1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129   if (!Fn)
1130     return;
1131 
1132   llvm::Module &M = CGM.getModule();
1133   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134 
1135   // Get "nvvm.annotations" metadata node.
1136   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137 
1138   llvm::Metadata *MDVals[] = {
1139       llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140       llvm::ConstantAsMetadata::get(
1141           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142   // Append metadata to nvvm.annotations.
1143   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144 
1145   // Add a function attribute for the kernel.
1146   Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147 }
1148 
1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150     const OMPExecutableDirective &D, StringRef ParentName,
1151     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153   if (!IsOffloadEntry) // Nothing to do.
1154     return;
1155 
1156   assert(!ParentName.empty() && "Invalid target region parent name!");
1157 
1158   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159   if (Mode)
1160     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161                    CodeGen);
1162   else
1163     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164                       CodeGen);
1165 
1166   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167 }
1168 
1169 namespace {
1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1171 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1172 enum ModeFlagsTy : unsigned {
1173   /// Bit set to 1 when in SPMD mode.
1174   KMP_IDENT_SPMD_MODE = 0x01,
1175   /// Bit set to 1 when a simplified runtime is used.
1176   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1178 };
1179 
1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181 static const ModeFlagsTy UndefinedMode =
1182     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183 } // anonymous namespace
1184 
1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186   switch (getExecutionMode()) {
1187   case EM_SPMD:
1188     if (requiresFullRuntime())
1189       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191   case EM_NonSPMD:
1192     assert(requiresFullRuntime() && "Expected full runtime.");
1193     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194   case EM_Unknown:
1195     return UndefinedMode;
1196   }
1197   llvm_unreachable("Unknown flags are requested.");
1198 }
1199 
1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201     : CGOpenMPRuntime(CGM, "_", "$") {
1202   if (!CGM.getLangOpts().OpenMPIsDevice)
1203     llvm_unreachable("OpenMP can only handle device code.");
1204 
1205   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206   if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
1207     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1208                                 "__omp_rtl_debug_kind");
1209     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1210                                 "__omp_rtl_assume_teams_oversubscription");
1211     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1212                                 "__omp_rtl_assume_threads_oversubscription");
1213     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
1214                                 "__omp_rtl_assume_no_thread_state");
1215   }
1216 }
1217 
1218 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1219                                               ProcBindKind ProcBind,
1220                                               SourceLocation Loc) {
1221   // Do nothing in case of SPMD mode and L0 parallel.
1222   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1223     return;
1224 
1225   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1226 }
1227 
1228 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1229                                                 llvm::Value *NumThreads,
1230                                                 SourceLocation Loc) {
1231   // Nothing to do.
1232 }
1233 
1234 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1235                                               const Expr *NumTeams,
1236                                               const Expr *ThreadLimit,
1237                                               SourceLocation Loc) {}
1238 
1239 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1240     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1241     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1242   // Emit target region as a standalone region.
1243   class NVPTXPrePostActionTy : public PrePostActionTy {
1244     bool &IsInParallelRegion;
1245     bool PrevIsInParallelRegion;
1246 
1247   public:
1248     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1249         : IsInParallelRegion(IsInParallelRegion) {}
1250     void Enter(CodeGenFunction &CGF) override {
1251       PrevIsInParallelRegion = IsInParallelRegion;
1252       IsInParallelRegion = true;
1253     }
1254     void Exit(CodeGenFunction &CGF) override {
1255       IsInParallelRegion = PrevIsInParallelRegion;
1256     }
1257   } Action(IsInParallelRegion);
1258   CodeGen.setAction(Action);
1259   bool PrevIsInTTDRegion = IsInTTDRegion;
1260   IsInTTDRegion = false;
1261   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1262   IsInTargetMasterThreadRegion = false;
1263   auto *OutlinedFun =
1264       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1265           D, ThreadIDVar, InnermostKind, CodeGen));
1266   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1267   IsInTTDRegion = PrevIsInTTDRegion;
1268   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1269       !IsInParallelRegion) {
1270     llvm::Function *WrapperFun =
1271         createParallelDataSharingWrapper(OutlinedFun, D);
1272     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1273   }
1274 
1275   return OutlinedFun;
1276 }
1277 
1278 /// Get list of lastprivate variables from the teams distribute ... or
1279 /// teams {distribute ...} directives.
1280 static void
1281 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1282                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1283   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1284          "expected teams directive.");
1285   const OMPExecutableDirective *Dir = &D;
1286   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1287     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1288             Ctx,
1289             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1290                 /*IgnoreCaptured=*/true))) {
1291       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1292       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1293         Dir = nullptr;
1294     }
1295   }
1296   if (!Dir)
1297     return;
1298   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1299     for (const Expr *E : C->getVarRefs())
1300       Vars.push_back(getPrivateItem(E));
1301   }
1302 }
1303 
1304 /// Get list of reduction variables from the teams ... directives.
1305 static void
1306 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1307                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1308   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1309          "expected teams directive.");
1310   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1311     for (const Expr *E : C->privates())
1312       Vars.push_back(getPrivateItem(E));
1313   }
1314 }
1315 
1316 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1317     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1318     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1319   SourceLocation Loc = D.getBeginLoc();
1320 
1321   const RecordDecl *GlobalizedRD = nullptr;
1322   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1323   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1324   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1325   // Globalize team reductions variable unconditionally in all modes.
1326   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1327     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1328   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1329     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1330     if (!LastPrivatesReductions.empty()) {
1331       GlobalizedRD = ::buildRecordForGlobalizedVars(
1332           CGM.getContext(), llvm::None, LastPrivatesReductions,
1333           MappedDeclsFields, WarpSize);
1334     }
1335   } else if (!LastPrivatesReductions.empty()) {
1336     assert(!TeamAndReductions.first &&
1337            "Previous team declaration is not expected.");
1338     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1339     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1340   }
1341 
1342   // Emit target region as a standalone region.
1343   class NVPTXPrePostActionTy : public PrePostActionTy {
1344     SourceLocation &Loc;
1345     const RecordDecl *GlobalizedRD;
1346     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1347         &MappedDeclsFields;
1348 
1349   public:
1350     NVPTXPrePostActionTy(
1351         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1352         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1353             &MappedDeclsFields)
1354         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1355           MappedDeclsFields(MappedDeclsFields) {}
1356     void Enter(CodeGenFunction &CGF) override {
1357       auto &Rt =
1358           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1359       if (GlobalizedRD) {
1360         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1361         I->getSecond().MappedParams =
1362             std::make_unique<CodeGenFunction::OMPMapVars>();
1363         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1364         for (const auto &Pair : MappedDeclsFields) {
1365           assert(Pair.getFirst()->isCanonicalDecl() &&
1366                  "Expected canonical declaration");
1367           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1368         }
1369       }
1370       Rt.emitGenericVarsProlog(CGF, Loc);
1371     }
1372     void Exit(CodeGenFunction &CGF) override {
1373       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1374           .emitGenericVarsEpilog(CGF);
1375     }
1376   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1377   CodeGen.setAction(Action);
1378   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1379       D, ThreadIDVar, InnermostKind, CodeGen);
1380 
1381   return OutlinedFun;
1382 }
1383 
1384 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1385                                                  SourceLocation Loc,
1386                                                  bool WithSPMDCheck) {
1387   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1388       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1389     return;
1390 
1391   CGBuilderTy &Bld = CGF.Builder;
1392 
1393   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1394   if (I == FunctionGlobalizedDecls.end())
1395     return;
1396 
1397   for (auto &Rec : I->getSecond().LocalVarData) {
1398     const auto *VD = cast<VarDecl>(Rec.first);
1399     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1400     QualType VarTy = VD->getType();
1401 
1402     // Get the local allocation of a firstprivate variable before sharing
1403     llvm::Value *ParValue;
1404     if (EscapedParam) {
1405       LValue ParLVal =
1406           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1407       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1408     }
1409 
1410     // Allocate space for the variable to be globalized
1411     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1412     llvm::CallBase *VoidPtr =
1413         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1414                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1415                             AllocArgs, VD->getName());
1416     // FIXME: We should use the variables actual alignment as an argument.
1417     VoidPtr->addRetAttr(llvm::Attribute::get(
1418         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1419         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1420 
1421     // Cast the void pointer and get the address of the globalized variable.
1422     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1423     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1424         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1425     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1426     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1427     Rec.second.GlobalizedVal = VoidPtr;
1428 
1429     // Assign the local allocation to the newly globalized location.
1430     if (EscapedParam) {
1431       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1432       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1433     }
1434     if (auto *DI = CGF.getDebugInfo())
1435       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1436   }
1437   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1438     // Use actual memory size of the VLA object including the padding
1439     // for alignment purposes.
1440     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1441     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1442     Size = Bld.CreateNUWAdd(
1443         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1444     llvm::Value *AlignVal =
1445         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1446 
1447     Size = Bld.CreateUDiv(Size, AlignVal);
1448     Size = Bld.CreateNUWMul(Size, AlignVal);
1449 
1450     // Allocate space for this VLA object to be globalized.
1451     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1452     llvm::CallBase *VoidPtr =
1453         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1454                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1455                             AllocArgs, VD->getName());
1456     VoidPtr->addRetAttr(
1457         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1458                              CGM.getContext().getTargetInfo().getNewAlign()));
1459 
1460     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1461         std::pair<llvm::Value *, llvm::Value *>(
1462             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1463     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1464                                      CGM.getContext().getDeclAlign(VD),
1465                                      AlignmentSource::Decl);
1466     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1467                                             Base.getAddress(CGF));
1468   }
1469   I->getSecond().MappedParams->apply(CGF);
1470 }
1471 
1472 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1473                                                  bool WithSPMDCheck) {
1474   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1475       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1476     return;
1477 
1478   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1479   if (I != FunctionGlobalizedDecls.end()) {
1480     // Deallocate the memory for each globalized VLA object
1481     for (auto AddrSizePair :
1482          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1483       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1484                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1485                           {AddrSizePair.first, AddrSizePair.second});
1486     }
1487     // Deallocate the memory for each globalized value
1488     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1489       const auto *VD = cast<VarDecl>(Rec.first);
1490       I->getSecond().MappedParams->restore(CGF);
1491 
1492       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1493                                  CGF.getTypeSize(VD->getType())};
1494       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1495                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1496                           FreeArgs);
1497     }
1498   }
1499 }
1500 
1501 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1502                                          const OMPExecutableDirective &D,
1503                                          SourceLocation Loc,
1504                                          llvm::Function *OutlinedFn,
1505                                          ArrayRef<llvm::Value *> CapturedVars) {
1506   if (!CGF.HaveInsertPoint())
1507     return;
1508 
1509   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1510                                                       /*Name=*/".zero.addr");
1511   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1512   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1513   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1514   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1515   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1516   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1517 }
1518 
1519 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1520                                           SourceLocation Loc,
1521                                           llvm::Function *OutlinedFn,
1522                                           ArrayRef<llvm::Value *> CapturedVars,
1523                                           const Expr *IfCond,
1524                                           llvm::Value *NumThreads) {
1525   if (!CGF.HaveInsertPoint())
1526     return;
1527 
1528   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1529                         NumThreads](CodeGenFunction &CGF,
1530                                     PrePostActionTy &Action) {
1531     CGBuilderTy &Bld = CGF.Builder;
1532     llvm::Value *NumThreadsVal = NumThreads;
1533     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1534     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1535     if (WFn)
1536       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1537     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1538 
1539     // Create a private scope that will globalize the arguments
1540     // passed from the outside of the target region.
