1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 26 using namespace clang; 27 using namespace CodeGen; 28 using namespace llvm::omp; 29 30 namespace { 31 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 32 class NVPTXActionTy final : public PrePostActionTy { 33 llvm::FunctionCallee EnterCallee = nullptr; 34 ArrayRef<llvm::Value *> EnterArgs; 35 llvm::FunctionCallee ExitCallee = nullptr; 36 ArrayRef<llvm::Value *> ExitArgs; 37 bool Conditional = false; 38 llvm::BasicBlock *ContBlock = nullptr; 39 40 public: 41 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 42 ArrayRef<llvm::Value *> EnterArgs, 43 llvm::FunctionCallee ExitCallee, 44 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 45 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 46 ExitArgs(ExitArgs), Conditional(Conditional) {} 47 void Enter(CodeGenFunction &CGF) override { 48 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 49 if (Conditional) { 50 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 51 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 52 ContBlock = CGF.createBasicBlock("omp_if.end"); 53 // Generate the branch (If-stmt) 54 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 55 CGF.EmitBlock(ThenBlock); 56 } 57 } 58 void Done(CodeGenFunction &CGF) { 59 // Emit the rest of blocks/branches 60 CGF.EmitBranch(ContBlock); 61 CGF.EmitBlock(ContBlock, true); 62 } 63 void Exit(CodeGenFunction &CGF) override { 64 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 65 } 66 }; 67 68 /// A class to track the execution mode when codegening directives within 69 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 70 /// to the target region and used by containing directives such as 'parallel' 71 /// to emit optimized code. 72 class ExecutionRuntimeModesRAII { 73 private: 74 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 75 CGOpenMPRuntimeGPU::EM_Unknown; 76 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 77 bool SavedRuntimeMode = false; 78 bool *RuntimeMode = nullptr; 79 80 public: 81 /// Constructor for Non-SPMD mode. 82 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 83 : ExecMode(ExecMode) { 84 SavedExecMode = ExecMode; 85 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 86 } 87 /// Constructor for SPMD mode. 88 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 89 bool &RuntimeMode, bool FullRuntimeMode) 90 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 91 SavedExecMode = ExecMode; 92 SavedRuntimeMode = RuntimeMode; 93 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 94 RuntimeMode = FullRuntimeMode; 95 } 96 ~ExecutionRuntimeModesRAII() { 97 ExecMode = SavedExecMode; 98 if (RuntimeMode) 99 *RuntimeMode = SavedRuntimeMode; 100 } 101 }; 102 103 /// GPU Configuration: This information can be derived from cuda registers, 104 /// however, providing compile time constants helps generate more efficient 105 /// code. For all practical purposes this is fine because the configuration 106 /// is the same for all known NVPTX architectures. 107 enum MachineConfiguration : unsigned { 108 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 109 /// specific Grid Values like GV_Warp_Size, GV_Warp_Size_Log2, 110 /// and GV_Warp_Size_Log2_Mask. 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size_Log2); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDMask = CGF.getContext().getTargetInfo().getGridValue( 550 llvm::omp::GV_Warp_Size_Log2_Mask); 551 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 552 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 553 "nvptx_lane_id"); 554 } 555 556 /// Get the value of the thread_limit clause in the teams directive. 557 /// For the 'generic' execution mode, the runtime encodes thread_limit in 558 /// the launch parameters, always starting thread_limit+warpSize threads per 559 /// CTA. The threads in the last warp are reserved for master execution. 560 /// For the 'spmd' execution mode, all threads in a CTA are part of the team. 561 static llvm::Value *getThreadLimit(CodeGenFunction &CGF, 562 bool IsInSPMDExecutionMode = false) { 563 CGBuilderTy &Bld = CGF.Builder; 564 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 565 return IsInSPMDExecutionMode 566 ? RT.getGPUNumThreads(CGF) 567 : Bld.CreateNUWSub(RT.getGPUNumThreads(CGF), 568 RT.getGPUWarpSize(CGF), "thread_limit"); 569 } 570 571 /// Get the thread id of the OMP master thread. 572 /// The master thread id is the first thread (lane) of the last warp in the 573 /// GPU block. Warp size is assumed to be some power of 2. 574 /// Thread id is 0 indexed. 575 /// E.g: If NumThreads is 33, master id is 32. 576 /// If NumThreads is 64, master id is 32. 577 /// If NumThreads is 1024, master id is 992. 578 static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) { 579 CGBuilderTy &Bld = CGF.Builder; 580 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 581 llvm::Value *NumThreads = RT.getGPUNumThreads(CGF); 582 // We assume that the warp size is a power of 2. 583 llvm::Value *Mask = Bld.CreateNUWSub(RT.getGPUWarpSize(CGF), Bld.getInt32(1)); 584 585 return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)), 586 Bld.CreateNot(Mask), "master_tid"); 587 } 588 589 CGOpenMPRuntimeGPU::WorkerFunctionState::WorkerFunctionState( 590 CodeGenModule &CGM, SourceLocation Loc) 591 : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()), 592 Loc(Loc) { 593 createWorkerFunction(CGM); 594 } 595 596 void CGOpenMPRuntimeGPU::WorkerFunctionState::createWorkerFunction( 597 CodeGenModule &CGM) { 598 // Create an worker function with no arguments. 599 600 WorkerFn = llvm::Function::Create( 601 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 602 /*placeholder=*/"_worker", &CGM.getModule()); 603 CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI); 604 WorkerFn->setDoesNotRecurse(); 605 } 606 607 CGOpenMPRuntimeGPU::ExecutionMode 608 CGOpenMPRuntimeGPU::getExecutionMode() const { 609 return CurrentExecutionMode; 610 } 611 612 static CGOpenMPRuntimeGPU::DataSharingMode 613 getDataSharingMode(CodeGenModule &CGM) { 614 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 615 : CGOpenMPRuntimeGPU::Generic; 616 } 617 618 /// Check for inner (nested) SPMD construct, if any 619 static bool hasNestedSPMDDirective(ASTContext &Ctx, 620 const OMPExecutableDirective &D) { 621 const auto *CS = D.getInnermostCapturedStmt(); 622 const auto *Body = 623 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 624 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 625 626 if (const auto *NestedDir = 627 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 628 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 629 switch (D.getDirectiveKind()) { 630 case OMPD_target: 631 if (isOpenMPParallelDirective(DKind)) 632 return true; 633 if (DKind == OMPD_teams) { 634 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 635 /*IgnoreCaptured=*/true); 636 if (!Body) 637 return false; 638 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 639 if (const auto *NND = 640 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 641 DKind = NND->getDirectiveKind(); 642 if (isOpenMPParallelDirective(DKind)) 643 return true; 644 } 645 } 646 return false; 647 case OMPD_target_teams: 648 return isOpenMPParallelDirective(DKind); 649 case OMPD_target_simd: 650 case OMPD_target_parallel: 651 case OMPD_target_parallel_for: 652 case OMPD_target_parallel_for_simd: 653 case OMPD_target_teams_distribute: 654 case OMPD_target_teams_distribute_simd: 655 case OMPD_target_teams_distribute_parallel_for: 656 case OMPD_target_teams_distribute_parallel_for_simd: 657 case OMPD_parallel: 658 case OMPD_for: 659 case OMPD_parallel_for: 660 case OMPD_parallel_master: 661 case OMPD_parallel_sections: 662 case OMPD_for_simd: 663 case OMPD_parallel_for_simd: 664 case OMPD_cancel: 665 case OMPD_cancellation_point: 666 case OMPD_ordered: 667 case OMPD_threadprivate: 668 case OMPD_allocate: 669 case OMPD_task: 670 case OMPD_simd: 671 case OMPD_sections: 672 case OMPD_section: 673 case OMPD_single: 674 case OMPD_master: 675 case OMPD_critical: 676 case OMPD_taskyield: 677 case OMPD_barrier: 678 case OMPD_taskwait: 679 case OMPD_taskgroup: 680 case OMPD_atomic: 681 case OMPD_flush: 682 case OMPD_depobj: 683 case OMPD_scan: 684 case OMPD_teams: 685 case OMPD_target_data: 686 case OMPD_target_exit_data: 687 case OMPD_target_enter_data: 688 case OMPD_distribute: 689 case OMPD_distribute_simd: 690 case OMPD_distribute_parallel_for: 691 case OMPD_distribute_parallel_for_simd: 692 case OMPD_teams_distribute: 693 case OMPD_teams_distribute_simd: 694 case OMPD_teams_distribute_parallel_for: 695 case OMPD_teams_distribute_parallel_for_simd: 696 case OMPD_target_update: 697 case OMPD_declare_simd: 698 case OMPD_declare_variant: 699 case OMPD_begin_declare_variant: 700 case OMPD_end_declare_variant: 701 case OMPD_declare_target: 702 case OMPD_end_declare_target: 703 case OMPD_declare_reduction: 704 case OMPD_declare_mapper: 705 case OMPD_taskloop: 706 case OMPD_taskloop_simd: 707 case OMPD_master_taskloop: 708 case OMPD_master_taskloop_simd: 709 case OMPD_parallel_master_taskloop: 710 case OMPD_parallel_master_taskloop_simd: 711 case OMPD_requires: 712 case OMPD_unknown: 713 default: 714 llvm_unreachable("Unexpected directive."); 715 } 716 } 717 718 return false; 719 } 720 721 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 722 const OMPExecutableDirective &D) { 723 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 724 switch (DirectiveKind) { 725 case OMPD_target: 726 case OMPD_target_teams: 727 return hasNestedSPMDDirective(Ctx, D); 728 case OMPD_target_parallel: 729 case OMPD_target_parallel_for: 730 case OMPD_target_parallel_for_simd: 731 case OMPD_target_teams_distribute_parallel_for: 732 case OMPD_target_teams_distribute_parallel_for_simd: 733 case OMPD_target_simd: 734 case OMPD_target_teams_distribute_simd: 735 return true; 736 case OMPD_target_teams_distribute: 737 return false; 738 case OMPD_parallel: 739 case OMPD_for: 740 case OMPD_parallel_for: 741 case OMPD_parallel_master: 742 case OMPD_parallel_sections: 743 case OMPD_for_simd: 744 case OMPD_parallel_for_simd: 745 case OMPD_cancel: 746 case OMPD_cancellation_point: 747 case OMPD_ordered: 748 case OMPD_threadprivate: 749 case OMPD_allocate: 750 case OMPD_task: 751 case OMPD_simd: 752 case OMPD_sections: 753 case OMPD_section: 754 case OMPD_single: 755 case OMPD_master: 756 case OMPD_critical: 757 case OMPD_taskyield: 758 case OMPD_barrier: 759 case OMPD_taskwait: 760 case OMPD_taskgroup: 761 case OMPD_atomic: 762 case OMPD_flush: 763 case OMPD_depobj: 764 case OMPD_scan: 765 case OMPD_teams: 766 case OMPD_target_data: 767 case OMPD_target_exit_data: 768 case OMPD_target_enter_data: 769 case OMPD_distribute: 770 case OMPD_distribute_simd: 771 case OMPD_distribute_parallel_for: 772 case OMPD_distribute_parallel_for_simd: 773 case OMPD_teams_distribute: 774 case OMPD_teams_distribute_simd: 775 case OMPD_teams_distribute_parallel_for: 776 case OMPD_teams_distribute_parallel_for_simd: 777 case OMPD_target_update: 778 case OMPD_declare_simd: 779 case OMPD_declare_variant: 780 case OMPD_begin_declare_variant: 781 case OMPD_end_declare_variant: 782 case OMPD_declare_target: 783 case OMPD_end_declare_target: 784 case OMPD_declare_reduction: 785 case OMPD_declare_mapper: 786 case OMPD_taskloop: 787 case OMPD_taskloop_simd: 788 case OMPD_master_taskloop: 789 case OMPD_master_taskloop_simd: 790 case OMPD_parallel_master_taskloop: 791 case OMPD_parallel_master_taskloop_simd: 792 case OMPD_requires: 793 case OMPD_unknown: 794 default: 795 break; 796 } 797 llvm_unreachable( 798 "Unknown programming model for OpenMP directive on NVPTX target."); 799 } 800 801 /// Check if the directive is loops based and has schedule clause at all or has 802 /// static scheduling. 803 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 804 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 805 isOpenMPLoopDirective(D.getDirectiveKind()) && 806 "Expected loop-based directive."); 807 return !D.hasClausesOfKind<OMPOrderedClause>() && 808 (!D.hasClausesOfKind<OMPScheduleClause>() || 809 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 810 [](const OMPScheduleClause *C) { 811 return C->getScheduleKind() == OMPC_SCHEDULE_static; 812 })); 813 } 814 815 /// Check for inner (nested) lightweight runtime construct, if any 816 static bool hasNestedLightweightDirective(ASTContext &Ctx, 817 const OMPExecutableDirective &D) { 818 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 819 const auto *CS = D.getInnermostCapturedStmt(); 820 const auto *Body = 821 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 822 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 823 824 if (const auto *NestedDir = 825 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 826 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 827 switch (D.getDirectiveKind()) { 828 case OMPD_target: 829 if (isOpenMPParallelDirective(DKind) && 830 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 831 hasStaticScheduling(*NestedDir)) 832 return true; 833 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 834 return true; 835 if (DKind == OMPD_parallel) { 836 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 837 /*IgnoreCaptured=*/true); 838 if (!Body) 839 return false; 840 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 841 if (const auto *NND = 842 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 843 DKind = NND->getDirectiveKind(); 844 if (isOpenMPWorksharingDirective(DKind) && 845 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 846 return true; 847 } 848 } else if (DKind == OMPD_teams) { 849 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 850 /*IgnoreCaptured=*/true); 851 if (!Body) 852 return false; 853 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 854 if (const auto *NND = 855 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 856 DKind = NND->getDirectiveKind(); 857 if (isOpenMPParallelDirective(DKind) && 858 isOpenMPWorksharingDirective(DKind) && 859 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 860 return true; 861 if (DKind == OMPD_parallel) { 862 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 863 /*IgnoreCaptured=*/true); 864 if (!Body) 865 return false; 866 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 867 if (const auto *NND = 868 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 869 DKind = NND->getDirectiveKind(); 870 if (isOpenMPWorksharingDirective(DKind) && 871 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 872 return true; 873 } 874 } 875 } 876 } 877 return false; 878 case OMPD_target_teams: 879 if (isOpenMPParallelDirective(DKind) && 880 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 881 hasStaticScheduling(*NestedDir)) 882 return true; 883 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 884 return true; 885 if (DKind == OMPD_parallel) { 886 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 887 /*IgnoreCaptured=*/true); 888 if (!Body) 889 return false; 890 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 891 if (const auto *NND = 892 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 893 DKind = NND->getDirectiveKind(); 894 if (isOpenMPWorksharingDirective(DKind) && 895 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 896 return true; 897 } 898 } 899 return false; 900 case OMPD_target_parallel: 901 if (DKind == OMPD_simd) 902 return true; 903 return isOpenMPWorksharingDirective(DKind) && 904 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 905 case OMPD_target_teams_distribute: 906 case OMPD_target_simd: 907 case OMPD_target_parallel_for: 908 case OMPD_target_parallel_for_simd: 909 case OMPD_target_teams_distribute_simd: 910 case OMPD_target_teams_distribute_parallel_for: 911 case OMPD_target_teams_distribute_parallel_for_simd: 912 case OMPD_parallel: 913 case OMPD_for: 914 case OMPD_parallel_for: 915 case OMPD_parallel_master: 916 case OMPD_parallel_sections: 917 case OMPD_for_simd: 918 case OMPD_parallel_for_simd: 919 case OMPD_cancel: 920 case OMPD_cancellation_point: 921 case OMPD_ordered: 922 case OMPD_threadprivate: 923 case OMPD_allocate: 924 case OMPD_task: 925 case OMPD_simd: 926 case OMPD_sections: 927 case OMPD_section: 928 case OMPD_single: 929 case OMPD_master: 930 case OMPD_critical: 931 case OMPD_taskyield: 932 case OMPD_barrier: 933 case OMPD_taskwait: 934 case OMPD_taskgroup: 935 case OMPD_atomic: 936 case OMPD_flush: 937 case OMPD_depobj: 938 case OMPD_scan: 939 case OMPD_teams: 940 case OMPD_target_data: 941 case OMPD_target_exit_data: 942 case OMPD_target_enter_data: 943 case OMPD_distribute: 944 case OMPD_distribute_simd: 945 case OMPD_distribute_parallel_for: 946 case OMPD_distribute_parallel_for_simd: 947 case OMPD_teams_distribute: 948 case OMPD_teams_distribute_simd: 949 case OMPD_teams_distribute_parallel_for: 950 case OMPD_teams_distribute_parallel_for_simd: 951 case OMPD_target_update: 952 case OMPD_declare_simd: 953 case OMPD_declare_variant: 954 case OMPD_begin_declare_variant: 955 case OMPD_end_declare_variant: 956 case OMPD_declare_target: 957 case OMPD_end_declare_target: 958 case OMPD_declare_reduction: 959 case OMPD_declare_mapper: 960 case OMPD_taskloop: 961 case OMPD_taskloop_simd: 962 case OMPD_master_taskloop: 963 case OMPD_master_taskloop_simd: 964 case OMPD_parallel_master_taskloop: 965 case OMPD_parallel_master_taskloop_simd: 966 case OMPD_requires: 967 case OMPD_unknown: 968 default: 969 llvm_unreachable("Unexpected directive."); 970 } 971 } 972 973 return false; 974 } 975 976 /// Checks if the construct supports lightweight runtime. It must be SPMD 977 /// construct + inner loop-based construct with static scheduling. 978 static bool supportsLightweightRuntime(ASTContext &Ctx, 979 const OMPExecutableDirective &D) { 980 if (!supportsSPMDExecutionMode(Ctx, D)) 981 return false; 982 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 983 switch (DirectiveKind) { 984 case OMPD_target: 985 case OMPD_target_teams: 986 case OMPD_target_parallel: 987 return hasNestedLightweightDirective(Ctx, D); 988 case OMPD_target_parallel_for: 989 case OMPD_target_parallel_for_simd: 990 case OMPD_target_teams_distribute_parallel_for: 991 case OMPD_target_teams_distribute_parallel_for_simd: 992 // (Last|First)-privates must be shared in parallel region. 993 return hasStaticScheduling(D); 994 case OMPD_target_simd: 995 case OMPD_target_teams_distribute_simd: 996 return true; 997 case OMPD_target_teams_distribute: 998 return false; 999 case OMPD_parallel: 1000 case OMPD_for: 1001 case OMPD_parallel_for: 1002 case OMPD_parallel_master: 1003 case OMPD_parallel_sections: 1004 case OMPD_for_simd: 1005 case OMPD_parallel_for_simd: 1006 case OMPD_cancel: 1007 case OMPD_cancellation_point: 1008 case OMPD_ordered: 1009 case OMPD_threadprivate: 1010 case OMPD_allocate: 1011 case OMPD_task: 1012 case OMPD_simd: 1013 case OMPD_sections: 1014 case OMPD_section: 1015 case OMPD_single: 1016 case OMPD_master: 1017 case OMPD_critical: 1018 case OMPD_taskyield: 1019 case OMPD_barrier: 1020 case OMPD_taskwait: 1021 case OMPD_taskgroup: 1022 case OMPD_atomic: 1023 case OMPD_flush: 1024 case OMPD_depobj: 1025 case OMPD_scan: 1026 case OMPD_teams: 1027 case OMPD_target_data: 1028 case OMPD_target_exit_data: 1029 case OMPD_target_enter_data: 1030 case OMPD_distribute: 1031 case OMPD_distribute_simd: 1032 case OMPD_distribute_parallel_for: 1033 case OMPD_distribute_parallel_for_simd: 1034 case OMPD_teams_distribute: 1035 case OMPD_teams_distribute_simd: 1036 case OMPD_teams_distribute_parallel_for: 1037 case OMPD_teams_distribute_parallel_for_simd: 1038 case OMPD_target_update: 1039 case OMPD_declare_simd: 1040 case OMPD_declare_variant: 1041 case OMPD_begin_declare_variant: 1042 case OMPD_end_declare_variant: 1043 case OMPD_declare_target: 1044 case OMPD_end_declare_target: 1045 case OMPD_declare_reduction: 1046 case OMPD_declare_mapper: 1047 case OMPD_taskloop: 1048 case OMPD_taskloop_simd: 1049 case OMPD_master_taskloop: 1050 case OMPD_master_taskloop_simd: 1051 case OMPD_parallel_master_taskloop: 1052 case OMPD_parallel_master_taskloop_simd: 1053 case OMPD_requires: 1054 case OMPD_unknown: 1055 default: 1056 break; 1057 } 1058 llvm_unreachable( 1059 "Unknown programming model for OpenMP directive on NVPTX target."); 1060 } 1061 1062 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1063 StringRef ParentName, 1064 llvm::Function *&OutlinedFn, 1065 llvm::Constant *&OutlinedFnID, 1066 bool IsOffloadEntry, 1067 const RegionCodeGenTy &CodeGen) { 1068 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1069 EntryFunctionState EST; 1070 WorkerFunctionState WST(CGM, D.getBeginLoc()); 1071 Work.clear(); 1072 WrapperFunctionsMap.clear(); 1073 1074 // Emit target region as a standalone region. 1075 class NVPTXPrePostActionTy : public PrePostActionTy { 1076 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1077 CGOpenMPRuntimeGPU::WorkerFunctionState &WST; 1078 1079 public: 1080 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST, 1081 CGOpenMPRuntimeGPU::WorkerFunctionState &WST) 1082 : EST(EST), WST(WST) {} 1083 void Enter(CodeGenFunction &CGF) override { 1084 auto &RT = 1085 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1086 RT.emitNonSPMDEntryHeader(CGF, EST, WST); 1087 // Skip target region initialization. 1088 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1089 } 1090 void Exit(CodeGenFunction &CGF) override { 1091 auto &RT = 1092 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1093 RT.clearLocThreadIdInsertPt(CGF); 1094 RT.emitNonSPMDEntryFooter(CGF, EST); 1095 } 1096 } Action(EST, WST); 1097 CodeGen.setAction(Action); 1098 IsInTTDRegion = true; 1099 // Reserve place for the globalized memory. 