1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 32 class NVPTXActionTy final : public PrePostActionTy { 33 llvm::FunctionCallee EnterCallee = nullptr; 34 ArrayRef<llvm::Value *> EnterArgs; 35 llvm::FunctionCallee ExitCallee = nullptr; 36 ArrayRef<llvm::Value *> ExitArgs; 37 bool Conditional = false; 38 llvm::BasicBlock *ContBlock = nullptr; 39 40 public: 41 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 42 ArrayRef<llvm::Value *> EnterArgs, 43 llvm::FunctionCallee ExitCallee, 44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 46 ExitArgs(ExitArgs), Conditional(Conditional) {} 47 void Enter(CodeGenFunction &CGF) override { 48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 49 if (Conditional) { 50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 52 ContBlock = CGF.createBasicBlock("omp_if.end"); 53 // Generate the branch (If-stmt) 54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 55 CGF.EmitBlock(ThenBlock); 56 } 57 } 58 void Done(CodeGenFunction &CGF) { 59 // Emit the rest of blocks/branches 60 CGF.EmitBranch(ContBlock); 61 CGF.EmitBlock(ContBlock, true); 62 } 63 void Exit(CodeGenFunction &CGF) override { 64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 65 } 66 }; 67 68 /// A class to track the execution mode when codegening directives within 69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 70 /// to the target region and used by containing directives such as 'parallel' 71 /// to emit optimized code. 72 class ExecutionRuntimeModesRAII { 73 private: 74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 75 CGOpenMPRuntimeGPU::EM_Unknown; 76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 77 bool SavedRuntimeMode = false; 78 bool *RuntimeMode = nullptr; 79 80 public: 81 /// Constructor for Non-SPMD mode. 82 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 83 : ExecMode(ExecMode) { 84 SavedExecMode = ExecMode; 85 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 86 } 87 /// Constructor for SPMD mode. 88 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 89 bool &RuntimeMode, bool FullRuntimeMode) 90 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 91 SavedExecMode = ExecMode; 92 SavedRuntimeMode = RuntimeMode; 93 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 94 RuntimeMode = FullRuntimeMode; 95 } 96 ~ExecutionRuntimeModesRAII() { 97 ExecMode = SavedExecMode; 98 if (RuntimeMode) 99 *RuntimeMode = SavedRuntimeMode; 100 } 101 }; 102 103 /// GPU Configuration: This information can be derived from cuda registers, 104 /// however, providing compile time constants helps generate more efficient 105 /// code. For all practical purposes this is fine because the configuration 106 /// is the same for all known NVPTX architectures. 107 enum MachineConfiguration : unsigned { 108 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 109 /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2, 110 /// and GV_Warp_Size_Log2_Mask. 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue( 550 llvm::omp::GV_Warp_Size_Log2_Mask); 551 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 552 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 553 "nvptx_lane_id"); 554 } 555 556 /// Get the value of the thread_limit clause in the teams directive. 557 /// For the 'generic' execution mode, the runtime encodes thread_limit in 558 /// the launch parameters, always starting thread_limit+warpSize threads per 559 /// CTA. The threads in the last warp are reserved for master execution. 560 /// For the 'spmd' execution mode, all threads in a CTA are part of the team. 561 static llvm::Value *getThreadLimit(CodeGenFunction &CGF, 562 bool IsInSPMDExecutionMode = false) { 563 CGBuilderTy &Bld = CGF.Builder; 564 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 565 return IsInSPMDExecutionMode 566 ? RT.getGPUNumThreads(CGF) 567 : Bld.CreateNUWSub(RT.getGPUNumThreads(CGF), 568 RT.getGPUWarpSize(CGF), "thread_limit"); 569 } 570 571 /// Get the thread id of the OMP master thread. 572 /// The master thread id is the first thread (lane) of the last warp in the 573 /// GPU block. Warp size is assumed to be some power of 2. 574 /// Thread id is 0 indexed. 575 /// E.g: If NumThreads is 33, master id is 32. 576 /// If NumThreads is 64, master id is 32. 577 /// If NumThreads is 1024, master id is 992. 578 static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) { 579 CGBuilderTy &Bld = CGF.Builder; 580 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 581 llvm::Value *NumThreads = RT.getGPUNumThreads(CGF); 582 // We assume that the warp size is a power of 2. 583 llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1)); 584 585 return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)), 586 Bld.CreateNot(Mask), "master_tid"); 587 } 588 589 CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState( 590 CodeGenModule &CGM, SourceLocation Loc) 591 : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()), 592 Loc(Loc) { 593 createWorkerFunction(CGM); 594 } 595 596 void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction( 597 CodeGenModule &CGM) { 598 // Create an worker function with no arguments. 599 600 WorkerFn = llvm::Function::Create( 601 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 602 /*placeholder=*/"_worker", &CGM.getModule()); 603 CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI); 604 WorkerFn->setDoesNotRecurse(); 605 } 606 607 CGOpenMPRuntimeGPU::ExecutionMode 608 CGOpenMPRuntimeGPU::getExecutionMode() const { 609 return CurrentExecutionMode; 610 } 611 612 static CGOpenMPRuntimeGPU::DataSharingMode 613 getDataSharingMode(CodeGenModule &CGM) { 614 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 615 : CGOpenMPRuntimeGPU::Generic; 616 } 617 618 /// Check for inner (nested) SPMD construct, if any 619 static bool hasNestedSPMDDirective(ASTContext &Ctx, 620 const OMPExecutableDirective &D) { 621 const auto *CS = D.getInnermostCapturedStmt(); 622 const auto *Body = 623 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 624 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 625 626 if (const auto *NestedDir = 627 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 628 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 629 switch (D.getDirectiveKind()) { 630 case OMPD_target: 631 if (isOpenMPParallelDirective(DKind)) 632 return true; 633 if (DKind == OMPD_teams) { 634 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 635 /*IgnoreCaptured=*/true); 636 if (!Body) 637 return false; 638 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 639 if (const auto *NND = 640 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 641 DKind = NND->getDirectiveKind(); 642 if (isOpenMPParallelDirective(DKind)) 643 return true; 644 } 645 } 646 return false; 647 case OMPD_target_teams: 648 return isOpenMPParallelDirective(DKind); 649 case OMPD_target_simd: 650 case OMPD_target_parallel: 651 case OMPD_target_parallel_for: 652 case OMPD_target_parallel_for_simd: 653 case OMPD_target_teams_distribute: 654 case OMPD_target_teams_distribute_simd: 655 case OMPD_target_teams_distribute_parallel_for: 656 case OMPD_target_teams_distribute_parallel_for_simd: 657 case OMPD_parallel: 658 case OMPD_for: 659 case OMPD_parallel_for: 660 case OMPD_parallel_master: 661 case OMPD_parallel_sections: 662 case OMPD_for_simd: 663 case OMPD_parallel_for_simd: 664 case OMPD_cancel: 665 case OMPD_cancellation_point: 666 case OMPD_ordered: 667 case OMPD_threadprivate: 668 case OMPD_allocate: 669 case OMPD_task: 670 case OMPD_simd: 671 case OMPD_sections: 672 case OMPD_section: 673 case OMPD_single: 674 case OMPD_master: 675 case OMPD_critical: 676 case OMPD_taskyield: 677 case OMPD_barrier: 678 case OMPD_taskwait: 679 case OMPD_taskgroup: 680 case OMPD_atomic: 681 case OMPD_flush: 682 case OMPD_depobj: 683 case OMPD_scan: 684 case OMPD_teams: 685 case OMPD_target_data: 686 case OMPD_target_exit_data: 687 case OMPD_target_enter_data: 688 case OMPD_distribute: 689 case OMPD_distribute_simd: 690 case OMPD_distribute_parallel_for: 691 case OMPD_distribute_parallel_for_simd: 692 case OMPD_teams_distribute: 693 case OMPD_teams_distribute_simd: 694 case OMPD_teams_distribute_parallel_for: 695 case OMPD_teams_distribute_parallel_for_simd: 696 case OMPD_target_update: 697 case OMPD_declare_simd: 698 case OMPD_declare_variant: 699 case OMPD_begin_declare_variant: 700 case OMPD_end_declare_variant: 701 case OMPD_declare_target: 702 case OMPD_end_declare_target: 703 case OMPD_declare_reduction: 704 case OMPD_declare_mapper: 705 case OMPD_taskloop: 706 case OMPD_taskloop_simd: 707 case OMPD_master_taskloop: 708 case OMPD_master_taskloop_simd: 709 case OMPD_parallel_master_taskloop: 710 case OMPD_parallel_master_taskloop_simd: 711 case OMPD_requires: 712 case OMPD_unknown: 713 default: 714 llvm_unreachable("Unexpected directive."); 715 } 716 } 717 718 return false; 719 } 720 721 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 722 const OMPExecutableDirective &D) { 723 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 724 switch (DirectiveKind) { 725 case OMPD_target: 726 case OMPD_target_teams: 727 return hasNestedSPMDDirective(Ctx, D); 728 case OMPD_target_parallel: 729 case OMPD_target_parallel_for: 730 case OMPD_target_parallel_for_simd: 731 case OMPD_target_teams_distribute_parallel_for: 732 case OMPD_target_teams_distribute_parallel_for_simd: 733 case OMPD_target_simd: 734 case OMPD_target_teams_distribute_simd: 735 return true; 736 case OMPD_target_teams_distribute: 737 return false; 738 case OMPD_parallel: 739 case OMPD_for: 740 case OMPD_parallel_for: 741 case OMPD_parallel_master: 742 case OMPD_parallel_sections: 743 case OMPD_for_simd: 744 case OMPD_parallel_for_simd: 745 case OMPD_cancel: 746 case OMPD_cancellation_point: 747 case OMPD_ordered: 748 case OMPD_threadprivate: 749 case OMPD_allocate: 750 case OMPD_task: 751 case OMPD_simd: 752 case OMPD_sections: 753 case OMPD_section: 754 case OMPD_single: 755 case OMPD_master: 756 case OMPD_critical: 757 case OMPD_taskyield: 758 case OMPD_barrier: 759 case OMPD_taskwait: 760 case OMPD_taskgroup: 761 case OMPD_atomic: 762 case OMPD_flush: 763 case OMPD_depobj: 764 case OMPD_scan: 765 case OMPD_teams: 766 case OMPD_target_data: 767 case OMPD_target_exit_data: 768 case OMPD_target_enter_data: 769 case OMPD_distribute: 770 case OMPD_distribute_simd: 771 case OMPD_distribute_parallel_for: 772 case OMPD_distribute_parallel_for_simd: 773 case OMPD_teams_distribute: 774 case OMPD_teams_distribute_simd: 775 case OMPD_teams_distribute_parallel_for: 776 case OMPD_teams_distribute_parallel_for_simd: 777 case OMPD_target_update: 778 case OMPD_declare_simd: 779 case OMPD_declare_variant: 780 case OMPD_begin_declare_variant: 781 case OMPD_end_declare_variant: 782 case OMPD_declare_target: 783 case OMPD_end_declare_target: 784 case OMPD_declare_reduction: 785 case OMPD_declare_mapper: 786 case OMPD_taskloop: 787 case OMPD_taskloop_simd: 788 case OMPD_master_taskloop: 789 case OMPD_master_taskloop_simd: 790 case OMPD_parallel_master_taskloop: 791 case OMPD_parallel_master_taskloop_simd: 792 case OMPD_requires: 793 case OMPD_unknown: 794 default: 795 break; 796 } 797 llvm_unreachable( 798 "Unknown programming model for OpenMP directive on NVPTX target."); 799 } 800 801 /// Check if the directive is loops based and has schedule clause at all or has 802 /// static scheduling. 803 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 804 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 805 isOpenMPLoopDirective(D.getDirectiveKind()) && 806 "Expected loop-based directive."); 807 return !D.hasClausesOfKind<OMPOrderedClause>() && 808 (!D.hasClausesOfKind<OMPScheduleClause>() || 809 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 810 [](const OMPScheduleClause *C) { 811 return C->getScheduleKind() == OMPC_SCHEDULE_static; 812 })); 813 } 814 815 /// Check for inner (nested) lightweight runtime construct, if any 816 static bool hasNestedLightweightDirective(ASTContext &Ctx, 817 const OMPExecutableDirective &D) { 818 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 819 const auto *CS = D.getInnermostCapturedStmt(); 820 const auto *Body = 821 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 822 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 823 824 if (const auto *NestedDir = 825 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 826 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 827 switch (D.getDirectiveKind()) { 828 case OMPD_target: 829 if (isOpenMPParallelDirective(DKind) && 830 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 831 hasStaticScheduling(*NestedDir)) 832 return true; 833 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 834 return true; 835 if (DKind == OMPD_parallel) { 836 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 837 /*IgnoreCaptured=*/true); 838 if (!Body) 839 return false; 840 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 841 if (const auto *NND = 842 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 843 DKind = NND->getDirectiveKind(); 844 if (isOpenMPWorksharingDirective(DKind) && 845 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 846 return true; 847 } 848 } else if (DKind == OMPD_teams) { 849 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 850 /*IgnoreCaptured=*/true); 851 if (!Body) 852 return false; 853 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 854 if (const auto *NND = 855 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 856 DKind = NND->getDirectiveKind(); 857 if (isOpenMPParallelDirective(DKind) && 858 isOpenMPWorksharingDirective(DKind) && 859 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 860 return true; 861 if (DKind == OMPD_parallel) { 862 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 863 /*IgnoreCaptured=*/true); 864 if (!Body) 865 return false; 866 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 867 if (const auto *NND = 868 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 869 DKind = NND->getDirectiveKind(); 870 if (isOpenMPWorksharingDirective(DKind) && 871 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 872 return true; 873 } 874 } 875 } 876 } 877 return false; 878 case OMPD_target_teams: 879 if (isOpenMPParallelDirective(DKind) && 880 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 881 hasStaticScheduling(*NestedDir)) 882 return true; 883 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 884 return true; 885 if (DKind == OMPD_parallel) { 886 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 887 /*IgnoreCaptured=*/true); 888 if (!Body) 889 return false; 890 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 891 if (const auto *NND = 892 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 893 DKind = NND->getDirectiveKind(); 894 if (isOpenMPWorksharingDirective(DKind) && 895 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 896 return true; 897 } 898 } 899 return false; 900 case OMPD_target_parallel: 901 if (DKind == OMPD_simd) 902 return true; 903 return isOpenMPWorksharingDirective(DKind) && 904 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 905 case OMPD_target_teams_distribute: 906 case OMPD_target_simd: 907 case OMPD_target_parallel_for: 908 case OMPD_target_parallel_for_simd: 909 case OMPD_target_teams_distribute_simd: 910 case OMPD_target_teams_distribute_parallel_for: 911 case OMPD_target_teams_distribute_parallel_for_simd: 912 case OMPD_parallel: 913 case OMPD_for: 914 case OMPD_parallel_for: 915 case OMPD_parallel_master: 916 case OMPD_parallel_sections: 917 case OMPD_for_simd: 918 case OMPD_parallel_for_simd: 919 case OMPD_cancel: 920 case OMPD_cancellation_point: 921 case OMPD_ordered: 922 case OMPD_threadprivate: 923 case OMPD_allocate: 924 case OMPD_task: 925 case OMPD_simd: 926 case OMPD_sections: 927 case OMPD_section: 928 case OMPD_single: 929 case OMPD_master: 930 case OMPD_critical: 931 case OMPD_taskyield: 932 case OMPD_barrier: 933 case OMPD_taskwait: 934 case OMPD_taskgroup: 935 case OMPD_atomic: 936 case OMPD_flush: 937 case OMPD_depobj: 938 case OMPD_scan: 939 case OMPD_teams: 940 case OMPD_target_data: 941 case OMPD_target_exit_data: 942 case OMPD_target_enter_data: 943 case OMPD_distribute: 944 case OMPD_distribute_simd: 945 case OMPD_distribute_parallel_for: 946 case OMPD_distribute_parallel_for_simd: 947 case OMPD_teams_distribute: 948 case OMPD_teams_distribute_simd: 949 case OMPD_teams_distribute_parallel_for: 950 case OMPD_teams_distribute_parallel_for_simd: 951 case OMPD_target_update: 952 case OMPD_declare_simd: 953 case OMPD_declare_variant: 954 case OMPD_begin_declare_variant: 955 case OMPD_end_declare_variant: 956 case OMPD_declare_target: 957 case OMPD_end_declare_target: 958 case OMPD_declare_reduction: 959 case OMPD_declare_mapper: 960 case OMPD_taskloop: 961 case OMPD_taskloop_simd: 962 case OMPD_master_taskloop: 963 case OMPD_master_taskloop_simd: 964 case OMPD_parallel_master_taskloop: 965 case OMPD_parallel_master_taskloop_simd: 966 case OMPD_requires: 967 case OMPD_unknown: 968 default: 969 llvm_unreachable("Unexpected directive."); 970 } 971 } 972 973 return false; 974 } 975 976 /// Checks if the construct supports lightweight runtime. It must be SPMD 977 /// construct + inner loop-based construct with static scheduling. 978 static bool supportsLightweightRuntime(ASTContext &Ctx, 979 const OMPExecutableDirective &D) { 980 if (!supportsSPMDExecutionMode(Ctx, D)) 981 return false; 982 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 983 switch (DirectiveKind) { 984 case OMPD_target: 985 case OMPD_target_teams: 986 case OMPD_target_parallel: 987 return hasNestedLightweightDirective(Ctx, D); 988 case OMPD_target_parallel_for: 989 case OMPD_target_parallel_for_simd: 990 case OMPD_target_teams_distribute_parallel_for: 991 case OMPD_target_teams_distribute_parallel_for_simd: 992 // (Last|First)-privates must be shared in parallel region. 993 return hasStaticScheduling(D); 994 case OMPD_target_simd: 995 case OMPD_target_teams_distribute_simd: 996 return true; 997 case OMPD_target_teams_distribute: 998 return false; 999 case OMPD_parallel: 1000 case OMPD_for: 1001 case OMPD_parallel_for: 1002 case OMPD_parallel_master: 1003 case OMPD_parallel_sections: 1004 case OMPD_for_simd: 1005 case OMPD_parallel_for_simd: 1006 case OMPD_cancel: 1007 case OMPD_cancellation_point: 1008 case OMPD_ordered: 1009 case OMPD_threadprivate: 1010 case OMPD_allocate: 1011 case OMPD_task: 1012 case OMPD_simd: 1013 case OMPD_sections: 1014 case OMPD_section: 1015 case OMPD_single: 1016 case OMPD_master: 1017 case OMPD_critical: 1018 case OMPD_taskyield: 1019 case OMPD_barrier: 1020 case OMPD_taskwait: 1021 case OMPD_taskgroup: 1022 case OMPD_atomic: 1023 case OMPD_flush: 1024 case OMPD_depobj: 1025 case OMPD_scan: 1026 case OMPD_teams: 1027 case OMPD_target_data: 1028 case OMPD_target_exit_data: 1029 case OMPD_target_enter_data: 1030 case OMPD_distribute: 1031 case OMPD_distribute_simd: 1032 case OMPD_distribute_parallel_for: 1033 case OMPD_distribute_parallel_for_simd: 1034 case OMPD_teams_distribute: 1035 case OMPD_teams_distribute_simd: 1036 case OMPD_teams_distribute_parallel_for: 1037 case OMPD_teams_distribute_parallel_for_simd: 1038 case OMPD_target_update: 1039 case OMPD_declare_simd: 1040 case OMPD_declare_variant: 1041 case OMPD_begin_declare_variant: 1042 case OMPD_end_declare_variant: 1043 case OMPD_declare_target: 1044 case OMPD_end_declare_target: 1045 case OMPD_declare_reduction: 1046 case OMPD_declare_mapper: 1047 case OMPD_taskloop: 1048 case OMPD_taskloop_simd: 1049 case OMPD_master_taskloop: 1050 case OMPD_master_taskloop_simd: 1051 case OMPD_parallel_master_taskloop: 1052 case OMPD_parallel_master_taskloop_simd: 1053 case OMPD_requires: 1054 case OMPD_unknown: 1055 default: 1056 break; 1057 } 1058 llvm_unreachable( 1059 "Unknown programming model for OpenMP directive on NVPTX target."); 1060 } 1061 1062 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1063 StringRef ParentName, 1064 llvm::Function *&OutlinedFn, 1065 llvm::Constant *&OutlinedFnID, 1066 bool IsOffloadEntry, 1067 const RegionCodeGenTy &CodeGen) { 1068 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1069 EntryFunctionState EST; 1070 WorkerFunctionState WST(CGM, D.getBeginLoc()); 1071 Work.clear(); 1072 WrapperFunctionsMap.clear(); 1073 1074 // Emit target region as a standalone region. 1075 class NVPTXPrePostActionTy : public PrePostActionTy { 1076 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1077 CGOpenMPRuntimeGPU::WorkerFunctionState &WST; 1078 1079 public: 1080 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, 1081 CGOpenMPRuntimeGPU::WorkerFunctionState &WST) 1082 : EST(EST), WST(WST) {} 1083 void Enter(CodeGenFunction &CGF) override { 1084 auto &RT = 1085 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1086 RT.emitNonSPMDEntryHeader(CGF, EST, WST); 1087 // Skip target region initialization. 1088 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1089 } 1090 void Exit(CodeGenFunction &CGF) override { 1091 auto &RT = 1092 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1093 RT.clearLocThreadIdInsertPt(CGF); 1094 RT.emitNonSPMDEntryFooter(CGF, EST); 1095 } 1096 } Action(EST, WST); 1097 CodeGen.setAction(Action); 1098 IsInTTDRegion = true; 1099 // Reserve place for the globalized memory. 1100 GlobalizedRecords.emplace_back(); 1101 if (!KernelStaticGlobalized) { 1102 KernelStaticGlobalized = new llvm::GlobalVariable( 1103 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false, 1104 llvm::GlobalValue::InternalLinkage, 1105 llvm::UndefValue::get(CGM.VoidPtrTy), 1106 "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr, 1107 llvm::GlobalValue::NotThreadLocal, 1108 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared)); 1109 } 1110 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1111 IsOffloadEntry, CodeGen); 1112 IsInTTDRegion = false; 1113 1114 // Now change the name of the worker function to correspond to this target 1115 // region's entry function. 