1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 llvm::Function *Fn = dyn_cast<llvm::Function>(Addr); 1129 if (!Fn) 1130 return; 1131 1132 llvm::Module &M = CGM.getModule(); 1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1134 1135 // Get "nvvm.annotations" metadata node. 1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1137 1138 llvm::Metadata *MDVals[] = { 1139 llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"), 1140 llvm::ConstantAsMetadata::get( 1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1142 // Append metadata to nvvm.annotations. 1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1144 1145 // Add a function attribute for the kernel. 1146 Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel")); 1147 } 1148 1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1150 const OMPExecutableDirective &D, StringRef ParentName, 1151 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1152 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1153 if (!IsOffloadEntry) // Nothing to do. 1154 return; 1155 1156 assert(!ParentName.empty() && "Invalid target region parent name!"); 1157 1158 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1159 if (Mode) 1160 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1161 CodeGen); 1162 else 1163 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1164 CodeGen); 1165 1166 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1167 } 1168 1169 namespace { 1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1171 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1172 enum ModeFlagsTy : unsigned { 1173 /// Bit set to 1 when in SPMD mode. 1174 KMP_IDENT_SPMD_MODE = 0x01, 1175 /// Bit set to 1 when a simplified runtime is used. 1176 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1177 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1178 }; 1179 1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1181 static const ModeFlagsTy UndefinedMode = 1182 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1183 } // anonymous namespace 1184 1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1186 switch (getExecutionMode()) { 1187 case EM_SPMD: 1188 if (requiresFullRuntime()) 1189 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1190 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1191 case EM_NonSPMD: 1192 assert(requiresFullRuntime() && "Expected full runtime."); 1193 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1194 case EM_Unknown: 1195 return UndefinedMode; 1196 } 1197 llvm_unreachable("Unknown flags are requested."); 1198 } 1199 1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1201 : CGOpenMPRuntime(CGM, "_", "$") { 1202 if (!CGM.getLangOpts().OpenMPIsDevice) 1203 llvm_unreachable("OpenMP can only handle device code."); 1204 1205 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1206 if (!CGM.getLangOpts().OMPHostIRFile.empty()) { 1207 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1208 "__omp_rtl_debug_kind"); 1209 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1210 "__omp_rtl_assume_teams_oversubscription"); 1211 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1212 "__omp_rtl_assume_threads_oversubscription"); 1213 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState, 1214 "__omp_rtl_assume_no_thread_state"); 1215 } 1216 } 1217 1218 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1219 ProcBindKind ProcBind, 1220 SourceLocation Loc) { 1221 // Do nothing in case of SPMD mode and L0 parallel. 1222 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1223 return; 1224 1225 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1226 } 1227 1228 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1229 llvm::Value *NumThreads, 1230 SourceLocation Loc) { 1231 // Nothing to do. 1232 } 1233 1234 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1235 const Expr *NumTeams, 1236 const Expr *ThreadLimit, 1237 SourceLocation Loc) {} 1238 1239 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1240 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1241 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1242 // Emit target region as a standalone region. 1243 class NVPTXPrePostActionTy : public PrePostActionTy { 1244 bool &IsInParallelRegion; 1245 bool PrevIsInParallelRegion; 1246 1247 public: 1248 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1249 : IsInParallelRegion(IsInParallelRegion) {} 1250 void Enter(CodeGenFunction &CGF) override { 1251 PrevIsInParallelRegion = IsInParallelRegion; 1252 IsInParallelRegion = true; 1253 } 1254 void Exit(CodeGenFunction &CGF) override { 1255 IsInParallelRegion = PrevIsInParallelRegion; 1256 } 1257 } Action(IsInParallelRegion); 1258 CodeGen.setAction(Action); 1259 bool PrevIsInTTDRegion = IsInTTDRegion; 1260 IsInTTDRegion = false; 1261 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1262 IsInTargetMasterThreadRegion = false; 1263 auto *OutlinedFun = 1264 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1265 D, ThreadIDVar, InnermostKind, CodeGen)); 1266 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1267 IsInTTDRegion = PrevIsInTTDRegion; 1268 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1269 !IsInParallelRegion) { 1270 llvm::Function *WrapperFun = 1271 createParallelDataSharingWrapper(OutlinedFun, D); 1272 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1273 } 1274 1275 return OutlinedFun; 1276 } 1277 1278 /// Get list of lastprivate variables from the teams distribute ... or 1279 /// teams {distribute ...} directives. 1280 static void 1281 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1282 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1283 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1284 "expected teams directive."); 1285 const OMPExecutableDirective *Dir = &D; 1286 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1287 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1288 Ctx, 1289 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1290 /*IgnoreCaptured=*/true))) { 1291 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1292 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1293 Dir = nullptr; 1294 } 1295 } 1296 if (!Dir) 1297 return; 1298 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1299 for (const Expr *E : C->getVarRefs()) 1300 Vars.push_back(getPrivateItem(E)); 1301 } 1302 } 1303 1304 /// Get list of reduction variables from the teams ... directives. 1305 static void 1306 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1307 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1308 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1309 "expected teams directive."); 1310 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1311 for (const Expr *E : C->privates()) 1312 Vars.push_back(getPrivateItem(E)); 1313 } 1314 } 1315 1316 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1317 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1318 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1319 SourceLocation Loc = D.getBeginLoc(); 1320 1321 const RecordDecl *GlobalizedRD = nullptr; 1322 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1323 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1324 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1325 // Globalize team reductions variable unconditionally in all modes. 1326 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1327 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1328 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1329 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1330 if (!LastPrivatesReductions.empty()) { 1331 GlobalizedRD = ::buildRecordForGlobalizedVars( 1332 CGM.getContext(), llvm::None, LastPrivatesReductions, 1333 MappedDeclsFields, WarpSize); 1334 } 1335 } else if (!LastPrivatesReductions.empty()) { 1336 assert(!TeamAndReductions.first && 1337 "Previous team declaration is not expected."); 1338 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1339 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1340 } 1341 1342 // Emit target region as a standalone region. 1343 class NVPTXPrePostActionTy : public PrePostActionTy { 1344 SourceLocation &Loc; 1345 const RecordDecl *GlobalizedRD; 1346 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1347 &MappedDeclsFields; 1348 1349 public: 1350 NVPTXPrePostActionTy( 1351 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1352 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1353 &MappedDeclsFields) 1354 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1355 MappedDeclsFields(MappedDeclsFields) {} 1356 void Enter(CodeGenFunction &CGF) override { 1357 auto &Rt = 1358 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1359 if (GlobalizedRD) { 1360 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1361 I->getSecond().MappedParams = 1362 std::make_unique<CodeGenFunction::OMPMapVars>(); 1363 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1364 for (const auto &Pair : MappedDeclsFields) { 1365 assert(Pair.getFirst()->isCanonicalDecl() && 1366 "Expected canonical declaration"); 1367 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1368 } 1369 } 1370 Rt.emitGenericVarsProlog(CGF, Loc); 1371 } 1372 void Exit(CodeGenFunction &CGF) override { 1373 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1374 .emitGenericVarsEpilog(CGF); 1375 } 1376 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1377 CodeGen.setAction(Action); 1378 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1379 D, ThreadIDVar, InnermostKind, CodeGen); 1380 1381 return OutlinedFun; 1382 } 1383 1384 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1385 SourceLocation Loc, 1386 bool WithSPMDCheck) { 1387 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1388 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1389 return; 1390 1391 CGBuilderTy &Bld = CGF.Builder; 1392 1393 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1394 if (I == FunctionGlobalizedDecls.end()) 1395 return; 1396 1397 for (auto &Rec : I->getSecond().LocalVarData) { 1398 const auto *VD = cast<VarDecl>(Rec.first); 1399 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1400 QualType VarTy = VD->getType(); 1401 1402 // Get the local allocation of a firstprivate variable before sharing 1403 llvm::Value *ParValue; 1404 if (EscapedParam) { 1405 LValue ParLVal = 1406 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1407 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1408 } 1409 1410 // Allocate space for the variable to be globalized 1411 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1412 llvm::CallBase *VoidPtr = 1413 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1414 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1415 AllocArgs, VD->getName()); 1416 // FIXME: We should use the variables actual alignment as an argument. 1417 VoidPtr->addRetAttr(llvm::Attribute::get( 1418 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1419 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1420 1421 // Cast the void pointer and get the address of the globalized variable. 1422 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1423 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1424 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1425 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1426 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1427 Rec.second.GlobalizedVal = VoidPtr; 1428 1429 // Assign the local allocation to the newly globalized location. 1430 if (EscapedParam) { 1431 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1432 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1433 } 1434 if (auto *DI = CGF.getDebugInfo()) 1435 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1436 } 1437 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1438 // Use actual memory size of the VLA object including the padding 1439 // for alignment purposes. 1440 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1441 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1442 Size = Bld.CreateNUWAdd( 1443 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1444 llvm::Value *AlignVal = 1445 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1446 1447 Size = Bld.CreateUDiv(Size, AlignVal); 1448 Size = Bld.CreateNUWMul(Size, AlignVal); 1449 1450 // Allocate space for this VLA object to be globalized. 1451 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1452 llvm::CallBase *VoidPtr = 1453 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1454 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1455 AllocArgs, VD->getName()); 1456 VoidPtr->addRetAttr( 1457 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1458 CGM.getContext().getTargetInfo().getNewAlign())); 1459 1460 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1461 std::pair<llvm::Value *, llvm::Value *>( 1462 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1463 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1464 CGM.getContext().getDeclAlign(VD), 1465 AlignmentSource::Decl); 1466 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1467 Base.getAddress(CGF)); 1468 } 1469 I->getSecond().MappedParams->apply(CGF); 1470 } 1471 1472 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1473 bool WithSPMDCheck) { 1474 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1475 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1476 return; 1477 1478 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1479 if (I != FunctionGlobalizedDecls.end()) { 1480 // Deallocate the memory for each globalized VLA object 1481 for (auto AddrSizePair : 1482 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1483 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1484 CGM.getModule(), OMPRTL___kmpc_free_shared), 1485 {AddrSizePair.first, AddrSizePair.second}); 1486 } 1487 // Deallocate the memory for each globalized value 1488 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1489 const auto *VD = cast<VarDecl>(Rec.first); 1490 I->getSecond().MappedParams->restore(CGF); 1491 1492 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1493 CGF.getTypeSize(VD->getType())}; 1494 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1495 CGM.getModule(), OMPRTL___kmpc_free_shared), 1496 FreeArgs); 1497 } 1498 } 1499 } 1500 1501 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1502 const OMPExecutableDirective &D, 1503 SourceLocation Loc, 1504 llvm::Function *OutlinedFn, 1505 ArrayRef<llvm::Value *> CapturedVars) { 1506 if (!CGF.HaveInsertPoint()) 1507 return; 1508 1509 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1510 /*Name=*/".zero.addr"); 1511 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1512 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1513 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1514 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1515 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1516 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1517 } 1518 1519 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1520 SourceLocation Loc, 1521 llvm::Function *OutlinedFn, 1522 ArrayRef<llvm::Value *> CapturedVars, 1523 const Expr *IfCond, 1524 llvm::Value *NumThreads) { 1525 if (!CGF.HaveInsertPoint()) 1526 return; 1527 1528 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1529 NumThreads](CodeGenFunction &CGF, 1530 PrePostActionTy &Action) { 1531 CGBuilderTy &Bld = CGF.Builder; 1532 llvm::Value *NumThreadsVal = NumThreads; 1533 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1534 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1535 if (WFn) 1536 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1537 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1538 1539 // Create a private scope that will globalize the arguments 1540 // passed from the outside of the target region. 