1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   if (!isa<llvm::Function>(Addr))
1129     return;
1130   llvm::Module &M = CGM.getModule();
1131   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1132 
1133   // Get "nvvm.annotations" metadata node
1134   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1135 
1136   llvm::Metadata *MDVals[] = {
1137       llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
1138       llvm::ConstantAsMetadata::get(
1139           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1140   // Append metadata to nvvm.annotations
1141   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1142 }
1143 
1144 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1145     const OMPExecutableDirective &D, StringRef ParentName,
1146     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1147     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1148   if (!IsOffloadEntry) // Nothing to do.
1149     return;
1150 
1151   assert(!ParentName.empty() && "Invalid target region parent name!");
1152 
1153   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1154   if (Mode)
1155     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1156                    CodeGen);
1157   else
1158     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1159                       CodeGen);
1160 
1161   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1162 }
1163 
1164 namespace {
1165 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1166 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1167 enum ModeFlagsTy : unsigned {
1168   /// Bit set to 1 when in SPMD mode.
1169   KMP_IDENT_SPMD_MODE = 0x01,
1170   /// Bit set to 1 when a simplified runtime is used.
1171   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1172   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1173 };
1174 
1175 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1176 static const ModeFlagsTy UndefinedMode =
1177     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1178 } // anonymous namespace
1179 
1180 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1181   switch (getExecutionMode()) {
1182   case EM_SPMD:
1183     if (requiresFullRuntime())
1184       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1185     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1186   case EM_NonSPMD:
1187     assert(requiresFullRuntime() && "Expected full runtime.");
1188     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1189   case EM_Unknown:
1190     return UndefinedMode;
1191   }
1192   llvm_unreachable("Unknown flags are requested.");
1193 }
1194 
1195 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1196     : CGOpenMPRuntime(CGM, "_", "$") {
1197   if (!CGM.getLangOpts().OpenMPIsDevice)
1198     llvm_unreachable("OpenMP can only handle device code.");
1199 
1200   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1201   if (CGM.getLangOpts().OpenMPTargetNewRuntime) {
1202     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1203                                 "__omp_rtl_debug_kind");
1204     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1205                                 "__omp_rtl_assume_teams_oversubscription");
1206     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1207                                 "__omp_rtl_assume_threads_oversubscription");
1208   }
1209 }
1210 
1211 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1212                                               ProcBindKind ProcBind,
1213                                               SourceLocation Loc) {
1214   // Do nothing in case of SPMD mode and L0 parallel.
1215   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1216     return;
1217 
1218   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1219 }
1220 
1221 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1222                                                 llvm::Value *NumThreads,
1223                                                 SourceLocation Loc) {
1224   // Nothing to do.
1225 }
1226 
1227 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1228                                               const Expr *NumTeams,
1229                                               const Expr *ThreadLimit,
1230                                               SourceLocation Loc) {}
1231 
1232 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1233     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1234     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1235   // Emit target region as a standalone region.
1236   class NVPTXPrePostActionTy : public PrePostActionTy {
1237     bool &IsInParallelRegion;
1238     bool PrevIsInParallelRegion;
1239 
1240   public:
1241     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1242         : IsInParallelRegion(IsInParallelRegion) {}
1243     void Enter(CodeGenFunction &CGF) override {
1244       PrevIsInParallelRegion = IsInParallelRegion;
1245       IsInParallelRegion = true;
1246     }
1247     void Exit(CodeGenFunction &CGF) override {
1248       IsInParallelRegion = PrevIsInParallelRegion;
1249     }
1250   } Action(IsInParallelRegion);
1251   CodeGen.setAction(Action);
1252   bool PrevIsInTTDRegion = IsInTTDRegion;
1253   IsInTTDRegion = false;
1254   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1255   IsInTargetMasterThreadRegion = false;
1256   auto *OutlinedFun =
1257       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1258           D, ThreadIDVar, InnermostKind, CodeGen));
1259   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1260   IsInTTDRegion = PrevIsInTTDRegion;
1261   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1262       !IsInParallelRegion) {
1263     llvm::Function *WrapperFun =
1264         createParallelDataSharingWrapper(OutlinedFun, D);
1265     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1266   }
1267 
1268   return OutlinedFun;
1269 }
1270 
1271 /// Get list of lastprivate variables from the teams distribute ... or
1272 /// teams {distribute ...} directives.
1273 static void
1274 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1275                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1276   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1277          "expected teams directive.");
1278   const OMPExecutableDirective *Dir = &D;
1279   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1280     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1281             Ctx,
1282             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1283                 /*IgnoreCaptured=*/true))) {
1284       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1285       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1286         Dir = nullptr;
1287     }
1288   }
1289   if (!Dir)
1290     return;
1291   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1292     for (const Expr *E : C->getVarRefs())
1293       Vars.push_back(getPrivateItem(E));
1294   }
1295 }
1296 
1297 /// Get list of reduction variables from the teams ... directives.
1298 static void
1299 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1300                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1301   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1302          "expected teams directive.");
1303   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1304     for (const Expr *E : C->privates())
1305       Vars.push_back(getPrivateItem(E));
1306   }
1307 }
1308 
1309 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1310     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1311     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1312   SourceLocation Loc = D.getBeginLoc();
1313 
1314   const RecordDecl *GlobalizedRD = nullptr;
1315   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1316   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1317   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1318   // Globalize team reductions variable unconditionally in all modes.
1319   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1320     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1321   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1322     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1323     if (!LastPrivatesReductions.empty()) {
1324       GlobalizedRD = ::buildRecordForGlobalizedVars(
1325           CGM.getContext(), llvm::None, LastPrivatesReductions,
1326           MappedDeclsFields, WarpSize);
1327     }
1328   } else if (!LastPrivatesReductions.empty()) {
1329     assert(!TeamAndReductions.first &&
1330            "Previous team declaration is not expected.");
1331     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1332     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1333   }
1334 
1335   // Emit target region as a standalone region.
1336   class NVPTXPrePostActionTy : public PrePostActionTy {
1337     SourceLocation &Loc;
1338     const RecordDecl *GlobalizedRD;
1339     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1340         &MappedDeclsFields;
1341 
1342   public:
1343     NVPTXPrePostActionTy(
1344         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1345         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1346             &MappedDeclsFields)
1347         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1348           MappedDeclsFields(MappedDeclsFields) {}
1349     void Enter(CodeGenFunction &CGF) override {
1350       auto &Rt =
1351           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1352       if (GlobalizedRD) {
1353         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1354         I->getSecond().MappedParams =
1355             std::make_unique<CodeGenFunction::OMPMapVars>();
1356         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1357         for (const auto &Pair : MappedDeclsFields) {
1358           assert(Pair.getFirst()->isCanonicalDecl() &&
1359                  "Expected canonical declaration");
1360           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1361         }
1362       }
1363       Rt.emitGenericVarsProlog(CGF, Loc);
1364     }
1365     void Exit(CodeGenFunction &CGF) override {
1366       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1367           .emitGenericVarsEpilog(CGF);
1368     }
1369   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1370   CodeGen.setAction(Action);
1371   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1372       D, ThreadIDVar, InnermostKind, CodeGen);
1373 
1374   return OutlinedFun;
1375 }
1376 
1377 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1378                                                  SourceLocation Loc,
1379                                                  bool WithSPMDCheck) {
1380   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1381       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1382     return;
1383 
1384   CGBuilderTy &Bld = CGF.Builder;
1385 
1386   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1387   if (I == FunctionGlobalizedDecls.end())
1388     return;
1389 
1390   for (auto &Rec : I->getSecond().LocalVarData) {
1391     const auto *VD = cast<VarDecl>(Rec.first);
1392     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1393     QualType VarTy = VD->getType();
1394 
1395     // Get the local allocation of a firstprivate variable before sharing
1396     llvm::Value *ParValue;
1397     if (EscapedParam) {
1398       LValue ParLVal =
1399           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1400       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1401     }
1402 
1403     // Allocate space for the variable to be globalized
1404     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1405     llvm::CallBase *VoidPtr =
1406         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1407                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1408                             AllocArgs, VD->getName());
1409     // FIXME: We should use the variables actual alignment as an argument.
1410     VoidPtr->addRetAttr(llvm::Attribute::get(
1411         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1412         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1413 
1414     // Cast the void pointer and get the address of the globalized variable.
1415     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1416     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1417         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1418     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1419     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1420     Rec.second.GlobalizedVal = VoidPtr;
1421 
1422     // Assign the local allocation to the newly globalized location.
1423     if (EscapedParam) {
1424       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1425       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1426     }
1427     if (auto *DI = CGF.getDebugInfo())
1428       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1429   }
1430   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1431     // Use actual memory size of the VLA object including the padding
1432     // for alignment purposes.
1433     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1434     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1435     Size = Bld.CreateNUWAdd(
1436         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1437     llvm::Value *AlignVal =
1438         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1439 
1440     Size = Bld.CreateUDiv(Size, AlignVal);
1441     Size = Bld.CreateNUWMul(Size, AlignVal);
1442 
1443     // Allocate space for this VLA object to be globalized.
1444     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1445     llvm::CallBase *VoidPtr =
1446         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1447                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1448                             AllocArgs, VD->getName());
1449     VoidPtr->addRetAttr(
1450         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1451                              CGM.getContext().getTargetInfo().getNewAlign()));
1452 
1453     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1454         std::pair<llvm::Value *, llvm::Value *>(
1455             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1456     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1457                                      CGM.getContext().getDeclAlign(VD),
1458                                      AlignmentSource::Decl);
1459     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1460                                             Base.getAddress(CGF));
1461   }
1462   I->getSecond().MappedParams->apply(CGF);
1463 }
1464 
1465 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1466                                                  bool WithSPMDCheck) {
1467   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1468       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1469     return;
1470 
1471   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1472   if (I != FunctionGlobalizedDecls.end()) {
1473     // Deallocate the memory for each globalized VLA object
1474     for (auto AddrSizePair :
1475          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1476       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1477                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1478                           {AddrSizePair.first, AddrSizePair.second});
1479     }
1480     // Deallocate the memory for each globalized value
1481     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1482       const auto *VD = cast<VarDecl>(Rec.first);
1483       I->getSecond().MappedParams->restore(CGF);
1484 
1485       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1486                                  CGF.getTypeSize(VD->getType())};
1487       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1488                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1489                           FreeArgs);
1490     }
1491   }
1492 }
1493 
1494 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1495                                          const OMPExecutableDirective &D,
1496                                          SourceLocation Loc,
1497                                          llvm::Function *OutlinedFn,
1498                                          ArrayRef<llvm::Value *> CapturedVars) {
1499   if (!CGF.HaveInsertPoint())
1500     return;
1501 
1502   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1503                                                       /*Name=*/".zero.addr");
1504   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1505   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1506   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1507   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1508   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1509   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1510 }
1511 
1512 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1513                                           SourceLocation Loc,
1514                                           llvm::Function *OutlinedFn,
1515                                           ArrayRef<llvm::Value *> CapturedVars,
1516                                           const Expr *IfCond,
1517                                           llvm::Value *NumThreads) {
1518   if (!CGF.HaveInsertPoint())
1519     return;
1520 
1521   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1522                         NumThreads](CodeGenFunction &CGF,
1523                                     PrePostActionTy &Action) {
1524     CGBuilderTy &Bld = CGF.Builder;
1525     llvm::Value *NumThreadsVal = NumThreads;
1526     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1527     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1528     if (WFn)
1529       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1530     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1531 
1532     // Create a private scope that will globalize the arguments
1533     // passed from the outside of the target region.
