1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129   if (!Fn)
1130     return;
1131 
1132   llvm::Module &M = CGM.getModule();
1133   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134 
1135   // Get "nvvm.annotations" metadata node.
1136   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137 
1138   llvm::Metadata *MDVals[] = {
1139       llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140       llvm::ConstantAsMetadata::get(
1141           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142   // Append metadata to nvvm.annotations.
1143   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144 
1145   // Add a function attribute for the kernel.
1146   Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147 }
1148 
1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150     const OMPExecutableDirective &D, StringRef ParentName,
1151     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153   if (!IsOffloadEntry) // Nothing to do.
1154     return;
1155 
1156   assert(!ParentName.empty() && "Invalid target region parent name!");
1157 
1158   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159   if (Mode)
1160     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161                    CodeGen);
1162   else
1163     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164                       CodeGen);
1165 
1166   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167 }
1168 
1169 namespace {
1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1171 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1172 enum ModeFlagsTy : unsigned {
1173   /// Bit set to 1 when in SPMD mode.
1174   KMP_IDENT_SPMD_MODE = 0x01,
1175   /// Bit set to 1 when a simplified runtime is used.
1176   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1178 };
1179 
1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181 static const ModeFlagsTy UndefinedMode =
1182     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183 } // anonymous namespace
1184 
1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186   switch (getExecutionMode()) {
1187   case EM_SPMD:
1188     if (requiresFullRuntime())
1189       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191   case EM_NonSPMD:
1192     assert(requiresFullRuntime() && "Expected full runtime.");
1193     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194   case EM_Unknown:
1195     return UndefinedMode;
1196   }
1197   llvm_unreachable("Unknown flags are requested.");
1198 }
1199 
1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201     : CGOpenMPRuntime(CGM, "_", "$") {
1202   if (!CGM.getLangOpts().OpenMPIsDevice)
1203     llvm_unreachable("OpenMP can only handle device code.");
1204 
1205   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206   if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
1207     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1208                                 "__omp_rtl_debug_kind");
1209     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1210                                 "__omp_rtl_assume_teams_oversubscription");
1211     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1212                                 "__omp_rtl_assume_threads_oversubscription");
1213     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
1214                                 "__omp_rtl_assume_no_thread_state");
1215   }
1216 }
1217 
1218 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1219                                               ProcBindKind ProcBind,
1220                                               SourceLocation Loc) {
1221   // Do nothing in case of SPMD mode and L0 parallel.
1222   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1223     return;
1224 
1225   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1226 }
1227 
1228 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1229                                                 llvm::Value *NumThreads,
1230                                                 SourceLocation Loc) {
1231   // Nothing to do.
1232 }
1233 
1234 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1235                                               const Expr *NumTeams,
1236                                               const Expr *ThreadLimit,
1237                                               SourceLocation Loc) {}
1238 
1239 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1240     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1241     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1242   // Emit target region as a standalone region.
1243   class NVPTXPrePostActionTy : public PrePostActionTy {
1244     bool &IsInParallelRegion;
1245     bool PrevIsInParallelRegion;
1246 
1247   public:
1248     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1249         : IsInParallelRegion(IsInParallelRegion) {}
1250     void Enter(CodeGenFunction &CGF) override {
1251       PrevIsInParallelRegion = IsInParallelRegion;
1252       IsInParallelRegion = true;
1253     }
1254     void Exit(CodeGenFunction &CGF) override {
1255       IsInParallelRegion = PrevIsInParallelRegion;
1256     }
1257   } Action(IsInParallelRegion);
1258   CodeGen.setAction(Action);
1259   bool PrevIsInTTDRegion = IsInTTDRegion;
1260   IsInTTDRegion = false;
1261   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1262   IsInTargetMasterThreadRegion = false;
1263   auto *OutlinedFun =
1264       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1265           D, ThreadIDVar, InnermostKind, CodeGen));
1266   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1267   IsInTTDRegion = PrevIsInTTDRegion;
1268   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1269       !IsInParallelRegion) {
1270     llvm::Function *WrapperFun =
1271         createParallelDataSharingWrapper(OutlinedFun, D);
1272     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1273   }
1274 
1275   return OutlinedFun;
1276 }
1277 
1278 /// Get list of lastprivate variables from the teams distribute ... or
1279 /// teams {distribute ...} directives.
1280 static void
1281 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1282                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1283   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1284          "expected teams directive.");
1285   const OMPExecutableDirective *Dir = &D;
1286   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1287     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1288             Ctx,
1289             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1290                 /*IgnoreCaptured=*/true))) {
1291       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1292       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1293         Dir = nullptr;
1294     }
1295   }
1296   if (!Dir)
1297     return;
1298   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1299     for (const Expr *E : C->getVarRefs())
1300       Vars.push_back(getPrivateItem(E));
1301   }
1302 }
1303 
1304 /// Get list of reduction variables from the teams ... directives.
1305 static void
1306 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1307                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1308   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1309          "expected teams directive.");
1310   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1311     for (const Expr *E : C->privates())
1312       Vars.push_back(getPrivateItem(E));
1313   }
1314 }
1315 
1316 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1317     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1318     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1319   SourceLocation Loc = D.getBeginLoc();
1320 
1321   const RecordDecl *GlobalizedRD = nullptr;
1322   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1323   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1324   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1325   // Globalize team reductions variable unconditionally in all modes.
1326   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1327     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1328   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1329     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1330     if (!LastPrivatesReductions.empty()) {
1331       GlobalizedRD = ::buildRecordForGlobalizedVars(
1332           CGM.getContext(), llvm::None, LastPrivatesReductions,
1333           MappedDeclsFields, WarpSize);
1334     }
1335   } else if (!LastPrivatesReductions.empty()) {
1336     assert(!TeamAndReductions.first &&
1337            "Previous team declaration is not expected.");
1338     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1339     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1340   }
1341 
1342   // Emit target region as a standalone region.
1343   class NVPTXPrePostActionTy : public PrePostActionTy {
1344     SourceLocation &Loc;
1345     const RecordDecl *GlobalizedRD;
1346     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1347         &MappedDeclsFields;
1348 
1349   public:
1350     NVPTXPrePostActionTy(
1351         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1352         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1353             &MappedDeclsFields)
1354         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1355           MappedDeclsFields(MappedDeclsFields) {}
1356     void Enter(CodeGenFunction &CGF) override {
1357       auto &Rt =
1358           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1359       if (GlobalizedRD) {
1360         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1361         I->getSecond().MappedParams =
1362             std::make_unique<CodeGenFunction::OMPMapVars>();
1363         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1364         for (const auto &Pair : MappedDeclsFields) {
1365           assert(Pair.getFirst()->isCanonicalDecl() &&
1366                  "Expected canonical declaration");
1367           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1368         }
1369       }
1370       Rt.emitGenericVarsProlog(CGF, Loc);
1371     }
1372     void Exit(CodeGenFunction &CGF) override {
1373       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1374           .emitGenericVarsEpilog(CGF);
1375     }
1376   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1377   CodeGen.setAction(Action);
1378   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1379       D, ThreadIDVar, InnermostKind, CodeGen);
1380 
1381   return OutlinedFun;
1382 }
1383 
1384 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1385                                                  SourceLocation Loc,
1386                                                  bool WithSPMDCheck) {
1387   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1388       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1389     return;
1390 
1391   CGBuilderTy &Bld = CGF.Builder;
1392 
1393   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1394   if (I == FunctionGlobalizedDecls.end())
1395     return;
1396 
1397   for (auto &Rec : I->getSecond().LocalVarData) {
1398     const auto *VD = cast<VarDecl>(Rec.first);
1399     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1400     QualType VarTy = VD->getType();
1401 
1402     // Get the local allocation of a firstprivate variable before sharing
1403     llvm::Value *ParValue;
1404     if (EscapedParam) {
1405       LValue ParLVal =
1406           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1407       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1408     }
1409 
1410     // Allocate space for the variable to be globalized
1411     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1412     llvm::CallBase *VoidPtr =
1413         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1414                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1415                             AllocArgs, VD->getName());
1416     // FIXME: We should use the variables actual alignment as an argument.
1417     VoidPtr->addRetAttr(llvm::Attribute::get(
1418         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1419         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1420 
1421     // Cast the void pointer and get the address of the globalized variable.
1422     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1423     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1424         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1425     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1426     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1427     Rec.second.GlobalizedVal = VoidPtr;
1428 
1429     // Assign the local allocation to the newly globalized location.
1430     if (EscapedParam) {
1431       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1432       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1433     }
1434     if (auto *DI = CGF.getDebugInfo())
1435       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1436   }
1437   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1438     // Use actual memory size of the VLA object including the padding
1439     // for alignment purposes.
1440     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1441     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1442     Size = Bld.CreateNUWAdd(
1443         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1444     llvm::Value *AlignVal =
1445         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1446 
1447     Size = Bld.CreateUDiv(Size, AlignVal);
1448     Size = Bld.CreateNUWMul(Size, AlignVal);
1449 
1450     // Allocate space for this VLA object to be globalized.
1451     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1452     llvm::CallBase *VoidPtr =
1453         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1454                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1455                             AllocArgs, VD->getName());
1456     VoidPtr->addRetAttr(
1457         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1458                              CGM.getContext().getTargetInfo().getNewAlign()));
1459 
1460     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1461         std::pair<llvm::Value *, llvm::Value *>(
1462             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1463     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1464                                      CGM.getContext().getDeclAlign(VD),
1465                                      AlignmentSource::Decl);
1466     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1467                                             Base.getAddress(CGF));
1468   }
1469   I->getSecond().MappedParams->apply(CGF);
1470 }
1471 
1472 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1473                                                  bool WithSPMDCheck) {
1474   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1475       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1476     return;
1477 
1478   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1479   if (I != FunctionGlobalizedDecls.end()) {
1480     // Deallocate the memory for each globalized VLA object
1481     for (auto AddrSizePair :
1482          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1483       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1484                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1485                           {AddrSizePair.first, AddrSizePair.second});
1486     }
1487     // Deallocate the memory for each globalized value
1488     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1489       const auto *VD = cast<VarDecl>(Rec.first);
1490       I->getSecond().MappedParams->restore(CGF);
1491 
1492       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1493                                  CGF.getTypeSize(VD->getType())};
1494       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1495                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1496                           FreeArgs);
1497     }
1498   }
1499 }
1500 
1501 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1502                                          const OMPExecutableDirective &D,
1503                                          SourceLocation Loc,
1504                                          llvm::Function *OutlinedFn,
1505                                          ArrayRef<llvm::Value *> CapturedVars) {
1506   if (!CGF.HaveInsertPoint())
1507     return;
1508 
1509   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1510                                                       /*Name=*/".zero.addr");
1511   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1512   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1513   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1514   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1515   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1516   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1517 }
1518 
1519 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1520                                           SourceLocation Loc,
1521                                           llvm::Function *OutlinedFn,
1522                                           ArrayRef<llvm::Value *> CapturedVars,
1523                                           const Expr *IfCond,
1524                                           llvm::Value *NumThreads) {
1525   if (!CGF.HaveInsertPoint())
1526     return;
1527 
1528   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1529                         NumThreads](CodeGenFunction &CGF,
1530                                     PrePostActionTy &Action) {
1531     CGBuilderTy &Bld = CGF.Builder;
1532     llvm::Value *NumThreadsVal = NumThreads;
1533     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1534     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1535     if (WFn)
1536       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1537     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1538 
1539     // Create a private scope that will globalize the arguments
1540     // passed from the outside of the target region.