1541 // TODO: Is that needed? 1542 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1543 1544 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1545 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1546 "captured_vars_addrs"); 1547 // There's something to share. 1548 if (!CapturedVars.empty()) { 1549 // Prepare for parallel region. Indicate the outlined function. 1550 ASTContext &Ctx = CGF.getContext(); 1551 unsigned Idx = 0; 1552 for (llvm::Value *V : CapturedVars) { 1553 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1554 llvm::Value *PtrV; 1555 if (V->getType()->isIntegerTy()) 1556 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1557 else 1558 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1559 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1560 Ctx.getPointerType(Ctx.VoidPtrTy)); 1561 ++Idx; 1562 } 1563 } 1564 1565 llvm::Value *IfCondVal = nullptr; 1566 if (IfCond) 1567 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1568 /* isSigned */ false); 1569 else 1570 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1571 1572 if (!NumThreadsVal) 1573 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1574 else 1575 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1576 1577 assert(IfCondVal && "Expected a value"); 1578 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1579 llvm::Value *Args[] = { 1580 RTLoc, 1581 getThreadID(CGF, Loc), 1582 IfCondVal, 1583 NumThreadsVal, 1584 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1585 FnPtr, 1586 ID, 1587 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1588 CGF.VoidPtrPtrTy), 1589 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1590 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1591 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1592 Args); 1593 }; 1594 1595 RegionCodeGenTy RCG(ParallelGen); 1596 RCG(CGF); 1597 } 1598 1599 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1600 // Always emit simple barriers! 1601 if (!CGF.HaveInsertPoint()) 1602 return; 1603 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1604 // This function does not use parameters, so we can emit just default values. 1605 llvm::Value *Args[] = { 1606 llvm::ConstantPointerNull::get( 1607 cast<llvm::PointerType>(getIdentTyPointerTy())), 1608 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1609 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1610 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1611 Args); 1612 } 1613 1614 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1615 SourceLocation Loc, 1616 OpenMPDirectiveKind Kind, bool, 1617 bool) { 1618 // Always emit simple barriers! 1619 if (!CGF.HaveInsertPoint()) 1620 return; 1621 // Build call __kmpc_cancel_barrier(loc, thread_id); 1622 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1623 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1624 getThreadID(CGF, Loc)}; 1625 1626 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1627 CGM.getModule(), OMPRTL___kmpc_barrier), 1628 Args); 1629 } 1630 1631 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1632 CodeGenFunction &CGF, StringRef CriticalName, 1633 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1634 const Expr *Hint) { 1635 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1636 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1637 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1638 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1639 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1640 1641 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1642 1643 // Get the mask of active threads in the warp. 1644 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1645 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1646 // Fetch team-local id of the thread. 1647 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1648 1649 // Get the width of the team. 1650 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1651 1652 // Initialize the counter variable for the loop. 1653 QualType Int32Ty = 1654 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1655 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1656 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1657 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1658 /*isInit=*/true); 1659 1660 // Block checks if loop counter exceeds upper bound. 1661 CGF.EmitBlock(LoopBB); 1662 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1663 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1664 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1665 1666 // Block tests which single thread should execute region, and which threads 1667 // should go straight to synchronisation point. 1668 CGF.EmitBlock(TestBB); 1669 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1670 llvm::Value *CmpThreadToCounter = 1671 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1672 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1673 1674 // Block emits the body of the critical region. 1675 CGF.EmitBlock(BodyBB); 1676 1677 // Output the critical statement. 1678 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1679 Hint); 1680 1681 // After the body surrounded by the critical region, the single executing 1682 // thread will jump to the synchronisation point. 1683 // Block waits for all threads in current team to finish then increments the 1684 // counter variable and returns to the loop. 1685 CGF.EmitBlock(SyncBB); 1686 // Reconverge active threads in the warp. 1687 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1688 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1689 Mask); 1690 1691 llvm::Value *IncCounterVal = 1692 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1693 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1694 CGF.EmitBranch(LoopBB); 1695 1696 // Block that is reached when all threads in the team complete the region. 1697 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1698 } 1699 1700 /// Cast value to the specified type. 1701 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1702 QualType ValTy, QualType CastTy, 1703 SourceLocation Loc) { 1704 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1705 "Cast type must sized."); 1706 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1707 "Val type must sized."); 1708 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1709 if (ValTy == CastTy) 1710 return Val; 1711 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1712 CGF.getContext().getTypeSizeInChars(CastTy)) 1713 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1714 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1715 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1716 CastTy->hasSignedIntegerRepresentation()); 1717 Address CastItem = CGF.CreateMemTemp(CastTy); 1718 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1719 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()), 1720 Val->getType()); 1721 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1722 LValueBaseInfo(AlignmentSource::Type), 1723 TBAAAccessInfo()); 1724 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1725 LValueBaseInfo(AlignmentSource::Type), 1726 TBAAAccessInfo()); 1727 } 1728 1729 /// This function creates calls to one of two shuffle functions to copy 1730 /// variables between lanes in a warp. 1731 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1732 llvm::Value *Elem, 1733 QualType ElemType, 1734 llvm::Value *Offset, 1735 SourceLocation Loc) { 1736 CodeGenModule &CGM = CGF.CGM; 1737 CGBuilderTy &Bld = CGF.Builder; 1738 CGOpenMPRuntimeGPU &RT = 1739 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1740 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1741 1742 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1743 assert(Size.getQuantity() <= 8 && 1744 "Unsupported bitwidth in shuffle instruction."); 1745 1746 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1747 ? OMPRTL___kmpc_shuffle_int32 1748 : OMPRTL___kmpc_shuffle_int64; 1749 1750 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1751 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1752 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1753 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1754 llvm::Value *WarpSize = 1755 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1756 1757 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1758 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1759 {ElemCast, Offset, WarpSize}); 1760 1761 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1762 } 1763 1764 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1765 Address DestAddr, QualType ElemType, 1766 llvm::Value *Offset, SourceLocation Loc) { 1767 CGBuilderTy &Bld = CGF.Builder; 1768 1769 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1770 // Create the loop over the big sized data. 1771 // ptr = (void*)Elem; 1772 // ptrEnd = (void*) Elem + 1; 1773 // Step = 8; 1774 // while (ptr + Step < ptrEnd) 1775 // shuffle((int64_t)*ptr); 1776 // Step = 4; 1777 // while (ptr + Step < ptrEnd) 1778 // shuffle((int32_t)*ptr); 1779 // ... 1780 Address ElemPtr = DestAddr; 1781 Address Ptr = SrcAddr; 1782 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1783 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty); 1784 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1785 if (Size < CharUnits::fromQuantity(IntSize)) 1786 continue; 1787 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1788 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1789 /*Signed=*/1); 1790 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1791 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(), 1792 IntTy); 1793 ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1794 ElemPtr, IntTy->getPointerTo(), IntTy); 1795 if (Size.getQuantity() / IntSize > 1) { 1796 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1797 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1798 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1799 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1800 CGF.EmitBlock(PreCondBB); 1801 llvm::PHINode *PhiSrc = 1802 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1803 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1804 llvm::PHINode *PhiDest = 1805 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1806 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1807 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment()); 1808 ElemPtr = 1809 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment()); 1810 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1811 CGF.Int8Ty, PtrEnd.getPointer(), 1812 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), 1813 CGF.VoidPtrTy)); 1814 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1815 ThenBB, ExitBB); 1816 CGF.EmitBlock(ThenBB); 1817 llvm::Value *Res = createRuntimeShuffleFunction( 1818 CGF, 1819 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1820 LValueBaseInfo(AlignmentSource::Type), 1821 TBAAAccessInfo()), 1822 IntType, Offset, Loc); 1823 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1824 LValueBaseInfo(AlignmentSource::Type), 1825 TBAAAccessInfo()); 1826 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1827 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1828 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1829 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1830 CGF.EmitBranch(PreCondBB); 1831 CGF.EmitBlock(ExitBB); 1832 } else { 1833 llvm::Value *Res = createRuntimeShuffleFunction( 1834 CGF, 1835 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1836 LValueBaseInfo(AlignmentSource::Type), 1837 TBAAAccessInfo()), 1838 IntType, Offset, Loc); 1839 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1840 LValueBaseInfo(AlignmentSource::Type), 1841 TBAAAccessInfo()); 1842 Ptr = Bld.CreateConstGEP(Ptr, 1); 1843 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1844 } 1845 Size = Size % IntSize; 1846 } 1847 } 1848 1849 namespace { 1850 enum CopyAction : unsigned { 1851 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1852 // the warp using shuffle instructions. 1853 RemoteLaneToThread, 1854 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1855 ThreadCopy, 1856 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1857 ThreadToScratchpad, 1858 // ScratchpadToThread: Copy from a scratchpad array in global memory 1859 // containing team-reduced data to a thread's stack. 1860 ScratchpadToThread, 1861 }; 1862 } // namespace 1863 1864 struct CopyOptionsTy { 1865 llvm::Value *RemoteLaneOffset; 1866 llvm::Value *ScratchpadIndex; 1867 llvm::Value *ScratchpadWidth; 1868 }; 1869 1870 /// Emit instructions to copy a Reduce list, which contains partially 1871 /// aggregated values, in the specified direction. 