1100 GlobalizedRecords.emplace_back(); 1101 if (!KernelStaticGlobalized) { 1102 KernelStaticGlobalized = new llvm::GlobalVariable( 1103 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false, 1104 llvm::GlobalValue::InternalLinkage, 1105 llvm::UndefValue::get(CGM.VoidPtrTy), 1106 "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr, 1107 llvm::GlobalValue::NotThreadLocal, 1108 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared)); 1109 } 1110 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1111 IsOffloadEntry, CodeGen); 1112 IsInTTDRegion = false; 1113 1114 // Now change the name of the worker function to correspond to this target 1115 // region's entry function. 1116 WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker")); 1117 1118 // Create the worker function 1119 emitWorkerFunction(WST); 1120 } 1121 1122 // Setup NVPTX threads for master-worker OpenMP scheme. 1123 void CGOpenMPRuntimeGPU::emitNonSPMDEntryHeader(CodeGenFunction &CGF, 1124 EntryFunctionState &EST, 1125 WorkerFunctionState &WST) { 1126 CGBuilderTy &Bld = CGF.Builder; 1127 1128 llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker"); 1129 llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck"); 1130 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); 1131 EST.ExitBB = CGF.createBasicBlock(".exit"); 1132 1133 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1134 llvm::Value *IsWorker = 1135 Bld.CreateICmpULT(RT.getGPUThreadID(CGF), getThreadLimit(CGF)); 1136 Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB); 1137 1138 CGF.EmitBlock(WorkerBB); 1139 emitCall(CGF, WST.Loc, WST.WorkerFn); 1140 CGF.EmitBranch(EST.ExitBB); 1141 1142 CGF.EmitBlock(MasterCheckBB); 1143 llvm::Value *IsMaster = 1144 Bld.CreateICmpEQ(RT.getGPUThreadID(CGF), getMasterThreadID(CGF)); 1145 Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB); 1146 1147 CGF.EmitBlock(MasterBB); 1148 IsInTargetMasterThreadRegion = true; 1149 // SEQUENTIAL (MASTER) REGION START 1150 // First action in sequential region: 1151 // Initialize the state of the OpenMP runtime library on the GPU. 1152 // TODO: Optimize runtime initialization and pass in correct value. 1153 llvm::Value *Args[] = {getThreadLimit(CGF), 1154 Bld.getInt16(/*RequiresOMPRuntime=*/1)}; 1155 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1156 CGM.getModule(), OMPRTL___kmpc_kernel_init), 1157 Args); 1158 1159 // For data sharing, we need to initialize the stack. 1160 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1161 CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack)); 1162 1163 emitGenericVarsProlog(CGF, WST.Loc); 1164 } 1165 1166 void CGOpenMPRuntimeGPU::emitNonSPMDEntryFooter(CodeGenFunction &CGF, 1167 EntryFunctionState &EST) { 1168 IsInTargetMasterThreadRegion = false; 1169 if (!CGF.HaveInsertPoint()) 1170 return; 1171 1172 emitGenericVarsEpilog(CGF); 1173 1174 if (!EST.ExitBB) 1175 EST.ExitBB = CGF.createBasicBlock(".exit"); 1176 1177 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier"); 1178 CGF.EmitBranch(TerminateBB); 1179 1180 CGF.EmitBlock(TerminateBB); 1181 // Signal termination condition. 1182 // TODO: Optimize runtime initialization and pass in correct value. 1183 llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)}; 1184 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1185 CGM.getModule(), OMPRTL___kmpc_kernel_deinit), 1186 Args); 1187 // Barrier to terminate worker threads. 1188 syncCTAThreads(CGF); 1189 // Master thread jumps to exit point. 1190 CGF.EmitBranch(EST.ExitBB); 1191 1192 CGF.EmitBlock(EST.ExitBB); 1193 EST.ExitBB = nullptr; 1194 } 1195 1196 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1197 StringRef ParentName, 1198 llvm::Function *&OutlinedFn, 1199 llvm::Constant *&OutlinedFnID, 1200 bool IsOffloadEntry, 1201 const RegionCodeGenTy &CodeGen) { 1202 ExecutionRuntimeModesRAII ModeRAII( 1203 CurrentExecutionMode, RequiresFullRuntime, 1204 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1205 !supportsLightweightRuntime(CGM.getContext(), D)); 1206 EntryFunctionState EST; 1207 1208 // Emit target region as a standalone region. 1209 class NVPTXPrePostActionTy : public PrePostActionTy { 1210 CGOpenMPRuntimeGPU &RT; 1211 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1212 const OMPExecutableDirective &D; 1213 1214 public: 1215 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1216 CGOpenMPRuntimeGPU::EntryFunctionState &EST, 1217 const OMPExecutableDirective &D) 1218 : RT(RT), EST(EST), D(D) {} 1219 void Enter(CodeGenFunction &CGF) override { 1220 RT.emitSPMDEntryHeader(CGF, EST, D); 1221 // Skip target region initialization. 1222 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1223 } 1224 void Exit(CodeGenFunction &CGF) override { 1225 RT.clearLocThreadIdInsertPt(CGF); 1226 RT.emitSPMDEntryFooter(CGF, EST); 1227 } 1228 } Action(*this, EST, D); 1229 CodeGen.setAction(Action); 1230 IsInTTDRegion = true; 1231 // Reserve place for the globalized memory. 1232 GlobalizedRecords.emplace_back(); 1233 if (!KernelStaticGlobalized) { 1234 KernelStaticGlobalized = new llvm::GlobalVariable( 1235 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false, 1236 llvm::GlobalValue::InternalLinkage, 1237 llvm::UndefValue::get(CGM.VoidPtrTy), 1238 "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr, 1239 llvm::GlobalValue::NotThreadLocal, 1240 CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared)); 1241 } 1242 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1243 IsOffloadEntry, CodeGen); 1244 IsInTTDRegion = false; 1245 } 1246 1247 void CGOpenMPRuntimeGPU::emitSPMDEntryHeader( 1248 CodeGenFunction &CGF, EntryFunctionState &EST, 1249 const OMPExecutableDirective &D) { 1250 CGBuilderTy &Bld = CGF.Builder; 1251 1252 // Setup BBs in entry function. 1253 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute"); 1254 EST.ExitBB = CGF.createBasicBlock(".exit"); 1255 1256 llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true), 1257 /*RequiresOMPRuntime=*/ 1258 Bld.getInt16(RequiresFullRuntime ? 1 : 0)}; 1259 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1260 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_init), 1261 Args); 1262 1263 if (RequiresFullRuntime) { 1264 // For data sharing, we need to initialize the stack. 1265 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1266 CGM.getModule(), OMPRTL___kmpc_data_sharing_init_stack_spmd)); 1267 } 1268 1269 CGF.EmitBranch(ExecuteBB); 1270 1271 CGF.EmitBlock(ExecuteBB); 1272 1273 IsInTargetMasterThreadRegion = true; 1274 } 1275 1276 void CGOpenMPRuntimeGPU::emitSPMDEntryFooter(CodeGenFunction &CGF, 1277 EntryFunctionState &EST) { 1278 IsInTargetMasterThreadRegion = false; 1279 if (!CGF.HaveInsertPoint()) 1280 return; 1281 1282 if (!EST.ExitBB) 1283 EST.ExitBB = CGF.createBasicBlock(".exit"); 1284 1285 llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit"); 1286 CGF.EmitBranch(OMPDeInitBB); 1287 1288 CGF.EmitBlock(OMPDeInitBB); 1289 // DeInitialize the OMP state in the runtime; called by all active threads. 1290 llvm::Value *Args[] = {/*RequiresOMPRuntime=*/ 1291 CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)}; 1292 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1293 CGM.getModule(), OMPRTL___kmpc_spmd_kernel_deinit_v2), 1294 Args); 1295 CGF.EmitBranch(EST.ExitBB); 1296 1297 CGF.EmitBlock(EST.ExitBB); 1298 EST.ExitBB = nullptr; 1299 } 1300 1301 // Create a unique global variable to indicate the execution mode of this target 1302 // region. The execution mode is either 'generic', or 'spmd' depending on the 1303 // target directive. This variable is picked up by the offload library to setup 1304 // the device appropriately before kernel launch. If the execution mode is 1305 // 'generic', the runtime reserves one warp for the master, otherwise, all 1306 // warps participate in parallel work. 1307 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1308 bool Mode) { 1309 auto *GVMode = 1310 new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1311 llvm::GlobalValue::WeakAnyLinkage, 1312 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1), 1313 Twine(Name, "_exec_mode")); 1314 CGM.addCompilerUsedGlobal(GVMode); 1315 } 1316 1317 void CGOpenMPRuntimeGPU::emitWorkerFunction(WorkerFunctionState &WST) { 1318 ASTContext &Ctx = CGM.getContext(); 1319 1320 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 1321 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {}, 1322 WST.Loc, WST.Loc); 1323 emitWorkerLoop(CGF, WST); 1324 CGF.FinishFunction(); 1325 } 1326 1327 void CGOpenMPRuntimeGPU::emitWorkerLoop(CodeGenFunction &CGF, 1328 WorkerFunctionState &WST) { 1329 // 1330 // The workers enter this loop and wait for parallel work from the master. 1331 // When the master encounters a parallel region it sets up the work + variable 1332 // arguments, and wakes up the workers. The workers first check to see if 1333 // they are required for the parallel region, i.e., within the # of requested 1334 // parallel threads. The activated workers load the variable arguments and 1335 // execute the parallel work. 1336 // 1337 1338 CGBuilderTy &Bld = CGF.Builder; 1339 1340 llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work"); 1341 llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers"); 1342 llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel"); 1343 llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel"); 1344 llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel"); 1345 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 1346 1347 CGF.EmitBranch(AwaitBB); 1348 1349 // Workers wait for work from master. 1350 CGF.EmitBlock(AwaitBB); 1351 // Wait for parallel work 1352 syncCTAThreads(CGF); 1353 1354 Address WorkFn = 1355 CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn"); 1356 Address ExecStatus = 1357 CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status"); 1358 CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0)); 1359 CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy)); 1360 1361 // TODO: Optimize runtime initialization and pass in correct value. 1362 llvm::Value *Args[] = {WorkFn.getPointer()}; 1363 llvm::Value *Ret = 1364 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1365 CGM.getModule(), OMPRTL___kmpc_kernel_parallel), 1366 Args); 1367 Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus); 1368 1369 // On termination condition (workid == 0), exit loop. 1370 llvm::Value *WorkID = Bld.CreateLoad(WorkFn); 1371 llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate"); 1372 Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB); 1373 1374 // Activate requested workers. 1375 CGF.EmitBlock(SelectWorkersBB); 1376 llvm::Value *IsActive = 1377 Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active"); 1378 Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB); 1379 1380 // Signal start of parallel region. 1381 CGF.EmitBlock(ExecuteBB); 1382 // Skip initialization. 1383 setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1384 1385 // Process work items: outlined parallel functions. 1386 for (llvm::Function *W : Work) { 1387 // Try to match this outlined function. 1388 llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy); 1389 1390 llvm::Value *WorkFnMatch = 1391 Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match"); 1392 1393 llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn"); 1394 llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next"); 1395 Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB); 1396 1397 // Execute this outlined function. 1398 CGF.EmitBlock(ExecuteFNBB); 1399 1400 // Insert call to work function via shared wrapper. The shared 1401 // wrapper takes two arguments: 1402 // - the parallelism level; 1403 // - the thread ID; 1404 emitCall(CGF, WST.Loc, W, 1405 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); 1406 1407 // Go to end of parallel region. 1408 CGF.EmitBranch(TerminateBB); 1409 1410 CGF.EmitBlock(CheckNextBB); 1411 } 1412 // Default case: call to outlined function through pointer if the target 1413 // region makes a declare target call that may contain an orphaned parallel 1414 // directive. 1415 auto *ParallelFnTy = 1416 llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty}, 1417 /*isVarArg=*/false); 1418 llvm::Value *WorkFnCast = 1419 Bld.CreateBitCast(WorkID, ParallelFnTy->getPointerTo()); 1420 // Insert call to work function via shared wrapper. The shared 1421 // wrapper takes two arguments: 1422 // - the parallelism level; 1423 // - the thread ID; 1424 emitCall(CGF, WST.Loc, {ParallelFnTy, WorkFnCast}, 1425 {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)}); 1426 // Go to end of parallel region. 1427 CGF.EmitBranch(TerminateBB); 1428 1429 // Signal end of parallel region. 1430 CGF.EmitBlock(TerminateBB); 1431 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1432 CGM.getModule(), OMPRTL___kmpc_kernel_end_parallel), 1433 llvm::None); 1434 CGF.EmitBranch(BarrierBB); 1435 1436 // All active and inactive workers wait at a barrier after parallel region. 1437 CGF.EmitBlock(BarrierBB); 1438 // Barrier after parallel region. 1439 syncCTAThreads(CGF); 1440 CGF.EmitBranch(AwaitBB); 1441 1442 // Exit target region. 1443 CGF.EmitBlock(ExitBB); 1444 // Skip initialization. 1445 clearLocThreadIdInsertPt(CGF); 1446 } 1447 1448 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1449 llvm::Constant *Addr, 1450 uint64_t Size, int32_t, 1451 llvm::GlobalValue::LinkageTypes) { 1452 // TODO: Add support for global variables on the device after declare target 1453 // support. 1454 if (!isa<llvm::Function>(Addr)) 1455 return; 1456 llvm::Module &M = CGM.getModule(); 1457 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1458 1459 // Get "nvvm.annotations" metadata node 1460 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1461 1462 llvm::Metadata *MDVals[] = { 1463 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1464 llvm::ConstantAsMetadata::get( 1465 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1466 // Append metadata to nvvm.annotations 1467 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1468 } 1469 1470 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1471 const OMPExecutableDirective &D, StringRef ParentName, 1472 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1473 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1474 if (!IsOffloadEntry) // Nothing to do. 1475 return; 1476 1477 assert(!ParentName.empty() && "Invalid target region parent name!"); 1478 1479 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1480 if (Mode) 1481 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1482 CodeGen); 1483 else 1484 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1485 CodeGen); 1486 1487 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1488 } 1489 1490 namespace { 1491 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1492 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1493 enum ModeFlagsTy : unsigned { 1494 /// Bit set to 1 when in SPMD mode. 1495 KMP_IDENT_SPMD_MODE = 0x01, 1496 /// Bit set to 1 when a simplified runtime is used. 1497 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1498 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1499 }; 1500 1501 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1502 static const ModeFlagsTy UndefinedMode = 1503 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1504 } // anonymous namespace 1505 1506 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1507 switch (getExecutionMode()) { 1508 case EM_SPMD: 1509 if (requiresFullRuntime()) 1510 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1511 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1512 case EM_NonSPMD: 1513 assert(requiresFullRuntime() && "Expected full runtime."); 1514 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1515 case EM_Unknown: 1516 return UndefinedMode; 1517 } 1518 llvm_unreachable("Unknown flags are requested."); 1519 } 1520 1521 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1522 : CGOpenMPRuntime(CGM, "_", "$") { 1523 if (!CGM.getLangOpts().OpenMPIsDevice) 1524 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1525 } 1526 1527 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1528 ProcBindKind ProcBind, 1529 SourceLocation Loc) { 1530 // Do nothing in case of SPMD mode and L0 parallel. 1531 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1532 return; 1533 1534 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1535 } 1536 1537 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1538 llvm::Value *NumThreads, 1539 SourceLocation Loc) { 1540 // Do nothing in case of SPMD mode and L0 parallel. 1541 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1542 return; 1543 1544 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1545 } 1546 1547 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1548 const Expr *NumTeams, 1549 const Expr *ThreadLimit, 1550 SourceLocation Loc) {} 1551 1552 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1553 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1554 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1555 // Emit target region as a standalone region. 1556 class NVPTXPrePostActionTy : public PrePostActionTy { 1557 bool &IsInParallelRegion; 1558 bool PrevIsInParallelRegion; 1559 1560 public: 1561 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1562 : IsInParallelRegion(IsInParallelRegion) {} 1563 void Enter(CodeGenFunction &CGF) override { 1564 PrevIsInParallelRegion = IsInParallelRegion; 1565 IsInParallelRegion = true; 1566 } 1567 void Exit(CodeGenFunction &CGF) override { 1568 IsInParallelRegion = PrevIsInParallelRegion; 1569 } 1570 } Action(IsInParallelRegion); 1571 CodeGen.setAction(Action); 1572 bool PrevIsInTTDRegion = IsInTTDRegion; 1573 IsInTTDRegion = false; 1574 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1575 IsInTargetMasterThreadRegion = false; 1576 auto *OutlinedFun = 1577 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1578 D, ThreadIDVar, InnermostKind, CodeGen)); 1579 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1580 IsInTTDRegion = PrevIsInTTDRegion; 1581 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1582 !IsInParallelRegion) { 1583 llvm::Function *WrapperFun = 1584 createParallelDataSharingWrapper(OutlinedFun, D); 1585 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1586 } 1587 1588 return OutlinedFun; 1589 } 1590 1591 /// Get list of lastprivate variables from the teams distribute ... or 1592 /// teams {distribute ...} directives. 1593 static void 1594 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1595 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1596 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1597 "expected teams directive."); 1598 const OMPExecutableDirective *Dir = &D; 1599 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1600 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1601 Ctx, 1602 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1603 /*IgnoreCaptured=*/true))) { 1604 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1605 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1606 Dir = nullptr; 1607 } 1608 } 1609 if (!Dir) 1610 return; 1611 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1612 for (const Expr *E : C->getVarRefs()) 1613 Vars.push_back(getPrivateItem(E)); 1614 } 1615 } 1616 1617 /// Get list of reduction variables from the teams ... directives. 1618 static void 1619 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1620 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1621 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1622 "expected teams directive."); 1623 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1624 for (const Expr *E : C->privates()) 1625 Vars.push_back(getPrivateItem(E)); 1626 } 1627 } 1628 1629 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1630 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1631 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1632 SourceLocation Loc = D.getBeginLoc(); 1633 1634 const RecordDecl *GlobalizedRD = nullptr; 1635 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1636 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1637 unsigned WarpSize = CGM.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 1638 // Globalize team reductions variable unconditionally in all modes. 1639 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1640 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1641 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1642 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1643 if (!LastPrivatesReductions.empty()) { 1644 GlobalizedRD = ::buildRecordForGlobalizedVars( 1645 CGM.getContext(), llvm::None, LastPrivatesReductions, 1646 MappedDeclsFields, WarpSize); 1647 } 1648 } else if (!LastPrivatesReductions.empty()) { 1649 assert(!TeamAndReductions.first && 1650 "Previous team declaration is not expected."); 1651 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1652 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1653 } 1654 1655 // Emit target region as a standalone region. 