1541     // TODO: Is that needed?
1542     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1543 
1544     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1545         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1546         "captured_vars_addrs");
1547     // There's something to share.
1548     if (!CapturedVars.empty()) {
1549       // Prepare for parallel region. Indicate the outlined function.
1550       ASTContext &Ctx = CGF.getContext();
1551       unsigned Idx = 0;
1552       for (llvm::Value *V : CapturedVars) {
1553         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1554         llvm::Value *PtrV;
1555         if (V->getType()->isIntegerTy())
1556           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1557         else
1558           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1559         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1560                               Ctx.getPointerType(Ctx.VoidPtrTy));
1561         ++Idx;
1562       }
1563     }
1564 
1565     llvm::Value *IfCondVal = nullptr;
1566     if (IfCond)
1567       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1568                                     /* isSigned */ false);
1569     else
1570       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1571 
1572     if (!NumThreadsVal)
1573       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1574     else
1575       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1576 
1577       assert(IfCondVal && "Expected a value");
1578     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1579     llvm::Value *Args[] = {
1580         RTLoc,
1581         getThreadID(CGF, Loc),
1582         IfCondVal,
1583         NumThreadsVal,
1584         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1585         FnPtr,
1586         ID,
1587         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1588                                    CGF.VoidPtrPtrTy),
1589         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1590     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1591                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1592                         Args);
1593   };
1594 
1595   RegionCodeGenTy RCG(ParallelGen);
1596   RCG(CGF);
1597 }
1598 
1599 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1600   // Always emit simple barriers!
1601   if (!CGF.HaveInsertPoint())
1602     return;
1603   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1604   // This function does not use parameters, so we can emit just default values.
1605   llvm::Value *Args[] = {
1606       llvm::ConstantPointerNull::get(
1607           cast<llvm::PointerType>(getIdentTyPointerTy())),
1608       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1609   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1610                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1611                       Args);
1612 }
1613 
1614 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1615                                            SourceLocation Loc,
1616                                            OpenMPDirectiveKind Kind, bool,
1617                                            bool) {
1618   // Always emit simple barriers!
1619   if (!CGF.HaveInsertPoint())
1620     return;
1621   // Build call __kmpc_cancel_barrier(loc, thread_id);
1622   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1623   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1624                          getThreadID(CGF, Loc)};
1625 
1626   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1627                           CGM.getModule(), OMPRTL___kmpc_barrier),
1628                       Args);
1629 }
1630 
1631 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1632     CodeGenFunction &CGF, StringRef CriticalName,
1633     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1634     const Expr *Hint) {
1635   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1636   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1637   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1638   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1639   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1640 
1641   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1642 
1643   // Get the mask of active threads in the warp.
1644   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1645       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1646   // Fetch team-local id of the thread.
1647   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1648 
1649   // Get the width of the team.
1650   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1651 
1652   // Initialize the counter variable for the loop.
1653   QualType Int32Ty =
1654       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1655   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1656   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1657   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1658                         /*isInit=*/true);
1659 
1660   // Block checks if loop counter exceeds upper bound.
1661   CGF.EmitBlock(LoopBB);
1662   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1664   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1665 
1666   // Block tests which single thread should execute region, and which threads
1667   // should go straight to synchronisation point.
1668   CGF.EmitBlock(TestBB);
1669   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1670   llvm::Value *CmpThreadToCounter =
1671       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1672   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1673 
1674   // Block emits the body of the critical region.
1675   CGF.EmitBlock(BodyBB);
1676 
1677   // Output the critical statement.
1678   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1679                                       Hint);
1680 
1681   // After the body surrounded by the critical region, the single executing
1682   // thread will jump to the synchronisation point.
1683   // Block waits for all threads in current team to finish then increments the
1684   // counter variable and returns to the loop.
1685   CGF.EmitBlock(SyncBB);
1686   // Reconverge active threads in the warp.
1687   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1688                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1689                             Mask);
1690 
1691   llvm::Value *IncCounterVal =
1692       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1693   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1694   CGF.EmitBranch(LoopBB);
1695 
1696   // Block that is reached when  all threads in the team complete the region.
1697   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1698 }
1699 
1700 /// Cast value to the specified type.
1701 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1702                                     QualType ValTy, QualType CastTy,
1703                                     SourceLocation Loc) {
1704   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1705          "Cast type must sized.");
1706   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1707          "Val type must sized.");
1708   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1709   if (ValTy == CastTy)
1710     return Val;
1711   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1712       CGF.getContext().getTypeSizeInChars(CastTy))
1713     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1714   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1715     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1716                                      CastTy->hasSignedIntegerRepresentation());
1717   Address CastItem = CGF.CreateMemTemp(CastTy);
1718   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1719       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()),
1720       Val->getType());
1721   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1722                         LValueBaseInfo(AlignmentSource::Type),
1723                         TBAAAccessInfo());
1724   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1725                               LValueBaseInfo(AlignmentSource::Type),
1726                               TBAAAccessInfo());
1727 }
1728 
1729 /// This function creates calls to one of two shuffle functions to copy
1730 /// variables between lanes in a warp.
1731 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1732                                                  llvm::Value *Elem,
1733                                                  QualType ElemType,
1734                                                  llvm::Value *Offset,
1735                                                  SourceLocation Loc) {
1736   CodeGenModule &CGM = CGF.CGM;
1737   CGBuilderTy &Bld = CGF.Builder;
1738   CGOpenMPRuntimeGPU &RT =
1739       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1740   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1741 
1742   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1743   assert(Size.getQuantity() <= 8 &&
1744          "Unsupported bitwidth in shuffle instruction.");
1745 
1746   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1747                                   ? OMPRTL___kmpc_shuffle_int32
1748                                   : OMPRTL___kmpc_shuffle_int64;
1749 
1750   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1751   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1752       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1753   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1754   llvm::Value *WarpSize =
1755       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1756 
1757   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1758       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1759       {ElemCast, Offset, WarpSize});
1760 
1761   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1762 }
1763 
1764 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1765                             Address DestAddr, QualType ElemType,
1766                             llvm::Value *Offset, SourceLocation Loc) {
1767   CGBuilderTy &Bld = CGF.Builder;
1768 
1769   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1770   // Create the loop over the big sized data.
1771   // ptr = (void*)Elem;
1772   // ptrEnd = (void*) Elem + 1;
1773   // Step = 8;
1774   // while (ptr + Step < ptrEnd)
1775   //   shuffle((int64_t)*ptr);
1776   // Step = 4;
1777   // while (ptr + Step < ptrEnd)
1778   //   shuffle((int32_t)*ptr);
1779   // ...
1780   Address ElemPtr = DestAddr;
1781   Address Ptr = SrcAddr;
1782   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1783       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1784   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1785     if (Size < CharUnits::fromQuantity(IntSize))
1786       continue;
1787     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1788         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1789         /*Signed=*/1);
1790     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1791     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1792                                                   IntTy);
1793     ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1794         ElemPtr, IntTy->getPointerTo(), IntTy);
1795     if (Size.getQuantity() / IntSize > 1) {
1796       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1797       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1798       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1799       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1800       CGF.EmitBlock(PreCondBB);
1801       llvm::PHINode *PhiSrc =
1802           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1803       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1804       llvm::PHINode *PhiDest =
1805           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1806       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1807       Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1808       ElemPtr =
1809           Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1810       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1811           CGF.Int8Ty, PtrEnd.getPointer(),
1812           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1813                                                   CGF.VoidPtrTy));
1814       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1815                        ThenBB, ExitBB);
1816       CGF.EmitBlock(ThenBB);
1817       llvm::Value *Res = createRuntimeShuffleFunction(
1818           CGF,
1819           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1820                                LValueBaseInfo(AlignmentSource::Type),
1821                                TBAAAccessInfo()),
1822           IntType, Offset, Loc);
1823       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1824                             LValueBaseInfo(AlignmentSource::Type),
1825                             TBAAAccessInfo());
1826       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1827       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1828       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1829       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1830       CGF.EmitBranch(PreCondBB);
1831       CGF.EmitBlock(ExitBB);
1832     } else {
1833       llvm::Value *Res = createRuntimeShuffleFunction(
1834           CGF,
1835           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1836                                LValueBaseInfo(AlignmentSource::Type),
1837                                TBAAAccessInfo()),
1838           IntType, Offset, Loc);
1839       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1840                             LValueBaseInfo(AlignmentSource::Type),
1841                             TBAAAccessInfo());
1842       Ptr = Bld.CreateConstGEP(Ptr, 1);
1843       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1844     }
1845     Size = Size % IntSize;
1846   }
1847 }
1848 
1849 namespace {
1850 enum CopyAction : unsigned {
1851   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1852   // the warp using shuffle instructions.
1853   RemoteLaneToThread,
1854   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1855   ThreadCopy,
1856   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1857   ThreadToScratchpad,
1858   // ScratchpadToThread: Copy from a scratchpad array in global memory
1859   // containing team-reduced data to a thread's stack.
1860   ScratchpadToThread,
1861 };
1862 } // namespace
1863 
1864 struct CopyOptionsTy {
1865   llvm::Value *RemoteLaneOffset;
1866   llvm::Value *ScratchpadIndex;
1867   llvm::Value *ScratchpadWidth;
1868 };
1869 
1870 /// Emit instructions to copy a Reduce list, which contains partially
1871 /// aggregated values, in the specified direction.
1872 static void emitReductionListCopy(
1873     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1874     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1875     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1876 
1877   CodeGenModule &CGM = CGF.CGM;
1878   ASTContext &C = CGM.getContext();
1879   CGBuilderTy &Bld = CGF.Builder;
1880 
1881   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1882   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1883   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1884 
1885   // Iterates, element-by-element, through the source Reduce list and
1886   // make a copy.
1887   unsigned Idx = 0;
1888   unsigned Size = Privates.size();
1889   for (const Expr *Private : Privates) {
1890     Address SrcElementAddr = Address::invalid();
1891     Address DestElementAddr = Address::invalid();
1892     Address DestElementPtrAddr = Address::invalid();
1893     // Should we shuffle in an element from a remote lane?
1894     bool ShuffleInElement = false;
1895     // Set to true to update the pointer in the dest Reduce list to a
1896     // newly created element.
1897     bool UpdateDestListPtr = false;
1898     // Increment the src or dest pointer to the scratchpad, for each
1899     // new element.
1900     bool IncrScratchpadSrc = false;
1901     bool IncrScratchpadDest = false;
1902     QualType PrivatePtrType = C.getPointerType(Private->getType());
1903     llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1904 
1905     switch (Action) {
1906     case RemoteLaneToThread: {
1907       // Step 1.1: Get the address for the src element in the Reduce list.
1908       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1909       SrcElementAddr =
1910           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1911                                     SrcElementPtrAddr, PrivateLlvmPtrType),
1912                                 PrivatePtrType->castAs<PointerType>());
1913 
1914       // Step 1.2: Create a temporary to store the element in the destination
1915       // Reduce list.