1872 static void emitReductionListCopy( 1873 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1874 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1875 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1876 1877 CodeGenModule &CGM = CGF.CGM; 1878 ASTContext &C = CGM.getContext(); 1879 CGBuilderTy &Bld = CGF.Builder; 1880 1881 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1882 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1883 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1884 1885 // Iterates, element-by-element, through the source Reduce list and 1886 // make a copy. 1887 unsigned Idx = 0; 1888 unsigned Size = Privates.size(); 1889 for (const Expr *Private : Privates) { 1890 Address SrcElementAddr = Address::invalid(); 1891 Address DestElementAddr = Address::invalid(); 1892 Address DestElementPtrAddr = Address::invalid(); 1893 // Should we shuffle in an element from a remote lane? 1894 bool ShuffleInElement = false; 1895 // Set to true to update the pointer in the dest Reduce list to a 1896 // newly created element. 1897 bool UpdateDestListPtr = false; 1898 // Increment the src or dest pointer to the scratchpad, for each 1899 // new element. 1900 bool IncrScratchpadSrc = false; 1901 bool IncrScratchpadDest = false; 1902 QualType PrivatePtrType = C.getPointerType(Private->getType()); 1903 llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType); 1904 1905 switch (Action) { 1906 case RemoteLaneToThread: { 1907 // Step 1.1: Get the address for the src element in the Reduce list. 1908 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1909 SrcElementAddr = 1910 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1911 SrcElementPtrAddr, PrivateLlvmPtrType), 1912 PrivatePtrType->castAs<PointerType>()); 1913 1914 // Step 1.2: Create a temporary to store the element in the destination 1915 // Reduce list. 1916 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1917 DestElementAddr = 1918 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1919 ShuffleInElement = true; 1920 UpdateDestListPtr = true; 1921 break; 1922 } 1923 case ThreadCopy: { 1924 // Step 1.1: Get the address for the src element in the Reduce list. 1925 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1926 SrcElementAddr = 1927 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1928 SrcElementPtrAddr, PrivateLlvmPtrType), 1929 PrivatePtrType->castAs<PointerType>()); 1930 1931 // Step 1.2: Get the address for dest element. The destination 1932 // element has already been created on the thread's stack. 1933 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1934 DestElementAddr = 1935 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1936 DestElementPtrAddr, PrivateLlvmPtrType), 1937 PrivatePtrType->castAs<PointerType>()); 1938 break; 1939 } 1940 case ThreadToScratchpad: { 1941 // Step 1.1: Get the address for the src element in the Reduce list. 1942 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1943 SrcElementAddr = 1944 CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast( 1945 SrcElementPtrAddr, PrivateLlvmPtrType), 1946 PrivatePtrType->castAs<PointerType>()); 1947 1948 // Step 1.2: Get the address for dest element: 1949 // address = base + index * ElementSizeInChars. 1950 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1951 llvm::Value *CurrentOffset = 1952 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1953 llvm::Value *ScratchPadElemAbsolutePtrVal = 1954 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1955 ScratchPadElemAbsolutePtrVal = 1956 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1957 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1958 C.getTypeAlignInChars(Private->getType())); 1959 IncrScratchpadDest = true; 1960 break; 1961 } 1962 case ScratchpadToThread: { 1963 // Step 1.1: Get the address for the src element in the scratchpad. 1964 // address = base + index * ElementSizeInChars. 1965 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1966 llvm::Value *CurrentOffset = 1967 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1968 llvm::Value *ScratchPadElemAbsolutePtrVal = 1969 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1970 ScratchPadElemAbsolutePtrVal = 1971 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1972 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1973 C.getTypeAlignInChars(Private->getType())); 1974 IncrScratchpadSrc = true; 1975 1976 // Step 1.2: Create a temporary to store the element in the destination 1977 // Reduce list. 1978 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1979 DestElementAddr = 1980 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1981 UpdateDestListPtr = true; 1982 break; 1983 } 1984 } 1985 1986 // Regardless of src and dest of copy, we emit the load of src 1987 // element as this is required in all directions 1988 SrcElementAddr = Bld.CreateElementBitCast( 1989 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1990 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1991 SrcElementAddr.getElementType()); 1992 1993 // Now that all active lanes have read the element in the 1994 // Reduce list, shuffle over the value from the remote lane. 1995 if (ShuffleInElement) { 1996 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1997 RemoteLaneOffset, Private->getExprLoc()); 1998 } else { 1999 switch (CGF.getEvaluationKind(Private->getType())) { 2000 case TEK_Scalar: { 2001 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2002 SrcElementAddr, /*Volatile=*/false, Private->getType(), 2003 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 2004 TBAAAccessInfo()); 2005 // Store the source element value to the dest element address. 2006 CGF.EmitStoreOfScalar( 2007 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 2008 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2009 break; 2010 } 2011 case TEK_Complex: { 2012 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2013 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2014 Private->getExprLoc()); 2015 CGF.EmitStoreOfComplex( 2016 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2017 /*isInit=*/false); 2018 break; 2019 } 2020 case TEK_Aggregate: 2021 CGF.EmitAggregateCopy( 2022 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2023 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2024 Private->getType(), AggValueSlot::DoesNotOverlap); 2025 break; 2026 } 2027 } 2028 2029 // Step 3.1: Modify reference in dest Reduce list as needed. 2030 // Modifying the reference in Reduce list to point to the newly 2031 // created element. The element is live in the current function 2032 // scope and that of functions it invokes (i.e., reduce_function). 2033 // RemoteReduceData[i] = (void*)&RemoteElem 2034 if (UpdateDestListPtr) { 2035 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2036 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2037 DestElementPtrAddr, /*Volatile=*/false, 2038 C.VoidPtrTy); 2039 } 2040 2041 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2042 // address of the next element in scratchpad memory, unless we're currently 2043 // processing the last one. Memory alignment is also taken care of here. 2044 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2045 llvm::Value *ScratchpadBasePtr = 2046 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2047 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2048 ScratchpadBasePtr = Bld.CreateNUWAdd( 2049 ScratchpadBasePtr, 2050 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2051 2052 // Take care of global memory alignment for performance 2053 ScratchpadBasePtr = Bld.CreateNUWSub( 2054 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2055 ScratchpadBasePtr = Bld.CreateUDiv( 2056 ScratchpadBasePtr, 2057 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2058 ScratchpadBasePtr = Bld.CreateNUWAdd( 2059 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2060 ScratchpadBasePtr = Bld.CreateNUWMul( 2061 ScratchpadBasePtr, 2062 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2063 2064 if (IncrScratchpadDest) 2065 DestBase = 2066 Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign()); 2067 else /* IncrScratchpadSrc = true */ 2068 SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign()); 2069 } 2070 2071 ++Idx; 2072 } 2073 } 2074 2075 /// This function emits a helper that gathers Reduce lists from the first 2076 /// lane of every active warp to lanes in the first warp. 2077 /// 2078 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2079 /// shared smem[warp_size]; 2080 /// For all data entries D in reduce_data: 2081 /// sync 2082 /// If (I am the first lane in each warp) 2083 /// Copy my local D to smem[warp_id] 2084 /// sync 2085 /// if (I am the first warp) 2086 /// Copy smem[thread_id] to my local D 2087 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2088 ArrayRef<const Expr *> Privates, 2089 QualType ReductionArrayTy, 2090 SourceLocation Loc) { 2091 ASTContext &C = CGM.getContext(); 2092 llvm::Module &M = CGM.getModule(); 2093 2094 // ReduceList: thread local Reduce list. 2095 // At the stage of the computation when this function is called, partially 2096 // aggregated values reside in the first lane of every active warp. 2097 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2098 C.VoidPtrTy, ImplicitParamDecl::Other); 2099 // NumWarps: number of warps active in the parallel region. This could 2100 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2101 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2102 C.getIntTypeForBitwidth(32, /* Signed */ true), 2103 ImplicitParamDecl::Other); 2104 FunctionArgList Args; 2105 Args.push_back(&ReduceListArg); 2106 Args.push_back(&NumWarpsArg); 2107 2108 const CGFunctionInfo &CGFI = 2109 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2110 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2111 llvm::GlobalValue::InternalLinkage, 2112 "_omp_reduction_inter_warp_copy_func", &M); 2113 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2114 Fn->setDoesNotRecurse(); 2115 CodeGenFunction CGF(CGM); 2116 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2117 2118 CGBuilderTy &Bld = CGF.Builder; 2119 2120 // This array is used as a medium to transfer, one reduce element at a time, 2121 // the data from the first lane of every warp to lanes in the first warp 2122 // in order to perform the final step of a reduction in a parallel region 2123 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2124 // for reduced latency, as well as to have a distinct copy for concurrently 2125 // executing target regions. The array is declared with common linkage so 2126 // as to be shared across compilation units. 2127 StringRef TransferMediumName = 2128 "__openmp_nvptx_data_transfer_temporary_storage"; 2129 llvm::GlobalVariable *TransferMedium = 2130 M.getGlobalVariable(TransferMediumName); 2131 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2132 if (!TransferMedium) { 2133 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2134 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2135 TransferMedium = new llvm::GlobalVariable( 2136 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2137 llvm::UndefValue::get(Ty), TransferMediumName, 2138 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2139 SharedAddressSpace); 2140 CGM.addCompilerUsedGlobal(TransferMedium); 2141 } 2142 2143 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2144 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2145 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2146 // nvptx_lane_id = nvptx_id % warpsize 2147 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2148 // nvptx_warp_id = nvptx_id / warpsize 2149 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2150 2151 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2152 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2153 Address LocalReduceList( 2154 Bld.CreatePointerBitCastOrAddrSpaceCast( 2155 CGF.EmitLoadOfScalar( 2156 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2157 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2158 ElemTy->getPointerTo()), 2159 ElemTy, CGF.getPointerAlign()); 2160 2161 unsigned Idx = 0; 2162 for (const Expr *Private : Privates) { 2163 // 2164 // Warp master copies reduce element to transfer medium in __shared__ 2165 // memory. 2166 // 2167 unsigned RealTySize = 2168 C.getTypeSizeInChars(Private->getType()) 2169 .alignTo(C.getTypeAlignInChars(Private->getType())) 2170 .getQuantity(); 2171 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2172 unsigned NumIters = RealTySize / TySize; 2173 if (NumIters == 0) 2174 continue; 2175 QualType CType = C.getIntTypeForBitwidth( 2176 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2177 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2178 CharUnits Align = CharUnits::fromQuantity(TySize); 2179 llvm::Value *Cnt = nullptr; 2180 Address CntAddr = Address::invalid(); 2181 llvm::BasicBlock *PrecondBB = nullptr; 2182 llvm::BasicBlock *ExitBB = nullptr; 2183 if (NumIters > 1) { 2184 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2185 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2186 /*Volatile=*/false, C.IntTy); 2187 PrecondBB = CGF.createBasicBlock("precond"); 2188 ExitBB = CGF.createBasicBlock("exit"); 2189 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2190 // There is no need to emit line number for unconditional branch. 2191 (void)ApplyDebugLocation::CreateEmpty(CGF); 2192 CGF.EmitBlock(PrecondBB); 2193 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2194 llvm::Value *Cmp = 2195 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2196 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2197 CGF.EmitBlock(BodyBB); 2198 } 2199 // kmpc_barrier. 2200 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2201 /*EmitChecks=*/false, 2202 /*ForceSimpleCall=*/true); 2203 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2204 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2205 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2206 2207 // if (lane_id == 0) 2208 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2209 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2210 CGF.EmitBlock(ThenBB); 2211 2212 // Reduce element = LocalReduceList[i] 2213 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2214 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2215 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2216 // elemptr = ((CopyType*)(elemptrptr)) + I 2217 Address ElemPtr = Address::deprecated(ElemPtrPtr, Align); 2218 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2219 if (NumIters > 1) 2220 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 2221 2222 // Get pointer to location in transfer medium. 