1656 class NVPTXPrePostActionTy : public PrePostActionTy { 1657 SourceLocation &Loc; 1658 const RecordDecl *GlobalizedRD; 1659 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1660 &MappedDeclsFields; 1661 1662 public: 1663 NVPTXPrePostActionTy( 1664 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1665 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1666 &MappedDeclsFields) 1667 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1668 MappedDeclsFields(MappedDeclsFields) {} 1669 void Enter(CodeGenFunction &CGF) override { 1670 auto &Rt = 1671 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1672 if (GlobalizedRD) { 1673 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1674 I->getSecond().GlobalRecord = GlobalizedRD; 1675 I->getSecond().MappedParams = 1676 std::make_unique<CodeGenFunction::OMPMapVars>(); 1677 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1678 for (const auto &Pair : MappedDeclsFields) { 1679 assert(Pair.getFirst()->isCanonicalDecl() && 1680 "Expected canonical declaration"); 1681 Data.insert(std::make_pair(Pair.getFirst(), 1682 MappedVarData(Pair.getSecond(), 1683 /*IsOnePerTeam=*/true))); 1684 } 1685 } 1686 Rt.emitGenericVarsProlog(CGF, Loc); 1687 } 1688 void Exit(CodeGenFunction &CGF) override { 1689 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1690 .emitGenericVarsEpilog(CGF); 1691 } 1692 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1693 CodeGen.setAction(Action); 1694 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1695 D, ThreadIDVar, InnermostKind, CodeGen); 1696 1697 return OutlinedFun; 1698 } 1699 1700 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1701 SourceLocation Loc, 1702 bool WithSPMDCheck) { 1703 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1704 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1705 return; 1706 1707 CGBuilderTy &Bld = CGF.Builder; 1708 1709 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1710 if (I == FunctionGlobalizedDecls.end()) 1711 return; 1712 if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) { 1713 QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord); 1714 QualType SecGlobalRecTy; 1715 1716 // Recover pointer to this function's global record. The runtime will 1717 // handle the specifics of the allocation of the memory. 1718 // Use actual memory size of the record including the padding 1719 // for alignment purposes. 1720 unsigned Alignment = 1721 CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity(); 1722 unsigned GlobalRecordSize = 1723 CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity(); 1724 GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment); 1725 1726 llvm::PointerType *GlobalRecPtrTy = 1727 CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo(); 1728 llvm::Value *GlobalRecCastAddr; 1729 llvm::Value *IsTTD = nullptr; 1730 if (!IsInTTDRegion && 1731 (WithSPMDCheck || 1732 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { 1733 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 1734 llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd"); 1735 llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd"); 1736 if (I->getSecond().SecondaryGlobalRecord.hasValue()) { 1737 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1738 llvm::Value *ThreadID = getThreadID(CGF, Loc); 1739 llvm::Value *PL = CGF.EmitRuntimeCall( 1740 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), 1741 OMPRTL___kmpc_parallel_level), 1742 {RTLoc, ThreadID}); 1743 IsTTD = Bld.CreateIsNull(PL); 1744 } 1745 llvm::Value *IsSPMD = Bld.CreateIsNotNull( 1746 CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1747 CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode))); 1748 Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB); 1749 // There is no need to emit line number for unconditional branch. 1750 (void)ApplyDebugLocation::CreateEmpty(CGF); 1751 CGF.EmitBlock(SPMDBB); 1752 Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy), 1753 CharUnits::fromQuantity(Alignment)); 1754 CGF.EmitBranch(ExitBB); 1755 // There is no need to emit line number for unconditional branch. 1756 (void)ApplyDebugLocation::CreateEmpty(CGF); 1757 CGF.EmitBlock(NonSPMDBB); 1758 llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize); 1759 if (const RecordDecl *SecGlobalizedVarsRecord = 1760 I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) { 1761 SecGlobalRecTy = 1762 CGM.getContext().getRecordType(SecGlobalizedVarsRecord); 1763 1764 // Recover pointer to this function's global record. The runtime will 1765 // handle the specifics of the allocation of the memory. 1766 // Use actual memory size of the record including the padding 1767 // for alignment purposes. 1768 unsigned Alignment = 1769 CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity(); 1770 unsigned GlobalRecordSize = 1771 CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity(); 1772 GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment); 1773 Size = Bld.CreateSelect( 1774 IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size); 1775 } 1776 // TODO: allow the usage of shared memory to be controlled by 1777 // the user, for now, default to global. 1778 llvm::Value *GlobalRecordSizeArg[] = { 1779 Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)}; 1780 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( 1781 OMPBuilder.getOrCreateRuntimeFunction( 1782 CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack), 1783 GlobalRecordSizeArg); 1784 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1785 GlobalRecValue, GlobalRecPtrTy); 1786 CGF.EmitBlock(ExitBB); 1787 auto *Phi = Bld.CreatePHI(GlobalRecPtrTy, 1788 /*NumReservedValues=*/2, "_select_stack"); 1789 Phi->addIncoming(RecPtr.getPointer(), SPMDBB); 1790 Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB); 1791 GlobalRecCastAddr = Phi; 1792 I->getSecond().GlobalRecordAddr = Phi; 1793 I->getSecond().IsInSPMDModeFlag = IsSPMD; 1794 } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) { 1795 assert(GlobalizedRecords.back().Records.size() < 2 && 1796 "Expected less than 2 globalized records: one for target and one " 1797 "for teams."); 1798 unsigned Offset = 0; 1799 for (const RecordDecl *RD : GlobalizedRecords.back().Records) { 1800 QualType RDTy = CGM.getContext().getRecordType(RD); 1801 unsigned Alignment = 1802 CGM.getContext().getTypeAlignInChars(RDTy).getQuantity(); 1803 unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity(); 1804 Offset = 1805 llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment); 1806 } 1807 unsigned Alignment = 1808 CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity(); 1809 Offset = llvm::alignTo(Offset, Alignment); 1810 GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord); 1811 ++GlobalizedRecords.back().RegionCounter; 1812 if (GlobalizedRecords.back().Records.size() == 1) { 1813 assert(KernelStaticGlobalized && 1814 "Kernel static pointer must be initialized already."); 1815 auto *UseSharedMemory = new llvm::GlobalVariable( 1816 CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true, 1817 llvm::GlobalValue::InternalLinkage, nullptr, 1818 "_openmp_static_kernel$is_shared"); 1819 UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1820 QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth( 1821 /*DestWidth=*/16, /*Signed=*/0); 1822 llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar( 1823 Address(UseSharedMemory, 1824 CGM.getContext().getTypeAlignInChars(Int16Ty)), 1825 /*Volatile=*/false, Int16Ty, Loc); 1826 auto *StaticGlobalized = new llvm::GlobalVariable( 1827 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, 1828 llvm::GlobalValue::CommonLinkage, nullptr); 1829 auto *RecSize = new llvm::GlobalVariable( 1830 CGM.getModule(), CGM.SizeTy, /*isConstant=*/true, 1831 llvm::GlobalValue::InternalLinkage, nullptr, 1832 "_openmp_static_kernel$size"); 1833 RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1834 llvm::Value *Ld = CGF.EmitLoadOfScalar( 1835 Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false, 1836 CGM.getContext().getSizeType(), Loc); 1837 llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1838 KernelStaticGlobalized, CGM.VoidPtrPtrTy); 1839 llvm::Value *GlobalRecordSizeArg[] = { 1840 llvm::ConstantInt::get( 1841 CGM.Int16Ty, 1842 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0), 1843 StaticGlobalized, Ld, IsInSharedMemory, ResAddr}; 1844 CGF.EmitRuntimeCall( 1845 OMPBuilder.getOrCreateRuntimeFunction( 1846 CGM.getModule(), OMPRTL___kmpc_get_team_static_memory), 1847 GlobalRecordSizeArg); 1848 GlobalizedRecords.back().Buffer = StaticGlobalized; 1849 GlobalizedRecords.back().RecSize = RecSize; 1850 GlobalizedRecords.back().UseSharedMemory = UseSharedMemory; 1851 GlobalizedRecords.back().Loc = Loc; 1852 } 1853 assert(KernelStaticGlobalized && "Global address must be set already."); 1854 Address FrameAddr = CGF.EmitLoadOfPointer( 1855 Address(KernelStaticGlobalized, CGM.getPointerAlign()), 1856 CGM.getContext() 1857 .getPointerType(CGM.getContext().VoidPtrTy) 1858 .castAs<PointerType>()); 1859 llvm::Value *GlobalRecValue = 1860 Bld.CreateConstInBoundsGEP(FrameAddr, Offset).getPointer(); 1861 I->getSecond().GlobalRecordAddr = GlobalRecValue; 1862 I->getSecond().IsInSPMDModeFlag = nullptr; 1863 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1864 GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo()); 1865 } else { 1866 // TODO: allow the usage of shared memory to be controlled by 1867 // the user, for now, default to global. 1868 bool UseSharedMemory = 1869 IsInTTDRegion && GlobalRecordSize <= SharedMemorySize; 1870 llvm::Value *GlobalRecordSizeArg[] = { 1871 llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), 1872 CGF.Builder.getInt16(UseSharedMemory ? 1 : 0)}; 1873 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( 1874 OMPBuilder.getOrCreateRuntimeFunction( 1875 CGM.getModule(), 1876 IsInTTDRegion ? OMPRTL___kmpc_data_sharing_push_stack 1877 : OMPRTL___kmpc_data_sharing_coalesced_push_stack), 1878 GlobalRecordSizeArg); 1879 GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1880 GlobalRecValue, GlobalRecPtrTy); 1881 I->getSecond().GlobalRecordAddr = GlobalRecValue; 1882 I->getSecond().IsInSPMDModeFlag = nullptr; 1883 } 1884 LValue Base = 1885 CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy); 1886 1887 // Emit the "global alloca" which is a GEP from the global declaration 1888 // record using the pointer returned by the runtime. 1889 LValue SecBase; 1890 decltype(I->getSecond().LocalVarData)::const_iterator SecIt; 1891 if (IsTTD) { 1892 SecIt = I->getSecond().SecondaryLocalVarData->begin(); 1893 llvm::PointerType *SecGlobalRecPtrTy = 1894 CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo(); 1895 SecBase = CGF.MakeNaturalAlignPointeeAddrLValue( 1896 Bld.CreatePointerBitCastOrAddrSpaceCast( 1897 I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy), 1898 SecGlobalRecTy); 1899 } 1900 for (auto &Rec : I->getSecond().LocalVarData) { 1901 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1902 llvm::Value *ParValue; 1903 if (EscapedParam) { 1904 const auto *VD = cast<VarDecl>(Rec.first); 1905 LValue ParLVal = 1906 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1907 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1908 } 1909 LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD); 1910 // Emit VarAddr basing on lane-id if required. 1911 QualType VarTy; 1912 if (Rec.second.IsOnePerTeam) { 1913 VarTy = Rec.second.FD->getType(); 1914 } else { 1915 Address Addr = VarAddr.getAddress(CGF); 1916 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP( 1917 Addr.getElementType(), Addr.getPointer(), 1918 {Bld.getInt32(0), getNVPTXLaneID(CGF)}); 1919 VarTy = 1920 Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType(); 1921 VarAddr = CGF.MakeAddrLValue( 1922 Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy, 1923 AlignmentSource::Decl); 1924 } 1925 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1926 if (!IsInTTDRegion && 1927 (WithSPMDCheck || 1928 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { 1929 assert(I->getSecond().IsInSPMDModeFlag && 1930 "Expected unknown execution mode or required SPMD check."); 1931 if (IsTTD) { 1932 assert(SecIt->second.IsOnePerTeam && 1933 "Secondary glob data must be one per team."); 1934 LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD); 1935 VarAddr.setAddress( 1936 Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(CGF), 1937 VarAddr.getPointer(CGF)), 1938 VarAddr.getAlignment())); 1939 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1940 } 1941 Address GlobalPtr = Rec.second.PrivateAddr; 1942 Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName()); 1943 Rec.second.PrivateAddr = Address( 1944 Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag, 1945 LocalAddr.getPointer(), GlobalPtr.getPointer()), 1946 LocalAddr.getAlignment()); 1947 } 1948 if (EscapedParam) { 1949 const auto *VD = cast<VarDecl>(Rec.first); 1950 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1951 I->getSecond().MappedParams->setVarAddr(CGF, VD, 1952 VarAddr.getAddress(CGF)); 1953 } 1954 if (IsTTD) 1955 ++SecIt; 1956 } 1957 } 1958 for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) { 1959 // Recover pointer to this function's global record. The runtime will 1960 // handle the specifics of the allocation of the memory. 1961 // Use actual memory size of the record including the padding 1962 // for alignment purposes. 1963 CGBuilderTy &Bld = CGF.Builder; 1964 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1965 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1966 Size = Bld.CreateNUWAdd( 1967 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1968 llvm::Value *AlignVal = 1969 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1970 Size = Bld.CreateUDiv(Size, AlignVal); 1971 Size = Bld.CreateNUWMul(Size, AlignVal); 1972 // TODO: allow the usage of shared memory to be controlled by 1973 // the user, for now, default to global. 1974 llvm::Value *GlobalRecordSizeArg[] = { 1975 Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)}; 1976 llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall( 1977 OMPBuilder.getOrCreateRuntimeFunction( 1978 CGM.getModule(), OMPRTL___kmpc_data_sharing_coalesced_push_stack), 1979 GlobalRecordSizeArg); 1980 llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1981 GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo()); 1982 LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(), 1983 CGM.getContext().getDeclAlign(VD), 1984 AlignmentSource::Decl); 1985 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1986 Base.getAddress(CGF)); 1987 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue); 1988 } 1989 I->getSecond().MappedParams->apply(CGF); 1990 } 1991 1992 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1993 bool WithSPMDCheck) { 1994 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1995 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1996 return; 1997 1998 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1999 if (I != FunctionGlobalizedDecls.end()) { 2000 I->getSecond().MappedParams->restore(CGF); 2001 if (!CGF.HaveInsertPoint()) 2002 return; 2003 for (llvm::Value *Addr : 2004 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 2005 CGF.EmitRuntimeCall( 2006 OMPBuilder.getOrCreateRuntimeFunction( 2007 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), 2008 Addr); 2009 } 2010 if (I->getSecond().GlobalRecordAddr) { 2011 if (!IsInTTDRegion && 2012 (WithSPMDCheck || 2013 getExecutionMode() == CGOpenMPRuntimeGPU::EM_Unknown)) { 2014 CGBuilderTy &Bld = CGF.Builder; 2015 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 2016 llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd"); 2017 Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB); 2018 // There is no need to emit line number for unconditional branch. 2019 (void)ApplyDebugLocation::CreateEmpty(CGF); 2020 CGF.EmitBlock(NonSPMDBB); 2021 CGF.EmitRuntimeCall( 2022 OMPBuilder.getOrCreateRuntimeFunction( 2023 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), 2024 CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr)); 2025 CGF.EmitBlock(ExitBB); 2026 } else if (!CGM.getLangOpts().OpenMPCUDATargetParallel && IsInTTDRegion) { 2027 assert(GlobalizedRecords.back().RegionCounter > 0 && 2028 "region counter must be > 0."); 2029 --GlobalizedRecords.back().RegionCounter; 2030 // Emit the restore function only in the target region. 2031 if (GlobalizedRecords.back().RegionCounter == 0) { 2032 QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth( 2033 /*DestWidth=*/16, /*Signed=*/0); 2034 llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar( 2035 Address(GlobalizedRecords.back().UseSharedMemory, 2036 CGM.getContext().getTypeAlignInChars(Int16Ty)), 2037 /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc); 2038 llvm::Value *Args[] = { 2039 llvm::ConstantInt::get( 2040 CGM.Int16Ty, 2041 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD ? 1 : 0), 2042 IsInSharedMemory}; 2043 CGF.EmitRuntimeCall( 2044 OMPBuilder.getOrCreateRuntimeFunction( 2045 CGM.getModule(), OMPRTL___kmpc_restore_team_static_memory), 2046 Args); 2047 } 2048 } else { 2049 CGF.EmitRuntimeCall( 2050 OMPBuilder.getOrCreateRuntimeFunction( 2051 CGM.getModule(), OMPRTL___kmpc_data_sharing_pop_stack), 2052 I->getSecond().GlobalRecordAddr); 2053 } 2054 } 2055 } 2056 } 2057 2058 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 2059 const OMPExecutableDirective &D, 2060 SourceLocation Loc, 2061 llvm::Function *OutlinedFn, 2062 ArrayRef<llvm::Value *> CapturedVars) { 2063 if (!CGF.HaveInsertPoint()) 2064 return; 2065 2066 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2067 /*Name=*/".zero.addr"); 2068 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2069 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2070 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 2071 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 2072 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 2073 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 2074 } 2075 2076 void CGOpenMPRuntimeGPU::emitParallelCall( 2077 CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, 2078 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { 2079 if (!CGF.HaveInsertPoint()) 2080 return; 2081 2082 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 2083 emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); 2084 else 2085 emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond); 2086 } 2087 2088 void CGOpenMPRuntimeGPU::emitNonSPMDParallelCall( 2089 CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn, 2090 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { 2091 llvm::Function *Fn = cast<llvm::Function>(OutlinedFn); 2092 2093 // Force inline this outlined function at its call site. 2094 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 2095 2096 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2097 /*Name=*/".zero.addr"); 2098 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2099 // ThreadId for serialized parallels is 0. 2100 Address ThreadIDAddr = ZeroAddr; 2101 auto &&CodeGen = [this, Fn, CapturedVars, Loc, &ThreadIDAddr]( 2102 CodeGenFunction &CGF, PrePostActionTy &Action) { 2103 Action.Enter(CGF); 2104 2105 Address ZeroAddr = 2106 CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2107 /*Name=*/".bound.zero.addr"); 2108 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2109 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2110 OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); 2111 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 2112 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 2113 emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs); 2114 }; 2115 auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF, 2116 PrePostActionTy &) { 2117 2118 RegionCodeGenTy RCG(CodeGen); 2119 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2120 llvm::Value *ThreadID = getThreadID(CGF, Loc); 2121 llvm::Value *Args[] = {RTLoc, ThreadID}; 2122 2123 NVPTXActionTy Action( 2124 OMPBuilder.getOrCreateRuntimeFunction( 2125 CGM.getModule(), OMPRTL___kmpc_serialized_parallel), 2126 Args, 2127 OMPBuilder.getOrCreateRuntimeFunction( 2128 CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel), 2129 Args); 2130 RCG.setAction(Action); 2131 RCG(CGF); 2132 }; 2133 2134 auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF, 2135 PrePostActionTy &Action) { 2136 CGBuilderTy &Bld = CGF.Builder; 2137 llvm::Function *WFn = WrapperFunctionsMap[Fn]; 2138 assert(WFn && "Wrapper function does not exist!"); 2139 llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 2140 2141 // Prepare for parallel region. Indicate the outlined function. 2142 llvm::Value *Args[] = {ID}; 2143 CGF.EmitRuntimeCall( 2144 OMPBuilder.getOrCreateRuntimeFunction( 2145 CGM.getModule(), OMPRTL___kmpc_kernel_prepare_parallel), 2146 Args); 2147 2148 // Create a private scope that will globalize the arguments 2149 // passed from the outside of the target region. 2150 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 2151 2152 // There's something to share. 2153 if (!CapturedVars.empty()) { 2154 // Prepare for parallel region. Indicate the outlined function. 2155 Address SharedArgs = 2156 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs"); 2157 llvm::Value *SharedArgsPtr = SharedArgs.getPointer(); 2158 2159 llvm::Value *DataSharingArgs[] = { 2160 SharedArgsPtr, 2161 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 2162 CGF.EmitRuntimeCall( 2163 OMPBuilder.getOrCreateRuntimeFunction( 2164 CGM.getModule(), OMPRTL___kmpc_begin_sharing_variables), 2165 DataSharingArgs); 2166 2167 // Store variable address in a list of references to pass to workers. 2168 unsigned Idx = 0; 2169 ASTContext &Ctx = CGF.getContext(); 2170 Address SharedArgListAddress = CGF.EmitLoadOfPointer( 2171 SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy)) 2172 .castAs<PointerType>()); 2173 for (llvm::Value *V : CapturedVars) { 2174 Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 2175 llvm::Value *PtrV; 2176 if (V->getType()->isIntegerTy()) 2177 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 2178 else 2179 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 2180 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 2181 Ctx.getPointerType(Ctx.VoidPtrTy)); 2182 ++Idx; 2183 } 2184 } 2185 2186 // Activate workers. This barrier is used by the master to signal 2187 // work for the workers. 