1916       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1917       DestElementAddr =
1918           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1919       ShuffleInElement = true;
1920       UpdateDestListPtr = true;
1921       break;
1922     }
1923     case ThreadCopy: {
1924       // Step 1.1: Get the address for the src element in the Reduce list.
1925       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1926       SrcElementAddr =
1927           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1928                                     SrcElementPtrAddr, PrivateLlvmPtrType),
1929                                 PrivatePtrType->castAs<PointerType>());
1930 
1931       // Step 1.2: Get the address for dest element.  The destination
1932       // element has already been created on the thread's stack.
1933       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1934       DestElementAddr =
1935           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1936                                     DestElementPtrAddr, PrivateLlvmPtrType),
1937                                 PrivatePtrType->castAs<PointerType>());
1938       break;
1939     }
1940     case ThreadToScratchpad: {
1941       // Step 1.1: Get the address for the src element in the Reduce list.
1942       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1943       SrcElementAddr =
1944           CGF.EmitLoadOfPointer(CGF.Builder.CreateElementBitCast(
1945                                     SrcElementPtrAddr, PrivateLlvmPtrType),
1946                                 PrivatePtrType->castAs<PointerType>());
1947 
1948       // Step 1.2: Get the address for dest element:
1949       // address = base + index * ElementSizeInChars.
1950       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1951       llvm::Value *CurrentOffset =
1952           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1953       llvm::Value *ScratchPadElemAbsolutePtrVal =
1954           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1955       ScratchPadElemAbsolutePtrVal =
1956           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1957       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1958                                 C.getTypeAlignInChars(Private->getType()));
1959       IncrScratchpadDest = true;
1960       break;
1961     }
1962     case ScratchpadToThread: {
1963       // Step 1.1: Get the address for the src element in the scratchpad.
1964       // address = base + index * ElementSizeInChars.
1965       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1966       llvm::Value *CurrentOffset =
1967           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1968       llvm::Value *ScratchPadElemAbsolutePtrVal =
1969           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1970       ScratchPadElemAbsolutePtrVal =
1971           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1972       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1973                                C.getTypeAlignInChars(Private->getType()));
1974       IncrScratchpadSrc = true;
1975 
1976       // Step 1.2: Create a temporary to store the element in the destination
1977       // Reduce list.
1978       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1979       DestElementAddr =
1980           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1981       UpdateDestListPtr = true;
1982       break;
1983     }
1984     }
1985 
1986     // Regardless of src and dest of copy, we emit the load of src
1987     // element as this is required in all directions
1988     SrcElementAddr = Bld.CreateElementBitCast(
1989         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1990     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1991                                                SrcElementAddr.getElementType());
1992 
1993     // Now that all active lanes have read the element in the
1994     // Reduce list, shuffle over the value from the remote lane.
1995     if (ShuffleInElement) {
1996       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1997                       RemoteLaneOffset, Private->getExprLoc());
1998     } else {
1999       switch (CGF.getEvaluationKind(Private->getType())) {
2000       case TEK_Scalar: {
2001         llvm::Value *Elem = CGF.EmitLoadOfScalar(
2002             SrcElementAddr, /*Volatile=*/false, Private->getType(),
2003             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
2004             TBAAAccessInfo());
2005         // Store the source element value to the dest element address.
2006         CGF.EmitStoreOfScalar(
2007             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
2008             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2009         break;
2010       }
2011       case TEK_Complex: {
2012         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2013             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2014             Private->getExprLoc());
2015         CGF.EmitStoreOfComplex(
2016             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2017             /*isInit=*/false);
2018         break;
2019       }
2020       case TEK_Aggregate:
2021         CGF.EmitAggregateCopy(
2022             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2023             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2024             Private->getType(), AggValueSlot::DoesNotOverlap);
2025         break;
2026       }
2027     }
2028 
2029     // Step 3.1: Modify reference in dest Reduce list as needed.
2030     // Modifying the reference in Reduce list to point to the newly
2031     // created element.  The element is live in the current function
2032     // scope and that of functions it invokes (i.e., reduce_function).
2033     // RemoteReduceData[i] = (void*)&RemoteElem
2034     if (UpdateDestListPtr) {
2035       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2036                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2037                             DestElementPtrAddr, /*Volatile=*/false,
2038                             C.VoidPtrTy);
2039     }
2040 
2041     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2042     // address of the next element in scratchpad memory, unless we're currently
2043     // processing the last one.  Memory alignment is also taken care of here.
2044     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2045       llvm::Value *ScratchpadBasePtr =
2046           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2047       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2048       ScratchpadBasePtr = Bld.CreateNUWAdd(
2049           ScratchpadBasePtr,
2050           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2051 
2052       // Take care of global memory alignment for performance
2053       ScratchpadBasePtr = Bld.CreateNUWSub(
2054           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2055       ScratchpadBasePtr = Bld.CreateUDiv(
2056           ScratchpadBasePtr,
2057           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2058       ScratchpadBasePtr = Bld.CreateNUWAdd(
2059           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2060       ScratchpadBasePtr = Bld.CreateNUWMul(
2061           ScratchpadBasePtr,
2062           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2063 
2064       if (IncrScratchpadDest)
2065         DestBase =
2066             Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2067       else /* IncrScratchpadSrc = true */
2068         SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2069     }
2070 
2071     ++Idx;
2072   }
2073 }
2074 
2075 /// This function emits a helper that gathers Reduce lists from the first
2076 /// lane of every active warp to lanes in the first warp.
2077 ///
2078 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2079 ///   shared smem[warp_size];
2080 ///   For all data entries D in reduce_data:
2081 ///     sync
2082 ///     If (I am the first lane in each warp)
2083 ///       Copy my local D to smem[warp_id]
2084 ///     sync
2085 ///     if (I am the first warp)
2086 ///       Copy smem[thread_id] to my local D
2087 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2088                                               ArrayRef<const Expr *> Privates,
2089                                               QualType ReductionArrayTy,
2090                                               SourceLocation Loc) {
2091   ASTContext &C = CGM.getContext();
2092   llvm::Module &M = CGM.getModule();
2093 
2094   // ReduceList: thread local Reduce list.
2095   // At the stage of the computation when this function is called, partially
2096   // aggregated values reside in the first lane of every active warp.
2097   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2098                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2099   // NumWarps: number of warps active in the parallel region.  This could
2100   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2101   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2102                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2103                                 ImplicitParamDecl::Other);
2104   FunctionArgList Args;
2105   Args.push_back(&ReduceListArg);
2106   Args.push_back(&NumWarpsArg);
2107 
2108   const CGFunctionInfo &CGFI =
2109       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2110   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2111                                     llvm::GlobalValue::InternalLinkage,
2112                                     "_omp_reduction_inter_warp_copy_func", &M);
2113   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2114   Fn->setDoesNotRecurse();
2115   CodeGenFunction CGF(CGM);
2116   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2117 
2118   CGBuilderTy &Bld = CGF.Builder;
2119 
2120   // This array is used as a medium to transfer, one reduce element at a time,
2121   // the data from the first lane of every warp to lanes in the first warp
2122   // in order to perform the final step of a reduction in a parallel region
2123   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2124   // for reduced latency, as well as to have a distinct copy for concurrently
2125   // executing target regions.  The array is declared with common linkage so
2126   // as to be shared across compilation units.
2127   StringRef TransferMediumName =
2128       "__openmp_nvptx_data_transfer_temporary_storage";
2129   llvm::GlobalVariable *TransferMedium =
2130       M.getGlobalVariable(TransferMediumName);
2131   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2132   if (!TransferMedium) {
2133     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2134     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2135     TransferMedium = new llvm::GlobalVariable(
2136         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2137         llvm::UndefValue::get(Ty), TransferMediumName,
2138         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2139         SharedAddressSpace);
2140     CGM.addCompilerUsedGlobal(TransferMedium);
2141   }
2142 
2143   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2144   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2145   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2146   // nvptx_lane_id = nvptx_id % warpsize
2147   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2148   // nvptx_warp_id = nvptx_id / warpsize
2149   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2150 
2151   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2152   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2153   Address LocalReduceList(
2154       Bld.CreatePointerBitCastOrAddrSpaceCast(
2155           CGF.EmitLoadOfScalar(
2156               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2157               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2158           ElemTy->getPointerTo()),
2159       ElemTy, CGF.getPointerAlign());
2160 
2161   unsigned Idx = 0;
2162   for (const Expr *Private : Privates) {
2163     //
2164     // Warp master copies reduce element to transfer medium in __shared__
2165     // memory.
2166     //
2167     unsigned RealTySize =
2168         C.getTypeSizeInChars(Private->getType())
2169             .alignTo(C.getTypeAlignInChars(Private->getType()))
2170             .getQuantity();
2171     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2172       unsigned NumIters = RealTySize / TySize;
2173       if (NumIters == 0)
2174         continue;
2175       QualType CType = C.getIntTypeForBitwidth(
2176           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2177       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2178       CharUnits Align = CharUnits::fromQuantity(TySize);
2179       llvm::Value *Cnt = nullptr;
2180       Address CntAddr = Address::invalid();
2181       llvm::BasicBlock *PrecondBB = nullptr;
2182       llvm::BasicBlock *ExitBB = nullptr;
2183       if (NumIters > 1) {
2184         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2185         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2186                               /*Volatile=*/false, C.IntTy);
2187         PrecondBB = CGF.createBasicBlock("precond");
2188         ExitBB = CGF.createBasicBlock("exit");
2189         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2190         // There is no need to emit line number for unconditional branch.
2191         (void)ApplyDebugLocation::CreateEmpty(CGF);
2192         CGF.EmitBlock(PrecondBB);
2193         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2194         llvm::Value *Cmp =
2195             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2196         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2197         CGF.EmitBlock(BodyBB);
2198       }
2199       // kmpc_barrier.
2200       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2201                                              /*EmitChecks=*/false,
2202                                              /*ForceSimpleCall=*/true);
2203       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2204       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2205       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2206 
2207       // if (lane_id == 0)
2208       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2209       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2210       CGF.EmitBlock(ThenBB);
2211 
2212       // Reduce element = LocalReduceList[i]
2213       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2214       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2215           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2216       // elemptr = ((CopyType*)(elemptrptr)) + I
2217       Address ElemPtr = Address::deprecated(ElemPtrPtr, Align);
2218       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2219       if (NumIters > 1)
2220         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2221 
2222       // Get pointer to location in transfer medium.
2223       // MediumPtr = &medium[warp_id]
2224       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2225           TransferMedium->getValueType(), TransferMedium,
2226           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2227       Address MediumPtr = Address::deprecated(MediumPtrVal, Align);
2228       // Casting to actual data type.
2229       // MediumPtr = (CopyType*)MediumPtrAddr;
2230       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2231 
2232       // elem = *elemptr
2233       //*MediumPtr = elem
2234       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2235           ElemPtr, /*Volatile=*/false, CType, Loc,
2236           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2237       // Store the source element value to the dest element address.
2238       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2239                             LValueBaseInfo(AlignmentSource::Type),
2240                             TBAAAccessInfo());
2241 
2242       Bld.CreateBr(MergeBB);
2243 
2244       CGF.EmitBlock(ElseBB);
2245       Bld.CreateBr(MergeBB);
2246 
2247       CGF.EmitBlock(MergeBB);
2248 
2249       // kmpc_barrier.