1534     // TODO: Is that needed?
1535     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1536 
1537     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1538         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1539         "captured_vars_addrs");
1540     // There's something to share.
1541     if (!CapturedVars.empty()) {
1542       // Prepare for parallel region. Indicate the outlined function.
1543       ASTContext &Ctx = CGF.getContext();
1544       unsigned Idx = 0;
1545       for (llvm::Value *V : CapturedVars) {
1546         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1547         llvm::Value *PtrV;
1548         if (V->getType()->isIntegerTy())
1549           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1550         else
1551           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1552         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1553                               Ctx.getPointerType(Ctx.VoidPtrTy));
1554         ++Idx;
1555       }
1556     }
1557 
1558     llvm::Value *IfCondVal = nullptr;
1559     if (IfCond)
1560       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1561                                     /* isSigned */ false);
1562     else
1563       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1564 
1565     if (!NumThreadsVal)
1566       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1567     else
1568       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1569 
1570       assert(IfCondVal && "Expected a value");
1571     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1572     llvm::Value *Args[] = {
1573         RTLoc,
1574         getThreadID(CGF, Loc),
1575         IfCondVal,
1576         NumThreadsVal,
1577         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1578         FnPtr,
1579         ID,
1580         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1581                                    CGF.VoidPtrPtrTy),
1582         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1583     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1584                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1585                         Args);
1586   };
1587 
1588   RegionCodeGenTy RCG(ParallelGen);
1589   RCG(CGF);
1590 }
1591 
1592 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1593   // Always emit simple barriers!
1594   if (!CGF.HaveInsertPoint())
1595     return;
1596   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1597   // This function does not use parameters, so we can emit just default values.
1598   llvm::Value *Args[] = {
1599       llvm::ConstantPointerNull::get(
1600           cast<llvm::PointerType>(getIdentTyPointerTy())),
1601       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1602   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1603                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1604                       Args);
1605 }
1606 
1607 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1608                                            SourceLocation Loc,
1609                                            OpenMPDirectiveKind Kind, bool,
1610                                            bool) {
1611   // Always emit simple barriers!
1612   if (!CGF.HaveInsertPoint())
1613     return;
1614   // Build call __kmpc_cancel_barrier(loc, thread_id);
1615   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1616   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1617                          getThreadID(CGF, Loc)};
1618 
1619   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1620                           CGM.getModule(), OMPRTL___kmpc_barrier),
1621                       Args);
1622 }
1623 
1624 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1625     CodeGenFunction &CGF, StringRef CriticalName,
1626     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1627     const Expr *Hint) {
1628   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1629   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1630   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1631   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1632   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1633 
1634   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1635 
1636   // Get the mask of active threads in the warp.
1637   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1638       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1639   // Fetch team-local id of the thread.
1640   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1641 
1642   // Get the width of the team.
1643   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1644 
1645   // Initialize the counter variable for the loop.
1646   QualType Int32Ty =
1647       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1648   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1649   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1650   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1651                         /*isInit=*/true);
1652 
1653   // Block checks if loop counter exceeds upper bound.
1654   CGF.EmitBlock(LoopBB);
1655   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1656   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1657   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1658 
1659   // Block tests which single thread should execute region, and which threads
1660   // should go straight to synchronisation point.
1661   CGF.EmitBlock(TestBB);
1662   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1663   llvm::Value *CmpThreadToCounter =
1664       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1665   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1666 
1667   // Block emits the body of the critical region.
1668   CGF.EmitBlock(BodyBB);
1669 
1670   // Output the critical statement.
1671   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1672                                       Hint);
1673 
1674   // After the body surrounded by the critical region, the single executing
1675   // thread will jump to the synchronisation point.
1676   // Block waits for all threads in current team to finish then increments the
1677   // counter variable and returns to the loop.
1678   CGF.EmitBlock(SyncBB);
1679   // Reconverge active threads in the warp.
1680   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1681                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1682                             Mask);
1683 
1684   llvm::Value *IncCounterVal =
1685       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1686   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1687   CGF.EmitBranch(LoopBB);
1688 
1689   // Block that is reached when  all threads in the team complete the region.
1690   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1691 }
1692 
1693 /// Cast value to the specified type.
1694 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1695                                     QualType ValTy, QualType CastTy,
1696                                     SourceLocation Loc) {
1697   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1698          "Cast type must sized.");
1699   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1700          "Val type must sized.");
1701   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1702   if (ValTy == CastTy)
1703     return Val;
1704   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1705       CGF.getContext().getTypeSizeInChars(CastTy))
1706     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1707   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1708     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1709                                      CastTy->hasSignedIntegerRepresentation());
1710   Address CastItem = CGF.CreateMemTemp(CastTy);
1711   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1712       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
1713   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1714                         LValueBaseInfo(AlignmentSource::Type),
1715                         TBAAAccessInfo());
1716   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1717                               LValueBaseInfo(AlignmentSource::Type),
1718                               TBAAAccessInfo());
1719 }
1720 
1721 /// This function creates calls to one of two shuffle functions to copy
1722 /// variables between lanes in a warp.
1723 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1724                                                  llvm::Value *Elem,
1725                                                  QualType ElemType,
1726                                                  llvm::Value *Offset,
1727                                                  SourceLocation Loc) {
1728   CodeGenModule &CGM = CGF.CGM;
1729   CGBuilderTy &Bld = CGF.Builder;
1730   CGOpenMPRuntimeGPU &RT =
1731       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1732   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1733 
1734   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1735   assert(Size.getQuantity() <= 8 &&
1736          "Unsupported bitwidth in shuffle instruction.");
1737 
1738   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1739                                   ? OMPRTL___kmpc_shuffle_int32
1740                                   : OMPRTL___kmpc_shuffle_int64;
1741 
1742   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1743   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1744       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1745   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1746   llvm::Value *WarpSize =
1747       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1748 
1749   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1750       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1751       {ElemCast, Offset, WarpSize});
1752 
1753   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1754 }
1755 
1756 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1757                             Address DestAddr, QualType ElemType,
1758                             llvm::Value *Offset, SourceLocation Loc) {
1759   CGBuilderTy &Bld = CGF.Builder;
1760 
1761   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1762   // Create the loop over the big sized data.
1763   // ptr = (void*)Elem;
1764   // ptrEnd = (void*) Elem + 1;
1765   // Step = 8;
1766   // while (ptr + Step < ptrEnd)
1767   //   shuffle((int64_t)*ptr);
1768   // Step = 4;
1769   // while (ptr + Step < ptrEnd)
1770   //   shuffle((int32_t)*ptr);
1771   // ...
1772   Address ElemPtr = DestAddr;
1773   Address Ptr = SrcAddr;
1774   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1775       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
1776   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1777     if (Size < CharUnits::fromQuantity(IntSize))
1778       continue;
1779     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1780         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1781         /*Signed=*/1);
1782     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1783     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
1784     ElemPtr =
1785         Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
1786     if (Size.getQuantity() / IntSize > 1) {
1787       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1788       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1789       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1790       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1791       CGF.EmitBlock(PreCondBB);
1792       llvm::PHINode *PhiSrc =
1793           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1794       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1795       llvm::PHINode *PhiDest =
1796           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1797       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1798       Ptr = Address(PhiSrc, Ptr.getAlignment());
1799       ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
1800       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1801           CGF.Int8Ty, PtrEnd.getPointer(),
1802           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1803                                                   CGF.VoidPtrTy));
1804       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1805                        ThenBB, ExitBB);
1806       CGF.EmitBlock(ThenBB);
1807       llvm::Value *Res = createRuntimeShuffleFunction(
1808           CGF,
1809           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1810                                LValueBaseInfo(AlignmentSource::Type),
1811                                TBAAAccessInfo()),
1812           IntType, Offset, Loc);
1813       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1814                             LValueBaseInfo(AlignmentSource::Type),
1815                             TBAAAccessInfo());
1816       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1817       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1818       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1819       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1820       CGF.EmitBranch(PreCondBB);
1821       CGF.EmitBlock(ExitBB);
1822     } else {
1823       llvm::Value *Res = createRuntimeShuffleFunction(
1824           CGF,
1825           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1826                                LValueBaseInfo(AlignmentSource::Type),
1827                                TBAAAccessInfo()),
1828           IntType, Offset, Loc);
1829       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1830                             LValueBaseInfo(AlignmentSource::Type),
1831                             TBAAAccessInfo());
1832       Ptr = Bld.CreateConstGEP(Ptr, 1);
1833       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1834     }
1835     Size = Size % IntSize;
1836   }
1837 }
1838 
1839 namespace {
1840 enum CopyAction : unsigned {
1841   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1842   // the warp using shuffle instructions.
1843   RemoteLaneToThread,
1844   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1845   ThreadCopy,
1846   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1847   ThreadToScratchpad,
1848   // ScratchpadToThread: Copy from a scratchpad array in global memory
1849   // containing team-reduced data to a thread's stack.
1850   ScratchpadToThread,
1851 };
1852 } // namespace
1853 
1854 struct CopyOptionsTy {
1855   llvm::Value *RemoteLaneOffset;
1856   llvm::Value *ScratchpadIndex;
1857   llvm::Value *ScratchpadWidth;
1858 };
1859 
1860 /// Emit instructions to copy a Reduce list, which contains partially
1861 /// aggregated values, in the specified direction.
1862 static void emitReductionListCopy(
1863     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1864     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1865     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1866 
1867   CodeGenModule &CGM = CGF.CGM;
1868   ASTContext &C = CGM.getContext();
1869   CGBuilderTy &Bld = CGF.Builder;
1870 
1871   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1872   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1873   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1874 
1875   // Iterates, element-by-element, through the source Reduce list and
1876   // make a copy.
1877   unsigned Idx = 0;
1878   unsigned Size = Privates.size();
1879   for (const Expr *Private : Privates) {
1880     Address SrcElementAddr = Address::invalid();
1881     Address DestElementAddr = Address::invalid();
1882     Address DestElementPtrAddr = Address::invalid();
1883     // Should we shuffle in an element from a remote lane?
1884     bool ShuffleInElement = false;
1885     // Set to true to update the pointer in the dest Reduce list to a
1886     // newly created element.
1887     bool UpdateDestListPtr = false;
1888     // Increment the src or dest pointer to the scratchpad, for each
1889     // new element.
1890     bool IncrScratchpadSrc = false;
1891     bool IncrScratchpadDest = false;
1892 
1893     switch (Action) {
1894     case RemoteLaneToThread: {
1895       // Step 1.1: Get the address for the src element in the Reduce list.
1896       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1897       SrcElementAddr = CGF.EmitLoadOfPointer(
1898           SrcElementPtrAddr,
1899           C.getPointerType(Private->getType())->castAs<PointerType>());
1900 
1901       // Step 1.2: Create a temporary to store the element in the destination
1902       // Reduce list.