1116 WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker")); 1117 1118 // Create the worker function 1119 emitWorkerFunction(WST); 1120 } 1121 1122 // Setup NVPTX threads for master-worker OpenMP scheme. 1123 void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF, 1124 EntryFunctionState &EST, 1125 WorkerFunctionState &WST) { 1126 CGBuilderTy &Bld = CGF.Builder; 1127 1128 llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker"); 1129 llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck"); 1130 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); 1131 EST.ExitBB = CGF.createBasicBlock(".exit"); 1132 1133 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1134 llvm::Value *IsWorker = 1135 Bld.CreateICmpULT(RT.getGPUThreadID(CGF), getThreadLimit(CGF)); 1136 Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB); 1137 1138 CGF.EmitBlock(WorkerBB); 1139 emitCall(CGF, WST.Loc, WST.WorkerFn); 1140 CGF.EmitBranch(EST.ExitBB); 1141 1142 CGF.EmitBlock(MasterCheckBB); 1143 llvm::Value *IsMaster = 1144 Bld.CreateICmpEQ(RT.getGPUThreadID(CGF), getMasterThreadID(CGF)); 1145 Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB); 1146 1147 CGF.EmitBlock(MasterBB); 1148 IsInTargetMasterThreadRegion = true; 1149 // SEQUENTIAL (MASTER) REGION START 1150 // First action in sequential region: 1151 // Initialize the state of the OpenMP runtime library on the GPU. 1152 // TODO: Optimize runtime initialization and pass in correct value. 1153 llvm::Value *Args[] = {getThreadLimit(CGF), 1154 Bld.getInt16(/*RequiresOMPRuntime=*/1)}; 1155 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1156 CGM.getModule(), OMPRTL___kmpc_kernel_init), 1157 Args); 1158 1159 // For data sharing, we need to initialize the stack. 1160 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1161 CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack)); 1162 1163 emitGenericVarsProlog(CGF, WST.Loc); 1164 } 1165 1166 void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF, 1167 EntryFunctionState &EST) { 1168 IsInTargetMasterThreadRegion = false; 1169 if (!CGF.HaveInsertPoint()) 1170 return; 1171 1172 emitGenericVarsEpilog(CGF); 1173 1174 if (!EST.ExitBB) 1175 EST.ExitBB = CGF.createBasicBlock(".exit"); 1176 1177 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier"); 1178 CGF.EmitBranch(TerminateBB); 1179 1180 CGF.EmitBlock(TerminateBB); 1181 // Signal termination condition. 1182 // TODO: Optimize runtime initialization and pass in correct value. 1183 llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)}; 1184 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1185 CGM.getModule(), OMPRTL___kmpc_kernel_deinit), 1186 Args); 1187 // Barrier to terminate worker threads. 1188 syncCTAThreads(CGF); 1189 // Master thread jumps to exit point. 1190 CGF.EmitBranch(EST.ExitBB); 1191 1192 CGF.EmitBlock(EST.ExitBB); 1193 EST.ExitBB = nullptr; 1194 } 1195 1196 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1197 StringRef ParentName, 1198 llvm::Function *&OutlinedFn, 1199 llvm::Constant *&OutlinedFnID, 1200 bool IsOffloadEntry, 1201 const RegionCodeGenTy &CodeGen) { 1202 ExecutionRuntimeModesRAII ModeRAII( 1203 CurrentExecutionMode, RequiresFullRuntime, 1204 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1205 !supportsLightweightRuntime(CGM.getContext(), D)); 1206 EntryFunctionState EST; 1207 1208 // Emit target region as a standalone region. 1209 class NVPTXPrePostActionTy : public PrePostActionTy { 1210 CGOpenMPRuntimeGPU &RT; 1211 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1212 const OMPExecutableDirective &D; 1213 1214 public: 1215 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1216 CGOpenMPRuntimeGPU::EntryFunctionState &EST, 1217 const OMPExecutableDirective &D) 1218 : RT(RT), EST(EST), D(D) {} 1219 void Enter(CodeGenFunction &CGF) override { 1220 RT.emitSPMDEntryHeader(CGF, EST, D); 1221 // Skip target region initialization. 1222 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1223 } 1224 void Exit(CodeGenFunction &CGF) override { 1225 RT.clearLocThreadIdInsertPt(CGF); 1226 RT.emitSPMDEntryFooter(CGF, EST); 1227 } 1228 } Action(*this, EST, D); 1229 CodeGen.setAction(Action); 1230 IsInTTDRegion = true; 1231 // Reserve place for the globalized memory. 1232 GlobalizedRecords.emplace_back(); 1233 if (!KernelStaticGlobalized) { 1234 KernelStaticGlobalized = new llvm::GlobalVariable( 1235 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false, 1236 llvm::GlobalValue::InternalLinkage, 1237 llvm::UndefValue::get(CGM.VoidPtrTy), 1238 "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr, 1239 llvm::GlobalValue::NotThreadLocal, 1240 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared)); 1241 } 1242 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1243 IsOffloadEntry, CodeGen); 1244 IsInTTDRegion = false; 1245 } 1246 1247 void CGOpenMPRuntimeGPU::emitSPMDEntryHeader( 1248 CodeGenFunction &CGF, EntryFunctionState &EST, 1249 const OMPExecutableDirective &D) { 1250 CGBuilderTy &Bld = CGF.Builder; 1251 1252 // Setup BBs in entry function. 1253 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute"); 1254 EST.ExitBB = CGF.createBasicBlock(".exit"); 1255 1256 llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true), 1257 /*RequiresOMPRuntime=*/ 1258 Bld.getInt16(RequiresFullRuntime ? 1 : 0)}; 1259 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1260 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_init), 1261 Args); 1262 1263 if (RequiresFullRuntime) { 1264 // For data sharing, we need to initialize the stack. 1265 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1266 CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack_spmd)); 1267 } 1268 1269 CGF.EmitBranch(ExecuteBB); 1270 1271 CGF.EmitBlock(ExecuteBB); 1272 1273 IsInTargetMasterThreadRegion = true; 1274 } 1275 1276 void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF, 1277 EntryFunctionState &EST) { 1278 IsInTargetMasterThreadRegion = false; 1279 if (!CGF.HaveInsertPoint()) 1280 return; 1281 1282 if (!EST.ExitBB) 1283 EST.ExitBB = CGF.createBasicBlock(".exit"); 1284 1285 llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit"); 1286 CGF.EmitBranch(OMPDeInitBB); 1287 1288 CGF.EmitBlock(OMPDeInitBB); 1289 // DeInitialize the OMP state in the runtime; called by all active threads. 1290 llvm::Value *Args[] = {/*RequiresOMPRuntime=*/ 1291 CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)}; 1292 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1293 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_deinit_v2), 1294 Args); 1295 CGF.EmitBranch(EST.ExitBB); 1296 1297 CGF.EmitBlock(EST.ExitBB); 1298 EST.ExitBB = nullptr; 1299 } 1300 1301 // Create a unique global variable to indicate the execution mode of this target 1302 // region. The execution mode is either 'generic', or 'spmd' depending on the 1303 // target directive. This variable is picked up by the offload library to setup 1304 // the device appropriately before kernel launch. If the execution mode is 1305 // 'generic', the runtime reserves one warp for the master, otherwise, all 1306 // warps participate in parallel work. 1307 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1308 bool Mode) { 1309 auto *GVMode = 1310 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1311 llvm::GlobalValue::WeakAnyLinkage, 1312 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1313 Twine(Name, "_exec_mode")); 1314 CGM.addCompilerUsedGlobal(GVMode); 1315 } 1316 1317 void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) { 1318 ASTContext &Ctx = CGM.getContext(); 1319 1320 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 1321 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {}, 1322 WST.Loc, WST.Loc); 1323 emitWorkerLoop(CGF, WST); 1324 CGF.FinishFunction(); 1325 } 1326 1327 void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF, 1328 WorkerFunctionState &WST) { 1329 // 1330 // The workers enter this loop and wait for parallel work from the master. 1331 // When the master encounters a parallel region it sets up the work + variable 1332 // arguments, and wakes up the workers. The workers first check to see if 1333 // they are required for the parallel region, i.e., within the # of requested 1334 // parallel threads. The activated workers load the variable arguments and 1335 // execute the parallel work. 1336 // 1337 1338 CGBuilderTy &Bld = CGF.Builder; 1339 1340 llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work"); 1341 llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers"); 1342 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel"); 1343 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel"); 1344 llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel"); 1345 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 1346 1347 CGF.EmitBranch(AwaitBB); 1348 1349 // Workers wait for work from master. 1350 CGF.EmitBlock(AwaitBB); 1351 // Wait for parallel work 1352 syncCTAThreads(CGF); 1353 1354 Address WorkFn = 1355 CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn"); 1356 Address ExecStatus = 1357 CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status"); 1358 CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0)); 1359 CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy)); 1360 1361 // TODO: Optimize runtime initialization and pass in correct value. 1362 llvm::Value *Args[] = {WorkFn.getPointer()}; 1363 llvm::Value *Ret = 1364 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1365 CGM.getModule(), OMPRTL___kmpc_kernel_parallel), 1366 Args); 1367 Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus); 1368 1369 // On termination condition (workid == 0), exit loop. 1370 llvm::Value *WorkID = Bld.CreateLoad(WorkFn); 1371 llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate"); 1372 Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB); 1373 1374 // Activate requested workers. 1375 CGF.EmitBlock(SelectWorkersBB); 1376 llvm::Value *IsActive = 1377 Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active"); 1378 Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB); 1379 1380 // Signal start of parallel region. 1381 CGF.EmitBlock(ExecuteBB); 1382 // Skip initialization. 1383 setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1384 1385 // Process work items: outlined parallel functions. 1386 for (llvm::Function *W : Work) { 1387 // Try to match this outlined function. 1388 llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy); 1389 1390 llvm::Value *WorkFnMatch = 1391 Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match"); 1392 1393 llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn"); 1394 llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next"); 1395 Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB); 1396 1397 // Execute this outlined function. 1398 CGF.EmitBlock(ExecuteFNBB); 1399 1400 // Insert call to work function via shared wrapper. The shared 1401 // wrapper takes two arguments: 1402 // - the parallelism level; 1403 // - the thread ID; 1404 emitCall(CGF, WST.Loc, W, 1405 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); 1406 1407 // Go to end of parallel region. 1408 CGF.EmitBranch(TerminateBB); 1409 1410 CGF.EmitBlock(CheckNextBB); 1411 } 1412 // Default case: call to outlined function through pointer if the target 1413 // region makes a declare target call that may contain an orphaned parallel 1414 // directive. 1415 auto *ParallelFnTy = 1416 llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty}, 1417 /*isVarArg=*/false); 1418 llvm::Value *WorkFnCast = 1419 Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo()); 1420 // Insert call to work function via shared wrapper. The shared 1421 // wrapper takes two arguments: 1422 // - the parallelism level; 1423 // - the thread ID; 1424 emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast}, 1425 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); 1426 // Go to end of parallel region. 1427 CGF.EmitBranch(TerminateBB); 1428 1429 // Signal end of parallel region. 1430 CGF.EmitBlock(TerminateBB); 1431 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1432 CGM.getModule(), OMPRTL___kmpc_kernel_end_parallel), 1433 llvm::None); 1434 CGF.EmitBranch(BarrierBB); 1435 1436 // All active and inactive workers wait at a barrier after parallel region. 1437 CGF.EmitBlock(BarrierBB); 1438 // Barrier after parallel region. 1439 syncCTAThreads(CGF); 1440 CGF.EmitBranch(AwaitBB); 1441 1442 // Exit target region. 1443 CGF.EmitBlock(ExitBB); 1444 // Skip initialization. 1445 clearLocThreadIdInsertPt(CGF); 1446 } 1447 1448 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1449 llvm::Constant *Addr, 1450 uint64_t Size, int32_t, 1451 llvm::GlobalValue::LinkageTypes) { 1452 // TODO: Add support for global variables on the device after declare target 1453 // support. 1454 if (!isa<llvm::Function>(Addr)) 1455 return; 1456 llvm::Module &M = CGM.getModule(); 1457 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1458 1459 // Get "nvvm.annotations" metadata node 1460 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1461 1462 llvm::Metadata *MDVals[] = { 1463 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1464 llvm::ConstantAsMetadata::get( 1465 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1466 // Append metadata to nvvm.annotations 1467 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1468 } 1469 1470 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1471 const OMPExecutableDirective &D, StringRef ParentName, 1472 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1473 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1474 if (!IsOffloadEntry) // Nothing to do. 1475 return; 1476 1477 assert(!ParentName.empty() && "Invalid target region parent name!"); 1478 1479 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1480 if (Mode) 1481 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1482 CodeGen); 1483 else 1484 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1485 CodeGen); 1486 1487 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1488 } 1489 1490 namespace { 1491 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1492 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1493 enum ModeFlagsTy : unsigned { 1494 /// Bit set to 1 when in SPMD mode. 1495 KMP_IDENT_SPMD_MODE = 0x01, 1496 /// Bit set to 1 when a simplified runtime is used. 1497 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1498 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1499 }; 1500 1501 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1502 static const ModeFlagsTy UndefinedMode = 1503 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1504 } // anonymous namespace 1505 1506 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1507 switch (getExecutionMode()) { 1508 case EM_SPMD: 1509 if (requiresFullRuntime()) 1510 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1511 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1512 case EM_NonSPMD: 1513 assert(requiresFullRuntime() && "Expected full runtime."); 1514 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1515 case EM_Unknown: 1516 return UndefinedMode; 1517 } 1518 llvm_unreachable("Unknown flags are requested."); 1519 } 1520 1521 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1522 : CGOpenMPRuntime(CGM, "_", "$") { 1523 if (!CGM.getLangOpts().OpenMPIsDevice) 1524 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1525 } 1526 1527 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1528 ProcBindKind ProcBind, 1529 SourceLocation Loc) { 1530 // Do nothing in case of SPMD mode and L0 parallel. 1531 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1532 return; 1533 1534 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1535 } 1536 1537 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1538 llvm::Value *NumThreads, 1539 SourceLocation Loc) { 1540 // Do nothing in case of SPMD mode and L0 parallel. 1541 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1542 return; 1543 1544 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1545 } 1546 1547 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1548 const Expr *NumTeams, 1549 const Expr *ThreadLimit, 1550 SourceLocation Loc) {} 1551 1552 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1553 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1554 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1555 // Emit target region as a standalone region. 1556 class NVPTXPrePostActionTy : public PrePostActionTy { 1557 bool &IsInParallelRegion; 1558 bool PrevIsInParallelRegion; 1559 1560 public: 1561 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1562 : IsInParallelRegion(IsInParallelRegion) {} 1563 void Enter(CodeGenFunction &CGF) override { 1564 PrevIsInParallelRegion = IsInParallelRegion; 1565 IsInParallelRegion = true; 1566 } 1567 void Exit(CodeGenFunction &CGF) override { 1568 IsInParallelRegion = PrevIsInParallelRegion; 1569 } 1570 } Action(IsInParallelRegion); 1571 CodeGen.setAction(Action); 1572 bool PrevIsInTTDRegion = IsInTTDRegion; 1573 IsInTTDRegion = false; 1574 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1575 IsInTargetMasterThreadRegion = false; 1576 auto *OutlinedFun = 1577 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1578 D, ThreadIDVar, InnermostKind, CodeGen)); 1579 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1580 IsInTTDRegion = PrevIsInTTDRegion; 1581 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1582 !IsInParallelRegion) { 1583 llvm::Function *WrapperFun = 1584 createParallelDataSharingWrapper(OutlinedFun, D); 1585 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1586 } 1587 1588 return OutlinedFun; 1589 } 1590 1591 /// Get list of lastprivate variables from the teams distribute ... or 1592 /// teams {distribute ...} directives. 1593 static void 1594 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1595 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1596 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1597 "expected teams directive."); 1598 const OMPExecutableDirective *Dir = &D; 1599 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1600 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1601 Ctx, 1602 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1603 /*IgnoreCaptured=*/true))) { 1604 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1605 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1606 Dir = nullptr; 1607 } 1608 } 1609 if (!Dir) 1610 return; 1611 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1612 for (const Expr *E : C->getVarRefs()) 1613 Vars.push_back(getPrivateItem(E)); 1614 } 1615 } 1616 1617 /// Get list of reduction variables from the teams ... directives. 1618 static void 1619 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1620 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1621 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1622 "expected teams directive."); 1623 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1624 for (const Expr *E : C->privates()) 1625 Vars.push_back(getPrivateItem(E)); 1626 } 1627 } 1628 1629 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1630 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1631 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1632 SourceLocation Loc = D.getBeginLoc(); 1633 1634 const RecordDecl *GlobalizedRD = nullptr; 1635 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1636 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1637 unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 1638 // Globalize team reductions variable unconditionally in all modes. 1639 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1640 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1641 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1642 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1643 if (!LastPrivatesReductions.empty()) { 1644 GlobalizedRD = ::buildRecordForGlobalizedVars( 1645 CGM.getContext(), llvm::None, LastPrivatesReductions, 1646 MappedDeclsFields, WarpSize); 1647 } 1648 } else if (!LastPrivatesReductions.empty()) { 1649 assert(!TeamAndReductions.first && 1650 "Previous team declaration is not expected."); 1651 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1652 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1653 } 1654 1655 // Emit target region as a standalone region. 