2223 // MediumPtr = &medium[warp_id] 2224 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2225 TransferMedium->getValueType(), TransferMedium, 2226 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2227 Address MediumPtr = Address::deprecated(MediumPtrVal, Align); 2228 // Casting to actual data type. 2229 // MediumPtr = (CopyType*)MediumPtrAddr; 2230 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2231 2232 // elem = *elemptr 2233 //*MediumPtr = elem 2234 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2235 ElemPtr, /*Volatile=*/false, CType, Loc, 2236 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2237 // Store the source element value to the dest element address. 2238 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2239 LValueBaseInfo(AlignmentSource::Type), 2240 TBAAAccessInfo()); 2241 2242 Bld.CreateBr(MergeBB); 2243 2244 CGF.EmitBlock(ElseBB); 2245 Bld.CreateBr(MergeBB); 2246 2247 CGF.EmitBlock(MergeBB); 2248 2249 // kmpc_barrier. 2250 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2251 /*EmitChecks=*/false, 2252 /*ForceSimpleCall=*/true); 2253 2254 // 2255 // Warp 0 copies reduce element from transfer medium. 2256 // 2257 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2258 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2259 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2260 2261 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2262 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2263 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2264 2265 // Up to 32 threads in warp 0 are active. 2266 llvm::Value *IsActiveThread = 2267 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2268 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2269 2270 CGF.EmitBlock(W0ThenBB); 2271 2272 // SrcMediumPtr = &medium[tid] 2273 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2274 TransferMedium->getValueType(), TransferMedium, 2275 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2276 Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align); 2277 // SrcMediumVal = *SrcMediumPtr; 2278 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2279 2280 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2281 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2282 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2283 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2284 Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align); 2285 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2286 if (NumIters > 1) 2287 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 2288 2289 // *TargetElemPtr = SrcMediumVal; 2290 llvm::Value *SrcMediumValue = 2291 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2292 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2293 CType); 2294 Bld.CreateBr(W0MergeBB); 2295 2296 CGF.EmitBlock(W0ElseBB); 2297 Bld.CreateBr(W0MergeBB); 2298 2299 CGF.EmitBlock(W0MergeBB); 2300 2301 if (NumIters > 1) { 2302 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2303 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2304 CGF.EmitBranch(PrecondBB); 2305 (void)ApplyDebugLocation::CreateEmpty(CGF); 2306 CGF.EmitBlock(ExitBB); 2307 } 2308 RealTySize %= TySize; 2309 } 2310 ++Idx; 2311 } 2312 2313 CGF.FinishFunction(); 2314 return Fn; 2315 } 2316 2317 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2318 /// in the same warp. It uses shuffle instructions to copy over data from 2319 /// a remote lane's stack. The reduction algorithm performed is specified 2320 /// by the fourth parameter. 2321 /// 2322 /// Algorithm Versions. 2323 /// Full Warp Reduce (argument value 0): 2324 /// This algorithm assumes that all 32 lanes are active and gathers 2325 /// data from these 32 lanes, producing a single resultant value. 2326 /// Contiguous Partial Warp Reduce (argument value 1): 2327 /// This algorithm assumes that only a *contiguous* subset of lanes 2328 /// are active. This happens for the last warp in a parallel region 2329 /// when the user specified num_threads is not an integer multiple of 2330 /// 32. This contiguous subset always starts with the zeroth lane. 2331 /// Partial Warp Reduce (argument value 2): 2332 /// This algorithm gathers data from any number of lanes at any position. 2333 /// All reduced values are stored in the lowest possible lane. The set 2334 /// of problems every algorithm addresses is a super set of those 2335 /// addressable by algorithms with a lower version number. Overhead 2336 /// increases as algorithm version increases. 2337 /// 2338 /// Terminology 2339 /// Reduce element: 2340 /// Reduce element refers to the individual data field with primitive 2341 /// data types to be combined and reduced across threads. 2342 /// Reduce list: 2343 /// Reduce list refers to a collection of local, thread-private 2344 /// reduce elements. 2345 /// Remote Reduce list: 2346 /// Remote Reduce list refers to a collection of remote (relative to 2347 /// the current thread) reduce elements. 2348 /// 2349 /// We distinguish between three states of threads that are important to 2350 /// the implementation of this function. 2351 /// Alive threads: 2352 /// Threads in a warp executing the SIMT instruction, as distinguished from 2353 /// threads that are inactive due to divergent control flow. 2354 /// Active threads: 2355 /// The minimal set of threads that has to be alive upon entry to this 2356 /// function. The computation is correct iff active threads are alive. 2357 /// Some threads are alive but they are not active because they do not 2358 /// contribute to the computation in any useful manner. Turning them off 2359 /// may introduce control flow overheads without any tangible benefits. 2360 /// Effective threads: 2361 /// In order to comply with the argument requirements of the shuffle 2362 /// function, we must keep all lanes holding data alive. But at most 2363 /// half of them perform value aggregation; we refer to this half of 2364 /// threads as effective. The other half is simply handing off their 2365 /// data. 2366 /// 2367 /// Procedure 2368 /// Value shuffle: 2369 /// In this step active threads transfer data from higher lane positions 2370 /// in the warp to lower lane positions, creating Remote Reduce list. 2371 /// Value aggregation: 2372 /// In this step, effective threads combine their thread local Reduce list 2373 /// with Remote Reduce list and store the result in the thread local 2374 /// Reduce list. 2375 /// Value copy: 2376 /// In this step, we deal with the assumption made by algorithm 2 2377 /// (i.e. contiguity assumption). When we have an odd number of lanes 2378 /// active, say 2k+1, only k threads will be effective and therefore k 2379 /// new values will be produced. However, the Reduce list owned by the 2380 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2381 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2382 /// that the contiguity assumption still holds. 2383 static llvm::Function *emitShuffleAndReduceFunction( 2384 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2385 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2386 ASTContext &C = CGM.getContext(); 2387 2388 // Thread local Reduce list used to host the values of data to be reduced. 2389 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2390 C.VoidPtrTy, ImplicitParamDecl::Other); 2391 // Current lane id; could be logical. 2392 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2393 ImplicitParamDecl::Other); 2394 // Offset of the remote source lane relative to the current lane. 2395 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2396 C.ShortTy, ImplicitParamDecl::Other); 2397 // Algorithm version. This is expected to be known at compile time. 2398 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2399 C.ShortTy, ImplicitParamDecl::Other); 2400 FunctionArgList Args; 2401 Args.push_back(&ReduceListArg); 2402 Args.push_back(&LaneIDArg); 2403 Args.push_back(&RemoteLaneOffsetArg); 2404 Args.push_back(&AlgoVerArg); 2405 2406 const CGFunctionInfo &CGFI = 2407 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2408 auto *Fn = llvm::Function::Create( 2409 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2410 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2411 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2412 Fn->setDoesNotRecurse(); 2413 2414 CodeGenFunction CGF(CGM); 2415 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2416 2417 CGBuilderTy &Bld = CGF.Builder; 2418 2419 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2420 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2421 Address LocalReduceList( 2422 Bld.CreatePointerBitCastOrAddrSpaceCast( 2423 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2424 C.VoidPtrTy, SourceLocation()), 2425 ElemTy->getPointerTo()), 2426 ElemTy, CGF.getPointerAlign()); 2427 2428 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2429 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2430 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2431 2432 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2433 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2434 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2435 2436 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2437 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2438 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2439 2440 // Create a local thread-private variable to host the Reduce list 2441 // from a remote lane. 2442 Address RemoteReduceList = 2443 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2444 2445 // This loop iterates through the list of reduce elements and copies, 2446 // element by element, from a remote lane in the warp to RemoteReduceList, 2447 // hosted on the thread's stack. 2448 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2449 LocalReduceList, RemoteReduceList, 2450 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2451 /*ScratchpadIndex=*/nullptr, 2452 /*ScratchpadWidth=*/nullptr}); 2453 2454 // The actions to be performed on the Remote Reduce list is dependent 2455 // on the algorithm version. 2456 // 2457 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2458 // LaneId % 2 == 0 && Offset > 0): 2459 // do the reduction value aggregation 2460 // 2461 // The thread local variable Reduce list is mutated in place to host the 2462 // reduced data, which is the aggregated value produced from local and 2463 // remote lanes. 2464 // 2465 // Note that AlgoVer is expected to be a constant integer known at compile 2466 // time. 2467 // When AlgoVer==0, the first conjunction evaluates to true, making 2468 // the entire predicate true during compile time. 2469 // When AlgoVer==1, the second conjunction has only the second part to be 2470 // evaluated during runtime. Other conjunctions evaluates to false 2471 // during compile time. 2472 // When AlgoVer==2, the third conjunction has only the second part to be 2473 // evaluated during runtime. Other conjunctions evaluates to false 2474 // during compile time. 2475 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2476 2477 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2478 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2479 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2480 2481 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2482 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2483 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2484 CondAlgo2 = Bld.CreateAnd( 2485 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2486 2487 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2488 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2489 2490 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2491 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2492 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2493 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2494 2495 CGF.EmitBlock(ThenBB); 2496 // reduce_function(LocalReduceList, RemoteReduceList) 2497 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2498 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2499 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2500 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2501 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2502 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2503 Bld.CreateBr(MergeBB); 2504 2505 CGF.EmitBlock(ElseBB); 2506 Bld.CreateBr(MergeBB); 2507 2508 CGF.EmitBlock(MergeBB); 2509 2510 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2511 // Reduce list. 2512 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2513 llvm::Value *CondCopy = Bld.CreateAnd( 2514 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2515 2516 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2517 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2518 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2519 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2520 2521 CGF.EmitBlock(CpyThenBB); 2522 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2523 RemoteReduceList, LocalReduceList); 2524 Bld.CreateBr(CpyMergeBB); 2525 2526 CGF.EmitBlock(CpyElseBB); 2527 Bld.CreateBr(CpyMergeBB); 2528 2529 CGF.EmitBlock(CpyMergeBB); 2530 2531 CGF.FinishFunction(); 2532 return Fn; 2533 } 2534 2535 /// This function emits a helper that copies all the reduction variables from 2536 /// the team into the provided global buffer for the reduction variables. 2537 /// 2538 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2539 /// For all data entries D in reduce_data: 2540 /// Copy local D to buffer.D[Idx] 2541 static llvm::Value *emitListToGlobalCopyFunction( 2542 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2543 QualType ReductionArrayTy, SourceLocation Loc, 2544 const RecordDecl *TeamReductionRec, 2545 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2546 &VarFieldMap) { 2547 ASTContext &C = CGM.getContext(); 2548 2549 // Buffer: global reduction buffer. 2550 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2551 C.VoidPtrTy, ImplicitParamDecl::Other); 2552 // Idx: index of the buffer. 