1541     // TODO: Is that needed?
1542     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1543 
1544     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1545         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1546         "captured_vars_addrs");
1547     // There's something to share.
1548     if (!CapturedVars.empty()) {
1549       // Prepare for parallel region. Indicate the outlined function.
1550       ASTContext &Ctx = CGF.getContext();
1551       unsigned Idx = 0;
1552       for (llvm::Value *V : CapturedVars) {
1553         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1554         llvm::Value *PtrV;
1555         if (V->getType()->isIntegerTy())
1556           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1557         else
1558           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1559         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1560                               Ctx.getPointerType(Ctx.VoidPtrTy));
1561         ++Idx;
1562       }
1563     }
1564 
1565     llvm::Value *IfCondVal = nullptr;
1566     if (IfCond)
1567       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1568                                     /* isSigned */ false);
1569     else
1570       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1571 
1572     if (!NumThreadsVal)
1573       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1574     else
1575       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1576 
1577       assert(IfCondVal && "Expected a value");
1578     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1579     llvm::Value *Args[] = {
1580         RTLoc,
1581         getThreadID(CGF, Loc),
1582         IfCondVal,
1583         NumThreadsVal,
1584         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1585         FnPtr,
1586         ID,
1587         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1588                                    CGF.VoidPtrPtrTy),
1589         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1590     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1591                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1592                         Args);
1593   };
1594 
1595   RegionCodeGenTy RCG(ParallelGen);
1596   RCG(CGF);
1597 }
1598 
1599 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1600   // Always emit simple barriers!
1601   if (!CGF.HaveInsertPoint())
1602     return;
1603   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1604   // This function does not use parameters, so we can emit just default values.
1605   llvm::Value *Args[] = {
1606       llvm::ConstantPointerNull::get(
1607           cast<llvm::PointerType>(getIdentTyPointerTy())),
1608       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1609   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1610                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1611                       Args);
1612 }
1613 
1614 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1615                                            SourceLocation Loc,
1616                                            OpenMPDirectiveKind Kind, bool,
1617                                            bool) {
1618   // Always emit simple barriers!
1619   if (!CGF.HaveInsertPoint())
1620     return;
1621   // Build call __kmpc_cancel_barrier(loc, thread_id);
1622   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1623   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1624                          getThreadID(CGF, Loc)};
1625 
1626   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1627                           CGM.getModule(), OMPRTL___kmpc_barrier),
1628                       Args);
1629 }
1630 
1631 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1632     CodeGenFunction &CGF, StringRef CriticalName,
1633     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1634     const Expr *Hint) {
1635   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1636   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1637   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1638   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1639   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1640 
1641   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1642 
1643   // Get the mask of active threads in the warp.
1644   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1645       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1646   // Fetch team-local id of the thread.
1647   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1648 
1649   // Get the width of the team.
1650   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1651 
1652   // Initialize the counter variable for the loop.
1653   QualType Int32Ty =
1654       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1655   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1656   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1657   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1658                         /*isInit=*/true);
1659 
1660   // Block checks if loop counter exceeds upper bound.
1661   CGF.EmitBlock(LoopBB);
1662   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1664   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1665 
1666   // Block tests which single thread should execute region, and which threads
1667   // should go straight to synchronisation point.
1668   CGF.EmitBlock(TestBB);
1669   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1670   llvm::Value *CmpThreadToCounter =
1671       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1672   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1673 
1674   // Block emits the body of the critical region.
1675   CGF.EmitBlock(BodyBB);
1676 
1677   // Output the critical statement.
1678   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1679                                       Hint);
1680 
1681   // After the body surrounded by the critical region, the single executing
1682   // thread will jump to the synchronisation point.
1683   // Block waits for all threads in current team to finish then increments the
1684   // counter variable and returns to the loop.
1685   CGF.EmitBlock(SyncBB);
1686   // Reconverge active threads in the warp.
1687   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1688                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1689                             Mask);
1690 
1691   llvm::Value *IncCounterVal =
1692       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1693   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1694   CGF.EmitBranch(LoopBB);
1695 
1696   // Block that is reached when  all threads in the team complete the region.
1697   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1698 }
1699 
1700 /// Cast value to the specified type.
1701 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1702                                     QualType ValTy, QualType CastTy,
1703                                     SourceLocation Loc) {
1704   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1705          "Cast type must sized.");
1706   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1707          "Val type must sized.");
1708   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1709   if (ValTy == CastTy)
1710     return Val;
1711   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1712       CGF.getContext().getTypeSizeInChars(CastTy))
1713     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1714   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1715     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1716                                      CastTy->hasSignedIntegerRepresentation());
1717   Address CastItem = CGF.CreateMemTemp(CastTy);
1718   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1719       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1720       Val->getType());
1721   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1722                         LValueBaseInfo(AlignmentSource::Type),
1723                         TBAAAccessInfo());
1724   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1725                               LValueBaseInfo(AlignmentSource::Type),
1726                               TBAAAccessInfo());
1727 }
1728 
1729 /// This function creates calls to one of two shuffle functions to copy
1730 /// variables between lanes in a warp.
1731 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1732                                                  llvm::Value *Elem,
1733                                                  QualType ElemType,
1734                                                  llvm::Value *Offset,
1735                                                  SourceLocation Loc) {
1736   CodeGenModule &CGM = CGF.CGM;
1737   CGBuilderTy &Bld = CGF.Builder;
1738   CGOpenMPRuntimeGPU &RT =
1739       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1740   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1741 
1742   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1743   assert(Size.getQuantity() <= 8 &&
1744          "Unsupported bitwidth in shuffle instruction.");
1745 
1746   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1747                                   ? OMPRTL___kmpc_shuffle_int32
1748                                   : OMPRTL___kmpc_shuffle_int64;
1749 
1750   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1751   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1752       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1753   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1754   llvm::Value *WarpSize =
1755       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1756 
1757   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1758       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1759       {ElemCast, Offset, WarpSize});
1760 
1761   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1762 }
1763 
1764 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1765                             Address DestAddr, QualType ElemType,
1766                             llvm::Value *Offset, SourceLocation Loc) {
1767   CGBuilderTy &Bld = CGF.Builder;
1768 
1769   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1770   // Create the loop over the big sized data.
1771   // ptr = (void*)Elem;
1772   // ptrEnd = (void*) Elem + 1;
1773   // Step = 8;
1774   // while (ptr + Step < ptrEnd)
1775   //   shuffle((int64_t)*ptr);
1776   // Step = 4;
1777   // while (ptr + Step < ptrEnd)
1778   //   shuffle((int32_t)*ptr);
1779   // ...
1780   Address ElemPtr = DestAddr;
1781   Address Ptr = SrcAddr;
1782   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1783       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1784   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1785     if (Size < CharUnits::fromQuantity(IntSize))
1786       continue;
1787     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1788         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1789         /*Signed=*/1);
1790     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1791     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1792                                                   IntTy);
1793     ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1794         ElemPtr, IntTy->getPointerTo(), IntTy);
1795     if (Size.getQuantity() / IntSize > 1) {
1796       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1797       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1798       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1799       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1800       CGF.EmitBlock(PreCondBB);
1801       llvm::PHINode *PhiSrc =
1802           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1803       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1804       llvm::PHINode *PhiDest =
1805           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1806       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1807       Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1808       ElemPtr =
1809           Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1810       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1811           CGF.Int8Ty, PtrEnd.getPointer(),
1812           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1813                                                   CGF.VoidPtrTy));
1814       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1815                        ThenBB, ExitBB);
1816       CGF.EmitBlock(ThenBB);
1817       llvm::Value *Res = createRuntimeShuffleFunction(
1818           CGF,
1819           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1820                                LValueBaseInfo(AlignmentSource::Type),
1821                                TBAAAccessInfo()),
1822           IntType, Offset, Loc);
1823       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1824                             LValueBaseInfo(AlignmentSource::Type),
1825                             TBAAAccessInfo());
1826       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1827       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1828       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1829       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1830       CGF.EmitBranch(PreCondBB);
1831       CGF.EmitBlock(ExitBB);
1832     } else {
1833       llvm::Value *Res = createRuntimeShuffleFunction(
1834           CGF,
1835           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1836                                LValueBaseInfo(AlignmentSource::Type),
1837                                TBAAAccessInfo()),
1838           IntType, Offset, Loc);
1839       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1840                             LValueBaseInfo(AlignmentSource::Type),
1841                             TBAAAccessInfo());
1842       Ptr = Bld.CreateConstGEP(Ptr, 1);
1843       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1844     }
1845     Size = Size % IntSize;
1846   }
1847 }
1848 
1849 namespace {
1850 enum CopyAction : unsigned {
1851   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1852   // the warp using shuffle instructions.
1853   RemoteLaneToThread,
1854   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1855   ThreadCopy,
1856   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1857   ThreadToScratchpad,
1858   // ScratchpadToThread: Copy from a scratchpad array in global memory
1859   // containing team-reduced data to a thread's stack.
1860   ScratchpadToThread,
1861 };
1862 } // namespace
1863 
1864 struct CopyOptionsTy {
1865   llvm::Value *RemoteLaneOffset;
1866   llvm::Value *ScratchpadIndex;
1867   llvm::Value *ScratchpadWidth;
1868 };
1869 
1870 /// Emit instructions to copy a Reduce list, which contains partially
1871 /// aggregated values, in the specified direction.
1872 static void emitReductionListCopy(
1873     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1874     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1875     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1876 
1877   CodeGenModule &CGM = CGF.CGM;
1878   ASTContext &C = CGM.getContext();
1879   CGBuilderTy &Bld = CGF.Builder;
1880 
1881   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1882   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1883   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1884 
1885   // Iterates, element-by-element, through the source Reduce list and
1886   // make a copy.
1887   unsigned Idx = 0;
1888   unsigned Size = Privates.size();
1889   for (const Expr *Private : Privates) {
1890     Address SrcElementAddr = Address::invalid();
1891     Address DestElementAddr = Address::invalid();
1892     Address DestElementPtrAddr = Address::invalid();
1893     // Should we shuffle in an element from a remote lane?
1894     bool ShuffleInElement = false;
1895     // Set to true to update the pointer in the dest Reduce list to a
1896     // newly created element.
1897     bool UpdateDestListPtr = false;
1898     // Increment the src or dest pointer to the scratchpad, for each
1899     // new element.
1900     bool IncrScratchpadSrc = false;
1901     bool IncrScratchpadDest = false;
1902 
1903     switch (Action) {
1904     case RemoteLaneToThread: {
1905       // Step 1.1: Get the address for the src element in the Reduce list.
1906       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1907       SrcElementAddr = CGF.EmitLoadOfPointer(
1908           SrcElementPtrAddr,
1909           C.getPointerType(Private->getType())->castAs<PointerType>());
1910 
1911       // Step 1.2: Create a temporary to store the element in the destination
1912       // Reduce list.