1656 class NVPTXPrePostActionTy : public PrePostActionTy { 1657 SourceLocation &Loc; 1658 const RecordDecl *GlobalizedRD; 1659 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1660 &MappedDeclsFields; 1661 1662 public: 1663 NVPTXPrePostActionTy( 1664 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1665 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1666 &MappedDeclsFields) 1667 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1668 MappedDeclsFields(MappedDeclsFields) {} 1669 void Enter(CodeGenFunction &CGF) override { 1670 auto &Rt = 1671 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1672 if (GlobalizedRD) { 1673 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1674 I->getSecond().GlobalRecord = GlobalizedRD; 1675 I->getSecond().MappedParams = 1676 std::make_unique<CodeGenFunction::OMPMapVars>(); 1677 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1678 for (const auto &Pair : MappedDeclsFields) { 1679 assert(Pair.getFirst()->isCanonicalDecl() && 1680 "Expected canonical declaration"); 1681 Data.insert(std::make_pair(Pair.getFirst(), 1682 MappedVarData(Pair.getSecond(), 1683 /*IsOnePerTeam=*/true))); 1684 } 1685 } 1686 Rt.emitGenericVarsProlog(CGF, Loc); 1687 } 1688 void Exit(CodeGenFunction &CGF) override { 1689 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1690 .emitGenericVarsEpilog(CGF); 1691 } 1692 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1693 CodeGen.setAction(Action); 1694 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1695 D, ThreadIDVar, InnermostKind, CodeGen); 1696 1697 return OutlinedFun; 1698 } 1699 1700 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1701 SourceLocation Loc, 1702 bool WithSPMDCheck) { 1703 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1704 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1705 return; 1706 1707 CGBuilderTy &Bld = CGF.Builder; 1708 1709 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1710 if (I == FunctionGlobalizedDecls.end()) 1711 return; 1712 if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) { 1713 QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord); 1714 QualType SecGlobalRecTy; 1715 1716 // Recover pointer to this function's global record. The runtime will 1717 // handle the specifics of the allocation of the memory. 1718 // Use actual memory size of the record including the padding 1719 // for alignment purposes. 1720 unsigned Alignment = 1721 CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity(); 1722 unsigned GlobalRecordSize = 1723 CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity(); 1724 GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment); 1725 1726 llvm::PointerType *GlobalRecPtrTy = 1727 CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo(); 1728 llvm::Value *GlobalRecCastAddr; 1729 llvm::Value *IsTTD = nullptr; 1730 if (!IsInTTDRegion && 1731 (WithSPMDCheck || 1732 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { 1733 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 1734 llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd"); 1735 llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd"); 1736 if (I->getSecond().SecondaryGlobalRecord.hasValue()) { 1737 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1738 llvm::Value *ThreadID = getThreadID(CGF, Loc); 1739 llvm::Value *PL = CGF.EmitRuntimeCall( 1740 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), 1741 OMPRTL___kmpc_parallel_level), 1742 {RTLoc, ThreadID}); 1743 IsTTD = Bld.CreateIsNull(PL); 1744 } 1745 llvm::Value *IsSPMD = Bld.CreateIsNotNull( 1746 CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1747 CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode))); 1748 Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB); 1749 // There is no need to emit line number for unconditional branch. 1750 (void)ApplyDebugLocation::CreateEmpty(CGF); 1751 CGF.EmitBlock(SPMDBB); 1752 Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy), 1753 CharUnits::fromQuantity(Alignment)); 1754 CGF.EmitBranch(ExitBB); 1755 // There is no need to emit line number for unconditional branch. 1756 (void)ApplyDebugLocation::CreateEmpty(CGF); 1757 CGF.EmitBlock(NonSPMDBB); 1758 llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize); 1759 if (const RecordDecl *SecGlobalizedVarsRecord = 1760 I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) { 1761 SecGlobalRecTy = 1762 CGM.getContext().getRecordType(SecGlobalizedVarsRecord); 1763 1764 // Recover pointer to this function's global record. The runtime will 1765 // handle the specifics of the allocation of the memory. 1766 // Use actual memory size of the record including the padding 1767 // for alignment purposes. 1768 unsigned Alignment = 1769 CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity(); 1770 unsigned GlobalRecordSize = 1771 CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity(); 1772 GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment); 1773 Size = Bld.CreateSelect( 1774 IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size); 1775 } 1776 // TODO: allow the usage of shared memory to be controlled by 1777 // the user, for now, default to global. 1778 llvm::Value *GlobalRecordSizeArg[] = { 1779 Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)}; 1780 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( 1781 OMPBuilder.getOrCreateRuntimeFunction( 1782 CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack), 1783 GlobalRecordSizeArg); 1784 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1785 GlobalRecValue, GlobalRecPtrTy); 1786 CGF.EmitBlock(ExitBB); 1787 auto *Phi = Bld.CreatePHI(GlobalRecPtrTy, 1788 /*NumReservedValues=*/2, "_select_stack"); 1789 Phi->addIncoming(RecPtr.getPointer(), SPMDBB); 1790 Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB); 1791 GlobalRecCastAddr = Phi; 1792 I->getSecond().GlobalRecordAddr = Phi; 1793 I->getSecond().IsInSPMDModeFlag = IsSPMD; 1794 } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) { 1795 assert(GlobalizedRecords.back().Records.size() < 2 && 1796 "Expected less than 2 globalized records: one for target and one " 1797 "for teams."); 1798 unsigned Offset = 0; 1799 for (const RecordDecl *RD : GlobalizedRecords.back().Records) { 1800 QualType RDTy = CGM.getContext().getRecordType(RD); 1801 unsigned Alignment = 1802 CGM.getContext().getTypeAlignInChars(RDTy).getQuantity(); 1803 unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity(); 1804 Offset = 1805 llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment); 1806 } 1807 unsigned Alignment = 1808 CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity(); 1809 Offset = llvm::alignTo(Offset, Alignment); 1810 GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord); 1811 ++GlobalizedRecords.back().RegionCounter; 1812 if (GlobalizedRecords.back().Records.size() == 1) { 1813 assert(KernelStaticGlobalized && 1814 "Kernel static pointer must be initialized already."); 1815 auto *UseSharedMemory = new llvm::GlobalVariable( 1816 CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true, 1817 llvm::GlobalValue::InternalLinkage, nullptr, 1818 "_openmp_static_kernel$is_shared"); 1819 UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1820 QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth( 1821 /*DestWidth=*/16, /*Signed=*/0); 1822 llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar( 1823 Address(UseSharedMemory, 1824 CGM.getContext().getTypeAlignInChars(Int16Ty)), 1825 /*Volatile=*/false, Int16Ty, Loc); 1826 auto *StaticGlobalized = new llvm::GlobalVariable( 1827 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, 1828 llvm::GlobalValue::CommonLinkage, nullptr); 1829 auto *RecSize = new llvm::GlobalVariable( 1830 CGM.getModule(), CGM.SizeTy, /*isConstant=*/true, 1831 llvm::GlobalValue::InternalLinkage, nullptr, 1832 "_openmp_static_kernel$size"); 1833 RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1834 llvm::Value *Ld = CGF.EmitLoadOfScalar( 1835 Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false, 1836 CGM.getContext().getSizeType(), Loc); 1837 llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1838 KernelStaticGlobalized, CGM.VoidPtrPtrTy); 1839 llvm::Value *GlobalRecordSizeArg[] = { 1840 llvm::ConstantInt::get( 1841 CGM.Int16Ty, 1842 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0), 1843 StaticGlobalized, Ld, IsInSharedMemory, ResAddr}; 1844 CGF.EmitRuntimeCall( 1845 OMPBuilder.getOrCreateRuntimeFunction( 1846 CGM.getModule(), OMPRTL___kmpc_get_team_static_memory), 1847 GlobalRecordSizeArg); 1848 GlobalizedRecords.back().Buffer = StaticGlobalized; 1849 GlobalizedRecords.back().RecSize = RecSize; 1850 GlobalizedRecords.back().UseSharedMemory = UseSharedMemory; 1851 GlobalizedRecords.back().Loc = Loc; 1852 } 1853 assert(KernelStaticGlobalized && "Global address must be set already."); 1854 Address FrameAddr = CGF.EmitLoadOfPointer( 1855 Address(KernelStaticGlobalized, CGM.getPointerAlign()), 1856 CGM.getContext() 1857 .getPointerType(CGM.getContext().VoidPtrTy) 1858 .castAs<PointerType>()); 1859 llvm::Value *GlobalRecValue = 1860 Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer(); 1861 I->getSecond().GlobalRecordAddr = GlobalRecValue; 1862 I->getSecond().IsInSPMDModeFlag = nullptr; 1863 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1864 GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo()); 1865 } else { 1866 // TODO: allow the usage of shared memory to be controlled by 1867 // the user, for now, default to global. 1868 bool UseSharedMemory = 1869 IsInTTDRegion && GlobalRecordSize <= SharedMemorySize; 1870 llvm::Value *GlobalRecordSizeArg[] = { 1871 llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), 1872 CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)}; 1873 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( 1874 OMPBuilder.getOrCreateRuntimeFunction( 1875 CGM.getModule(), 1876 IsInTTDRegion ? OMPRTL___kmpc_data_sharing_push_stack 1877 : OMPRTL___kmpc_data_sharing_coalesced_push_stack), 1878 GlobalRecordSizeArg); 1879 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1880 GlobalRecValue, GlobalRecPtrTy); 1881 I->getSecond().GlobalRecordAddr = GlobalRecValue; 1882 I->getSecond().IsInSPMDModeFlag = nullptr; 1883 } 1884 LValue Base = 1885 CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy); 1886 1887 // Emit the "global alloca" which is a GEP from the global declaration 1888 // record using the pointer returned by the runtime. 1889 LValue SecBase; 1890 decltype(I->getSecond().LocalVarData)::const_iterator SecIt; 1891 if (IsTTD) { 1892 SecIt = I->getSecond().SecondaryLocalVarData->begin(); 1893 llvm::PointerType *SecGlobalRecPtrTy = 1894 CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo(); 1895 SecBase = CGF.MakeNaturalAlignPointeeAddrLValue( 1896 Bld.CreatePointerBitCastOrAddrSpaceCast( 1897 I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy), 1898 SecGlobalRecTy); 1899 } 1900 for (auto &Rec : I->getSecond().LocalVarData) { 1901 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1902 llvm::Value *ParValue; 1903 if (EscapedParam) { 1904 const auto *VD = cast<VarDecl>(Rec.first); 1905 LValue ParLVal = 1906 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1907 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1908 } 1909 LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD); 1910 // Emit VarAddr basing on lane-id if required. 1911 QualType VarTy; 1912 if (Rec.second.IsOnePerTeam) { 1913 VarTy = Rec.second.FD->getType(); 1914 } else { 1915 Address Addr = VarAddr.getAddress(CGF); 1916 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 1917 Addr.getElementType(), Addr.getPointer(), 1918 {Bld.getInt32(0), getNVPTXLaneID(CGF)}); 1919 VarTy = 1920 Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType(); 1921 VarAddr = CGF.MakeAddrLValue( 1922 Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy, 1923 AlignmentSource::Decl); 1924 } 1925 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1926 if (!IsInTTDRegion && 1927 (WithSPMDCheck || 1928 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { 1929 assert(I->getSecond().IsInSPMDModeFlag && 1930 "Expected unknown execution mode or required SPMD check."); 1931 if (IsTTD) { 1932 assert(SecIt->second.IsOnePerTeam && 1933 "Secondary glob data must be one per team."); 1934 LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD); 1935 VarAddr.setAddress( 1936 Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF), 1937 VarAddr.getPointer(CGF)), 1938 VarAddr.getAlignment())); 1939 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1940 } 1941 Address GlobalPtr = Rec.second.PrivateAddr; 1942 Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName()); 1943 Rec.second.PrivateAddr = Address( 1944 Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag, 1945 LocalAddr.getPointer(), GlobalPtr.getPointer()), 1946 LocalAddr.getAlignment()); 1947 } 1948 if (EscapedParam) { 1949 const auto *VD = cast<VarDecl>(Rec.first); 1950 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1951 I->getSecond().MappedParams->setVarAddr(CGF, VD, 1952 VarAddr.getAddress(CGF)); 1953 } 1954 if (IsTTD) 1955 ++SecIt; 1956 } 1957 } 1958 for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) { 1959 // Recover pointer to this function's global record. The runtime will 1960 // handle the specifics of the allocation of the memory. 1961 // Use actual memory size of the record including the padding 1962 // for alignment purposes. 1963 CGBuilderTy &Bld = CGF.Builder; 1964 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1965 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1966 Size = Bld.CreateNUWAdd( 1967 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1968 llvm::Value *AlignVal = 1969 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1970 Size = Bld.CreateUDiv(Size, AlignVal); 1971 Size = Bld.CreateNUWMul(Size, AlignVal); 1972 // TODO: allow the usage of shared memory to be controlled by 1973 // the user, for now, default to global. 1974 llvm::Value *GlobalRecordSizeArg[] = { 1975 Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)}; 1976 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( 1977 OMPBuilder.getOrCreateRuntimeFunction( 1978 CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack), 1979 GlobalRecordSizeArg); 1980 llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1981 GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo()); 1982 LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(), 1983 CGM.getContext().getDeclAlign(VD), 1984 AlignmentSource::Decl); 1985 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1986 Base.getAddress(CGF)); 1987 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue); 1988 } 1989 I->getSecond().MappedParams->apply(CGF); 1990 } 1991 1992 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1993 bool WithSPMDCheck) { 1994 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1995 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1996 return; 1997 1998 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1999 if (I != FunctionGlobalizedDecls.end()) { 2000 I->getSecond().MappedParams->restore(CGF); 2001 if (!CGF.HaveInsertPoint()) 2002 return; 2003 for (llvm::Value *Addr : 2004 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 2005 CGF.EmitRuntimeCall( 2006 OMPBuilder.getOrCreateRuntimeFunction( 2007 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), 2008 Addr); 2009 } 2010 if (I->getSecond().GlobalRecordAddr) { 2011 if (!IsInTTDRegion && 2012 (WithSPMDCheck || 2013 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { 2014 CGBuilderTy &Bld = CGF.Builder; 2015 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 2016 llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd"); 2017 Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB); 2018 // There is no need to emit line number for unconditional branch. 2019 (void)ApplyDebugLocation::CreateEmpty(CGF); 2020 CGF.EmitBlock(NonSPMDBB); 2021 CGF.EmitRuntimeCall( 2022 OMPBuilder.getOrCreateRuntimeFunction( 2023 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), 2024 CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr)); 2025 CGF.EmitBlock(ExitBB); 2026 } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) { 2027 assert(GlobalizedRecords.back().RegionCounter > 0 && 2028 "region counter must be > 0."); 2029 --GlobalizedRecords.back().RegionCounter; 2030 // Emit the restore function only in the target region. 2031 if (GlobalizedRecords.back().RegionCounter == 0) { 2032 QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth( 2033 /*DestWidth=*/16, /*Signed=*/0); 2034 llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar( 2035 Address(GlobalizedRecords.back().UseSharedMemory, 2036 CGM.getContext().getTypeAlignInChars(Int16Ty)), 2037 /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc); 2038 llvm::Value *Args[] = { 2039 llvm::ConstantInt::get( 2040 CGM.Int16Ty, 2041 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0), 2042 IsInSharedMemory}; 2043 CGF.EmitRuntimeCall( 2044 OMPBuilder.getOrCreateRuntimeFunction( 2045 CGM.getModule(), OMPRTL___kmpc_restore_team_static_memory), 2046 Args); 2047 } 2048 } else { 2049 CGF.EmitRuntimeCall( 2050 OMPBuilder.getOrCreateRuntimeFunction( 2051 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), 2052 I->getSecond().GlobalRecordAddr); 2053 } 2054 } 2055 } 2056 } 2057 2058 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 2059 const OMPExecutableDirective &D, 2060 SourceLocation Loc, 2061 llvm::Function *OutlinedFn, 2062 ArrayRef<llvm::Value *> CapturedVars) { 2063 if (!CGF.HaveInsertPoint()) 2064 return; 2065 2066 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2067 /*Name=*/".zero.addr"); 2068 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2069 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2070 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 2071 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 2072 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 2073 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 2074 } 2075 2076 void CGOpenMPRuntimeGPU::emitParallelCall( 2077 CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, 2078 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { 2079 if (!CGF.HaveInsertPoint()) 2080 return; 2081 2082 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 2083 emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); 2084 else 2085 emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); 2086 } 2087 2088 void CGOpenMPRuntimeGPU::emitNonSPMDParallelCall( 2089 CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, 2090 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { 2091 llvm::Function *Fn = cast<llvm::Function>(OutlinedFn); 2092 2093 // Force inline this outlined function at its call site. 2094 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 2095 2096 // Ensure we do not inline the function. This is trivially true for the ones 2097 // passed to __kmpc_fork_call but the ones calles in serialized regions 2098 // could be inlined. This is not a perfect but it is closer to the invariant 2099 // we want, namely, every data environment starts with a new function. 2100 // TODO: We should pass the if condition to the runtime function and do the 2101 // handling there. Much cleaner code. 2102 cast<llvm::Function>(OutlinedFn)->addFnAttr(llvm::Attribute::NoInline); 2103 2104 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2105 /*Name=*/".zero.addr"); 2106 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2107 // ThreadId for serialized parallels is 0. 2108 Address ThreadIDAddr = ZeroAddr; 2109 auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr]( 2110 CodeGenFunction &CGF, PrePostActionTy &Action) { 2111 Action.Enter(CGF); 2112 2113 Address ZeroAddr = 2114 CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2115 /*Name=*/".bound.zero.addr"); 2116 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2117 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2118 OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); 2119 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 2120 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 2121 emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs); 2122 }; 2123 auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF, 2124 PrePostActionTy &) { 2125 2126 RegionCodeGenTy RCG(CodeGen); 2127 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2128 llvm::Value *ThreadID = getThreadID(CGF, Loc); 2129 llvm::Value *Args[] = {RTLoc, ThreadID}; 2130 2131 NVPTXActionTy Action( 2132 OMPBuilder.getOrCreateRuntimeFunction( 2133 CGM.getModule(), OMPRTL___kmpc_serialized_parallel), 2134 Args, 2135 OMPBuilder.getOrCreateRuntimeFunction( 2136 CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel), 2137 Args); 2138 RCG.setAction(Action); 2139 RCG(CGF); 2140 }; 2141 2142 auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF, 2143 PrePostActionTy &Action) { 2144 CGBuilderTy &Bld = CGF.Builder; 2145 llvm::Function *WFn = WrapperFunctionsMap[Fn]; 2146 assert(WFn && "Wrapper function does not exist!"); 2147 llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 2148 2149 // Prepare for parallel region. Indicate the outlined function. 2150 llvm::Value *Args[] = {ID}; 2151 CGF.EmitRuntimeCall( 2152 OMPBuilder.getOrCreateRuntimeFunction( 2153 CGM.getModule(), OMPRTL___kmpc_kernel_prepare_parallel), 2154 Args); 2155 2156 // Create a private scope that will globalize the arguments 2157 // passed from the outside of the target region. 2158 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 2159 2160 // There's something to share. 2161 if (!CapturedVars.empty()) { 2162 // Prepare for parallel region. Indicate the outlined function. 2163 Address SharedArgs = 2164 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs"); 2165 llvm::Value *SharedArgsPtr = SharedArgs.getPointer(); 2166 2167 llvm::Value *DataSharingArgs[] = { 2168 SharedArgsPtr, 2169 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 2170 CGF.EmitRuntimeCall( 2171 OMPBuilder.getOrCreateRuntimeFunction( 2172 CGM.getModule(), OMPRTL___kmpc_begin_sharing_variables), 2173 DataSharingArgs); 2174 2175 // Store variable address in a list of references to pass to workers. 2176 unsigned Idx = 0; 2177 ASTContext &Ctx = CGF.getContext(); 2178 Address SharedArgListAddress = CGF.EmitLoadOfPointer( 2179 SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy)) 2180 .castAs<PointerType>()); 2181 for (llvm::Value *V : CapturedVars) { 2182 Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 2183 llvm::Value *PtrV; 2184 if (V->getType()->isIntegerTy()) 2185 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 2186 else 2187 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 2188 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 2189 Ctx.getPointerType(Ctx.VoidPtrTy)); 2190 ++Idx; 2191 } 2192 } 2193 2194 // Activate workers. This barrier is used by the master to signal 2195 // work for the workers. 