2188 syncCTAThreads(CGF); 2189 2190 // OpenMP [2.5, Parallel Construct, p.49] 2191 // There is an implied barrier at the end of a parallel region. After the 2192 // end of a parallel region, only the master thread of the team resumes 2193 // execution of the enclosing task region. 2194 // 2195 // The master waits at this barrier until all workers are done. 2196 syncCTAThreads(CGF); 2197 2198 if (!CapturedVars.empty()) 2199 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2200 CGM.getModule(), OMPRTL___kmpc_end_sharing_variables)); 2201 2202 // Remember for post-processing in worker loop. 2203 Work.emplace_back(WFn); 2204 }; 2205 2206 auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen]( 2207 CodeGenFunction &CGF, PrePostActionTy &Action) { 2208 if (IsInParallelRegion) { 2209 SeqGen(CGF, Action); 2210 } else if (IsInTargetMasterThreadRegion) { 2211 L0ParallelGen(CGF, Action); 2212 } else { 2213 // Check for master and then parallelism: 2214 // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) { 2215 // Serialized execution. 2216 // } else { 2217 // Worker call. 2218 // } 2219 CGBuilderTy &Bld = CGF.Builder; 2220 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit"); 2221 llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential"); 2222 llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck"); 2223 llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master"); 2224 llvm::Value *IsSPMD = Bld.CreateIsNotNull( 2225 CGF.EmitNounwindRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2226 CGM.getModule(), OMPRTL___kmpc_is_spmd_exec_mode))); 2227 Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB); 2228 // There is no need to emit line number for unconditional branch. 2229 (void)ApplyDebugLocation::CreateEmpty(CGF); 2230 CGF.EmitBlock(ParallelCheckBB); 2231 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2232 llvm::Value *ThreadID = getThreadID(CGF, Loc); 2233 llvm::Value *PL = CGF.EmitRuntimeCall( 2234 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), 2235 OMPRTL___kmpc_parallel_level), 2236 {RTLoc, ThreadID}); 2237 llvm::Value *Res = Bld.CreateIsNotNull(PL); 2238 Bld.CreateCondBr(Res, SeqBB, MasterBB); 2239 CGF.EmitBlock(SeqBB); 2240 SeqGen(CGF, Action); 2241 CGF.EmitBranch(ExitBB); 2242 // There is no need to emit line number for unconditional branch. 2243 (void)ApplyDebugLocation::CreateEmpty(CGF); 2244 CGF.EmitBlock(MasterBB); 2245 L0ParallelGen(CGF, Action); 2246 CGF.EmitBranch(ExitBB); 2247 // There is no need to emit line number for unconditional branch. 2248 (void)ApplyDebugLocation::CreateEmpty(CGF); 2249 // Emit the continuation block for code after the if. 2250 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2251 } 2252 }; 2253 2254 if (IfCond) { 2255 emitIfClause(CGF, IfCond, LNParallelGen, SeqGen); 2256 } else { 2257 CodeGenFunction::RunCleanupsScope Scope(CGF); 2258 RegionCodeGenTy ThenRCG(LNParallelGen); 2259 ThenRCG(CGF); 2260 } 2261 } 2262 2263 void CGOpenMPRuntimeGPU::emitSPMDParallelCall( 2264 CodeGenFunction &CGF, SourceLocation Loc, llvm::Function *OutlinedFn, 2265 ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) { 2266 // Just call the outlined function to execute the parallel region. 2267 // OutlinedFn(>id, &zero, CapturedStruct); 2268 // 2269 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2270 2271 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2272 /*Name=*/".zero.addr"); 2273 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2274 // ThreadId for serialized parallels is 0. 2275 Address ThreadIDAddr = ZeroAddr; 2276 auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, &ThreadIDAddr]( 2277 CodeGenFunction &CGF, PrePostActionTy &Action) { 2278 Action.Enter(CGF); 2279 2280 Address ZeroAddr = 2281 CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 2282 /*Name=*/".bound.zero.addr"); 2283 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 2284 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 2285 OutlinedFnArgs.push_back(ThreadIDAddr.getPointer()); 2286 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 2287 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 2288 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 2289 }; 2290 auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF, 2291 PrePostActionTy &) { 2292 2293 RegionCodeGenTy RCG(CodeGen); 2294 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 2295 llvm::Value *ThreadID = getThreadID(CGF, Loc); 2296 llvm::Value *Args[] = {RTLoc, ThreadID}; 2297 2298 NVPTXActionTy Action( 2299 OMPBuilder.getOrCreateRuntimeFunction( 2300 CGM.getModule(), OMPRTL___kmpc_serialized_parallel), 2301 Args, 2302 OMPBuilder.getOrCreateRuntimeFunction( 2303 CGM.getModule(), OMPRTL___kmpc_end_serialized_parallel), 2304 Args); 2305 RCG.setAction(Action); 2306 RCG(CGF); 2307 }; 2308 2309 if (IsInTargetMasterThreadRegion) { 2310 // In the worker need to use the real thread id. 2311 ThreadIDAddr = emitThreadIDAddress(CGF, Loc); 2312 RegionCodeGenTy RCG(CodeGen); 2313 RCG(CGF); 2314 } else { 2315 // If we are not in the target region, it is definitely L2 parallelism or 2316 // more, because for SPMD mode we always has L1 parallel level, sowe don't 2317 // need to check for orphaned directives. 2318 RegionCodeGenTy RCG(SeqGen); 2319 RCG(CGF); 2320 } 2321 } 2322 2323 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 2324 // Always emit simple barriers! 2325 if (!CGF.HaveInsertPoint()) 2326 return; 2327 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 2328 // This function does not use parameters, so we can emit just default values. 2329 llvm::Value *Args[] = { 2330 llvm::ConstantPointerNull::get( 2331 cast<llvm::PointerType>(getIdentTyPointerTy())), 2332 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 2333 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2334 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 2335 Args); 2336 } 2337 2338 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 2339 SourceLocation Loc, 2340 OpenMPDirectiveKind Kind, bool, 2341 bool) { 2342 // Always emit simple barriers! 2343 if (!CGF.HaveInsertPoint()) 2344 return; 2345 // Build call __kmpc_cancel_barrier(loc, thread_id); 2346 unsigned Flags = getDefaultFlagsForBarriers(Kind); 2347 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 2348 getThreadID(CGF, Loc)}; 2349 2350 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2351 CGM.getModule(), OMPRTL___kmpc_barrier), 2352 Args); 2353 } 2354 2355 void CGOpenMPRuntimeGPU::emitCriticalRegion( 2356 CodeGenFunction &CGF, StringRef CriticalName, 2357 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 2358 const Expr *Hint) { 2359 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 2360 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 2361 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 2362 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 2363 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 2364 2365 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2366 2367 // Get the mask of active threads in the warp. 2368 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2369 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 2370 // Fetch team-local id of the thread. 2371 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2372 2373 // Get the width of the team. 2374 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 2375 2376 // Initialize the counter variable for the loop. 2377 QualType Int32Ty = 2378 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 2379 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 2380 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 2381 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 2382 /*isInit=*/true); 2383 2384 // Block checks if loop counter exceeds upper bound. 2385 CGF.EmitBlock(LoopBB); 2386 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 2387 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 2388 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 2389 2390 // Block tests which single thread should execute region, and which threads 2391 // should go straight to synchronisation point. 2392 CGF.EmitBlock(TestBB); 2393 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 2394 llvm::Value *CmpThreadToCounter = 2395 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 2396 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 2397 2398 // Block emits the body of the critical region. 2399 CGF.EmitBlock(BodyBB); 2400 2401 // Output the critical statement. 2402 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 2403 Hint); 2404 2405 // After the body surrounded by the critical region, the single executing 2406 // thread will jump to the synchronisation point. 2407 // Block waits for all threads in current team to finish then increments the 2408 // counter variable and returns to the loop. 2409 CGF.EmitBlock(SyncBB); 2410 // Reconverge active threads in the warp. 2411 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 2412 CGM.getModule(), OMPRTL___kmpc_syncwarp), 2413 Mask); 2414 2415 llvm::Value *IncCounterVal = 2416 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 2417 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 2418 CGF.EmitBranch(LoopBB); 2419 2420 // Block that is reached when all threads in the team complete the region. 2421 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 2422 } 2423 2424 /// Cast value to the specified type. 2425 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 2426 QualType ValTy, QualType CastTy, 2427 SourceLocation Loc) { 2428 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 2429 "Cast type must sized."); 2430 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 2431 "Val type must sized."); 2432 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 2433 if (ValTy == CastTy) 2434 return Val; 2435 if (CGF.getContext().getTypeSizeInChars(ValTy) == 2436 CGF.getContext().getTypeSizeInChars(CastTy)) 2437 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 2438 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 2439 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 2440 CastTy->hasSignedIntegerRepresentation()); 2441 Address CastItem = CGF.CreateMemTemp(CastTy); 2442 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 2443 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 2444 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 2445 LValueBaseInfo(AlignmentSource::Type), 2446 TBAAAccessInfo()); 2447 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 2448 LValueBaseInfo(AlignmentSource::Type), 2449 TBAAAccessInfo()); 2450 } 2451 2452 /// This function creates calls to one of two shuffle functions to copy 2453 /// variables between lanes in a warp. 2454 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 2455 llvm::Value *Elem, 2456 QualType ElemType, 2457 llvm::Value *Offset, 2458 SourceLocation Loc) { 2459 CodeGenModule &CGM = CGF.CGM; 2460 CGBuilderTy &Bld = CGF.Builder; 2461 CGOpenMPRuntimeGPU &RT = 2462 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 2463 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 2464 2465 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 2466 assert(Size.getQuantity() <= 8 && 2467 "Unsupported bitwidth in shuffle instruction."); 2468 2469 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 2470 ? OMPRTL___kmpc_shuffle_int32 2471 : OMPRTL___kmpc_shuffle_int64; 2472 2473 // Cast all types to 32- or 64-bit values before calling shuffle routines. 2474 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 2475 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 2476 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 2477 llvm::Value *WarpSize = 2478 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 2479 2480 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 2481 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 2482 {ElemCast, Offset, WarpSize}); 2483 2484 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 2485 } 2486 2487 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 2488 Address DestAddr, QualType ElemType, 2489 llvm::Value *Offset, SourceLocation Loc) { 2490 CGBuilderTy &Bld = CGF.Builder; 2491 2492 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 2493 // Create the loop over the big sized data. 2494 // ptr = (void*)Elem; 2495 // ptrEnd = (void*) Elem + 1; 2496 // Step = 8; 2497 // while (ptr + Step < ptrEnd) 2498 // shuffle((int64_t)*ptr); 2499 // Step = 4; 2500 // while (ptr + Step < ptrEnd) 2501 // shuffle((int32_t)*ptr); 2502 // ... 2503 Address ElemPtr = DestAddr; 2504 Address Ptr = SrcAddr; 2505 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 2506 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 2507 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 2508 if (Size < CharUnits::fromQuantity(IntSize)) 2509 continue; 2510 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 2511 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 2512 /*Signed=*/1); 2513 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 2514 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 2515 ElemPtr = 2516 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 2517 if (Size.getQuantity() / IntSize > 1) { 2518 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 2519 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 2520 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 2521 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 2522 CGF.EmitBlock(PreCondBB); 2523 llvm::PHINode *PhiSrc = 2524 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 2525 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 2526 llvm::PHINode *PhiDest = 2527 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 2528 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 2529 Ptr = Address(PhiSrc, Ptr.getAlignment()); 2530 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 2531 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 2532 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 2533 Ptr.getPointer(), CGF.VoidPtrTy)); 2534 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 2535 ThenBB, ExitBB); 2536 CGF.EmitBlock(ThenBB); 2537 llvm::Value *Res = createRuntimeShuffleFunction( 2538 CGF, 2539 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 2540 LValueBaseInfo(AlignmentSource::Type), 2541 TBAAAccessInfo()), 2542 IntType, Offset, Loc); 2543 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 2544 LValueBaseInfo(AlignmentSource::Type), 2545 TBAAAccessInfo()); 2546 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 2547 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 2548 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 2549 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 2550 CGF.EmitBranch(PreCondBB); 2551 CGF.EmitBlock(ExitBB); 2552 } else { 2553 llvm::Value *Res = createRuntimeShuffleFunction( 2554 CGF, 2555 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 2556 LValueBaseInfo(AlignmentSource::Type), 2557 TBAAAccessInfo()), 2558 IntType, Offset, Loc); 2559 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 2560 LValueBaseInfo(AlignmentSource::Type), 2561 TBAAAccessInfo()); 2562 Ptr = Bld.CreateConstGEP(Ptr, 1); 2563 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 2564 } 2565 Size = Size % IntSize; 2566 } 2567 } 2568 2569 namespace { 2570 enum CopyAction : unsigned { 2571 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 2572 // the warp using shuffle instructions. 2573 RemoteLaneToThread, 2574 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 2575 ThreadCopy, 2576 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 2577 ThreadToScratchpad, 2578 // ScratchpadToThread: Copy from a scratchpad array in global memory 2579 // containing team-reduced data to a thread's stack. 2580 ScratchpadToThread, 2581 }; 2582 } // namespace 2583 2584 struct CopyOptionsTy { 2585 llvm::Value *RemoteLaneOffset; 2586 llvm::Value *ScratchpadIndex; 2587 llvm::Value *ScratchpadWidth; 2588 }; 2589 2590 /// Emit instructions to copy a Reduce list, which contains partially 2591 /// aggregated values, in the specified direction. 2592 static void emitReductionListCopy( 2593 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 2594 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 2595 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 2596 2597 CodeGenModule &CGM = CGF.CGM; 2598 ASTContext &C = CGM.getContext(); 2599 CGBuilderTy &Bld = CGF.Builder; 2600 2601 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 2602 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 2603 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 2604 2605 // Iterates, element-by-element, through the source Reduce list and 2606 // make a copy. 2607 unsigned Idx = 0; 2608 unsigned Size = Privates.size(); 2609 for (const Expr *Private : Privates) { 2610 Address SrcElementAddr = Address::invalid(); 2611 Address DestElementAddr = Address::invalid(); 2612 Address DestElementPtrAddr = Address::invalid(); 2613 // Should we shuffle in an element from a remote lane? 2614 bool ShuffleInElement = false; 2615 // Set to true to update the pointer in the dest Reduce list to a 2616 // newly created element. 2617 bool UpdateDestListPtr = false; 2618 // Increment the src or dest pointer to the scratchpad, for each 2619 // new element. 2620 bool IncrScratchpadSrc = false; 2621 bool IncrScratchpadDest = false; 2622 2623 switch (Action) { 2624 case RemoteLaneToThread: { 2625 // Step 1.1: Get the address for the src element in the Reduce list. 2626 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2627 SrcElementAddr = CGF.EmitLoadOfPointer( 2628 SrcElementPtrAddr, 2629 C.getPointerType(Private->getType())->castAs<PointerType>()); 2630 2631 // Step 1.2: Create a temporary to store the element in the destination 2632 // Reduce list. 2633 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2634 DestElementAddr = 2635 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 2636 ShuffleInElement = true; 2637 UpdateDestListPtr = true; 2638 break; 2639 } 2640 case ThreadCopy: { 2641 // Step 1.1: Get the address for the src element in the Reduce list. 2642 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2643 SrcElementAddr = CGF.EmitLoadOfPointer( 2644 SrcElementPtrAddr, 2645 C.getPointerType(Private->getType())->castAs<PointerType>()); 2646 2647 // Step 1.2: Get the address for dest element. The destination 2648 // element has already been created on the thread's stack. 2649 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2650 DestElementAddr = CGF.EmitLoadOfPointer( 2651 DestElementPtrAddr, 2652 C.getPointerType(Private->getType())->castAs<PointerType>()); 2653 break; 2654 } 2655 case ThreadToScratchpad: { 2656 // Step 1.1: Get the address for the src element in the Reduce list. 2657 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 2658 SrcElementAddr = CGF.EmitLoadOfPointer( 2659 SrcElementPtrAddr, 2660 C.getPointerType(Private->getType())->castAs<PointerType>()); 2661 2662 // Step 1.2: Get the address for dest element: 2663 // address = base + index * ElementSizeInChars. 2664 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2665 llvm::Value *CurrentOffset = 2666 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 2667 llvm::Value *ScratchPadElemAbsolutePtrVal = 2668 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 2669 ScratchPadElemAbsolutePtrVal = 2670 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 2671 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 2672 C.getTypeAlignInChars(Private->getType())); 2673 IncrScratchpadDest = true; 2674 break; 2675 } 2676 case ScratchpadToThread: { 2677 // Step 1.1: Get the address for the src element in the scratchpad. 2678 // address = base + index * ElementSizeInChars. 2679 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2680 llvm::Value *CurrentOffset = 2681 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 2682 llvm::Value *ScratchPadElemAbsolutePtrVal = 2683 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 2684 ScratchPadElemAbsolutePtrVal = 2685 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 2686 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 2687 C.getTypeAlignInChars(Private->getType())); 2688 IncrScratchpadSrc = true; 2689 2690 // Step 1.2: Create a temporary to store the element in the destination 2691 // Reduce list. 2692 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 2693 DestElementAddr = 2694 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 2695 UpdateDestListPtr = true; 2696 break; 2697 } 2698 } 2699 2700 // Regardless of src and dest of copy, we emit the load of src 2701 // element as this is required in all directions 2702 SrcElementAddr = Bld.CreateElementBitCast( 2703 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 2704 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 2705 SrcElementAddr.getElementType()); 2706 2707 // Now that all active lanes have read the element in the 2708 // Reduce list, shuffle over the value from the remote lane. 2709 if (ShuffleInElement) { 2710 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 2711 RemoteLaneOffset, Private->getExprLoc()); 2712 } else { 2713 switch (CGF.getEvaluationKind(Private->getType())) { 2714 case TEK_Scalar: { 2715 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2716 SrcElementAddr, /*Volatile=*/false, Private->getType(), 2717 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 2718 TBAAAccessInfo()); 2719 // Store the source element value to the dest element address. 