1913       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1914       DestElementAddr =
1915           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1916       ShuffleInElement = true;
1917       UpdateDestListPtr = true;
1918       break;
1919     }
1920     case ThreadCopy: {
1921       // Step 1.1: Get the address for the src element in the Reduce list.
1922       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1923       SrcElementAddr = CGF.EmitLoadOfPointer(
1924           SrcElementPtrAddr,
1925           C.getPointerType(Private->getType())->castAs<PointerType>());
1926 
1927       // Step 1.2: Get the address for dest element.  The destination
1928       // element has already been created on the thread's stack.
1929       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1930       DestElementAddr = CGF.EmitLoadOfPointer(
1931           DestElementPtrAddr,
1932           C.getPointerType(Private->getType())->castAs<PointerType>());
1933       break;
1934     }
1935     case ThreadToScratchpad: {
1936       // Step 1.1: Get the address for the src element in the Reduce list.
1937       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1938       SrcElementAddr = CGF.EmitLoadOfPointer(
1939           SrcElementPtrAddr,
1940           C.getPointerType(Private->getType())->castAs<PointerType>());
1941 
1942       // Step 1.2: Get the address for dest element:
1943       // address = base + index * ElementSizeInChars.
1944       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1945       llvm::Value *CurrentOffset =
1946           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1947       llvm::Value *ScratchPadElemAbsolutePtrVal =
1948           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1949       ScratchPadElemAbsolutePtrVal =
1950           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1951       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1952                                 C.getTypeAlignInChars(Private->getType()));
1953       IncrScratchpadDest = true;
1954       break;
1955     }
1956     case ScratchpadToThread: {
1957       // Step 1.1: Get the address for the src element in the scratchpad.
1958       // address = base + index * ElementSizeInChars.
1959       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1960       llvm::Value *CurrentOffset =
1961           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1962       llvm::Value *ScratchPadElemAbsolutePtrVal =
1963           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1964       ScratchPadElemAbsolutePtrVal =
1965           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1966       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1967                                C.getTypeAlignInChars(Private->getType()));
1968       IncrScratchpadSrc = true;
1969 
1970       // Step 1.2: Create a temporary to store the element in the destination
1971       // Reduce list.
1972       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1973       DestElementAddr =
1974           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1975       UpdateDestListPtr = true;
1976       break;
1977     }
1978     }
1979 
1980     // Regardless of src and dest of copy, we emit the load of src
1981     // element as this is required in all directions
1982     SrcElementAddr = Bld.CreateElementBitCast(
1983         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1984     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1985                                                SrcElementAddr.getElementType());
1986 
1987     // Now that all active lanes have read the element in the
1988     // Reduce list, shuffle over the value from the remote lane.
1989     if (ShuffleInElement) {
1990       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1991                       RemoteLaneOffset, Private->getExprLoc());
1992     } else {
1993       switch (CGF.getEvaluationKind(Private->getType())) {
1994       case TEK_Scalar: {
1995         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1996             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1997             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1998             TBAAAccessInfo());
1999         // Store the source element value to the dest element address.
2000         CGF.EmitStoreOfScalar(
2001             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2002             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2003         break;
2004       }
2005       case TEK_Complex: {
2006         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2007             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2008             Private->getExprLoc());
2009         CGF.EmitStoreOfComplex(
2010             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2011             /*isInit=*/false);
2012         break;
2013       }
2014       case TEK_Aggregate:
2015         CGF.EmitAggregateCopy(
2016             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2017             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2018             Private->getType(), AggValueSlot::DoesNotOverlap);
2019         break;
2020       }
2021     }
2022 
2023     // Step 3.1: Modify reference in dest Reduce list as needed.
2024     // Modifying the reference in Reduce list to point to the newly
2025     // created element.  The element is live in the current function
2026     // scope and that of functions it invokes (i.e., reduce_function).
2027     // RemoteReduceData[i] = (void*)&RemoteElem
2028     if (UpdateDestListPtr) {
2029       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2030                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2031                             DestElementPtrAddr, /*Volatile=*/false,
2032                             C.VoidPtrTy);
2033     }
2034 
2035     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2036     // address of the next element in scratchpad memory, unless we're currently
2037     // processing the last one.  Memory alignment is also taken care of here.
2038     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2039       llvm::Value *ScratchpadBasePtr =
2040           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2041       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2042       ScratchpadBasePtr = Bld.CreateNUWAdd(
2043           ScratchpadBasePtr,
2044           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2045 
2046       // Take care of global memory alignment for performance
2047       ScratchpadBasePtr = Bld.CreateNUWSub(
2048           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2049       ScratchpadBasePtr = Bld.CreateUDiv(
2050           ScratchpadBasePtr,
2051           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2052       ScratchpadBasePtr = Bld.CreateNUWAdd(
2053           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2054       ScratchpadBasePtr = Bld.CreateNUWMul(
2055           ScratchpadBasePtr,
2056           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2057 
2058       if (IncrScratchpadDest)
2059         DestBase =
2060             Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2061       else /* IncrScratchpadSrc = true */
2062         SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2063     }
2064 
2065     ++Idx;
2066   }
2067 }
2068 
2069 /// This function emits a helper that gathers Reduce lists from the first
2070 /// lane of every active warp to lanes in the first warp.
2071 ///
2072 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2073 ///   shared smem[warp_size];
2074 ///   For all data entries D in reduce_data:
2075 ///     sync
2076 ///     If (I am the first lane in each warp)
2077 ///       Copy my local D to smem[warp_id]
2078 ///     sync
2079 ///     if (I am the first warp)
2080 ///       Copy smem[thread_id] to my local D
2081 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2082                                               ArrayRef<const Expr *> Privates,
2083                                               QualType ReductionArrayTy,
2084                                               SourceLocation Loc) {
2085   ASTContext &C = CGM.getContext();
2086   llvm::Module &M = CGM.getModule();
2087 
2088   // ReduceList: thread local Reduce list.
2089   // At the stage of the computation when this function is called, partially
2090   // aggregated values reside in the first lane of every active warp.
2091   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2092                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2093   // NumWarps: number of warps active in the parallel region.  This could
2094   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2095   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2096                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2097                                 ImplicitParamDecl::Other);
2098   FunctionArgList Args;
2099   Args.push_back(&ReduceListArg);
2100   Args.push_back(&NumWarpsArg);
2101 
2102   const CGFunctionInfo &CGFI =
2103       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2104   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2105                                     llvm::GlobalValue::InternalLinkage,
2106                                     "_omp_reduction_inter_warp_copy_func", &M);
2107   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2108   Fn->setDoesNotRecurse();
2109   CodeGenFunction CGF(CGM);
2110   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2111 
2112   CGBuilderTy &Bld = CGF.Builder;
2113 
2114   // This array is used as a medium to transfer, one reduce element at a time,
2115   // the data from the first lane of every warp to lanes in the first warp
2116   // in order to perform the final step of a reduction in a parallel region
2117   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2118   // for reduced latency, as well as to have a distinct copy for concurrently
2119   // executing target regions.  The array is declared with common linkage so
2120   // as to be shared across compilation units.
2121   StringRef TransferMediumName =
2122       "__openmp_nvptx_data_transfer_temporary_storage";
2123   llvm::GlobalVariable *TransferMedium =
2124       M.getGlobalVariable(TransferMediumName);
2125   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2126   if (!TransferMedium) {
2127     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2128     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2129     TransferMedium = new llvm::GlobalVariable(
2130         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2131         llvm::UndefValue::get(Ty), TransferMediumName,
2132         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2133         SharedAddressSpace);
2134     CGM.addCompilerUsedGlobal(TransferMedium);
2135   }
2136 
2137   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2138   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2139   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2140   // nvptx_lane_id = nvptx_id % warpsize
2141   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2142   // nvptx_warp_id = nvptx_id / warpsize
2143   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2144 
2145   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2146   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2147   Address LocalReduceList(
2148       Bld.CreatePointerBitCastOrAddrSpaceCast(
2149           CGF.EmitLoadOfScalar(
2150               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2151               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2152           ElemTy->getPointerTo()),
2153       ElemTy, CGF.getPointerAlign());
2154 
2155   unsigned Idx = 0;
2156   for (const Expr *Private : Privates) {
2157     //
2158     // Warp master copies reduce element to transfer medium in __shared__
2159     // memory.
2160     //
2161     unsigned RealTySize =
2162         C.getTypeSizeInChars(Private->getType())
2163             .alignTo(C.getTypeAlignInChars(Private->getType()))
2164             .getQuantity();
2165     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2166       unsigned NumIters = RealTySize / TySize;
2167       if (NumIters == 0)
2168         continue;
2169       QualType CType = C.getIntTypeForBitwidth(
2170           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2171       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2172       CharUnits Align = CharUnits::fromQuantity(TySize);
2173       llvm::Value *Cnt = nullptr;
2174       Address CntAddr = Address::invalid();
2175       llvm::BasicBlock *PrecondBB = nullptr;
2176       llvm::BasicBlock *ExitBB = nullptr;
2177       if (NumIters > 1) {
2178         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2179         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2180                               /*Volatile=*/false, C.IntTy);
2181         PrecondBB = CGF.createBasicBlock("precond");
2182         ExitBB = CGF.createBasicBlock("exit");
2183         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2184         // There is no need to emit line number for unconditional branch.
2185         (void)ApplyDebugLocation::CreateEmpty(CGF);
2186         CGF.EmitBlock(PrecondBB);
2187         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2188         llvm::Value *Cmp =
2189             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2190         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2191         CGF.EmitBlock(BodyBB);
2192       }
2193       // kmpc_barrier.
2194       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2195                                              /*EmitChecks=*/false,
2196                                              /*ForceSimpleCall=*/true);
2197       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2198       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2199       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2200 
2201       // if (lane_id == 0)
2202       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2203       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2204       CGF.EmitBlock(ThenBB);
2205 
2206       // Reduce element = LocalReduceList[i]
2207       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2208       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2209           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2210       // elemptr = ((CopyType*)(elemptrptr)) + I
2211       Address ElemPtr = Address::deprecated(ElemPtrPtr, Align);
2212       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2213       if (NumIters > 1)
2214         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2215 
2216       // Get pointer to location in transfer medium.
2217       // MediumPtr = &medium[warp_id]
2218       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2219           TransferMedium->getValueType(), TransferMedium,
2220           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2221       Address MediumPtr = Address::deprecated(MediumPtrVal, Align);
2222       // Casting to actual data type.
2223       // MediumPtr = (CopyType*)MediumPtrAddr;
2224       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2225 
2226       // elem = *elemptr
2227       //*MediumPtr = elem
2228       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2229           ElemPtr, /*Volatile=*/false, CType, Loc,
2230           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2231       // Store the source element value to the dest element address.
2232       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2233                             LValueBaseInfo(AlignmentSource::Type),
2234                             TBAAAccessInfo());
2235 
2236       Bld.CreateBr(MergeBB);
2237 
2238       CGF.EmitBlock(ElseBB);
2239       Bld.CreateBr(MergeBB);
2240 
2241       CGF.EmitBlock(MergeBB);
2242 
2243       // kmpc_barrier.
2244       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2245                                              /*EmitChecks=*/false,
2246                                              /*ForceSimpleCall=*/true);
2247 
2248       //
2249       // Warp 0 copies reduce element from transfer medium.