2196 syncCTAThreads(CGF); 2197 2198 // OpenMP [2.5, Parallel Construct, p.49] 2199 // There is an implied barrier at the end of a parallel region. After the 2200 // end of a parallel region, only the master thread of the team resumes 2201 // execution of the enclosing task region. 2202 // 2203 // The master waits at this barrier until all workers are done. 2204 syncCTAThreads(CGF); 2205 2206 if (!CapturedVars.empty()) 2207 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2208 CGM.getModule(), OMPRTL___kmpc_end_sharing_variables)); 2209 2210 // Remember for post-processing in worker loop. 2211 Work.emplace_back(WFn); 2212 }; 2213 2214 auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen]( 2215 CodeGenFunction &CGF, PrePostActionTy &Action) { 2216 if (IsInParallelRegion) { 2217 SeqGen(CGF, Action); 2218 } else if (IsInTargetMasterThreadRegion) { 2219 L0ParallelGen(CGF, Action); 2220 } else { 2221 // Check for master and then parallelism: 2222 // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) { 2223 // Serialized execution. 2224 // } else { 2225 // Worker call. 2226 // } 2227 CGBuilderTy &Bld = CGF.Builder; 2228 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 2229 llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential"); 2230 llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck"); 2231 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); 2232 llvm::Value *IsSPMD = Bld.CreateIsNotNull( 2233 CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2234 CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode))); 2235 Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB); 2236 // There is no need to emit line number for unconditional branch. 2237 (void)ApplyDebugLocation::CreateEmpty(CGF); 2238 CGF.EmitBlock(ParallelCheckBB); 2239 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2240 llvm::Value *ThreadID = getThreadID(CGF, Loc); 2241 llvm::Value *PL = CGF.EmitRuntimeCall( 2242 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), 2243 OMPRTL___kmpc_parallel_level), 2244 {RTLoc, ThreadID}); 2245 llvm::Value *Res = Bld.CreateIsNotNull(PL); 2246 Bld.CreateCondBr(Res, SeqBB, MasterBB); 2247 CGF.EmitBlock(SeqBB); 2248 SeqGen(CGF, Action); 2249 CGF.EmitBranch(ExitBB); 2250 // There is no need to emit line number for unconditional branch. 2251 (void)ApplyDebugLocation::CreateEmpty(CGF); 2252 CGF.EmitBlock(MasterBB); 2253 L0ParallelGen(CGF, Action); 2254 CGF.EmitBranch(ExitBB); 2255 // There is no need to emit line number for unconditional branch. 2256 (void)ApplyDebugLocation::CreateEmpty(CGF); 2257 // Emit the continuation block for code after the if. 2258 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2259 } 2260 }; 2261 2262 if (IfCond) { 2263 emitIfClause(CGF, IfCond, LNParallelGen, SeqGen); 2264 } else { 2265 CodeGenFunction::RunCleanupsScope Scope(CGF); 2266 RegionCodeGenTy ThenRCG(LNParallelGen); 2267 ThenRCG(CGF); 2268 } 2269 } 2270 2271 void CGOpenMPRuntimeGPU::emitSPMDParallelCall( 2272 CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, 2273 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { 2274 // Just call the outlined function to execute the parallel region. 2275 // OutlinedFn(>id, &zero, CapturedStruct); 2276 // 2277 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2278 2279 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2280 /*Name=*/".zero.addr"); 2281 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2282 // ThreadId for serialized parallels is 0. 2283 Address ThreadIDAddr = ZeroAddr; 2284 auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr]( 2285 CodeGenFunction &CGF, PrePostActionTy &Action) { 2286 Action.Enter(CGF); 2287 2288 Address ZeroAddr = 2289 CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2290 /*Name=*/".bound.zero.addr"); 2291 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2292 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2293 OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); 2294 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 2295 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 2296 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 2297 }; 2298 auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF, 2299 PrePostActionTy &) { 2300 2301 RegionCodeGenTy RCG(CodeGen); 2302 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2303 llvm::Value *ThreadID = getThreadID(CGF, Loc); 2304 llvm::Value *Args[] = {RTLoc, ThreadID}; 2305 2306 NVPTXActionTy Action( 2307 OMPBuilder.getOrCreateRuntimeFunction( 2308 CGM.getModule(), OMPRTL___kmpc_serialized_parallel), 2309 Args, 2310 OMPBuilder.getOrCreateRuntimeFunction( 2311 CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel), 2312 Args); 2313 RCG.setAction(Action); 2314 RCG(CGF); 2315 }; 2316 2317 if (IsInTargetMasterThreadRegion) { 2318 // In the worker need to use the real thread id. 2319 ThreadIDAddr = emitThreadIDAddress(CGF, Loc); 2320 RegionCodeGenTy RCG(CodeGen); 2321 RCG(CGF); 2322 } else { 2323 // If we are not in the target region, it is definitely L2 parallelism or 2324 // more, because for SPMD mode we always has L1 parallel level, sowe don't 2325 // need to check for orphaned directives. 2326 RegionCodeGenTy RCG(SeqGen); 2327 RCG(CGF); 2328 } 2329 } 2330 2331 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 2332 // Always emit simple barriers! 2333 if (!CGF.HaveInsertPoint()) 2334 return; 2335 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 2336 // This function does not use parameters, so we can emit just default values. 2337 llvm::Value *Args[] = { 2338 llvm::ConstantPointerNull::get( 2339 cast<llvm::PointerType>(getIdentTyPointerTy())), 2340 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 2341 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2342 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 2343 Args); 2344 } 2345 2346 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 2347 SourceLocation Loc, 2348 OpenMPDirectiveKind Kind, bool, 2349 bool) { 2350 // Always emit simple barriers! 2351 if (!CGF.HaveInsertPoint()) 2352 return; 2353 // Build call __kmpc_cancel_barrier(loc, thread_id); 2354 unsigned Flags = getDefaultFlagsForBarriers(Kind); 2355 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 2356 getThreadID(CGF, Loc)}; 2357 2358 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2359 CGM.getModule(), OMPRTL___kmpc_barrier), 2360 Args); 2361 } 2362 2363 void CGOpenMPRuntimeGPU::emitCriticalRegion( 2364 CodeGenFunction &CGF, StringRef CriticalName, 2365 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 2366 const Expr *Hint) { 2367 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 2368 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 2369 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 2370 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 2371 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 2372 2373 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2374 2375 // Get the mask of active threads in the warp. 2376 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2377 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 2378 // Fetch team-local id of the thread. 2379 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2380 2381 // Get the width of the team. 2382 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 2383 2384 // Initialize the counter variable for the loop. 2385 QualType Int32Ty = 2386 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 2387 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 2388 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 2389 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 2390 /*isInit=*/true); 2391 2392 // Block checks if loop counter exceeds upper bound. 2393 CGF.EmitBlock(LoopBB); 2394 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 2395 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 2396 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 2397 2398 // Block tests which single thread should execute region, and which threads 2399 // should go straight to synchronisation point. 2400 CGF.EmitBlock(TestBB); 2401 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 2402 llvm::Value *CmpThreadToCounter = 2403 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 2404 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 2405 2406 // Block emits the body of the critical region. 2407 CGF.EmitBlock(BodyBB); 2408 2409 // Output the critical statement. 2410 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 2411 Hint); 2412 2413 // After the body surrounded by the critical region, the single executing 2414 // thread will jump to the synchronisation point. 2415 // Block waits for all threads in current team to finish then increments the 2416 // counter variable and returns to the loop. 2417 CGF.EmitBlock(SyncBB); 2418 // Reconverge active threads in the warp. 2419 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2420 CGM.getModule(), OMPRTL___kmpc_syncwarp), 2421 Mask); 2422 2423 llvm::Value *IncCounterVal = 2424 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 2425 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 2426 CGF.EmitBranch(LoopBB); 2427 2428 // Block that is reached when all threads in the team complete the region. 2429 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2430 } 2431 2432 /// Cast value to the specified type. 2433 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 2434 QualType ValTy, QualType CastTy, 2435 SourceLocation Loc) { 2436 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 2437 "Cast type must sized."); 2438 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 2439 "Val type must sized."); 2440 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 2441 if (ValTy == CastTy) 2442 return Val; 2443 if (CGF.getContext().getTypeSizeInChars(ValTy) == 2444 CGF.getContext().getTypeSizeInChars(CastTy)) 2445 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 2446 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 2447 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 2448 CastTy->hasSignedIntegerRepresentation()); 2449 Address CastItem = CGF.CreateMemTemp(CastTy); 2450 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 2451 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 2452 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 2453 LValueBaseInfo(AlignmentSource::Type), 2454 TBAAAccessInfo()); 2455 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 2456 LValueBaseInfo(AlignmentSource::Type), 2457 TBAAAccessInfo()); 2458 } 2459 2460 /// This function creates calls to one of two shuffle functions to copy 2461 /// variables between lanes in a warp. 2462 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 2463 llvm::Value *Elem, 2464 QualType ElemType, 2465 llvm::Value *Offset, 2466 SourceLocation Loc) { 2467 CodeGenModule &CGM = CGF.CGM; 2468 CGBuilderTy &Bld = CGF.Builder; 2469 CGOpenMPRuntimeGPU &RT = 2470 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 2471 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 2472 2473 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 2474 assert(Size.getQuantity() <= 8 && 2475 "Unsupported bitwidth in shuffle instruction."); 2476 2477 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 2478 ? OMPRTL___kmpc_shuffle_int32 2479 : OMPRTL___kmpc_shuffle_int64; 2480 2481 // Cast all types to 32- or 64-bit values before calling shuffle routines. 2482 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 2483 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 2484 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 2485 llvm::Value *WarpSize = 2486 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 2487 2488 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 2489 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 2490 {ElemCast, Offset, WarpSize}); 2491 2492 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 2493 } 2494 2495 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 2496 Address DestAddr, QualType ElemType, 2497 llvm::Value *Offset, SourceLocation Loc) { 2498 CGBuilderTy &Bld = CGF.Builder; 2499 2500 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 2501 // Create the loop over the big sized data. 2502 // ptr = (void*)Elem; 2503 // ptrEnd = (void*) Elem + 1; 2504 // Step = 8; 2505 // while (ptr + Step < ptrEnd) 2506 // shuffle((int64_t)*ptr); 2507 // Step = 4; 2508 // while (ptr + Step < ptrEnd) 2509 // shuffle((int32_t)*ptr); 2510 // ... 2511 Address ElemPtr = DestAddr; 2512 Address Ptr = SrcAddr; 2513 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 2514 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 2515 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 2516 if (Size < CharUnits::fromQuantity(IntSize)) 2517 continue; 2518 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 2519 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 2520 /*Signed=*/1); 2521 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 2522 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 2523 ElemPtr = 2524 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 2525 if (Size.getQuantity() / IntSize > 1) { 2526 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 2527 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 2528 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 2529 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 2530 CGF.EmitBlock(PreCondBB); 2531 llvm::PHINode *PhiSrc = 2532 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 2533 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 2534 llvm::PHINode *PhiDest = 2535 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 2536 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 2537 Ptr = Address(PhiSrc, Ptr.getAlignment()); 2538 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 2539 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 2540 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 2541 Ptr.getPointer(), CGF.VoidPtrTy)); 2542 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 2543 ThenBB, ExitBB); 2544 CGF.EmitBlock(ThenBB); 2545 llvm::Value *Res = createRuntimeShuffleFunction( 2546 CGF, 2547 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 2548 LValueBaseInfo(AlignmentSource::Type), 2549 TBAAAccessInfo()), 2550 IntType, Offset, Loc); 2551 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 2552 LValueBaseInfo(AlignmentSource::Type), 2553 TBAAAccessInfo()); 2554 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 2555 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 2556 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 2557 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 2558 CGF.EmitBranch(PreCondBB); 2559 CGF.EmitBlock(ExitBB); 2560 } else { 2561 llvm::Value *Res = createRuntimeShuffleFunction( 2562 CGF, 2563 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 2564 LValueBaseInfo(AlignmentSource::Type), 2565 TBAAAccessInfo()), 2566 IntType, Offset, Loc); 2567 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 2568 LValueBaseInfo(AlignmentSource::Type), 2569 TBAAAccessInfo()); 2570 Ptr = Bld.CreateConstGEP(Ptr, 1); 2571 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 2572 } 2573 Size = Size % IntSize; 2574 } 2575 } 2576 2577 namespace { 2578 enum CopyAction : unsigned { 2579 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 2580 // the warp using shuffle instructions. 2581 RemoteLaneToThread, 2582 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 2583 ThreadCopy, 2584 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 2585 ThreadToScratchpad, 2586 // ScratchpadToThread: Copy from a scratchpad array in global memory 2587 // containing team-reduced data to a thread's stack. 2588 ScratchpadToThread, 2589 }; 2590 } // namespace 2591 2592 struct CopyOptionsTy { 2593 llvm::Value *RemoteLaneOffset; 2594 llvm::Value *ScratchpadIndex; 2595 llvm::Value *ScratchpadWidth; 2596 }; 2597 2598 /// Emit instructions to copy a Reduce list, which contains partially 2599 /// aggregated values, in the specified direction. 2600 static void emitReductionListCopy( 2601 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 2602 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 2603 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 2604 2605 CodeGenModule &CGM = CGF.CGM; 2606 ASTContext &C = CGM.getContext(); 2607 CGBuilderTy &Bld = CGF.Builder; 2608 2609 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 2610 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 2611 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 2612 2613 // Iterates, element-by-element, through the source Reduce list and 2614 // make a copy. 2615 unsigned Idx = 0; 2616 unsigned Size = Privates.size(); 2617 for (const Expr *Private : Privates) { 2618 Address SrcElementAddr = Address::invalid(); 2619 Address DestElementAddr = Address::invalid(); 2620 Address DestElementPtrAddr = Address::invalid(); 2621 // Should we shuffle in an element from a remote lane? 2622 bool ShuffleInElement = false; 2623 // Set to true to update the pointer in the dest Reduce list to a 2624 // newly created element. 2625 bool UpdateDestListPtr = false; 2626 // Increment the src or dest pointer to the scratchpad, for each 2627 // new element. 2628 bool IncrScratchpadSrc = false; 2629 bool IncrScratchpadDest = false; 2630 2631 switch (Action) { 2632 case RemoteLaneToThread: { 2633 // Step 1.1: Get the address for the src element in the Reduce list. 2634 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2635 SrcElementAddr = CGF.EmitLoadOfPointer( 2636 SrcElementPtrAddr, 2637 C.getPointerType(Private->getType())->castAs<PointerType>()); 2638 2639 // Step 1.2: Create a temporary to store the element in the destination 2640 // Reduce list. 2641 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2642 DestElementAddr = 2643 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 2644 ShuffleInElement = true; 2645 UpdateDestListPtr = true; 2646 break; 2647 } 2648 case ThreadCopy: { 2649 // Step 1.1: Get the address for the src element in the Reduce list. 2650 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2651 SrcElementAddr = CGF.EmitLoadOfPointer( 2652 SrcElementPtrAddr, 2653 C.getPointerType(Private->getType())->castAs<PointerType>()); 2654 2655 // Step 1.2: Get the address for dest element. The destination 2656 // element has already been created on the thread's stack. 2657 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2658 DestElementAddr = CGF.EmitLoadOfPointer( 2659 DestElementPtrAddr, 2660 C.getPointerType(Private->getType())->castAs<PointerType>()); 2661 break; 2662 } 2663 case ThreadToScratchpad: { 2664 // Step 1.1: Get the address for the src element in the Reduce list. 2665 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2666 SrcElementAddr = CGF.EmitLoadOfPointer( 2667 SrcElementPtrAddr, 2668 C.getPointerType(Private->getType())->castAs<PointerType>()); 2669 2670 // Step 1.2: Get the address for dest element: 2671 // address = base + index * ElementSizeInChars. 2672 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2673 llvm::Value *CurrentOffset = 2674 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 2675 llvm::Value *ScratchPadElemAbsolutePtrVal = 2676 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 2677 ScratchPadElemAbsolutePtrVal = 2678 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 2679 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 2680 C.getTypeAlignInChars(Private->getType())); 2681 IncrScratchpadDest = true; 2682 break; 2683 } 2684 case ScratchpadToThread: { 2685 // Step 1.1: Get the address for the src element in the scratchpad. 2686 // address = base + index * ElementSizeInChars. 2687 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2688 llvm::Value *CurrentOffset = 2689 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 2690 llvm::Value *ScratchPadElemAbsolutePtrVal = 2691 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 2692 ScratchPadElemAbsolutePtrVal = 2693 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 2694 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 2695 C.getTypeAlignInChars(Private->getType())); 2696 IncrScratchpadSrc = true; 2697 2698 // Step 1.2: Create a temporary to store the element in the destination 2699 // Reduce list. 2700 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2701 DestElementAddr = 2702 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 2703 UpdateDestListPtr = true; 2704 break; 2705 } 2706 } 2707 2708 // Regardless of src and dest of copy, we emit the load of src 2709 // element as this is required in all directions 2710 SrcElementAddr = Bld.CreateElementBitCast( 2711 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 2712 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 2713 SrcElementAddr.getElementType()); 2714 2715 // Now that all active lanes have read the element in the 2716 // Reduce list, shuffle over the value from the remote lane. 2717 if (ShuffleInElement) { 2718 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 2719 RemoteLaneOffset, Private->getExprLoc()); 2720 } else { 2721 switch (CGF.getEvaluationKind(Private->getType())) { 2722 case TEK_Scalar: { 2723 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2724 SrcElementAddr, /*Volatile=*/false, Private->getType(), 2725 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 2726 TBAAAccessInfo()); 2727 // Store the source element value to the dest element address. 