1137 llvm::Metadata *MDVals[] = { 1138 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1139 llvm::ConstantAsMetadata::get( 1140 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1141 // Append metadata to nvvm.annotations 1142 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1143 } 1144 1145 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1146 const OMPExecutableDirective &D, StringRef ParentName, 1147 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1148 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1149 if (!IsOffloadEntry) // Nothing to do. 1150 return; 1151 1152 assert(!ParentName.empty() && "Invalid target region parent name!"); 1153 1154 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1155 if (Mode) 1156 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1157 CodeGen); 1158 else 1159 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1160 CodeGen); 1161 1162 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1163 } 1164 1165 namespace { 1166 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1167 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1168 enum ModeFlagsTy : unsigned { 1169 /// Bit set to 1 when in SPMD mode. 1170 KMP_IDENT_SPMD_MODE = 0x01, 1171 /// Bit set to 1 when a simplified runtime is used. 1172 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1173 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1174 }; 1175 1176 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1177 static const ModeFlagsTy UndefinedMode = 1178 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1179 } // anonymous namespace 1180 1181 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1182 switch (getExecutionMode()) { 1183 case EM_SPMD: 1184 if (requiresFullRuntime()) 1185 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1186 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1187 case EM_NonSPMD: 1188 assert(requiresFullRuntime() && "Expected full runtime."); 1189 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1190 case EM_Unknown: 1191 return UndefinedMode; 1192 } 1193 llvm_unreachable("Unknown flags are requested."); 1194 } 1195 1196 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1197 : CGOpenMPRuntime(CGM, "_", "$") { 1198 if (!CGM.getLangOpts().OpenMPIsDevice) 1199 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1200 } 1201 1202 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1203 ProcBindKind ProcBind, 1204 SourceLocation Loc) { 1205 // Do nothing in case of SPMD mode and L0 parallel. 1206 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1207 return; 1208 1209 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1210 } 1211 1212 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1213 llvm::Value *NumThreads, 1214 SourceLocation Loc) { 1215 // Do nothing in case of SPMD mode and L0 parallel. 1216 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1217 return; 1218 1219 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1220 } 1221 1222 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1223 const Expr *NumTeams, 1224 const Expr *ThreadLimit, 1225 SourceLocation Loc) {} 1226 1227 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1228 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1229 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1230 // Emit target region as a standalone region. 1231 class NVPTXPrePostActionTy : public PrePostActionTy { 1232 bool &IsInParallelRegion; 1233 bool PrevIsInParallelRegion; 1234 1235 public: 1236 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1237 : IsInParallelRegion(IsInParallelRegion) {} 1238 void Enter(CodeGenFunction &CGF) override { 1239 PrevIsInParallelRegion = IsInParallelRegion; 1240 IsInParallelRegion = true; 1241 } 1242 void Exit(CodeGenFunction &CGF) override { 1243 IsInParallelRegion = PrevIsInParallelRegion; 1244 } 1245 } Action(IsInParallelRegion); 1246 CodeGen.setAction(Action); 1247 bool PrevIsInTTDRegion = IsInTTDRegion; 1248 IsInTTDRegion = false; 1249 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1250 IsInTargetMasterThreadRegion = false; 1251 auto *OutlinedFun = 1252 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1253 D, ThreadIDVar, InnermostKind, CodeGen)); 1254 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1255 IsInTTDRegion = PrevIsInTTDRegion; 1256 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1257 !IsInParallelRegion) { 1258 llvm::Function *WrapperFun = 1259 createParallelDataSharingWrapper(OutlinedFun, D); 1260 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1261 } 1262 1263 return OutlinedFun; 1264 } 1265 1266 /// Get list of lastprivate variables from the teams distribute ... or 1267 /// teams {distribute ...} directives. 1268 static void 1269 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1270 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1271 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1272 "expected teams directive."); 1273 const OMPExecutableDirective *Dir = &D; 1274 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1275 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1276 Ctx, 1277 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1278 /*IgnoreCaptured=*/true))) { 1279 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1280 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1281 Dir = nullptr; 1282 } 1283 } 1284 if (!Dir) 1285 return; 1286 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1287 for (const Expr *E : C->getVarRefs()) 1288 Vars.push_back(getPrivateItem(E)); 1289 } 1290 } 1291 1292 /// Get list of reduction variables from the teams ... directives. 1293 static void 1294 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1295 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1296 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1297 "expected teams directive."); 1298 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1299 for (const Expr *E : C->privates()) 1300 Vars.push_back(getPrivateItem(E)); 1301 } 1302 } 1303 1304 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1305 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1306 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1307 SourceLocation Loc = D.getBeginLoc(); 1308 1309 const RecordDecl *GlobalizedRD = nullptr; 1310 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1311 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1312 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1313 // Globalize team reductions variable unconditionally in all modes. 1314 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1315 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1316 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1317 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1318 if (!LastPrivatesReductions.empty()) { 1319 GlobalizedRD = ::buildRecordForGlobalizedVars( 1320 CGM.getContext(), llvm::None, LastPrivatesReductions, 1321 MappedDeclsFields, WarpSize); 1322 } 1323 } else if (!LastPrivatesReductions.empty()) { 1324 assert(!TeamAndReductions.first && 1325 "Previous team declaration is not expected."); 1326 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1327 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1328 } 1329 1330 // Emit target region as a standalone region. 1331 class NVPTXPrePostActionTy : public PrePostActionTy { 1332 SourceLocation &Loc; 1333 const RecordDecl *GlobalizedRD; 1334 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1335 &MappedDeclsFields; 1336 1337 public: 1338 NVPTXPrePostActionTy( 1339 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1340 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1341 &MappedDeclsFields) 1342 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1343 MappedDeclsFields(MappedDeclsFields) {} 1344 void Enter(CodeGenFunction &CGF) override { 1345 auto &Rt = 1346 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1347 if (GlobalizedRD) { 1348 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1349 I->getSecond().MappedParams = 1350 std::make_unique<CodeGenFunction::OMPMapVars>(); 1351 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1352 for (const auto &Pair : MappedDeclsFields) { 1353 assert(Pair.getFirst()->isCanonicalDecl() && 1354 "Expected canonical declaration"); 1355 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1356 } 1357 } 1358 Rt.emitGenericVarsProlog(CGF, Loc); 1359 } 1360 void Exit(CodeGenFunction &CGF) override { 1361 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1362 .emitGenericVarsEpilog(CGF); 1363 } 1364 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1365 CodeGen.setAction(Action); 1366 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1367 D, ThreadIDVar, InnermostKind, CodeGen); 1368 1369 return OutlinedFun; 1370 } 1371 1372 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1373 SourceLocation Loc, 1374 bool WithSPMDCheck) { 1375 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1376 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1377 return; 1378 1379 CGBuilderTy &Bld = CGF.Builder; 1380 1381 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1382 if (I == FunctionGlobalizedDecls.end()) 1383 return; 1384 1385 for (auto &Rec : I->getSecond().LocalVarData) { 1386 const auto *VD = cast<VarDecl>(Rec.first); 1387 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1388 QualType VarTy = VD->getType(); 1389 1390 // Get the local allocation of a firstprivate variable before sharing 1391 llvm::Value *ParValue; 1392 if (EscapedParam) { 1393 LValue ParLVal = 1394 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1395 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1396 } 1397 1398 // Allocate space for the variable to be globalized 1399 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1400 llvm::Instruction *VoidPtr = 1401 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1402 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1403 AllocArgs, VD->getName()); 1404 1405 // Cast the void pointer and get the address of the globalized variable. 1406 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1407 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1408 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1409 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1410 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1411 Rec.second.GlobalizedVal = VoidPtr; 1412 1413 // Assign the local allocation to the newly globalized location. 1414 if (EscapedParam) { 1415 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1416 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1417 } 1418 if (auto *DI = CGF.getDebugInfo()) 1419 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1420 } 1421 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1422 // Use actual memory size of the VLA object including the padding 1423 // for alignment purposes. 1424 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1425 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1426 Size = Bld.CreateNUWAdd( 1427 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1428 llvm::Value *AlignVal = 1429 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1430 1431 Size = Bld.CreateUDiv(Size, AlignVal); 1432 Size = Bld.CreateNUWMul(Size, AlignVal); 1433 1434 // Allocate space for this VLA object to be globalized. 1435 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1436 llvm::Instruction *VoidPtr = 1437 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1438 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1439 AllocArgs, VD->getName()); 1440 1441 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1442 std::pair<llvm::Value *, llvm::Value *>( 1443 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1444 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1445 CGM.getContext().getDeclAlign(VD), 1446 AlignmentSource::Decl); 1447 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1448 Base.getAddress(CGF)); 1449 } 1450 I->getSecond().MappedParams->apply(CGF); 1451 } 1452 1453 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1454 bool WithSPMDCheck) { 1455 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1456 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1457 return; 1458 1459 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1460 if (I != FunctionGlobalizedDecls.end()) { 1461 // Deallocate the memory for each globalized VLA object 1462 for (auto AddrSizePair : 1463 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1464 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1465 CGM.getModule(), OMPRTL___kmpc_free_shared), 1466 {AddrSizePair.first, AddrSizePair.second}); 1467 } 1468 // Deallocate the memory for each globalized value 1469 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1470 const auto *VD = cast<VarDecl>(Rec.first); 1471 I->getSecond().MappedParams->restore(CGF); 1472 1473 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1474 CGF.getTypeSize(VD->getType())}; 1475 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1476 CGM.getModule(), OMPRTL___kmpc_free_shared), 1477 FreeArgs); 1478 } 1479 } 1480 } 1481 1482 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1483 const OMPExecutableDirective &D, 1484 SourceLocation Loc, 1485 llvm::Function *OutlinedFn, 1486 ArrayRef<llvm::Value *> CapturedVars) { 1487 if (!CGF.HaveInsertPoint()) 1488 return; 1489 1490 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1491 /*Name=*/".zero.addr"); 1492 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 1493 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1494 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1495 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1496 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1497 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1498 } 1499 1500 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1501 SourceLocation Loc, 1502 llvm::Function *OutlinedFn, 1503 ArrayRef<llvm::Value *> CapturedVars, 1504 const Expr *IfCond) { 1505 if (!CGF.HaveInsertPoint()) 1506 return; 1507 1508 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1509 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1510 CGBuilderTy &Bld = CGF.Builder; 1511 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1512 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1513 if (WFn) 1514 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1515 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1516 1517 // Create a private scope that will globalize the arguments 1518 // passed from the outside of the target region. 