1903       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1904       DestElementAddr =
1905           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1906       ShuffleInElement = true;
1907       UpdateDestListPtr = true;
1908       break;
1909     }
1910     case ThreadCopy: {
1911       // Step 1.1: Get the address for the src element in the Reduce list.
1912       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1913       SrcElementAddr = CGF.EmitLoadOfPointer(
1914           SrcElementPtrAddr,
1915           C.getPointerType(Private->getType())->castAs<PointerType>());
1916 
1917       // Step 1.2: Get the address for dest element.  The destination
1918       // element has already been created on the thread's stack.
1919       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1920       DestElementAddr = CGF.EmitLoadOfPointer(
1921           DestElementPtrAddr,
1922           C.getPointerType(Private->getType())->castAs<PointerType>());
1923       break;
1924     }
1925     case ThreadToScratchpad: {
1926       // Step 1.1: Get the address for the src element in the Reduce list.
1927       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1928       SrcElementAddr = CGF.EmitLoadOfPointer(
1929           SrcElementPtrAddr,
1930           C.getPointerType(Private->getType())->castAs<PointerType>());
1931 
1932       // Step 1.2: Get the address for dest element:
1933       // address = base + index * ElementSizeInChars.
1934       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1935       llvm::Value *CurrentOffset =
1936           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1937       llvm::Value *ScratchPadElemAbsolutePtrVal =
1938           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1939       ScratchPadElemAbsolutePtrVal =
1940           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1941       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1942                                 C.getTypeAlignInChars(Private->getType()));
1943       IncrScratchpadDest = true;
1944       break;
1945     }
1946     case ScratchpadToThread: {
1947       // Step 1.1: Get the address for the src element in the scratchpad.
1948       // address = base + index * ElementSizeInChars.
1949       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1950       llvm::Value *CurrentOffset =
1951           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1952       llvm::Value *ScratchPadElemAbsolutePtrVal =
1953           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1954       ScratchPadElemAbsolutePtrVal =
1955           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1956       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
1957                                C.getTypeAlignInChars(Private->getType()));
1958       IncrScratchpadSrc = true;
1959 
1960       // Step 1.2: Create a temporary to store the element in the destination
1961       // Reduce list.
1962       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1963       DestElementAddr =
1964           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1965       UpdateDestListPtr = true;
1966       break;
1967     }
1968     }
1969 
1970     // Regardless of src and dest of copy, we emit the load of src
1971     // element as this is required in all directions
1972     SrcElementAddr = Bld.CreateElementBitCast(
1973         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1974     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1975                                                SrcElementAddr.getElementType());
1976 
1977     // Now that all active lanes have read the element in the
1978     // Reduce list, shuffle over the value from the remote lane.
1979     if (ShuffleInElement) {
1980       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1981                       RemoteLaneOffset, Private->getExprLoc());
1982     } else {
1983       switch (CGF.getEvaluationKind(Private->getType())) {
1984       case TEK_Scalar: {
1985         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1986             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1987             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1988             TBAAAccessInfo());
1989         // Store the source element value to the dest element address.
1990         CGF.EmitStoreOfScalar(
1991             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1992             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1993         break;
1994       }
1995       case TEK_Complex: {
1996         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1997             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1998             Private->getExprLoc());
1999         CGF.EmitStoreOfComplex(
2000             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2001             /*isInit=*/false);
2002         break;
2003       }
2004       case TEK_Aggregate:
2005         CGF.EmitAggregateCopy(
2006             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2007             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2008             Private->getType(), AggValueSlot::DoesNotOverlap);
2009         break;
2010       }
2011     }
2012 
2013     // Step 3.1: Modify reference in dest Reduce list as needed.
2014     // Modifying the reference in Reduce list to point to the newly
2015     // created element.  The element is live in the current function
2016     // scope and that of functions it invokes (i.e., reduce_function).
2017     // RemoteReduceData[i] = (void*)&RemoteElem
2018     if (UpdateDestListPtr) {
2019       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2020                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2021                             DestElementPtrAddr, /*Volatile=*/false,
2022                             C.VoidPtrTy);
2023     }
2024 
2025     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2026     // address of the next element in scratchpad memory, unless we're currently
2027     // processing the last one.  Memory alignment is also taken care of here.
2028     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2029       llvm::Value *ScratchpadBasePtr =
2030           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2031       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2032       ScratchpadBasePtr = Bld.CreateNUWAdd(
2033           ScratchpadBasePtr,
2034           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2035 
2036       // Take care of global memory alignment for performance
2037       ScratchpadBasePtr = Bld.CreateNUWSub(
2038           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2039       ScratchpadBasePtr = Bld.CreateUDiv(
2040           ScratchpadBasePtr,
2041           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2042       ScratchpadBasePtr = Bld.CreateNUWAdd(
2043           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2044       ScratchpadBasePtr = Bld.CreateNUWMul(
2045           ScratchpadBasePtr,
2046           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2047 
2048       if (IncrScratchpadDest)
2049         DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2050       else /* IncrScratchpadSrc = true */
2051         SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
2052     }
2053 
2054     ++Idx;
2055   }
2056 }
2057 
2058 /// This function emits a helper that gathers Reduce lists from the first
2059 /// lane of every active warp to lanes in the first warp.
2060 ///
2061 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2062 ///   shared smem[warp_size];
2063 ///   For all data entries D in reduce_data:
2064 ///     sync
2065 ///     If (I am the first lane in each warp)
2066 ///       Copy my local D to smem[warp_id]
2067 ///     sync
2068 ///     if (I am the first warp)
2069 ///       Copy smem[thread_id] to my local D
2070 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2071                                               ArrayRef<const Expr *> Privates,
2072                                               QualType ReductionArrayTy,
2073                                               SourceLocation Loc) {
2074   ASTContext &C = CGM.getContext();
2075   llvm::Module &M = CGM.getModule();
2076 
2077   // ReduceList: thread local Reduce list.
2078   // At the stage of the computation when this function is called, partially
2079   // aggregated values reside in the first lane of every active warp.
2080   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2081                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2082   // NumWarps: number of warps active in the parallel region.  This could
2083   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2084   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2085                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2086                                 ImplicitParamDecl::Other);
2087   FunctionArgList Args;
2088   Args.push_back(&ReduceListArg);
2089   Args.push_back(&NumWarpsArg);
2090 
2091   const CGFunctionInfo &CGFI =
2092       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2093   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2094                                     llvm::GlobalValue::InternalLinkage,
2095                                     "_omp_reduction_inter_warp_copy_func", &M);
2096   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2097   Fn->setDoesNotRecurse();
2098   CodeGenFunction CGF(CGM);
2099   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2100 
2101   CGBuilderTy &Bld = CGF.Builder;
2102 
2103   // This array is used as a medium to transfer, one reduce element at a time,
2104   // the data from the first lane of every warp to lanes in the first warp
2105   // in order to perform the final step of a reduction in a parallel region
2106   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2107   // for reduced latency, as well as to have a distinct copy for concurrently
2108   // executing target regions.  The array is declared with common linkage so
2109   // as to be shared across compilation units.
2110   StringRef TransferMediumName =
2111       "__openmp_nvptx_data_transfer_temporary_storage";
2112   llvm::GlobalVariable *TransferMedium =
2113       M.getGlobalVariable(TransferMediumName);
2114   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2115   if (!TransferMedium) {
2116     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2117     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2118     TransferMedium = new llvm::GlobalVariable(
2119         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2120         llvm::UndefValue::get(Ty), TransferMediumName,
2121         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2122         SharedAddressSpace);
2123     CGM.addCompilerUsedGlobal(TransferMedium);
2124   }
2125 
2126   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2127   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2128   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2129   // nvptx_lane_id = nvptx_id % warpsize
2130   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2131   // nvptx_warp_id = nvptx_id / warpsize
2132   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2133 
2134   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2135   Address LocalReduceList(
2136       Bld.CreatePointerBitCastOrAddrSpaceCast(
2137           CGF.EmitLoadOfScalar(
2138               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2139               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2140           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2141       CGF.getPointerAlign());
2142 
2143   unsigned Idx = 0;
2144   for (const Expr *Private : Privates) {
2145     //
2146     // Warp master copies reduce element to transfer medium in __shared__
2147     // memory.
2148     //
2149     unsigned RealTySize =
2150         C.getTypeSizeInChars(Private->getType())
2151             .alignTo(C.getTypeAlignInChars(Private->getType()))
2152             .getQuantity();
2153     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2154       unsigned NumIters = RealTySize / TySize;
2155       if (NumIters == 0)
2156         continue;
2157       QualType CType = C.getIntTypeForBitwidth(
2158           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2159       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2160       CharUnits Align = CharUnits::fromQuantity(TySize);
2161       llvm::Value *Cnt = nullptr;
2162       Address CntAddr = Address::invalid();
2163       llvm::BasicBlock *PrecondBB = nullptr;
2164       llvm::BasicBlock *ExitBB = nullptr;
2165       if (NumIters > 1) {
2166         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2167         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2168                               /*Volatile=*/false, C.IntTy);
2169         PrecondBB = CGF.createBasicBlock("precond");
2170         ExitBB = CGF.createBasicBlock("exit");
2171         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2172         // There is no need to emit line number for unconditional branch.
2173         (void)ApplyDebugLocation::CreateEmpty(CGF);
2174         CGF.EmitBlock(PrecondBB);
2175         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2176         llvm::Value *Cmp =
2177             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2178         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2179         CGF.EmitBlock(BodyBB);
2180       }
2181       // kmpc_barrier.
2182       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2183                                              /*EmitChecks=*/false,
2184                                              /*ForceSimpleCall=*/true);
2185       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2186       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2187       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2188 
2189       // if (lane_id == 0)
2190       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2191       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2192       CGF.EmitBlock(ThenBB);
2193 
2194       // Reduce element = LocalReduceList[i]
2195       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2196       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2197           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2198       // elemptr = ((CopyType*)(elemptrptr)) + I
2199       Address ElemPtr = Address(ElemPtrPtr, Align);
2200       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2201       if (NumIters > 1)
2202         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2203 
2204       // Get pointer to location in transfer medium.
2205       // MediumPtr = &medium[warp_id]
2206       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2207           TransferMedium->getValueType(), TransferMedium,
2208           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2209       Address MediumPtr(MediumPtrVal, Align);
2210       // Casting to actual data type.
2211       // MediumPtr = (CopyType*)MediumPtrAddr;
2212       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2213 
2214       // elem = *elemptr
2215       //*MediumPtr = elem
2216       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2217           ElemPtr, /*Volatile=*/false, CType, Loc,
2218           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2219       // Store the source element value to the dest element address.
2220       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2221                             LValueBaseInfo(AlignmentSource::Type),
2222                             TBAAAccessInfo());
2223 
2224       Bld.CreateBr(MergeBB);
2225 
2226       CGF.EmitBlock(ElseBB);
2227       Bld.CreateBr(MergeBB);
2228 
2229       CGF.EmitBlock(MergeBB);
2230 
2231       // kmpc_barrier.
2232       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2233                                              /*EmitChecks=*/false,
2234                                              /*ForceSimpleCall=*/true);
2235 
2236       //
2237       // Warp 0 copies reduce element from transfer medium.