2728 CGF.EmitStoreOfScalar( 2729 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 2730 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2731 break; 2732 } 2733 case TEK_Complex: { 2734 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2735 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2736 Private->getExprLoc()); 2737 CGF.EmitStoreOfComplex( 2738 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2739 /*isInit=*/false); 2740 break; 2741 } 2742 case TEK_Aggregate: 2743 CGF.EmitAggregateCopy( 2744 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2745 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2746 Private->getType(), AggValueSlot::DoesNotOverlap); 2747 break; 2748 } 2749 } 2750 2751 // Step 3.1: Modify reference in dest Reduce list as needed. 2752 // Modifying the reference in Reduce list to point to the newly 2753 // created element. The element is live in the current function 2754 // scope and that of functions it invokes (i.e., reduce_function). 2755 // RemoteReduceData[i] = (void*)&RemoteElem 2756 if (UpdateDestListPtr) { 2757 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2758 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2759 DestElementPtrAddr, /*Volatile=*/false, 2760 C.VoidPtrTy); 2761 } 2762 2763 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2764 // address of the next element in scratchpad memory, unless we're currently 2765 // processing the last one. Memory alignment is also taken care of here. 2766 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2767 llvm::Value *ScratchpadBasePtr = 2768 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2769 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2770 ScratchpadBasePtr = Bld.CreateNUWAdd( 2771 ScratchpadBasePtr, 2772 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2773 2774 // Take care of global memory alignment for performance 2775 ScratchpadBasePtr = Bld.CreateNUWSub( 2776 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2777 ScratchpadBasePtr = Bld.CreateUDiv( 2778 ScratchpadBasePtr, 2779 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2780 ScratchpadBasePtr = Bld.CreateNUWAdd( 2781 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2782 ScratchpadBasePtr = Bld.CreateNUWMul( 2783 ScratchpadBasePtr, 2784 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2785 2786 if (IncrScratchpadDest) 2787 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2788 else /* IncrScratchpadSrc = true */ 2789 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2790 } 2791 2792 ++Idx; 2793 } 2794 } 2795 2796 /// This function emits a helper that gathers Reduce lists from the first 2797 /// lane of every active warp to lanes in the first warp. 2798 /// 2799 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2800 /// shared smem[warp_size]; 2801 /// For all data entries D in reduce_data: 2802 /// sync 2803 /// If (I am the first lane in each warp) 2804 /// Copy my local D to smem[warp_id] 2805 /// sync 2806 /// if (I am the first warp) 2807 /// Copy smem[thread_id] to my local D 2808 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2809 ArrayRef<const Expr *> Privates, 2810 QualType ReductionArrayTy, 2811 SourceLocation Loc) { 2812 ASTContext &C = CGM.getContext(); 2813 llvm::Module &M = CGM.getModule(); 2814 2815 // ReduceList: thread local Reduce list. 2816 // At the stage of the computation when this function is called, partially 2817 // aggregated values reside in the first lane of every active warp. 2818 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2819 C.VoidPtrTy, ImplicitParamDecl::Other); 2820 // NumWarps: number of warps active in the parallel region. This could 2821 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2822 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2823 C.getIntTypeForBitwidth(32, /* Signed */ true), 2824 ImplicitParamDecl::Other); 2825 FunctionArgList Args; 2826 Args.push_back(&ReduceListArg); 2827 Args.push_back(&NumWarpsArg); 2828 2829 const CGFunctionInfo &CGFI = 2830 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2831 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2832 llvm::GlobalValue::InternalLinkage, 2833 "_omp_reduction_inter_warp_copy_func", &M); 2834 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2835 Fn->setDoesNotRecurse(); 2836 CodeGenFunction CGF(CGM); 2837 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2838 2839 CGBuilderTy &Bld = CGF.Builder; 2840 2841 // This array is used as a medium to transfer, one reduce element at a time, 2842 // the data from the first lane of every warp to lanes in the first warp 2843 // in order to perform the final step of a reduction in a parallel region 2844 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2845 // for reduced latency, as well as to have a distinct copy for concurrently 2846 // executing target regions. The array is declared with common linkage so 2847 // as to be shared across compilation units. 2848 StringRef TransferMediumName = 2849 "__openmp_nvptx_data_transfer_temporary_storage"; 2850 llvm::GlobalVariable *TransferMedium = 2851 M.getGlobalVariable(TransferMediumName); 2852 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 2853 if (!TransferMedium) { 2854 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2855 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2856 TransferMedium = new llvm::GlobalVariable( 2857 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2858 llvm::UndefValue::get(Ty), TransferMediumName, 2859 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2860 SharedAddressSpace); 2861 CGM.addCompilerUsedGlobal(TransferMedium); 2862 } 2863 2864 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2865 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2866 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2867 // nvptx_lane_id = nvptx_id % warpsize 2868 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2869 // nvptx_warp_id = nvptx_id / warpsize 2870 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2871 2872 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2873 Address LocalReduceList( 2874 Bld.CreatePointerBitCastOrAddrSpaceCast( 2875 CGF.EmitLoadOfScalar( 2876 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2877 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2878 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2879 CGF.getPointerAlign()); 2880 2881 unsigned Idx = 0; 2882 for (const Expr *Private : Privates) { 2883 // 2884 // Warp master copies reduce element to transfer medium in __shared__ 2885 // memory. 2886 // 2887 unsigned RealTySize = 2888 C.getTypeSizeInChars(Private->getType()) 2889 .alignTo(C.getTypeAlignInChars(Private->getType())) 2890 .getQuantity(); 2891 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2892 unsigned NumIters = RealTySize / TySize; 2893 if (NumIters == 0) 2894 continue; 2895 QualType CType = C.getIntTypeForBitwidth( 2896 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2897 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2898 CharUnits Align = CharUnits::fromQuantity(TySize); 2899 llvm::Value *Cnt = nullptr; 2900 Address CntAddr = Address::invalid(); 2901 llvm::BasicBlock *PrecondBB = nullptr; 2902 llvm::BasicBlock *ExitBB = nullptr; 2903 if (NumIters > 1) { 2904 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2905 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2906 /*Volatile=*/false, C.IntTy); 2907 PrecondBB = CGF.createBasicBlock("precond"); 2908 ExitBB = CGF.createBasicBlock("exit"); 2909 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2910 // There is no need to emit line number for unconditional branch. 2911 (void)ApplyDebugLocation::CreateEmpty(CGF); 2912 CGF.EmitBlock(PrecondBB); 2913 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2914 llvm::Value *Cmp = 2915 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2916 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2917 CGF.EmitBlock(BodyBB); 2918 } 2919 // kmpc_barrier. 2920 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2921 /*EmitChecks=*/false, 2922 /*ForceSimpleCall=*/true); 2923 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2924 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2925 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2926 2927 // if (lane_id == 0) 2928 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2929 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2930 CGF.EmitBlock(ThenBB); 2931 2932 // Reduce element = LocalReduceList[i] 2933 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2934 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2935 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2936 // elemptr = ((CopyType*)(elemptrptr)) + I 2937 Address ElemPtr = Address(ElemPtrPtr, Align); 2938 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2939 if (NumIters > 1) { 2940 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt), 2941 ElemPtr.getAlignment()); 2942 } 2943 2944 // Get pointer to location in transfer medium. 2945 // MediumPtr = &medium[warp_id] 2946 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2947 TransferMedium->getValueType(), TransferMedium, 2948 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2949 Address MediumPtr(MediumPtrVal, Align); 2950 // Casting to actual data type. 2951 // MediumPtr = (CopyType*)MediumPtrAddr; 2952 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2953 2954 // elem = *elemptr 2955 //*MediumPtr = elem 2956 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2957 ElemPtr, /*Volatile=*/false, CType, Loc, 2958 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2959 // Store the source element value to the dest element address. 2960 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2961 LValueBaseInfo(AlignmentSource::Type), 2962 TBAAAccessInfo()); 2963 2964 Bld.CreateBr(MergeBB); 2965 2966 CGF.EmitBlock(ElseBB); 2967 Bld.CreateBr(MergeBB); 2968 2969 CGF.EmitBlock(MergeBB); 2970 2971 // kmpc_barrier. 2972 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2973 /*EmitChecks=*/false, 2974 /*ForceSimpleCall=*/true); 2975 2976 // 2977 // Warp 0 copies reduce element from transfer medium. 2978 // 2979 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2980 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2981 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2982 2983 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2984 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2985 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2986 2987 // Up to 32 threads in warp 0 are active. 2988 llvm::Value *IsActiveThread = 2989 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2990 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2991 2992 CGF.EmitBlock(W0ThenBB); 2993 2994 // SrcMediumPtr = &medium[tid] 2995 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2996 TransferMedium->getValueType(), TransferMedium, 2997 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2998 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2999 // SrcMediumVal = *SrcMediumPtr; 3000 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 3001 3002 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 3003 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 3004 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 3005 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 3006 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 3007 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 3008 if (NumIters > 1) { 3009 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt), 3010 TargetElemPtr.getAlignment()); 3011 } 3012 3013 // *TargetElemPtr = SrcMediumVal; 3014 llvm::Value *SrcMediumValue = 3015 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 3016 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 3017 CType); 3018 Bld.CreateBr(W0MergeBB); 3019 3020 CGF.EmitBlock(W0ElseBB); 3021 Bld.CreateBr(W0MergeBB); 3022 3023 CGF.EmitBlock(W0MergeBB); 3024 3025 if (NumIters > 1) { 3026 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 3027 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 3028 CGF.EmitBranch(PrecondBB); 3029 (void)ApplyDebugLocation::CreateEmpty(CGF); 3030 CGF.EmitBlock(ExitBB); 3031 } 3032 RealTySize %= TySize; 3033 } 3034 ++Idx; 3035 } 3036 3037 CGF.FinishFunction(); 3038 return Fn; 3039 } 3040 3041 /// Emit a helper that reduces data across two OpenMP threads (lanes) 3042 /// in the same warp. It uses shuffle instructions to copy over data from 3043 /// a remote lane's stack. The reduction algorithm performed is specified 3044 /// by the fourth parameter. 3045 /// 3046 /// Algorithm Versions. 3047 /// Full Warp Reduce (argument value 0): 3048 /// This algorithm assumes that all 32 lanes are active and gathers 3049 /// data from these 32 lanes, producing a single resultant value. 3050 /// Contiguous Partial Warp Reduce (argument value 1): 3051 /// This algorithm assumes that only a *contiguous* subset of lanes 3052 /// are active. This happens for the last warp in a parallel region 3053 /// when the user specified num_threads is not an integer multiple of 3054 /// 32. This contiguous subset always starts with the zeroth lane. 3055 /// Partial Warp Reduce (argument value 2): 3056 /// This algorithm gathers data from any number of lanes at any position. 3057 /// All reduced values are stored in the lowest possible lane. The set 3058 /// of problems every algorithm addresses is a super set of those 3059 /// addressable by algorithms with a lower version number. Overhead 3060 /// increases as algorithm version increases. 3061 /// 3062 /// Terminology 3063 /// Reduce element: 3064 /// Reduce element refers to the individual data field with primitive 3065 /// data types to be combined and reduced across threads. 3066 /// Reduce list: 3067 /// Reduce list refers to a collection of local, thread-private 3068 /// reduce elements. 3069 /// Remote Reduce list: 3070 /// Remote Reduce list refers to a collection of remote (relative to 3071 /// the current thread) reduce elements. 3072 /// 3073 /// We distinguish between three states of threads that are important to 3074 /// the implementation of this function. 3075 /// Alive threads: 3076 /// Threads in a warp executing the SIMT instruction, as distinguished from 3077 /// threads that are inactive due to divergent control flow. 3078 /// Active threads: 3079 /// The minimal set of threads that has to be alive upon entry to this 3080 /// function. The computation is correct iff active threads are alive. 3081 /// Some threads are alive but they are not active because they do not 3082 /// contribute to the computation in any useful manner. Turning them off 3083 /// may introduce control flow overheads without any tangible benefits. 3084 /// Effective threads: 3085 /// In order to comply with the argument requirements of the shuffle 3086 /// function, we must keep all lanes holding data alive. But at most 3087 /// half of them perform value aggregation; we refer to this half of 3088 /// threads as effective. The other half is simply handing off their 3089 /// data. 3090 /// 3091 /// Procedure 3092 /// Value shuffle: 3093 /// In this step active threads transfer data from higher lane positions 3094 /// in the warp to lower lane positions, creating Remote Reduce list. 3095 /// Value aggregation: 3096 /// In this step, effective threads combine their thread local Reduce list 3097 /// with Remote Reduce list and store the result in the thread local 3098 /// Reduce list. 3099 /// Value copy: 3100 /// In this step, we deal with the assumption made by algorithm 2 3101 /// (i.e. contiguity assumption). When we have an odd number of lanes 3102 /// active, say 2k+1, only k threads will be effective and therefore k 3103 /// new values will be produced. However, the Reduce list owned by the 3104 /// (2k+1)th thread is ignored in the value aggregation. Therefore 3105 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 3106 /// that the contiguity assumption still holds. 3107 static llvm::Function *emitShuffleAndReduceFunction( 3108 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3109 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 3110 ASTContext &C = CGM.getContext(); 3111 3112 // Thread local Reduce list used to host the values of data to be reduced. 3113 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3114 C.VoidPtrTy, ImplicitParamDecl::Other); 3115 // Current lane id; could be logical. 3116 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 3117 ImplicitParamDecl::Other); 3118 // Offset of the remote source lane relative to the current lane. 3119 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3120 C.ShortTy, ImplicitParamDecl::Other); 3121 // Algorithm version. This is expected to be known at compile time. 3122 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3123 C.ShortTy, ImplicitParamDecl::Other); 3124 FunctionArgList Args; 3125 Args.push_back(&ReduceListArg); 3126 Args.push_back(&LaneIDArg); 3127 Args.push_back(&RemoteLaneOffsetArg); 3128 Args.push_back(&AlgoVerArg); 3129 3130 const CGFunctionInfo &CGFI = 3131 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3132 auto *Fn = llvm::Function::Create( 3133 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3134 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 3135 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3136 Fn->setDoesNotRecurse(); 3137 3138 CodeGenFunction CGF(CGM); 3139 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3140 3141 CGBuilderTy &Bld = CGF.Builder; 3142 3143 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3144 Address LocalReduceList( 3145 Bld.CreatePointerBitCastOrAddrSpaceCast( 3146 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3147 C.VoidPtrTy, SourceLocation()), 3148 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3149 CGF.getPointerAlign()); 3150 3151 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 3152 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 3153 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 3154 3155 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 3156 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 3157 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 3158 3159 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 3160 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 3161 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 3162 3163 // Create a local thread-private variable to host the Reduce list 3164 // from a remote lane. 3165 Address RemoteReduceList = 3166 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 3167 3168 // This loop iterates through the list of reduce elements and copies, 3169 // element by element, from a remote lane in the warp to RemoteReduceList, 3170 // hosted on the thread's stack. 3171 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 3172 LocalReduceList, RemoteReduceList, 3173 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 3174 /*ScratchpadIndex=*/nullptr, 3175 /*ScratchpadWidth=*/nullptr}); 3176 3177 // The actions to be performed on the Remote Reduce list is dependent 3178 // on the algorithm version. 3179 // 3180 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 3181 // LaneId % 2 == 0 && Offset > 0): 3182 // do the reduction value aggregation 3183 // 3184 // The thread local variable Reduce list is mutated in place to host the 3185 // reduced data, which is the aggregated value produced from local and 3186 // remote lanes. 3187 // 3188 // Note that AlgoVer is expected to be a constant integer known at compile 3189 // time. 3190 // When AlgoVer==0, the first conjunction evaluates to true, making 3191 // the entire predicate true during compile time. 3192 // When AlgoVer==1, the second conjunction has only the second part to be 3193 // evaluated during runtime. Other conjunctions evaluates to false 3194 // during compile time. 3195 // When AlgoVer==2, the third conjunction has only the second part to be 3196 // evaluated during runtime. Other conjunctions evaluates to false 3197 // during compile time. 3198 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 3199 3200 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 3201 llvm::Value *CondAlgo1 = Bld.CreateAnd( 3202 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 3203 3204 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 3205 llvm::Value *CondAlgo2 = Bld.CreateAnd( 3206 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 3207 CondAlgo2 = Bld.CreateAnd( 3208 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 3209 3210 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 3211 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 3212 3213 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 3214 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 3215 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 3216 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 3217 3218 CGF.EmitBlock(ThenBB); 3219 // reduce_function(LocalReduceList, RemoteReduceList) 3220 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3221 LocalReduceList.getPointer(), CGF.VoidPtrTy); 3222 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3223 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 3224 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3225 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 3226 Bld.CreateBr(MergeBB); 3227 3228 CGF.EmitBlock(ElseBB); 3229 Bld.CreateBr(MergeBB); 3230 3231 CGF.EmitBlock(MergeBB); 3232 3233 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 3234 // Reduce list. 3235 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 3236 llvm::Value *CondCopy = Bld.CreateAnd( 3237 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 3238 3239 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 3240 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 3241 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 3242 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 3243 3244 CGF.EmitBlock(CpyThenBB); 3245 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 3246 RemoteReduceList, LocalReduceList); 3247 Bld.CreateBr(CpyMergeBB); 3248 3249 CGF.EmitBlock(CpyElseBB); 3250 Bld.CreateBr(CpyMergeBB); 3251 3252 CGF.EmitBlock(CpyMergeBB); 3253 3254 CGF.FinishFunction(); 3255 return Fn; 3256 } 3257 3258 /// This function emits a helper that copies all the reduction variables from 3259 /// the team into the provided global buffer for the reduction variables. 