2720 CGF.EmitStoreOfScalar( 2721 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 2722 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2723 break; 2724 } 2725 case TEK_Complex: { 2726 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2727 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2728 Private->getExprLoc()); 2729 CGF.EmitStoreOfComplex( 2730 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2731 /*isInit=*/false); 2732 break; 2733 } 2734 case TEK_Aggregate: 2735 CGF.EmitAggregateCopy( 2736 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2737 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2738 Private->getType(), AggValueSlot::DoesNotOverlap); 2739 break; 2740 } 2741 } 2742 2743 // Step 3.1: Modify reference in dest Reduce list as needed. 2744 // Modifying the reference in Reduce list to point to the newly 2745 // created element. The element is live in the current function 2746 // scope and that of functions it invokes (i.e., reduce_function). 2747 // RemoteReduceData[i] = (void*)&RemoteElem 2748 if (UpdateDestListPtr) { 2749 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2750 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2751 DestElementPtrAddr, /*Volatile=*/false, 2752 C.VoidPtrTy); 2753 } 2754 2755 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2756 // address of the next element in scratchpad memory, unless we're currently 2757 // processing the last one. Memory alignment is also taken care of here. 2758 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2759 llvm::Value *ScratchpadBasePtr = 2760 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2761 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2762 ScratchpadBasePtr = Bld.CreateNUWAdd( 2763 ScratchpadBasePtr, 2764 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2765 2766 // Take care of global memory alignment for performance 2767 ScratchpadBasePtr = Bld.CreateNUWSub( 2768 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2769 ScratchpadBasePtr = Bld.CreateUDiv( 2770 ScratchpadBasePtr, 2771 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2772 ScratchpadBasePtr = Bld.CreateNUWAdd( 2773 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2774 ScratchpadBasePtr = Bld.CreateNUWMul( 2775 ScratchpadBasePtr, 2776 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2777 2778 if (IncrScratchpadDest) 2779 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2780 else /* IncrScratchpadSrc = true */ 2781 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2782 } 2783 2784 ++Idx; 2785 } 2786 } 2787 2788 /// This function emits a helper that gathers Reduce lists from the first 2789 /// lane of every active warp to lanes in the first warp. 2790 /// 2791 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2792 /// shared smem[warp_size]; 2793 /// For all data entries D in reduce_data: 2794 /// sync 2795 /// If (I am the first lane in each warp) 2796 /// Copy my local D to smem[warp_id] 2797 /// sync 2798 /// if (I am the first warp) 2799 /// Copy smem[thread_id] to my local D 2800 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2801 ArrayRef<const Expr *> Privates, 2802 QualType ReductionArrayTy, 2803 SourceLocation Loc) { 2804 ASTContext &C = CGM.getContext(); 2805 llvm::Module &M = CGM.getModule(); 2806 2807 // ReduceList: thread local Reduce list. 2808 // At the stage of the computation when this function is called, partially 2809 // aggregated values reside in the first lane of every active warp. 2810 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2811 C.VoidPtrTy, ImplicitParamDecl::Other); 2812 // NumWarps: number of warps active in the parallel region. This could 2813 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2814 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2815 C.getIntTypeForBitwidth(32, /* Signed */ true), 2816 ImplicitParamDecl::Other); 2817 FunctionArgList Args; 2818 Args.push_back(&ReduceListArg); 2819 Args.push_back(&NumWarpsArg); 2820 2821 const CGFunctionInfo &CGFI = 2822 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2823 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2824 llvm::GlobalValue::InternalLinkage, 2825 "_omp_reduction_inter_warp_copy_func", &M); 2826 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2827 Fn->setDoesNotRecurse(); 2828 CodeGenFunction CGF(CGM); 2829 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2830 2831 CGBuilderTy &Bld = CGF.Builder; 2832 2833 // This array is used as a medium to transfer, one reduce element at a time, 2834 // the data from the first lane of every warp to lanes in the first warp 2835 // in order to perform the final step of a reduction in a parallel region 2836 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2837 // for reduced latency, as well as to have a distinct copy for concurrently 2838 // executing target regions. The array is declared with common linkage so 2839 // as to be shared across compilation units. 2840 StringRef TransferMediumName = 2841 "__openmp_nvptx_data_transfer_temporary_storage"; 2842 llvm::GlobalVariable *TransferMedium = 2843 M.getGlobalVariable(TransferMediumName); 2844 unsigned WarpSize = CGF.getTarget().getGridValue(llvm::omp::GV_Warp_Size); 2845 if (!TransferMedium) { 2846 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2847 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2848 TransferMedium = new llvm::GlobalVariable( 2849 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2850 llvm::UndefValue::get(Ty), TransferMediumName, 2851 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2852 SharedAddressSpace); 2853 CGM.addCompilerUsedGlobal(TransferMedium); 2854 } 2855 2856 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2857 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2858 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2859 // nvptx_lane_id = nvptx_id % warpsize 2860 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2861 // nvptx_warp_id = nvptx_id / warpsize 2862 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2863 2864 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2865 Address LocalReduceList( 2866 Bld.CreatePointerBitCastOrAddrSpaceCast( 2867 CGF.EmitLoadOfScalar( 2868 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2869 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2870 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2871 CGF.getPointerAlign()); 2872 2873 unsigned Idx = 0; 2874 for (const Expr *Private : Privates) { 2875 // 2876 // Warp master copies reduce element to transfer medium in __shared__ 2877 // memory. 2878 // 2879 unsigned RealTySize = 2880 C.getTypeSizeInChars(Private->getType()) 2881 .alignTo(C.getTypeAlignInChars(Private->getType())) 2882 .getQuantity(); 2883 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2884 unsigned NumIters = RealTySize / TySize; 2885 if (NumIters == 0) 2886 continue; 2887 QualType CType = C.getIntTypeForBitwidth( 2888 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2889 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2890 CharUnits Align = CharUnits::fromQuantity(TySize); 2891 llvm::Value *Cnt = nullptr; 2892 Address CntAddr = Address::invalid(); 2893 llvm::BasicBlock *PrecondBB = nullptr; 2894 llvm::BasicBlock *ExitBB = nullptr; 2895 if (NumIters > 1) { 2896 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2897 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2898 /*Volatile=*/false, C.IntTy); 2899 PrecondBB = CGF.createBasicBlock("precond"); 2900 ExitBB = CGF.createBasicBlock("exit"); 2901 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2902 // There is no need to emit line number for unconditional branch. 2903 (void)ApplyDebugLocation::CreateEmpty(CGF); 2904 CGF.EmitBlock(PrecondBB); 2905 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2906 llvm::Value *Cmp = 2907 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2908 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2909 CGF.EmitBlock(BodyBB); 2910 } 2911 // kmpc_barrier. 2912 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2913 /*EmitChecks=*/false, 2914 /*ForceSimpleCall=*/true); 2915 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2916 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2917 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2918 2919 // if (lane_id == 0) 2920 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2921 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2922 CGF.EmitBlock(ThenBB); 2923 2924 // Reduce element = LocalReduceList[i] 2925 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2926 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2927 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2928 // elemptr = ((CopyType*)(elemptrptr)) + I 2929 Address ElemPtr = Address(ElemPtrPtr, Align); 2930 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2931 if (NumIters > 1) { 2932 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt), 2933 ElemPtr.getAlignment()); 2934 } 2935 2936 // Get pointer to location in transfer medium. 2937 // MediumPtr = &medium[warp_id] 2938 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2939 TransferMedium->getValueType(), TransferMedium, 2940 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2941 Address MediumPtr(MediumPtrVal, Align); 2942 // Casting to actual data type. 2943 // MediumPtr = (CopyType*)MediumPtrAddr; 2944 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2945 2946 // elem = *elemptr 2947 //*MediumPtr = elem 2948 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2949 ElemPtr, /*Volatile=*/false, CType, Loc, 2950 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2951 // Store the source element value to the dest element address. 2952 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2953 LValueBaseInfo(AlignmentSource::Type), 2954 TBAAAccessInfo()); 2955 2956 Bld.CreateBr(MergeBB); 2957 2958 CGF.EmitBlock(ElseBB); 2959 Bld.CreateBr(MergeBB); 2960 2961 CGF.EmitBlock(MergeBB); 2962 2963 // kmpc_barrier. 2964 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2965 /*EmitChecks=*/false, 2966 /*ForceSimpleCall=*/true); 2967 2968 // 2969 // Warp 0 copies reduce element from transfer medium. 2970 // 2971 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2972 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2973 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2974 2975 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2976 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2977 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2978 2979 // Up to 32 threads in warp 0 are active. 2980 llvm::Value *IsActiveThread = 2981 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2982 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2983 2984 CGF.EmitBlock(W0ThenBB); 2985 2986 // SrcMediumPtr = &medium[tid] 2987 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2988 TransferMedium->getValueType(), TransferMedium, 2989 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2990 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2991 // SrcMediumVal = *SrcMediumPtr; 2992 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2993 2994 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2995 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2996 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2997 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2998 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2999 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 3000 if (NumIters > 1) { 3001 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt), 3002 TargetElemPtr.getAlignment()); 3003 } 3004 3005 // *TargetElemPtr = SrcMediumVal; 3006 llvm::Value *SrcMediumValue = 3007 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 3008 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 3009 CType); 3010 Bld.CreateBr(W0MergeBB); 3011 3012 CGF.EmitBlock(W0ElseBB); 3013 Bld.CreateBr(W0MergeBB); 3014 3015 CGF.EmitBlock(W0MergeBB); 3016 3017 if (NumIters > 1) { 3018 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 3019 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 3020 CGF.EmitBranch(PrecondBB); 3021 (void)ApplyDebugLocation::CreateEmpty(CGF); 3022 CGF.EmitBlock(ExitBB); 3023 } 3024 RealTySize %= TySize; 3025 } 3026 ++Idx; 3027 } 3028 3029 CGF.FinishFunction(); 3030 return Fn; 3031 } 3032 3033 /// Emit a helper that reduces data across two OpenMP threads (lanes) 3034 /// in the same warp. It uses shuffle instructions to copy over data from 3035 /// a remote lane's stack. The reduction algorithm performed is specified 3036 /// by the fourth parameter. 3037 /// 3038 /// Algorithm Versions. 3039 /// Full Warp Reduce (argument value 0): 3040 /// This algorithm assumes that all 32 lanes are active and gathers 3041 /// data from these 32 lanes, producing a single resultant value. 3042 /// Contiguous Partial Warp Reduce (argument value 1): 3043 /// This algorithm assumes that only a *contiguous* subset of lanes 3044 /// are active. This happens for the last warp in a parallel region 3045 /// when the user specified num_threads is not an integer multiple of 3046 /// 32. This contiguous subset always starts with the zeroth lane. 3047 /// Partial Warp Reduce (argument value 2): 3048 /// This algorithm gathers data from any number of lanes at any position. 3049 /// All reduced values are stored in the lowest possible lane. The set 3050 /// of problems every algorithm addresses is a super set of those 3051 /// addressable by algorithms with a lower version number. Overhead 3052 /// increases as algorithm version increases. 3053 /// 3054 /// Terminology 3055 /// Reduce element: 3056 /// Reduce element refers to the individual data field with primitive 3057 /// data types to be combined and reduced across threads. 3058 /// Reduce list: 3059 /// Reduce list refers to a collection of local, thread-private 3060 /// reduce elements. 3061 /// Remote Reduce list: 3062 /// Remote Reduce list refers to a collection of remote (relative to 3063 /// the current thread) reduce elements. 3064 /// 3065 /// We distinguish between three states of threads that are important to 3066 /// the implementation of this function. 3067 /// Alive threads: 3068 /// Threads in a warp executing the SIMT instruction, as distinguished from 3069 /// threads that are inactive due to divergent control flow. 3070 /// Active threads: 3071 /// The minimal set of threads that has to be alive upon entry to this 3072 /// function. The computation is correct iff active threads are alive. 3073 /// Some threads are alive but they are not active because they do not 3074 /// contribute to the computation in any useful manner. Turning them off 3075 /// may introduce control flow overheads without any tangible benefits. 3076 /// Effective threads: 3077 /// In order to comply with the argument requirements of the shuffle 3078 /// function, we must keep all lanes holding data alive. But at most 3079 /// half of them perform value aggregation; we refer to this half of 3080 /// threads as effective. The other half is simply handing off their 3081 /// data. 3082 /// 3083 /// Procedure 3084 /// Value shuffle: 3085 /// In this step active threads transfer data from higher lane positions 3086 /// in the warp to lower lane positions, creating Remote Reduce list. 3087 /// Value aggregation: 3088 /// In this step, effective threads combine their thread local Reduce list 3089 /// with Remote Reduce list and store the result in the thread local 3090 /// Reduce list. 3091 /// Value copy: 3092 /// In this step, we deal with the assumption made by algorithm 2 3093 /// (i.e. contiguity assumption). When we have an odd number of lanes 3094 /// active, say 2k+1, only k threads will be effective and therefore k 3095 /// new values will be produced. However, the Reduce list owned by the 3096 /// (2k+1)th thread is ignored in the value aggregation. Therefore 3097 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 3098 /// that the contiguity assumption still holds. 3099 static llvm::Function *emitShuffleAndReduceFunction( 3100 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3101 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 3102 ASTContext &C = CGM.getContext(); 3103 3104 // Thread local Reduce list used to host the values of data to be reduced. 3105 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3106 C.VoidPtrTy, ImplicitParamDecl::Other); 3107 // Current lane id; could be logical. 3108 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 3109 ImplicitParamDecl::Other); 3110 // Offset of the remote source lane relative to the current lane. 3111 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3112 C.ShortTy, ImplicitParamDecl::Other); 3113 // Algorithm version. This is expected to be known at compile time. 3114 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3115 C.ShortTy, ImplicitParamDecl::Other); 3116 FunctionArgList Args; 3117 Args.push_back(&ReduceListArg); 3118 Args.push_back(&LaneIDArg); 3119 Args.push_back(&RemoteLaneOffsetArg); 3120 Args.push_back(&AlgoVerArg); 3121 3122 const CGFunctionInfo &CGFI = 3123 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3124 auto *Fn = llvm::Function::Create( 3125 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3126 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 3127 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3128 Fn->setDoesNotRecurse(); 3129 3130 CodeGenFunction CGF(CGM); 3131 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3132 3133 CGBuilderTy &Bld = CGF.Builder; 3134 3135 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3136 Address LocalReduceList( 3137 Bld.CreatePointerBitCastOrAddrSpaceCast( 3138 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3139 C.VoidPtrTy, SourceLocation()), 3140 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3141 CGF.getPointerAlign()); 3142 3143 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 3144 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 3145 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 3146 3147 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 3148 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 3149 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 3150 3151 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 3152 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 3153 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 3154 3155 // Create a local thread-private variable to host the Reduce list 3156 // from a remote lane. 3157 Address RemoteReduceList = 3158 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 3159 3160 // This loop iterates through the list of reduce elements and copies, 3161 // element by element, from a remote lane in the warp to RemoteReduceList, 3162 // hosted on the thread's stack. 3163 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 3164 LocalReduceList, RemoteReduceList, 3165 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 3166 /*ScratchpadIndex=*/nullptr, 3167 /*ScratchpadWidth=*/nullptr}); 3168 3169 // The actions to be performed on the Remote Reduce list is dependent 3170 // on the algorithm version. 3171 // 3172 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 3173 // LaneId % 2 == 0 && Offset > 0): 3174 // do the reduction value aggregation 3175 // 3176 // The thread local variable Reduce list is mutated in place to host the 3177 // reduced data, which is the aggregated value produced from local and 3178 // remote lanes. 3179 // 3180 // Note that AlgoVer is expected to be a constant integer known at compile 3181 // time. 3182 // When AlgoVer==0, the first conjunction evaluates to true, making 3183 // the entire predicate true during compile time. 3184 // When AlgoVer==1, the second conjunction has only the second part to be 3185 // evaluated during runtime. Other conjunctions evaluates to false 3186 // during compile time. 3187 // When AlgoVer==2, the third conjunction has only the second part to be 3188 // evaluated during runtime. Other conjunctions evaluates to false 3189 // during compile time. 3190 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 3191 3192 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 3193 llvm::Value *CondAlgo1 = Bld.CreateAnd( 3194 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 3195 3196 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 3197 llvm::Value *CondAlgo2 = Bld.CreateAnd( 3198 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 3199 CondAlgo2 = Bld.CreateAnd( 3200 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 3201 3202 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 3203 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 3204 3205 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 3206 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 3207 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 3208 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 3209 3210 CGF.EmitBlock(ThenBB); 3211 // reduce_function(LocalReduceList, RemoteReduceList) 3212 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3213 LocalReduceList.getPointer(), CGF.VoidPtrTy); 3214 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3215 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 3216 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3217 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 3218 Bld.CreateBr(MergeBB); 3219 3220 CGF.EmitBlock(ElseBB); 3221 Bld.CreateBr(MergeBB); 3222 3223 CGF.EmitBlock(MergeBB); 3224 3225 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 3226 // Reduce list. 3227 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 3228 llvm::Value *CondCopy = Bld.CreateAnd( 3229 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 3230 3231 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 3232 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 3233 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 3234 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 3235 3236 CGF.EmitBlock(CpyThenBB); 3237 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 3238 RemoteReduceList, LocalReduceList); 3239 Bld.CreateBr(CpyMergeBB); 3240 3241 CGF.EmitBlock(CpyElseBB); 3242 Bld.CreateBr(CpyMergeBB); 3243 3244 CGF.EmitBlock(CpyMergeBB); 3245 3246 CGF.FinishFunction(); 3247 return Fn; 3248 } 3249 3250 /// This function emits a helper that copies all the reduction variables from 3251 /// the team into the provided global buffer for the reduction variables. 