2238       //
2239       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2240       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2241       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2242 
2243       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2244       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2245           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2246 
2247       // Up to 32 threads in warp 0 are active.
2248       llvm::Value *IsActiveThread =
2249           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2250       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2251 
2252       CGF.EmitBlock(W0ThenBB);
2253 
2254       // SrcMediumPtr = &medium[tid]
2255       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2256           TransferMedium->getValueType(), TransferMedium,
2257           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2258       Address SrcMediumPtr(SrcMediumPtrVal, Align);
2259       // SrcMediumVal = *SrcMediumPtr;
2260       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2261 
2262       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2263       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2264       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2265           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2266       Address TargetElemPtr = Address(TargetElemPtrVal, Align);
2267       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2268       if (NumIters > 1)
2269         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2270 
2271       // *TargetElemPtr = SrcMediumVal;
2272       llvm::Value *SrcMediumValue =
2273           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2274       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2275                             CType);
2276       Bld.CreateBr(W0MergeBB);
2277 
2278       CGF.EmitBlock(W0ElseBB);
2279       Bld.CreateBr(W0MergeBB);
2280 
2281       CGF.EmitBlock(W0MergeBB);
2282 
2283       if (NumIters > 1) {
2284         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2285         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2286         CGF.EmitBranch(PrecondBB);
2287         (void)ApplyDebugLocation::CreateEmpty(CGF);
2288         CGF.EmitBlock(ExitBB);
2289       }
2290       RealTySize %= TySize;
2291     }
2292     ++Idx;
2293   }
2294 
2295   CGF.FinishFunction();
2296   return Fn;
2297 }
2298 
2299 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2300 /// in the same warp.  It uses shuffle instructions to copy over data from
2301 /// a remote lane's stack.  The reduction algorithm performed is specified
2302 /// by the fourth parameter.
2303 ///
2304 /// Algorithm Versions.
2305 /// Full Warp Reduce (argument value 0):
2306 ///   This algorithm assumes that all 32 lanes are active and gathers
2307 ///   data from these 32 lanes, producing a single resultant value.
2308 /// Contiguous Partial Warp Reduce (argument value 1):
2309 ///   This algorithm assumes that only a *contiguous* subset of lanes
2310 ///   are active.  This happens for the last warp in a parallel region
2311 ///   when the user specified num_threads is not an integer multiple of
2312 ///   32.  This contiguous subset always starts with the zeroth lane.
2313 /// Partial Warp Reduce (argument value 2):
2314 ///   This algorithm gathers data from any number of lanes at any position.
2315 /// All reduced values are stored in the lowest possible lane.  The set
2316 /// of problems every algorithm addresses is a super set of those
2317 /// addressable by algorithms with a lower version number.  Overhead
2318 /// increases as algorithm version increases.
2319 ///
2320 /// Terminology
2321 /// Reduce element:
2322 ///   Reduce element refers to the individual data field with primitive
2323 ///   data types to be combined and reduced across threads.
2324 /// Reduce list:
2325 ///   Reduce list refers to a collection of local, thread-private
2326 ///   reduce elements.
2327 /// Remote Reduce list:
2328 ///   Remote Reduce list refers to a collection of remote (relative to
2329 ///   the current thread) reduce elements.
2330 ///
2331 /// We distinguish between three states of threads that are important to
2332 /// the implementation of this function.
2333 /// Alive threads:
2334 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2335 ///   threads that are inactive due to divergent control flow.
2336 /// Active threads:
2337 ///   The minimal set of threads that has to be alive upon entry to this
2338 ///   function.  The computation is correct iff active threads are alive.
2339 ///   Some threads are alive but they are not active because they do not
2340 ///   contribute to the computation in any useful manner.  Turning them off
2341 ///   may introduce control flow overheads without any tangible benefits.
2342 /// Effective threads:
2343 ///   In order to comply with the argument requirements of the shuffle
2344 ///   function, we must keep all lanes holding data alive.  But at most
2345 ///   half of them perform value aggregation; we refer to this half of
2346 ///   threads as effective. The other half is simply handing off their
2347 ///   data.
2348 ///
2349 /// Procedure
2350 /// Value shuffle:
2351 ///   In this step active threads transfer data from higher lane positions
2352 ///   in the warp to lower lane positions, creating Remote Reduce list.
2353 /// Value aggregation:
2354 ///   In this step, effective threads combine their thread local Reduce list
2355 ///   with Remote Reduce list and store the result in the thread local
2356 ///   Reduce list.
2357 /// Value copy:
2358 ///   In this step, we deal with the assumption made by algorithm 2
2359 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2360 ///   active, say 2k+1, only k threads will be effective and therefore k
2361 ///   new values will be produced.  However, the Reduce list owned by the
2362 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2363 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2364 ///   that the contiguity assumption still holds.
2365 static llvm::Function *emitShuffleAndReduceFunction(
2366     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2367     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2368   ASTContext &C = CGM.getContext();
2369 
2370   // Thread local Reduce list used to host the values of data to be reduced.
2371   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2372                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2373   // Current lane id; could be logical.
2374   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2375                               ImplicitParamDecl::Other);
2376   // Offset of the remote source lane relative to the current lane.
2377   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2378                                         C.ShortTy, ImplicitParamDecl::Other);
2379   // Algorithm version.  This is expected to be known at compile time.
2380   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2381                                C.ShortTy, ImplicitParamDecl::Other);
2382   FunctionArgList Args;
2383   Args.push_back(&ReduceListArg);
2384   Args.push_back(&LaneIDArg);
2385   Args.push_back(&RemoteLaneOffsetArg);
2386   Args.push_back(&AlgoVerArg);
2387 
2388   const CGFunctionInfo &CGFI =
2389       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2390   auto *Fn = llvm::Function::Create(
2391       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2392       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2393   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2394   Fn->setDoesNotRecurse();
2395 
2396   CodeGenFunction CGF(CGM);
2397   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2398 
2399   CGBuilderTy &Bld = CGF.Builder;
2400 
2401   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2402   Address LocalReduceList(
2403       Bld.CreatePointerBitCastOrAddrSpaceCast(
2404           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2405                                C.VoidPtrTy, SourceLocation()),
2406           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2407       CGF.getPointerAlign());
2408 
2409   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2410   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2411       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2412 
2413   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2414   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2415       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2416 
2417   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2418   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2419       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2420 
2421   // Create a local thread-private variable to host the Reduce list
2422   // from a remote lane.
2423   Address RemoteReduceList =
2424       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2425 
2426   // This loop iterates through the list of reduce elements and copies,
2427   // element by element, from a remote lane in the warp to RemoteReduceList,
2428   // hosted on the thread's stack.
2429   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2430                         LocalReduceList, RemoteReduceList,
2431                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2432                          /*ScratchpadIndex=*/nullptr,
2433                          /*ScratchpadWidth=*/nullptr});
2434 
2435   // The actions to be performed on the Remote Reduce list is dependent
2436   // on the algorithm version.
2437   //
2438   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2439   //  LaneId % 2 == 0 && Offset > 0):
2440   //    do the reduction value aggregation
2441   //
2442   //  The thread local variable Reduce list is mutated in place to host the
2443   //  reduced data, which is the aggregated value produced from local and
2444   //  remote lanes.
2445   //
2446   //  Note that AlgoVer is expected to be a constant integer known at compile
2447   //  time.
2448   //  When AlgoVer==0, the first conjunction evaluates to true, making
2449   //    the entire predicate true during compile time.
2450   //  When AlgoVer==1, the second conjunction has only the second part to be
2451   //    evaluated during runtime.  Other conjunctions evaluates to false
2452   //    during compile time.
2453   //  When AlgoVer==2, the third conjunction has only the second part to be
2454   //    evaluated during runtime.  Other conjunctions evaluates to false
2455   //    during compile time.
2456   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2457 
2458   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2459   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2460       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2461 
2462   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2463   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2464       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2465   CondAlgo2 = Bld.CreateAnd(
2466       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2467 
2468   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2469   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2470 
2471   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2472   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2473   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2474   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2475 
2476   CGF.EmitBlock(ThenBB);
2477   // reduce_function(LocalReduceList, RemoteReduceList)
2478   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2479       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2480   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2481       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2482   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2483       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2484   Bld.CreateBr(MergeBB);
2485 
2486   CGF.EmitBlock(ElseBB);
2487   Bld.CreateBr(MergeBB);
2488 
2489   CGF.EmitBlock(MergeBB);
2490 
2491   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2492   // Reduce list.
2493   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2494   llvm::Value *CondCopy = Bld.CreateAnd(
2495       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2496 
2497   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2498   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2499   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2500   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2501 
2502   CGF.EmitBlock(CpyThenBB);
2503   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2504                         RemoteReduceList, LocalReduceList);
2505   Bld.CreateBr(CpyMergeBB);
2506 
2507   CGF.EmitBlock(CpyElseBB);
2508   Bld.CreateBr(CpyMergeBB);
2509 
2510   CGF.EmitBlock(CpyMergeBB);
2511 
2512   CGF.FinishFunction();
2513   return Fn;
2514 }
2515 
2516 /// This function emits a helper that copies all the reduction variables from
2517 /// the team into the provided global buffer for the reduction variables.
2518 ///
2519 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2520 ///   For all data entries D in reduce_data:
2521 ///     Copy local D to buffer.D[Idx]
2522 static llvm::Value *emitListToGlobalCopyFunction(
2523     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2524     QualType ReductionArrayTy, SourceLocation Loc,
2525     const RecordDecl *TeamReductionRec,
2526     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2527         &VarFieldMap) {
2528   ASTContext &C = CGM.getContext();
2529 
2530   // Buffer: global reduction buffer.
2531   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2532                               C.VoidPtrTy, ImplicitParamDecl::Other);
2533   // Idx: index of the buffer.
2534   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2535                            ImplicitParamDecl::Other);
2536   // ReduceList: thread local Reduce list.