1519 // TODO: Is that needed? 1520 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1521 1522 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1523 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1524 "captured_vars_addrs"); 1525 // There's something to share. 1526 if (!CapturedVars.empty()) { 1527 // Prepare for parallel region. Indicate the outlined function. 1528 ASTContext &Ctx = CGF.getContext(); 1529 unsigned Idx = 0; 1530 for (llvm::Value *V : CapturedVars) { 1531 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1532 llvm::Value *PtrV; 1533 if (V->getType()->isIntegerTy()) 1534 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1535 else 1536 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1537 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1538 Ctx.getPointerType(Ctx.VoidPtrTy)); 1539 ++Idx; 1540 } 1541 } 1542 1543 llvm::Value *IfCondVal = nullptr; 1544 if (IfCond) 1545 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1546 /* isSigned */ false); 1547 else 1548 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1549 1550 assert(IfCondVal && "Expected a value"); 1551 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1552 llvm::Value *Args[] = { 1553 RTLoc, 1554 getThreadID(CGF, Loc), 1555 IfCondVal, 1556 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1557 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1558 FnPtr, 1559 ID, 1560 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1561 CGF.VoidPtrPtrTy), 1562 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1563 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1564 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1565 Args); 1566 }; 1567 1568 RegionCodeGenTy RCG(ParallelGen); 1569 RCG(CGF); 1570 } 1571 1572 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1573 // Always emit simple barriers! 1574 if (!CGF.HaveInsertPoint()) 1575 return; 1576 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1577 // This function does not use parameters, so we can emit just default values. 1578 llvm::Value *Args[] = { 1579 llvm::ConstantPointerNull::get( 1580 cast<llvm::PointerType>(getIdentTyPointerTy())), 1581 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1582 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1583 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1584 Args); 1585 } 1586 1587 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1588 SourceLocation Loc, 1589 OpenMPDirectiveKind Kind, bool, 1590 bool) { 1591 // Always emit simple barriers! 1592 if (!CGF.HaveInsertPoint()) 1593 return; 1594 // Build call __kmpc_cancel_barrier(loc, thread_id); 1595 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1596 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1597 getThreadID(CGF, Loc)}; 1598 1599 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1600 CGM.getModule(), OMPRTL___kmpc_barrier), 1601 Args); 1602 } 1603 1604 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1605 CodeGenFunction &CGF, StringRef CriticalName, 1606 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1607 const Expr *Hint) { 1608 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1609 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1610 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1611 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1612 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1613 1614 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1615 1616 // Get the mask of active threads in the warp. 1617 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1618 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1619 // Fetch team-local id of the thread. 1620 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1621 1622 // Get the width of the team. 1623 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1624 1625 // Initialize the counter variable for the loop. 1626 QualType Int32Ty = 1627 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1628 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1629 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1630 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1631 /*isInit=*/true); 1632 1633 // Block checks if loop counter exceeds upper bound. 1634 CGF.EmitBlock(LoopBB); 1635 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1636 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1637 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1638 1639 // Block tests which single thread should execute region, and which threads 1640 // should go straight to synchronisation point. 1641 CGF.EmitBlock(TestBB); 1642 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1643 llvm::Value *CmpThreadToCounter = 1644 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1645 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1646 1647 // Block emits the body of the critical region. 1648 CGF.EmitBlock(BodyBB); 1649 1650 // Output the critical statement. 1651 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1652 Hint); 1653 1654 // After the body surrounded by the critical region, the single executing 1655 // thread will jump to the synchronisation point. 1656 // Block waits for all threads in current team to finish then increments the 1657 // counter variable and returns to the loop. 1658 CGF.EmitBlock(SyncBB); 1659 // Reconverge active threads in the warp. 1660 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1661 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1662 Mask); 1663 1664 llvm::Value *IncCounterVal = 1665 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1666 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1667 CGF.EmitBranch(LoopBB); 1668 1669 // Block that is reached when all threads in the team complete the region. 1670 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1671 } 1672 1673 /// Cast value to the specified type. 1674 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1675 QualType ValTy, QualType CastTy, 1676 SourceLocation Loc) { 1677 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1678 "Cast type must sized."); 1679 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1680 "Val type must sized."); 1681 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1682 if (ValTy == CastTy) 1683 return Val; 1684 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1685 CGF.getContext().getTypeSizeInChars(CastTy)) 1686 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1687 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1688 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1689 CastTy->hasSignedIntegerRepresentation()); 1690 Address CastItem = CGF.CreateMemTemp(CastTy); 1691 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1692 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1693 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1694 LValueBaseInfo(AlignmentSource::Type), 1695 TBAAAccessInfo()); 1696 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1697 LValueBaseInfo(AlignmentSource::Type), 1698 TBAAAccessInfo()); 1699 } 1700 1701 /// This function creates calls to one of two shuffle functions to copy 1702 /// variables between lanes in a warp. 1703 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1704 llvm::Value *Elem, 1705 QualType ElemType, 1706 llvm::Value *Offset, 1707 SourceLocation Loc) { 1708 CodeGenModule &CGM = CGF.CGM; 1709 CGBuilderTy &Bld = CGF.Builder; 1710 CGOpenMPRuntimeGPU &RT = 1711 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1712 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1713 1714 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1715 assert(Size.getQuantity() <= 8 && 1716 "Unsupported bitwidth in shuffle instruction."); 1717 1718 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1719 ? OMPRTL___kmpc_shuffle_int32 1720 : OMPRTL___kmpc_shuffle_int64; 1721 1722 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1723 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1724 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1725 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1726 llvm::Value *WarpSize = 1727 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1728 1729 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1730 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1731 {ElemCast, Offset, WarpSize}); 1732 1733 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1734 } 1735 1736 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1737 Address DestAddr, QualType ElemType, 1738 llvm::Value *Offset, SourceLocation Loc) { 1739 CGBuilderTy &Bld = CGF.Builder; 1740 1741 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1742 // Create the loop over the big sized data. 1743 // ptr = (void*)Elem; 1744 // ptrEnd = (void*) Elem + 1; 1745 // Step = 8; 1746 // while (ptr + Step < ptrEnd) 1747 // shuffle((int64_t)*ptr); 1748 // Step = 4; 1749 // while (ptr + Step < ptrEnd) 1750 // shuffle((int32_t)*ptr); 1751 // ... 1752 Address ElemPtr = DestAddr; 1753 Address Ptr = SrcAddr; 1754 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1755 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1756 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1757 if (Size < CharUnits::fromQuantity(IntSize)) 1758 continue; 1759 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1760 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1761 /*Signed=*/1); 1762 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1763 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1764 ElemPtr = 1765 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1766 if (Size.getQuantity() / IntSize > 1) { 1767 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1768 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1769 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1770 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1771 CGF.EmitBlock(PreCondBB); 1772 llvm::PHINode *PhiSrc = 1773 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1774 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1775 llvm::PHINode *PhiDest = 1776 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1777 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1778 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1779 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1780 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1781 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1782 Ptr.getPointer(), CGF.VoidPtrTy)); 1783 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1784 ThenBB, ExitBB); 1785 CGF.EmitBlock(ThenBB); 1786 llvm::Value *Res = createRuntimeShuffleFunction( 1787 CGF, 1788 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1789 LValueBaseInfo(AlignmentSource::Type), 1790 TBAAAccessInfo()), 1791 IntType, Offset, Loc); 1792 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1793 LValueBaseInfo(AlignmentSource::Type), 1794 TBAAAccessInfo()); 1795 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1796 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1797 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1798 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1799 CGF.EmitBranch(PreCondBB); 1800 CGF.EmitBlock(ExitBB); 1801 } else { 1802 llvm::Value *Res = createRuntimeShuffleFunction( 1803 CGF, 1804 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1805 LValueBaseInfo(AlignmentSource::Type), 1806 TBAAAccessInfo()), 1807 IntType, Offset, Loc); 1808 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1809 LValueBaseInfo(AlignmentSource::Type), 1810 TBAAAccessInfo()); 1811 Ptr = Bld.CreateConstGEP(Ptr, 1); 1812 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1813 } 1814 Size = Size % IntSize; 1815 } 1816 } 1817 1818 namespace { 1819 enum CopyAction : unsigned { 1820 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1821 // the warp using shuffle instructions. 1822 RemoteLaneToThread, 1823 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1824 ThreadCopy, 1825 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1826 ThreadToScratchpad, 1827 // ScratchpadToThread: Copy from a scratchpad array in global memory 1828 // containing team-reduced data to a thread's stack. 1829 ScratchpadToThread, 1830 }; 1831 } // namespace 1832 1833 struct CopyOptionsTy { 1834 llvm::Value *RemoteLaneOffset; 1835 llvm::Value *ScratchpadIndex; 1836 llvm::Value *ScratchpadWidth; 1837 }; 1838 1839 /// Emit instructions to copy a Reduce list, which contains partially 1840 /// aggregated values, in the specified direction. 1841 static void emitReductionListCopy( 1842 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1843 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1844 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1845 1846 CodeGenModule &CGM = CGF.CGM; 1847 ASTContext &C = CGM.getContext(); 1848 CGBuilderTy &Bld = CGF.Builder; 1849 1850 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1851 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1852 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1853 1854 // Iterates, element-by-element, through the source Reduce list and 1855 // make a copy. 1856 unsigned Idx = 0; 1857 unsigned Size = Privates.size(); 1858 for (const Expr *Private : Privates) { 1859 Address SrcElementAddr = Address::invalid(); 1860 Address DestElementAddr = Address::invalid(); 1861 Address DestElementPtrAddr = Address::invalid(); 1862 // Should we shuffle in an element from a remote lane? 1863 bool ShuffleInElement = false; 1864 // Set to true to update the pointer in the dest Reduce list to a 1865 // newly created element. 