2553 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2554 ImplicitParamDecl::Other); 2555 // ReduceList: thread local Reduce list. 2556 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2557 C.VoidPtrTy, ImplicitParamDecl::Other); 2558 FunctionArgList Args; 2559 Args.push_back(&BufferArg); 2560 Args.push_back(&IdxArg); 2561 Args.push_back(&ReduceListArg); 2562 2563 const CGFunctionInfo &CGFI = 2564 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2565 auto *Fn = llvm::Function::Create( 2566 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2567 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2568 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2569 Fn->setDoesNotRecurse(); 2570 CodeGenFunction CGF(CGM); 2571 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2572 2573 CGBuilderTy &Bld = CGF.Builder; 2574 2575 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2576 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2577 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2578 Address LocalReduceList( 2579 Bld.CreatePointerBitCastOrAddrSpaceCast( 2580 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2581 C.VoidPtrTy, Loc), 2582 ElemTy->getPointerTo()), 2583 ElemTy, CGF.getPointerAlign()); 2584 QualType StaticTy = C.getRecordType(TeamReductionRec); 2585 llvm::Type *LLVMReductionsBufferTy = 2586 CGM.getTypes().ConvertTypeForMem(StaticTy); 2587 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2588 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2589 LLVMReductionsBufferTy->getPointerTo()); 2590 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2591 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2592 /*Volatile=*/false, C.IntTy, 2593 Loc)}; 2594 unsigned Idx = 0; 2595 for (const Expr *Private : Privates) { 2596 // Reduce element = LocalReduceList[i] 2597 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2598 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2599 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2600 // elemptr = ((CopyType*)(elemptrptr)) + I 2601 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2602 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2603 ElemPtrPtr, ElemTy->getPointerTo()); 2604 Address ElemPtr = 2605 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2606 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2607 // Global = Buffer.VD[Idx]; 2608 const FieldDecl *FD = VarFieldMap.lookup(VD); 2609 LValue GlobLVal = CGF.EmitLValueForField( 2610 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2611 Address GlobAddr = GlobLVal.getAddress(CGF); 2612 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2613 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2614 GlobLVal.setAddress( 2615 Address::deprecated(BufferPtr, GlobAddr.getAlignment())); 2616 switch (CGF.getEvaluationKind(Private->getType())) { 2617 case TEK_Scalar: { 2618 llvm::Value *V = CGF.EmitLoadOfScalar( 2619 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2620 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2621 CGF.EmitStoreOfScalar(V, GlobLVal); 2622 break; 2623 } 2624 case TEK_Complex: { 2625 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2626 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2627 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2628 break; 2629 } 2630 case TEK_Aggregate: 2631 CGF.EmitAggregateCopy(GlobLVal, 2632 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2633 Private->getType(), AggValueSlot::DoesNotOverlap); 2634 break; 2635 } 2636 ++Idx; 2637 } 2638 2639 CGF.FinishFunction(); 2640 return Fn; 2641 } 2642 2643 /// This function emits a helper that reduces all the reduction variables from 2644 /// the team into the provided global buffer for the reduction variables. 2645 /// 2646 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2647 /// void *GlobPtrs[]; 2648 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2649 /// ... 2650 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2651 /// reduce_function(GlobPtrs, reduce_data); 2652 static llvm::Value *emitListToGlobalReduceFunction( 2653 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2654 QualType ReductionArrayTy, SourceLocation Loc, 2655 const RecordDecl *TeamReductionRec, 2656 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2657 &VarFieldMap, 2658 llvm::Function *ReduceFn) { 2659 ASTContext &C = CGM.getContext(); 2660 2661 // Buffer: global reduction buffer. 2662 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2663 C.VoidPtrTy, ImplicitParamDecl::Other); 2664 // Idx: index of the buffer. 2665 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2666 ImplicitParamDecl::Other); 2667 // ReduceList: thread local Reduce list. 2668 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2669 C.VoidPtrTy, ImplicitParamDecl::Other); 2670 FunctionArgList Args; 2671 Args.push_back(&BufferArg); 2672 Args.push_back(&IdxArg); 2673 Args.push_back(&ReduceListArg); 2674 2675 const CGFunctionInfo &CGFI = 2676 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2677 auto *Fn = llvm::Function::Create( 2678 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2679 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2680 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2681 Fn->setDoesNotRecurse(); 2682 CodeGenFunction CGF(CGM); 2683 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2684 2685 CGBuilderTy &Bld = CGF.Builder; 2686 2687 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2688 QualType StaticTy = C.getRecordType(TeamReductionRec); 2689 llvm::Type *LLVMReductionsBufferTy = 2690 CGM.getTypes().ConvertTypeForMem(StaticTy); 2691 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2692 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2693 LLVMReductionsBufferTy->getPointerTo()); 2694 2695 // 1. Build a list of reduction variables. 2696 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2697 Address ReductionList = 2698 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2699 auto IPriv = Privates.begin(); 2700 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2701 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2702 /*Volatile=*/false, C.IntTy, 2703 Loc)}; 2704 unsigned Idx = 0; 2705 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2706 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2707 // Global = Buffer.VD[Idx]; 2708 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2709 const FieldDecl *FD = VarFieldMap.lookup(VD); 2710 LValue GlobLVal = CGF.EmitLValueForField( 2711 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2712 Address GlobAddr = GlobLVal.getAddress(CGF); 2713 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2714 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2715 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2716 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2717 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2718 // Store array size. 2719 ++Idx; 2720 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2721 llvm::Value *Size = CGF.Builder.CreateIntCast( 2722 CGF.getVLASize( 2723 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2724 .NumElts, 2725 CGF.SizeTy, /*isSigned=*/false); 2726 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2727 Elem); 2728 } 2729 } 2730 2731 // Call reduce_function(GlobalReduceList, ReduceList) 2732 llvm::Value *GlobalReduceList = 2733 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2734 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2735 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2736 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2737 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2738 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2739 CGF.FinishFunction(); 2740 return Fn; 2741 } 2742 2743 /// This function emits a helper that copies all the reduction variables from 2744 /// the team into the provided global buffer for the reduction variables. 2745 /// 2746 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2747 /// For all data entries D in reduce_data: 2748 /// Copy buffer.D[Idx] to local D; 2749 static llvm::Value *emitGlobalToListCopyFunction( 2750 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2751 QualType ReductionArrayTy, SourceLocation Loc, 2752 const RecordDecl *TeamReductionRec, 2753 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2754 &VarFieldMap) { 2755 ASTContext &C = CGM.getContext(); 2756 2757 // Buffer: global reduction buffer. 2758 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2759 C.VoidPtrTy, ImplicitParamDecl::Other); 2760 // Idx: index of the buffer. 2761 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2762 ImplicitParamDecl::Other); 2763 // ReduceList: thread local Reduce list. 2764 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2765 C.VoidPtrTy, ImplicitParamDecl::Other); 2766 FunctionArgList Args; 2767 Args.push_back(&BufferArg); 2768 Args.push_back(&IdxArg); 2769 Args.push_back(&ReduceListArg); 2770 2771 const CGFunctionInfo &CGFI = 2772 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2773 auto *Fn = llvm::Function::Create( 2774 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2775 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2776 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2777 Fn->setDoesNotRecurse(); 2778 CodeGenFunction CGF(CGM); 2779 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2780 2781 CGBuilderTy &Bld = CGF.Builder; 2782 2783 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2784 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2785 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2786 Address LocalReduceList( 2787 Bld.CreatePointerBitCastOrAddrSpaceCast( 2788 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2789 C.VoidPtrTy, Loc), 2790 ElemTy->getPointerTo()), 2791 ElemTy, CGF.getPointerAlign()); 2792 QualType StaticTy = C.getRecordType(TeamReductionRec); 2793 llvm::Type *LLVMReductionsBufferTy = 2794 CGM.getTypes().ConvertTypeForMem(StaticTy); 2795 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2796 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2797 LLVMReductionsBufferTy->getPointerTo()); 2798 2799 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2800 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2801 /*Volatile=*/false, C.IntTy, 2802 Loc)}; 2803 unsigned Idx = 0; 2804 for (const Expr *Private : Privates) { 2805 // Reduce element = LocalReduceList[i] 2806 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2807 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2808 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2809 // elemptr = ((CopyType*)(elemptrptr)) + I 2810 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2811 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2812 ElemPtrPtr, ElemTy->getPointerTo()); 2813 Address ElemPtr = 2814 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2815 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2816 // Global = Buffer.VD[Idx]; 2817 const FieldDecl *FD = VarFieldMap.lookup(VD); 2818 LValue GlobLVal = CGF.EmitLValueForField( 2819 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2820 Address GlobAddr = GlobLVal.getAddress(CGF); 2821 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2822 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2823 GlobLVal.setAddress( 2824 Address::deprecated(BufferPtr, GlobAddr.getAlignment())); 2825 switch (CGF.getEvaluationKind(Private->getType())) { 2826 case TEK_Scalar: { 2827 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2828 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2829 LValueBaseInfo(AlignmentSource::Type), 2830 TBAAAccessInfo()); 2831 break; 2832 } 2833 case TEK_Complex: { 2834 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2835 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2836 /*isInit=*/false); 2837 break; 2838 } 2839 case TEK_Aggregate: 2840 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2841 GlobLVal, Private->getType(), 2842 AggValueSlot::DoesNotOverlap); 2843 break; 2844 } 2845 ++Idx; 2846 } 2847 2848 CGF.FinishFunction(); 2849 return Fn; 2850 } 2851 2852 /// This function emits a helper that reduces all the reduction variables from 2853 /// the team into the provided global buffer for the reduction variables. 2854 /// 2855 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2856 /// void *GlobPtrs[]; 2857 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2858 /// ... 2859 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2860 /// reduce_function(reduce_data, GlobPtrs); 2861 static llvm::Value *emitGlobalToListReduceFunction( 2862 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2863 QualType ReductionArrayTy, SourceLocation Loc, 2864 const RecordDecl *TeamReductionRec, 2865 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2866 &VarFieldMap, 2867 llvm::Function *ReduceFn) { 2868 ASTContext &C = CGM.getContext(); 2869 2870 // Buffer: global reduction buffer. 2871 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2872 C.VoidPtrTy, ImplicitParamDecl::Other); 2873 // Idx: index of the buffer. 2874 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2875 ImplicitParamDecl::Other); 2876 // ReduceList: thread local Reduce list. 2877 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2878 C.VoidPtrTy, ImplicitParamDecl::Other); 2879 FunctionArgList Args; 2880 Args.push_back(&BufferArg); 2881 Args.push_back(&IdxArg); 2882 Args.push_back(&ReduceListArg); 2883 2884 const CGFunctionInfo &CGFI = 2885 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2886 auto *Fn = llvm::Function::Create( 2887 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2888 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2889 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2890 Fn->setDoesNotRecurse(); 2891 CodeGenFunction CGF(CGM); 2892 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2893 2894 CGBuilderTy &Bld = CGF.Builder; 2895 2896 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2897 QualType StaticTy = C.getRecordType(TeamReductionRec); 2898 llvm::Type *LLVMReductionsBufferTy = 2899 CGM.getTypes().ConvertTypeForMem(StaticTy); 2900 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2901 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2902 LLVMReductionsBufferTy->getPointerTo()); 2903 2904 // 1. Build a list of reduction variables. 