2537   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2538                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2539   FunctionArgList Args;
2540   Args.push_back(&BufferArg);
2541   Args.push_back(&IdxArg);
2542   Args.push_back(&ReduceListArg);
2543 
2544   const CGFunctionInfo &CGFI =
2545       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2546   auto *Fn = llvm::Function::Create(
2547       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2548       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2549   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2550   Fn->setDoesNotRecurse();
2551   CodeGenFunction CGF(CGM);
2552   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2553 
2554   CGBuilderTy &Bld = CGF.Builder;
2555 
2556   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2557   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2558   Address LocalReduceList(
2559       Bld.CreatePointerBitCastOrAddrSpaceCast(
2560           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2561                                C.VoidPtrTy, Loc),
2562           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2563       CGF.getPointerAlign());
2564   QualType StaticTy = C.getRecordType(TeamReductionRec);
2565   llvm::Type *LLVMReductionsBufferTy =
2566       CGM.getTypes().ConvertTypeForMem(StaticTy);
2567   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2568       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2569       LLVMReductionsBufferTy->getPointerTo());
2570   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2571                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2572                                               /*Volatile=*/false, C.IntTy,
2573                                               Loc)};
2574   unsigned Idx = 0;
2575   for (const Expr *Private : Privates) {
2576     // Reduce element = LocalReduceList[i]
2577     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2578     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2579         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2580     // elemptr = ((CopyType*)(elemptrptr)) + I
2581     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2582         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
2583     Address ElemPtr =
2584         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
2585     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2586     // Global = Buffer.VD[Idx];
2587     const FieldDecl *FD = VarFieldMap.lookup(VD);
2588     LValue GlobLVal = CGF.EmitLValueForField(
2589         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2590     Address GlobAddr = GlobLVal.getAddress(CGF);
2591     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2592         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2593     GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
2594     switch (CGF.getEvaluationKind(Private->getType())) {
2595     case TEK_Scalar: {
2596       llvm::Value *V = CGF.EmitLoadOfScalar(
2597           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2598           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2599       CGF.EmitStoreOfScalar(V, GlobLVal);
2600       break;
2601     }
2602     case TEK_Complex: {
2603       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2604           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2605       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2606       break;
2607     }
2608     case TEK_Aggregate:
2609       CGF.EmitAggregateCopy(GlobLVal,
2610                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2611                             Private->getType(), AggValueSlot::DoesNotOverlap);
2612       break;
2613     }
2614     ++Idx;
2615   }
2616 
2617   CGF.FinishFunction();
2618   return Fn;
2619 }
2620 
2621 /// This function emits a helper that reduces all the reduction variables from
2622 /// the team into the provided global buffer for the reduction variables.
2623 ///
2624 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2625 ///  void *GlobPtrs[];
2626 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2627 ///  ...
2628 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2629 ///  reduce_function(GlobPtrs, reduce_data);
2630 static llvm::Value *emitListToGlobalReduceFunction(
2631     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2632     QualType ReductionArrayTy, SourceLocation Loc,
2633     const RecordDecl *TeamReductionRec,
2634     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2635         &VarFieldMap,
2636     llvm::Function *ReduceFn) {
2637   ASTContext &C = CGM.getContext();
2638 
2639   // Buffer: global reduction buffer.
2640   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2641                               C.VoidPtrTy, ImplicitParamDecl::Other);
2642   // Idx: index of the buffer.
2643   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2644                            ImplicitParamDecl::Other);
2645   // ReduceList: thread local Reduce list.
2646   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2647                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2648   FunctionArgList Args;
2649   Args.push_back(&BufferArg);
2650   Args.push_back(&IdxArg);
2651   Args.push_back(&ReduceListArg);
2652 
2653   const CGFunctionInfo &CGFI =
2654       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2655   auto *Fn = llvm::Function::Create(
2656       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2657       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2658   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2659   Fn->setDoesNotRecurse();
2660   CodeGenFunction CGF(CGM);
2661   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2662 
2663   CGBuilderTy &Bld = CGF.Builder;
2664 
2665   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2666   QualType StaticTy = C.getRecordType(TeamReductionRec);
2667   llvm::Type *LLVMReductionsBufferTy =
2668       CGM.getTypes().ConvertTypeForMem(StaticTy);
2669   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2670       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2671       LLVMReductionsBufferTy->getPointerTo());
2672 
2673   // 1. Build a list of reduction variables.
2674   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2675   Address ReductionList =
2676       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2677   auto IPriv = Privates.begin();
2678   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2679                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2680                                               /*Volatile=*/false, C.IntTy,
2681                                               Loc)};
2682   unsigned Idx = 0;
2683   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2684     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2685     // Global = Buffer.VD[Idx];
2686     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2687     const FieldDecl *FD = VarFieldMap.lookup(VD);
2688     LValue GlobLVal = CGF.EmitLValueForField(
2689         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2690     Address GlobAddr = GlobLVal.getAddress(CGF);
2691     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2692         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2693     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2694     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2695     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2696       // Store array size.
2697       ++Idx;
2698       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2699       llvm::Value *Size = CGF.Builder.CreateIntCast(
2700           CGF.getVLASize(
2701                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2702               .NumElts,
2703           CGF.SizeTy, /*isSigned=*/false);
2704       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2705                               Elem);
2706     }
2707   }
2708 
2709   // Call reduce_function(GlobalReduceList, ReduceList)
2710   llvm::Value *GlobalReduceList =
2711       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2712   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2713   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2714       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2715   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2716       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2717   CGF.FinishFunction();
2718   return Fn;
2719 }
2720 
2721 /// This function emits a helper that copies all the reduction variables from
2722 /// the team into the provided global buffer for the reduction variables.
2723 ///
2724 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2725 ///   For all data entries D in reduce_data:
2726 ///     Copy buffer.D[Idx] to local D;
2727 static llvm::Value *emitGlobalToListCopyFunction(
2728     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2729     QualType ReductionArrayTy, SourceLocation Loc,
2730     const RecordDecl *TeamReductionRec,
2731     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2732         &VarFieldMap) {
2733   ASTContext &C = CGM.getContext();
2734 
2735   // Buffer: global reduction buffer.
2736   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2737                               C.VoidPtrTy, ImplicitParamDecl::Other);
2738   // Idx: index of the buffer.
2739   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2740                            ImplicitParamDecl::Other);
2741   // ReduceList: thread local Reduce list.
2742   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2743                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2744   FunctionArgList Args;
2745   Args.push_back(&BufferArg);
2746   Args.push_back(&IdxArg);
2747   Args.push_back(&ReduceListArg);
2748 
2749   const CGFunctionInfo &CGFI =
2750       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2751   auto *Fn = llvm::Function::Create(
2752       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2753       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2754   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2755   Fn->setDoesNotRecurse();
2756   CodeGenFunction CGF(CGM);
2757   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2758 
2759   CGBuilderTy &Bld = CGF.Builder;
2760 
2761   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2762   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2763   Address LocalReduceList(
2764       Bld.CreatePointerBitCastOrAddrSpaceCast(
2765           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2766                                C.VoidPtrTy, Loc),
2767           CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
2768       CGF.getPointerAlign());
2769   QualType StaticTy = C.getRecordType(TeamReductionRec);
2770   llvm::Type *LLVMReductionsBufferTy =
2771       CGM.getTypes().ConvertTypeForMem(StaticTy);
2772   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2773       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2774       LLVMReductionsBufferTy->getPointerTo());
2775 
2776   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2777                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2778                                               /*Volatile=*/false, C.IntTy,
2779                                               Loc)};
2780   unsigned Idx = 0;
2781   for (const Expr *Private : Privates) {
2782     // Reduce element = LocalReduceList[i]
2783     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2784     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2785         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2786     // elemptr = ((CopyType*)(elemptrptr)) + I
2787     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2788         ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
2789     Address ElemPtr =
2790         Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
2791     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2792     // Global = Buffer.VD[Idx];
2793     const FieldDecl *FD = VarFieldMap.lookup(VD);
2794     LValue GlobLVal = CGF.EmitLValueForField(
2795         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2796     Address GlobAddr = GlobLVal.getAddress(CGF);
2797     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2798         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2799     GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
2800     switch (CGF.getEvaluationKind(Private->getType())) {
2801     case TEK_Scalar: {
2802       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2803       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2804                             LValueBaseInfo(AlignmentSource::Type),
2805                             TBAAAccessInfo());
2806       break;
2807     }
2808     case TEK_Complex: {
2809       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2810       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2811                              /*isInit=*/false);
2812       break;
2813     }
2814     case TEK_Aggregate:
2815       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2816                             GlobLVal, Private->getType(),
2817                             AggValueSlot::DoesNotOverlap);
2818       break;
2819     }
2820     ++Idx;
2821   }
2822 
2823   CGF.FinishFunction();
2824   return Fn;
2825 }
2826 
2827 /// This function emits a helper that reduces all the reduction variables from
2828 /// the team into the provided global buffer for the reduction variables.
2829 ///
2830 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2831 ///  void *GlobPtrs[];
2832 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2833 ///  ...
2834 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2835 ///  reduce_function(reduce_data, GlobPtrs);
2836 static llvm::Value *emitGlobalToListReduceFunction(
2837     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2838     QualType ReductionArrayTy, SourceLocation Loc,
2839     const RecordDecl *TeamReductionRec,
2840     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2841         &VarFieldMap,
2842     llvm::Function *ReduceFn) {
2843   ASTContext &C = CGM.getContext();
2844 
2845   // Buffer: global reduction buffer.
2846   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2847                               C.VoidPtrTy, ImplicitParamDecl::Other);
2848   // Idx: index of the buffer.
2849   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2850                            ImplicitParamDecl::Other);
2851   // ReduceList: thread local Reduce list.
2852   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2853                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2854   FunctionArgList Args;
2855   Args.push_back(&BufferArg);
2856   Args.push_back(&IdxArg);
2857   Args.push_back(&ReduceListArg);
2858 
2859   const CGFunctionInfo &CGFI =
2860       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2861   auto *Fn = llvm::Function::Create(
2862       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2863       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2864   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2865   Fn->setDoesNotRecurse();
2866   CodeGenFunction CGF(CGM);
2867   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2868 
2869   CGBuilderTy &Bld = CGF.Builder;
2870 
2871   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2872   QualType StaticTy = C.getRecordType(TeamReductionRec);
2873   llvm::Type *LLVMReductionsBufferTy =
2874       CGM.getTypes().ConvertTypeForMem(StaticTy);
2875   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2876       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2877       LLVMReductionsBufferTy->getPointerTo());
2878 
2879   // 1. Build a list of reduction variables.
2880   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2881   Address ReductionList =
2882       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2883   auto IPriv = Privates.begin();
2884   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2885                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2886                                               /*Volatile=*/false, C.IntTy,
2887                                               Loc)};
2888   unsigned Idx = 0;
2889   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2890     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2891     // Global = Buffer.VD[Idx];
2892     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2893     const FieldDecl *FD = VarFieldMap.lookup(VD);
2894     LValue GlobLVal = CGF.EmitLValueForField(
2895         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2896     Address GlobAddr = GlobLVal.getAddress(CGF);
2897     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2898         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2899     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2900     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2901     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2902       // Store array size.
2903       ++Idx;
2904       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2905       llvm::Value *Size = CGF.Builder.CreateIntCast(
2906           CGF.getVLASize(
2907                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2908               .NumElts,
2909           CGF.SizeTy, /*isSigned=*/false);
2910       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2911                               Elem);
2912     }
2913   }
2914 
2915   // Call reduce_function(ReduceList, GlobalReduceList)
2916   llvm::Value *GlobalReduceList =
2917       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2918   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2919   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2920       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2921   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2922       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2923   CGF.FinishFunction();
2924   return Fn;
2925 }
2926 
2927 ///
2928 /// Design of OpenMP reductions on the GPU
2929 ///
2930 /// Consider a typical OpenMP program with one or more reduction
2931 /// clauses:
2932 ///
2933 /// float foo;
2934 /// double bar;
2935 /// #pragma omp target teams distribute parallel for \
2936 ///             reduction(+:foo) reduction(*:bar)
2937 /// for (int i = 0; i < N; i++) {
2938 ///   foo += A[i]; bar *= B[i];
2939 /// }
2940 ///
2941 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2942 /// all teams.  In our OpenMP implementation on the NVPTX device an
2943 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2944 /// within a team are mapped to CUDA threads within a threadblock.