1866 bool UpdateDestListPtr = false; 1867 // Increment the src or dest pointer to the scratchpad, for each 1868 // new element. 1869 bool IncrScratchpadSrc = false; 1870 bool IncrScratchpadDest = false; 1871 1872 switch (Action) { 1873 case RemoteLaneToThread: { 1874 // Step 1.1: Get the address for the src element in the Reduce list. 1875 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1876 SrcElementAddr = CGF.EmitLoadOfPointer( 1877 SrcElementPtrAddr, 1878 C.getPointerType(Private->getType())->castAs<PointerType>()); 1879 1880 // Step 1.2: Create a temporary to store the element in the destination 1881 // Reduce list. 1882 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1883 DestElementAddr = 1884 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1885 ShuffleInElement = true; 1886 UpdateDestListPtr = true; 1887 break; 1888 } 1889 case ThreadCopy: { 1890 // Step 1.1: Get the address for the src element in the Reduce list. 1891 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1892 SrcElementAddr = CGF.EmitLoadOfPointer( 1893 SrcElementPtrAddr, 1894 C.getPointerType(Private->getType())->castAs<PointerType>()); 1895 1896 // Step 1.2: Get the address for dest element. The destination 1897 // element has already been created on the thread's stack. 1898 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1899 DestElementAddr = CGF.EmitLoadOfPointer( 1900 DestElementPtrAddr, 1901 C.getPointerType(Private->getType())->castAs<PointerType>()); 1902 break; 1903 } 1904 case ThreadToScratchpad: { 1905 // Step 1.1: Get the address for the src element in the Reduce list. 1906 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1907 SrcElementAddr = CGF.EmitLoadOfPointer( 1908 SrcElementPtrAddr, 1909 C.getPointerType(Private->getType())->castAs<PointerType>()); 1910 1911 // Step 1.2: Get the address for dest element: 1912 // address = base + index * ElementSizeInChars. 1913 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1914 llvm::Value *CurrentOffset = 1915 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1916 llvm::Value *ScratchPadElemAbsolutePtrVal = 1917 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1918 ScratchPadElemAbsolutePtrVal = 1919 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1920 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1921 C.getTypeAlignInChars(Private->getType())); 1922 IncrScratchpadDest = true; 1923 break; 1924 } 1925 case ScratchpadToThread: { 1926 // Step 1.1: Get the address for the src element in the scratchpad. 1927 // address = base + index * ElementSizeInChars. 1928 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1929 llvm::Value *CurrentOffset = 1930 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1931 llvm::Value *ScratchPadElemAbsolutePtrVal = 1932 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1933 ScratchPadElemAbsolutePtrVal = 1934 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1935 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1936 C.getTypeAlignInChars(Private->getType())); 1937 IncrScratchpadSrc = true; 1938 1939 // Step 1.2: Create a temporary to store the element in the destination 1940 // Reduce list. 1941 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1942 DestElementAddr = 1943 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1944 UpdateDestListPtr = true; 1945 break; 1946 } 1947 } 1948 1949 // Regardless of src and dest of copy, we emit the load of src 1950 // element as this is required in all directions 1951 SrcElementAddr = Bld.CreateElementBitCast( 1952 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1953 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1954 SrcElementAddr.getElementType()); 1955 1956 // Now that all active lanes have read the element in the 1957 // Reduce list, shuffle over the value from the remote lane. 1958 if (ShuffleInElement) { 1959 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1960 RemoteLaneOffset, Private->getExprLoc()); 1961 } else { 1962 switch (CGF.getEvaluationKind(Private->getType())) { 1963 case TEK_Scalar: { 1964 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1965 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1966 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1967 TBAAAccessInfo()); 1968 // Store the source element value to the dest element address. 1969 CGF.EmitStoreOfScalar( 1970 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1971 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1972 break; 1973 } 1974 case TEK_Complex: { 1975 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1976 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1977 Private->getExprLoc()); 1978 CGF.EmitStoreOfComplex( 1979 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1980 /*isInit=*/false); 1981 break; 1982 } 1983 case TEK_Aggregate: 1984 CGF.EmitAggregateCopy( 1985 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1986 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1987 Private->getType(), AggValueSlot::DoesNotOverlap); 1988 break; 1989 } 1990 } 1991 1992 // Step 3.1: Modify reference in dest Reduce list as needed. 1993 // Modifying the reference in Reduce list to point to the newly 1994 // created element. The element is live in the current function 1995 // scope and that of functions it invokes (i.e., reduce_function). 1996 // RemoteReduceData[i] = (void*)&RemoteElem 1997 if (UpdateDestListPtr) { 1998 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 1999 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2000 DestElementPtrAddr, /*Volatile=*/false, 2001 C.VoidPtrTy); 2002 } 2003 2004 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2005 // address of the next element in scratchpad memory, unless we're currently 2006 // processing the last one. Memory alignment is also taken care of here. 2007 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2008 llvm::Value *ScratchpadBasePtr = 2009 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2010 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2011 ScratchpadBasePtr = Bld.CreateNUWAdd( 2012 ScratchpadBasePtr, 2013 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2014 2015 // Take care of global memory alignment for performance 2016 ScratchpadBasePtr = Bld.CreateNUWSub( 2017 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2018 ScratchpadBasePtr = Bld.CreateUDiv( 2019 ScratchpadBasePtr, 2020 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2021 ScratchpadBasePtr = Bld.CreateNUWAdd( 2022 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2023 ScratchpadBasePtr = Bld.CreateNUWMul( 2024 ScratchpadBasePtr, 2025 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2026 2027 if (IncrScratchpadDest) 2028 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2029 else /* IncrScratchpadSrc = true */ 2030 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2031 } 2032 2033 ++Idx; 2034 } 2035 } 2036 2037 /// This function emits a helper that gathers Reduce lists from the first 2038 /// lane of every active warp to lanes in the first warp. 2039 /// 2040 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2041 /// shared smem[warp_size]; 2042 /// For all data entries D in reduce_data: 2043 /// sync 2044 /// If (I am the first lane in each warp) 2045 /// Copy my local D to smem[warp_id] 2046 /// sync 2047 /// if (I am the first warp) 2048 /// Copy smem[thread_id] to my local D 2049 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2050 ArrayRef<const Expr *> Privates, 2051 QualType ReductionArrayTy, 2052 SourceLocation Loc) { 2053 ASTContext &C = CGM.getContext(); 2054 llvm::Module &M = CGM.getModule(); 2055 2056 // ReduceList: thread local Reduce list. 2057 // At the stage of the computation when this function is called, partially 2058 // aggregated values reside in the first lane of every active warp. 2059 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2060 C.VoidPtrTy, ImplicitParamDecl::Other); 2061 // NumWarps: number of warps active in the parallel region. This could 2062 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2063 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2064 C.getIntTypeForBitwidth(32, /* Signed */ true), 2065 ImplicitParamDecl::Other); 2066 FunctionArgList Args; 2067 Args.push_back(&ReduceListArg); 2068 Args.push_back(&NumWarpsArg); 2069 2070 const CGFunctionInfo &CGFI = 2071 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2072 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2073 llvm::GlobalValue::InternalLinkage, 2074 "_omp_reduction_inter_warp_copy_func", &M); 2075 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2076 Fn->setDoesNotRecurse(); 2077 CodeGenFunction CGF(CGM); 2078 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2079 2080 CGBuilderTy &Bld = CGF.Builder; 2081 2082 // This array is used as a medium to transfer, one reduce element at a time, 2083 // the data from the first lane of every warp to lanes in the first warp 2084 // in order to perform the final step of a reduction in a parallel region 2085 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2086 // for reduced latency, as well as to have a distinct copy for concurrently 2087 // executing target regions. The array is declared with common linkage so 2088 // as to be shared across compilation units. 2089 StringRef TransferMediumName = 2090 "__openmp_nvptx_data_transfer_temporary_storage"; 2091 llvm::GlobalVariable *TransferMedium = 2092 M.getGlobalVariable(TransferMediumName); 2093 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2094 if (!TransferMedium) { 2095 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2096 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2097 TransferMedium = new llvm::GlobalVariable( 2098 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2099 llvm::UndefValue::get(Ty), TransferMediumName, 2100 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2101 SharedAddressSpace); 2102 CGM.addCompilerUsedGlobal(TransferMedium); 2103 } 2104 2105 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2106 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2107 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2108 // nvptx_lane_id = nvptx_id % warpsize 2109 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2110 // nvptx_warp_id = nvptx_id / warpsize 2111 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2112 2113 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2114 Address LocalReduceList( 2115 Bld.CreatePointerBitCastOrAddrSpaceCast( 2116 CGF.EmitLoadOfScalar( 2117 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2118 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2119 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2120 CGF.getPointerAlign()); 2121 2122 unsigned Idx = 0; 2123 for (const Expr *Private : Privates) { 2124 // 2125 // Warp master copies reduce element to transfer medium in __shared__ 2126 // memory. 2127 // 2128 unsigned RealTySize = 2129 C.getTypeSizeInChars(Private->getType()) 2130 .alignTo(C.getTypeAlignInChars(Private->getType())) 2131 .getQuantity(); 2132 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2133 unsigned NumIters = RealTySize / TySize; 2134 if (NumIters == 0) 2135 continue; 2136 QualType CType = C.getIntTypeForBitwidth( 2137 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2138 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2139 CharUnits Align = CharUnits::fromQuantity(TySize); 2140 llvm::Value *Cnt = nullptr; 2141 Address CntAddr = Address::invalid(); 2142 llvm::BasicBlock *PrecondBB = nullptr; 2143 llvm::BasicBlock *ExitBB = nullptr; 2144 if (NumIters > 1) { 2145 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2146 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2147 /*Volatile=*/false, C.IntTy); 2148 PrecondBB = CGF.createBasicBlock("precond"); 2149 ExitBB = CGF.createBasicBlock("exit"); 2150 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2151 // There is no need to emit line number for unconditional branch. 2152 (void)ApplyDebugLocation::CreateEmpty(CGF); 2153 CGF.EmitBlock(PrecondBB); 2154 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2155 llvm::Value *Cmp = 2156 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2157 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2158 CGF.EmitBlock(BodyBB); 2159 } 2160 // kmpc_barrier. 2161 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2162 /*EmitChecks=*/false, 2163 /*ForceSimpleCall=*/true); 2164 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2165 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2166 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2167 2168 // if (lane_id == 0) 2169 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2170 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2171 CGF.EmitBlock(ThenBB); 2172 2173 // Reduce element = LocalReduceList[i] 2174 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2175 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2176 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2177 // elemptr = ((CopyType*)(elemptrptr)) + I 2178 Address ElemPtr = Address(ElemPtrPtr, Align); 2179 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2180 if (NumIters > 1) { 2181 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2182 ElemPtr.getPointer(), Cnt), 2183 ElemPtr.getAlignment()); 2184 } 2185 2186 // Get pointer to location in transfer medium. 2187 // MediumPtr = &medium[warp_id] 2188 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2189 TransferMedium->getValueType(), TransferMedium, 2190 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2191 Address MediumPtr(MediumPtrVal, Align); 2192 // Casting to actual data type. 2193 // MediumPtr = (CopyType*)MediumPtrAddr; 2194 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2195 2196 // elem = *elemptr 2197 //*MediumPtr = elem 2198 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2199 ElemPtr, /*Volatile=*/false, CType, Loc, 2200 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2201 // Store the source element value to the dest element address. 