1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 #include "llvm/Support/MathExtras.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 using namespace llvm::omp; 30 31 namespace { 32 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 33 class NVPTXActionTy final : public PrePostActionTy { 34 llvm::FunctionCallee EnterCallee = nullptr; 35 ArrayRef<llvm::Value *> EnterArgs; 36 llvm::FunctionCallee ExitCallee = nullptr; 37 ArrayRef<llvm::Value *> ExitArgs; 38 bool Conditional = false; 39 llvm::BasicBlock *ContBlock = nullptr; 40 41 public: 42 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 43 ArrayRef<llvm::Value *> EnterArgs, 44 llvm::FunctionCallee ExitCallee, 45 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 46 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 47 ExitArgs(ExitArgs), Conditional(Conditional) {} 48 void Enter(CodeGenFunction &CGF) override { 49 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 50 if (Conditional) { 51 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 52 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 53 ContBlock = CGF.createBasicBlock("omp_if.end"); 54 // Generate the branch (If-stmt) 55 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 56 CGF.EmitBlock(ThenBlock); 57 } 58 } 59 void Done(CodeGenFunction &CGF) { 60 // Emit the rest of blocks/branches 61 CGF.EmitBranch(ContBlock); 62 CGF.EmitBlock(ContBlock, true); 63 } 64 void Exit(CodeGenFunction &CGF) override { 65 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 66 } 67 }; 68 69 /// A class to track the execution mode when codegening directives within 70 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 71 /// to the target region and used by containing directives such as 'parallel' 72 /// to emit optimized code. 73 class ExecutionRuntimeModesRAII { 74 private: 75 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 76 CGOpenMPRuntimeGPU::EM_Unknown; 77 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 78 bool SavedRuntimeMode = false; 79 bool *RuntimeMode = nullptr; 80 81 public: 82 /// Constructor for Non-SPMD mode. 83 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 84 : ExecMode(ExecMode) { 85 SavedExecMode = ExecMode; 86 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 87 } 88 /// Constructor for SPMD mode. 89 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 90 bool &RuntimeMode, bool FullRuntimeMode) 91 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 92 SavedExecMode = ExecMode; 93 SavedRuntimeMode = RuntimeMode; 94 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 95 RuntimeMode = FullRuntimeMode; 96 } 97 ~ExecutionRuntimeModesRAII() { 98 ExecMode = SavedExecMode; 99 if (RuntimeMode) 100 *RuntimeMode = SavedRuntimeMode; 101 } 102 }; 103 104 /// GPU Configuration: This information can be derived from cuda registers, 105 /// however, providing compile time constants helps generate more efficient 106 /// code. For all practical purposes this is fine because the configuration 107 /// is the same for all known NVPTX architectures. 108 enum MachineConfiguration : unsigned { 109 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 110 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDBits = 550 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 551 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 552 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 553 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 554 "nvptx_lane_id"); 555 } 556 557 CGOpenMPRuntimeGPU::ExecutionMode 558 CGOpenMPRuntimeGPU::getExecutionMode() const { 559 return CurrentExecutionMode; 560 } 561 562 static CGOpenMPRuntimeGPU::DataSharingMode 563 getDataSharingMode(CodeGenModule &CGM) { 564 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 565 : CGOpenMPRuntimeGPU::Generic; 566 } 567 568 /// Check for inner (nested) SPMD construct, if any 569 static bool hasNestedSPMDDirective(ASTContext &Ctx, 570 const OMPExecutableDirective &D) { 571 const auto *CS = D.getInnermostCapturedStmt(); 572 const auto *Body = 573 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 574 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 575 576 if (const auto *NestedDir = 577 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 578 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 579 switch (D.getDirectiveKind()) { 580 case