2250       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2251                                              /*EmitChecks=*/false,
2252                                              /*ForceSimpleCall=*/true);
2253 
2254       //
2255       // Warp 0 copies reduce element from transfer medium.
2256       //
2257       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2258       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2259       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2260 
2261       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2262       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2263           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2264 
2265       // Up to 32 threads in warp 0 are active.
2266       llvm::Value *IsActiveThread =
2267           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2268       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2269 
2270       CGF.EmitBlock(W0ThenBB);
2271 
2272       // SrcMediumPtr = &medium[tid]
2273       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2274           TransferMedium->getValueType(), TransferMedium,
2275           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2276       Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align);
2277       // SrcMediumVal = *SrcMediumPtr;
2278       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2279 
2280       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2281       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2282       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2283           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2284       Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align);
2285       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2286       if (NumIters > 1)
2287         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2288 
2289       // *TargetElemPtr = SrcMediumVal;
2290       llvm::Value *SrcMediumValue =
2291           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2292       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2293                             CType);
2294       Bld.CreateBr(W0MergeBB);
2295 
2296       CGF.EmitBlock(W0ElseBB);
2297       Bld.CreateBr(W0MergeBB);
2298 
2299       CGF.EmitBlock(W0MergeBB);
2300 
2301       if (NumIters > 1) {
2302         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2303         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2304         CGF.EmitBranch(PrecondBB);
2305         (void)ApplyDebugLocation::CreateEmpty(CGF);
2306         CGF.EmitBlock(ExitBB);
2307       }
2308       RealTySize %= TySize;
2309     }
2310     ++Idx;
2311   }
2312 
2313   CGF.FinishFunction();
2314   return Fn;
2315 }
2316 
2317 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2318 /// in the same warp.  It uses shuffle instructions to copy over data from
2319 /// a remote lane's stack.  The reduction algorithm performed is specified
2320 /// by the fourth parameter.
2321 ///
2322 /// Algorithm Versions.
2323 /// Full Warp Reduce (argument value 0):
2324 ///   This algorithm assumes that all 32 lanes are active and gathers
2325 ///   data from these 32 lanes, producing a single resultant value.
2326 /// Contiguous Partial Warp Reduce (argument value 1):
2327 ///   This algorithm assumes that only a *contiguous* subset of lanes
2328 ///   are active.  This happens for the last warp in a parallel region
2329 ///   when the user specified num_threads is not an integer multiple of
2330 ///   32.  This contiguous subset always starts with the zeroth lane.
2331 /// Partial Warp Reduce (argument value 2):
2332 ///   This algorithm gathers data from any number of lanes at any position.
2333 /// All reduced values are stored in the lowest possible lane.  The set
2334 /// of problems every algorithm addresses is a super set of those
2335 /// addressable by algorithms with a lower version number.  Overhead
2336 /// increases as algorithm version increases.
2337 ///
2338 /// Terminology
2339 /// Reduce element:
2340 ///   Reduce element refers to the individual data field with primitive
2341 ///   data types to be combined and reduced across threads.
2342 /// Reduce list:
2343 ///   Reduce list refers to a collection of local, thread-private
2344 ///   reduce elements.
2345 /// Remote Reduce list:
2346 ///   Remote Reduce list refers to a collection of remote (relative to
2347 ///   the current thread) reduce elements.
2348 ///
2349 /// We distinguish between three states of threads that are important to
2350 /// the implementation of this function.
2351 /// Alive threads:
2352 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2353 ///   threads that are inactive due to divergent control flow.
2354 /// Active threads:
2355 ///   The minimal set of threads that has to be alive upon entry to this
2356 ///   function.  The computation is correct iff active threads are alive.
2357 ///   Some threads are alive but they are not active because they do not
2358 ///   contribute to the computation in any useful manner.  Turning them off
2359 ///   may introduce control flow overheads without any tangible benefits.
2360 /// Effective threads:
2361 ///   In order to comply with the argument requirements of the shuffle
2362 ///   function, we must keep all lanes holding data alive.  But at most
2363 ///   half of them perform value aggregation; we refer to this half of
2364 ///   threads as effective. The other half is simply handing off their
2365 ///   data.
2366 ///
2367 /// Procedure
2368 /// Value shuffle:
2369 ///   In this step active threads transfer data from higher lane positions
2370 ///   in the warp to lower lane positions, creating Remote Reduce list.
2371 /// Value aggregation:
2372 ///   In this step, effective threads combine their thread local Reduce list
2373 ///   with Remote Reduce list and store the result in the thread local
2374 ///   Reduce list.
2375 /// Value copy:
2376 ///   In this step, we deal with the assumption made by algorithm 2
2377 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2378 ///   active, say 2k+1, only k threads will be effective and therefore k
2379 ///   new values will be produced.  However, the Reduce list owned by the
2380 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2381 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2382 ///   that the contiguity assumption still holds.
2383 static llvm::Function *emitShuffleAndReduceFunction(
2384     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2385     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2386   ASTContext &C = CGM.getContext();
2387 
2388   // Thread local Reduce list used to host the values of data to be reduced.
2389   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2390                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2391   // Current lane id; could be logical.
2392   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2393                               ImplicitParamDecl::Other);
2394   // Offset of the remote source lane relative to the current lane.
2395   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2396                                         C.ShortTy, ImplicitParamDecl::Other);
2397   // Algorithm version.  This is expected to be known at compile time.
2398   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2399                                C.ShortTy, ImplicitParamDecl::Other);
2400   FunctionArgList Args;
2401   Args.push_back(&ReduceListArg);
2402   Args.push_back(&LaneIDArg);
2403   Args.push_back(&RemoteLaneOffsetArg);
2404   Args.push_back(&AlgoVerArg);
2405 
2406   const CGFunctionInfo &CGFI =
2407       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2408   auto *Fn = llvm::Function::Create(
2409       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2410       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2411   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2412   Fn->setDoesNotRecurse();
2413 
2414   CodeGenFunction CGF(CGM);
2415   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2416 
2417   CGBuilderTy &Bld = CGF.Builder;
2418 
2419   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2420   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2421   Address LocalReduceList(
2422       Bld.CreatePointerBitCastOrAddrSpaceCast(
2423           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2424                                C.VoidPtrTy, SourceLocation()),
2425           ElemTy->getPointerTo()),
2426       ElemTy, CGF.getPointerAlign());
2427 
2428   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2429   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2430       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2431 
2432   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2433   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2434       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2435 
2436   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2437   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2438       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2439 
2440   // Create a local thread-private variable to host the Reduce list
2441   // from a remote lane.
2442   Address RemoteReduceList =
2443       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2444 
2445   // This loop iterates through the list of reduce elements and copies,
2446   // element by element, from a remote lane in the warp to RemoteReduceList,
2447   // hosted on the thread's stack.
2448   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2449                         LocalReduceList, RemoteReduceList,
2450                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2451                          /*ScratchpadIndex=*/nullptr,
2452                          /*ScratchpadWidth=*/nullptr});
2453 
2454   // The actions to be performed on the Remote Reduce list is dependent
2455   // on the algorithm version.
2456   //
2457   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2458   //  LaneId % 2 == 0 && Offset > 0):
2459   //    do the reduction value aggregation
2460   //
2461   //  The thread local variable Reduce list is mutated in place to host the
2462   //  reduced data, which is the aggregated value produced from local and
2463   //  remote lanes.
2464   //
2465   //  Note that AlgoVer is expected to be a constant integer known at compile
2466   //  time.
2467   //  When AlgoVer==0, the first conjunction evaluates to true, making
2468   //    the entire predicate true during compile time.
2469   //  When AlgoVer==1, the second conjunction has only the second part to be
2470   //    evaluated during runtime.  Other conjunctions evaluates to false
2471   //    during compile time.
2472   //  When AlgoVer==2, the third conjunction has only the second part to be
2473   //    evaluated during runtime.  Other conjunctions evaluates to false
2474   //    during compile time.
2475   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2476 
2477   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2478   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2479       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2480 
2481   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2482   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2483       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2484   CondAlgo2 = Bld.CreateAnd(
2485       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2486 
2487   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2488   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2489 
2490   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2491   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2492   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2493   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2494 
2495   CGF.EmitBlock(ThenBB);
2496   // reduce_function(LocalReduceList, RemoteReduceList)
2497   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2498       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2499   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2500       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2501   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2502       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2503   Bld.CreateBr(MergeBB);
2504 
2505   CGF.EmitBlock(ElseBB);
2506   Bld.CreateBr(MergeBB);
2507 
2508   CGF.EmitBlock(MergeBB);
2509 
2510   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2511   // Reduce list.
2512   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2513   llvm::Value *CondCopy = Bld.CreateAnd(
2514       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2515 
2516   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2517   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2518   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2519   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2520 
2521   CGF.EmitBlock(CpyThenBB);
2522   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2523                         RemoteReduceList, LocalReduceList);
2524   Bld.CreateBr(CpyMergeBB);
2525 
2526   CGF.EmitBlock(CpyElseBB);
2527   Bld.CreateBr(CpyMergeBB);
2528 
2529   CGF.EmitBlock(CpyMergeBB);
2530 
2531   CGF.FinishFunction();
2532   return Fn;
2533 }
2534 
2535 /// This function emits a helper that copies all the reduction variables from
2536 /// the team into the provided global buffer for the reduction variables.
2537 ///
2538 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2539 ///   For all data entries D in reduce_data:
2540 ///     Copy local D to buffer.D[Idx]
2541 static llvm::Value *emitListToGlobalCopyFunction(
2542     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2543     QualType ReductionArrayTy, SourceLocation Loc,
2544     const RecordDecl *TeamReductionRec,
2545     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2546         &VarFieldMap) {
2547   ASTContext &C = CGM.getContext();
2548 
2549   // Buffer: global reduction buffer.
2550   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2551                               C.VoidPtrTy, ImplicitParamDecl::Other);
2552   // Idx: index of the buffer.
2553   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2554                            ImplicitParamDecl::Other);
2555   // ReduceList: thread local Reduce list.