2202 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2203 LValueBaseInfo(AlignmentSource::Type), 2204 TBAAAccessInfo()); 2205 2206 Bld.CreateBr(MergeBB); 2207 2208 CGF.EmitBlock(ElseBB); 2209 Bld.CreateBr(MergeBB); 2210 2211 CGF.EmitBlock(MergeBB); 2212 2213 // kmpc_barrier. 2214 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2215 /*EmitChecks=*/false, 2216 /*ForceSimpleCall=*/true); 2217 2218 // 2219 // Warp 0 copies reduce element from transfer medium. 2220 // 2221 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2222 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2223 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2224 2225 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2226 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2227 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2228 2229 // Up to 32 threads in warp 0 are active. 2230 llvm::Value *IsActiveThread = 2231 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2232 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2233 2234 CGF.EmitBlock(W0ThenBB); 2235 2236 // SrcMediumPtr = &medium[tid] 2237 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2238 TransferMedium->getValueType(), TransferMedium, 2239 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2240 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2241 // SrcMediumVal = *SrcMediumPtr; 2242 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2243 2244 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2245 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2246 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2247 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2248 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2249 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2250 if (NumIters > 1) { 2251 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2252 TargetElemPtr.getPointer(), Cnt), 2253 TargetElemPtr.getAlignment()); 2254 } 2255 2256 // *TargetElemPtr = SrcMediumVal; 2257 llvm::Value *SrcMediumValue = 2258 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2259 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2260 CType); 2261 Bld.CreateBr(W0MergeBB); 2262 2263 CGF.EmitBlock(W0ElseBB); 2264 Bld.CreateBr(W0MergeBB); 2265 2266 CGF.EmitBlock(W0MergeBB); 2267 2268 if (NumIters > 1) { 2269 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2270 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2271 CGF.EmitBranch(PrecondBB); 2272 (void)ApplyDebugLocation::CreateEmpty(CGF); 2273 CGF.EmitBlock(ExitBB); 2274 } 2275 RealTySize %= TySize; 2276 } 2277 ++Idx; 2278 } 2279 2280 CGF.FinishFunction(); 2281 return Fn; 2282 } 2283 2284 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2285 /// in the same warp. It uses shuffle instructions to copy over data from 2286 /// a remote lane's stack. The reduction algorithm performed is specified 2287 /// by the fourth parameter. 2288 /// 2289 /// Algorithm Versions. 2290 /// Full Warp Reduce (argument value 0): 2291 /// This algorithm assumes that all 32 lanes are active and gathers 2292 /// data from these 32 lanes, producing a single resultant value. 2293 /// Contiguous Partial Warp Reduce (argument value 1): 2294 /// This algorithm assumes that only a *contiguous* subset of lanes 2295 /// are active. This happens for the last warp in a parallel region 2296 /// when the user specified num_threads is not an integer multiple of 2297 /// 32. This contiguous subset always starts with the zeroth lane. 2298 /// Partial Warp Reduce (argument value 2): 2299 /// This algorithm gathers data from any number of lanes at any position. 2300 /// All reduced values are stored in the lowest possible lane. The set 2301 /// of problems every algorithm addresses is a super set of those 2302 /// addressable by algorithms with a lower version number. Overhead 2303 /// increases as algorithm version increases. 2304 /// 2305 /// Terminology 2306 /// Reduce element: 2307 /// Reduce element refers to the individual data field with primitive 2308 /// data types to be combined and reduced across threads. 2309 /// Reduce list: 2310 /// Reduce list refers to a collection of local, thread-private 2311 /// reduce elements. 2312 /// Remote Reduce list: 2313 /// Remote Reduce list refers to a collection of remote (relative to 2314 /// the current thread) reduce elements. 2315 /// 2316 /// We distinguish between three states of threads that are important to 2317 /// the implementation of this function. 2318 /// Alive threads: 2319 /// Threads in a warp executing the SIMT instruction, as distinguished from 2320 /// threads that are inactive due to divergent control flow. 2321 /// Active threads: 2322 /// The minimal set of threads that has to be alive upon entry to this 2323 /// function. The computation is correct iff active threads are alive. 2324 /// Some threads are alive but they are not active because they do not 2325 /// contribute to the computation in any useful manner. Turning them off 2326 /// may introduce control flow overheads without any tangible benefits. 2327 /// Effective threads: 2328 /// In order to comply with the argument requirements of the shuffle 2329 /// function, we must keep all lanes holding data alive. But at most 2330 /// half of them perform value aggregation; we refer to this half of 2331 /// threads as effective. The other half is simply handing off their 2332 /// data. 2333 /// 2334 /// Procedure 2335 /// Value shuffle: 2336 /// In this step active threads transfer data from higher lane positions 2337 /// in the warp to lower lane positions, creating Remote Reduce list. 2338 /// Value aggregation: 2339 /// In this step, effective threads combine their thread local Reduce list 2340 /// with Remote Reduce list and store the result in the thread local 2341 /// Reduce list. 2342 /// Value copy: 2343 /// In this step, we deal with the assumption made by algorithm 2 2344 /// (i.e. contiguity assumption). When we have an odd number of lanes 2345 /// active, say 2k+1, only k threads will be effective and therefore k 2346 /// new values will be produced. However, the Reduce list owned by the 2347 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2348 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2349 /// that the contiguity assumption still holds. 2350 static llvm::Function *emitShuffleAndReduceFunction( 2351 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2352 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2353 ASTContext &C = CGM.getContext(); 2354 2355 // Thread local Reduce list used to host the values of data to be reduced. 2356 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2357 C.VoidPtrTy, ImplicitParamDecl::Other); 2358 // Current lane id; could be logical. 2359 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2360 ImplicitParamDecl::Other); 2361 // Offset of the remote source lane relative to the current lane. 2362 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2363 C.ShortTy, ImplicitParamDecl::Other); 2364 // Algorithm version. This is expected to be known at compile time. 2365 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2366 C.ShortTy, ImplicitParamDecl::Other); 2367 FunctionArgList Args; 2368 Args.push_back(&ReduceListArg); 2369 Args.push_back(&LaneIDArg); 2370 Args.push_back(&RemoteLaneOffsetArg); 2371 Args.push_back(&AlgoVerArg); 2372 2373 const CGFunctionInfo &CGFI = 2374 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2375 auto *Fn = llvm::Function::Create( 2376 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2377 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2378 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2379 Fn->setDoesNotRecurse(); 2380 2381 CodeGenFunction CGF(CGM); 2382 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2383 2384 CGBuilderTy &Bld = CGF.Builder; 2385 2386 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2387 Address LocalReduceList( 2388 Bld.CreatePointerBitCastOrAddrSpaceCast( 2389 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2390 C.VoidPtrTy, SourceLocation()), 2391 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2392 CGF.getPointerAlign()); 2393 2394 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2395 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2396 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2397 2398 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2399 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2400 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2401 2402 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2403 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2404 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2405 2406 // Create a local thread-private variable to host the Reduce list 2407 // from a remote lane. 2408 Address RemoteReduceList = 2409 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2410 2411 // This loop iterates through the list of reduce elements and copies, 2412 // element by element, from a remote lane in the warp to RemoteReduceList, 2413 // hosted on the thread's stack. 2414 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2415 LocalReduceList, RemoteReduceList, 2416 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2417 /*ScratchpadIndex=*/nullptr, 2418 /*ScratchpadWidth=*/nullptr}); 2419 2420 // The actions to be performed on the Remote Reduce list is dependent 2421 // on the algorithm version. 2422 // 2423 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2424 // LaneId % 2 == 0 && Offset > 0): 2425 // do the reduction value aggregation 2426 // 2427 // The thread local variable Reduce list is mutated in place to host the 2428 // reduced data, which is the aggregated value produced from local and 2429 // remote lanes. 2430 // 2431 // Note that AlgoVer is expected to be a constant integer known at compile 2432 // time. 2433 // When AlgoVer==0, the first conjunction evaluates to true, making 2434 // the entire predicate true during compile time. 2435 // When AlgoVer==1, the second conjunction has only the second part to be 2436 // evaluated during runtime. Other conjunctions evaluates to false 2437 // during compile time. 2438 // When AlgoVer==2, the third conjunction has only the second part to be 2439 // evaluated during runtime. Other conjunctions evaluates to false 2440 // during compile time. 2441 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2442 2443 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2444 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2445 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2446 2447 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2448 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2449 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2450 CondAlgo2 = Bld.CreateAnd( 2451 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2452 2453 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2454 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2455 2456 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2457 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2458 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2459 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2460 2461 CGF.EmitBlock(ThenBB); 2462 // reduce_function(LocalReduceList, RemoteReduceList) 2463 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2464 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2465 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2466 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2467 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2468 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2469 Bld.CreateBr(MergeBB); 2470 2471 CGF.EmitBlock(ElseBB); 2472 Bld.CreateBr(MergeBB); 2473 2474 CGF.EmitBlock(MergeBB); 2475 2476 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2477 // Reduce list. 2478 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2479 llvm::Value *CondCopy = Bld.CreateAnd( 2480 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2481 2482 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2483 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2484 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2485 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2486 2487 CGF.EmitBlock(CpyThenBB); 2488 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2489 RemoteReduceList, LocalReduceList); 2490 Bld.CreateBr(CpyMergeBB); 2491 2492 CGF.EmitBlock(CpyElseBB); 2493 Bld.CreateBr(CpyMergeBB); 2494 2495 CGF.EmitBlock(CpyMergeBB); 2496 2497 CGF.FinishFunction(); 2498 return Fn; 2499 } 2500 2501 /// This function emits a helper that copies all the reduction variables from 2502 /// the team into the provided global buffer for the reduction variables. 2503 /// 2504 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2505 /// For all data entries D in reduce_data: 2506 /// Copy local D to buffer.D[Idx] 2507 static llvm::Value *emitListToGlobalCopyFunction( 2508 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2509 QualType ReductionArrayTy, SourceLocation Loc, 2510 const RecordDecl *TeamReductionRec, 2511 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2512 &VarFieldMap) { 2513 ASTContext &C = CGM.getContext(); 2514 2515 // Buffer: global reduction buffer. 2516 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2517 C.VoidPtrTy, ImplicitParamDecl::Other); 2518 // Idx: index of the buffer. 