2905 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2906 Address ReductionList = 2907 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2908 auto IPriv = Privates.begin(); 2909 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2910 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2911 /*Volatile=*/false, C.IntTy, 2912 Loc)}; 2913 unsigned Idx = 0; 2914 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2915 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2916 // Global = Buffer.VD[Idx]; 2917 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2918 const FieldDecl *FD = VarFieldMap.lookup(VD); 2919 LValue GlobLVal = CGF.EmitLValueForField( 2920 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2921 Address GlobAddr = GlobLVal.getAddress(CGF); 2922 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2923 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2924 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2925 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2926 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2927 // Store array size. 2928 ++Idx; 2929 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2930 llvm::Value *Size = CGF.Builder.CreateIntCast( 2931 CGF.getVLASize( 2932 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2933 .NumElts, 2934 CGF.SizeTy, /*isSigned=*/false); 2935 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2936 Elem); 2937 } 2938 } 2939 2940 // Call reduce_function(ReduceList, GlobalReduceList) 2941 llvm::Value *GlobalReduceList = 2942 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2943 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2944 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2945 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2946 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2947 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2948 CGF.FinishFunction(); 2949 return Fn; 2950 } 2951 2952 /// 2953 /// Design of OpenMP reductions on the GPU 2954 /// 2955 /// Consider a typical OpenMP program with one or more reduction 2956 /// clauses: 2957 /// 2958 /// float foo; 2959 /// double bar; 2960 /// #pragma omp target teams distribute parallel for \ 2961 /// reduction(+:foo) reduction(*:bar) 2962 /// for (int i = 0; i < N; i++) { 2963 /// foo += A[i]; bar *= B[i]; 2964 /// } 2965 /// 2966 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2967 /// all teams. In our OpenMP implementation on the NVPTX device an 2968 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2969 /// within a team are mapped to CUDA threads within a threadblock. 2970 /// Our goal is to efficiently aggregate values across all OpenMP 2971 /// threads such that: 2972 /// 2973 /// - the compiler and runtime are logically concise, and 2974 /// - the reduction is performed efficiently in a hierarchical 2975 /// manner as follows: within OpenMP threads in the same warp, 2976 /// across warps in a threadblock, and finally across teams on 2977 /// the NVPTX device. 2978 /// 2979 /// Introduction to Decoupling 2980 /// 2981 /// We would like to decouple the compiler and the runtime so that the 2982 /// latter is ignorant of the reduction variables (number, data types) 2983 /// and the reduction operators. This allows a simpler interface 2984 /// and implementation while still attaining good performance. 2985 /// 2986 /// Pseudocode for the aforementioned OpenMP program generated by the 2987 /// compiler is as follows: 2988 /// 2989 /// 1. Create private copies of reduction variables on each OpenMP 2990 /// thread: 'foo_private', 'bar_private' 2991 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2992 /// to it and writes the result in 'foo_private' and 'bar_private' 2993 /// respectively. 2994 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2995 /// and store the result on the team master: 2996 /// 2997 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2998 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2999 /// 3000 /// where: 3001 /// struct ReduceData { 3002 /// double *foo; 3003 /// double *bar; 3004 /// } reduceData 3005 /// reduceData.foo = &foo_private 3006 /// reduceData.bar = &bar_private 3007 /// 3008 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 3009 /// auxiliary functions generated by the compiler that operate on 3010 /// variables of type 'ReduceData'. They aid the runtime perform 3011 /// algorithmic steps in a data agnostic manner. 3012 /// 3013 /// 'shuffleReduceFn' is a pointer to a function that reduces data 3014 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 3015 /// same warp. It takes the following arguments as input: 3016 /// 3017 /// a. variable of type 'ReduceData' on the calling lane, 3018 /// b. its lane_id, 3019 /// c. an offset relative to the current lane_id to generate a 3020 /// remote_lane_id. The remote lane contains the second 3021 /// variable of type 'ReduceData' that is to be reduced. 3022 /// d. an algorithm version parameter determining which reduction 3023 /// algorithm to use. 3024 /// 3025 /// 'shuffleReduceFn' retrieves data from the remote lane using 3026 /// efficient GPU shuffle intrinsics and reduces, using the 3027 /// algorithm specified by the 4th parameter, the two operands 3028 /// element-wise. The result is written to the first operand. 3029 /// 3030 /// Different reduction algorithms are implemented in different 3031 /// runtime functions, all calling 'shuffleReduceFn' to perform 3032 /// the essential reduction step. Therefore, based on the 4th 3033 /// parameter, this function behaves slightly differently to 3034 /// cooperate with the runtime to ensure correctness under 3035 /// different circumstances. 3036 /// 3037 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3038 /// reduced variables across warps. It tunnels, through CUDA 3039 /// shared memory, the thread-private data of type 'ReduceData' 3040 /// from lane 0 of each warp to a lane in the first warp. 3041 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3042 /// The last team writes the global reduced value to memory. 3043 /// 3044 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3045 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3046 /// scratchpadCopyFn, loadAndReduceFn) 3047 /// 3048 /// 'scratchpadCopyFn' is a helper that stores reduced 3049 /// data from the team master to a scratchpad array in 3050 /// global memory. 3051 /// 3052 /// 'loadAndReduceFn' is a helper that loads data from 3053 /// the scratchpad array and reduces it with the input 3054 /// operand. 3055 /// 3056 /// These compiler generated functions hide address 3057 /// calculation and alignment information from the runtime. 3058 /// 5. if ret == 1: 3059 /// The team master of the last team stores the reduced 3060 /// result to the globals in memory. 3061 /// foo += reduceData.foo; bar *= reduceData.bar 3062 /// 3063 /// 3064 /// Warp Reduction Algorithms 3065 /// 3066 /// On the warp level, we have three algorithms implemented in the 3067 /// OpenMP runtime depending on the number of active lanes: 3068 /// 3069 /// Full Warp Reduction 3070 /// 3071 /// The reduce algorithm within a warp where all lanes are active 3072 /// is implemented in the runtime as follows: 3073 /// 3074 /// full_warp_reduce(void *reduce_data, 3075 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3076 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3077 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3078 /// } 3079 /// 3080 /// The algorithm completes in log(2, WARPSIZE) steps. 3081 /// 3082 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3083 /// not used therefore we save instructions by not retrieving lane_id 3084 /// from the corresponding special registers. The 4th parameter, which 3085 /// represents the version of the algorithm being used, is set to 0 to 3086 /// signify full warp reduction. 3087 /// 3088 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3089 /// 3090 /// #reduce_elem refers to an element in the local lane's data structure 3091 /// #remote_elem is retrieved from a remote lane 3092 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3093 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3094 /// 3095 /// Contiguous Partial Warp Reduction 3096 /// 3097 /// This reduce algorithm is used within a warp where only the first 3098 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3099 /// number of OpenMP threads in a parallel region is not a multiple of 3100 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3101 /// 3102 /// void 3103 /// contiguous_partial_reduce(void *reduce_data, 3104 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3105 /// int size, int lane_id) { 3106 /// int curr_size; 3107 /// int offset; 3108 /// curr_size = size; 3109 /// mask = curr_size/2; 3110 /// while (offset>0) { 3111 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3112 /// curr_size = (curr_size+1)/2; 3113 /// offset = curr_size/2; 3114 /// } 3115 /// } 3116 /// 3117 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3118 /// 3119 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3120 /// if (lane_id < offset) 3121 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3122 /// else 3123 /// reduce_elem = remote_elem 3124 /// 3125 /// This algorithm assumes that the data to be reduced are located in a 3126 /// contiguous subset of lanes starting from the first. When there is 3127 /// an odd number of active lanes, the data in the last lane is not 3128 /// aggregated with any other lane's dat but is instead copied over. 3129 /// 3130 /// Dispersed Partial Warp Reduction 3131 /// 3132 /// This algorithm is used within a warp when any discontiguous subset of 3133 /// lanes are active. It is used to implement the reduction operation 3134 /// across lanes in an OpenMP simd region or in a nested parallel region. 3135 /// 3136 /// void 3137 /// dispersed_partial_reduce(void *reduce_data, 3138 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3139 /// int size, remote_id; 3140 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3141 /// do { 3142 /// remote_id = next_active_lane_id_right_after_me(); 3143 /// # the above function returns 0 of no active lane 3144 /// # is present right after the current lane. 3145 /// size = number_of_active_lanes_in_this_warp(); 3146 /// logical_lane_id /= 2; 3147 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3148 /// remote_id-1-threadIdx.x, 2); 3149 /// } while (logical_lane_id % 2 == 0 && size > 1); 3150 /// } 3151 /// 3152 /// There is no assumption made about the initial state of the reduction. 3153 /// Any number of lanes (>=1) could be active at any position. The reduction 3154 /// result is returned in the first active lane. 3155 /// 3156 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3157 /// 3158 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3159 /// if (lane_id % 2 == 0 && offset > 0) 3160 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3161 /// else 3162 /// reduce_elem = remote_elem 3163 /// 3164 /// 3165 /// Intra-Team Reduction 3166 /// 3167 /// This function, as implemented in the runtime call 3168 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3169 /// threads in a team. It first reduces within a warp using the 3170 /// aforementioned algorithms. We then proceed to gather all such 3171 /// reduced values at the first warp. 3172 /// 3173 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3174 /// data from each of the "warp master" (zeroth lane of each warp, where 3175 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3176 /// a mathematical sense) the problem of reduction across warp masters in 3177 /// a block to the problem of warp reduction. 3178 /// 3179 /// 3180 /// Inter-Team Reduction 3181 /// 3182 /// Once a team has reduced its data to a single value, it is stored in 3183 /// a global scratchpad array. Since each team has a distinct slot, this 3184 /// can be done without locking. 3185 /// 3186 /// The last team to write to the scratchpad array proceeds to reduce the 3187 /// scratchpad array. One or more workers in the last team use the helper 3188 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3189 /// the k'th worker reduces every k'th element. 3190 /// 3191 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3192 /// reduce across workers and compute a globally reduced value. 3193 /// 3194 void CGOpenMPRuntimeGPU::emitReduction( 3195 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3196 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3197 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3198 if (!CGF.HaveInsertPoint()) 3199 return; 3200 3201 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3202 #ifndef NDEBUG 3203 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3204 #endif 3205 3206 if (Options.SimpleReduction) { 3207 assert(!TeamsReduction && !ParallelReduction && 3208 "Invalid reduction selection in emitReduction."); 3209 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3210 ReductionOps, Options); 3211 return; 3212 } 3213 3214 assert((TeamsReduction || ParallelReduction) && 3215 "Invalid reduction selection in emitReduction."); 3216 3217 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3218 // RedList, shuffle_reduce_func, interwarp_copy_func); 3219 // or 3220 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3221 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3222 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3223 3224 llvm::Value *Res; 3225 ASTContext &C = CGM.getContext(); 3226 // 1. Build a list of reduction variables. 