2556   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2557                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2558   FunctionArgList Args;
2559   Args.push_back(&BufferArg);
2560   Args.push_back(&IdxArg);
2561   Args.push_back(&ReduceListArg);
2562 
2563   const CGFunctionInfo &CGFI =
2564       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2565   auto *Fn = llvm::Function::Create(
2566       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2567       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2568   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2569   Fn->setDoesNotRecurse();
2570   CodeGenFunction CGF(CGM);
2571   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2572 
2573   CGBuilderTy &Bld = CGF.Builder;
2574 
2575   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2576   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2577   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2578   Address LocalReduceList(
2579       Bld.CreatePointerBitCastOrAddrSpaceCast(
2580           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2581                                C.VoidPtrTy, Loc),
2582           ElemTy->getPointerTo()),
2583       ElemTy, CGF.getPointerAlign());
2584   QualType StaticTy = C.getRecordType(TeamReductionRec);
2585   llvm::Type *LLVMReductionsBufferTy =
2586       CGM.getTypes().ConvertTypeForMem(StaticTy);
2587   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2588       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2589       LLVMReductionsBufferTy->getPointerTo());
2590   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2591                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2592                                               /*Volatile=*/false, C.IntTy,
2593                                               Loc)};
2594   unsigned Idx = 0;
2595   for (const Expr *Private : Privates) {
2596     // Reduce element = LocalReduceList[i]
2597     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2598     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2599         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2600     // elemptr = ((CopyType*)(elemptrptr)) + I
2601     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2602     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2603         ElemPtrPtr, ElemTy->getPointerTo());
2604     Address ElemPtr =
2605         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2606     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2607     // Global = Buffer.VD[Idx];
2608     const FieldDecl *FD = VarFieldMap.lookup(VD);
2609     LValue GlobLVal = CGF.EmitLValueForField(
2610         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2611     Address GlobAddr = GlobLVal.getAddress(CGF);
2612     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2613         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2614     GlobLVal.setAddress(
2615         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2616     switch (CGF.getEvaluationKind(Private->getType())) {
2617     case TEK_Scalar: {
2618       llvm::Value *V = CGF.EmitLoadOfScalar(
2619           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2620           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2621       CGF.EmitStoreOfScalar(V, GlobLVal);
2622       break;
2623     }
2624     case TEK_Complex: {
2625       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2626           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2627       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2628       break;
2629     }
2630     case TEK_Aggregate:
2631       CGF.EmitAggregateCopy(GlobLVal,
2632                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2633                             Private->getType(), AggValueSlot::DoesNotOverlap);
2634       break;
2635     }
2636     ++Idx;
2637   }
2638 
2639   CGF.FinishFunction();
2640   return Fn;
2641 }
2642 
2643 /// This function emits a helper that reduces all the reduction variables from
2644 /// the team into the provided global buffer for the reduction variables.
2645 ///
2646 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2647 ///  void *GlobPtrs[];
2648 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2649 ///  ...
2650 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2651 ///  reduce_function(GlobPtrs, reduce_data);
2652 static llvm::Value *emitListToGlobalReduceFunction(
2653     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2654     QualType ReductionArrayTy, SourceLocation Loc,
2655     const RecordDecl *TeamReductionRec,
2656     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2657         &VarFieldMap,
2658     llvm::Function *ReduceFn) {
2659   ASTContext &C = CGM.getContext();
2660 
2661   // Buffer: global reduction buffer.
2662   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2663                               C.VoidPtrTy, ImplicitParamDecl::Other);
2664   // Idx: index of the buffer.
2665   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2666                            ImplicitParamDecl::Other);
2667   // ReduceList: thread local Reduce list.
2668   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2669                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2670   FunctionArgList Args;
2671   Args.push_back(&BufferArg);
2672   Args.push_back(&IdxArg);
2673   Args.push_back(&ReduceListArg);
2674 
2675   const CGFunctionInfo &CGFI =
2676       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2677   auto *Fn = llvm::Function::Create(
2678       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2679       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2680   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2681   Fn->setDoesNotRecurse();
2682   CodeGenFunction CGF(CGM);
2683   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2684 
2685   CGBuilderTy &Bld = CGF.Builder;
2686 
2687   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2688   QualType StaticTy = C.getRecordType(TeamReductionRec);
2689   llvm::Type *LLVMReductionsBufferTy =
2690       CGM.getTypes().ConvertTypeForMem(StaticTy);
2691   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2692       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2693       LLVMReductionsBufferTy->getPointerTo());
2694 
2695   // 1. Build a list of reduction variables.
2696   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2697   Address ReductionList =
2698       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2699   auto IPriv = Privates.begin();
2700   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2701                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2702                                               /*Volatile=*/false, C.IntTy,
2703                                               Loc)};
2704   unsigned Idx = 0;
2705   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2706     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2707     // Global = Buffer.VD[Idx];
2708     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2709     const FieldDecl *FD = VarFieldMap.lookup(VD);
2710     LValue GlobLVal = CGF.EmitLValueForField(
2711         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2712     Address GlobAddr = GlobLVal.getAddress(CGF);
2713     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2714         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2715     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2716     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2717     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2718       // Store array size.
2719       ++Idx;
2720       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2721       llvm::Value *Size = CGF.Builder.CreateIntCast(
2722           CGF.getVLASize(
2723                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2724               .NumElts,
2725           CGF.SizeTy, /*isSigned=*/false);
2726       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2727                               Elem);
2728     }
2729   }
2730 
2731   // Call reduce_function(GlobalReduceList, ReduceList)
2732   llvm::Value *GlobalReduceList =
2733       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2734   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2735   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2736       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2737   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2738       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2739   CGF.FinishFunction();
2740   return Fn;
2741 }
2742 
2743 /// This function emits a helper that copies all the reduction variables from
2744 /// the team into the provided global buffer for the reduction variables.
2745 ///
2746 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2747 ///   For all data entries D in reduce_data:
2748 ///     Copy buffer.D[Idx] to local D;
2749 static llvm::Value *emitGlobalToListCopyFunction(
2750     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2751     QualType ReductionArrayTy, SourceLocation Loc,
2752     const RecordDecl *TeamReductionRec,
2753     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2754         &VarFieldMap) {
2755   ASTContext &C = CGM.getContext();
2756 
2757   // Buffer: global reduction buffer.
2758   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2759                               C.VoidPtrTy, ImplicitParamDecl::Other);
2760   // Idx: index of the buffer.
2761   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2762                            ImplicitParamDecl::Other);
2763   // ReduceList: thread local Reduce list.
2764   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2765                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2766   FunctionArgList Args;
2767   Args.push_back(&BufferArg);
2768   Args.push_back(&IdxArg);
2769   Args.push_back(&ReduceListArg);
2770 
2771   const CGFunctionInfo &CGFI =
2772       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2773   auto *Fn = llvm::Function::Create(
2774       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2775       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2776   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2777   Fn->setDoesNotRecurse();
2778   CodeGenFunction CGF(CGM);
2779   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2780 
2781   CGBuilderTy &Bld = CGF.Builder;
2782 
2783   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2784   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2785   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2786   Address LocalReduceList(
2787       Bld.CreatePointerBitCastOrAddrSpaceCast(
2788           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2789                                C.VoidPtrTy, Loc),
2790           ElemTy->getPointerTo()),
2791       ElemTy, CGF.getPointerAlign());
2792   QualType StaticTy = C.getRecordType(TeamReductionRec);
2793   llvm::Type *LLVMReductionsBufferTy =
2794       CGM.getTypes().ConvertTypeForMem(StaticTy);
2795   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2796       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2797       LLVMReductionsBufferTy->getPointerTo());
2798 
2799   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2800                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2801                                               /*Volatile=*/false, C.IntTy,
2802                                               Loc)};
2803   unsigned Idx = 0;
2804   for (const Expr *Private : Privates) {
2805     // Reduce element = LocalReduceList[i]
2806     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2807     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2808         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2809     // elemptr = ((CopyType*)(elemptrptr)) + I
2810     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2811     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2812         ElemPtrPtr, ElemTy->getPointerTo());
2813     Address ElemPtr =
2814         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2815     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2816     // Global = Buffer.VD[Idx];
2817     const FieldDecl *FD = VarFieldMap.lookup(VD);
2818     LValue GlobLVal = CGF.EmitLValueForField(
2819         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2820     Address GlobAddr = GlobLVal.getAddress(CGF);
2821     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2822         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2823     GlobLVal.setAddress(
2824         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2825     switch (CGF.getEvaluationKind(Private->getType())) {
2826     case TEK_Scalar: {
2827       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2828       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2829                             LValueBaseInfo(AlignmentSource::Type),
2830                             TBAAAccessInfo());
2831       break;
2832     }
2833     case TEK_Complex: {
2834       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2835       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2836                              /*isInit=*/false);
2837       break;
2838     }
2839     case TEK_Aggregate:
2840       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2841                             GlobLVal, Private->getType(),
2842                             AggValueSlot::DoesNotOverlap);
2843       break;
2844     }
2845     ++Idx;
2846   }
2847 
2848   CGF.FinishFunction();
2849   return Fn;
2850 }
2851 
2852 /// This function emits a helper that reduces all the reduction variables from
2853 /// the team into the provided global buffer for the reduction variables.
2854 ///
2855 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2856 ///  void *GlobPtrs[];
2857 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2858 ///  ...
2859 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2860 ///  reduce_function(reduce_data, GlobPtrs);
2861 static llvm::Value *emitGlobalToListReduceFunction(
2862     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2863     QualType ReductionArrayTy, SourceLocation Loc,
2864     const RecordDecl *TeamReductionRec,
2865     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2866         &VarFieldMap,
2867     llvm::Function *ReduceFn) {
2868   ASTContext &C = CGM.getContext();
2869 
2870   // Buffer: global reduction buffer.
2871   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2872                               C.VoidPtrTy, ImplicitParamDecl::Other);
2873   // Idx: index of the buffer.
2874   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2875                            ImplicitParamDecl::Other);
2876   // ReduceList: thread local Reduce list.
2877   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2878                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2879   FunctionArgList Args;
2880   Args.push_back(&BufferArg);
2881   Args.push_back(&IdxArg);
2882   Args.push_back(&ReduceListArg);
2883 
2884   const CGFunctionInfo &CGFI =
2885       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2886   auto *Fn = llvm::Function::Create(
2887       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2888       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2889   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2890   Fn->setDoesNotRecurse();
2891   CodeGenFunction CGF(CGM);
2892   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2893 
2894   CGBuilderTy &Bld = CGF.Builder;
2895 
2896   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2897   QualType StaticTy = C.getRecordType(TeamReductionRec);
2898   llvm::Type *LLVMReductionsBufferTy =
2899       CGM.getTypes().ConvertTypeForMem(StaticTy);
2900   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2901       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2902       LLVMReductionsBufferTy->getPointerTo());
2903 
2904   // 1. Build a list of reduction variables.
2905   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2906   Address ReductionList =
2907       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2908   auto IPriv = Privates.begin();
2909   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2910                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2911                                               /*Volatile=*/false, C.IntTy,
2912                                               Loc)};
2913   unsigned Idx = 0;
2914   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2915     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2916     // Global = Buffer.VD[Idx];
2917     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2918     const FieldDecl *FD = VarFieldMap.lookup(VD);
2919     LValue GlobLVal = CGF.EmitLValueForField(
2920         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2921     Address GlobAddr = GlobLVal.getAddress(CGF);
2922     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2923         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2924     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2925     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2926     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2927       // Store array size.
2928       ++Idx;
2929       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2930       llvm::Value *Size = CGF.Builder.CreateIntCast(
2931           CGF.getVLASize(
2932                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2933               .NumElts,
2934           CGF.SizeTy, /*isSigned=*/false);
2935       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2936                               Elem);
2937     }
2938   }
2939 
2940   // Call reduce_function(ReduceList, GlobalReduceList)
2941   llvm::Value *GlobalReduceList =
2942       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2943   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2944   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2945       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2946   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2947       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2948   CGF.FinishFunction();
2949   return Fn;
2950 }
2951 
2952 ///
2953 /// Design of OpenMP reductions on the GPU
2954 ///
2955 /// Consider a typical OpenMP program with one or more reduction
2956 /// clauses:
2957 ///
2958 /// float foo;
2959 /// double bar;
2960 /// #pragma omp target teams distribute parallel for \
2961 ///             reduction(+:foo) reduction(*:bar)
2962 /// for (int i = 0; i < N; i++) {
2963 ///   foo += A[i]; bar *= B[i];
2964 /// }
2965 ///
2966 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2967 /// all teams.  In our OpenMP implementation on the NVPTX device an
2968 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2969 /// within a team are mapped to CUDA threads within a threadblock.