2250       //
2251       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2252       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2253       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2254 
2255       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2256       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2257           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2258 
2259       // Up to 32 threads in warp 0 are active.
2260       llvm::Value *IsActiveThread =
2261           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2262       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2263 
2264       CGF.EmitBlock(W0ThenBB);
2265 
2266       // SrcMediumPtr = &medium[tid]
2267       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2268           TransferMedium->getValueType(), TransferMedium,
2269           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2270       Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align);
2271       // SrcMediumVal = *SrcMediumPtr;
2272       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2273 
2274       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2275       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2276       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2277           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2278       Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align);
2279       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2280       if (NumIters > 1)
2281         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2282 
2283       // *TargetElemPtr = SrcMediumVal;
2284       llvm::Value *SrcMediumValue =
2285           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2286       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2287                             CType);
2288       Bld.CreateBr(W0MergeBB);
2289 
2290       CGF.EmitBlock(W0ElseBB);
2291       Bld.CreateBr(W0MergeBB);
2292 
2293       CGF.EmitBlock(W0MergeBB);
2294 
2295       if (NumIters > 1) {
2296         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2297         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2298         CGF.EmitBranch(PrecondBB);
2299         (void)ApplyDebugLocation::CreateEmpty(CGF);
2300         CGF.EmitBlock(ExitBB);
2301       }
2302       RealTySize %= TySize;
2303     }
2304     ++Idx;
2305   }
2306 
2307   CGF.FinishFunction();
2308   return Fn;
2309 }
2310 
2311 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2312 /// in the same warp.  It uses shuffle instructions to copy over data from
2313 /// a remote lane's stack.  The reduction algorithm performed is specified
2314 /// by the fourth parameter.
2315 ///
2316 /// Algorithm Versions.
2317 /// Full Warp Reduce (argument value 0):
2318 ///   This algorithm assumes that all 32 lanes are active and gathers
2319 ///   data from these 32 lanes, producing a single resultant value.
2320 /// Contiguous Partial Warp Reduce (argument value 1):
2321 ///   This algorithm assumes that only a *contiguous* subset of lanes
2322 ///   are active.  This happens for the last warp in a parallel region
2323 ///   when the user specified num_threads is not an integer multiple of
2324 ///   32.  This contiguous subset always starts with the zeroth lane.
2325 /// Partial Warp Reduce (argument value 2):
2326 ///   This algorithm gathers data from any number of lanes at any position.
2327 /// All reduced values are stored in the lowest possible lane.  The set
2328 /// of problems every algorithm addresses is a super set of those
2329 /// addressable by algorithms with a lower version number.  Overhead
2330 /// increases as algorithm version increases.
2331 ///
2332 /// Terminology
2333 /// Reduce element:
2334 ///   Reduce element refers to the individual data field with primitive
2335 ///   data types to be combined and reduced across threads.
2336 /// Reduce list:
2337 ///   Reduce list refers to a collection of local, thread-private
2338 ///   reduce elements.
2339 /// Remote Reduce list:
2340 ///   Remote Reduce list refers to a collection of remote (relative to
2341 ///   the current thread) reduce elements.
2342 ///
2343 /// We distinguish between three states of threads that are important to
2344 /// the implementation of this function.
2345 /// Alive threads:
2346 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2347 ///   threads that are inactive due to divergent control flow.
2348 /// Active threads:
2349 ///   The minimal set of threads that has to be alive upon entry to this
2350 ///   function.  The computation is correct iff active threads are alive.
2351 ///   Some threads are alive but they are not active because they do not
2352 ///   contribute to the computation in any useful manner.  Turning them off
2353 ///   may introduce control flow overheads without any tangible benefits.
2354 /// Effective threads:
2355 ///   In order to comply with the argument requirements of the shuffle
2356 ///   function, we must keep all lanes holding data alive.  But at most
2357 ///   half of them perform value aggregation; we refer to this half of
2358 ///   threads as effective. The other half is simply handing off their
2359 ///   data.
2360 ///
2361 /// Procedure
2362 /// Value shuffle:
2363 ///   In this step active threads transfer data from higher lane positions
2364 ///   in the warp to lower lane positions, creating Remote Reduce list.
2365 /// Value aggregation:
2366 ///   In this step, effective threads combine their thread local Reduce list
2367 ///   with Remote Reduce list and store the result in the thread local
2368 ///   Reduce list.
2369 /// Value copy:
2370 ///   In this step, we deal with the assumption made by algorithm 2
2371 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2372 ///   active, say 2k+1, only k threads will be effective and therefore k
2373 ///   new values will be produced.  However, the Reduce list owned by the
2374 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2375 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2376 ///   that the contiguity assumption still holds.
2377 static llvm::Function *emitShuffleAndReduceFunction(
2378     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2379     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2380   ASTContext &C = CGM.getContext();
2381 
2382   // Thread local Reduce list used to host the values of data to be reduced.
2383   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2384                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2385   // Current lane id; could be logical.
2386   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2387                               ImplicitParamDecl::Other);
2388   // Offset of the remote source lane relative to the current lane.
2389   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2390                                         C.ShortTy, ImplicitParamDecl::Other);
2391   // Algorithm version.  This is expected to be known at compile time.
2392   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2393                                C.ShortTy, ImplicitParamDecl::Other);
2394   FunctionArgList Args;
2395   Args.push_back(&ReduceListArg);
2396   Args.push_back(&LaneIDArg);
2397   Args.push_back(&RemoteLaneOffsetArg);
2398   Args.push_back(&AlgoVerArg);
2399 
2400   const CGFunctionInfo &CGFI =
2401       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2402   auto *Fn = llvm::Function::Create(
2403       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2404       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2405   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2406   Fn->setDoesNotRecurse();
2407 
2408   CodeGenFunction CGF(CGM);
2409   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2410 
2411   CGBuilderTy &Bld = CGF.Builder;
2412 
2413   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2414   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2415   Address LocalReduceList(
2416       Bld.CreatePointerBitCastOrAddrSpaceCast(
2417           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2418                                C.VoidPtrTy, SourceLocation()),
2419           ElemTy->getPointerTo()),
2420       ElemTy, CGF.getPointerAlign());
2421 
2422   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2423   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2424       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2425 
2426   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2427   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2428       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2429 
2430   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2431   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2432       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2433 
2434   // Create a local thread-private variable to host the Reduce list
2435   // from a remote lane.
2436   Address RemoteReduceList =
2437       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2438 
2439   // This loop iterates through the list of reduce elements and copies,
2440   // element by element, from a remote lane in the warp to RemoteReduceList,
2441   // hosted on the thread's stack.
2442   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2443                         LocalReduceList, RemoteReduceList,
2444                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2445                          /*ScratchpadIndex=*/nullptr,
2446                          /*ScratchpadWidth=*/nullptr});
2447 
2448   // The actions to be performed on the Remote Reduce list is dependent
2449   // on the algorithm version.
2450   //
2451   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2452   //  LaneId % 2 == 0 && Offset > 0):
2453   //    do the reduction value aggregation
2454   //
2455   //  The thread local variable Reduce list is mutated in place to host the
2456   //  reduced data, which is the aggregated value produced from local and
2457   //  remote lanes.
2458   //
2459   //  Note that AlgoVer is expected to be a constant integer known at compile
2460   //  time.
2461   //  When AlgoVer==0, the first conjunction evaluates to true, making
2462   //    the entire predicate true during compile time.
2463   //  When AlgoVer==1, the second conjunction has only the second part to be
2464   //    evaluated during runtime.  Other conjunctions evaluates to false
2465   //    during compile time.
2466   //  When AlgoVer==2, the third conjunction has only the second part to be
2467   //    evaluated during runtime.  Other conjunctions evaluates to false
2468   //    during compile time.
2469   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2470 
2471   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2472   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2473       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2474 
2475   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2476   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2477       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2478   CondAlgo2 = Bld.CreateAnd(
2479       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2480 
2481   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2482   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2483 
2484   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2485   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2486   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2487   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2488 
2489   CGF.EmitBlock(ThenBB);
2490   // reduce_function(LocalReduceList, RemoteReduceList)
2491   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2492       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2493   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2494       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2495   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2496       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2497   Bld.CreateBr(MergeBB);
2498 
2499   CGF.EmitBlock(ElseBB);
2500   Bld.CreateBr(MergeBB);
2501 
2502   CGF.EmitBlock(MergeBB);
2503 
2504   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2505   // Reduce list.
2506   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2507   llvm::Value *CondCopy = Bld.CreateAnd(
2508       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2509 
2510   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2511   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2512   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2513   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2514 
2515   CGF.EmitBlock(CpyThenBB);
2516   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2517                         RemoteReduceList, LocalReduceList);
2518   Bld.CreateBr(CpyMergeBB);
2519 
2520   CGF.EmitBlock(CpyElseBB);
2521   Bld.CreateBr(CpyMergeBB);
2522 
2523   CGF.EmitBlock(CpyMergeBB);
2524 
2525   CGF.FinishFunction();
2526   return Fn;
2527 }
2528 
2529 /// This function emits a helper that copies all the reduction variables from
2530 /// the team into the provided global buffer for the reduction variables.
2531 ///
2532 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2533 ///   For all data entries D in reduce_data:
2534 ///     Copy local D to buffer.D[Idx]
2535 static llvm::Value *emitListToGlobalCopyFunction(
2536     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2537     QualType ReductionArrayTy, SourceLocation Loc,
2538     const RecordDecl *TeamReductionRec,
2539     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2540         &VarFieldMap) {
2541   ASTContext &C = CGM.getContext();
2542 
2543   // Buffer: global reduction buffer.
2544   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2545                               C.VoidPtrTy, ImplicitParamDecl::Other);
2546   // Idx: index of the buffer.
2547   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2548                            ImplicitParamDecl::Other);
2549   // ReduceList: thread local Reduce list.
2550   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2551                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2552   FunctionArgList Args;
2553   Args.push_back(&BufferArg);
2554   Args.push_back(&IdxArg);
2555   Args.push_back(&ReduceListArg);
2556 
2557   const CGFunctionInfo &CGFI =
2558       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2559   auto *Fn = llvm::Function::Create(
2560       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2561       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2562   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2563   Fn->setDoesNotRecurse();
2564   CodeGenFunction CGF(CGM);
2565   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2566 
2567   CGBuilderTy &Bld = CGF.Builder;
2568 
2569   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2570   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2571   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2572   Address LocalReduceList(
2573       Bld.CreatePointerBitCastOrAddrSpaceCast(
2574           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2575                                C.VoidPtrTy, Loc),
2576           ElemTy->getPointerTo()),
2577       ElemTy, CGF.getPointerAlign());
2578   QualType StaticTy = C.getRecordType(TeamReductionRec);
2579   llvm::Type *LLVMReductionsBufferTy =
2580       CGM.getTypes().ConvertTypeForMem(StaticTy);
2581   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2582       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2583       LLVMReductionsBufferTy->getPointerTo());
2584   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2585                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2586                                               /*Volatile=*/false, C.IntTy,
2587                                               Loc)};
2588   unsigned Idx = 0;
2589   for (const Expr *Private : Privates) {
2590     // Reduce element = LocalReduceList[i]
2591     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2592     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2593         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2594     // elemptr = ((CopyType*)(elemptrptr)) + I
2595     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2596     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2597         ElemPtrPtr, ElemTy->getPointerTo());
2598     Address ElemPtr =
2599         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2600     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2601     // Global = Buffer.VD[Idx];
2602     const FieldDecl *FD = VarFieldMap.lookup(VD);
2603     LValue GlobLVal = CGF.EmitLValueForField(
2604         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2605     Address GlobAddr = GlobLVal.getAddress(CGF);
2606     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2607         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2608     GlobLVal.setAddress(
2609         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2610     switch (CGF.getEvaluationKind(Private->getType())) {
2611     case TEK_Scalar: {
2612       llvm::Value *V = CGF.EmitLoadOfScalar(
2613           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2614           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2615       CGF.EmitStoreOfScalar(V, GlobLVal);
2616       break;
2617     }
2618     case TEK_Complex: {
2619       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2620           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2621       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2622       break;
2623     }
2624     case TEK_Aggregate:
2625       CGF.EmitAggregateCopy(GlobLVal,
2626                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2627                             Private->getType(), AggValueSlot::DoesNotOverlap);
2628       break;
2629     }
2630     ++Idx;
2631   }
2632 
2633   CGF.FinishFunction();
2634   return Fn;
2635 }
2636 
2637 /// This function emits a helper that reduces all the reduction variables from
2638 /// the team into the provided global buffer for the reduction variables.