3227 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3228 auto Size = RHSExprs.size(); 3229 for (const Expr *E : Privates) { 3230 if (E->getType()->isVariablyModifiedType()) 3231 // Reserve place for array size. 3232 ++Size; 3233 } 3234 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3235 QualType ReductionArrayTy = 3236 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3237 /*IndexTypeQuals=*/0); 3238 Address ReductionList = 3239 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3240 auto IPriv = Privates.begin(); 3241 unsigned Idx = 0; 3242 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3243 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3244 CGF.Builder.CreateStore( 3245 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3246 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3247 Elem); 3248 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3249 // Store array size. 3250 ++Idx; 3251 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3252 llvm::Value *Size = CGF.Builder.CreateIntCast( 3253 CGF.getVLASize( 3254 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3255 .NumElts, 3256 CGF.SizeTy, /*isSigned=*/false); 3257 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3258 Elem); 3259 } 3260 } 3261 3262 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3263 ReductionList.getPointer(), CGF.VoidPtrTy); 3264 llvm::Function *ReductionFn = emitReductionFunction( 3265 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3266 LHSExprs, RHSExprs, ReductionOps); 3267 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3268 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3269 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3270 llvm::Value *InterWarpCopyFn = 3271 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3272 3273 if (ParallelReduction) { 3274 llvm::Value *Args[] = {RTLoc, 3275 ThreadId, 3276 CGF.Builder.getInt32(RHSExprs.size()), 3277 ReductionArrayTySize, 3278 RL, 3279 ShuffleAndReduceFn, 3280 InterWarpCopyFn}; 3281 3282 Res = CGF.EmitRuntimeCall( 3283 OMPBuilder.getOrCreateRuntimeFunction( 3284 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3285 Args); 3286 } else { 3287 assert(TeamsReduction && "expected teams reduction."); 3288 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3289 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3290 int Cnt = 0; 3291 for (const Expr *DRE : Privates) { 3292 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3293 ++Cnt; 3294 } 3295 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3296 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3297 C.getLangOpts().OpenMPCUDAReductionBufNum); 3298 TeamsReductions.push_back(TeamReductionRec); 3299 if (!KernelTeamsReductionPtr) { 3300 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3301 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3302 llvm::GlobalValue::InternalLinkage, nullptr, 3303 "_openmp_teams_reductions_buffer_$_$ptr"); 3304 } 3305 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3306 Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3307 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3308 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3309 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3310 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3311 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3312 ReductionFn); 3313 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3314 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3315 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3316 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3317 ReductionFn); 3318 3319 llvm::Value *Args[] = { 3320 RTLoc, 3321 ThreadId, 3322 GlobalBufferPtr, 3323 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3324 RL, 3325 ShuffleAndReduceFn, 3326 InterWarpCopyFn, 3327 GlobalToBufferCpyFn, 3328 GlobalToBufferRedFn, 3329 BufferToGlobalCpyFn, 3330 BufferToGlobalRedFn}; 3331 3332 Res = CGF.EmitRuntimeCall( 3333 OMPBuilder.getOrCreateRuntimeFunction( 3334 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3335 Args); 3336 } 3337 3338 // 5. Build if (res == 1) 3339 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3340 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3341 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3342 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3343 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3344 3345 // 6. Build then branch: where we have reduced values in the master 3346 // thread in each team. 3347 // __kmpc_end_reduce{_nowait}(<gtid>); 3348 // break; 3349 CGF.EmitBlock(ThenBB); 3350 3351 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3352 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3353 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3354 auto IPriv = Privates.begin(); 3355 auto ILHS = LHSExprs.begin(); 3356 auto IRHS = RHSExprs.begin(); 3357 for (const Expr *E : ReductionOps) { 3358 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3359 cast<DeclRefExpr>(*IRHS)); 3360 ++IPriv; 3361 ++ILHS; 3362 ++IRHS; 3363 } 3364 }; 3365 llvm::Value *EndArgs[] = {ThreadId}; 3366 RegionCodeGenTy RCG(CodeGen); 3367 NVPTXActionTy Action( 3368 nullptr, llvm::None, 3369 OMPBuilder.getOrCreateRuntimeFunction( 3370 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3371 EndArgs); 3372 RCG.setAction(Action); 3373 RCG(CGF); 3374 // There is no need to emit line number for unconditional branch. 3375 (void)ApplyDebugLocation::CreateEmpty(CGF); 3376 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3377 } 3378 3379 const VarDecl * 3380 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3381 const VarDecl *NativeParam) const { 3382 if (!NativeParam->getType()->isReferenceType()) 3383 return NativeParam; 3384 QualType ArgType = NativeParam->getType(); 3385 QualifierCollector QC; 3386 const Type *NonQualTy = QC.strip(ArgType); 3387 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3388 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3389 if (Attr->getCaptureKind() == OMPC_map) { 3390 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3391 LangAS::opencl_global); 3392 } 3393 } 3394 ArgType = CGM.getContext().getPointerType(PointeeTy); 3395 QC.addRestrict(); 3396 enum { NVPTX_local_addr = 5 }; 3397 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3398 ArgType = QC.apply(CGM.getContext(), ArgType); 3399 if (isa<ImplicitParamDecl>(NativeParam)) 3400 return ImplicitParamDecl::Create( 3401 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3402 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3403 return ParmVarDecl::Create( 3404 CGM.getContext(), 3405 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3406 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3407 NativeParam->getIdentifier(), ArgType, 3408 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3409 } 3410 3411 Address 3412 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3413 const VarDecl *NativeParam, 3414 const VarDecl *TargetParam) const { 3415 assert(NativeParam != TargetParam && 3416 NativeParam->getType()->isReferenceType() && 3417 "Native arg must not be the same as target arg."); 3418 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3419 QualType NativeParamType = NativeParam->getType(); 3420 QualifierCollector QC; 3421 const Type *NonQualTy = QC.strip(NativeParamType); 3422 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3423 unsigned NativePointeeAddrSpace = 3424 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3425 QualType TargetTy = TargetParam->getType(); 3426 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3427 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3428 // First cast to generic. 3429 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3430 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3431 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0)); 3432 // Cast from generic to native address space. 3433 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3434 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3435 cast<llvm::PointerType>(TargetAddr->getType()), 3436 NativePointeeAddrSpace)); 3437 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3438 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3439 NativeParamType); 3440 return NativeParamAddr; 3441 } 3442 3443 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3444 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3445 ArrayRef<llvm::Value *> Args) const { 3446 SmallVector<llvm::Value *, 4> TargetArgs; 3447 TargetArgs.reserve(Args.size()); 3448 auto *FnType = OutlinedFn.getFunctionType(); 3449 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3450 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3451 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3452 break; 3453 } 3454 llvm::Type *TargetType = FnType->getParamType(I); 3455 llvm::Value *NativeArg = Args[I]; 3456 if (!TargetType->isPointerTy()) { 3457 TargetArgs.emplace_back(NativeArg); 3458 continue; 3459 } 3460 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3461 NativeArg, llvm::PointerType::getWithSamePointeeType( 3462 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0)); 3463 TargetArgs.emplace_back( 3464 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3465 } 3466 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3467 } 3468 3469 /// Emit function which wraps the outline parallel region 3470 /// and controls the arguments which are passed to this function. 3471 /// The wrapper ensures that the outlined function is called 3472 /// with the correct arguments when data is shared. 3473 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3474 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3475 ASTContext &Ctx = CGM.getContext(); 3476 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3477 3478 // Create a function that takes as argument the source thread. 3479 FunctionArgList WrapperArgs; 3480 QualType Int16QTy = 3481 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3482 QualType Int32QTy = 3483 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3484 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3485 /*Id=*/nullptr, Int16QTy, 3486 ImplicitParamDecl::Other); 3487 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3488 /*Id=*/nullptr, Int32QTy, 3489 ImplicitParamDecl::Other); 3490 WrapperArgs.emplace_back(&ParallelLevelArg); 3491 WrapperArgs.emplace_back(&WrapperArg); 3492 3493 const CGFunctionInfo &CGFI = 3494 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3495 3496 auto *Fn = llvm::Function::Create( 3497 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3498 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3499 3500 // Ensure we do not inline the function. This is trivially true for the ones 3501 // passed to __kmpc_fork_call but the ones calles in serialized regions 3502 // could be inlined. This is not a perfect but it is closer to the invariant 3503 // we want, namely, every data environment starts with a new function. 3504 // TODO: We should pass the if condition to the runtime function and do the 3505 // handling there. Much cleaner code. 3506 Fn->addFnAttr(llvm::Attribute::NoInline); 3507 3508 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3509 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3510 Fn->setDoesNotRecurse(); 3511 3512 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3513 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3514 D.getBeginLoc(), D.getBeginLoc()); 3515 3516 const auto *RD = CS.getCapturedRecordDecl(); 3517 auto CurField = RD->field_begin(); 3518 3519 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3520 /*Name=*/".zero.addr"); 3521 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3522 // Get the array of arguments. 3523 SmallVector<llvm::Value *, 8> Args; 3524 3525 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3526 Args.emplace_back(ZeroAddr.getPointer()); 3527 3528 CGBuilderTy &Bld = CGF.Builder; 3529 auto CI = CS.capture_begin(); 3530 3531 // Use global memory for data sharing. 3532 // Handle passing of global args to workers. 3533 Address GlobalArgs = 3534 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3535 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3536 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3537 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3538 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3539 DataSharingArgs); 3540 3541 // Retrieve the shared variables from the list of references returned 3542 // by the runtime. Pass the variables to the outlined function. 3543 Address SharedArgListAddress = Address::invalid(); 3544 if (CS.capture_size() > 0 || 3545 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3546 SharedArgListAddress = CGF.EmitLoadOfPointer( 3547 GlobalArgs, CGF.getContext() 3548 .getPointerType(CGF.getContext().getPointerType( 3549 CGF.getContext().VoidPtrTy)) 3550 .castAs<PointerType>()); 3551 } 3552 unsigned Idx = 0; 3553 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3554 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3555 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3556 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy); 3557 llvm::Value *LB = CGF.EmitLoadOfScalar( 3558 TypedAddress, 3559 /*Volatile=*/false, 3560 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3561 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3562 Args.emplace_back(LB); 3563 ++Idx; 3564 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3565 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3566 Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy); 3567 llvm::Value *UB = CGF.EmitLoadOfScalar( 3568 TypedAddress, 3569 /*Volatile=*/false, 3570 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3571 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3572 Args.emplace_back(UB); 3573 ++Idx; 3574 } 3575 if (CS.capture_size() > 0) { 3576 ASTContext &CGFContext = CGF.getContext(); 3577 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3578 QualType ElemTy = CurField->getType(); 3579 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3580 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3581 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)), 3582 CGF.ConvertTypeForMem(ElemTy)); 3583 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3584 /*Volatile=*/false, 3585 CGFContext.getPointerType(ElemTy), 3586 CI->getLocation()); 3587 if (CI->capturesVariableByCopy() && 3588 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3589 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3590 CI->getLocation()); 3591 } 3592 Args.emplace_back(Arg); 3593 } 3594 } 3595 3596 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3597 CGF.FinishFunction(); 3598 return Fn; 3599 } 3600 3601 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3602 const Decl *D) { 3603 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3604 return; 3605 3606 assert(D && "Expected function or captured|block decl."); 3607 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3608 "Function is registered already."); 3609 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3610 "Team is set but not processed."); 3611 const Stmt *Body = nullptr; 3612 bool NeedToDelayGlobalization = false; 3613 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3614 Body = FD->getBody(); 3615 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3616 Body = BD->getBody(); 3617 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3618 Body = CD->getBody(); 3619 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3620 if (NeedToDelayGlobalization && 3621 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3622 return; 3623 } 3624 if (!Body) 3625 return; 3626 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3627 VarChecker.Visit(Body); 3628 const