OMPD_target: 581 if (isOpenMPParallelDirective(DKind)) 582 return true; 583 if (DKind == OMPD_teams) { 584 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 585 /*IgnoreCaptured=*/true); 586 if (!Body) 587 return false; 588 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 589 if (const auto *NND = 590 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 591 DKind = NND->getDirectiveKind(); 592 if (isOpenMPParallelDirective(DKind)) 593 return true; 594 } 595 } 596 return false; 597 case OMPD_target_teams: 598 return isOpenMPParallelDirective(DKind); 599 case OMPD_target_simd: 600 case OMPD_target_parallel: 601 case OMPD_target_parallel_for: 602 case OMPD_target_parallel_for_simd: 603 case OMPD_target_teams_distribute: 604 case OMPD_target_teams_distribute_simd: 605 case OMPD_target_teams_distribute_parallel_for: 606 case OMPD_target_teams_distribute_parallel_for_simd: 607 case OMPD_parallel: 608 case OMPD_for: 609 case OMPD_parallel_for: 610 case OMPD_parallel_master: 611 case OMPD_parallel_sections: 612 case OMPD_for_simd: 613 case OMPD_parallel_for_simd: 614 case OMPD_cancel: 615 case OMPD_cancellation_point: 616 case OMPD_ordered: 617 case OMPD_threadprivate: 618 case OMPD_allocate: 619 case OMPD_task: 620 case OMPD_simd: 621 case OMPD_sections: 622 case OMPD_section: 623 case OMPD_single: 624 case OMPD_master: 625 case OMPD_critical: 626 case OMPD_taskyield: 627 case OMPD_barrier: 628 case OMPD_taskwait: 629 case OMPD_taskgroup: 630 case OMPD_atomic: 631 case OMPD_flush: 632 case OMPD_depobj: 633 case OMPD_scan: 634 case OMPD_teams: 635 case OMPD_target_data: 636 case OMPD_target_exit_data: 637 case OMPD_target_enter_data: 638 case OMPD_distribute: 639 case OMPD_distribute_simd: 640 case OMPD_distribute_parallel_for: 641 case OMPD_distribute_parallel_for_simd: 642 case OMPD_teams_distribute: 643 case OMPD_teams_distribute_simd: 644 case OMPD_teams_distribute_parallel_for: 645 case OMPD_teams_distribute_parallel_for_simd: 646 case OMPD_target_update: 647 case OMPD_declare_simd: 648 case OMPD_declare_variant: 649 case OMPD_begin_declare_variant: 650 case OMPD_end_declare_variant: 651 case OMPD_declare_target: 652 case OMPD_end_declare_target: 653 case OMPD_declare_reduction: 654 case OMPD_declare_mapper: 655 case OMPD_taskloop: 656 case OMPD_taskloop_simd: 657 case OMPD_master_taskloop: 658 case OMPD_master_taskloop_simd: 659 case OMPD_parallel_master_taskloop: 660 case OMPD_parallel_master_taskloop_simd: 661 case OMPD_requires: 662 case OMPD_unknown: 663 default: 664 llvm_unreachable("Unexpected directive."); 665 } 666 } 667 668 return false; 669 } 670 671 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 672 const OMPExecutableDirective &D) { 673 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 674 switch (DirectiveKind) { 675 case OMPD_target: 676 case OMPD_target_teams: 677 return hasNestedSPMDDirective(Ctx, D); 678 case OMPD_target_parallel: 679 case OMPD_target_parallel_for: 680 case OMPD_target_parallel_for_simd: 681 case OMPD_target_teams_distribute_parallel_for: 682 case OMPD_target_teams_distribute_parallel_for_simd: 683 case OMPD_target_simd: 684 case OMPD_target_teams_distribute_simd: 685 return true; 686 case OMPD_target_teams_distribute: 687 return false; 688 case OMPD_parallel: 689 case OMPD_for: 690 case OMPD_parallel_for: 691 case OMPD_parallel_master: 692 case OMPD_parallel_sections: 693 case OMPD_for_simd: 694 case OMPD_parallel_for_simd: 695 case OMPD_cancel: 696 case OMPD_cancellation_point: 697 case OMPD_ordered: 698 case OMPD_threadprivate: 699 case OMPD_allocate: 700 case OMPD_task: 701 case OMPD_simd: 702 case OMPD_sections: 703 case OMPD_section: 704 case OMPD_single: 705 case OMPD_master: 706 case OMPD_critical: 707 case OMPD_taskyield: 708 case OMPD_barrier: 709 case OMPD_taskwait: 710 case OMPD_taskgroup: 711 case OMPD_atomic: 712 case OMPD_flush: 713 case OMPD_depobj: 714 case OMPD_scan: 715 case OMPD_teams: 716 case OMPD_target_data: 717 case OMPD_target_exit_data: 718 case OMPD_target_enter_data: 719 case OMPD_distribute: 720 case OMPD_distribute_simd: 721 case OMPD_distribute_parallel_for: 722 case OMPD_distribute_parallel_for_simd: 723 case OMPD_teams_distribute: 724 case OMPD_teams_distribute_simd: 725 case OMPD_teams_distribute_parallel_for: 726 case OMPD_teams_distribute_parallel_for_simd: 727 case OMPD_target_update: 728 case