3252 /// 3253 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 3254 /// For all data entries D in reduce_data: 3255 /// Copy local D to buffer.D[Idx] 3256 static llvm::Value *emitListToGlobalCopyFunction( 3257 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3258 QualType ReductionArrayTy, SourceLocation Loc, 3259 const RecordDecl *TeamReductionRec, 3260 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3261 &VarFieldMap) { 3262 ASTContext &C = CGM.getContext(); 3263 3264 // Buffer: global reduction buffer. 3265 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3266 C.VoidPtrTy, ImplicitParamDecl::Other); 3267 // Idx: index of the buffer. 3268 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3269 ImplicitParamDecl::Other); 3270 // ReduceList: thread local Reduce list. 3271 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3272 C.VoidPtrTy, ImplicitParamDecl::Other); 3273 FunctionArgList Args; 3274 Args.push_back(&BufferArg); 3275 Args.push_back(&IdxArg); 3276 Args.push_back(&ReduceListArg); 3277 3278 const CGFunctionInfo &CGFI = 3279 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3280 auto *Fn = llvm::Function::Create( 3281 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3282 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 3283 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3284 Fn->setDoesNotRecurse(); 3285 CodeGenFunction CGF(CGM); 3286 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3287 3288 CGBuilderTy &Bld = CGF.Builder; 3289 3290 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3291 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3292 Address LocalReduceList( 3293 Bld.CreatePointerBitCastOrAddrSpaceCast( 3294 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3295 C.VoidPtrTy, Loc), 3296 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3297 CGF.getPointerAlign()); 3298 QualType StaticTy = C.getRecordType(TeamReductionRec); 3299 llvm::Type *LLVMReductionsBufferTy = 3300 CGM.getTypes().ConvertTypeForMem(StaticTy); 3301 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3302 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3303 LLVMReductionsBufferTy->getPointerTo()); 3304 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3305 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3306 /*Volatile=*/false, C.IntTy, 3307 Loc)}; 3308 unsigned Idx = 0; 3309 for (const Expr *Private : Privates) { 3310 // Reduce element = LocalReduceList[i] 3311 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 3312 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 3313 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 3314 // elemptr = ((CopyType*)(elemptrptr)) + I 3315 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3316 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 3317 Address ElemPtr = 3318 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 3319 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 3320 // Global = Buffer.VD[Idx]; 3321 const FieldDecl *FD = VarFieldMap.lookup(VD); 3322 LValue GlobLVal = CGF.EmitLValueForField( 3323 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3324 Address GlobAddr = GlobLVal.getAddress(CGF); 3325 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3326 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3327 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 3328 switch (CGF.getEvaluationKind(Private->getType())) { 3329 case TEK_Scalar: { 3330 llvm::Value *V = CGF.EmitLoadOfScalar( 3331 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 3332 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 3333 CGF.EmitStoreOfScalar(V, GlobLVal); 3334 break; 3335 } 3336 case TEK_Complex: { 3337 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 3338 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 3339 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 3340 break; 3341 } 3342 case TEK_Aggregate: 3343 CGF.EmitAggregateCopy(GlobLVal, 3344 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3345 Private->getType(), AggValueSlot::DoesNotOverlap); 3346 break; 3347 } 3348 ++Idx; 3349 } 3350 3351 CGF.FinishFunction(); 3352 return Fn; 3353 } 3354 3355 /// This function emits a helper that reduces all the reduction variables from 3356 /// the team into the provided global buffer for the reduction variables. 3357 /// 3358 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 3359 /// void *GlobPtrs[]; 3360 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 3361 /// ... 3362 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 3363 /// reduce_function(GlobPtrs, reduce_data); 3364 static llvm::Value *emitListToGlobalReduceFunction( 3365 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3366 QualType ReductionArrayTy, SourceLocation Loc, 3367 const RecordDecl *TeamReductionRec, 3368 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3369 &VarFieldMap, 3370 llvm::Function *ReduceFn) { 3371 ASTContext &C = CGM.getContext(); 3372 3373 // Buffer: global reduction buffer. 3374 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3375 C.VoidPtrTy, ImplicitParamDecl::Other); 3376 // Idx: index of the buffer. 3377 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3378 ImplicitParamDecl::Other); 3379 // ReduceList: thread local Reduce list. 3380 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3381 C.VoidPtrTy, ImplicitParamDecl::Other); 3382 FunctionArgList Args; 3383 Args.push_back(&BufferArg); 3384 Args.push_back(&IdxArg); 3385 Args.push_back(&ReduceListArg); 3386 3387 const CGFunctionInfo &CGFI = 3388 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3389 auto *Fn = llvm::Function::Create( 3390 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3391 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 3392 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3393 Fn->setDoesNotRecurse(); 3394 CodeGenFunction CGF(CGM); 3395 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3396 3397 CGBuilderTy &Bld = CGF.Builder; 3398 3399 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3400 QualType StaticTy = C.getRecordType(TeamReductionRec); 3401 llvm::Type *LLVMReductionsBufferTy = 3402 CGM.getTypes().ConvertTypeForMem(StaticTy); 3403 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3404 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3405 LLVMReductionsBufferTy->getPointerTo()); 3406 3407 // 1. Build a list of reduction variables. 3408 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3409 Address ReductionList = 3410 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3411 auto IPriv = Privates.begin(); 3412 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3413 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3414 /*Volatile=*/false, C.IntTy, 3415 Loc)}; 3416 unsigned Idx = 0; 3417 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 3418 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3419 // Global = Buffer.VD[Idx]; 3420 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 3421 const FieldDecl *FD = VarFieldMap.lookup(VD); 3422 LValue GlobLVal = CGF.EmitLValueForField( 3423 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3424 Address GlobAddr = GlobLVal.getAddress(CGF); 3425 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3426 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3427 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 3428 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 3429 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3430 // Store array size. 3431 ++Idx; 3432 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3433 llvm::Value *Size = CGF.Builder.CreateIntCast( 3434 CGF.getVLASize( 3435 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3436 .NumElts, 3437 CGF.SizeTy, /*isSigned=*/false); 3438 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3439 Elem); 3440 } 3441 } 3442 3443 // Call reduce_function(GlobalReduceList, ReduceList) 3444 llvm::Value *GlobalReduceList = 3445 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 3446 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3447 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 3448 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 3449 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3450 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 3451 CGF.FinishFunction(); 3452 return Fn; 3453 } 3454 3455 /// This function emits a helper that copies all the reduction variables from 3456 /// the team into the provided global buffer for the reduction variables. 3457 /// 3458 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 3459 /// For all data entries D in reduce_data: 3460 /// Copy buffer.D[Idx] to local D; 3461 static llvm::Value *emitGlobalToListCopyFunction( 3462 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3463 QualType ReductionArrayTy, SourceLocation Loc, 3464 const RecordDecl *TeamReductionRec, 3465 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3466 &VarFieldMap) { 3467 ASTContext &C = CGM.getContext(); 3468 3469 // Buffer: global reduction buffer. 3470 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3471 C.VoidPtrTy, ImplicitParamDecl::Other); 3472 // Idx: index of the buffer. 3473 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3474 ImplicitParamDecl::Other); 3475 // ReduceList: thread local Reduce list. 3476 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3477 C.VoidPtrTy, ImplicitParamDecl::Other); 3478 FunctionArgList Args; 3479 Args.push_back(&BufferArg); 3480 Args.push_back(&IdxArg); 3481 Args.push_back(&ReduceListArg); 3482 3483 const CGFunctionInfo &CGFI = 3484 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3485 auto *Fn = llvm::Function::Create( 3486 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3487 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 3488 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3489 Fn->setDoesNotRecurse(); 3490 CodeGenFunction CGF(CGM); 3491 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3492 3493 CGBuilderTy &Bld = CGF.Builder; 3494 3495 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3496 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3497 Address LocalReduceList( 3498 Bld.CreatePointerBitCastOrAddrSpaceCast( 3499 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 3500 C.VoidPtrTy, Loc), 3501 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 3502 CGF.getPointerAlign()); 3503 QualType StaticTy = C.getRecordType(TeamReductionRec); 3504 llvm::Type *LLVMReductionsBufferTy = 3505 CGM.getTypes().ConvertTypeForMem(StaticTy); 3506 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3507 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3508 LLVMReductionsBufferTy->getPointerTo()); 3509 3510 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3511 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3512 /*Volatile=*/false, C.IntTy, 3513 Loc)}; 3514 unsigned Idx = 0; 3515 for (const Expr *Private : Privates) { 3516 // Reduce element = LocalReduceList[i] 3517 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 3518 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 3519 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 3520 // elemptr = ((CopyType*)(elemptrptr)) + I 3521 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3522 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 3523 Address ElemPtr = 3524 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 3525 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 3526 // Global = Buffer.VD[Idx]; 3527 const FieldDecl *FD = VarFieldMap.lookup(VD); 3528 LValue GlobLVal = CGF.EmitLValueForField( 3529 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3530 Address GlobAddr = GlobLVal.getAddress(CGF); 3531 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3532 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3533 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 3534 switch (CGF.getEvaluationKind(Private->getType())) { 3535 case TEK_Scalar: { 3536 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 3537 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 3538 LValueBaseInfo(AlignmentSource::Type), 3539 TBAAAccessInfo()); 3540 break; 3541 } 3542 case TEK_Complex: { 3543 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 3544 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3545 /*isInit=*/false); 3546 break; 3547 } 3548 case TEK_Aggregate: 3549 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 3550 GlobLVal, Private->getType(), 3551 AggValueSlot::DoesNotOverlap); 3552 break; 3553 } 3554 ++Idx; 3555 } 3556 3557 CGF.FinishFunction(); 3558 return Fn; 3559 } 3560 3561 /// This function emits a helper that reduces all the reduction variables from 3562 /// the team into the provided global buffer for the reduction variables. 3563 /// 3564 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 3565 /// void *GlobPtrs[]; 3566 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 3567 /// ... 3568 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 3569 /// reduce_function(reduce_data, GlobPtrs); 3570 static llvm::Value *emitGlobalToListReduceFunction( 3571 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 3572 QualType ReductionArrayTy, SourceLocation Loc, 3573 const RecordDecl *TeamReductionRec, 3574 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 3575 &VarFieldMap, 3576 llvm::Function *ReduceFn) { 3577 ASTContext &C = CGM.getContext(); 3578 3579 // Buffer: global reduction buffer. 3580 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3581 C.VoidPtrTy, ImplicitParamDecl::Other); 3582 // Idx: index of the buffer. 3583 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 3584 ImplicitParamDecl::Other); 3585 // ReduceList: thread local Reduce list. 3586 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 3587 C.VoidPtrTy, ImplicitParamDecl::Other); 3588 FunctionArgList Args; 3589 Args.push_back(&BufferArg); 3590 Args.push_back(&IdxArg); 3591 Args.push_back(&ReduceListArg); 3592 3593 const CGFunctionInfo &CGFI = 3594 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 3595 auto *Fn = llvm::Function::Create( 3596 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3597 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 3598 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3599 Fn->setDoesNotRecurse(); 3600 CodeGenFunction CGF(CGM); 3601 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 3602 3603 CGBuilderTy &Bld = CGF.Builder; 3604 3605 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 3606 QualType StaticTy = C.getRecordType(TeamReductionRec); 3607 llvm::Type *LLVMReductionsBufferTy = 3608 CGM.getTypes().ConvertTypeForMem(StaticTy); 3609 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 3610 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 3611 LLVMReductionsBufferTy->getPointerTo()); 3612 3613 // 1. Build a list of reduction variables. 3614 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3615 Address ReductionList = 3616 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3617 auto IPriv = Privates.begin(); 3618 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 3619 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 3620 /*Volatile=*/false, C.IntTy, 3621 Loc)}; 3622 unsigned Idx = 0; 3623 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 3624 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3625 // Global = Buffer.VD[Idx]; 3626 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 3627 const FieldDecl *FD = VarFieldMap.lookup(VD); 3628 LValue GlobLVal = CGF.EmitLValueForField( 3629 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 3630 Address GlobAddr = GlobLVal.getAddress(CGF); 3631 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 3632 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 3633 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 3634 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 3635 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3636 // Store array size. 3637 ++Idx; 3638 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3639 llvm::Value *Size = CGF.Builder.CreateIntCast( 3640 CGF.getVLASize( 3641 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3642 .NumElts, 3643 CGF.SizeTy, /*isSigned=*/false); 3644 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3645 Elem); 3646 } 3647 } 3648 3649 // Call reduce_function(ReduceList, GlobalReduceList) 3650 llvm::Value *GlobalReduceList = 3651 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 3652 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 3653 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 3654 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 3655 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 3656 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 3657 CGF.FinishFunction(); 3658 return Fn; 3659 } 3660 3661 /// 3662 /// Design of OpenMP reductions on the GPU 3663 /// 3664 /// Consider a typical OpenMP program with one or more reduction 3665 /// clauses: 3666 /// 3667 /// float foo; 3668 /// double bar; 3669 /// #pragma omp target teams distribute parallel for \ 3670 /// reduction(+:foo) reduction(*:bar) 3671 /// for (int i = 0; i < N; i++) { 3672 /// foo += A[i]; bar *= B[i]; 3673 /// } 3674 /// 3675 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 3676 /// all teams. In our OpenMP implementation on the NVPTX device an 3677 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 3678 /// within a team are mapped to CUDA threads within a threadblock. 3679 /// Our goal is to efficiently aggregate values across all OpenMP 3680 /// threads such that: 3681 /// 3682 /// - the compiler and runtime are logically concise, and 3683 /// - the reduction is performed efficiently in a hierarchical 3684 /// manner as follows: within OpenMP threads in the same warp, 3685 /// across warps in a threadblock, and finally across teams on 3686 /// the NVPTX device. 3687 /// 3688 /// Introduction to Decoupling 3689 /// 3690 /// We would like to decouple the compiler and the runtime so that the 3691 /// latter is ignorant of the reduction variables (number, data types) 3692 /// and the reduction operators. This allows a simpler interface 3693 /// and implementation while still attaining good performance. 3694 /// 3695 /// Pseudocode for the aforementioned OpenMP program generated by the 3696 /// compiler is as follows: 3697 /// 3698 /// 1. Create private copies of reduction variables on each OpenMP 3699 /// thread: 'foo_private', 'bar_private' 3700 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 3701 /// to it and writes the result in 'foo_private' and 'bar_private' 3702 /// respectively. 3703 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 3704 /// and store the result on the team master: 3705 /// 3706 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 3707 /// reduceData, shuffleReduceFn, interWarpCpyFn) 3708 /// 3709 /// where: 3710 /// struct ReduceData { 3711 /// double *foo; 3712 /// double *bar; 3713 /// } reduceData 3714 /// reduceData.foo = &foo_private 3715 /// reduceData.bar = &bar_private 3716 /// 3717 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 3718 /// auxiliary functions generated by the compiler that operate on 3719 /// variables of type 'ReduceData'. They aid the runtime perform 3720 /// algorithmic steps in a data agnostic manner. 3721 /// 3722 /// 'shuffleReduceFn' is a pointer to a function that reduces data 3723 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 3724 /// same warp. It takes the following arguments as input: 3725 /// 3726 /// a. variable of type 'ReduceData' on the calling lane, 3727 /// b. its lane_id, 3728 /// c. an offset relative to the current lane_id to generate a 3729 /// remote_lane_id. The remote lane contains the second 3730 /// variable of type 'ReduceData' that is to be reduced. 3731 /// d. an algorithm version parameter determining which reduction 3732 /// algorithm to use. 3733 /// 3734 /// 'shuffleReduceFn' retrieves data from the remote lane using 3735 /// efficient GPU shuffle intrinsics and reduces, using the 3736 /// algorithm specified by the 4th parameter, the two operands 3737 /// element-wise. The result is written to the first operand. 3738 /// 3739 /// Different reduction algorithms are implemented in different 3740 /// runtime functions, all calling 'shuffleReduceFn' to perform 3741 /// the essential reduction step. Therefore, based on the 4th 3742 /// parameter, this function behaves slightly differently to 3743 /// cooperate with the runtime to ensure correctness under 3744 /// different circumstances. 3745 /// 3746 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3747 /// reduced variables across warps. It tunnels, through CUDA 3748 /// shared memory, the thread-private data of type 'ReduceData' 3749 /// from lane 0 of each warp to a lane in the first warp. 3750 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3751 /// The last team writes the global reduced value to memory. 3752 /// 3753 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3754 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3755 /// scratchpadCopyFn, loadAndReduceFn) 3756 /// 3757 /// 'scratchpadCopyFn' is a helper that stores reduced 3758 /// data from the team master to a scratchpad array in 3759 /// global memory. 3760 /// 3761 /// 'loadAndReduceFn' is a helper that loads data from 3762 /// the scratchpad array and reduces it with the input 3763 /// operand. 3764 /// 3765 /// These compiler generated functions hide address 3766 /// calculation and alignment information from the runtime. 