RecordDecl *GlobalizedVarsRecord = 3629 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3630 TeamAndReductions.first = nullptr; 3631 TeamAndReductions.second.clear(); 3632 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3633 VarChecker.getEscapedVariableLengthDecls(); 3634 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3635 return; 3636 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3637 I->getSecond().MappedParams = 3638 std::make_unique<CodeGenFunction::OMPMapVars>(); 3639 I->getSecond().EscapedParameters.insert( 3640 VarChecker.getEscapedParameters().begin(), 3641 VarChecker.getEscapedParameters().end()); 3642 I->getSecond().EscapedVariableLengthDecls.append( 3643 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3644 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3645 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3646 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3647 Data.insert(std::make_pair(VD, MappedVarData())); 3648 } 3649 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3650 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3651 VarChecker.Visit(Body); 3652 I->getSecond().SecondaryLocalVarData.emplace(); 3653 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3654 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3655 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3656 Data.insert(std::make_pair(VD, MappedVarData())); 3657 } 3658 } 3659 if (!NeedToDelayGlobalization) { 3660 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3661 struct GlobalizationScope final : EHScopeStack::Cleanup { 3662 GlobalizationScope() = default; 3663 3664 void Emit(CodeGenFunction &CGF, Flags flags) override { 3665 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3666 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3667 } 3668 }; 3669 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3670 } 3671 } 3672 3673 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3674 const VarDecl *VD) { 3675 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3676 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3677 auto AS = LangAS::Default; 3678 switch (A->getAllocatorType()) { 3679 // Use the default allocator here as by default local vars are 3680 // threadlocal. 3681 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3682 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3683 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3684 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3685 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3686 // Follow the user decision - use default allocation. 3687 return Address::invalid(); 3688 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3689 // TODO: implement aupport for user-defined allocators. 3690 return Address::invalid(); 3691 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3692 AS = LangAS::cuda_constant; 3693 break; 3694 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3695 AS = LangAS::cuda_shared; 3696 break; 3697 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3698 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3699 break; 3700 } 3701 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3702 auto *GV = new llvm::GlobalVariable( 3703 CGM.getModule(), VarTy, /*isConstant=*/false, 3704 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3705 VD->getName(), 3706 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3707 CGM.getContext().getTargetAddressSpace(AS)); 3708 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3709 GV->setAlignment(Align.getAsAlign()); 3710 return Address( 3711 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3712 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3713 VD->getType().getAddressSpace()))), 3714 VarTy, Align); 3715 } 3716 3717 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3718 return Address::invalid(); 3719 3720 VD = VD->getCanonicalDecl(); 3721 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3722 if (I == FunctionGlobalizedDecls.end()) 3723 return Address::invalid(); 3724 auto VDI = I->getSecond().LocalVarData.find(VD); 3725 if (VDI != I->getSecond().LocalVarData.end()) 3726 return VDI->second.PrivateAddr; 3727 if (VD->hasAttrs()) { 3728 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3729 E(VD->attr_end()); 3730 IT != E; ++IT) { 3731 auto VDI = I->getSecond().LocalVarData.find( 3732 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3733 ->getCanonicalDecl()); 3734 if (VDI != I->getSecond().LocalVarData.end()) 3735 return VDI->second.PrivateAddr; 3736 } 3737 } 3738 3739 return Address::invalid(); 3740 } 3741 3742 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3743 FunctionGlobalizedDecls.erase(CGF.CurFn); 3744 CGOpenMPRuntime::functionFinished(CGF); 3745 } 3746 3747 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3748 CodeGenFunction &CGF, const OMPLoopDirective &S, 3749 OpenMPDistScheduleClauseKind &ScheduleKind, 3750 llvm::Value *&Chunk) const { 3751 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3752 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3753 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3754 Chunk = CGF.EmitScalarConversion( 3755 RT.getGPUNumThreads(CGF), 3756 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3757 S.getIterationVariable()->getType(), S.getBeginLoc()); 3758 return; 3759 } 3760 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3761 CGF, S, ScheduleKind, Chunk); 3762 } 3763 3764 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3765 CodeGenFunction &CGF, const OMPLoopDirective &S, 3766 OpenMPScheduleClauseKind &ScheduleKind, 3767 const Expr *&ChunkExpr) const { 3768 ScheduleKind = OMPC_SCHEDULE_static; 3769 // Chunk size is 1 in this case. 3770 llvm::APInt ChunkSize(32, 1); 3771 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3772 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3773 SourceLocation()); 3774 } 3775 3776 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3777 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3778 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3779 " Expected target-based directive."); 3780 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3781 for (const CapturedStmt::Capture &C : CS->captures()) { 3782 // Capture variables captured by reference in lambdas for target-based 3783 // directives. 3784 if (!C.capturesVariable()) 3785 continue; 3786 const VarDecl *VD = C.getCapturedVar(); 3787 const auto *RD = VD->getType() 3788 .getCanonicalType() 3789 .getNonReferenceType() 3790 ->getAsCXXRecordDecl(); 3791 if (!RD || !RD->isLambda()) 3792 continue; 3793 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3794 LValue VDLVal; 3795 if (VD->getType().getCanonicalType()->isReferenceType()) 3796 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3797 else 3798 VDLVal = CGF.MakeAddrLValue( 3799 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3800 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3801 FieldDecl *ThisCapture = nullptr; 3802 RD->getCaptureFields(Captures, ThisCapture); 3803 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3804 LValue ThisLVal = 3805 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3806 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3807 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3808 } 3809 for (const LambdaCapture &LC : RD->captures()) { 3810 if (LC.getCaptureKind() != LCK_ByRef) 3811 continue; 3812 const VarDecl *VD = LC.getCapturedVar(); 3813 if (!CS->capturesVariable(VD)) 3814 continue; 3815 auto It = Captures.find(VD); 3816 assert(It != Captures.end() && "Found lambda capture without field."); 3817 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3818 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3819 if (VD->getType().getCanonicalType()->isReferenceType()) 3820 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3821 VD->getType().getCanonicalType()) 3822 .getAddress(CGF); 3823 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3824 } 3825 } 3826 } 3827 3828 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3829 LangAS &AS) { 3830 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3831 return false; 3832 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3833 switch(A->getAllocatorType()) { 3834 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3835 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3836 // Not supported, fallback to the default mem space. 3837 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3838 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3839 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3840 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3841 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3842 AS = LangAS::Default; 3843 return true; 3844 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3845 AS = LangAS::cuda_constant; 3846 return true; 3847 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3848 AS = LangAS::cuda_shared; 3849 return true; 3850 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3851 llvm_unreachable("Expected predefined allocator for the variables with the " 3852 "static storage."); 3853 } 3854 return false; 3855 } 3856 3857 // Get current CudaArch and ignore any unknown values 3858 static CudaArch getCudaArch(CodeGenModule &CGM) { 3859 if (!CGM.getTarget().hasFeature("ptx")) 3860 return CudaArch::UNKNOWN; 3861 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3862 if (Feature.getValue()) { 3863 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3864 if (Arch != CudaArch::UNKNOWN) 3865 return Arch; 3866 } 3867 } 3868 return CudaArch::UNKNOWN; 3869 } 3870 3871 /// Check to see if target architecture supports unified addressing which is 3872 /// a restriction for OpenMP requires clause "unified_shared_memory". 3873 void CGOpenMPRuntimeGPU::processRequiresDirective( 3874 const OMPRequiresDecl *D) { 3875 for (const OMPClause *Clause : D->clauselists()) { 3876 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3877 CudaArch Arch = getCudaArch(CGM); 3878 switch (Arch) { 3879 case CudaArch::SM_20: 3880 case CudaArch::SM_21: 3881 case CudaArch::SM_30: 3882 case CudaArch::SM_32: 3883 case CudaArch::SM_35: 3884 case CudaArch::SM_37: 3885 case CudaArch::SM_50: 3886 case CudaArch::SM_52: 3887 case CudaArch::SM_53: { 3888 SmallString<256> Buffer; 3889 llvm::raw_svector_ostream Out(Buffer); 3890 Out << "Target architecture " << CudaArchToString(Arch) 3891 << " does not support unified addressing"; 3892 CGM.Error(Clause->getBeginLoc(), Out.str()); 3893 return; 3894 } 3895 case CudaArch::SM_60: 3896 case CudaArch::SM_61: 3897 case CudaArch::SM_62: 3898 case CudaArch::SM_70: 3899 case CudaArch::SM_72: 3900 case CudaArch::SM_75: 3901 case CudaArch::SM_80: 3902 case CudaArch::SM_86: 3903 case CudaArch::GFX600: 3904 case CudaArch::GFX601: 3905 case CudaArch::GFX602: 3906 case CudaArch::GFX700: 3907 case CudaArch::GFX701: 3908 case CudaArch::GFX702: 3909 case CudaArch::GFX703: 3910 case CudaArch::GFX704: 3911 case CudaArch::GFX705: 3912 case CudaArch::GFX801: 3913 case CudaArch::GFX802: 3914 case CudaArch::GFX803: 3915 case CudaArch::GFX805: 3916 case CudaArch::GFX810: 3917 case CudaArch::GFX900: 3918 case CudaArch::GFX902: 3919 case CudaArch::GFX904: 3920 case CudaArch::GFX906: 3921 case CudaArch::GFX908: 3922 case CudaArch::GFX909: 3923 case CudaArch::GFX90a: 3924 case CudaArch::GFX90c: 3925 case CudaArch::GFX940: 3926 case CudaArch::GFX1010: 3927 case CudaArch::GFX1011: 3928 case CudaArch::GFX1012: 3929 case CudaArch::GFX1013: 3930 case CudaArch::GFX1030: 3931 case CudaArch::GFX1031: 3932 case CudaArch::GFX1032: 3933 case CudaArch::GFX1033: 3934 case CudaArch::GFX1034: 3935 case CudaArch::GFX1035: 3936 case CudaArch::GFX1036: 3937 case CudaArch::Generic: 3938 case CudaArch::UNUSED: 3939 case CudaArch::UNKNOWN: 3940 break; 3941 case CudaArch::LAST: 3942 llvm_unreachable("Unexpected Cuda arch."); 3943 } 3944 } 3945 } 3946 CGOpenMPRuntime::processRequiresDirective(D); 3947 } 3948 3949 void CGOpenMPRuntimeGPU::clear() { 3950 3951 if (!TeamsReductions.empty()) { 3952 ASTContext &C = CGM.getContext(); 3953 RecordDecl *StaticRD = C.buildImplicitRecord( 3954 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3955 StaticRD->startDefinition(); 3956 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3957 QualType RecTy = C.getRecordType(TeamReductionRec); 3958 auto *Field = FieldDecl::Create( 3959 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3960 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3961 /*BW=*/nullptr, /*Mutable=*/false, 3962 /*InitStyle=*/ICIS_NoInit); 3963 Field->setAccess(AS_public); 3964 StaticRD->addDecl(Field); 3965 } 3966 StaticRD->completeDefinition(); 3967 QualType StaticTy = C.getRecordType(StaticRD); 3968 llvm::Type *LLVMReductionsBufferTy = 3969 CGM.getTypes().ConvertTypeForMem(StaticTy); 3970 // FIXME: nvlink does not handle weak linkage correctly (object with the 3971 // different size are reported as erroneous). 3972 // Restore CommonLinkage as soon as nvlink is fixed. 3973 auto *GV = new llvm::GlobalVariable( 3974 CGM.getModule(), LLVMReductionsBufferTy, 3975 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3976 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3977 "_openmp_teams_reductions_buffer_$_"); 3978 KernelTeamsReductionPtr->setInitializer( 3979 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3980 CGM.VoidPtrTy)); 3981 } 3982 CGOpenMPRuntime::clear(); 3983 } 3984 3985 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3986 CGBuilderTy &Bld = CGF.Builder; 3987 llvm::Module *M = &CGF.CGM.getModule(); 3988 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3989 llvm::Function *F = M->getFunction(LocSize); 3990 if (!F) { 3991 F = llvm::Function::Create( 3992 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3993 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3994 } 3995 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3996 } 3997 3998 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3999 ArrayRef<llvm::Value *> Args{}; 4000 return CGF.EmitRuntimeCall( 4001 OMPBuilder.getOrCreateRuntimeFunction( 4002 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 4003 Args); 4004 } 4005 4006 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 4007 ArrayRef<llvm::Value *> Args{}; 4008 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 4009 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 4010 Args); 4011 } 4012