2639 ///
2640 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2641 ///  void *GlobPtrs[];
2642 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2643 ///  ...
2644 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2645 ///  reduce_function(GlobPtrs, reduce_data);
2646 static llvm::Value *emitListToGlobalReduceFunction(
2647     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2648     QualType ReductionArrayTy, SourceLocation Loc,
2649     const RecordDecl *TeamReductionRec,
2650     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2651         &VarFieldMap,
2652     llvm::Function *ReduceFn) {
2653   ASTContext &C = CGM.getContext();
2654 
2655   // Buffer: global reduction buffer.
2656   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2657                               C.VoidPtrTy, ImplicitParamDecl::Other);
2658   // Idx: index of the buffer.
2659   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2660                            ImplicitParamDecl::Other);
2661   // ReduceList: thread local Reduce list.
2662   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2663                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2664   FunctionArgList Args;
2665   Args.push_back(&BufferArg);
2666   Args.push_back(&IdxArg);
2667   Args.push_back(&ReduceListArg);
2668 
2669   const CGFunctionInfo &CGFI =
2670       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2671   auto *Fn = llvm::Function::Create(
2672       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2673       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2674   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2675   Fn->setDoesNotRecurse();
2676   CodeGenFunction CGF(CGM);
2677   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2678 
2679   CGBuilderTy &Bld = CGF.Builder;
2680 
2681   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2682   QualType StaticTy = C.getRecordType(TeamReductionRec);
2683   llvm::Type *LLVMReductionsBufferTy =
2684       CGM.getTypes().ConvertTypeForMem(StaticTy);
2685   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2686       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2687       LLVMReductionsBufferTy->getPointerTo());
2688 
2689   // 1. Build a list of reduction variables.
2690   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2691   Address ReductionList =
2692       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2693   auto IPriv = Privates.begin();
2694   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2695                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2696                                               /*Volatile=*/false, C.IntTy,
2697                                               Loc)};
2698   unsigned Idx = 0;
2699   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2700     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2701     // Global = Buffer.VD[Idx];
2702     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2703     const FieldDecl *FD = VarFieldMap.lookup(VD);
2704     LValue GlobLVal = CGF.EmitLValueForField(
2705         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2706     Address GlobAddr = GlobLVal.getAddress(CGF);
2707     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2708         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2709     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2710     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2711     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2712       // Store array size.
2713       ++Idx;
2714       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2715       llvm::Value *Size = CGF.Builder.CreateIntCast(
2716           CGF.getVLASize(
2717                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2718               .NumElts,
2719           CGF.SizeTy, /*isSigned=*/false);
2720       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2721                               Elem);
2722     }
2723   }
2724 
2725   // Call reduce_function(GlobalReduceList, ReduceList)
2726   llvm::Value *GlobalReduceList =
2727       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2728   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2729   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2730       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2731   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2732       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2733   CGF.FinishFunction();
2734   return Fn;
2735 }
2736 
2737 /// This function emits a helper that copies all the reduction variables from
2738 /// the team into the provided global buffer for the reduction variables.
2739 ///
2740 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2741 ///   For all data entries D in reduce_data:
2742 ///     Copy buffer.D[Idx] to local D;
2743 static llvm::Value *emitGlobalToListCopyFunction(
2744     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2745     QualType ReductionArrayTy, SourceLocation Loc,
2746     const RecordDecl *TeamReductionRec,
2747     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2748         &VarFieldMap) {
2749   ASTContext &C = CGM.getContext();
2750 
2751   // Buffer: global reduction buffer.
2752   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2753                               C.VoidPtrTy, ImplicitParamDecl::Other);
2754   // Idx: index of the buffer.
2755   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2756                            ImplicitParamDecl::Other);
2757   // ReduceList: thread local Reduce list.
2758   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2759                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2760   FunctionArgList Args;
2761   Args.push_back(&BufferArg);
2762   Args.push_back(&IdxArg);
2763   Args.push_back(&ReduceListArg);
2764 
2765   const CGFunctionInfo &CGFI =
2766       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2767   auto *Fn = llvm::Function::Create(
2768       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2769       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2770   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2771   Fn->setDoesNotRecurse();
2772   CodeGenFunction CGF(CGM);
2773   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2774 
2775   CGBuilderTy &Bld = CGF.Builder;
2776 
2777   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2778   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2779   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2780   Address LocalReduceList(
2781       Bld.CreatePointerBitCastOrAddrSpaceCast(
2782           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2783                                C.VoidPtrTy, Loc),
2784           ElemTy->getPointerTo()),
2785       ElemTy, CGF.getPointerAlign());
2786   QualType StaticTy = C.getRecordType(TeamReductionRec);
2787   llvm::Type *LLVMReductionsBufferTy =
2788       CGM.getTypes().ConvertTypeForMem(StaticTy);
2789   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2790       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2791       LLVMReductionsBufferTy->getPointerTo());
2792 
2793   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2794                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2795                                               /*Volatile=*/false, C.IntTy,
2796                                               Loc)};
2797   unsigned Idx = 0;
2798   for (const Expr *Private : Privates) {
2799     // Reduce element = LocalReduceList[i]
2800     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2801     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2802         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2803     // elemptr = ((CopyType*)(elemptrptr)) + I
2804     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2805     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2806         ElemPtrPtr, ElemTy->getPointerTo());
2807     Address ElemPtr =
2808         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2809     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2810     // Global = Buffer.VD[Idx];
2811     const FieldDecl *FD = VarFieldMap.lookup(VD);
2812     LValue GlobLVal = CGF.EmitLValueForField(
2813         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2814     Address GlobAddr = GlobLVal.getAddress(CGF);
2815     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2816         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2817     GlobLVal.setAddress(
2818         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2819     switch (CGF.getEvaluationKind(Private->getType())) {
2820     case TEK_Scalar: {
2821       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2822       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2823                             LValueBaseInfo(AlignmentSource::Type),
2824                             TBAAAccessInfo());
2825       break;
2826     }
2827     case TEK_Complex: {
2828       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2829       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2830                              /*isInit=*/false);
2831       break;
2832     }
2833     case TEK_Aggregate:
2834       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2835                             GlobLVal, Private->getType(),
2836                             AggValueSlot::DoesNotOverlap);
2837       break;
2838     }
2839     ++Idx;
2840   }
2841 
2842   CGF.FinishFunction();
2843   return Fn;
2844 }
2845 
2846 /// This function emits a helper that reduces all the reduction variables from
2847 /// the team into the provided global buffer for the reduction variables.
2848 ///
2849 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2850 ///  void *GlobPtrs[];
2851 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2852 ///  ...
2853 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2854 ///  reduce_function(reduce_data, GlobPtrs);
2855 static llvm::Value *emitGlobalToListReduceFunction(
2856     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2857     QualType ReductionArrayTy, SourceLocation Loc,
2858     const RecordDecl *TeamReductionRec,
2859     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2860         &VarFieldMap,
2861     llvm::Function *ReduceFn) {
2862   ASTContext &C = CGM.getContext();
2863 
2864   // Buffer: global reduction buffer.
2865   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2866                               C.VoidPtrTy, ImplicitParamDecl::Other);
2867   // Idx: index of the buffer.
2868   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2869                            ImplicitParamDecl::Other);
2870   // ReduceList: thread local Reduce list.
2871   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2872                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2873   FunctionArgList Args;
2874   Args.push_back(&BufferArg);
2875   Args.push_back(&IdxArg);
2876   Args.push_back(&ReduceListArg);
2877 
2878   const CGFunctionInfo &CGFI =
2879       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2880   auto *Fn = llvm::Function::Create(
2881       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2882       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2883   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2884   Fn->setDoesNotRecurse();
2885   CodeGenFunction CGF(CGM);
2886   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2887 
2888   CGBuilderTy &Bld = CGF.Builder;
2889 
2890   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2891   QualType StaticTy = C.getRecordType(TeamReductionRec);
2892   llvm::Type *LLVMReductionsBufferTy =
2893       CGM.getTypes().ConvertTypeForMem(StaticTy);
2894   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2895       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2896       LLVMReductionsBufferTy->getPointerTo());
2897 
2898   // 1. Build a list of reduction variables.
2899   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2900   Address ReductionList =
2901       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2902   auto IPriv = Privates.begin();
2903   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2904                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2905                                               /*Volatile=*/false, C.IntTy,
2906                                               Loc)};
2907   unsigned Idx = 0;
2908   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2909     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2910     // Global = Buffer.VD[Idx];
2911     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2912     const FieldDecl *FD = VarFieldMap.lookup(VD);
2913     LValue GlobLVal = CGF.EmitLValueForField(
2914         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2915     Address GlobAddr = GlobLVal.getAddress(CGF);
2916     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2917         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2918     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2919     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2920     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2921       // Store array size.
2922       ++Idx;
2923       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2924       llvm::Value *Size = CGF.Builder.CreateIntCast(
2925           CGF.getVLASize(
2926                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2927               .NumElts,
2928           CGF.SizeTy, /*isSigned=*/false);
2929       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2930                               Elem);
2931     }
2932   }
2933 
2934   // Call reduce_function(ReduceList, GlobalReduceList)
2935   llvm::Value *GlobalReduceList =
2936       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2937   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2938   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2939       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2940   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2941       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2942   CGF.FinishFunction();
2943   return Fn;
2944 }
2945 
2946 ///
2947 /// Design of OpenMP reductions on the GPU
2948 ///
2949 /// Consider a typical OpenMP program with one or more reduction
2950 /// clauses:
2951 ///
2952 /// float foo;
2953 /// double bar;
2954 /// #pragma omp target teams distribute parallel for \
2955 ///             reduction(+:foo) reduction(*:bar)
2956 /// for (int i = 0; i < N; i++) {
2957 ///   foo += A[i]; bar *= B[i];
2958 /// }
2959 ///
2960 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2961 /// all teams.  In our OpenMP implementation on the NVPTX device an
2962 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2963 /// within a team are mapped to CUDA threads within a threadblock.