2945 /// Our goal is to efficiently aggregate values across all OpenMP
2946 /// threads such that:
2947 ///
2948 ///   - the compiler and runtime are logically concise, and
2949 ///   - the reduction is performed efficiently in a hierarchical
2950 ///     manner as follows: within OpenMP threads in the same warp,
2951 ///     across warps in a threadblock, and finally across teams on
2952 ///     the NVPTX device.
2953 ///
2954 /// Introduction to Decoupling
2955 ///
2956 /// We would like to decouple the compiler and the runtime so that the
2957 /// latter is ignorant of the reduction variables (number, data types)
2958 /// and the reduction operators.  This allows a simpler interface
2959 /// and implementation while still attaining good performance.
2960 ///
2961 /// Pseudocode for the aforementioned OpenMP program generated by the
2962 /// compiler is as follows:
2963 ///
2964 /// 1. Create private copies of reduction variables on each OpenMP
2965 ///    thread: 'foo_private', 'bar_private'
2966 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2967 ///    to it and writes the result in 'foo_private' and 'bar_private'
2968 ///    respectively.
2969 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2970 ///    and store the result on the team master:
2971 ///
2972 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2973 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2974 ///
2975 ///     where:
2976 ///       struct ReduceData {
2977 ///         double *foo;
2978 ///         double *bar;
2979 ///       } reduceData
2980 ///       reduceData.foo = &foo_private
2981 ///       reduceData.bar = &bar_private
2982 ///
2983 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2984 ///     auxiliary functions generated by the compiler that operate on
2985 ///     variables of type 'ReduceData'.  They aid the runtime perform
2986 ///     algorithmic steps in a data agnostic manner.
2987 ///
2988 ///     'shuffleReduceFn' is a pointer to a function that reduces data
2989 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
2990 ///     same warp.  It takes the following arguments as input:
2991 ///
2992 ///     a. variable of type 'ReduceData' on the calling lane,
2993 ///     b. its lane_id,
2994 ///     c. an offset relative to the current lane_id to generate a
2995 ///        remote_lane_id.  The remote lane contains the second
2996 ///        variable of type 'ReduceData' that is to be reduced.
2997 ///     d. an algorithm version parameter determining which reduction
2998 ///        algorithm to use.
2999 ///
3000 ///     'shuffleReduceFn' retrieves data from the remote lane using
3001 ///     efficient GPU shuffle intrinsics and reduces, using the
3002 ///     algorithm specified by the 4th parameter, the two operands
3003 ///     element-wise.  The result is written to the first operand.
3004 ///
3005 ///     Different reduction algorithms are implemented in different
3006 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3007 ///     the essential reduction step.  Therefore, based on the 4th
3008 ///     parameter, this function behaves slightly differently to
3009 ///     cooperate with the runtime to ensure correctness under
3010 ///     different circumstances.
3011 ///
3012 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3013 ///     reduced variables across warps.  It tunnels, through CUDA
3014 ///     shared memory, the thread-private data of type 'ReduceData'
3015 ///     from lane 0 of each warp to a lane in the first warp.
3016 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3017 ///    The last team writes the global reduced value to memory.
3018 ///
3019 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3020 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3021 ///             scratchpadCopyFn, loadAndReduceFn)
3022 ///
3023 ///     'scratchpadCopyFn' is a helper that stores reduced
3024 ///     data from the team master to a scratchpad array in
3025 ///     global memory.
3026 ///
3027 ///     'loadAndReduceFn' is a helper that loads data from
3028 ///     the scratchpad array and reduces it with the input
3029 ///     operand.
3030 ///
3031 ///     These compiler generated functions hide address
3032 ///     calculation and alignment information from the runtime.
3033 /// 5. if ret == 1:
3034 ///     The team master of the last team stores the reduced
3035 ///     result to the globals in memory.
3036 ///     foo += reduceData.foo; bar *= reduceData.bar
3037 ///
3038 ///
3039 /// Warp Reduction Algorithms
3040 ///
3041 /// On the warp level, we have three algorithms implemented in the
3042 /// OpenMP runtime depending on the number of active lanes:
3043 ///
3044 /// Full Warp Reduction
3045 ///
3046 /// The reduce algorithm within a warp where all lanes are active
3047 /// is implemented in the runtime as follows:
3048 ///
3049 /// full_warp_reduce(void *reduce_data,
3050 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3051 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3052 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3053 /// }
3054 ///
3055 /// The algorithm completes in log(2, WARPSIZE) steps.
3056 ///
3057 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3058 /// not used therefore we save instructions by not retrieving lane_id
3059 /// from the corresponding special registers.  The 4th parameter, which
3060 /// represents the version of the algorithm being used, is set to 0 to
3061 /// signify full warp reduction.
3062 ///
3063 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3064 ///
3065 /// #reduce_elem refers to an element in the local lane's data structure
3066 /// #remote_elem is retrieved from a remote lane
3067 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3068 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3069 ///
3070 /// Contiguous Partial Warp Reduction
3071 ///
3072 /// This reduce algorithm is used within a warp where only the first
3073 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3074 /// number of OpenMP threads in a parallel region is not a multiple of
3075 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3076 ///
3077 /// void
3078 /// contiguous_partial_reduce(void *reduce_data,
3079 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3080 ///                           int size, int lane_id) {
3081 ///   int curr_size;
3082 ///   int offset;
3083 ///   curr_size = size;
3084 ///   mask = curr_size/2;
3085 ///   while (offset>0) {
3086 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3087 ///     curr_size = (curr_size+1)/2;
3088 ///     offset = curr_size/2;
3089 ///   }
3090 /// }
3091 ///
3092 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3093 ///
3094 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3095 /// if (lane_id < offset)
3096 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3097 /// else
3098 ///     reduce_elem = remote_elem
3099 ///
3100 /// This algorithm assumes that the data to be reduced are located in a
3101 /// contiguous subset of lanes starting from the first.  When there is
3102 /// an odd number of active lanes, the data in the last lane is not
3103 /// aggregated with any other lane's dat but is instead copied over.
3104 ///
3105 /// Dispersed Partial Warp Reduction
3106 ///
3107 /// This algorithm is used within a warp when any discontiguous subset of
3108 /// lanes are active.  It is used to implement the reduction operation
3109 /// across lanes in an OpenMP simd region or in a nested parallel region.
3110 ///
3111 /// void
3112 /// dispersed_partial_reduce(void *reduce_data,
3113 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3114 ///   int size, remote_id;
3115 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3116 ///   do {
3117 ///       remote_id = next_active_lane_id_right_after_me();
3118 ///       # the above function returns 0 of no active lane
3119 ///       # is present right after the current lane.
3120 ///       size = number_of_active_lanes_in_this_warp();
3121 ///       logical_lane_id /= 2;
3122 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3123 ///                       remote_id-1-threadIdx.x, 2);
3124 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3125 /// }
3126 ///
3127 /// There is no assumption made about the initial state of the reduction.
3128 /// Any number of lanes (>=1) could be active at any position.  The reduction
3129 /// result is returned in the first active lane.
3130 ///
3131 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3132 ///
3133 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3134 /// if (lane_id % 2 == 0 && offset > 0)
3135 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3136 /// else
3137 ///     reduce_elem = remote_elem
3138 ///
3139 ///
3140 /// Intra-Team Reduction
3141 ///
3142 /// This function, as implemented in the runtime call
3143 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3144 /// threads in a team.  It first reduces within a warp using the
3145 /// aforementioned algorithms.  We then proceed to gather all such
3146 /// reduced values at the first warp.
3147 ///
3148 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3149 /// data from each of the "warp master" (zeroth lane of each warp, where
3150 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3151 /// a mathematical sense) the problem of reduction across warp masters in
3152 /// a block to the problem of warp reduction.
3153 ///
3154 ///
3155 /// Inter-Team Reduction
3156 ///
3157 /// Once a team has reduced its data to a single value, it is stored in
3158 /// a global scratchpad array.  Since each team has a distinct slot, this
3159 /// can be done without locking.
3160 ///
3161 /// The last team to write to the scratchpad array proceeds to reduce the
3162 /// scratchpad array.  One or more workers in the last team use the helper
3163 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3164 /// the k'th worker reduces every k'th element.
3165 ///
3166 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3167 /// reduce across workers and compute a globally reduced value.
3168 ///
3169 void CGOpenMPRuntimeGPU::emitReduction(
3170     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3171     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3172     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3173   if (!CGF.HaveInsertPoint())
3174     return;
3175 
3176   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3177 #ifndef NDEBUG
3178   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3179 #endif
3180 
3181   if (Options.SimpleReduction) {
3182     assert(!TeamsReduction && !ParallelReduction &&
3183            "Invalid reduction selection in emitReduction.");
3184     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3185                                    ReductionOps, Options);
3186     return;
3187   }
3188 
3189   assert((TeamsReduction || ParallelReduction) &&
3190          "Invalid reduction selection in emitReduction.");
3191 
3192   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3193   // RedList, shuffle_reduce_func, interwarp_copy_func);
3194   // or
3195   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3196   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3197   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3198 
3199   llvm::Value *Res;
3200   ASTContext &C = CGM.getContext();
3201   // 1. Build a list of reduction variables.
3202   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3203   auto Size = RHSExprs.size();
3204   for (const Expr *E : Privates) {
3205     if (E->getType()->isVariablyModifiedType())
3206       // Reserve place for array size.
3207       ++Size;
3208   }
3209   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3210   QualType ReductionArrayTy =
3211       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3212                              /*IndexTypeQuals=*/0);
3213   Address ReductionList =
3214       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3215   auto IPriv = Privates.begin();
3216   unsigned Idx = 0;
3217   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3218     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3219     CGF.Builder.CreateStore(
3220         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3221             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3222         Elem);
3223     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3224       // Store array size.
3225       ++Idx;
3226       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3227       llvm::Value *Size = CGF.Builder.CreateIntCast(
3228           CGF.getVLASize(
3229                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3230               .NumElts,
3231           CGF.SizeTy, /*isSigned=*/false);
3232       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3233                               Elem);
3234     }
3235   }
3236 
3237   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3238       ReductionList.getPointer(), CGF.VoidPtrTy);
3239   llvm::Function *ReductionFn = emitReductionFunction(
3240       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3241       LHSExprs, RHSExprs, ReductionOps);
3242   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3243   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3244       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3245   llvm::Value *InterWarpCopyFn =
3246       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3247 
3248   if (ParallelReduction) {
3249     llvm::Value *Args[] = {RTLoc,
3250                            ThreadId,
3251                            CGF.Builder.getInt32(RHSExprs.size()),
3252                            ReductionArrayTySize,
3253                            RL,
3254                            ShuffleAndReduceFn,
3255                            InterWarpCopyFn};
3256 
3257     Res = CGF.EmitRuntimeCall(
3258         OMPBuilder.getOrCreateRuntimeFunction(
3259             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3260         Args);
3261   } else {
3262     assert(TeamsReduction && "expected teams reduction.");
3263     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3264     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3265     int Cnt = 0;
3266     for (const Expr *DRE : Privates) {
3267       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3268       ++Cnt;
3269     }
3270     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3271         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3272         C.getLangOpts().OpenMPCUDAReductionBufNum);
3273     TeamsReductions.push_back(TeamReductionRec);
3274     if (!KernelTeamsReductionPtr) {
3275       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3276           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3277           llvm::GlobalValue::InternalLinkage, nullptr,
3278           "_openmp_teams_reductions_buffer_$_$ptr");
3279     }
3280     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3281         Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3282         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3283     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3284         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3285     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3286         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3287         ReductionFn);
3288     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3289         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3290     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3291         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3292         ReductionFn);
3293 
3294     llvm::Value *Args[] = {
3295         RTLoc,
3296         ThreadId,
3297         GlobalBufferPtr,
3298         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3299         RL,
3300         ShuffleAndReduceFn,
3301         InterWarpCopyFn,
3302         GlobalToBufferCpyFn,
3303         GlobalToBufferRedFn,
3304         BufferToGlobalCpyFn,
3305         BufferToGlobalRedFn};
3306 
3307     Res = CGF.EmitRuntimeCall(
3308         OMPBuilder.getOrCreateRuntimeFunction(
3309             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3310         Args);
3311   }
3312 
3313   // 5. Build if (res == 1)
3314   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3315   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3316   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3317       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3318   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3319 
3320   // 6. Build then branch: where we have reduced values in the master
3321   //    thread in each team.