2519 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2520 ImplicitParamDecl::Other); 2521 // ReduceList: thread local Reduce list. 2522 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2523 C.VoidPtrTy, ImplicitParamDecl::Other); 2524 FunctionArgList Args; 2525 Args.push_back(&BufferArg); 2526 Args.push_back(&IdxArg); 2527 Args.push_back(&ReduceListArg); 2528 2529 const CGFunctionInfo &CGFI = 2530 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2531 auto *Fn = llvm::Function::Create( 2532 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2533 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2534 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2535 Fn->setDoesNotRecurse(); 2536 CodeGenFunction CGF(CGM); 2537 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2538 2539 CGBuilderTy &Bld = CGF.Builder; 2540 2541 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2542 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2543 Address LocalReduceList( 2544 Bld.CreatePointerBitCastOrAddrSpaceCast( 2545 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2546 C.VoidPtrTy, Loc), 2547 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2548 CGF.getPointerAlign()); 2549 QualType StaticTy = C.getRecordType(TeamReductionRec); 2550 llvm::Type *LLVMReductionsBufferTy = 2551 CGM.getTypes().ConvertTypeForMem(StaticTy); 2552 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2553 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2554 LLVMReductionsBufferTy->getPointerTo()); 2555 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2556 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2557 /*Volatile=*/false, C.IntTy, 2558 Loc)}; 2559 unsigned Idx = 0; 2560 for (const Expr *Private : Privates) { 2561 // Reduce element = LocalReduceList[i] 2562 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2563 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2564 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2565 // elemptr = ((CopyType*)(elemptrptr)) + I 2566 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2567 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2568 Address ElemPtr = 2569 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2570 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2571 // Global = Buffer.VD[Idx]; 2572 const FieldDecl *FD = VarFieldMap.lookup(VD); 2573 LValue GlobLVal = CGF.EmitLValueForField( 2574 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2575 Address GlobAddr = GlobLVal.getAddress(CGF); 2576 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2577 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2578 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2579 switch (CGF.getEvaluationKind(Private->getType())) { 2580 case TEK_Scalar: { 2581 llvm::Value *V = CGF.EmitLoadOfScalar( 2582 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2583 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2584 CGF.EmitStoreOfScalar(V, GlobLVal); 2585 break; 2586 } 2587 case TEK_Complex: { 2588 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2589 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2590 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2591 break; 2592 } 2593 case TEK_Aggregate: 2594 CGF.EmitAggregateCopy(GlobLVal, 2595 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2596 Private->getType(), AggValueSlot::DoesNotOverlap); 2597 break; 2598 } 2599 ++Idx; 2600 } 2601 2602 CGF.FinishFunction(); 2603 return Fn; 2604 } 2605 2606 /// This function emits a helper that reduces all the reduction variables from 2607 /// the team into the provided global buffer for the reduction variables. 2608 /// 2609 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2610 /// void *GlobPtrs[]; 2611 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2612 /// ... 2613 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2614 /// reduce_function(GlobPtrs, reduce_data); 2615 static llvm::Value *emitListToGlobalReduceFunction( 2616 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2617 QualType ReductionArrayTy, SourceLocation Loc, 2618 const RecordDecl *TeamReductionRec, 2619 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2620 &VarFieldMap, 2621 llvm::Function *ReduceFn) { 2622 ASTContext &C = CGM.getContext(); 2623 2624 // Buffer: global reduction buffer. 2625 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2626 C.VoidPtrTy, ImplicitParamDecl::Other); 2627 // Idx: index of the buffer. 2628 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2629 ImplicitParamDecl::Other); 2630 // ReduceList: thread local Reduce list. 2631 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2632 C.VoidPtrTy, ImplicitParamDecl::Other); 2633 FunctionArgList Args; 2634 Args.push_back(&BufferArg); 2635 Args.push_back(&IdxArg); 2636 Args.push_back(&ReduceListArg); 2637 2638 const CGFunctionInfo &CGFI = 2639 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2640 auto *Fn = llvm::Function::Create( 2641 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2642 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2643 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2644 Fn->setDoesNotRecurse(); 2645 CodeGenFunction CGF(CGM); 2646 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2647 2648 CGBuilderTy &Bld = CGF.Builder; 2649 2650 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2651 QualType StaticTy = C.getRecordType(TeamReductionRec); 2652 llvm::Type *LLVMReductionsBufferTy = 2653 CGM.getTypes().ConvertTypeForMem(StaticTy); 2654 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2655 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2656 LLVMReductionsBufferTy->getPointerTo()); 2657 2658 // 1. Build a list of reduction variables. 2659 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2660 Address ReductionList = 2661 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2662 auto IPriv = Privates.begin(); 2663 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2664 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2665 /*Volatile=*/false, C.IntTy, 2666 Loc)}; 2667 unsigned Idx = 0; 2668 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2669 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2670 // Global = Buffer.VD[Idx]; 2671 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2672 const FieldDecl *FD = VarFieldMap.lookup(VD); 2673 LValue GlobLVal = CGF.EmitLValueForField( 2674 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2675 Address GlobAddr = GlobLVal.getAddress(CGF); 2676 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2677 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2678 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2679 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2680 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2681 // Store array size. 2682 ++Idx; 2683 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2684 llvm::Value *Size = CGF.Builder.CreateIntCast( 2685 CGF.getVLASize( 2686 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2687 .NumElts, 2688 CGF.SizeTy, /*isSigned=*/false); 2689 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2690 Elem); 2691 } 2692 } 2693 2694 // Call reduce_function(GlobalReduceList, ReduceList) 2695 llvm::Value *GlobalReduceList = 2696 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2697 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2698 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2699 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2700 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2701 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2702 CGF.FinishFunction(); 2703 return Fn; 2704 } 2705 2706 /// This function emits a helper that copies all the reduction variables from 2707 /// the team into the provided global buffer for the reduction variables. 2708 /// 2709 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2710 /// For all data entries D in reduce_data: 2711 /// Copy buffer.D[Idx] to local D; 2712 static llvm::Value *emitGlobalToListCopyFunction( 2713 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2714 QualType ReductionArrayTy, SourceLocation Loc, 2715 const RecordDecl *TeamReductionRec, 2716 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2717 &VarFieldMap) { 2718 ASTContext &C = CGM.getContext(); 2719 2720 // Buffer: global reduction buffer. 2721 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2722 C.VoidPtrTy, ImplicitParamDecl::Other); 2723 // Idx: index of the buffer. 2724 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2725 ImplicitParamDecl::Other); 2726 // ReduceList: thread local Reduce list. 2727 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2728 C.VoidPtrTy, ImplicitParamDecl::Other); 2729 FunctionArgList Args; 2730 Args.push_back(&BufferArg); 2731 Args.push_back(&IdxArg); 2732 Args.push_back(&ReduceListArg); 2733 2734 const CGFunctionInfo &CGFI = 2735 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2736 auto *Fn = llvm::Function::Create( 2737 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2738 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2739 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2740 Fn->setDoesNotRecurse(); 2741 CodeGenFunction CGF(CGM); 2742 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2743 2744 CGBuilderTy &Bld = CGF.Builder; 2745 2746 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2747 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2748 Address LocalReduceList( 2749 Bld.CreatePointerBitCastOrAddrSpaceCast( 2750 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2751 C.VoidPtrTy, Loc), 2752 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2753 CGF.getPointerAlign()); 2754 QualType StaticTy = C.getRecordType(TeamReductionRec); 2755 llvm::Type *LLVMReductionsBufferTy = 2756 CGM.getTypes().ConvertTypeForMem(StaticTy); 2757 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2758 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2759 LLVMReductionsBufferTy->getPointerTo()); 2760 2761 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2762 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2763 /*Volatile=*/false, C.IntTy, 2764 Loc)}; 2765 unsigned Idx = 0; 2766 for (const Expr *Private : Privates) { 2767 // Reduce element = LocalReduceList[i] 2768 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2769 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2770 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2771 // elemptr = ((CopyType*)(elemptrptr)) + I 2772 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2773 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2774 Address ElemPtr = 2775 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2776 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2777 // Global = Buffer.VD[Idx]; 2778 const FieldDecl *FD = VarFieldMap.lookup(VD); 2779 LValue GlobLVal = CGF.EmitLValueForField( 2780 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2781 Address GlobAddr = GlobLVal.getAddress(CGF); 2782 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2783 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2784 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2785 switch (CGF.getEvaluationKind(Private->getType())) { 2786 case TEK_Scalar: { 2787 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2788 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2789 LValueBaseInfo(AlignmentSource::Type), 2790 TBAAAccessInfo()); 2791 break; 2792 } 2793 case TEK_Complex: { 2794 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2795 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2796 /*isInit=*/false); 2797 break; 2798 } 2799 case TEK_Aggregate: 2800 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2801 GlobLVal, Private->getType(), 2802 AggValueSlot::DoesNotOverlap); 2803 break; 2804 } 2805 ++Idx; 2806 } 2807 2808 CGF.FinishFunction(); 2809 return Fn; 2810 } 2811 2812 /// This function emits a helper that reduces all the reduction variables from 2813 /// the team into the provided global buffer for the reduction variables. 2814 /// 2815 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2816 /// void *GlobPtrs[]; 2817 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2818 /// ... 2819 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2820 /// reduce_function(reduce_data, GlobPtrs); 2821 static llvm::Value *emitGlobalToListReduceFunction( 2822 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2823 QualType ReductionArrayTy, SourceLocation Loc, 2824 const RecordDecl *TeamReductionRec, 2825 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2826 &VarFieldMap, 2827 llvm::Function *ReduceFn) { 2828 ASTContext &C = CGM.getContext(); 2829 2830 // Buffer: global reduction buffer. 2831 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2832 C.VoidPtrTy, ImplicitParamDecl::Other); 2833 // Idx: index of the buffer. 2834 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2835 ImplicitParamDecl::Other); 2836 // ReduceList: thread local Reduce list. 2837 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2838 C.VoidPtrTy, ImplicitParamDecl::Other); 2839 FunctionArgList Args; 2840 Args.push_back(&BufferArg); 2841 Args.push_back(&IdxArg); 2842 Args.push_back(&ReduceListArg); 2843 2844 const CGFunctionInfo &CGFI = 2845 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2846 auto *Fn = llvm::Function::Create( 2847 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2848 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2849 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2850 Fn->setDoesNotRecurse(); 2851 CodeGenFunction CGF(CGM); 2852 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2853 2854 CGBuilderTy &Bld = CGF.Builder; 2855 2856 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2857 QualType StaticTy = C.getRecordType(TeamReductionRec); 2858 llvm::Type *LLVMReductionsBufferTy = 2859 CGM.getTypes().ConvertTypeForMem(StaticTy); 2860 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2861 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2862 LLVMReductionsBufferTy->getPointerTo()); 2863 2864 // 1. Build a list of reduction variables. 