2964 /// Our goal is to efficiently aggregate values across all OpenMP
2965 /// threads such that:
2966 ///
2967 ///   - the compiler and runtime are logically concise, and
2968 ///   - the reduction is performed efficiently in a hierarchical
2969 ///     manner as follows: within OpenMP threads in the same warp,
2970 ///     across warps in a threadblock, and finally across teams on
2971 ///     the NVPTX device.
2972 ///
2973 /// Introduction to Decoupling
2974 ///
2975 /// We would like to decouple the compiler and the runtime so that the
2976 /// latter is ignorant of the reduction variables (number, data types)
2977 /// and the reduction operators.  This allows a simpler interface
2978 /// and implementation while still attaining good performance.
2979 ///
2980 /// Pseudocode for the aforementioned OpenMP program generated by the
2981 /// compiler is as follows:
2982 ///
2983 /// 1. Create private copies of reduction variables on each OpenMP
2984 ///    thread: 'foo_private', 'bar_private'
2985 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2986 ///    to it and writes the result in 'foo_private' and 'bar_private'
2987 ///    respectively.
2988 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2989 ///    and store the result on the team master:
2990 ///
2991 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2992 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2993 ///
2994 ///     where:
2995 ///       struct ReduceData {
2996 ///         double *foo;
2997 ///         double *bar;
2998 ///       } reduceData
2999 ///       reduceData.foo = &foo_private
3000 ///       reduceData.bar = &bar_private
3001 ///
3002 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3003 ///     auxiliary functions generated by the compiler that operate on
3004 ///     variables of type 'ReduceData'.  They aid the runtime perform
3005 ///     algorithmic steps in a data agnostic manner.
3006 ///
3007 ///     'shuffleReduceFn' is a pointer to a function that reduces data
3008 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
3009 ///     same warp.  It takes the following arguments as input:
3010 ///
3011 ///     a. variable of type 'ReduceData' on the calling lane,
3012 ///     b. its lane_id,
3013 ///     c. an offset relative to the current lane_id to generate a
3014 ///        remote_lane_id.  The remote lane contains the second
3015 ///        variable of type 'ReduceData' that is to be reduced.
3016 ///     d. an algorithm version parameter determining which reduction
3017 ///        algorithm to use.
3018 ///
3019 ///     'shuffleReduceFn' retrieves data from the remote lane using
3020 ///     efficient GPU shuffle intrinsics and reduces, using the
3021 ///     algorithm specified by the 4th parameter, the two operands
3022 ///     element-wise.  The result is written to the first operand.
3023 ///
3024 ///     Different reduction algorithms are implemented in different
3025 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3026 ///     the essential reduction step.  Therefore, based on the 4th
3027 ///     parameter, this function behaves slightly differently to
3028 ///     cooperate with the runtime to ensure correctness under
3029 ///     different circumstances.
3030 ///
3031 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3032 ///     reduced variables across warps.  It tunnels, through CUDA
3033 ///     shared memory, the thread-private data of type 'ReduceData'
3034 ///     from lane 0 of each warp to a lane in the first warp.
3035 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3036 ///    The last team writes the global reduced value to memory.
3037 ///
3038 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3039 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3040 ///             scratchpadCopyFn, loadAndReduceFn)
3041 ///
3042 ///     'scratchpadCopyFn' is a helper that stores reduced
3043 ///     data from the team master to a scratchpad array in
3044 ///     global memory.
3045 ///
3046 ///     'loadAndReduceFn' is a helper that loads data from
3047 ///     the scratchpad array and reduces it with the input
3048 ///     operand.
3049 ///
3050 ///     These compiler generated functions hide address
3051 ///     calculation and alignment information from the runtime.
3052 /// 5. if ret == 1:
3053 ///     The team master of the last team stores the reduced
3054 ///     result to the globals in memory.
3055 ///     foo += reduceData.foo; bar *= reduceData.bar
3056 ///
3057 ///
3058 /// Warp Reduction Algorithms
3059 ///
3060 /// On the warp level, we have three algorithms implemented in the
3061 /// OpenMP runtime depending on the number of active lanes:
3062 ///
3063 /// Full Warp Reduction
3064 ///
3065 /// The reduce algorithm within a warp where all lanes are active
3066 /// is implemented in the runtime as follows:
3067 ///
3068 /// full_warp_reduce(void *reduce_data,
3069 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3070 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3071 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3072 /// }
3073 ///
3074 /// The algorithm completes in log(2, WARPSIZE) steps.
3075 ///
3076 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3077 /// not used therefore we save instructions by not retrieving lane_id
3078 /// from the corresponding special registers.  The 4th parameter, which
3079 /// represents the version of the algorithm being used, is set to 0 to
3080 /// signify full warp reduction.
3081 ///
3082 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3083 ///
3084 /// #reduce_elem refers to an element in the local lane's data structure
3085 /// #remote_elem is retrieved from a remote lane
3086 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3087 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3088 ///
3089 /// Contiguous Partial Warp Reduction
3090 ///
3091 /// This reduce algorithm is used within a warp where only the first
3092 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3093 /// number of OpenMP threads in a parallel region is not a multiple of
3094 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3095 ///
3096 /// void
3097 /// contiguous_partial_reduce(void *reduce_data,
3098 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3099 ///                           int size, int lane_id) {
3100 ///   int curr_size;
3101 ///   int offset;
3102 ///   curr_size = size;
3103 ///   mask = curr_size/2;
3104 ///   while (offset>0) {
3105 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3106 ///     curr_size = (curr_size+1)/2;
3107 ///     offset = curr_size/2;
3108 ///   }
3109 /// }
3110 ///
3111 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3112 ///
3113 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3114 /// if (lane_id < offset)
3115 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3116 /// else
3117 ///     reduce_elem = remote_elem
3118 ///
3119 /// This algorithm assumes that the data to be reduced are located in a
3120 /// contiguous subset of lanes starting from the first.  When there is
3121 /// an odd number of active lanes, the data in the last lane is not
3122 /// aggregated with any other lane's dat but is instead copied over.
3123 ///
3124 /// Dispersed Partial Warp Reduction
3125 ///
3126 /// This algorithm is used within a warp when any discontiguous subset of
3127 /// lanes are active.  It is used to implement the reduction operation
3128 /// across lanes in an OpenMP simd region or in a nested parallel region.
3129 ///
3130 /// void
3131 /// dispersed_partial_reduce(void *reduce_data,
3132 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3133 ///   int size, remote_id;
3134 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3135 ///   do {
3136 ///       remote_id = next_active_lane_id_right_after_me();
3137 ///       # the above function returns 0 of no active lane
3138 ///       # is present right after the current lane.
3139 ///       size = number_of_active_lanes_in_this_warp();
3140 ///       logical_lane_id /= 2;
3141 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3142 ///                       remote_id-1-threadIdx.x, 2);
3143 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3144 /// }
3145 ///
3146 /// There is no assumption made about the initial state of the reduction.
3147 /// Any number of lanes (>=1) could be active at any position.  The reduction
3148 /// result is returned in the first active lane.
3149 ///
3150 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3151 ///
3152 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3153 /// if (lane_id % 2 == 0 && offset > 0)
3154 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3155 /// else
3156 ///     reduce_elem = remote_elem
3157 ///
3158 ///
3159 /// Intra-Team Reduction
3160 ///
3161 /// This function, as implemented in the runtime call
3162 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3163 /// threads in a team.  It first reduces within a warp using the
3164 /// aforementioned algorithms.  We then proceed to gather all such
3165 /// reduced values at the first warp.
3166 ///
3167 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3168 /// data from each of the "warp master" (zeroth lane of each warp, where
3169 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3170 /// a mathematical sense) the problem of reduction across warp masters in
3171 /// a block to the problem of warp reduction.
3172 ///
3173 ///
3174 /// Inter-Team Reduction
3175 ///
3176 /// Once a team has reduced its data to a single value, it is stored in
3177 /// a global scratchpad array.  Since each team has a distinct slot, this
3178 /// can be done without locking.
3179 ///
3180 /// The last team to write to the scratchpad array proceeds to reduce the
3181 /// scratchpad array.  One or more workers in the last team use the helper
3182 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3183 /// the k'th worker reduces every k'th element.
3184 ///
3185 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3186 /// reduce across workers and compute a globally reduced value.
3187 ///
3188 void CGOpenMPRuntimeGPU::emitReduction(
3189     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3190     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3191     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3192   if (!CGF.HaveInsertPoint())
3193     return;
3194 
3195   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3196 #ifndef NDEBUG
3197   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3198 #endif
3199 
3200   if (Options.SimpleReduction) {
3201     assert(!TeamsReduction && !ParallelReduction &&
3202            "Invalid reduction selection in emitReduction.");
3203     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3204                                    ReductionOps, Options);
3205     return;
3206   }
3207 
3208   assert((TeamsReduction || ParallelReduction) &&
3209          "Invalid reduction selection in emitReduction.");
3210 
3211   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3212   // RedList, shuffle_reduce_func, interwarp_copy_func);
3213   // or
3214   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3215   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3216   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3217 
3218   llvm::Value *Res;
3219   ASTContext &C = CGM.getContext();
3220   // 1. Build a list of reduction variables.
3221   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3222   auto Size = RHSExprs.size();
3223   for (const Expr *E : Privates) {
3224     if (E->getType()->isVariablyModifiedType())
3225       // Reserve place for array size.
3226       ++Size;
3227   }
3228   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3229   QualType ReductionArrayTy =
3230       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3231                              /*IndexTypeQuals=*/0);
3232   Address ReductionList =
3233       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3234   auto IPriv = Privates.begin();
3235   unsigned Idx = 0;
3236   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3237     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3238     CGF.Builder.CreateStore(
3239         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3240             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3241         Elem);
3242     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3243       // Store array size.
3244       ++Idx;
3245       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3246       llvm::Value *Size = CGF.Builder.CreateIntCast(
3247           CGF.getVLASize(
3248                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3249               .NumElts,
3250           CGF.SizeTy, /*isSigned=*/false);
3251       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3252                               Elem);
3253     }
3254   }
3255 
3256   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3257       ReductionList.getPointer(), CGF.VoidPtrTy);
3258   llvm::Function *ReductionFn = emitReductionFunction(
3259       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3260       LHSExprs, RHSExprs, ReductionOps);
3261   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3262   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3263       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3264   llvm::Value *InterWarpCopyFn =
3265       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3266 
3267   if (ParallelReduction) {
3268     llvm::Value *Args[] = {RTLoc,
3269                            ThreadId,
3270                            CGF.Builder.getInt32(RHSExprs.size()),
3271                            ReductionArrayTySize,
3272                            RL,
3273                            ShuffleAndReduceFn,
3274                            InterWarpCopyFn};
3275 
3276     Res = CGF.EmitRuntimeCall(
3277         OMPBuilder.getOrCreateRuntimeFunction(
3278             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3279         Args);
3280   } else {
3281     assert(TeamsReduction && "expected teams reduction.");
3282     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3283     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3284     int Cnt = 0;
3285     for (const Expr *DRE : Privates) {
3286       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3287       ++Cnt;
3288     }
3289     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3290         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3291         C.getLangOpts().OpenMPCUDAReductionBufNum);
3292     TeamsReductions.push_back(TeamReductionRec);
3293     if (!KernelTeamsReductionPtr) {
3294       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3295           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3296           llvm::GlobalValue::InternalLinkage, nullptr,
3297           "_openmp_teams_reductions_buffer_$_$ptr");
3298     }
3299     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3300         Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3301         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3302     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3303         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3304     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3305         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3306         ReductionFn);
3307     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3308         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3309     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3310         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3311         ReductionFn);
3312 
3313     llvm::Value *Args[] = {
3314         RTLoc,
3315         ThreadId,
3316         GlobalBufferPtr,
3317         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3318         RL,
3319         ShuffleAndReduceFn,
3320         InterWarpCopyFn,
3321         GlobalToBufferCpyFn,
3322         GlobalToBufferRedFn,
3323         BufferToGlobalCpyFn,
3324         BufferToGlobalRedFn};
3325 
3326     Res = CGF.EmitRuntimeCall(
3327         OMPBuilder.getOrCreateRuntimeFunction(
3328             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3329         Args);
3330   }
3331 
3332   // 5. Build if (res == 1)
3333   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3334   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3335   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3336       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3337   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3338 
3339   // 6. Build then branch: where we have reduced values in the master
3340   //    thread in each team.