3322   //    __kmpc_end_reduce{_nowait}(<gtid>);
3323   //    break;
3324   CGF.EmitBlock(ThenBB);
3325 
3326   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3327   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3328                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3329     auto IPriv = Privates.begin();
3330     auto ILHS = LHSExprs.begin();
3331     auto IRHS = RHSExprs.begin();
3332     for (const Expr *E : ReductionOps) {
3333       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3334                                   cast<DeclRefExpr>(*IRHS));
3335       ++IPriv;
3336       ++ILHS;
3337       ++IRHS;
3338     }
3339   };
3340   llvm::Value *EndArgs[] = {ThreadId};
3341   RegionCodeGenTy RCG(CodeGen);
3342   NVPTXActionTy Action(
3343       nullptr, llvm::None,
3344       OMPBuilder.getOrCreateRuntimeFunction(
3345           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3346       EndArgs);
3347   RCG.setAction(Action);
3348   RCG(CGF);
3349   // There is no need to emit line number for unconditional branch.
3350   (void)ApplyDebugLocation::CreateEmpty(CGF);
3351   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3352 }
3353 
3354 const VarDecl *
3355 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3356                                        const VarDecl *NativeParam) const {
3357   if (!NativeParam->getType()->isReferenceType())
3358     return NativeParam;
3359   QualType ArgType = NativeParam->getType();
3360   QualifierCollector QC;
3361   const Type *NonQualTy = QC.strip(ArgType);
3362   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3363   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3364     if (Attr->getCaptureKind() == OMPC_map) {
3365       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3366                                                         LangAS::opencl_global);
3367     }
3368   }
3369   ArgType = CGM.getContext().getPointerType(PointeeTy);
3370   QC.addRestrict();
3371   enum { NVPTX_local_addr = 5 };
3372   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3373   ArgType = QC.apply(CGM.getContext(), ArgType);
3374   if (isa<ImplicitParamDecl>(NativeParam))
3375     return ImplicitParamDecl::Create(
3376         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3377         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3378   return ParmVarDecl::Create(
3379       CGM.getContext(),
3380       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3381       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3382       NativeParam->getIdentifier(), ArgType,
3383       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3384 }
3385 
3386 Address
3387 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3388                                           const VarDecl *NativeParam,
3389                                           const VarDecl *TargetParam) const {
3390   assert(NativeParam != TargetParam &&
3391          NativeParam->getType()->isReferenceType() &&
3392          "Native arg must not be the same as target arg.");
3393   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3394   QualType NativeParamType = NativeParam->getType();
3395   QualifierCollector QC;
3396   const Type *NonQualTy = QC.strip(NativeParamType);
3397   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3398   unsigned NativePointeeAddrSpace =
3399       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3400   QualType TargetTy = TargetParam->getType();
3401   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3402       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3403   // First cast to generic.
3404   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3405       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3406           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3407   // Cast from generic to native address space.
3408   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3409       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3410           cast<llvm::PointerType>(TargetAddr->getType()),
3411                                   NativePointeeAddrSpace));
3412   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3413   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3414                         NativeParamType);
3415   return NativeParamAddr;
3416 }
3417 
3418 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3419     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3420     ArrayRef<llvm::Value *> Args) const {
3421   SmallVector<llvm::Value *, 4> TargetArgs;
3422   TargetArgs.reserve(Args.size());
3423   auto *FnType = OutlinedFn.getFunctionType();
3424   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3425     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3426       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3427       break;
3428     }
3429     llvm::Type *TargetType = FnType->getParamType(I);
3430     llvm::Value *NativeArg = Args[I];
3431     if (!TargetType->isPointerTy()) {
3432       TargetArgs.emplace_back(NativeArg);
3433       continue;
3434     }
3435     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3436         NativeArg, llvm::PointerType::getWithSamePointeeType(
3437             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3438     TargetArgs.emplace_back(
3439         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3440   }
3441   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3442 }
3443 
3444 /// Emit function which wraps the outline parallel region
3445 /// and controls the arguments which are passed to this function.
3446 /// The wrapper ensures that the outlined function is called
3447 /// with the correct arguments when data is shared.
3448 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3449     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3450   ASTContext &Ctx = CGM.getContext();
3451   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3452 
3453   // Create a function that takes as argument the source thread.
3454   FunctionArgList WrapperArgs;
3455   QualType Int16QTy =
3456       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3457   QualType Int32QTy =
3458       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3459   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3460                                      /*Id=*/nullptr, Int16QTy,
3461                                      ImplicitParamDecl::Other);
3462   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3463                                /*Id=*/nullptr, Int32QTy,
3464                                ImplicitParamDecl::Other);
3465   WrapperArgs.emplace_back(&ParallelLevelArg);
3466   WrapperArgs.emplace_back(&WrapperArg);
3467 
3468   const CGFunctionInfo &CGFI =
3469       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3470 
3471   auto *Fn = llvm::Function::Create(
3472       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3473       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3474 
3475   // Ensure we do not inline the function. This is trivially true for the ones
3476   // passed to __kmpc_fork_call but the ones calles in serialized regions
3477   // could be inlined. This is not a perfect but it is closer to the invariant
3478   // we want, namely, every data environment starts with a new function.
3479   // TODO: We should pass the if condition to the runtime function and do the
3480   //       handling there. Much cleaner code.
3481   Fn->addFnAttr(llvm::Attribute::NoInline);
3482 
3483   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3484   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3485   Fn->setDoesNotRecurse();
3486 
3487   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3488   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3489                     D.getBeginLoc(), D.getBeginLoc());
3490 
3491   const auto *RD = CS.getCapturedRecordDecl();
3492   auto CurField = RD->field_begin();
3493 
3494   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3495                                                       /*Name=*/".zero.addr");
3496   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3497   // Get the array of arguments.
3498   SmallVector<llvm::Value *, 8> Args;
3499 
3500   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3501   Args.emplace_back(ZeroAddr.getPointer());
3502 
3503   CGBuilderTy &Bld = CGF.Builder;
3504   auto CI = CS.capture_begin();
3505 
3506   // Use global memory for data sharing.
3507   // Handle passing of global args to workers.
3508   Address GlobalArgs =
3509       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3510   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3511   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3512   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3513                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3514                       DataSharingArgs);
3515 
3516   // Retrieve the shared variables from the list of references returned
3517   // by the runtime. Pass the variables to the outlined function.
3518   Address SharedArgListAddress = Address::invalid();
3519   if (CS.capture_size() > 0 ||
3520       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3521     SharedArgListAddress = CGF.EmitLoadOfPointer(
3522         GlobalArgs, CGF.getContext()
3523                         .getPointerType(CGF.getContext().getPointerType(
3524                             CGF.getContext().VoidPtrTy))
3525                         .castAs<PointerType>());
3526   }
3527   unsigned Idx = 0;
3528   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3529     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3530     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3531         Src, CGF.SizeTy->getPointerTo());
3532     llvm::Value *LB = CGF.EmitLoadOfScalar(
3533         TypedAddress,
3534         /*Volatile=*/false,
3535         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3536         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3537     Args.emplace_back(LB);
3538     ++Idx;
3539     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3540     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3541         Src, CGF.SizeTy->getPointerTo());
3542     llvm::Value *UB = CGF.EmitLoadOfScalar(
3543         TypedAddress,
3544         /*Volatile=*/false,
3545         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3546         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3547     Args.emplace_back(UB);
3548     ++Idx;
3549   }
3550   if (CS.capture_size() > 0) {
3551     ASTContext &CGFContext = CGF.getContext();
3552     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3553       QualType ElemTy = CurField->getType();
3554       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3555       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3556           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
3557       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3558                                               /*Volatile=*/false,
3559                                               CGFContext.getPointerType(ElemTy),
3560                                               CI->getLocation());
3561       if (CI->capturesVariableByCopy() &&
3562           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3563         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3564                               CI->getLocation());
3565       }
3566       Args.emplace_back(Arg);
3567     }
3568   }
3569 
3570   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3571   CGF.FinishFunction();
3572   return Fn;
3573 }
3574 
3575 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3576                                               const Decl *D) {
3577   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3578     return;
3579 
3580   assert(D && "Expected function or captured|block decl.");
3581   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3582          "Function is registered already.");
3583   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3584          "Team is set but not processed.");
3585   const Stmt *Body = nullptr;
3586   bool NeedToDelayGlobalization = false;
3587   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3588     Body = FD->getBody();
3589   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3590     Body = BD->getBody();
3591   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3592     Body = CD->getBody();
3593     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3594     if (NeedToDelayGlobalization &&
3595         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3596       return;
3597   }
3598   if (!Body)
3599     return;
3600   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3601   VarChecker.Visit(Body);
3602   const RecordDecl *GlobalizedVarsRecord =
3603       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3604   TeamAndReductions.first = nullptr;
3605   TeamAndReductions.second.clear();
3606   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3607       VarChecker.getEscapedVariableLengthDecls();
3608   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3609     return;
3610   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3611   I->getSecond().MappedParams =
3612       std::make_unique<CodeGenFunction::OMPMapVars>();
3613   I->getSecond().EscapedParameters.insert(
3614       VarChecker.getEscapedParameters().begin(),
3615       VarChecker.getEscapedParameters().end());
3616   I->getSecond().EscapedVariableLengthDecls.append(
3617       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3618   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3619   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3620     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3621     Data.insert(std::make_pair(VD, MappedVarData()));
3622   }
3623   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3624     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3625     VarChecker.Visit(Body);
3626     I->getSecond().SecondaryLocalVarData.emplace();
3627     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3628     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3629       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3630       Data.insert(std::make_pair(VD, MappedVarData()));
3631     }
3632   }
3633   if (!NeedToDelayGlobalization) {
3634     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3635     struct GlobalizationScope final : EHScopeStack::Cleanup {
3636       GlobalizationScope() = default;
3637 
3638       void Emit(CodeGenFunction &CGF, Flags flags) override {
3639         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3640             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3641       }
3642     };
3643     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3644   }
3645 }
3646 
3647 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3648                                                         const VarDecl *VD) {
3649   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3650     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3651     auto AS = LangAS::Default;
3652     switch (A->getAllocatorType()) {
3653       // Use the default allocator here as by default local vars are
3654       // threadlocal.