2865 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2866 Address ReductionList = 2867 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2868 auto IPriv = Privates.begin(); 2869 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2870 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2871 /*Volatile=*/false, C.IntTy, 2872 Loc)}; 2873 unsigned Idx = 0; 2874 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2875 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2876 // Global = Buffer.VD[Idx]; 2877 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2878 const FieldDecl *FD = VarFieldMap.lookup(VD); 2879 LValue GlobLVal = CGF.EmitLValueForField( 2880 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2881 Address GlobAddr = GlobLVal.getAddress(CGF); 2882 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2883 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2884 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2885 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2886 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2887 // Store array size. 2888 ++Idx; 2889 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2890 llvm::Value *Size = CGF.Builder.CreateIntCast( 2891 CGF.getVLASize( 2892 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2893 .NumElts, 2894 CGF.SizeTy, /*isSigned=*/false); 2895 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2896 Elem); 2897 } 2898 } 2899 2900 // Call reduce_function(ReduceList, GlobalReduceList) 2901 llvm::Value *GlobalReduceList = 2902 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2903 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2904 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2905 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2906 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2907 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2908 CGF.FinishFunction(); 2909 return Fn; 2910 } 2911 2912 /// 2913 /// Design of OpenMP reductions on the GPU 2914 /// 2915 /// Consider a typical OpenMP program with one or more reduction 2916 /// clauses: 2917 /// 2918 /// float foo; 2919 /// double bar; 2920 /// #pragma omp target teams distribute parallel for \ 2921 /// reduction(+:foo) reduction(*:bar) 2922 /// for (int i = 0; i < N; i++) { 2923 /// foo += A[i]; bar *= B[i]; 2924 /// } 2925 /// 2926 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2927 /// all teams. In our OpenMP implementation on the NVPTX device an 2928 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2929 /// within a team are mapped to CUDA threads within a threadblock. 2930 /// Our goal is to efficiently aggregate values across all OpenMP 2931 /// threads such that: 2932 /// 2933 /// - the compiler and runtime are logically concise, and 2934 /// - the reduction is performed efficiently in a hierarchical 2935 /// manner as follows: within OpenMP threads in the same warp, 2936 /// across warps in a threadblock, and finally across teams on 2937 /// the NVPTX device. 2938 /// 2939 /// Introduction to Decoupling 2940 /// 2941 /// We would like to decouple the compiler and the runtime so that the 2942 /// latter is ignorant of the reduction variables (number, data types) 2943 /// and the reduction operators. This allows a simpler interface 2944 /// and implementation while still attaining good performance. 2945 /// 2946 /// Pseudocode for the aforementioned OpenMP program generated by the 2947 /// compiler is as follows: 2948 /// 2949 /// 1. Create private copies of reduction variables on each OpenMP 2950 /// thread: 'foo_private', 'bar_private' 2951 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2952 /// to it and writes the result in 'foo_private' and 'bar_private' 2953 /// respectively. 2954 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2955 /// and store the result on the team master: 2956 /// 2957 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2958 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2959 /// 2960 /// where: 2961 /// struct ReduceData { 2962 /// double *foo; 2963 /// double *bar; 2964 /// } reduceData 2965 /// reduceData.foo = &foo_private 2966 /// reduceData.bar = &bar_private 2967 /// 2968 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2969 /// auxiliary functions generated by the compiler that operate on 2970 /// variables of type 'ReduceData'. They aid the runtime perform 2971 /// algorithmic steps in a data agnostic manner. 2972 /// 2973 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2974 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2975 /// same warp. It takes the following arguments as input: 2976 /// 2977 /// a. variable of type 'ReduceData' on the calling lane, 2978 /// b. its lane_id, 2979 /// c. an offset relative to the current lane_id to generate a 2980 /// remote_lane_id. The remote lane contains the second 2981 /// variable of type 'ReduceData' that is to be reduced. 2982 /// d. an algorithm version parameter determining which reduction 2983 /// algorithm to use. 2984 /// 2985 /// 'shuffleReduceFn' retrieves data from the remote lane using 2986 /// efficient GPU shuffle intrinsics and reduces, using the 2987 /// algorithm specified by the 4th parameter, the two operands 2988 /// element-wise. The result is written to the first operand. 2989 /// 2990 /// Different reduction algorithms are implemented in different 2991 /// runtime functions, all calling 'shuffleReduceFn' to perform 2992 /// the essential reduction step. Therefore, based on the 4th 2993 /// parameter, this function behaves slightly differently to 2994 /// cooperate with the runtime to ensure correctness under 2995 /// different circumstances. 2996 /// 2997 /// 'InterWarpCpyFn' is a pointer to a function that transfers 2998 /// reduced variables across warps. It tunnels, through CUDA 2999 /// shared memory, the thread-private data of type 'ReduceData' 3000 /// from lane 0 of each warp to a lane in the first warp. 3001 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3002 /// The last team writes the global reduced value to memory. 3003 /// 3004 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3005 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3006 /// scratchpadCopyFn, loadAndReduceFn) 3007 /// 3008 /// 'scratchpadCopyFn' is a helper that stores reduced 3009 /// data from the team master to a scratchpad array in 3010 /// global memory. 3011 /// 3012 /// 'loadAndReduceFn' is a helper that loads data from 3013 /// the scratchpad array and reduces it with the input 3014 /// operand. 3015 /// 3016 /// These compiler generated functions hide address 3017 /// calculation and alignment information from the runtime. 3018 /// 5. if ret == 1: 3019 /// The team master of the last team stores the reduced 3020 /// result to the globals in memory. 3021 /// foo += reduceData.foo; bar *= reduceData.bar 3022 /// 3023 /// 3024 /// Warp Reduction Algorithms 3025 /// 3026 /// On the warp level, we have three algorithms implemented in the 3027 /// OpenMP runtime depending on the number of active lanes: 3028 /// 3029 /// Full Warp Reduction 3030 /// 3031 /// The reduce algorithm within a warp where all lanes are active 3032 /// is implemented in the runtime as follows: 3033 /// 3034 /// full_warp_reduce(void *reduce_data, 3035 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3036 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3037 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3038 /// } 3039 /// 3040 /// The algorithm completes in log(2, WARPSIZE) steps. 3041 /// 3042 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3043 /// not used therefore we save instructions by not retrieving lane_id 3044 /// from the corresponding special registers. The 4th parameter, which 3045 /// represents the version of the algorithm being used, is set to 0 to 3046 /// signify full warp reduction. 3047 /// 3048 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3049 /// 3050 /// #reduce_elem refers to an element in the local lane's data structure 3051 /// #remote_elem is retrieved from a remote lane 3052 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3053 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3054 /// 3055 /// Contiguous Partial Warp Reduction 3056 /// 3057 /// This reduce algorithm is used within a warp where only the first 3058 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3059 /// number of OpenMP threads in a parallel region is not a multiple of 3060 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3061 /// 3062 /// void 3063 /// contiguous_partial_reduce(void *reduce_data, 3064 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3065 /// int size, int lane_id) { 3066 /// int curr_size; 3067 /// int offset; 3068 /// curr_size = size; 3069 /// mask = curr_size/2; 3070 /// while (offset>0) { 3071 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3072 /// curr_size = (curr_size+1)/2; 3073 /// offset = curr_size/2; 3074 /// } 3075 /// } 3076 /// 3077 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3078 /// 3079 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3080 /// if (lane_id < offset) 3081 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3082 /// else 3083 /// reduce_elem = remote_elem 3084 /// 3085 /// This algorithm assumes that the data to be reduced are located in a 3086 /// contiguous subset of lanes starting from the first. When there is 3087 /// an odd number of active lanes, the data in the last lane is not 3088 /// aggregated with any other lane's dat but is instead copied over. 3089 /// 3090 /// Dispersed Partial Warp Reduction 3091 /// 3092 /// This algorithm is used within a warp when any discontiguous subset of 3093 /// lanes are active. It is used to implement the reduction operation 3094 /// across lanes in an OpenMP simd region or in a nested parallel region. 3095 /// 3096 /// void 3097 /// dispersed_partial_reduce(void *reduce_data, 3098 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3099 /// int size, remote_id; 3100 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3101 /// do { 3102 /// remote_id = next_active_lane_id_right_after_me(); 3103 /// # the above function returns 0 of no active lane 3104 /// # is present right after the current lane. 3105 /// size = number_of_active_lanes_in_this_warp(); 3106 /// logical_lane_id /= 2; 3107 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3108 /// remote_id-1-threadIdx.x, 2); 3109 /// } while (logical_lane_id % 2 == 0 && size > 1); 3110 /// } 3111 /// 3112 /// There is no assumption made about the initial state of the reduction. 3113 /// Any number of lanes (>=1) could be active at any position. The reduction 3114 /// result is returned in the first active lane. 3115 /// 3116 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3117 /// 3118 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3119 /// if (lane_id % 2 == 0 && offset > 0) 3120 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3121 /// else 3122 /// reduce_elem = remote_elem 3123 /// 3124 /// 3125 /// Intra-Team Reduction 3126 /// 3127 /// This function, as implemented in the runtime call 3128 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3129 /// threads in a team. It first reduces within a warp using the 3130 /// aforementioned algorithms. We then proceed to gather all such 3131 /// reduced values at the first warp. 3132 /// 3133 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3134 /// data from each of the "warp master" (zeroth lane of each warp, where 3135 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3136 /// a mathematical sense) the problem of reduction across warp masters in 3137 /// a block to the problem of warp reduction. 3138 /// 3139 /// 3140 /// Inter-Team Reduction 3141 /// 3142 /// Once a team has reduced its data to a single value, it is stored in 3143 /// a global scratchpad array. Since each team has a distinct slot, this 3144 /// can be done without locking. 3145 /// 3146 /// The last team to write to the scratchpad array proceeds to reduce the 3147 /// scratchpad array. One or more workers in the last team use the helper 3148 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3149 /// the k'th worker reduces every k'th element. 3150 /// 3151 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3152 /// reduce across workers and compute a globally reduced value. 3153 /// 3154 void CGOpenMPRuntimeGPU::emitReduction( 3155 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3156 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3157 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3158 if (!CGF.HaveInsertPoint()) 3159 return; 3160 3161 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3162 #ifndef NDEBUG 3163 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3164 #endif 3165 3166 if (Options.SimpleReduction) { 3167 assert(!TeamsReduction && !ParallelReduction && 3168 "Invalid reduction selection in emitReduction."); 3169 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3170 ReductionOps, Options); 3171 return; 3172 } 3173 3174 assert((TeamsReduction || ParallelReduction) && 3175 "Invalid reduction selection in emitReduction."); 3176 3177 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3178 // RedList, shuffle_reduce_func, interwarp_copy_func); 3179 // or 3180 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3181 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3182 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3183 3184 llvm::Value *Res; 3185 ASTContext &C = CGM.getContext(); 3186 // 1. Build a list of reduction variables. 