2970 /// Our goal is to efficiently aggregate values across all OpenMP
2971 /// threads such that:
2972 ///
2973 ///   - the compiler and runtime are logically concise, and
2974 ///   - the reduction is performed efficiently in a hierarchical
2975 ///     manner as follows: within OpenMP threads in the same warp,
2976 ///     across warps in a threadblock, and finally across teams on
2977 ///     the NVPTX device.
2978 ///
2979 /// Introduction to Decoupling
2980 ///
2981 /// We would like to decouple the compiler and the runtime so that the
2982 /// latter is ignorant of the reduction variables (number, data types)
2983 /// and the reduction operators.  This allows a simpler interface
2984 /// and implementation while still attaining good performance.
2985 ///
2986 /// Pseudocode for the aforementioned OpenMP program generated by the
2987 /// compiler is as follows:
2988 ///
2989 /// 1. Create private copies of reduction variables on each OpenMP
2990 ///    thread: 'foo_private', 'bar_private'
2991 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2992 ///    to it and writes the result in 'foo_private' and 'bar_private'
2993 ///    respectively.
2994 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2995 ///    and store the result on the team master:
2996 ///
2997 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2998 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2999 ///
3000 ///     where:
3001 ///       struct ReduceData {
3002 ///         double *foo;
3003 ///         double *bar;
3004 ///       } reduceData
3005 ///       reduceData.foo = &foo_private
3006 ///       reduceData.bar = &bar_private
3007 ///
3008 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
3009 ///     auxiliary functions generated by the compiler that operate on
3010 ///     variables of type 'ReduceData'.  They aid the runtime perform
3011 ///     algorithmic steps in a data agnostic manner.
3012 ///
3013 ///     'shuffleReduceFn' is a pointer to a function that reduces data
3014 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
3015 ///     same warp.  It takes the following arguments as input:
3016 ///
3017 ///     a. variable of type 'ReduceData' on the calling lane,
3018 ///     b. its lane_id,
3019 ///     c. an offset relative to the current lane_id to generate a
3020 ///        remote_lane_id.  The remote lane contains the second
3021 ///        variable of type 'ReduceData' that is to be reduced.
3022 ///     d. an algorithm version parameter determining which reduction
3023 ///        algorithm to use.
3024 ///
3025 ///     'shuffleReduceFn' retrieves data from the remote lane using
3026 ///     efficient GPU shuffle intrinsics and reduces, using the
3027 ///     algorithm specified by the 4th parameter, the two operands
3028 ///     element-wise.  The result is written to the first operand.
3029 ///
3030 ///     Different reduction algorithms are implemented in different
3031 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3032 ///     the essential reduction step.  Therefore, based on the 4th
3033 ///     parameter, this function behaves slightly differently to
3034 ///     cooperate with the runtime to ensure correctness under
3035 ///     different circumstances.
3036 ///
3037 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3038 ///     reduced variables across warps.  It tunnels, through CUDA
3039 ///     shared memory, the thread-private data of type 'ReduceData'
3040 ///     from lane 0 of each warp to a lane in the first warp.
3041 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3042 ///    The last team writes the global reduced value to memory.
3043 ///
3044 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3045 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3046 ///             scratchpadCopyFn, loadAndReduceFn)
3047 ///
3048 ///     'scratchpadCopyFn' is a helper that stores reduced
3049 ///     data from the team master to a scratchpad array in
3050 ///     global memory.
3051 ///
3052 ///     'loadAndReduceFn' is a helper that loads data from
3053 ///     the scratchpad array and reduces it with the input
3054 ///     operand.
3055 ///
3056 ///     These compiler generated functions hide address
3057 ///     calculation and alignment information from the runtime.
3058 /// 5. if ret == 1:
3059 ///     The team master of the last team stores the reduced
3060 ///     result to the globals in memory.
3061 ///     foo += reduceData.foo; bar *= reduceData.bar
3062 ///
3063 ///
3064 /// Warp Reduction Algorithms
3065 ///
3066 /// On the warp level, we have three algorithms implemented in the
3067 /// OpenMP runtime depending on the number of active lanes:
3068 ///
3069 /// Full Warp Reduction
3070 ///
3071 /// The reduce algorithm within a warp where all lanes are active
3072 /// is implemented in the runtime as follows:
3073 ///
3074 /// full_warp_reduce(void *reduce_data,
3075 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3076 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3077 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3078 /// }
3079 ///
3080 /// The algorithm completes in log(2, WARPSIZE) steps.
3081 ///
3082 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3083 /// not used therefore we save instructions by not retrieving lane_id
3084 /// from the corresponding special registers.  The 4th parameter, which
3085 /// represents the version of the algorithm being used, is set to 0 to
3086 /// signify full warp reduction.
3087 ///
3088 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3089 ///
3090 /// #reduce_elem refers to an element in the local lane's data structure
3091 /// #remote_elem is retrieved from a remote lane
3092 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3093 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3094 ///
3095 /// Contiguous Partial Warp Reduction
3096 ///
3097 /// This reduce algorithm is used within a warp where only the first
3098 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3099 /// number of OpenMP threads in a parallel region is not a multiple of
3100 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3101 ///
3102 /// void
3103 /// contiguous_partial_reduce(void *reduce_data,
3104 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3105 ///                           int size, int lane_id) {
3106 ///   int curr_size;
3107 ///   int offset;
3108 ///   curr_size = size;
3109 ///   mask = curr_size/2;
3110 ///   while (offset>0) {
3111 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3112 ///     curr_size = (curr_size+1)/2;
3113 ///     offset = curr_size/2;
3114 ///   }
3115 /// }
3116 ///
3117 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3118 ///
3119 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3120 /// if (lane_id < offset)
3121 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3122 /// else
3123 ///     reduce_elem = remote_elem
3124 ///
3125 /// This algorithm assumes that the data to be reduced are located in a
3126 /// contiguous subset of lanes starting from the first.  When there is
3127 /// an odd number of active lanes, the data in the last lane is not
3128 /// aggregated with any other lane's dat but is instead copied over.
3129 ///
3130 /// Dispersed Partial Warp Reduction
3131 ///
3132 /// This algorithm is used within a warp when any discontiguous subset of
3133 /// lanes are active.  It is used to implement the reduction operation
3134 /// across lanes in an OpenMP simd region or in a nested parallel region.
3135 ///
3136 /// void
3137 /// dispersed_partial_reduce(void *reduce_data,
3138 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3139 ///   int size, remote_id;
3140 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3141 ///   do {
3142 ///       remote_id = next_active_lane_id_right_after_me();
3143 ///       # the above function returns 0 of no active lane
3144 ///       # is present right after the current lane.
3145 ///       size = number_of_active_lanes_in_this_warp();
3146 ///       logical_lane_id /= 2;
3147 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3148 ///                       remote_id-1-threadIdx.x, 2);
3149 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3150 /// }
3151 ///
3152 /// There is no assumption made about the initial state of the reduction.
3153 /// Any number of lanes (>=1) could be active at any position.  The reduction
3154 /// result is returned in the first active lane.
3155 ///
3156 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3157 ///
3158 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3159 /// if (lane_id % 2 == 0 && offset > 0)
3160 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3161 /// else
3162 ///     reduce_elem = remote_elem
3163 ///
3164 ///
3165 /// Intra-Team Reduction
3166 ///
3167 /// This function, as implemented in the runtime call
3168 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3169 /// threads in a team.  It first reduces within a warp using the
3170 /// aforementioned algorithms.  We then proceed to gather all such
3171 /// reduced values at the first warp.
3172 ///
3173 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3174 /// data from each of the "warp master" (zeroth lane of each warp, where
3175 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3176 /// a mathematical sense) the problem of reduction across warp masters in
3177 /// a block to the problem of warp reduction.
3178 ///
3179 ///
3180 /// Inter-Team Reduction
3181 ///
3182 /// Once a team has reduced its data to a single value, it is stored in
3183 /// a global scratchpad array.  Since each team has a distinct slot, this
3184 /// can be done without locking.
3185 ///
3186 /// The last team to write to the scratchpad array proceeds to reduce the
3187 /// scratchpad array.  One or more workers in the last team use the helper
3188 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3189 /// the k'th worker reduces every k'th element.
3190 ///
3191 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3192 /// reduce across workers and compute a globally reduced value.
3193 ///
3194 void CGOpenMPRuntimeGPU::emitReduction(
3195     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3196     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3197     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3198   if (!CGF.HaveInsertPoint())
3199     return;
3200 
3201   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3202 #ifndef NDEBUG
3203   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3204 #endif
3205 
3206   if (Options.SimpleReduction) {
3207     assert(!TeamsReduction && !ParallelReduction &&
3208            "Invalid reduction selection in emitReduction.");
3209     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3210                                    ReductionOps, Options);
3211     return;
3212   }
3213 
3214   assert((TeamsReduction || ParallelReduction) &&
3215          "Invalid reduction selection in emitReduction.");
3216 
3217   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3218   // RedList, shuffle_reduce_func, interwarp_copy_func);
3219   // or
3220   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3221   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3222   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3223 
3224   llvm::Value *Res;
3225   ASTContext &C = CGM.getContext();
3226   // 1. Build a list of reduction variables.
3227   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3228   auto Size = RHSExprs.size();
3229   for (const Expr *E : Privates) {
3230     if (E->getType()->isVariablyModifiedType())
3231       // Reserve place for array size.
3232       ++Size;
3233   }
3234   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3235   QualType ReductionArrayTy =
3236       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3237                              /*IndexTypeQuals=*/0);
3238   Address ReductionList =
3239       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3240   auto IPriv = Privates.begin();
3241   unsigned Idx = 0;
3242   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3243     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3244     CGF.Builder.CreateStore(
3245         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3246             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3247         Elem);
3248     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3249       // Store array size.