3260 /// 3261 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 3262 /// For all data entries D in reduce_data: 3263 /// Copy local D to buffer.D[Idx] 3264 static llvm::Value *emitListToGlobalCopyFunction( 3265 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3266 QualType ReductionArrayTy, SourceLocation Loc, 3267 const RecordDecl *TeamReductionRec, 3268 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3269 &VarFieldMap) { 3270 ASTContext &C = CGM.getContext(); 3271 3272 // Buffer: global reduction buffer. 3273 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3274 C.VoidPtrTy, ImplicitParamDecl::Other); 3275 // Idx: index of the buffer. 3276 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3277 ImplicitParamDecl::Other); 3278 // ReduceList: thread local Reduce list. 3279 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3280 C.VoidPtrTy, ImplicitParamDecl::Other); 3281 FunctionArgList Args; 3282 Args.push_back(&BufferArg); 3283 Args.push_back(&IdxArg); 3284 Args.push_back(&ReduceListArg); 3285 3286 const CGFunctionInfo &CGFI = 3287 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3288 auto *Fn = llvm::Function::Create( 3289 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3290 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 3291 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3292 Fn->setDoesNotRecurse(); 3293 CodeGenFunction CGF(CGM); 3294 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3295 3296 CGBuilderTy &Bld = CGF.Builder; 3297 3298 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3299 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3300 Address LocalReduceList( 3301 Bld.CreatePointerBitCastOrAddrSpaceCast( 3302 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3303 C.VoidPtrTy, Loc), 3304 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3305 CGF.getPointerAlign()); 3306 QualType StaticTy = C.getRecordType(TeamReductionRec); 3307 llvm::Type *LLVMReductionsBufferTy = 3308 CGM.getTypes().ConvertTypeForMem(StaticTy); 3309 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3310 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3311 LLVMReductionsBufferTy->getPointerTo()); 3312 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3313 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3314 /*Volatile=*/false, C.IntTy, 3315 Loc)}; 3316 unsigned Idx = 0; 3317 for (const Expr *Private : Privates) { 3318 // Reduce element = LocalReduceList[i] 3319 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 3320 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 3321 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 3322 // elemptr = ((CopyType*)(elemptrptr)) + I 3323 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3324 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 3325 Address ElemPtr = 3326 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 3327 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 3328 // Global = Buffer.VD[Idx]; 3329 const FieldDecl *FD = VarFieldMap.lookup(VD); 3330 LValue GlobLVal = CGF.EmitLValueForField( 3331 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3332 Address GlobAddr = GlobLVal.getAddress(CGF); 3333 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3334 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3335 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 3336 switch (CGF.getEvaluationKind(Private->getType())) { 3337 case TEK_Scalar: { 3338 llvm::Value *V = CGF.EmitLoadOfScalar( 3339 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 3340 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 3341 CGF.EmitStoreOfScalar(V, GlobLVal); 3342 break; 3343 } 3344 case TEK_Complex: { 3345 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 3346 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 3347 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 3348 break; 3349 } 3350 case TEK_Aggregate: 3351 CGF.EmitAggregateCopy(GlobLVal, 3352 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3353 Private->getType(), AggValueSlot::DoesNotOverlap); 3354 break; 3355 } 3356 ++Idx; 3357 } 3358 3359 CGF.FinishFunction(); 3360 return Fn; 3361 } 3362 3363 /// This function emits a helper that reduces all the reduction variables from 3364 /// the team into the provided global buffer for the reduction variables. 3365 /// 3366 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 3367 /// void *GlobPtrs[]; 3368 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 3369 /// ... 3370 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 3371 /// reduce_function(GlobPtrs, reduce_data); 3372 static llvm::Value *emitListToGlobalReduceFunction( 3373 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3374 QualType ReductionArrayTy, SourceLocation Loc, 3375 const RecordDecl *TeamReductionRec, 3376 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3377 &VarFieldMap, 3378 llvm::Function *ReduceFn) { 3379 ASTContext &C = CGM.getContext(); 3380 3381 // Buffer: global reduction buffer. 3382 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3383 C.VoidPtrTy, ImplicitParamDecl::Other); 3384 // Idx: index of the buffer. 3385 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3386 ImplicitParamDecl::Other); 3387 // ReduceList: thread local Reduce list. 3388 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3389 C.VoidPtrTy, ImplicitParamDecl::Other); 3390 FunctionArgList Args; 3391 Args.push_back(&BufferArg); 3392 Args.push_back(&IdxArg); 3393 Args.push_back(&ReduceListArg); 3394 3395 const CGFunctionInfo &CGFI = 3396 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3397 auto *Fn = llvm::Function::Create( 3398 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3399 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 3400 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3401 Fn->setDoesNotRecurse(); 3402 CodeGenFunction CGF(CGM); 3403 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3404 3405 CGBuilderTy &Bld = CGF.Builder; 3406 3407 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3408 QualType StaticTy = C.getRecordType(TeamReductionRec); 3409 llvm::Type *LLVMReductionsBufferTy = 3410 CGM.getTypes().ConvertTypeForMem(StaticTy); 3411 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3412 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3413 LLVMReductionsBufferTy->getPointerTo()); 3414 3415 // 1. Build a list of reduction variables. 3416 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3417 Address ReductionList = 3418 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3419 auto IPriv = Privates.begin(); 3420 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3421 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3422 /*Volatile=*/false, C.IntTy, 3423 Loc)}; 3424 unsigned Idx = 0; 3425 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 3426 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3427 // Global = Buffer.VD[Idx]; 3428 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 3429 const FieldDecl *FD = VarFieldMap.lookup(VD); 3430 LValue GlobLVal = CGF.EmitLValueForField( 3431 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3432 Address GlobAddr = GlobLVal.getAddress(CGF); 3433 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3434 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3435 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 3436 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 3437 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3438 // Store array size. 3439 ++Idx; 3440 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3441 llvm::Value *Size = CGF.Builder.CreateIntCast( 3442 CGF.getVLASize( 3443 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3444 .NumElts, 3445 CGF.SizeTy, /*isSigned=*/false); 3446 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3447 Elem); 3448 } 3449 } 3450 3451 // Call reduce_function(GlobalReduceList, ReduceList) 3452 llvm::Value *GlobalReduceList = 3453 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 3454 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3455 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 3456 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 3457 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3458 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 3459 CGF.FinishFunction(); 3460 return Fn; 3461 } 3462 3463 /// This function emits a helper that copies all the reduction variables from 3464 /// the team into the provided global buffer for the reduction variables. 3465 /// 3466 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 3467 /// For all data entries D in reduce_data: 3468 /// Copy buffer.D[Idx] to local D; 3469 static llvm::Value *emitGlobalToListCopyFunction( 3470 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3471 QualType ReductionArrayTy, SourceLocation Loc, 3472 const RecordDecl *TeamReductionRec, 3473 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3474 &VarFieldMap) { 3475 ASTContext &C = CGM.getContext(); 3476 3477 // Buffer: global reduction buffer. 3478 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3479 C.VoidPtrTy, ImplicitParamDecl::Other); 3480 // Idx: index of the buffer. 3481 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3482 ImplicitParamDecl::Other); 3483 // ReduceList: thread local Reduce list. 3484 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3485 C.VoidPtrTy, ImplicitParamDecl::Other); 3486 FunctionArgList Args; 3487 Args.push_back(&BufferArg); 3488 Args.push_back(&IdxArg); 3489 Args.push_back(&ReduceListArg); 3490 3491 const CGFunctionInfo &CGFI = 3492 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3493 auto *Fn = llvm::Function::Create( 3494 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3495 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 3496 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3497 Fn->setDoesNotRecurse(); 3498 CodeGenFunction CGF(CGM); 3499 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3500 3501 CGBuilderTy &Bld = CGF.Builder; 3502 3503 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3504 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3505 Address LocalReduceList( 3506 Bld.CreatePointerBitCastOrAddrSpaceCast( 3507 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3508 C.VoidPtrTy, Loc), 3509 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3510 CGF.getPointerAlign()); 3511 QualType StaticTy = C.getRecordType(TeamReductionRec); 3512 llvm::Type *LLVMReductionsBufferTy = 3513 CGM.getTypes().ConvertTypeForMem(StaticTy); 3514 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3515 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3516 LLVMReductionsBufferTy->getPointerTo()); 3517 3518 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3519 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3520 /*Volatile=*/false, C.IntTy, 3521 Loc)}; 3522 unsigned Idx = 0; 3523 for (const Expr *Private : Privates) { 3524 // Reduce element = LocalReduceList[i] 3525 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 3526 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 3527 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 3528 // elemptr = ((CopyType*)(elemptrptr)) + I 3529 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3530 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 3531 Address ElemPtr = 3532 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 3533 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 3534 // Global = Buffer.VD[Idx]; 3535 const FieldDecl *FD = VarFieldMap.lookup(VD); 3536 LValue GlobLVal = CGF.EmitLValueForField( 3537 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3538 Address GlobAddr = GlobLVal.getAddress(CGF); 3539 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3540 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3541 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 3542 switch (CGF.getEvaluationKind(Private->getType())) { 3543 case TEK_Scalar: { 3544 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 3545 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 3546 LValueBaseInfo(AlignmentSource::Type), 3547 TBAAAccessInfo()); 3548 break; 3549 } 3550 case TEK_Complex: { 3551 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 3552 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3553 /*isInit=*/false); 3554 break; 3555 } 3556 case TEK_Aggregate: 3557 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3558 GlobLVal, Private->getType(), 3559 AggValueSlot::DoesNotOverlap); 3560 break; 3561 } 3562 ++Idx; 3563 } 3564 3565 CGF.FinishFunction(); 3566 return Fn; 3567 } 3568 3569 /// This function emits a helper that reduces all the reduction variables from 3570 /// the team into the provided global buffer for the reduction variables. 3571 /// 3572 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 3573 /// void *GlobPtrs[]; 3574 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 3575 /// ... 3576 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 3577 /// reduce_function(reduce_data, GlobPtrs); 3578 static llvm::Value *emitGlobalToListReduceFunction( 3579 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3580 QualType ReductionArrayTy, SourceLocation Loc, 3581 const RecordDecl *TeamReductionRec, 3582 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3583 &VarFieldMap, 3584 llvm::Function *ReduceFn) { 3585 ASTContext &C = CGM.getContext(); 3586 3587 // Buffer: global reduction buffer. 3588 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3589 C.VoidPtrTy, ImplicitParamDecl::Other); 3590 // Idx: index of the buffer. 3591 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3592 ImplicitParamDecl::Other); 3593 // ReduceList: thread local Reduce list. 3594 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3595 C.VoidPtrTy, ImplicitParamDecl::Other); 3596 FunctionArgList Args; 3597 Args.push_back(&BufferArg); 3598 Args.push_back(&IdxArg); 3599 Args.push_back(&ReduceListArg); 3600 3601 const CGFunctionInfo &CGFI = 3602 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3603 auto *Fn = llvm::Function::Create( 3604 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3605 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 3606 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3607 Fn->setDoesNotRecurse(); 3608 CodeGenFunction CGF(CGM); 3609 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3610 3611 CGBuilderTy &Bld = CGF.Builder; 3612 3613 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3614 QualType StaticTy = C.getRecordType(TeamReductionRec); 3615 llvm::Type *LLVMReductionsBufferTy = 3616 CGM.getTypes().ConvertTypeForMem(StaticTy); 3617 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3618 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3619 LLVMReductionsBufferTy->getPointerTo()); 3620 3621 // 1. Build a list of reduction variables. 3622 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3623 Address ReductionList = 3624 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3625 auto IPriv = Privates.begin(); 3626 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3627 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3628 /*Volatile=*/false, C.IntTy, 3629 Loc)}; 3630 unsigned Idx = 0; 3631 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 3632 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3633 // Global = Buffer.VD[Idx]; 3634 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 3635 const FieldDecl *FD = VarFieldMap.lookup(VD); 3636 LValue GlobLVal = CGF.EmitLValueForField( 3637 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3638 Address GlobAddr = GlobLVal.getAddress(CGF); 3639 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3640 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3641 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 3642 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 3643 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3644 // Store array size. 3645 ++Idx; 3646 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3647 llvm::Value *Size = CGF.Builder.CreateIntCast( 3648 CGF.getVLASize( 3649 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3650 .NumElts, 3651 CGF.SizeTy, /*isSigned=*/false); 3652 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3653 Elem); 3654 } 3655 } 3656 3657 // Call reduce_function(ReduceList, GlobalReduceList) 3658 llvm::Value *GlobalReduceList = 3659 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 3660 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3661 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 3662 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 3663 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3664 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 3665 CGF.FinishFunction(); 3666 return Fn; 3667 } 3668 3669 /// 3670 /// Design of OpenMP reductions on the GPU 3671 /// 3672 /// Consider a typical OpenMP program with one or more reduction 3673 /// clauses: 3674 /// 3675 /// float foo; 3676 /// double bar; 3677 /// #pragma omp target teams distribute parallel for \ 3678 /// reduction(+:foo) reduction(*:bar) 3679 /// for (int i = 0; i < N; i++) { 3680 /// foo += A[i]; bar *= B[i]; 3681 /// } 3682 /// 3683 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 3684 /// all teams. In our OpenMP implementation on the NVPTX device an 3685 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 3686 /// within a team are mapped to CUDA threads within a threadblock. 3687 /// Our goal is to efficiently aggregate values across all OpenMP 3688 /// threads such that: 3689 /// 3690 /// - the compiler and runtime are logically concise, and 3691 /// - the reduction is performed efficiently in a hierarchical 3692 /// manner as follows: within OpenMP threads in the same warp, 3693 /// across warps in a threadblock, and finally across teams on 3694 /// the NVPTX device. 3695 /// 3696 /// Introduction to Decoupling 3697 /// 3698 /// We would like to decouple the compiler and the runtime so that the 3699 /// latter is ignorant of the reduction variables (number, data types) 3700 /// and the reduction operators. This allows a simpler interface 3701 /// and implementation while still attaining good performance. 3702 /// 3703 /// Pseudocode for the aforementioned OpenMP program generated by the 3704 /// compiler is as follows: 3705 /// 3706 /// 1. Create private copies of reduction variables on each OpenMP 3707 /// thread: 'foo_private', 'bar_private' 3708 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 3709 /// to it and writes the result in 'foo_private' and 'bar_private' 3710 /// respectively. 3711 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 3712 /// and store the result on the team master: 3713 /// 3714 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 3715 /// reduceData, shuffleReduceFn, interWarpCpyFn) 3716 /// 3717 /// where: 3718 /// struct ReduceData { 3719 /// double *foo; 3720 /// double *bar; 3721 /// } reduceData 3722 /// reduceData.foo = &foo_private 3723 /// reduceData.bar = &bar_private 3724 /// 3725 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 3726 /// auxiliary functions generated by the compiler that operate on 3727 /// variables of type 'ReduceData'. They aid the runtime perform 3728 /// algorithmic steps in a data agnostic manner. 3729 /// 3730 /// 'shuffleReduceFn' is a pointer to a function that reduces data 3731 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 3732 /// same warp. It takes the following arguments as input: 3733 /// 3734 /// a. variable of type 'ReduceData' on the calling lane, 3735 /// b. its lane_id, 3736 /// c. an offset relative to the current lane_id to generate a 3737 /// remote_lane_id. The remote lane contains the second 3738 /// variable of type 'ReduceData' that is to be reduced. 3739 /// d. an algorithm version parameter determining which reduction 3740 /// algorithm to use. 3741 /// 3742 /// 'shuffleReduceFn' retrieves data from the remote lane using 3743 /// efficient GPU shuffle intrinsics and reduces, using the 3744 /// algorithm specified by the 4th parameter, the two operands 3745 /// element-wise. The result is written to the first operand. 3746 /// 3747 /// Different reduction algorithms are implemented in different 3748 /// runtime functions, all calling 'shuffleReduceFn' to perform 3749 /// the essential reduction step. Therefore, based on the 4th 3750 /// parameter, this function behaves slightly differently to 3751 /// cooperate with the runtime to ensure correctness under 3752 /// different circumstances. 3753 /// 3754 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3755 /// reduced variables across warps. It tunnels, through CUDA 3756 /// shared memory, the thread-private data of type 'ReduceData' 3757 /// from lane 0 of each warp to a lane in the first warp. 3758 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3759 /// The last team writes the global reduced value to memory. 3760 /// 3761 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3762 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3763 /// scratchpadCopyFn, loadAndReduceFn) 3764 /// 3765 /// 'scratchpadCopyFn' is a helper that stores reduced 3766 /// data from the team master to a scratchpad array in 3767 /// global memory. 