3767 /// 5. if ret == 1: 3768 /// The team master of the last team stores the reduced 3769 /// result to the globals in memory. 3770 /// foo += reduceData.foo; bar *= reduceData.bar 3771 /// 3772 /// 3773 /// Warp Reduction Algorithms 3774 /// 3775 /// On the warp level, we have three algorithms implemented in the 3776 /// OpenMP runtime depending on the number of active lanes: 3777 /// 3778 /// Full Warp Reduction 3779 /// 3780 /// The reduce algorithm within a warp where all lanes are active 3781 /// is implemented in the runtime as follows: 3782 /// 3783 /// full_warp_reduce(void *reduce_data, 3784 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3785 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3786 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3787 /// } 3788 /// 3789 /// The algorithm completes in log(2, WARPSIZE) steps. 3790 /// 3791 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3792 /// not used therefore we save instructions by not retrieving lane_id 3793 /// from the corresponding special registers. The 4th parameter, which 3794 /// represents the version of the algorithm being used, is set to 0 to 3795 /// signify full warp reduction. 3796 /// 3797 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3798 /// 3799 /// #reduce_elem refers to an element in the local lane's data structure 3800 /// #remote_elem is retrieved from a remote lane 3801 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3802 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3803 /// 3804 /// Contiguous Partial Warp Reduction 3805 /// 3806 /// This reduce algorithm is used within a warp where only the first 3807 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3808 /// number of OpenMP threads in a parallel region is not a multiple of 3809 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3810 /// 3811 /// void 3812 /// contiguous_partial_reduce(void *reduce_data, 3813 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3814 /// int size, int lane_id) { 3815 /// int curr_size; 3816 /// int offset; 3817 /// curr_size = size; 3818 /// mask = curr_size/2; 3819 /// while (offset>0) { 3820 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3821 /// curr_size = (curr_size+1)/2; 3822 /// offset = curr_size/2; 3823 /// } 3824 /// } 3825 /// 3826 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3827 /// 3828 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3829 /// if (lane_id < offset) 3830 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3831 /// else 3832 /// reduce_elem = remote_elem 3833 /// 3834 /// This algorithm assumes that the data to be reduced are located in a 3835 /// contiguous subset of lanes starting from the first. When there is 3836 /// an odd number of active lanes, the data in the last lane is not 3837 /// aggregated with any other lane's dat but is instead copied over. 3838 /// 3839 /// Dispersed Partial Warp Reduction 3840 /// 3841 /// This algorithm is used within a warp when any discontiguous subset of 3842 /// lanes are active. It is used to implement the reduction operation 3843 /// across lanes in an OpenMP simd region or in a nested parallel region. 3844 /// 3845 /// void 3846 /// dispersed_partial_reduce(void *reduce_data, 3847 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3848 /// int size, remote_id; 3849 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3850 /// do { 3851 /// remote_id = next_active_lane_id_right_after_me(); 3852 /// # the above function returns 0 of no active lane 3853 /// # is present right after the current lane. 3854 /// size = number_of_active_lanes_in_this_warp(); 3855 /// logical_lane_id /= 2; 3856 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3857 /// remote_id-1-threadIdx.x, 2); 3858 /// } while (logical_lane_id % 2 == 0 && size > 1); 3859 /// } 3860 /// 3861 /// There is no assumption made about the initial state of the reduction. 3862 /// Any number of lanes (>=1) could be active at any position. The reduction 3863 /// result is returned in the first active lane. 3864 /// 3865 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3866 /// 3867 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3868 /// if (lane_id % 2 == 0 && offset > 0) 3869 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3870 /// else 3871 /// reduce_elem = remote_elem 3872 /// 3873 /// 3874 /// Intra-Team Reduction 3875 /// 3876 /// This function, as implemented in the runtime call 3877 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3878 /// threads in a team. It first reduces within a warp using the 3879 /// aforementioned algorithms. We then proceed to gather all such 3880 /// reduced values at the first warp. 3881 /// 3882 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3883 /// data from each of the "warp master" (zeroth lane of each warp, where 3884 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3885 /// a mathematical sense) the problem of reduction across warp masters in 3886 /// a block to the problem of warp reduction. 3887 /// 3888 /// 3889 /// Inter-Team Reduction 3890 /// 3891 /// Once a team has reduced its data to a single value, it is stored in 3892 /// a global scratchpad array. Since each team has a distinct slot, this 3893 /// can be done without locking. 3894 /// 3895 /// The last team to write to the scratchpad array proceeds to reduce the 3896 /// scratchpad array. One or more workers in the last team use the helper 3897 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3898 /// the k'th worker reduces every k'th element. 3899 /// 3900 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3901 /// reduce across workers and compute a globally reduced value. 3902 /// 3903 void CGOpenMPRuntimeGPU::emitReduction( 3904 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3905 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3906 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3907 if (!CGF.HaveInsertPoint()) 3908 return; 3909 3910 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3911 #ifndef NDEBUG 3912 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3913 #endif 3914 3915 if (Options.SimpleReduction) { 3916 assert(!TeamsReduction && !ParallelReduction && 3917 "Invalid reduction selection in emitReduction."); 3918 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3919 ReductionOps, Options); 3920 return; 3921 } 3922 3923 assert((TeamsReduction || ParallelReduction) && 3924 "Invalid reduction selection in emitReduction."); 3925 3926 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3927 // RedList, shuffle_reduce_func, interwarp_copy_func); 3928 // or 3929 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3930 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3931 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3932 3933 llvm::Value *Res; 3934 ASTContext &C = CGM.getContext(); 3935 // 1. Build a list of reduction variables. 3936 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3937 auto Size = RHSExprs.size(); 3938 for (const Expr *E : Privates) { 3939 if (E->getType()->isVariablyModifiedType()) 3940 // Reserve place for array size. 3941 ++Size; 3942 } 3943 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3944 QualType ReductionArrayTy = 3945 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3946 /*IndexTypeQuals=*/0); 3947 Address ReductionList = 3948 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3949 auto IPriv = Privates.begin(); 3950 unsigned Idx = 0; 3951 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3952 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3953 CGF.Builder.CreateStore( 3954 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3955 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3956 Elem); 3957 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3958 // Store array size. 3959 ++Idx; 3960 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3961 llvm::Value *Size = CGF.Builder.CreateIntCast( 3962 CGF.getVLASize( 3963 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3964 .NumElts, 3965 CGF.SizeTy, /*isSigned=*/false); 3966 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3967 Elem); 3968 } 3969 } 3970 3971 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3972 ReductionList.getPointer(), CGF.VoidPtrTy); 3973 llvm::Function *ReductionFn = emitReductionFunction( 3974 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3975 LHSExprs, RHSExprs, ReductionOps); 3976 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3977 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3978 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3979 llvm::Value *InterWarpCopyFn = 3980 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3981 3982 if (ParallelReduction) { 3983 llvm::Value *Args[] = {RTLoc, 3984 ThreadId, 3985 CGF.Builder.getInt32(RHSExprs.size()), 3986 ReductionArrayTySize, 3987 RL, 3988 ShuffleAndReduceFn, 3989 InterWarpCopyFn}; 3990 3991 Res = CGF.EmitRuntimeCall( 3992 OMPBuilder.getOrCreateRuntimeFunction( 3993 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3994 Args); 3995 } else { 3996 assert(TeamsReduction && "expected teams reduction."); 3997 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3998 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3999 int Cnt = 0; 4000 for (const Expr *DRE : Privates) { 4001 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 4002 ++Cnt; 4003 } 4004 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 4005 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 4006 C.getLangOpts().OpenMPCUDAReductionBufNum); 4007 TeamsReductions.push_back(TeamReductionRec); 4008 if (!KernelTeamsReductionPtr) { 4009 KernelTeamsReductionPtr = new llvm::GlobalVariable( 4010 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 4011 llvm::GlobalValue::InternalLinkage, nullptr, 4012 "_openmp_teams_reductions_buffer_$_$ptr"); 4013 } 4014 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 4015 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 4016 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 4017 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 4018 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 4019 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 4020 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 4021 ReductionFn); 4022 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 4023 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 4024 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 4025 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 4026 ReductionFn); 4027 4028 llvm::Value *Args[] = { 4029 RTLoc, 4030 ThreadId, 4031 GlobalBufferPtr, 4032 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 4033 RL, 4034 ShuffleAndReduceFn, 4035 InterWarpCopyFn, 4036 GlobalToBufferCpyFn, 4037 GlobalToBufferRedFn, 4038 BufferToGlobalCpyFn, 4039 BufferToGlobalRedFn}; 4040 4041 Res = CGF.EmitRuntimeCall( 4042 OMPBuilder.getOrCreateRuntimeFunction( 4043 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 4044 Args); 4045 } 4046 4047 // 5. Build if (res == 1) 4048 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 4049 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 4050 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 4051 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 4052 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 4053 4054 // 6. Build then branch: where we have reduced values in the master 4055 // thread in each team. 4056 // __kmpc_end_reduce{_nowait}(<gtid>); 4057 // break; 4058 CGF.EmitBlock(ThenBB); 4059 4060 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 4061 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 4062 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 4063 auto IPriv = Privates.begin(); 4064 auto ILHS = LHSExprs.begin(); 4065 auto IRHS = RHSExprs.begin(); 4066 for (const Expr *E : ReductionOps) { 4067 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 4068 cast<DeclRefExpr>(*IRHS)); 4069 ++IPriv; 4070 ++ILHS; 4071 ++IRHS; 4072 } 4073 }; 4074 llvm::Value *EndArgs[] = {ThreadId}; 4075 RegionCodeGenTy RCG(CodeGen); 4076 NVPTXActionTy Action( 4077 nullptr, llvm::None, 4078 OMPBuilder.getOrCreateRuntimeFunction( 4079 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 4080 EndArgs); 4081 RCG.setAction(Action); 4082 RCG(CGF); 4083 // There is no need to emit line number for unconditional branch. 4084 (void)ApplyDebugLocation::CreateEmpty(CGF); 4085 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 4086 } 4087 4088 const VarDecl * 4089 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 4090 const VarDecl *NativeParam) const { 4091 if (!NativeParam->getType()->isReferenceType()) 4092 return NativeParam; 4093 QualType ArgType = NativeParam->getType(); 4094 QualifierCollector QC; 4095 const Type *NonQualTy = QC.strip(ArgType); 4096 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 4097 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 4098 if (Attr->getCaptureKind() == OMPC_map) { 4099 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 4100 LangAS::opencl_global); 4101 } else if (Attr->getCaptureKind() == OMPC_firstprivate && 4102 PointeeTy.isConstant(CGM.getContext())) { 4103 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 4104 LangAS::opencl_generic); 4105 } 4106 } 4107 ArgType = CGM.getContext().getPointerType(PointeeTy); 4108 QC.addRestrict(); 4109 enum { NVPTX_local_addr = 5 }; 4110 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 4111 ArgType = QC.apply(CGM.getContext(), ArgType); 4112 if (isa<ImplicitParamDecl>(NativeParam)) 4113 return ImplicitParamDecl::Create( 4114 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 4115 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 4116 return ParmVarDecl::Create( 4117 CGM.getContext(), 4118 const_cast<DeclContext *>(NativeParam->getDeclContext()), 4119 NativeParam->getBeginLoc(), NativeParam->getLocation(), 4120 NativeParam->getIdentifier(), ArgType, 4121 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 4122 } 4123 4124 Address 4125 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 4126 const VarDecl *NativeParam, 4127 const VarDecl *TargetParam) const { 4128 assert(NativeParam != TargetParam && 4129 NativeParam->getType()->isReferenceType() && 4130 "Native arg must not be the same as target arg."); 4131 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 4132 QualType NativeParamType = NativeParam->getType(); 4133 QualifierCollector QC; 4134 const Type *NonQualTy = QC.strip(NativeParamType); 4135 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 4136 unsigned NativePointeeAddrSpace = 4137 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 4138 QualType TargetTy = TargetParam->getType(); 4139 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 4140 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 4141 // First cast to generic. 4142 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4143 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 4144 /*AddrSpace=*/0)); 4145 // Cast from generic to native address space. 4146 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4147 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 4148 NativePointeeAddrSpace)); 4149 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 4150 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 4151 NativeParamType); 4152 return NativeParamAddr; 4153 } 4154 4155 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 4156 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 4157 ArrayRef<llvm::Value *> Args) const { 4158 SmallVector<llvm::Value *, 4> TargetArgs; 4159 TargetArgs.reserve(Args.size()); 4160 auto *FnType = OutlinedFn.getFunctionType(); 4161 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 4162 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 4163 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 4164 break; 4165 } 4166 llvm::Type *TargetType = FnType->getParamType(I); 4167 llvm::Value *NativeArg = Args[I]; 4168 if (!TargetType->isPointerTy()) { 4169 TargetArgs.emplace_back(NativeArg); 4170 continue; 4171 } 4172 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4173 NativeArg, 4174 NativeArg->getType()->getPointerElementType()->getPointerTo()); 4175 TargetArgs.emplace_back( 4176 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 4177 } 4178 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 4179 } 4180 4181 /// Emit function which wraps the outline parallel region 4182 /// and controls the arguments which are passed to this function. 4183 /// The wrapper ensures that the outlined function is called 4184 /// with the correct arguments when data is shared. 4185 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 4186 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 4187 ASTContext &Ctx = CGM.getContext(); 4188 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 4189 4190 // Create a function that takes as argument the source thread. 4191 FunctionArgList WrapperArgs; 4192 QualType Int16QTy = 4193 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 4194 QualType Int32QTy = 4195 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 4196 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 4197 /*Id=*/nullptr, Int16QTy, 4198 ImplicitParamDecl::Other); 4199 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 4200 /*Id=*/nullptr, Int32QTy, 4201 ImplicitParamDecl::Other); 4202 WrapperArgs.emplace_back(&ParallelLevelArg); 4203 WrapperArgs.emplace_back(&WrapperArg); 4204 4205 const CGFunctionInfo &CGFI = 4206 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 4207 4208 auto *Fn = llvm::Function::Create( 4209 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 4210 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 4211 4212 // Ensure we do not inline the function. This is trivially true for the ones 4213 // passed to __kmpc_fork_call but the ones calles in serialized regions 4214 // could be inlined. This is not a perfect but it is closer to the invariant 4215 // we want, namely, every data environment starts with a new function. 4216 // TODO: We should pass the if condition to the runtime function and do the 4217 // handling there. Much cleaner code. 4218 Fn->addFnAttr(llvm::Attribute::NoInline); 4219 4220 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 4221 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 4222 Fn->setDoesNotRecurse(); 4223 4224 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 4225 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 4226 D.getBeginLoc(), D.getBeginLoc()); 4227 4228 const auto *RD = CS.getCapturedRecordDecl(); 4229 auto CurField = RD->field_begin(); 4230 4231 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 4232 /*Name=*/".zero.addr"); 4233 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 4234 // Get the array of arguments. 4235 SmallVector<llvm::Value *, 8> Args; 4236 4237 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 4238 Args.emplace_back(ZeroAddr.getPointer()); 4239 4240 CGBuilderTy &Bld = CGF.Builder; 4241 auto CI = CS.capture_begin(); 4242 4243 // Use global memory for data sharing. 4244 // Handle passing of global args to workers. 4245 Address GlobalArgs = 4246 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 4247 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 4248 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 4249 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 4250 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 4251 DataSharingArgs); 4252 4253 // Retrieve the shared variables from the list of references returned 4254 // by the runtime. Pass the variables to the outlined function. 