3341   //    __kmpc_end_reduce{_nowait}(<gtid>);
3342   //    break;
3343   CGF.EmitBlock(ThenBB);
3344 
3345   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3346   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3347                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3348     auto IPriv = Privates.begin();
3349     auto ILHS = LHSExprs.begin();
3350     auto IRHS = RHSExprs.begin();
3351     for (const Expr *E : ReductionOps) {
3352       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3353                                   cast<DeclRefExpr>(*IRHS));
3354       ++IPriv;
3355       ++ILHS;
3356       ++IRHS;
3357     }
3358   };
3359   llvm::Value *EndArgs[] = {ThreadId};
3360   RegionCodeGenTy RCG(CodeGen);
3361   NVPTXActionTy Action(
3362       nullptr, llvm::None,
3363       OMPBuilder.getOrCreateRuntimeFunction(
3364           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3365       EndArgs);
3366   RCG.setAction(Action);
3367   RCG(CGF);
3368   // There is no need to emit line number for unconditional branch.
3369   (void)ApplyDebugLocation::CreateEmpty(CGF);
3370   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3371 }
3372 
3373 const VarDecl *
3374 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3375                                        const VarDecl *NativeParam) const {
3376   if (!NativeParam->getType()->isReferenceType())
3377     return NativeParam;
3378   QualType ArgType = NativeParam->getType();
3379   QualifierCollector QC;
3380   const Type *NonQualTy = QC.strip(ArgType);
3381   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3382   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3383     if (Attr->getCaptureKind() == OMPC_map) {
3384       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3385                                                         LangAS::opencl_global);
3386     }
3387   }
3388   ArgType = CGM.getContext().getPointerType(PointeeTy);
3389   QC.addRestrict();
3390   enum { NVPTX_local_addr = 5 };
3391   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3392   ArgType = QC.apply(CGM.getContext(), ArgType);
3393   if (isa<ImplicitParamDecl>(NativeParam))
3394     return ImplicitParamDecl::Create(
3395         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3396         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3397   return ParmVarDecl::Create(
3398       CGM.getContext(),
3399       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3400       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3401       NativeParam->getIdentifier(), ArgType,
3402       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3403 }
3404 
3405 Address
3406 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3407                                           const VarDecl *NativeParam,
3408                                           const VarDecl *TargetParam) const {
3409   assert(NativeParam != TargetParam &&
3410          NativeParam->getType()->isReferenceType() &&
3411          "Native arg must not be the same as target arg.");
3412   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3413   QualType NativeParamType = NativeParam->getType();
3414   QualifierCollector QC;
3415   const Type *NonQualTy = QC.strip(NativeParamType);
3416   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3417   unsigned NativePointeeAddrSpace =
3418       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3419   QualType TargetTy = TargetParam->getType();
3420   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3421       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3422   // First cast to generic.
3423   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3424       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3425           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3426   // Cast from generic to native address space.
3427   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3428       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3429           cast<llvm::PointerType>(TargetAddr->getType()),
3430                                   NativePointeeAddrSpace));
3431   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3432   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3433                         NativeParamType);
3434   return NativeParamAddr;
3435 }
3436 
3437 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3438     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3439     ArrayRef<llvm::Value *> Args) const {
3440   SmallVector<llvm::Value *, 4> TargetArgs;
3441   TargetArgs.reserve(Args.size());
3442   auto *FnType = OutlinedFn.getFunctionType();
3443   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3444     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3445       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3446       break;
3447     }
3448     llvm::Type *TargetType = FnType->getParamType(I);
3449     llvm::Value *NativeArg = Args[I];
3450     if (!TargetType->isPointerTy()) {
3451       TargetArgs.emplace_back(NativeArg);
3452       continue;
3453     }
3454     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3455         NativeArg, llvm::PointerType::getWithSamePointeeType(
3456             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3457     TargetArgs.emplace_back(
3458         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3459   }
3460   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3461 }
3462 
3463 /// Emit function which wraps the outline parallel region
3464 /// and controls the arguments which are passed to this function.
3465 /// The wrapper ensures that the outlined function is called
3466 /// with the correct arguments when data is shared.
3467 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3468     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3469   ASTContext &Ctx = CGM.getContext();
3470   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3471 
3472   // Create a function that takes as argument the source thread.
3473   FunctionArgList WrapperArgs;
3474   QualType Int16QTy =
3475       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3476   QualType Int32QTy =
3477       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3478   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3479                                      /*Id=*/nullptr, Int16QTy,
3480                                      ImplicitParamDecl::Other);
3481   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3482                                /*Id=*/nullptr, Int32QTy,
3483                                ImplicitParamDecl::Other);
3484   WrapperArgs.emplace_back(&ParallelLevelArg);
3485   WrapperArgs.emplace_back(&WrapperArg);
3486 
3487   const CGFunctionInfo &CGFI =
3488       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3489 
3490   auto *Fn = llvm::Function::Create(
3491       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3492       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3493 
3494   // Ensure we do not inline the function. This is trivially true for the ones
3495   // passed to __kmpc_fork_call but the ones calles in serialized regions
3496   // could be inlined. This is not a perfect but it is closer to the invariant
3497   // we want, namely, every data environment starts with a new function.
3498   // TODO: We should pass the if condition to the runtime function and do the
3499   //       handling there. Much cleaner code.
3500   Fn->addFnAttr(llvm::Attribute::NoInline);
3501 
3502   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3503   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3504   Fn->setDoesNotRecurse();
3505 
3506   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3507   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3508                     D.getBeginLoc(), D.getBeginLoc());
3509 
3510   const auto *RD = CS.getCapturedRecordDecl();
3511   auto CurField = RD->field_begin();
3512 
3513   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3514                                                       /*Name=*/".zero.addr");
3515   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3516   // Get the array of arguments.
3517   SmallVector<llvm::Value *, 8> Args;
3518 
3519   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3520   Args.emplace_back(ZeroAddr.getPointer());
3521 
3522   CGBuilderTy &Bld = CGF.Builder;
3523   auto CI = CS.capture_begin();
3524 
3525   // Use global memory for data sharing.
3526   // Handle passing of global args to workers.
3527   Address GlobalArgs =
3528       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3529   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3530   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3531   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3532                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3533                       DataSharingArgs);
3534 
3535   // Retrieve the shared variables from the list of references returned
3536   // by the runtime. Pass the variables to the outlined function.
3537   Address SharedArgListAddress = Address::invalid();
3538   if (CS.capture_size() > 0 ||
3539       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3540     SharedArgListAddress = CGF.EmitLoadOfPointer(
3541         GlobalArgs, CGF.getContext()
3542                         .getPointerType(CGF.getContext().getPointerType(
3543                             CGF.getContext().VoidPtrTy))
3544                         .castAs<PointerType>());
3545   }
3546   unsigned Idx = 0;
3547   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3548     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3549     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3550         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3551     llvm::Value *LB = CGF.EmitLoadOfScalar(
3552         TypedAddress,
3553         /*Volatile=*/false,
3554         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3555         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3556     Args.emplace_back(LB);
3557     ++Idx;
3558     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3559     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3560         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3561     llvm::Value *UB = CGF.EmitLoadOfScalar(
3562         TypedAddress,
3563         /*Volatile=*/false,
3564         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3565         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3566     Args.emplace_back(UB);
3567     ++Idx;
3568   }
3569   if (CS.capture_size() > 0) {
3570     ASTContext &CGFContext = CGF.getContext();
3571     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3572       QualType ElemTy = CurField->getType();
3573       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3574       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3575           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3576           CGF.ConvertTypeForMem(ElemTy));
3577       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3578                                               /*Volatile=*/false,
3579                                               CGFContext.getPointerType(ElemTy),
3580                                               CI->getLocation());
3581       if (CI->capturesVariableByCopy() &&
3582           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3583         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3584                               CI->getLocation());
3585       }
3586       Args.emplace_back(Arg);
3587     }
3588   }
3589 
3590   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3591   CGF.FinishFunction();
3592   return Fn;
3593 }
3594 
3595 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3596                                               const Decl *D) {
3597   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3598     return;
3599 
3600   assert(D && "Expected function or captured|block decl.");
3601   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3602          "Function is registered already.");
3603   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3604          "Team is set but not processed.");
3605   const Stmt *Body = nullptr;
3606   bool NeedToDelayGlobalization = false;
3607   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3608     Body = FD->getBody();
3609   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3610     Body = BD->getBody();
3611   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3612     Body = CD->getBody();
3613     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3614     if (NeedToDelayGlobalization &&
3615         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3616       return;
3617   }
3618   if (!Body)
3619     return;
3620   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3621   VarChecker.Visit(Body);
3622   const RecordDecl *GlobalizedVarsRecord =
3623       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3624   TeamAndReductions.first = nullptr;
3625   TeamAndReductions.second.clear();
3626   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3627       VarChecker.getEscapedVariableLengthDecls();
3628   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3629     return;
3630   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3631   I->getSecond().MappedParams =
3632       std::make_unique<CodeGenFunction::OMPMapVars>();
3633   I->getSecond().EscapedParameters.insert(
3634       VarChecker.getEscapedParameters().begin(),
3635       VarChecker.getEscapedParameters().end());
3636   I->getSecond().EscapedVariableLengthDecls.append(
3637       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3638   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3639   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3640     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3641     Data.insert(std::make_pair(VD, MappedVarData()));
3642   }
3643   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3644     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3645     VarChecker.Visit(Body);
3646     I->getSecond().SecondaryLocalVarData.emplace();
3647     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3648     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3649       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3650       Data.insert(std::make_pair(VD, MappedVarData()));
3651     }
3652   }
3653   if (!NeedToDelayGlobalization) {
3654     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3655     struct GlobalizationScope final : EHScopeStack::Cleanup {
3656       GlobalizationScope() = default;
3657 
3658       void Emit(CodeGenFunction &CGF, Flags flags) override {
3659         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3660             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3661       }
3662     };
3663     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3664   }
3665 }
3666 
3667 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3668                                                         const VarDecl *VD) {
3669   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3670     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3671     auto AS = LangAS::Default;
3672     switch (A->getAllocatorType()) {
3673       // Use the default allocator here as by default local vars are
3674       // threadlocal.