3250       ++Idx;
3251       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3252       llvm::Value *Size = CGF.Builder.CreateIntCast(
3253           CGF.getVLASize(
3254                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3255               .NumElts,
3256           CGF.SizeTy, /*isSigned=*/false);
3257       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3258                               Elem);
3259     }
3260   }
3261 
3262   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3263       ReductionList.getPointer(), CGF.VoidPtrTy);
3264   llvm::Function *ReductionFn = emitReductionFunction(
3265       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3266       LHSExprs, RHSExprs, ReductionOps);
3267   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3268   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3269       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3270   llvm::Value *InterWarpCopyFn =
3271       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3272 
3273   if (ParallelReduction) {
3274     llvm::Value *Args[] = {RTLoc,
3275                            ThreadId,
3276                            CGF.Builder.getInt32(RHSExprs.size()),
3277                            ReductionArrayTySize,
3278                            RL,
3279                            ShuffleAndReduceFn,
3280                            InterWarpCopyFn};
3281 
3282     Res = CGF.EmitRuntimeCall(
3283         OMPBuilder.getOrCreateRuntimeFunction(
3284             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3285         Args);
3286   } else {
3287     assert(TeamsReduction && "expected teams reduction.");
3288     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3289     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3290     int Cnt = 0;
3291     for (const Expr *DRE : Privates) {
3292       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3293       ++Cnt;
3294     }
3295     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3296         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3297         C.getLangOpts().OpenMPCUDAReductionBufNum);
3298     TeamsReductions.push_back(TeamReductionRec);
3299     if (!KernelTeamsReductionPtr) {
3300       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3301           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3302           llvm::GlobalValue::InternalLinkage, nullptr,
3303           "_openmp_teams_reductions_buffer_$_$ptr");
3304     }
3305     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3306         Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3307         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3308     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3309         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3310     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3311         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3312         ReductionFn);
3313     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3314         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3315     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3316         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3317         ReductionFn);
3318 
3319     llvm::Value *Args[] = {
3320         RTLoc,
3321         ThreadId,
3322         GlobalBufferPtr,
3323         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3324         RL,
3325         ShuffleAndReduceFn,
3326         InterWarpCopyFn,
3327         GlobalToBufferCpyFn,
3328         GlobalToBufferRedFn,
3329         BufferToGlobalCpyFn,
3330         BufferToGlobalRedFn};
3331 
3332     Res = CGF.EmitRuntimeCall(
3333         OMPBuilder.getOrCreateRuntimeFunction(
3334             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3335         Args);
3336   }
3337 
3338   // 5. Build if (res == 1)
3339   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3340   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3341   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3342       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3343   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3344 
3345   // 6. Build then branch: where we have reduced values in the master
3346   //    thread in each team.
3347   //    __kmpc_end_reduce{_nowait}(<gtid>);
3348   //    break;
3349   CGF.EmitBlock(ThenBB);
3350 
3351   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3352   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3353                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3354     auto IPriv = Privates.begin();
3355     auto ILHS = LHSExprs.begin();
3356     auto IRHS = RHSExprs.begin();
3357     for (const Expr *E : ReductionOps) {
3358       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3359                                   cast<DeclRefExpr>(*IRHS));
3360       ++IPriv;
3361       ++ILHS;
3362       ++IRHS;
3363     }
3364   };
3365   llvm::Value *EndArgs[] = {ThreadId};
3366   RegionCodeGenTy RCG(CodeGen);
3367   NVPTXActionTy Action(
3368       nullptr, llvm::None,
3369       OMPBuilder.getOrCreateRuntimeFunction(
3370           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3371       EndArgs);
3372   RCG.setAction(Action);
3373   RCG(CGF);
3374   // There is no need to emit line number for unconditional branch.
3375   (void)ApplyDebugLocation::CreateEmpty(CGF);
3376   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3377 }
3378 
3379 const VarDecl *
3380 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3381                                        const VarDecl *NativeParam) const {
3382   if (!NativeParam->getType()->isReferenceType())
3383     return NativeParam;
3384   QualType ArgType = NativeParam->getType();
3385   QualifierCollector QC;
3386   const Type *NonQualTy = QC.strip(ArgType);
3387   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3388   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3389     if (Attr->getCaptureKind() == OMPC_map) {
3390       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3391                                                         LangAS::opencl_global);
3392     }
3393   }
3394   ArgType = CGM.getContext().getPointerType(PointeeTy);
3395   QC.addRestrict();
3396   enum { NVPTX_local_addr = 5 };
3397   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3398   ArgType = QC.apply(CGM.getContext(), ArgType);
3399   if (isa<ImplicitParamDecl>(NativeParam))
3400     return ImplicitParamDecl::Create(
3401         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3402         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3403   return ParmVarDecl::Create(
3404       CGM.getContext(),
3405       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3406       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3407       NativeParam->getIdentifier(), ArgType,
3408       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3409 }
3410 
3411 Address
3412 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3413                                           const VarDecl *NativeParam,
3414                                           const VarDecl *TargetParam) const {
3415   assert(NativeParam != TargetParam &&
3416          NativeParam->getType()->isReferenceType() &&
3417          "Native arg must not be the same as target arg.");
3418   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3419   QualType NativeParamType = NativeParam->getType();
3420   QualifierCollector QC;
3421   const Type *NonQualTy = QC.strip(NativeParamType);
3422   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3423   unsigned NativePointeeAddrSpace =
3424       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3425   QualType TargetTy = TargetParam->getType();
3426   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3427       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3428   // First cast to generic.
3429   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3430       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3431           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3432   // Cast from generic to native address space.
3433   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3434       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3435           cast<llvm::PointerType>(TargetAddr->getType()),
3436                                   NativePointeeAddrSpace));
3437   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3438   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3439                         NativeParamType);
3440   return NativeParamAddr;
3441 }
3442 
3443 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3444     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3445     ArrayRef<llvm::Value *> Args) const {
3446   SmallVector<llvm::Value *, 4> TargetArgs;
3447   TargetArgs.reserve(Args.size());
3448   auto *FnType = OutlinedFn.getFunctionType();
3449   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3450     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3451       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3452       break;
3453     }
3454     llvm::Type *TargetType = FnType->getParamType(I);
3455     llvm::Value *NativeArg = Args[I];
3456     if (!TargetType->isPointerTy()) {
3457       TargetArgs.emplace_back(NativeArg);
3458       continue;
3459     }
3460     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3461         NativeArg, llvm::PointerType::getWithSamePointeeType(
3462             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3463     TargetArgs.emplace_back(
3464         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3465   }
3466   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3467 }
3468 
3469 /// Emit function which wraps the outline parallel region
3470 /// and controls the arguments which are passed to this function.
3471 /// The wrapper ensures that the outlined function is called
3472 /// with the correct arguments when data is shared.
3473 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3474     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3475   ASTContext &Ctx = CGM.getContext();
3476   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3477 
3478   // Create a function that takes as argument the source thread.
3479   FunctionArgList WrapperArgs;
3480   QualType Int16QTy =
3481       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3482   QualType Int32QTy =
3483       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3484   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3485                                      /*Id=*/nullptr, Int16QTy,
3486                                      ImplicitParamDecl::Other);
3487   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3488                                /*Id=*/nullptr, Int32QTy,
3489                                ImplicitParamDecl::Other);
3490   WrapperArgs.emplace_back(&ParallelLevelArg);
3491   WrapperArgs.emplace_back(&WrapperArg);
3492 
3493   const CGFunctionInfo &CGFI =
3494       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3495 
3496   auto *Fn = llvm::Function::Create(
3497       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3498       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3499 
3500   // Ensure we do not inline the function. This is trivially true for the ones
3501   // passed to __kmpc_fork_call but the ones calles in serialized regions
3502   // could be inlined. This is not a perfect but it is closer to the invariant
3503   // we want, namely, every data environment starts with a new function.
3504   // TODO: We should pass the if condition to the runtime function and do the
3505   //       handling there. Much cleaner code.
3506   Fn->addFnAttr(llvm::Attribute::NoInline);
3507 
3508   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3509   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3510   Fn->setDoesNotRecurse();
3511 
3512   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3513   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3514                     D.getBeginLoc(), D.getBeginLoc());
3515 
3516   const auto *RD = CS.getCapturedRecordDecl();
3517   auto CurField = RD->field_begin();
3518 
3519   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3520                                                       /*Name=*/".zero.addr");
3521   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3522   // Get the array of arguments.
3523   SmallVector<llvm::Value *, 8> Args;
3524 
3525   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3526   Args.emplace_back(ZeroAddr.getPointer());
3527 
3528   CGBuilderTy &Bld = CGF.Builder;
3529   auto CI = CS.capture_begin();
3530 
3531   // Use global memory for data sharing.
3532   // Handle passing of global args to workers.
3533   Address GlobalArgs =
3534       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3535   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3536   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3537   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3538                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3539                       DataSharingArgs);
3540 
3541   // Retrieve the shared variables from the list of references returned
3542   // by the runtime. Pass the variables to the outlined function.
3543   Address SharedArgListAddress = Address::invalid();
3544   if (CS.capture_size() > 0 ||
3545       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3546     SharedArgListAddress = CGF.EmitLoadOfPointer(
3547         GlobalArgs, CGF.getContext()
3548                         .getPointerType(CGF.getContext().getPointerType(
3549                             CGF.getContext().VoidPtrTy))
3550                         .castAs<PointerType>());
3551   }
3552   unsigned Idx = 0;
3553   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3554     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3555     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3556         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3557     llvm::Value *LB = CGF.EmitLoadOfScalar(
3558         TypedAddress,
3559         /*Volatile=*/false,
3560         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3561         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3562     Args.emplace_back(LB);
3563     ++Idx;
3564     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3565     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3566         Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3567     llvm::Value *UB = CGF.EmitLoadOfScalar(
3568         TypedAddress,
3569         /*Volatile=*/false,
3570         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3571         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3572     Args.emplace_back(UB);
3573     ++Idx;
3574   }
3575   if (CS.capture_size() > 0) {
3576     ASTContext &CGFContext = CGF.getContext();
3577     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3578       QualType ElemTy = CurField->getType();
3579       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3580       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3581           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3582           CGF.ConvertTypeForMem(ElemTy));
3583       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3584                                               /*Volatile=*/false,
3585                                               CGFContext.getPointerType(ElemTy),
3586                                               CI->getLocation());
3587       if (CI->capturesVariableByCopy() &&
3588           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3589         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3590                               CI->getLocation());
3591       }
3592       Args.emplace_back(Arg);
3593     }
3594   }
3595 
3596   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3597   CGF.FinishFunction();
3598   return Fn;
3599 }
3600 
3601 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3602                                               const Decl *D) {
3603   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3604     return;
3605 
3606   assert(D && "Expected function or captured|block decl.");
3607   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3608          "Function is registered already.");
3609   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3610          "Team is set but not processed.");
3611   const Stmt *Body = nullptr;
3612   bool NeedToDelayGlobalization = false;
3613   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3614     Body = FD->getBody();
3615   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3616     Body = BD->getBody();
3617   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3618     Body = CD->getBody();
3619     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3620     if (NeedToDelayGlobalization &&
3621         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3622       return;
3623   }
3624   if (!Body)
3625     return;
3626   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3627   VarChecker.Visit(Body);
3628   const RecordDecl *GlobalizedVarsRecord =
3629       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3630   TeamAndReductions.first = nullptr;
3631   TeamAndReductions.second.clear();
3632   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3633       VarChecker.getEscapedVariableLengthDecls();
3634   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3635     return;
3636   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3637   I->getSecond().MappedParams =
3638       std::make_unique<CodeGenFunction::OMPMapVars>();
3639   I->getSecond().EscapedParameters.insert(
3640       VarChecker.getEscapedParameters().begin(),
3641       VarChecker.getEscapedParameters().end());
3642   I->getSecond().EscapedVariableLengthDecls.append(
3643       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3644   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3645   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3646     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3647     Data.insert(std::make_pair(VD, MappedVarData()));
3648   }
3649   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3650     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3651     VarChecker.Visit(Body);
3652     I->getSecond().SecondaryLocalVarData.emplace();
3653     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3654     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3655       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3656       Data.insert(std::make_pair(VD, MappedVarData()));
3657     }
3658   }
3659   if (!NeedToDelayGlobalization) {
3660     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3661     struct GlobalizationScope final : EHScopeStack::Cleanup {
3662       GlobalizationScope() = default;
3663 
3664       void Emit(CodeGenFunction &CGF, Flags flags) override {
3665         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3666             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3667       }
3668     };
3669     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3670   }
3671 }
3672 
3673 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3674                                                         const VarDecl *VD) {
3675   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3676     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3677     auto AS = LangAS::Default;
3678     switch (A->getAllocatorType()) {
3679       // Use the default allocator here as by default local vars are
3680       // threadlocal.