4255 Address SharedArgListAddress = Address::invalid(); 4256 if (CS.capture_size() > 0 || 4257 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 4258 SharedArgListAddress = CGF.EmitLoadOfPointer( 4259 GlobalArgs, CGF.getContext() 4260 .getPointerType(CGF.getContext().getPointerType( 4261 CGF.getContext().VoidPtrTy)) 4262 .castAs<PointerType>()); 4263 } 4264 unsigned Idx = 0; 4265 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 4266 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 4267 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 4268 Src, CGF.SizeTy->getPointerTo()); 4269 llvm::Value *LB = CGF.EmitLoadOfScalar( 4270 TypedAddress, 4271 /*Volatile=*/false, 4272 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 4273 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 4274 Args.emplace_back(LB); 4275 ++Idx; 4276 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 4277 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 4278 Src, CGF.SizeTy->getPointerTo()); 4279 llvm::Value *UB = CGF.EmitLoadOfScalar( 4280 TypedAddress, 4281 /*Volatile=*/false, 4282 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 4283 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 4284 Args.emplace_back(UB); 4285 ++Idx; 4286 } 4287 if (CS.capture_size() > 0) { 4288 ASTContext &CGFContext = CGF.getContext(); 4289 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 4290 QualType ElemTy = CurField->getType(); 4291 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 4292 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 4293 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 4294 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 4295 /*Volatile=*/false, 4296 CGFContext.getPointerType(ElemTy), 4297 CI->getLocation()); 4298 if (CI->capturesVariableByCopy() && 4299 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 4300 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 4301 CI->getLocation()); 4302 } 4303 Args.emplace_back(Arg); 4304 } 4305 } 4306 4307 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 4308 CGF.FinishFunction(); 4309 return Fn; 4310 } 4311 4312 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 4313 const Decl *D) { 4314 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 4315 return; 4316 4317 assert(D && "Expected function or captured|block decl."); 4318 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 4319 "Function is registered already."); 4320 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 4321 "Team is set but not processed."); 4322 const Stmt *Body = nullptr; 4323 bool NeedToDelayGlobalization = false; 4324 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 4325 Body = FD->getBody(); 4326 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 4327 Body = BD->getBody(); 4328 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 4329 Body = CD->getBody(); 4330 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 4331 if (NeedToDelayGlobalization && 4332 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 4333 return; 4334 } 4335 if (!Body) 4336 return; 4337 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 4338 VarChecker.Visit(Body); 4339 const RecordDecl *GlobalizedVarsRecord = 4340 VarChecker.getGlobalizedRecord(IsInTTDRegion); 4341 TeamAndReductions.first = nullptr; 4342 TeamAndReductions.second.clear(); 4343 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 4344 VarChecker.getEscapedVariableLengthDecls(); 4345 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 4346 return; 4347 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 4348 I->getSecond().MappedParams = 4349 std::make_unique<CodeGenFunction::OMPMapVars>(); 4350 I->getSecond().GlobalRecord = GlobalizedVarsRecord; 4351 I->getSecond().EscapedParameters.insert( 4352 VarChecker.getEscapedParameters().begin(), 4353 VarChecker.getEscapedParameters().end()); 4354 I->getSecond().EscapedVariableLengthDecls.append( 4355 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 4356 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 4357 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 4358 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 4359 const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD); 4360 Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion))); 4361 } 4362 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 4363 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 4364 VarChecker.Visit(Body); 4365 I->getSecond().SecondaryGlobalRecord = 4366 VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true); 4367 I->getSecond().SecondaryLocalVarData.emplace(); 4368 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 4369 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 4370 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 4371 const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD); 4372 Data.insert( 4373 std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true))); 4374 } 4375 } 4376 if (!NeedToDelayGlobalization) { 4377 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 4378 struct GlobalizationScope final : EHScopeStack::Cleanup { 4379 GlobalizationScope() = default; 4380 4381 void Emit(CodeGenFunction &CGF, Flags flags) override { 4382 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 4383 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 4384 } 4385 }; 4386 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 4387 } 4388 } 4389 4390 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 4391 const VarDecl *VD) { 4392 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 4393 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 4394 auto AS = LangAS::Default; 4395 switch (A->getAllocatorType()) { 4396 // Use the default allocator here as by default local vars are 4397 // threadlocal. 4398 case OMPAllocateDeclAttr::OMPNullMemAlloc: 4399 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 4400 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 4401 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 4402 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 4403 // Follow the user decision - use default allocation. 4404 return Address::invalid(); 4405 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 4406 // TODO: implement aupport for user-defined allocators. 4407 return Address::invalid(); 4408 case OMPAllocateDeclAttr::OMPConstMemAlloc: 4409 AS = LangAS::cuda_constant; 4410 break; 4411 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 4412 AS = LangAS::cuda_shared; 4413 break; 4414 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 4415 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 4416 break; 4417 } 4418 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 4419 auto *GV = new llvm::GlobalVariable( 4420 CGM.getModule(), VarTy, /*isConstant=*/false, 4421 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 4422 VD->getName(), 4423 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 4424 CGM.getContext().getTargetAddressSpace(AS)); 4425 CharUnits Align = CGM.getContext().getDeclAlign(VD); 4426 GV->setAlignment(Align.getAsAlign()); 4427 return Address( 4428 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 4429 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 4430 VD->getType().getAddressSpace()))), 4431 Align); 4432 } 4433 4434 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 4435 return Address::invalid(); 4436 4437 VD = VD->getCanonicalDecl(); 4438 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 4439 if (I == FunctionGlobalizedDecls.end()) 4440 return Address::invalid(); 4441 auto VDI = I->getSecond().LocalVarData.find(VD); 4442 if (VDI != I->getSecond().LocalVarData.end()) 4443 return VDI->second.PrivateAddr; 4444 if (VD->hasAttrs()) { 4445 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 4446 E(VD->attr_end()); 4447 IT != E; ++IT) { 4448 auto VDI = I->getSecond().LocalVarData.find( 4449 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 4450 ->getCanonicalDecl()); 4451 if (VDI != I->getSecond().LocalVarData.end()) 4452 return VDI->second.PrivateAddr; 4453 } 4454 } 4455 4456 return Address::invalid(); 4457 } 4458 4459 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 4460 FunctionGlobalizedDecls.erase(CGF.CurFn); 4461 CGOpenMPRuntime::functionFinished(CGF); 4462 } 4463 4464 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 4465 CodeGenFunction &CGF, const OMPLoopDirective &S, 4466 OpenMPDistScheduleClauseKind &ScheduleKind, 4467 llvm::Value *&Chunk) const { 4468 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 4469 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 4470 ScheduleKind = OMPC_DIST_SCHEDULE_static; 4471 Chunk = CGF.EmitScalarConversion( 4472 RT.getGPUNumThreads(CGF), 4473 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4474 S.getIterationVariable()->getType(), S.getBeginLoc()); 4475 return; 4476 } 4477 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 4478 CGF, S, ScheduleKind, Chunk); 4479 } 4480 4481 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 4482 CodeGenFunction &CGF, const OMPLoopDirective &S, 4483 OpenMPScheduleClauseKind &ScheduleKind, 4484 const Expr *&ChunkExpr) const { 4485 ScheduleKind = OMPC_SCHEDULE_static; 4486 // Chunk size is 1 in this case. 4487 llvm::APInt ChunkSize(32, 1); 4488 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 4489 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 4490 SourceLocation()); 4491 } 4492 4493 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 4494 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 4495 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 4496 " Expected target-based directive."); 4497 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 4498 for (const CapturedStmt::Capture &C : CS->captures()) { 4499 // Capture variables captured by reference in lambdas for target-based 4500 // directives. 4501 if (!C.capturesVariable()) 4502 continue; 4503 const VarDecl *VD = C.getCapturedVar(); 4504 const auto *RD = VD->getType() 4505 .getCanonicalType() 4506 .getNonReferenceType() 4507 ->getAsCXXRecordDecl(); 4508 if (!RD || !RD->isLambda()) 4509 continue; 4510 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 4511 LValue VDLVal; 4512 if (VD->getType().getCanonicalType()->isReferenceType()) 4513 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 4514 else 4515 VDLVal = CGF.MakeAddrLValue( 4516 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 4517 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 4518 FieldDecl *ThisCapture = nullptr; 4519 RD->getCaptureFields(Captures, ThisCapture); 4520 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 4521 LValue ThisLVal = 4522 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 4523 llvm::Value *CXXThis = CGF.LoadCXXThis(); 4524 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 4525 } 4526 for (const LambdaCapture &LC : RD->captures()) { 4527 if (LC.getCaptureKind() != LCK_ByRef) 4528 continue; 4529 const VarDecl *VD = LC.getCapturedVar(); 4530 if (!CS->capturesVariable(VD)) 4531 continue; 4532 auto It = Captures.find(VD); 4533 assert(It != Captures.end() && "Found lambda capture without field."); 4534 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 4535 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 4536 if (VD->getType().getCanonicalType()->isReferenceType()) 4537 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 4538 VD->getType().getCanonicalType()) 4539 .getAddress(CGF); 4540 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 4541 } 4542 } 4543 } 4544 4545 unsigned CGOpenMPRuntimeGPU::getDefaultFirstprivateAddressSpace() const { 4546 return CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); 4547 } 4548 4549 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 4550 LangAS &AS) { 4551 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 4552 return false; 4553 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 4554 switch(A->getAllocatorType()) { 4555 case OMPAllocateDeclAttr::OMPNullMemAlloc: 4556 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 4557 // Not supported, fallback to the default mem space. 4558 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 4559 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 4560 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 4561 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 4562 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 4563 AS = LangAS::Default; 4564 return true; 4565 case OMPAllocateDeclAttr::OMPConstMemAlloc: 4566 AS = LangAS::cuda_constant; 4567 return true; 4568 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 4569 AS = LangAS::cuda_shared; 4570 return true; 4571 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 4572 llvm_unreachable("Expected predefined allocator for the variables with the " 4573 "static storage."); 4574 } 4575 return false; 4576 } 4577 4578 // Get current CudaArch and ignore any unknown values 4579 static CudaArch getCudaArch(CodeGenModule &CGM) { 4580 if (!CGM.getTarget().hasFeature("ptx")) 4581 return CudaArch::UNKNOWN; 4582 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 4583 if (Feature.getValue()) { 4584 CudaArch Arch = StringToCudaArch(Feature.getKey()); 4585 if (Arch != CudaArch::UNKNOWN) 4586 return Arch; 4587 } 4588 } 4589 return CudaArch::UNKNOWN; 4590 } 4591 4592 /// Check to see if target architecture supports unified addressing which is 4593 /// a restriction for OpenMP requires clause "unified_shared_memory". 4594 void CGOpenMPRuntimeGPU::processRequiresDirective( 4595 const OMPRequiresDecl *D) { 4596 for (const OMPClause *Clause : D->clauselists()) { 4597 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 4598 CudaArch Arch = getCudaArch(CGM); 4599 switch (Arch) { 4600 case CudaArch::SM_20: 4601 case CudaArch::SM_21: 4602 case CudaArch::SM_30: 4603 case CudaArch::SM_32: 4604 case CudaArch::SM_35: 4605 case CudaArch::SM_37: 4606 case CudaArch::SM_50: 4607 case CudaArch::SM_52: 4608 case CudaArch::SM_53: 4609 case CudaArch::SM_60: 4610 case CudaArch::SM_61: 4611 case CudaArch::SM_62: { 4612 SmallString<256> Buffer; 4613 llvm::raw_svector_ostream Out(Buffer); 4614 Out << "Target architecture " << CudaArchToString(Arch) 4615 << " does not support unified addressing"; 4616 CGM.Error(Clause->getBeginLoc(), Out.str()); 4617 return; 4618 } 4619 case CudaArch::SM_70: 4620 case CudaArch::SM_72: 4621 case CudaArch::SM_75: 4622 case CudaArch::SM_80: 4623 case CudaArch::SM_86: 4624 case CudaArch::GFX600: 4625 case CudaArch::GFX601: 4626 case CudaArch::GFX602: 4627 case CudaArch::GFX700: 4628 case CudaArch::GFX701: 4629 case CudaArch::GFX702: 4630 case CudaArch::GFX703: 4631 case CudaArch::GFX704: 4632 case CudaArch::GFX705: 4633 case CudaArch::GFX801: 4634 case CudaArch::GFX802: 4635 case CudaArch::GFX803: 4636 case CudaArch::GFX805: 4637 case CudaArch::GFX810: 4638 case CudaArch::GFX900: 4639 case CudaArch::GFX902: 4640 case CudaArch::GFX904: 4641 case CudaArch::GFX906: 4642 case CudaArch::GFX908: 4643 case CudaArch::GFX909: 4644 case CudaArch::GFX90a: 4645 case CudaArch::GFX90c: 4646 case CudaArch::GFX1010: 4647 case CudaArch::GFX1011: 4648 case CudaArch::GFX1012: 4649 case CudaArch::GFX1030: 4650 case CudaArch::GFX1031: 4651 case CudaArch::GFX1032: 4652 case CudaArch::GFX1033: 4653 case CudaArch::UNUSED: 4654 case CudaArch::UNKNOWN: 4655 break; 4656 case CudaArch::LAST: 4657 llvm_unreachable("Unexpected Cuda arch."); 4658 } 4659 } 4660 } 4661 CGOpenMPRuntime::processRequiresDirective(D); 4662 } 4663 4664 /// Get number of SMs and number of blocks per SM. 4665 static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) { 4666 std::pair<unsigned, unsigned> Data; 4667 if (CGM.getLangOpts().OpenMPCUDANumSMs) 4668 Data.first = CGM.getLangOpts().OpenMPCUDANumSMs; 4669 if (CGM.getLangOpts().OpenMPCUDABlocksPerSM) 4670 Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM; 4671 if (Data.first && Data.second) 4672 return Data; 4673 switch (getCudaArch(CGM)) { 4674 case CudaArch::SM_20: 4675 case CudaArch::SM_21: 4676 case CudaArch::SM_30: 4677 case CudaArch::SM_32: 4678 case CudaArch::SM_35: 4679 case CudaArch::SM_37: 4680 case CudaArch::SM_50: 4681 case CudaArch::SM_52: 4682 case CudaArch::SM_53: 4683 return {16, 16}; 4684 case CudaArch::SM_60: 4685 case CudaArch::SM_61: 4686 case CudaArch::SM_62: 4687 return {56, 32}; 4688 case CudaArch::SM_70: 4689 case CudaArch::SM_72: 4690 case CudaArch::SM_75: 4691 case CudaArch::SM_80: 4692 case CudaArch::SM_86: 4693 return {84, 32}; 4694 case CudaArch::GFX600: 4695 case CudaArch::GFX601: 4696 case CudaArch::GFX602: 4697 case CudaArch::GFX700: 4698 case CudaArch::GFX701: 4699 case CudaArch::GFX702: 4700 case CudaArch::GFX703: 4701 case CudaArch::GFX704: 4702 case CudaArch::GFX705: 4703 case CudaArch::GFX801: 4704 case CudaArch::GFX802: 4705 case CudaArch::GFX803: 4706 case CudaArch::GFX805: 4707 case CudaArch::GFX810: 4708 case CudaArch::GFX900: 4709 case CudaArch::GFX902: 4710 case CudaArch::GFX904: 4711 case CudaArch::GFX906: 4712 case CudaArch::GFX908: 4713 case CudaArch::GFX909: 4714 case CudaArch::GFX90a: 4715 case CudaArch::GFX90c: 4716 case CudaArch::GFX1010: 4717 case CudaArch::GFX1011: 4718 case CudaArch::GFX1012: 4719 case CudaArch::GFX1030: 4720 case CudaArch::GFX1031: 4721 case CudaArch::GFX1032: 4722 case CudaArch::GFX1033: 4723 case CudaArch::UNUSED: 4724 case CudaArch::UNKNOWN: 4725 break; 4726 case CudaArch::LAST: 4727 llvm_unreachable("Unexpected Cuda arch."); 4728 } 4729 llvm_unreachable("Unexpected NVPTX target without ptx feature."); 4730 } 4731 4732 void CGOpenMPRuntimeGPU::clear() { 4733 if (!GlobalizedRecords.empty() && 4734 !CGM.getLangOpts().OpenMPCUDATargetParallel) { 4735 ASTContext &C = CGM.getContext(); 4736 llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs; 4737 llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs; 4738 RecordDecl *StaticRD = C.buildImplicitRecord( 4739 "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union); 4740 StaticRD->startDefinition(); 4741 RecordDecl *SharedStaticRD = C.buildImplicitRecord( 4742 "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union); 4743 SharedStaticRD->startDefinition(); 4744 for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) { 4745 if (Records.Records.empty()) 4746 continue; 4747 unsigned Size = 0; 4748 unsigned RecAlignment = 0; 4749 for (const RecordDecl *RD : Records.Records) { 4750 QualType RDTy = C.getRecordType(RD); 4751 unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity(); 4752 RecAlignment = std::max(RecAlignment, Alignment); 4753 unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity(); 4754 Size = 4755 llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment); 4756 } 4757 Size = llvm::alignTo(Size, RecAlignment); 4758 llvm::APInt ArySize(/*numBits=*/64, Size); 4759 QualType SubTy = C.getConstantArrayType( 4760 C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); 4761 const bool UseSharedMemory = Size <= SharedMemorySize; 4762 auto *Field = 4763 FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD, 4764 SourceLocation(), SourceLocation(), nullptr, SubTy, 4765 C.getTrivialTypeSourceInfo(SubTy, SourceLocation()), 4766 /*BW=*/nullptr, /*Mutable=*/false, 4767 /*InitStyle=*/ICIS_NoInit); 4768 Field->setAccess(AS_public); 4769 if (UseSharedMemory) { 4770 SharedStaticRD->addDecl(Field); 4771 SharedRecs.push_back(&Records); 4772 } else { 4773 StaticRD->addDecl(Field); 4774 GlobalRecs.push_back(&Records); 4775 } 4776 Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size)); 4777 Records.UseSharedMemory->setInitializer( 4778 llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0)); 4779 } 4780 // Allocate SharedMemorySize buffer for the shared memory. 4781 // FIXME: nvlink does not handle weak linkage correctly (object with the 4782 // different size are reported as erroneous). 4783 // Restore this code as sson as nvlink is fixed. 4784 if (!SharedStaticRD->field_empty()) { 4785 llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize); 4786 QualType SubTy = C.getConstantArrayType( 4787 C.CharTy, ArySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); 4788 auto *Field = FieldDecl::Create( 4789 C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy, 4790 C.getTrivialTypeSourceInfo(SubTy, SourceLocation()), 4791 /*BW=*/nullptr, /*Mutable=*/false, 4792 /*InitStyle=*/ICIS_NoInit); 4793 Field->setAccess(AS_public); 4794 SharedStaticRD->addDecl(Field); 4795 } 4796 SharedStaticRD->completeDefinition(); 4797 if (!SharedStaticRD->field_empty()) { 4798 QualType StaticTy = C.getRecordType(SharedStaticRD); 4799 llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy); 4800 auto *GV = new llvm::GlobalVariable( 4801 CGM.getModule(), LLVMStaticTy, 4802 /*isConstant=*/false, llvm::GlobalValue::WeakAnyLinkage, 4803 llvm::UndefValue::get(LLVMStaticTy), 4804 "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr, 4805 llvm::GlobalValue::NotThreadLocal, 4806 C.getTargetAddressSpace(LangAS::cuda_shared)); 4807 auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 4808 GV, CGM.VoidPtrTy); 4809 for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) { 4810 Rec->Buffer->replaceAllUsesWith(Replacement); 4811 Rec->Buffer->eraseFromParent(); 4812 } 4813 } 4814 StaticRD->completeDefinition(); 4815 if (!StaticRD->field_empty()) { 4816 QualType StaticTy = C.getRecordType(StaticRD); 4817 std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM); 4818 llvm::APInt Size1(32, SMsBlockPerSM.second); 4819 QualType Arr1Ty = 4820 C.getConstantArrayType(StaticTy, Size1, nullptr, ArrayType::Normal, 4821 /*IndexTypeQuals=*/0); 4822 llvm::APInt Size2(32, SMsBlockPerSM.first); 4823 QualType Arr2Ty = 4824 C.getConstantArrayType(Arr1Ty, Size2, nullptr, ArrayType::Normal, 4825 /*IndexTypeQuals=*/0); 4826 llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty); 4827 // FIXME: nvlink does not handle weak linkage correctly (object with the 4828 // different size are reported as erroneous). 4829 // Restore CommonLinkage as soon as nvlink is fixed. 4830 auto *GV = new llvm::GlobalVariable( 4831 CGM.getModule(), LLVMArr2Ty, 4832 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 4833 llvm::Constant::getNullValue(LLVMArr2Ty), 4834 "_openmp_static_glob_rd_$_"); 4835 auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 4836 GV, CGM.VoidPtrTy); 4837 for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) { 4838 Rec->Buffer->replaceAllUsesWith(Replacement); 4839 Rec->Buffer->eraseFromParent(); 4840 } 4841 } 4842 } 4843 if (!TeamsReductions.empty()) { 4844 ASTContext &C = CGM.getContext(); 4845 RecordDecl *StaticRD = C.buildImplicitRecord( 4846 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 4847 StaticRD->startDefinition(); 4848 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 4849 QualType RecTy = C.getRecordType(TeamReductionRec); 4850 auto *Field = FieldDecl::Create( 4851 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 4852 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 4853 /*BW=*/nullptr, /*Mutable=*/false, 4854 /*InitStyle=*/ICIS_NoInit); 4855 Field->setAccess(AS_public); 4856 StaticRD->addDecl(Field); 4857 } 4858 StaticRD->completeDefinition(); 4859 QualType StaticTy = C.getRecordType(StaticRD); 4860 llvm::Type *LLVMReductionsBufferTy = 4861 CGM.getTypes().ConvertTypeForMem(StaticTy); 4862 // FIXME: nvlink does not handle weak linkage correctly (object with the 4863 // different size are reported as erroneous). 4864 // Restore CommonLinkage as soon as nvlink is fixed. 4865 auto *GV = new llvm::GlobalVariable( 4866 CGM.getModule(), LLVMReductionsBufferTy, 4867 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 4868 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 4869 "_openmp_teams_reductions_buffer_$_"); 4870 KernelTeamsReductionPtr->setInitializer( 4871 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 4872 CGM.VoidPtrTy)); 4873 } 4874 CGOpenMPRuntime::clear(); 4875 } 4876