3655     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3656     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3657     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3658     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3659     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3660       // Follow the user decision - use default allocation.
3661       return Address::invalid();
3662     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3663       // TODO: implement aupport for user-defined allocators.
3664       return Address::invalid();
3665     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3666       AS = LangAS::cuda_constant;
3667       break;
3668     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3669       AS = LangAS::cuda_shared;
3670       break;
3671     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3672     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3673       break;
3674     }
3675     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3676     auto *GV = new llvm::GlobalVariable(
3677         CGM.getModule(), VarTy, /*isConstant=*/false,
3678         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3679         VD->getName(),
3680         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3681         CGM.getContext().getTargetAddressSpace(AS));
3682     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3683     GV->setAlignment(Align.getAsAlign());
3684     return Address(
3685         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3686             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3687                     VD->getType().getAddressSpace()))),
3688         Align);
3689   }
3690 
3691   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3692     return Address::invalid();
3693 
3694   VD = VD->getCanonicalDecl();
3695   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3696   if (I == FunctionGlobalizedDecls.end())
3697     return Address::invalid();
3698   auto VDI = I->getSecond().LocalVarData.find(VD);
3699   if (VDI != I->getSecond().LocalVarData.end())
3700     return VDI->second.PrivateAddr;
3701   if (VD->hasAttrs()) {
3702     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3703          E(VD->attr_end());
3704          IT != E; ++IT) {
3705       auto VDI = I->getSecond().LocalVarData.find(
3706           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3707               ->getCanonicalDecl());
3708       if (VDI != I->getSecond().LocalVarData.end())
3709         return VDI->second.PrivateAddr;
3710     }
3711   }
3712 
3713   return Address::invalid();
3714 }
3715 
3716 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3717   FunctionGlobalizedDecls.erase(CGF.CurFn);
3718   CGOpenMPRuntime::functionFinished(CGF);
3719 }
3720 
3721 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3722     CodeGenFunction &CGF, const OMPLoopDirective &S,
3723     OpenMPDistScheduleClauseKind &ScheduleKind,
3724     llvm::Value *&Chunk) const {
3725   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3726   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3727     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3728     Chunk = CGF.EmitScalarConversion(
3729         RT.getGPUNumThreads(CGF),
3730         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3731         S.getIterationVariable()->getType(), S.getBeginLoc());
3732     return;
3733   }
3734   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3735       CGF, S, ScheduleKind, Chunk);
3736 }
3737 
3738 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3739     CodeGenFunction &CGF, const OMPLoopDirective &S,
3740     OpenMPScheduleClauseKind &ScheduleKind,
3741     const Expr *&ChunkExpr) const {
3742   ScheduleKind = OMPC_SCHEDULE_static;
3743   // Chunk size is 1 in this case.
3744   llvm::APInt ChunkSize(32, 1);
3745   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3746       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3747       SourceLocation());
3748 }
3749 
3750 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3751     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3752   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3753          " Expected target-based directive.");
3754   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3755   for (const CapturedStmt::Capture &C : CS->captures()) {
3756     // Capture variables captured by reference in lambdas for target-based
3757     // directives.
3758     if (!C.capturesVariable())
3759       continue;
3760     const VarDecl *VD = C.getCapturedVar();
3761     const auto *RD = VD->getType()
3762                          .getCanonicalType()
3763                          .getNonReferenceType()
3764                          ->getAsCXXRecordDecl();
3765     if (!RD || !RD->isLambda())
3766       continue;
3767     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3768     LValue VDLVal;
3769     if (VD->getType().getCanonicalType()->isReferenceType())
3770       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3771     else
3772       VDLVal = CGF.MakeAddrLValue(
3773           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3774     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3775     FieldDecl *ThisCapture = nullptr;
3776     RD->getCaptureFields(Captures, ThisCapture);
3777     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3778       LValue ThisLVal =
3779           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3780       llvm::Value *CXXThis = CGF.LoadCXXThis();
3781       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3782     }
3783     for (const LambdaCapture &LC : RD->captures()) {
3784       if (LC.getCaptureKind() != LCK_ByRef)
3785         continue;
3786       const VarDecl *VD = LC.getCapturedVar();
3787       if (!CS->capturesVariable(VD))
3788         continue;
3789       auto It = Captures.find(VD);
3790       assert(It != Captures.end() && "Found lambda capture without field.");
3791       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3792       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3793       if (VD->getType().getCanonicalType()->isReferenceType())
3794         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3795                                                VD->getType().getCanonicalType())
3796                      .getAddress(CGF);
3797       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3798     }
3799   }
3800 }
3801 
3802 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3803                                                             LangAS &AS) {
3804   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3805     return false;
3806   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3807   switch(A->getAllocatorType()) {
3808   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3809   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3810   // Not supported, fallback to the default mem space.
3811   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3812   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3813   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3814   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3815   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3816     AS = LangAS::Default;
3817     return true;
3818   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3819     AS = LangAS::cuda_constant;
3820     return true;
3821   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3822     AS = LangAS::cuda_shared;
3823     return true;
3824   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3825     llvm_unreachable("Expected predefined allocator for the variables with the "
3826                      "static storage.");
3827   }
3828   return false;
3829 }
3830 
3831 // Get current CudaArch and ignore any unknown values
3832 static CudaArch getCudaArch(CodeGenModule &CGM) {
3833   if (!CGM.getTarget().hasFeature("ptx"))
3834     return CudaArch::UNKNOWN;
3835   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3836     if (Feature.getValue()) {
3837       CudaArch Arch = StringToCudaArch(Feature.getKey());
3838       if (Arch != CudaArch::UNKNOWN)
3839         return Arch;
3840     }
3841   }
3842   return CudaArch::UNKNOWN;
3843 }
3844 
3845 /// Check to see if target architecture supports unified addressing which is
3846 /// a restriction for OpenMP requires clause "unified_shared_memory".
3847 void CGOpenMPRuntimeGPU::processRequiresDirective(
3848     const OMPRequiresDecl *D) {
3849   for (const OMPClause *Clause : D->clauselists()) {
3850     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3851       CudaArch Arch = getCudaArch(CGM);
3852       switch (Arch) {
3853       case CudaArch::SM_20:
3854       case CudaArch::SM_21:
3855       case CudaArch::SM_30:
3856       case CudaArch::SM_32:
3857       case CudaArch::SM_35:
3858       case CudaArch::SM_37:
3859       case CudaArch::SM_50:
3860       case CudaArch::SM_52:
3861       case CudaArch::SM_53: {
3862         SmallString<256> Buffer;
3863         llvm::raw_svector_ostream Out(Buffer);
3864         Out << "Target architecture " << CudaArchToString(Arch)
3865             << " does not support unified addressing";
3866         CGM.Error(Clause->getBeginLoc(), Out.str());
3867         return;
3868       }
3869       case CudaArch::SM_60:
3870       case CudaArch::SM_61:
3871       case CudaArch::SM_62:
3872       case CudaArch::SM_70:
3873       case CudaArch::SM_72:
3874       case CudaArch::SM_75:
3875       case CudaArch::SM_80:
3876       case CudaArch::SM_86:
3877       case CudaArch::GFX600:
3878       case CudaArch::GFX601:
3879       case CudaArch::GFX602:
3880       case CudaArch::GFX700:
3881       case CudaArch::GFX701:
3882       case CudaArch::GFX702:
3883       case CudaArch::GFX703:
3884       case CudaArch::GFX704:
3885       case CudaArch::GFX705:
3886       case CudaArch::GFX801:
3887       case CudaArch::GFX802:
3888       case CudaArch::GFX803:
3889       case CudaArch::GFX805:
3890       case CudaArch::GFX810:
3891       case CudaArch::GFX900:
3892       case CudaArch::GFX902:
3893       case CudaArch::GFX904:
3894       case CudaArch::GFX906:
3895       case CudaArch::GFX908:
3896       case CudaArch::GFX909:
3897       case CudaArch::GFX90a:
3898       case CudaArch::GFX90c:
3899       case CudaArch::GFX1010:
3900       case CudaArch::GFX1011:
3901       case CudaArch::GFX1012:
3902       case CudaArch::GFX1013:
3903       case CudaArch::GFX1030:
3904       case CudaArch::GFX1031:
3905       case CudaArch::GFX1032:
3906       case CudaArch::GFX1033:
3907       case CudaArch::GFX1034:
3908       case CudaArch::GFX1035:
3909       case CudaArch::Generic:
3910       case CudaArch::UNUSED:
3911       case CudaArch::UNKNOWN:
3912         break;
3913       case CudaArch::LAST:
3914         llvm_unreachable("Unexpected Cuda arch.");
3915       }
3916     }
3917   }
3918   CGOpenMPRuntime::processRequiresDirective(D);
3919 }
3920 
3921 void CGOpenMPRuntimeGPU::clear() {
3922 
3923   if (!TeamsReductions.empty()) {
3924     ASTContext &C = CGM.getContext();
3925     RecordDecl *StaticRD = C.buildImplicitRecord(
3926         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3927     StaticRD->startDefinition();
3928     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3929       QualType RecTy = C.getRecordType(TeamReductionRec);
3930       auto *Field = FieldDecl::Create(
3931           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3932           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3933           /*BW=*/nullptr, /*Mutable=*/false,
3934           /*InitStyle=*/ICIS_NoInit);
3935       Field->setAccess(AS_public);
3936       StaticRD->addDecl(Field);
3937     }
3938     StaticRD->completeDefinition();
3939     QualType StaticTy = C.getRecordType(StaticRD);
3940     llvm::Type *LLVMReductionsBufferTy =
3941         CGM.getTypes().ConvertTypeForMem(StaticTy);
3942     // FIXME: nvlink does not handle weak linkage correctly (object with the
3943     // different size are reported as erroneous).
3944     // Restore CommonLinkage as soon as nvlink is fixed.
3945     auto *GV = new llvm::GlobalVariable(
3946         CGM.getModule(), LLVMReductionsBufferTy,
3947         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3948         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3949         "_openmp_teams_reductions_buffer_$_");
3950     KernelTeamsReductionPtr->setInitializer(
3951         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3952                                                              CGM.VoidPtrTy));
3953   }
3954   CGOpenMPRuntime::clear();
3955 }
3956 
3957 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3958   CGBuilderTy &Bld = CGF.Builder;
3959   llvm::Module *M = &CGF.CGM.getModule();
3960   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3961   llvm::Function *F = M->getFunction(LocSize);
3962   if (!F) {
3963     F = llvm::Function::Create(
3964         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3965         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3966   }
3967   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3968 }
3969 
3970 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3971   ArrayRef<llvm::Value *> Args{};
3972   return CGF.EmitRuntimeCall(
3973       OMPBuilder.getOrCreateRuntimeFunction(
3974           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3975       Args);
3976 }
3977 
3978 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3979   ArrayRef<llvm::Value *> Args{};
3980   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3981                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3982                              Args);
3983 }
3984