3681     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3682     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3683     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3684     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3685     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3686       // Follow the user decision - use default allocation.
3687       return Address::invalid();
3688     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3689       // TODO: implement aupport for user-defined allocators.
3690       return Address::invalid();
3691     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3692       AS = LangAS::cuda_constant;
3693       break;
3694     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3695       AS = LangAS::cuda_shared;
3696       break;
3697     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3698     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3699       break;
3700     }
3701     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3702     auto *GV = new llvm::GlobalVariable(
3703         CGM.getModule(), VarTy, /*isConstant=*/false,
3704         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3705         VD->getName(),
3706         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3707         CGM.getContext().getTargetAddressSpace(AS));
3708     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3709     GV->setAlignment(Align.getAsAlign());
3710     return Address(
3711         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3712             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3713                     VD->getType().getAddressSpace()))),
3714         VarTy, Align);
3715   }
3716 
3717   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3718     return Address::invalid();
3719 
3720   VD = VD->getCanonicalDecl();
3721   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3722   if (I == FunctionGlobalizedDecls.end())
3723     return Address::invalid();
3724   auto VDI = I->getSecond().LocalVarData.find(VD);
3725   if (VDI != I->getSecond().LocalVarData.end())
3726     return VDI->second.PrivateAddr;
3727   if (VD->hasAttrs()) {
3728     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3729          E(VD->attr_end());
3730          IT != E; ++IT) {
3731       auto VDI = I->getSecond().LocalVarData.find(
3732           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3733               ->getCanonicalDecl());
3734       if (VDI != I->getSecond().LocalVarData.end())
3735         return VDI->second.PrivateAddr;
3736     }
3737   }
3738 
3739   return Address::invalid();
3740 }
3741 
3742 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3743   FunctionGlobalizedDecls.erase(CGF.CurFn);
3744   CGOpenMPRuntime::functionFinished(CGF);
3745 }
3746 
3747 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3748     CodeGenFunction &CGF, const OMPLoopDirective &S,
3749     OpenMPDistScheduleClauseKind &ScheduleKind,
3750     llvm::Value *&Chunk) const {
3751   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3752   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3753     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3754     Chunk = CGF.EmitScalarConversion(
3755         RT.getGPUNumThreads(CGF),
3756         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3757         S.getIterationVariable()->getType(), S.getBeginLoc());
3758     return;
3759   }
3760   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3761       CGF, S, ScheduleKind, Chunk);
3762 }
3763 
3764 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3765     CodeGenFunction &CGF, const OMPLoopDirective &S,
3766     OpenMPScheduleClauseKind &ScheduleKind,
3767     const Expr *&ChunkExpr) const {
3768   ScheduleKind = OMPC_SCHEDULE_static;
3769   // Chunk size is 1 in this case.
3770   llvm::APInt ChunkSize(32, 1);
3771   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3772       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3773       SourceLocation());
3774 }
3775 
3776 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3777     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3778   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3779          " Expected target-based directive.");
3780   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3781   for (const CapturedStmt::Capture &C : CS->captures()) {
3782     // Capture variables captured by reference in lambdas for target-based
3783     // directives.
3784     if (!C.capturesVariable())
3785       continue;
3786     const VarDecl *VD = C.getCapturedVar();
3787     const auto *RD = VD->getType()
3788                          .getCanonicalType()
3789                          .getNonReferenceType()
3790                          ->getAsCXXRecordDecl();
3791     if (!RD || !RD->isLambda())
3792       continue;
3793     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3794     LValue VDLVal;
3795     if (VD->getType().getCanonicalType()->isReferenceType())
3796       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3797     else
3798       VDLVal = CGF.MakeAddrLValue(
3799           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3800     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3801     FieldDecl *ThisCapture = nullptr;
3802     RD->getCaptureFields(Captures, ThisCapture);
3803     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3804       LValue ThisLVal =
3805           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3806       llvm::Value *CXXThis = CGF.LoadCXXThis();
3807       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3808     }
3809     for (const LambdaCapture &LC : RD->captures()) {
3810       if (LC.getCaptureKind() != LCK_ByRef)
3811         continue;
3812       const VarDecl *VD = LC.getCapturedVar();
3813       if (!CS->capturesVariable(VD))
3814         continue;
3815       auto It = Captures.find(VD);
3816       assert(It != Captures.end() && "Found lambda capture without field.");
3817       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3818       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3819       if (VD->getType().getCanonicalType()->isReferenceType())
3820         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3821                                                VD->getType().getCanonicalType())
3822                      .getAddress(CGF);
3823       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3824     }
3825   }
3826 }
3827 
3828 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3829                                                             LangAS &AS) {
3830   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3831     return false;
3832   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3833   switch(A->getAllocatorType()) {
3834   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3835   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3836   // Not supported, fallback to the default mem space.
3837   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3838   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3839   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3840   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3841   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3842     AS = LangAS::Default;
3843     return true;
3844   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3845     AS = LangAS::cuda_constant;
3846     return true;
3847   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3848     AS = LangAS::cuda_shared;
3849     return true;
3850   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3851     llvm_unreachable("Expected predefined allocator for the variables with the "
3852                      "static storage.");
3853   }
3854   return false;
3855 }
3856 
3857 // Get current CudaArch and ignore any unknown values
3858 static CudaArch getCudaArch(CodeGenModule &CGM) {
3859   if (!CGM.getTarget().hasFeature("ptx"))
3860     return CudaArch::UNKNOWN;
3861   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3862     if (Feature.getValue()) {
3863       CudaArch Arch = StringToCudaArch(Feature.getKey());
3864       if (Arch != CudaArch::UNKNOWN)
3865         return Arch;
3866     }
3867   }
3868   return CudaArch::UNKNOWN;
3869 }
3870 
3871 /// Check to see if target architecture supports unified addressing which is
3872 /// a restriction for OpenMP requires clause "unified_shared_memory".
3873 void CGOpenMPRuntimeGPU::processRequiresDirective(
3874     const OMPRequiresDecl *D) {
3875   for (const OMPClause *Clause : D->clauselists()) {
3876     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3877       CudaArch Arch = getCudaArch(CGM);
3878       switch (Arch) {
3879       case CudaArch::SM_20:
3880       case CudaArch::SM_21:
3881       case CudaArch::SM_30:
3882       case CudaArch::SM_32:
3883       case CudaArch::SM_35:
3884       case CudaArch::SM_37:
3885       case CudaArch::SM_50:
3886       case CudaArch::SM_52:
3887       case CudaArch::SM_53: {
3888         SmallString<256> Buffer;
3889         llvm::raw_svector_ostream Out(Buffer);
3890         Out << "Target architecture " << CudaArchToString(Arch)
3891             << " does not support unified addressing";
3892         CGM.Error(Clause->getBeginLoc(), Out.str());
3893         return;
3894       }
3895       case CudaArch::SM_60:
3896       case CudaArch::SM_61:
3897       case CudaArch::SM_62:
3898       case CudaArch::SM_70:
3899       case CudaArch::SM_72:
3900       case CudaArch::SM_75:
3901       case CudaArch::SM_80:
3902       case CudaArch::SM_86:
3903       case CudaArch::GFX600:
3904       case CudaArch::GFX601:
3905       case CudaArch::GFX602:
3906       case CudaArch::GFX700:
3907       case CudaArch::GFX701:
3908       case CudaArch::GFX702:
3909       case CudaArch::GFX703:
3910       case CudaArch::GFX704:
3911       case CudaArch::GFX705:
3912       case CudaArch::GFX801:
3913       case CudaArch::GFX802:
3914       case CudaArch::GFX803:
3915       case CudaArch::GFX805:
3916       case CudaArch::GFX810:
3917       case CudaArch::GFX900:
3918       case CudaArch::GFX902:
3919       case CudaArch::GFX904:
3920       case CudaArch::GFX906:
3921       case CudaArch::GFX908:
3922       case CudaArch::GFX909:
3923       case CudaArch::GFX90a:
3924       case CudaArch::GFX90c:
3925       case CudaArch::GFX940:
3926       case CudaArch::GFX1010:
3927       case CudaArch::GFX1011:
3928       case CudaArch::GFX1012:
3929       case CudaArch::GFX1013:
3930       case CudaArch::GFX1030:
3931       case CudaArch::GFX1031:
3932       case CudaArch::GFX1032:
3933       case CudaArch::GFX1033:
3934       case CudaArch::GFX1034:
3935       case CudaArch::GFX1035:
3936       case CudaArch::GFX1036:
3937       case CudaArch::Generic:
3938       case CudaArch::UNUSED:
3939       case CudaArch::UNKNOWN:
3940         break;
3941       case CudaArch::LAST:
3942         llvm_unreachable("Unexpected Cuda arch.");
3943       }
3944     }
3945   }
3946   CGOpenMPRuntime::processRequiresDirective(D);
3947 }
3948 
3949 void CGOpenMPRuntimeGPU::clear() {
3950 
3951   if (!TeamsReductions.empty()) {
3952     ASTContext &C = CGM.getContext();
3953     RecordDecl *StaticRD = C.buildImplicitRecord(
3954         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3955     StaticRD->startDefinition();
3956     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3957       QualType RecTy = C.getRecordType(TeamReductionRec);
3958       auto *Field = FieldDecl::Create(
3959           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3960           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3961           /*BW=*/nullptr, /*Mutable=*/false,
3962           /*InitStyle=*/ICIS_NoInit);
3963       Field->setAccess(AS_public);
3964       StaticRD->addDecl(Field);
3965     }
3966     StaticRD->completeDefinition();
3967     QualType StaticTy = C.getRecordType(StaticRD);
3968     llvm::Type *LLVMReductionsBufferTy =
3969         CGM.getTypes().ConvertTypeForMem(StaticTy);
3970     // FIXME: nvlink does not handle weak linkage correctly (object with the
3971     // different size are reported as erroneous).
3972     // Restore CommonLinkage as soon as nvlink is fixed.
3973     auto *GV = new llvm::GlobalVariable(
3974         CGM.getModule(), LLVMReductionsBufferTy,
3975         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3976         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3977         "_openmp_teams_reductions_buffer_$_");
3978     KernelTeamsReductionPtr->setInitializer(
3979         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3980                                                              CGM.VoidPtrTy));
3981   }
3982   CGOpenMPRuntime::clear();
3983 }
3984 
3985 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3986   CGBuilderTy &Bld = CGF.Builder;
3987   llvm::Module *M = &CGF.CGM.getModule();
3988   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3989   llvm::Function *F = M->getFunction(LocSize);
3990   if (!F) {
3991     F = llvm::Function::Create(
3992         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3993         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3994   }
3995   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3996 }
3997 
3998 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3999   ArrayRef<llvm::Value *> Args{};
4000   return CGF.EmitRuntimeCall(
4001       OMPBuilder.getOrCreateRuntimeFunction(
4002           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
4003       Args);
4004 }
4005 
4006 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
4007   ArrayRef<llvm::Value *> Args{};
4008   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
4009                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
4010                              Args);
4011 }
4012