3187 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3188 auto Size = RHSExprs.size(); 3189 for (const Expr *E : Privates) { 3190 if (E->getType()->isVariablyModifiedType()) 3191 // Reserve place for array size. 3192 ++Size; 3193 } 3194 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3195 QualType ReductionArrayTy = 3196 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3197 /*IndexTypeQuals=*/0); 3198 Address ReductionList = 3199 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3200 auto IPriv = Privates.begin(); 3201 unsigned Idx = 0; 3202 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3203 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3204 CGF.Builder.CreateStore( 3205 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3206 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3207 Elem); 3208 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3209 // Store array size. 3210 ++Idx; 3211 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3212 llvm::Value *Size = CGF.Builder.CreateIntCast( 3213 CGF.getVLASize( 3214 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3215 .NumElts, 3216 CGF.SizeTy, /*isSigned=*/false); 3217 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3218 Elem); 3219 } 3220 } 3221 3222 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3223 ReductionList.getPointer(), CGF.VoidPtrTy); 3224 llvm::Function *ReductionFn = emitReductionFunction( 3225 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3226 LHSExprs, RHSExprs, ReductionOps); 3227 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3228 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3229 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3230 llvm::Value *InterWarpCopyFn = 3231 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3232 3233 if (ParallelReduction) { 3234 llvm::Value *Args[] = {RTLoc, 3235 ThreadId, 3236 CGF.Builder.getInt32(RHSExprs.size()), 3237 ReductionArrayTySize, 3238 RL, 3239 ShuffleAndReduceFn, 3240 InterWarpCopyFn}; 3241 3242 Res = CGF.EmitRuntimeCall( 3243 OMPBuilder.getOrCreateRuntimeFunction( 3244 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3245 Args); 3246 } else { 3247 assert(TeamsReduction && "expected teams reduction."); 3248 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3249 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3250 int Cnt = 0; 3251 for (const Expr *DRE : Privates) { 3252 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3253 ++Cnt; 3254 } 3255 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3256 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3257 C.getLangOpts().OpenMPCUDAReductionBufNum); 3258 TeamsReductions.push_back(TeamReductionRec); 3259 if (!KernelTeamsReductionPtr) { 3260 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3261 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3262 llvm::GlobalValue::InternalLinkage, nullptr, 3263 "_openmp_teams_reductions_buffer_$_$ptr"); 3264 } 3265 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3266 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3267 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3268 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3269 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3270 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3271 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3272 ReductionFn); 3273 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3274 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3275 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3276 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3277 ReductionFn); 3278 3279 llvm::Value *Args[] = { 3280 RTLoc, 3281 ThreadId, 3282 GlobalBufferPtr, 3283 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3284 RL, 3285 ShuffleAndReduceFn, 3286 InterWarpCopyFn, 3287 GlobalToBufferCpyFn, 3288 GlobalToBufferRedFn, 3289 BufferToGlobalCpyFn, 3290 BufferToGlobalRedFn}; 3291 3292 Res = CGF.EmitRuntimeCall( 3293 OMPBuilder.getOrCreateRuntimeFunction( 3294 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3295 Args); 3296 } 3297 3298 // 5. Build if (res == 1) 3299 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3300 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3301 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3302 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3303 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3304 3305 // 6. Build then branch: where we have reduced values in the master 3306 // thread in each team. 3307 // __kmpc_end_reduce{_nowait}(<gtid>); 3308 // break; 3309 CGF.EmitBlock(ThenBB); 3310 3311 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3312 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3313 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3314 auto IPriv = Privates.begin(); 3315 auto ILHS = LHSExprs.begin(); 3316 auto IRHS = RHSExprs.begin(); 3317 for (const Expr *E : ReductionOps) { 3318 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3319 cast<DeclRefExpr>(*IRHS)); 3320 ++IPriv; 3321 ++ILHS; 3322 ++IRHS; 3323 } 3324 }; 3325 llvm::Value *EndArgs[] = {ThreadId}; 3326 RegionCodeGenTy RCG(CodeGen); 3327 NVPTXActionTy Action( 3328 nullptr, llvm::None, 3329 OMPBuilder.getOrCreateRuntimeFunction( 3330 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3331 EndArgs); 3332 RCG.setAction(Action); 3333 RCG(CGF); 3334 // There is no need to emit line number for unconditional branch. 3335 (void)ApplyDebugLocation::CreateEmpty(CGF); 3336 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3337 } 3338 3339 const VarDecl * 3340 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3341 const VarDecl *NativeParam) const { 3342 if (!NativeParam->getType()->isReferenceType()) 3343 return NativeParam; 3344 QualType ArgType = NativeParam->getType(); 3345 QualifierCollector QC; 3346 const Type *NonQualTy = QC.strip(ArgType); 3347 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3348 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3349 if (Attr->getCaptureKind() == OMPC_map) { 3350 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3351 LangAS::opencl_global); 3352 } 3353 } 3354 ArgType = CGM.getContext().getPointerType(PointeeTy); 3355 QC.addRestrict(); 3356 enum { NVPTX_local_addr = 5 }; 3357 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3358 ArgType = QC.apply(CGM.getContext(), ArgType); 3359 if (isa<ImplicitParamDecl>(NativeParam)) 3360 return ImplicitParamDecl::Create( 3361 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3362 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3363 return ParmVarDecl::Create( 3364 CGM.getContext(), 3365 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3366 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3367 NativeParam->getIdentifier(), ArgType, 3368 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3369 } 3370 3371 Address 3372 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3373 const VarDecl *NativeParam, 3374 const VarDecl *TargetParam) const { 3375 assert(NativeParam != TargetParam && 3376 NativeParam->getType()->isReferenceType() && 3377 "Native arg must not be the same as target arg."); 3378 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3379 QualType NativeParamType = NativeParam->getType(); 3380 QualifierCollector QC; 3381 const Type *NonQualTy = QC.strip(NativeParamType); 3382 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3383 unsigned NativePointeeAddrSpace = 3384 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3385 QualType TargetTy = TargetParam->getType(); 3386 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3387 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3388 // First cast to generic. 3389 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3390 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3391 /*AddrSpace=*/0)); 3392 // Cast from generic to native address space. 3393 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3394 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3395 NativePointeeAddrSpace)); 3396 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3397 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3398 NativeParamType); 3399 return NativeParamAddr; 3400 } 3401 3402 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3403 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3404 ArrayRef<llvm::Value *> Args) const { 3405 SmallVector<llvm::Value *, 4> TargetArgs; 3406 TargetArgs.reserve(Args.size()); 3407 auto *FnType = OutlinedFn.getFunctionType(); 3408 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3409 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3410 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3411 break; 3412 } 3413 llvm::Type *TargetType = FnType->getParamType(I); 3414 llvm::Value *NativeArg = Args[I]; 3415 if (!TargetType->isPointerTy()) { 3416 TargetArgs.emplace_back(NativeArg); 3417 continue; 3418 } 3419 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3420 NativeArg, 3421 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3422 TargetArgs.emplace_back( 3423 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3424 } 3425 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3426 } 3427 3428 /// Emit function which wraps the outline parallel region 3429 /// and controls the arguments which are passed to this function. 3430 /// The wrapper ensures that the outlined function is called 3431 /// with the correct arguments when data is shared. 3432 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3433 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3434 ASTContext &Ctx = CGM.getContext(); 3435 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3436 3437 // Create a function that takes as argument the source thread. 3438 FunctionArgList WrapperArgs; 3439 QualType Int16QTy = 3440 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3441 QualType Int32QTy = 3442 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3443 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3444 /*Id=*/nullptr, Int16QTy, 3445 ImplicitParamDecl::Other); 3446 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3447 /*Id=*/nullptr, Int32QTy, 3448 ImplicitParamDecl::Other); 3449 WrapperArgs.emplace_back(&ParallelLevelArg); 3450 WrapperArgs.emplace_back(&WrapperArg); 3451 3452 const CGFunctionInfo &CGFI = 3453 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3454 3455 auto *Fn = llvm::Function::Create( 3456 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3457 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3458 3459 // Ensure we do not inline the function. This is trivially true for the ones 3460 // passed to __kmpc_fork_call but the ones calles in serialized regions 3461 // could be inlined. This is not a perfect but it is closer to the invariant 3462 // we want, namely, every data environment starts with a new function. 3463 // TODO: We should pass the if condition to the runtime function and do the 3464 // handling there. Much cleaner code. 3465 Fn->addFnAttr(llvm::Attribute::NoInline); 3466 3467 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3468 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3469 Fn->setDoesNotRecurse(); 3470 3471 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3472 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3473 D.getBeginLoc(), D.getBeginLoc()); 3474 3475 const auto *RD = CS.getCapturedRecordDecl(); 3476 auto CurField = RD->field_begin(); 3477 3478 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3479 /*Name=*/".zero.addr"); 3480 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 3481 // Get the array of arguments. 3482 SmallVector<llvm::Value *, 8> Args; 3483 3484 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3485 Args.emplace_back(ZeroAddr.getPointer()); 3486 3487 CGBuilderTy &Bld = CGF.Builder; 3488 auto CI = CS.capture_begin(); 3489 3490 // Use global memory for data sharing. 3491 // Handle passing of global args to workers. 3492 Address GlobalArgs = 3493 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3494 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3495 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3496 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3497 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3498 DataSharingArgs); 3499 3500 // Retrieve the shared variables from the list of references returned 3501 // by the runtime. Pass the variables to the outlined function. 3502 Address SharedArgListAddress = Address::invalid(); 3503 if (CS.capture_size() > 0 || 3504 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3505 SharedArgListAddress = CGF.EmitLoadOfPointer( 3506 GlobalArgs, CGF.getContext() 3507 .getPointerType(CGF.getContext().getPointerType( 3508 CGF.getContext().VoidPtrTy)) 3509 .castAs<PointerType>()); 3510 } 3511 unsigned Idx = 0; 3512 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3513 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3514 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3515 Src, CGF.SizeTy->getPointerTo()); 3516 llvm::Value *LB = CGF.EmitLoadOfScalar( 3517 TypedAddress, 3518 /*Volatile=*/false, 3519 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3520 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3521 Args.emplace_back(LB); 3522 ++Idx; 3523 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3524 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3525 Src, CGF.SizeTy->getPointerTo()); 3526 llvm::Value *UB = CGF.EmitLoadOfScalar( 3527 TypedAddress, 3528 /*Volatile=*/false, 3529 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3530 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3531 Args.emplace_back(UB); 3532 ++Idx; 3533 } 3534 if (CS.capture_size() > 0) { 3535 ASTContext &CGFContext = CGF.getContext(); 3536 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3537 QualType ElemTy = CurField->getType(); 3538 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3539 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3540 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3541 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3542 /*Volatile=*/false, 3543 CGFContext.getPointerType(ElemTy), 3544 CI->getLocation()); 3545 if (CI->capturesVariableByCopy() && 3546 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3547 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3548 CI->getLocation()); 3549 } 3550 Args.emplace_back(Arg); 3551 } 3552 } 3553 3554 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3555 CGF.FinishFunction(); 3556 return Fn; 3557 } 3558 3559 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3560 const Decl *D) { 3561 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3562 return; 3563 3564 assert(D && "Expected function or captured|block decl."); 3565 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3566 "Function is registered already."); 3567 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3568 "Team is