3768 /// 3769 /// 'loadAndReduceFn' is a helper that loads data from 3770 /// the scratchpad array and reduces it with the input 3771 /// operand. 3772 /// 3773 /// These compiler generated functions hide address 3774 /// calculation and alignment information from the runtime. 3775 /// 5. if ret == 1: 3776 /// The team master of the last team stores the reduced 3777 /// result to the globals in memory. 3778 /// foo += reduceData.foo; bar *= reduceData.bar 3779 /// 3780 /// 3781 /// Warp Reduction Algorithms 3782 /// 3783 /// On the warp level, we have three algorithms implemented in the 3784 /// OpenMP runtime depending on the number of active lanes: 3785 /// 3786 /// Full Warp Reduction 3787 /// 3788 /// The reduce algorithm within a warp where all lanes are active 3789 /// is implemented in the runtime as follows: 3790 /// 3791 /// full_warp_reduce(void *reduce_data, 3792 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3793 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3794 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3795 /// } 3796 /// 3797 /// The algorithm completes in log(2, WARPSIZE) steps. 3798 /// 3799 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3800 /// not used therefore we save instructions by not retrieving lane_id 3801 /// from the corresponding special registers. The 4th parameter, which 3802 /// represents the version of the algorithm being used, is set to 0 to 3803 /// signify full warp reduction. 3804 /// 3805 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3806 /// 3807 /// #reduce_elem refers to an element in the local lane's data structure 3808 /// #remote_elem is retrieved from a remote lane 3809 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3810 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3811 /// 3812 /// Contiguous Partial Warp Reduction 3813 /// 3814 /// This reduce algorithm is used within a warp where only the first 3815 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3816 /// number of OpenMP threads in a parallel region is not a multiple of 3817 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3818 /// 3819 /// void 3820 /// contiguous_partial_reduce(void *reduce_data, 3821 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3822 /// int size, int lane_id) { 3823 /// int curr_size; 3824 /// int offset; 3825 /// curr_size = size; 3826 /// mask = curr_size/2; 3827 /// while (offset>0) { 3828 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3829 /// curr_size = (curr_size+1)/2; 3830 /// offset = curr_size/2; 3831 /// } 3832 /// } 3833 /// 3834 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3835 /// 3836 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3837 /// if (lane_id < offset) 3838 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3839 /// else 3840 /// reduce_elem = remote_elem 3841 /// 3842 /// This algorithm assumes that the data to be reduced are located in a 3843 /// contiguous subset of lanes starting from the first. When there is 3844 /// an odd number of active lanes, the data in the last lane is not 3845 /// aggregated with any other lane's dat but is instead copied over. 3846 /// 3847 /// Dispersed Partial Warp Reduction 3848 /// 3849 /// This algorithm is used within a warp when any discontiguous subset of 3850 /// lanes are active. It is used to implement the reduction operation 3851 /// across lanes in an OpenMP simd region or in a nested parallel region. 3852 /// 3853 /// void 3854 /// dispersed_partial_reduce(void *reduce_data, 3855 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3856 /// int size, remote_id; 3857 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3858 /// do { 3859 /// remote_id = next_active_lane_id_right_after_me(); 3860 /// # the above function returns 0 of no active lane 3861 /// # is present right after the current lane. 3862 /// size = number_of_active_lanes_in_this_warp(); 3863 /// logical_lane_id /= 2; 3864 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3865 /// remote_id-1-threadIdx.x, 2); 3866 /// } while (logical_lane_id % 2 == 0 && size > 1); 3867 /// } 3868 /// 3869 /// There is no assumption made about the initial state of the reduction. 3870 /// Any number of lanes (>=1) could be active at any position. The reduction 3871 /// result is returned in the first active lane. 3872 /// 3873 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3874 /// 3875 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3876 /// if (lane_id % 2 == 0 && offset > 0) 3877 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3878 /// else 3879 /// reduce_elem = remote_elem 3880 /// 3881 /// 3882 /// Intra-Team Reduction 3883 /// 3884 /// This function, as implemented in the runtime call 3885 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3886 /// threads in a team. It first reduces within a warp using the 3887 /// aforementioned algorithms. We then proceed to gather all such 3888 /// reduced values at the first warp. 3889 /// 3890 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3891 /// data from each of the "warp master" (zeroth lane of each warp, where 3892 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3893 /// a mathematical sense) the problem of reduction across warp masters in 3894 /// a block to the problem of warp reduction. 3895 /// 3896 /// 3897 /// Inter-Team Reduction 3898 /// 3899 /// Once a team has reduced its data to a single value, it is stored in 3900 /// a global scratchpad array. Since each team has a distinct slot, this 3901 /// can be done without locking. 3902 /// 3903 /// The last team to write to the scratchpad array proceeds to reduce the 3904 /// scratchpad array. One or more workers in the last team use the helper 3905 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3906 /// the k'th worker reduces every k'th element. 3907 /// 3908 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3909 /// reduce across workers and compute a globally reduced value. 3910 /// 3911 void CGOpenMPRuntimeGPU::emitReduction( 3912 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3913 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3914 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3915 if (!CGF.HaveInsertPoint()) 3916 return; 3917 3918 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3919 #ifndef NDEBUG 3920 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3921 #endif 3922 3923 if (Options.SimpleReduction) { 3924 assert(!TeamsReduction && !ParallelReduction && 3925 "Invalid reduction selection in emitReduction."); 3926 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3927 ReductionOps, Options); 3928 return; 3929 } 3930 3931 assert((TeamsReduction || ParallelReduction) && 3932 "Invalid reduction selection in emitReduction."); 3933 3934 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3935 // RedList, shuffle_reduce_func, interwarp_copy_func); 3936 // or 3937 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3938 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3939 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3940 3941 llvm::Value *Res; 3942 ASTContext &C = CGM.getContext(); 3943 // 1. Build a list of reduction variables. 3944 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3945 auto Size = RHSExprs.size(); 3946 for (const Expr *E : Privates) { 3947 if (E->getType()->isVariablyModifiedType()) 3948 // Reserve place for array size. 3949 ++Size; 3950 } 3951 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3952 QualType ReductionArrayTy = 3953 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3954 /*IndexTypeQuals=*/0); 3955 Address ReductionList = 3956 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3957 auto IPriv = Privates.begin(); 3958 unsigned Idx = 0; 3959 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3960 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3961 CGF.Builder.CreateStore( 3962 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3963 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3964 Elem); 3965 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3966 // Store array size. 3967 ++Idx; 3968 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3969 llvm::Value *Size = CGF.Builder.CreateIntCast( 3970 CGF.getVLASize( 3971 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3972 .NumElts, 3973 CGF.SizeTy, /*isSigned=*/false); 3974 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3975 Elem); 3976 } 3977 } 3978 3979 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3980 ReductionList.getPointer(), CGF.VoidPtrTy); 3981 llvm::Function *ReductionFn = emitReductionFunction( 3982 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3983 LHSExprs, RHSExprs, ReductionOps); 3984 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3985 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3986 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3987 llvm::Value *InterWarpCopyFn = 3988 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3989 3990 if (ParallelReduction) { 3991 llvm::Value *Args[] = {RTLoc, 3992 ThreadId, 3993 CGF.Builder.getInt32(RHSExprs.size()), 3994 ReductionArrayTySize, 3995 RL, 3996 ShuffleAndReduceFn, 3997 InterWarpCopyFn}; 3998 3999 Res = CGF.EmitRuntimeCall( 4000 OMPBuilder.getOrCreateRuntimeFunction( 4001 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 4002 Args); 4003 } else { 4004 assert(TeamsReduction && "expected teams reduction."); 4005 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 4006 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 4007 int Cnt = 0; 4008 for (const Expr *DRE : Privates) { 4009 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 4010 ++Cnt; 4011 } 4012 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 4013 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 4014 C.getLangOpts().OpenMPCUDAReductionBufNum); 4015 TeamsReductions.push_back(TeamReductionRec); 4016 if (!KernelTeamsReductionPtr) { 4017 KernelTeamsReductionPtr = new llvm::GlobalVariable( 4018 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 4019 llvm::GlobalValue::InternalLinkage, nullptr, 4020 "_openmp_teams_reductions_buffer_$_$ptr"); 4021 } 4022 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 4023 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 4024 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 4025 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 4026 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 4027 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 4028 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 4029 ReductionFn); 4030 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 4031 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 4032 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 4033 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 4034 ReductionFn); 4035 4036 llvm::Value *Args[] = { 4037 RTLoc, 4038 ThreadId, 4039 GlobalBufferPtr, 4040 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 4041 RL, 4042 ShuffleAndReduceFn, 4043 InterWarpCopyFn, 4044 GlobalToBufferCpyFn, 4045 GlobalToBufferRedFn, 4046 BufferToGlobalCpyFn, 4047 BufferToGlobalRedFn}; 4048 4049 Res = CGF.EmitRuntimeCall( 4050 OMPBuilder.getOrCreateRuntimeFunction( 4051 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 4052 Args); 4053 } 4054 4055 // 5. Build if (res == 1) 4056 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 4057 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 4058 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 4059 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 4060 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 4061 4062 // 6. Build then branch: where we have reduced values in the master 4063 // thread in each team. 4064 // __kmpc_end_reduce{_nowait}(<gtid>); 4065 // break; 4066 CGF.EmitBlock(ThenBB); 4067 4068 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 4069 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 4070 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 4071 auto IPriv = Privates.begin(); 4072 auto ILHS = LHSExprs.begin(); 4073 auto IRHS = RHSExprs.begin(); 4074 for (const Expr *E : ReductionOps) { 4075 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 4076 cast<DeclRefExpr>(*IRHS)); 4077 ++IPriv; 4078 ++ILHS; 4079 ++IRHS; 4080 } 4081 }; 4082 llvm::Value *EndArgs[] = {ThreadId}; 4083 RegionCodeGenTy RCG(CodeGen); 4084 NVPTXActionTy Action( 4085 nullptr, llvm::None, 4086 OMPBuilder.getOrCreateRuntimeFunction( 4087 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 4088 EndArgs); 4089 RCG.setAction(Action); 4090 RCG(CGF); 4091 // There is no need to emit line number for unconditional branch. 4092 (void)ApplyDebugLocation::CreateEmpty(CGF); 4093 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 4094 } 4095 4096 const VarDecl * 4097 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 4098 const VarDecl *NativeParam) const { 4099 if (!NativeParam->getType()->isReferenceType()) 4100 return NativeParam; 4101 QualType ArgType = NativeParam->getType(); 4102 QualifierCollector QC; 4103 const Type *NonQualTy = QC.strip(ArgType); 4104 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 4105 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 4106 if (Attr->getCaptureKind() == OMPC_map) { 4107 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 4108 LangAS::opencl_global); 4109 } else if (Attr->getCaptureKind() == OMPC_firstprivate && 4110 PointeeTy.isConstant(CGM.getContext())) { 4111 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 4112 LangAS::opencl_generic); 4113 } 4114 } 4115 ArgType = CGM.getContext().getPointerType(PointeeTy); 4116 QC.addRestrict(); 4117 enum { NVPTX_local_addr = 5 }; 4118 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 4119 ArgType = QC.apply(CGM.getContext(), ArgType); 4120 if (isa<ImplicitParamDecl>(NativeParam)) 4121 return ImplicitParamDecl::Create( 4122 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 4123 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 4124 return ParmVarDecl::Create( 4125 CGM.getContext(), 4126 const_cast<DeclContext *>(NativeParam->getDeclContext()), 4127 NativeParam->getBeginLoc(), NativeParam->getLocation(), 4128 NativeParam->getIdentifier(), ArgType, 4129 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 4130 } 4131 4132 Address 4133 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 4134 const VarDecl *NativeParam, 4135 const VarDecl *TargetParam) const { 4136 assert(NativeParam != TargetParam && 4137 NativeParam->getType()->isReferenceType() && 4138 "Native arg must not be the same as target arg."); 4139 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 4140 QualType NativeParamType = NativeParam->getType(); 4141 QualifierCollector QC; 4142 const Type *NonQualTy = QC.strip(NativeParamType); 4143 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 4144 unsigned NativePointeeAddrSpace = 4145 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 4146 QualType TargetTy = TargetParam->getType(); 4147 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 4148 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 4149 // First cast to generic. 4150 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4151 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 4152 /*AddrSpace=*/0)); 4153 // Cast from generic to native address space. 4154 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4155 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 4156 NativePointeeAddrSpace)); 4157 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 4158 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 4159 NativeParamType); 4160 return NativeParamAddr; 4161 } 4162 4163 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 4164 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 4165 ArrayRef<llvm::Value *> Args) const { 4166 SmallVector<llvm::Value *, 4> TargetArgs; 4167 TargetArgs.reserve(Args.size()); 4168 auto *FnType = OutlinedFn.getFunctionType(); 4169 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 4170 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 4171 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 4172 break; 4173 } 4174 llvm::Type *TargetType = FnType->getParamType(I); 4175 llvm::Value *NativeArg = Args[I]; 4176 if (!TargetType->isPointerTy()) { 4177 TargetArgs.emplace_back(NativeArg); 4178 continue; 4179 } 4180 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4181 NativeArg, 4182 NativeArg->getType()->getPointerElementType()->getPointerTo()); 4183 TargetArgs.emplace_back( 4184 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 4185 } 4186 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 4187 } 4188 4189 /// Emit function which wraps the outline parallel region 4190 /// and controls the arguments which are passed to this function. 4191 /// The wrapper ensures that the outlined function is called 4192 /// with the correct arguments when data is shared. 4193 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 4194 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 4195 ASTContext &Ctx = CGM.getContext(); 4196 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 4197 4198 // Create a function that takes as argument the source thread. 4199 FunctionArgList WrapperArgs; 4200 QualType Int16QTy = 4201 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 4202 QualType Int32QTy = 4203 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 4204 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 4205 /*Id=*/nullptr, Int16QTy, 4206 ImplicitParamDecl::Other); 4207 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 4208 /*Id=*/nullptr, Int32QTy, 4209 ImplicitParamDecl::Other); 4210 WrapperArgs.emplace_back(&ParallelLevelArg); 4211 WrapperArgs.emplace_back(&WrapperArg); 4212 4213 const CGFunctionInfo &CGFI = 4214 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 4215 4216 auto *Fn = llvm::Function::Create( 4217 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 4218 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 4219 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 4220 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 4221 Fn->setDoesNotRecurse(); 4222 4223 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4224 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 4225 D.getBeginLoc(), D.getBeginLoc()); 4226 4227 const auto *RD = CS.getCapturedRecordDecl(); 4228 auto CurField = RD->field_begin(); 4229 4230 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 4231 /*Name=*/".zero.addr"); 4232 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 4233 // Get the array of arguments. 4234 SmallVector<llvm::Value *, 8> Args; 4235 4236 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 4237 Args.emplace_back(ZeroAddr.getPointer()); 4238 4239 CGBuilderTy &Bld = CGF.Builder; 4240 auto CI = CS.capture_begin(); 4241 4242 // Use global memory for data sharing. 4243 // Handle passing of global args to workers. 4244 Address GlobalArgs = 4245 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 4246 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 4247 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 4248 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 4249 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 4250 DataSharingArgs); 4251 4252 // Retrieve the shared variables from the list of references returned 4253 // by the runtime. Pass the variables to the outlined function. 