3675     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3676     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3677     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3678     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3679     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3680       // Follow the user decision - use default allocation.
3681       return Address::invalid();
3682     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3683       // TODO: implement aupport for user-defined allocators.
3684       return Address::invalid();
3685     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3686       AS = LangAS::cuda_constant;
3687       break;
3688     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3689       AS = LangAS::cuda_shared;
3690       break;
3691     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3692     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3693       break;
3694     }
3695     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3696     auto *GV = new llvm::GlobalVariable(
3697         CGM.getModule(), VarTy, /*isConstant=*/false,
3698         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3699         VD->getName(),
3700         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3701         CGM.getContext().getTargetAddressSpace(AS));
3702     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3703     GV->setAlignment(Align.getAsAlign());
3704     return Address(
3705         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3706             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3707                     VD->getType().getAddressSpace()))),
3708         VarTy, Align);
3709   }
3710 
3711   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3712     return Address::invalid();
3713 
3714   VD = VD->getCanonicalDecl();
3715   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3716   if (I == FunctionGlobalizedDecls.end())
3717     return Address::invalid();
3718   auto VDI = I->getSecond().LocalVarData.find(VD);
3719   if (VDI != I->getSecond().LocalVarData.end())
3720     return VDI->second.PrivateAddr;
3721   if (VD->hasAttrs()) {
3722     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3723          E(VD->attr_end());
3724          IT != E; ++IT) {
3725       auto VDI = I->getSecond().LocalVarData.find(
3726           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3727               ->getCanonicalDecl());
3728       if (VDI != I->getSecond().LocalVarData.end())
3729         return VDI->second.PrivateAddr;
3730     }
3731   }
3732 
3733   return Address::invalid();
3734 }
3735 
3736 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3737   FunctionGlobalizedDecls.erase(CGF.CurFn);
3738   CGOpenMPRuntime::functionFinished(CGF);
3739 }
3740 
3741 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3742     CodeGenFunction &CGF, const OMPLoopDirective &S,
3743     OpenMPDistScheduleClauseKind &ScheduleKind,
3744     llvm::Value *&Chunk) const {
3745   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3746   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3747     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3748     Chunk = CGF.EmitScalarConversion(
3749         RT.getGPUNumThreads(CGF),
3750         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3751         S.getIterationVariable()->getType(), S.getBeginLoc());
3752     return;
3753   }
3754   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3755       CGF, S, ScheduleKind, Chunk);
3756 }
3757 
3758 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3759     CodeGenFunction &CGF, const OMPLoopDirective &S,
3760     OpenMPScheduleClauseKind &ScheduleKind,
3761     const Expr *&ChunkExpr) const {
3762   ScheduleKind = OMPC_SCHEDULE_static;
3763   // Chunk size is 1 in this case.
3764   llvm::APInt ChunkSize(32, 1);
3765   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3766       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3767       SourceLocation());
3768 }
3769 
3770 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3771     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3772   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3773          " Expected target-based directive.");
3774   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3775   for (const CapturedStmt::Capture &C : CS->captures()) {
3776     // Capture variables captured by reference in lambdas for target-based
3777     // directives.
3778     if (!C.capturesVariable())
3779       continue;
3780     const VarDecl *VD = C.getCapturedVar();
3781     const auto *RD = VD->getType()
3782                          .getCanonicalType()
3783                          .getNonReferenceType()
3784                          ->getAsCXXRecordDecl();
3785     if (!RD || !RD->isLambda())
3786       continue;
3787     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3788     LValue VDLVal;
3789     if (VD->getType().getCanonicalType()->isReferenceType())
3790       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3791     else
3792       VDLVal = CGF.MakeAddrLValue(
3793           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3794     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3795     FieldDecl *ThisCapture = nullptr;
3796     RD->getCaptureFields(Captures, ThisCapture);
3797     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3798       LValue ThisLVal =
3799           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3800       llvm::Value *CXXThis = CGF.LoadCXXThis();
3801       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3802     }
3803     for (const LambdaCapture &LC : RD->captures()) {
3804       if (LC.getCaptureKind() != LCK_ByRef)
3805         continue;
3806       const VarDecl *VD = LC.getCapturedVar();
3807       if (!CS->capturesVariable(VD))
3808         continue;
3809       auto It = Captures.find(VD);
3810       assert(It != Captures.end() && "Found lambda capture without field.");
3811       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3812       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3813       if (VD->getType().getCanonicalType()->isReferenceType())
3814         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3815                                                VD->getType().getCanonicalType())
3816                      .getAddress(CGF);
3817       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3818     }
3819   }
3820 }
3821 
3822 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3823                                                             LangAS &AS) {
3824   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3825     return false;
3826   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3827   switch(A->getAllocatorType()) {
3828   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3829   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3830   // Not supported, fallback to the default mem space.
3831   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3832   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3833   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3834   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3835   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3836     AS = LangAS::Default;
3837     return true;
3838   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3839     AS = LangAS::cuda_constant;
3840     return true;
3841   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3842     AS = LangAS::cuda_shared;
3843     return true;
3844   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3845     llvm_unreachable("Expected predefined allocator for the variables with the "
3846                      "static storage.");
3847   }
3848   return false;
3849 }
3850 
3851 // Get current CudaArch and ignore any unknown values
3852 static CudaArch getCudaArch(CodeGenModule &CGM) {
3853   if (!CGM.getTarget().hasFeature("ptx"))
3854     return CudaArch::UNKNOWN;
3855   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3856     if (Feature.getValue()) {
3857       CudaArch Arch = StringToCudaArch(Feature.getKey());
3858       if (Arch != CudaArch::UNKNOWN)
3859         return Arch;
3860     }
3861   }
3862   return CudaArch::UNKNOWN;
3863 }
3864 
3865 /// Check to see if target architecture supports unified addressing which is
3866 /// a restriction for OpenMP requires clause "unified_shared_memory".
3867 void CGOpenMPRuntimeGPU::processRequiresDirective(
3868     const OMPRequiresDecl *D) {
3869   for (const OMPClause *Clause : D->clauselists()) {
3870     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3871       CudaArch Arch = getCudaArch(CGM);
3872       switch (Arch) {
3873       case CudaArch::SM_20:
3874       case CudaArch::SM_21:
3875       case CudaArch::SM_30:
3876       case CudaArch::SM_32:
3877       case CudaArch::SM_35:
3878       case CudaArch::SM_37:
3879       case CudaArch::SM_50:
3880       case CudaArch::SM_52:
3881       case CudaArch::SM_53: {
3882         SmallString<256> Buffer;
3883         llvm::raw_svector_ostream Out(Buffer);
3884         Out << "Target architecture " << CudaArchToString(Arch)
3885             << " does not support unified addressing";
3886         CGM.Error(Clause->getBeginLoc(), Out.str());
3887         return;
3888       }
3889       case CudaArch::SM_60:
3890       case CudaArch::SM_61:
3891       case CudaArch::SM_62:
3892       case CudaArch::SM_70:
3893       case CudaArch::SM_72:
3894       case CudaArch::SM_75:
3895       case CudaArch::SM_80:
3896       case CudaArch::SM_86:
3897       case CudaArch::GFX600:
3898       case CudaArch::GFX601:
3899       case CudaArch::GFX602:
3900       case CudaArch::GFX700:
3901       case CudaArch::GFX701:
3902       case CudaArch::GFX702:
3903       case CudaArch::GFX703:
3904       case CudaArch::GFX704:
3905       case CudaArch::GFX705:
3906       case CudaArch::GFX801:
3907       case CudaArch::GFX802:
3908       case CudaArch::GFX803:
3909       case CudaArch::GFX805:
3910       case CudaArch::GFX810:
3911       case CudaArch::GFX900:
3912       case CudaArch::GFX902:
3913       case CudaArch::GFX904:
3914       case CudaArch::GFX906:
3915       case CudaArch::GFX908:
3916       case CudaArch::GFX909:
3917       case CudaArch::GFX90a:
3918       case CudaArch::GFX90c:
3919       case CudaArch::GFX940:
3920       case CudaArch::GFX1010:
3921       case CudaArch::GFX1011:
3922       case CudaArch::GFX1012:
3923       case CudaArch::GFX1013:
3924       case CudaArch::GFX1030:
3925       case CudaArch::GFX1031:
3926       case CudaArch::GFX1032:
3927       case CudaArch::GFX1033:
3928       case CudaArch::GFX1034:
3929       case CudaArch::GFX1035:
3930       case CudaArch::GFX1036:
3931       case CudaArch::Generic:
3932       case CudaArch::UNUSED:
3933       case CudaArch::UNKNOWN:
3934         break;
3935       case CudaArch::LAST:
3936         llvm_unreachable("Unexpected Cuda arch.");
3937       }
3938     }
3939   }
3940   CGOpenMPRuntime::processRequiresDirective(D);
3941 }
3942 
3943 void CGOpenMPRuntimeGPU::clear() {
3944 
3945   if (!TeamsReductions.empty()) {
3946     ASTContext &C = CGM.getContext();
3947     RecordDecl *StaticRD = C.buildImplicitRecord(
3948         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3949     StaticRD->startDefinition();
3950     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3951       QualType RecTy = C.getRecordType(TeamReductionRec);
3952       auto *Field = FieldDecl::Create(
3953           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3954           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3955           /*BW=*/nullptr, /*Mutable=*/false,
3956           /*InitStyle=*/ICIS_NoInit);
3957       Field->setAccess(AS_public);
3958       StaticRD->addDecl(Field);
3959     }
3960     StaticRD->completeDefinition();
3961     QualType StaticTy = C.getRecordType(StaticRD);
3962     llvm::Type *LLVMReductionsBufferTy =
3963         CGM.getTypes().ConvertTypeForMem(StaticTy);
3964     // FIXME: nvlink does not handle weak linkage correctly (object with the
3965     // different size are reported as erroneous).
3966     // Restore CommonLinkage as soon as nvlink is fixed.
3967     auto *GV = new llvm::GlobalVariable(
3968         CGM.getModule(), LLVMReductionsBufferTy,
3969         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3970         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3971         "_openmp_teams_reductions_buffer_$_");
3972     KernelTeamsReductionPtr->setInitializer(
3973         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3974                                                              CGM.VoidPtrTy));
3975   }
3976   CGOpenMPRuntime::clear();
3977 }
3978 
3979 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3980   CGBuilderTy &Bld = CGF.Builder;
3981   llvm::Module *M = &CGF.CGM.getModule();
3982   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3983   llvm::Function *F = M->getFunction(LocSize);
3984   if (!F) {
3985     F = llvm::Function::Create(
3986         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3987         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3988   }
3989   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3990 }
3991 
3992 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3993   ArrayRef<llvm::Value *> Args{};
3994   return CGF.EmitRuntimeCall(
3995       OMPBuilder.getOrCreateRuntimeFunction(
3996           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3997       Args);
3998 }
3999 
4000 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
4001   ArrayRef<llvm::Value *> Args{};
4002   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4003                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
4004                              Args);
4005 }
4006