set but not processed."); 3569 const Stmt *Body = nullptr; 3570 bool NeedToDelayGlobalization = false; 3571 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3572 Body = FD->getBody(); 3573 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3574 Body = BD->getBody(); 3575 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3576 Body = CD->getBody(); 3577 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3578 if (NeedToDelayGlobalization && 3579 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3580 return; 3581 } 3582 if (!Body) 3583 return; 3584 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3585 VarChecker.Visit(Body); 3586 const RecordDecl *GlobalizedVarsRecord = 3587 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3588 TeamAndReductions.first = nullptr; 3589 TeamAndReductions.second.clear(); 3590 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3591 VarChecker.getEscapedVariableLengthDecls(); 3592 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3593 return; 3594 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3595 I->getSecond().MappedParams = 3596 std::make_unique<CodeGenFunction::OMPMapVars>(); 3597 I->getSecond().EscapedParameters.insert( 3598 VarChecker.getEscapedParameters().begin(), 3599 VarChecker.getEscapedParameters().end()); 3600 I->getSecond().EscapedVariableLengthDecls.append( 3601 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3602 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3603 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3604 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3605 Data.insert(std::make_pair(VD, MappedVarData())); 3606 } 3607 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3608 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3609 VarChecker.Visit(Body); 3610 I->getSecond().SecondaryLocalVarData.emplace(); 3611 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3612 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3613 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3614 Data.insert(std::make_pair(VD, MappedVarData())); 3615 } 3616 } 3617 if (!NeedToDelayGlobalization) { 3618 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3619 struct GlobalizationScope final : EHScopeStack::Cleanup { 3620 GlobalizationScope() = default; 3621 3622 void Emit(CodeGenFunction &CGF, Flags flags) override { 3623 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3624 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3625 } 3626 }; 3627 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3628 } 3629 } 3630 3631 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3632 const VarDecl *VD) { 3633 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3634 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3635 auto AS = LangAS::Default; 3636 switch (A->getAllocatorType()) { 3637 // Use the default allocator here as by default local vars are 3638 // threadlocal. 3639 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3640 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3641 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3642 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3643 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3644 // Follow the user decision - use default allocation. 3645 return Address::invalid(); 3646 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3647 // TODO: implement aupport for user-defined allocators. 3648 return Address::invalid(); 3649 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3650 AS = LangAS::cuda_constant; 3651 break; 3652 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3653 AS = LangAS::cuda_shared; 3654 break; 3655 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3656 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3657 break; 3658 } 3659 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3660 auto *GV = new llvm::GlobalVariable( 3661 CGM.getModule(), VarTy, /*isConstant=*/false, 3662 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3663 VD->getName(), 3664 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3665 CGM.getContext().getTargetAddressSpace(AS)); 3666 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3667 GV->setAlignment(Align.getAsAlign()); 3668 return Address( 3669 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3670 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3671 VD->getType().getAddressSpace()))), 3672 Align); 3673 } 3674 3675 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3676 return Address::invalid(); 3677 3678 VD = VD->getCanonicalDecl(); 3679 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3680 if (I == FunctionGlobalizedDecls.end()) 3681 return Address::invalid(); 3682 auto VDI = I->getSecond().LocalVarData.find(VD); 3683 if (VDI != I->getSecond().LocalVarData.end()) 3684 return VDI->second.PrivateAddr; 3685 if (VD->hasAttrs()) { 3686 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3687 E(VD->attr_end()); 3688 IT != E; ++IT) { 3689 auto VDI = I->getSecond().LocalVarData.find( 3690 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3691 ->getCanonicalDecl()); 3692 if (VDI != I->getSecond().LocalVarData.end()) 3693 return VDI->second.PrivateAddr; 3694 } 3695 } 3696 3697 return Address::invalid(); 3698 } 3699 3700 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3701 FunctionGlobalizedDecls.erase(CGF.CurFn); 3702 CGOpenMPRuntime::functionFinished(CGF); 3703 } 3704 3705 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3706 CodeGenFunction &CGF, const OMPLoopDirective &S, 3707 OpenMPDistScheduleClauseKind &ScheduleKind, 3708 llvm::Value *&Chunk) const { 3709 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3710 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3711 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3712 Chunk = CGF.EmitScalarConversion( 3713 RT.getGPUNumThreads(CGF), 3714 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3715 S.getIterationVariable()->getType(), S.getBeginLoc()); 3716 return; 3717 } 3718 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3719 CGF, S, ScheduleKind, Chunk); 3720 } 3721 3722 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3723 CodeGenFunction &CGF, const OMPLoopDirective &S, 3724 OpenMPScheduleClauseKind &ScheduleKind, 3725 const Expr *&ChunkExpr) const { 3726 ScheduleKind = OMPC_SCHEDULE_static; 3727 // Chunk size is 1 in this case. 3728 llvm::APInt ChunkSize(32, 1); 3729 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3730 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3731 SourceLocation()); 3732 } 3733 3734 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3735 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3736 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3737 " Expected target-based directive."); 3738 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3739 for (const CapturedStmt::Capture &C : CS->captures()) { 3740 // Capture variables captured by reference in lambdas for target-based 3741 // directives. 3742 if (!C.capturesVariable()) 3743 continue; 3744 const VarDecl *VD = C.getCapturedVar(); 3745 const auto *RD = VD->getType() 3746 .getCanonicalType() 3747 .getNonReferenceType() 3748 ->getAsCXXRecordDecl(); 3749 if (!RD || !RD->isLambda()) 3750 continue; 3751 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3752 LValue VDLVal; 3753 if (VD->getType().getCanonicalType()->isReferenceType()) 3754 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3755 else 3756 VDLVal = CGF.MakeAddrLValue( 3757 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3758 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3759 FieldDecl *ThisCapture = nullptr; 3760 RD->getCaptureFields(Captures, ThisCapture); 3761 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3762 LValue ThisLVal = 3763 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3764 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3765 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3766 } 3767 for (const LambdaCapture &LC : RD->captures()) { 3768 if (LC.getCaptureKind() != LCK_ByRef) 3769 continue; 3770 const VarDecl *VD = LC.getCapturedVar(); 3771 if (!CS->capturesVariable(VD)) 3772 continue; 3773 auto It = Captures.find(VD); 3774 assert(It != Captures.end() && "Found lambda capture without field."); 3775 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3776 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3777 if (VD->getType().getCanonicalType()->isReferenceType()) 3778 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3779 VD->getType().getCanonicalType()) 3780 .getAddress(CGF); 3781 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3782 } 3783 } 3784 } 3785 3786 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3787 LangAS &AS) { 3788 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3789 return false; 3790 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3791 switch(A->getAllocatorType()) { 3792 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3793 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3794 // Not supported, fallback to the default mem space. 3795 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3796 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3797 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3798 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3799 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3800 AS = LangAS::Default; 3801 return true; 3802 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3803 AS = LangAS::cuda_constant; 3804 return true; 3805 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3806 AS = LangAS::cuda_shared; 3807 return true; 3808 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3809 llvm_unreachable("Expected predefined allocator for the variables with the " 3810 "static storage."); 3811 } 3812 return false; 3813 } 3814 3815 // Get current CudaArch and ignore any unknown values 3816 static CudaArch getCudaArch(CodeGenModule &CGM) { 3817 if (!CGM.getTarget().hasFeature("ptx")) 3818 return CudaArch::UNKNOWN; 3819 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3820 if (Feature.getValue()) { 3821 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3822 if (Arch != CudaArch::UNKNOWN) 3823 return Arch; 3824 } 3825 } 3826 return CudaArch::UNKNOWN; 3827 } 3828 3829 /// Check to see if target architecture supports unified addressing which is 3830 /// a restriction for OpenMP requires clause "unified_shared_memory". 3831 void CGOpenMPRuntimeGPU::processRequiresDirective( 3832 const OMPRequiresDecl *D) { 3833 for (const OMPClause *Clause : D->clauselists()) { 3834 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3835 CudaArch Arch = getCudaArch(CGM); 3836 switch (Arch) { 3837 case CudaArch::SM_20: 3838 case CudaArch::SM_21: 3839 case CudaArch::SM_30: 3840 case CudaArch::SM_32: 3841 case CudaArch::SM_35: 3842 case CudaArch::SM_37: 3843 case CudaArch::SM_50: 3844 case CudaArch::SM_52: 3845 case CudaArch::SM_53: { 3846 SmallString<256> Buffer; 3847 llvm::raw_svector_ostream Out(Buffer); 3848 Out << "Target architecture " << CudaArchToString(Arch) 3849 << " does not support unified addressing"; 3850 CGM.Error(Clause->getBeginLoc(), Out.str()); 3851 return; 3852 } 3853 case CudaArch::SM_60: 3854 case CudaArch::SM_61: 3855 case CudaArch::SM_62: 3856 case CudaArch::SM_70: 3857 case CudaArch::SM_72: 3858 case CudaArch::SM_75: 3859 case CudaArch::SM_80: 3860 case CudaArch::SM_86: 3861 case CudaArch::GFX600: 3862 case CudaArch::GFX601: 3863 case CudaArch::GFX602: 3864 case CudaArch::GFX700: 3865 case CudaArch::GFX701: 3866 case CudaArch::GFX702: 3867 case CudaArch::GFX703: 3868 case CudaArch::GFX704: 3869 case CudaArch::GFX705: 3870 case CudaArch::GFX801: 3871 case CudaArch::GFX802: 3872 case CudaArch::GFX803: 3873 case CudaArch::GFX805: 3874 case CudaArch::GFX810: 3875 case CudaArch::GFX900: 3876 case CudaArch::GFX902: 3877 case CudaArch::GFX904: 3878 case CudaArch::GFX906: 3879 case CudaArch::GFX908: 3880 case CudaArch::GFX909: 3881 case CudaArch::GFX90a: 3882 case CudaArch::GFX90c: 3883 case CudaArch::GFX1010: 3884 case CudaArch::GFX1011: 3885 case CudaArch::GFX1012: 3886 case CudaArch::GFX1013: 3887 case CudaArch::GFX1030: 3888 case CudaArch::GFX1031: 3889 case CudaArch::GFX1032: 3890 case CudaArch::GFX1033: 3891 case CudaArch::GFX1034: 3892 case CudaArch::GFX1035: 3893 case CudaArch::UNUSED: 3894 case CudaArch::UNKNOWN: 3895 break; 3896 case CudaArch::LAST: 3897 llvm_unreachable("Unexpected Cuda arch."); 3898 } 3899 } 3900 } 3901 CGOpenMPRuntime::processRequiresDirective(D); 3902 } 3903 3904 void CGOpenMPRuntimeGPU::clear() { 3905 3906 if (!TeamsReductions.empty()) { 3907 ASTContext &C = CGM.getContext(); 3908 RecordDecl *StaticRD = C.buildImplicitRecord( 3909 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3910 StaticRD->startDefinition(); 3911 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3912 QualType RecTy = C.getRecordType(TeamReductionRec); 3913 auto *Field = FieldDecl::Create( 3914 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3915 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3916 /*BW=*/nullptr, /*Mutable=*/false, 3917 /*InitStyle=*/ICIS_NoInit); 3918 Field->setAccess(AS_public); 3919 StaticRD->addDecl(Field); 3920 } 3921 StaticRD->completeDefinition(); 3922 QualType StaticTy = C.getRecordType(StaticRD); 3923 llvm::Type *LLVMReductionsBufferTy = 3924 CGM.getTypes().ConvertTypeForMem(StaticTy); 3925 // FIXME: nvlink does not handle weak linkage correctly (object with the 3926 // different size are reported as erroneous). 3927 // Restore CommonLinkage as soon as nvlink is fixed. 3928 auto *GV = new llvm::GlobalVariable( 3929 CGM.getModule(), LLVMReductionsBufferTy, 3930 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3931 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3932 "_openmp_teams_reductions_buffer_$_"); 3933 KernelTeamsReductionPtr->setInitializer( 3934 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3935 CGM.VoidPtrTy)); 3936 } 3937 CGOpenMPRuntime::clear(); 3938 } 3939