4254 Address SharedArgListAddress = Address::invalid(); 4255 if (CS.capture_size() > 0 || 4256 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 4257 SharedArgListAddress = CGF.EmitLoadOfPointer( 4258 GlobalArgs, CGF.getContext() 4259 .getPointerType(CGF.getContext().getPointerType( 4260 CGF.getContext().VoidPtrTy)) 4261 .castAs<PointerType>()); 4262 } 4263 unsigned Idx = 0; 4264 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 4265 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 4266 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 4267 Src, CGF.SizeTy->getPointerTo()); 4268 llvm::Value *LB = CGF.EmitLoadOfScalar( 4269 TypedAddress, 4270 /*Volatile=*/false, 4271 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 4272 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 4273 Args.emplace_back(LB); 4274 ++Idx; 4275 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 4276 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 4277 Src, CGF.SizeTy->getPointerTo()); 4278 llvm::Value *UB = CGF.EmitLoadOfScalar( 4279 TypedAddress, 4280 /*Volatile=*/false, 4281 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 4282 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 4283 Args.emplace_back(UB); 4284 ++Idx; 4285 } 4286 if (CS.capture_size() > 0) { 4287 ASTContext &CGFContext = CGF.getContext(); 4288 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 4289 QualType ElemTy = CurField->getType(); 4290 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 4291 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 4292 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 4293 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 4294 /*Volatile=*/false, 4295 CGFContext.getPointerType(ElemTy), 4296 CI->getLocation()); 4297 if (CI->capturesVariableByCopy() && 4298 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 4299 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 4300 CI->getLocation()); 4301 } 4302 Args.emplace_back(Arg); 4303 } 4304 } 4305 4306 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 4307 CGF.FinishFunction(); 4308 return Fn; 4309 } 4310 4311 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 4312 const Decl *D) { 4313 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 4314 return; 4315 4316 assert(D && "Expected function or captured|block decl."); 4317 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 4318 "Function is registered already."); 4319 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 4320 "Team is set but not processed."); 4321 const Stmt *Body = nullptr; 4322 bool NeedToDelayGlobalization = false; 4323 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4324 Body = FD->getBody(); 4325 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 4326 Body = BD->getBody(); 4327 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 4328 Body = CD->getBody(); 4329 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 4330 if (NeedToDelayGlobalization && 4331 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 4332 return; 4333 } 4334 if (!Body) 4335 return; 4336 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 4337 VarChecker.Visit(Body); 4338 const RecordDecl *GlobalizedVarsRecord = 4339 VarChecker.getGlobalizedRecord(IsInTTDRegion); 4340 TeamAndReductions.first = nullptr; 4341 TeamAndReductions.second.clear(); 4342 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 4343 VarChecker.getEscapedVariableLengthDecls(); 4344 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 4345 return; 4346 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 4347 I->getSecond().MappedParams = 4348 std::make_unique<CodeGenFunction::OMPMapVars>(); 4349 I->getSecond().GlobalRecord = GlobalizedVarsRecord; 4350 I->getSecond().EscapedParameters.insert( 4351 VarChecker.getEscapedParameters().begin(), 4352 VarChecker.getEscapedParameters().end()); 4353 I->getSecond().EscapedVariableLengthDecls.append( 4354 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 4355 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 4356 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 4357 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 4358 const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD); 4359 Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion))); 4360 } 4361 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 4362 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 4363 VarChecker.Visit(Body); 4364 I->getSecond().SecondaryGlobalRecord = 4365 VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true); 4366 I->getSecond().SecondaryLocalVarData.emplace(); 4367 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 4368 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 4369 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 4370 const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD); 4371 Data.insert( 4372 std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true))); 4373 } 4374 } 4375 if (!NeedToDelayGlobalization) { 4376 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 4377 struct GlobalizationScope final : EHScopeStack::Cleanup { 4378 GlobalizationScope() = default; 4379 4380 void Emit(CodeGenFunction &CGF, Flags flags) override { 4381 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 4382 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 4383 } 4384 }; 4385 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 4386 } 4387 } 4388 4389 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 4390 const VarDecl *VD) { 4391 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 4392 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 4393 auto AS = LangAS::Default; 4394 switch (A->getAllocatorType()) { 4395 // Use the default allocator here as by default local vars are 4396 // threadlocal. 4397 case OMPAllocateDeclAttr::OMPNullMemAlloc: 4398 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 4399 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 4400 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 4401 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 4402 // Follow the user decision - use default allocation. 4403 return Address::invalid(); 4404 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 4405 // TODO: implement aupport for user-defined allocators. 4406 return Address::invalid(); 4407 case OMPAllocateDeclAttr::OMPConstMemAlloc: 4408 AS = LangAS::cuda_constant; 4409 break; 4410 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 4411 AS = LangAS::cuda_shared; 4412 break; 4413 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 4414 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 4415 break; 4416 } 4417 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 4418 auto *GV = new llvm::GlobalVariable( 4419 CGM.getModule(), VarTy, /*isConstant=*/false, 4420 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 4421 VD->getName(), 4422 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 4423 CGM.getContext().getTargetAddressSpace(AS)); 4424 CharUnits Align = CGM.getContext().getDeclAlign(VD); 4425 GV->setAlignment(Align.getAsAlign()); 4426 return Address( 4427 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4428 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 4429 VD->getType().getAddressSpace()))), 4430 Align); 4431 } 4432 4433 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 4434 return Address::invalid(); 4435 4436 VD = VD->getCanonicalDecl(); 4437 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 4438 if (I == FunctionGlobalizedDecls.end()) 4439 return Address::invalid(); 4440 auto VDI = I->getSecond().LocalVarData.find(VD); 4441 if (VDI != I->getSecond().LocalVarData.end()) 4442 return VDI->second.PrivateAddr; 4443 if (VD->hasAttrs()) { 4444 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 4445 E(VD->attr_end()); 4446 IT != E; ++IT) { 4447 auto VDI = I->getSecond().LocalVarData.find( 4448 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 4449 ->getCanonicalDecl()); 4450 if (VDI != I->getSecond().LocalVarData.end()) 4451 return VDI->second.PrivateAddr; 4452 } 4453 } 4454 4455 return Address::invalid(); 4456 } 4457 4458 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 4459 FunctionGlobalizedDecls.erase(CGF.CurFn); 4460 CGOpenMPRuntime::functionFinished(CGF); 4461 } 4462 4463 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 4464 CodeGenFunction &CGF, const OMPLoopDirective &S, 4465 OpenMPDistScheduleClauseKind &ScheduleKind, 4466 llvm::Value *&Chunk) const { 4467 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 4468 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 4469 ScheduleKind = OMPC_DIST_SCHEDULE_static; 4470 Chunk = CGF.EmitScalarConversion( 4471 RT.getGPUNumThreads(CGF), 4472 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4473 S.getIterationVariable()->getType(), S.getBeginLoc()); 4474 return; 4475 } 4476 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 4477 CGF, S, ScheduleKind, Chunk); 4478 } 4479 4480 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 4481 CodeGenFunction &CGF, const OMPLoopDirective &S, 4482 OpenMPScheduleClauseKind &ScheduleKind, 4483 const Expr *&ChunkExpr) const { 4484 ScheduleKind = OMPC_SCHEDULE_static; 4485 // Chunk size is 1 in this case. 4486 llvm::APInt ChunkSize(32, 1); 4487 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 4488 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4489 SourceLocation()); 4490 } 4491 4492 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 4493 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 4494 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 4495 " Expected target-based directive."); 4496 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 4497 for (const CapturedStmt::Capture &C : CS->captures()) { 4498 // Capture variables captured by reference in lambdas for target-based 4499 // directives. 4500 if (!C.capturesVariable()) 4501 continue; 4502 const VarDecl *VD = C.getCapturedVar(); 4503 const auto *RD = VD->getType() 4504 .getCanonicalType() 4505 .getNonReferenceType() 4506 ->getAsCXXRecordDecl(); 4507 if (!RD || !RD->isLambda()) 4508 continue; 4509 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 4510 LValue VDLVal; 4511 if (VD->getType().getCanonicalType()->isReferenceType()) 4512 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 4513 else 4514 VDLVal = CGF.MakeAddrLValue( 4515 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 4516 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 4517 FieldDecl *ThisCapture = nullptr; 4518 RD->getCaptureFields(Captures, ThisCapture); 4519 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 4520 LValue ThisLVal = 4521 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 4522 llvm::Value *CXXThis = CGF.LoadCXXThis(); 4523 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 4524 } 4525 for (const LambdaCapture &LC : RD->captures()) { 4526 if (LC.getCaptureKind() != LCK_ByRef) 4527 continue; 4528 const VarDecl *VD = LC.getCapturedVar(); 4529 if (!CS->capturesVariable(VD)) 4530 continue; 4531 auto It = Captures.find(VD); 4532 assert(It != Captures.end() && "Found lambda capture without field."); 4533 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 4534 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 4535 if (VD->getType().getCanonicalType()->isReferenceType()) 4536 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 4537 VD->getType().getCanonicalType()) 4538 .getAddress(CGF); 4539 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 4540 } 4541 } 4542 } 4543 4544 unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const { 4545 return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 4546 } 4547 4548 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 4549 LangAS &AS) { 4550 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 4551 return false; 4552 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 4553 switch(A->getAllocatorType()) { 4554 case OMPAllocateDeclAttr::OMPNullMemAlloc: 4555 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 4556 // Not supported, fallback to the default mem space. 4557 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 4558 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 4559 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 4560 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 4561 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 4562 AS = LangAS::Default; 4563 return true; 4564 case OMPAllocateDeclAttr::OMPConstMemAlloc: 4565 AS = LangAS::cuda_constant; 4566 return true; 4567 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 4568 AS = LangAS::cuda_shared; 4569 return true; 4570 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 4571 llvm_unreachable("Expected predefined allocator for the variables with the " 4572 "static storage."); 4573 } 4574 return false; 4575 } 4576 4577 // Get current CudaArch and ignore any unknown values 4578 static CudaArch getCudaArch(CodeGenModule &CGM) { 4579 if (!CGM.getTarget().hasFeature("ptx")) 4580 return CudaArch::UNKNOWN; 4581 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 4582 if (Feature.getValue()) { 4583 CudaArch Arch = StringToCudaArch(Feature.getKey()); 4584 if (Arch != CudaArch::UNKNOWN) 4585 return Arch; 4586 } 4587 } 4588 return CudaArch::UNKNOWN; 4589 } 4590 4591 /// Check to see if target architecture supports unified addressing which is 4592 /// a restriction for OpenMP requires clause "unified_shared_memory". 4593 void CGOpenMPRuntimeGPU::processRequiresDirective( 4594 const OMPRequiresDecl *D) { 4595 for (const OMPClause *Clause : D->clauselists()) { 4596 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 4597 CudaArch Arch = getCudaArch(CGM); 4598 switch (Arch) { 4599 case CudaArch::SM_20: 4600 case CudaArch::SM_21: 4601 case CudaArch::SM_30: 4602 case CudaArch::SM_32: 4603 case CudaArch::SM_35: 4604 case CudaArch::SM_37: 4605 case CudaArch::SM_50: 4606 case CudaArch::SM_52: 4607 case CudaArch::SM_53: 4608 case CudaArch::SM_60: 4609 case CudaArch::SM_61: 4610 case CudaArch::SM_62: { 4611 SmallString<256> Buffer; 4612 llvm::raw_svector_ostream Out(Buffer); 4613 Out << "Target architecture " << CudaArchToString(Arch) 4614 << " does not support unified addressing"; 4615 CGM.Error(Clause->getBeginLoc(), Out.str()); 4616 return; 4617 } 4618 case CudaArch::SM_70: 4619 case CudaArch::SM_72: 4620 case CudaArch::SM_75: 4621 case CudaArch::SM_80: 4622 case CudaArch::SM_86: 4623 case CudaArch::GFX600: 4624 case CudaArch::GFX601: 4625 case CudaArch::GFX602: 4626 case CudaArch::GFX700: 4627 case CudaArch::GFX701: 4628 case CudaArch::GFX702: 4629 case CudaArch::GFX703: 4630 case CudaArch::GFX704: 4631 case CudaArch::GFX705: 4632 case CudaArch::GFX801: 4633 case CudaArch::GFX802: 4634 case CudaArch::GFX803: 4635 case CudaArch::GFX805: 4636 case CudaArch::GFX810: 4637 case CudaArch::GFX900: 4638 case CudaArch::GFX902: 4639 case CudaArch::GFX904: 4640 case CudaArch::GFX906: 4641 case CudaArch::GFX908: 4642 case CudaArch::GFX909: 4643 case CudaArch::GFX90a: 4644 case CudaArch::GFX90c: 4645 case CudaArch::GFX1010: 4646 case CudaArch::GFX1011: 4647 case CudaArch::GFX1012: 4648 case CudaArch::GFX1030: 4649 case CudaArch::GFX1031: 4650 case CudaArch::GFX1032: 4651 case CudaArch::GFX1033: 4652 case CudaArch::UNUSED: 4653 case CudaArch::UNKNOWN: 4654 break; 4655 case CudaArch::LAST: 4656 llvm_unreachable("Unexpected Cuda arch."); 4657 } 4658 } 4659 } 4660 CGOpenMPRuntime::processRequiresDirective(D); 4661 } 4662 4663 /// Get number of SMs and number of blocks per SM. 4664 static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) { 4665 std::pair<unsigned, unsigned> Data; 4666 if (CGM.getLangOpts().OpenMPCUDANumSMs) 4667 Data.first = CGM.getLangOpts().OpenMPCUDANumSMs; 4668 if (CGM.getLangOpts().OpenMPCUDABlocksPerSM) 4669 Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM; 4670 if (Data.first && Data.second) 4671 return Data; 4672 switch (getCudaArch(CGM)) { 4673 case CudaArch::SM_20: 4674 case CudaArch::SM_21: 4675 case CudaArch::SM_30: 4676 case CudaArch::SM_32: 4677 case CudaArch::SM_35: 4678 case CudaArch::SM_37: 4679 case CudaArch::SM_50: 4680 case CudaArch::SM_52: 4681 case CudaArch::SM_53: 4682 return {16, 16}; 4683 case CudaArch::SM_60: 4684 case CudaArch::SM_61: 4685 case CudaArch::SM_62: 4686 return {56, 32}; 4687 case CudaArch::SM_70: 4688 case CudaArch::SM_72: 4689 case CudaArch::SM_75: 4690 case CudaArch::SM_80: 4691 case CudaArch::SM_86: 4692 return {84, 32}; 4693 case CudaArch::GFX600: 4694 case CudaArch::GFX601: 4695 case CudaArch::GFX602: 4696 case CudaArch::GFX700: 4697 case CudaArch::GFX701: 4698 case CudaArch::GFX702: 4699 case CudaArch::GFX703: 4700 case CudaArch::GFX704: 4701 case CudaArch::GFX705: 4702 case CudaArch::GFX801: 4703 case CudaArch::GFX802: 4704 case CudaArch::GFX803: 4705 case CudaArch::GFX805: 4706 case CudaArch::GFX810: 4707 case CudaArch::GFX900: 4708 case CudaArch::GFX902: 4709 case CudaArch::GFX904: 4710 case CudaArch::GFX906: 4711 case CudaArch::GFX908: 4712 case CudaArch::GFX909: 4713 case CudaArch::GFX90a: 4714 case CudaArch::GFX90c: 4715 case CudaArch::GFX1010: 4716 case CudaArch::GFX1011: 4717 case CudaArch::GFX1012: 4718 case CudaArch::GFX1030: 4719 case CudaArch::GFX1031: 4720 case CudaArch::GFX1032: 4721 case CudaArch::GFX1033: 4722 case CudaArch::UNUSED: 4723 case CudaArch::UNKNOWN: 4724 break; 4725 case CudaArch::LAST: 4726 llvm_unreachable("Unexpected Cuda arch."); 4727 } 4728 llvm_unreachable("Unexpected NVPTX target without ptx feature."); 4729 } 4730 4731 void CGOpenMPRuntimeGPU::clear() { 4732 if (!GlobalizedRecords.empty() && 4733 !CGM.getLangOpts().OpenMPCUDATargetParallel) { 4734 ASTContext &C = CGM.getContext(); 4735 llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs; 4736 llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs; 4737 RecordDecl *StaticRD = C.buildImplicitRecord( 4738 "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union); 4739 StaticRD->startDefinition(); 4740 RecordDecl *SharedStaticRD = C.buildImplicitRecord( 4741 "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union); 4742 SharedStaticRD->startDefinition(); 4743 for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) { 4744 if (Records.Records.empty()) 4745 continue; 4746 unsigned Size = 0; 4747 unsigned RecAlignment = 0; 4748 for (const RecordDecl *RD : Records.Records) { 4749 QualType RDTy = C.getRecordType(RD); 4750 unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity(); 4751 RecAlignment = std::max(RecAlignment, Alignment); 4752 unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity(); 4753 Size = 4754 llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment); 4755 } 4756 Size = llvm::alignTo(Size, RecAlignment); 4757 llvm::APInt ArySize(/*numBits=*/64, Size); 4758 QualType SubTy = C.getConstantArrayType( 4759 C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); 4760 const bool UseSharedMemory = Size <= SharedMemorySize; 4761 auto *Field = 4762 FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD, 4763 SourceLocation(), SourceLocation(), nullptr, SubTy, 4764 C.getTrivialTypeSourceInfo(SubTy, SourceLocation()), 4765 /*BW=*/nullptr, /*Mutable=*/false, 4766 /*InitStyle=*/ICIS_NoInit); 4767 Field->setAccess(AS_public); 4768 if (UseSharedMemory) { 4769 SharedStaticRD->addDecl(Field); 4770 SharedRecs.push_back(&Records); 4771 } else { 4772 StaticRD->addDecl(Field); 4773 GlobalRecs.push_back(&Records); 4774 } 4775 Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size)); 4776 Records.UseSharedMemory->setInitializer( 4777 llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0)); 4778 } 4779 // Allocate SharedMemorySize buffer for the shared memory. 4780 // FIXME: nvlink does not handle weak linkage correctly (object with the 4781 // different size are reported as erroneous). 4782 // Restore this code as sson as nvlink is fixed. 4783 if (!SharedStaticRD->field_empty()) { 4784 llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize); 4785 QualType SubTy = C.getConstantArrayType( 4786 C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); 4787 auto *Field = FieldDecl::Create( 4788 C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy, 4789 C.getTrivialTypeSourceInfo(SubTy, SourceLocation()), 4790 /*BW=*/nullptr, /*Mutable=*/false, 4791 /*InitStyle=*/ICIS_NoInit); 4792 Field->setAccess(AS_public); 4793 SharedStaticRD->addDecl(Field); 4794 } 4795 SharedStaticRD->completeDefinition(); 4796 if (!SharedStaticRD->field_empty()) { 4797 QualType StaticTy = C.getRecordType(SharedStaticRD); 4798 llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy); 4799 auto *GV = new llvm::GlobalVariable( 4800 CGM.getModule(), LLVMStaticTy, 4801 /*isConstant=*/false, llvm::GlobalValue::WeakAnyLinkage, 4802 llvm::UndefValue::get(LLVMStaticTy), 4803 "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr, 4804 llvm::GlobalValue::NotThreadLocal, 4805 C.getTargetAddressSpace(LangAS::cuda_shared)); 4806 auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 4807 GV, CGM.VoidPtrTy); 4808 for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) { 4809 Rec->Buffer->replaceAllUsesWith(Replacement); 4810 Rec->Buffer->eraseFromParent(); 4811 } 4812 } 4813 StaticRD->completeDefinition(); 4814 if (!StaticRD->field_empty()) { 4815 QualType StaticTy = C.getRecordType(StaticRD); 4816 std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM); 4817 llvm::APInt Size1(32, SMsBlockPerSM.second); 4818 QualType Arr1Ty = 4819 C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal, 4820 /*IndexTypeQuals=*/0); 4821 llvm::APInt Size2(32, SMsBlockPerSM.first); 4822 QualType Arr2Ty = 4823 C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal, 4824 /*IndexTypeQuals=*/0); 4825 llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty); 4826 // FIXME: nvlink does not handle weak linkage correctly (object with the 4827 // different size are reported as erroneous). 4828 // Restore CommonLinkage as soon as nvlink is fixed. 4829 auto *GV = new llvm::GlobalVariable( 4830 CGM.getModule(), LLVMArr2Ty, 4831 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 4832 llvm::Constant::getNullValue(LLVMArr2Ty), 4833 "_openmp_static_glob_rd_$_"); 4834 auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 4835 GV, CGM.VoidPtrTy); 4836 for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) { 4837 Rec->Buffer->replaceAllUsesWith(Replacement); 4838 Rec->Buffer->eraseFromParent(); 4839 } 4840 } 4841 } 4842 if (!TeamsReductions.empty()) { 4843 ASTContext &C = CGM.getContext(); 4844 RecordDecl *StaticRD = C.buildImplicitRecord( 4845 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 4846 StaticRD->startDefinition(); 4847 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 4848 QualType RecTy = C.getRecordType(TeamReductionRec); 4849 auto *Field = FieldDecl::Create( 4850 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 4851 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 4852 /*BW=*/nullptr, /*Mutable=*/false, 4853 /*InitStyle=*/ICIS_NoInit); 4854 Field->setAccess(AS_public); 4855 StaticRD->addDecl(Field); 4856 } 4857 StaticRD->completeDefinition(); 4858 QualType StaticTy = C.getRecordType(StaticRD); 4859 llvm::Type *LLVMReductionsBufferTy = 4860 CGM.getTypes().ConvertTypeForMem(StaticTy); 4861 // FIXME: nvlink does not handle weak linkage correctly (object with the 4862 // different size are reported as erroneous). 4863 // Restore CommonLinkage as soon as nvlink is fixed. 4864 auto *GV = new llvm::GlobalVariable( 4865 CGM.getModule(), LLVMReductionsBufferTy, 4866 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 4867 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 4868 "_openmp_teams_reductions_buffer_$_"); 4869 KernelTeamsReductionPtr->setInitializer( 4870 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4871 CGM.VoidPtrTy)); 4872 } 4873 CGOpenMPRuntime::clear(); 4874 } 4875