OMPD_declare_simd: 729 case OMPD_declare_variant: 730 case OMPD_begin_declare_variant: 731 case OMPD_end_declare_variant: 732 case OMPD_declare_target: 733 case OMPD_end_declare_target: 734 case OMPD_declare_reduction: 735 case OMPD_declare_mapper: 736 case OMPD_taskloop: 737 case OMPD_taskloop_simd: 738 case OMPD_master_taskloop: 739 case OMPD_master_taskloop_simd: 740 case OMPD_parallel_master_taskloop: 741 case OMPD_parallel_master_taskloop_simd: 742 case OMPD_requires: 743 case OMPD_unknown: 744 default: 745 break; 746 } 747 llvm_unreachable( 748 "Unknown programming model for OpenMP directive on NVPTX target."); 749 } 750 751 /// Check if the directive is loops based and has schedule clause at all or has 752 /// static scheduling. 753 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 754 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 755 isOpenMPLoopDirective(D.getDirectiveKind()) && 756 "Expected loop-based directive."); 757 return !D.hasClausesOfKind<OMPOrderedClause>() && 758 (!D.hasClausesOfKind<OMPScheduleClause>() || 759 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 760 [](const OMPScheduleClause *C) { 761 return C->getScheduleKind() == OMPC_SCHEDULE_static; 762 })); 763 } 764 765 /// Check for inner (nested) lightweight runtime construct, if any 766 static bool hasNestedLightweightDirective(ASTContext &Ctx, 767 const OMPExecutableDirective &D) { 768 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 769 const auto *CS = D.getInnermostCapturedStmt(); 770 const auto *Body = 771 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 772 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 773 774 if (const auto *NestedDir = 775 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 776 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 777 switch (D.getDirectiveKind()) { 778 case OMPD_target: 779 if (isOpenMPParallelDirective(DKind) && 780 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 781 hasStaticScheduling(*NestedDir)) 782 return true; 783 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 784 return true; 785 if (DKind == OMPD_parallel) { 786 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 787 /*IgnoreCaptured=*/true); 788 if (!Body) 789 return false; 790 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 791 if (const auto *NND = 792 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 793 DKind = NND->getDirectiveKind(); 794 if (isOpenMPWorksharingDirective(DKind) && 795 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 796 return true; 797 } 798 } else if (DKind == OMPD_teams) { 799 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 800 /*IgnoreCaptured=*/true); 801 if (!Body) 802 return false; 803 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 804 if (const auto *NND = 805 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 806 DKind = NND->getDirectiveKind(); 807 if (isOpenMPParallelDirective(DKind) && 808 isOpenMPWorksharingDirective(DKind) && 809 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 810 return true; 811 if (DKind == OMPD_parallel) { 812 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 813 /*IgnoreCaptured=*/true); 814 if (!Body) 815 return false; 816 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 817 if (const auto *NND = 818 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 819 DKind = NND->getDirectiveKind(); 820 if (isOpenMPWorksharingDirective(DKind) && 821 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 822 return true; 823 } 824 } 825 } 826 } 827 return false; 828 case OMPD_target_teams: 829 if (isOpenMPParallelDirective(DKind) && 830 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 831 hasStaticScheduling(*NestedDir)) 832 return true; 833 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 834 return true; 835 if (DKind == OMPD_parallel) { 836 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 837 /*IgnoreCaptured=*/true); 838 if (!Body) 839 return false; 840 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 841 if (const auto *NND = 842 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 843 DKind = NND->getDirectiveKind(); 844 if (isOpenMPWorksharingDirective(DKind) && 845 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 846 return true; 847 } 848 } 849 return false; 850 case OMPD_target_parallel: 851 if (DKind == OMPD_simd) 852 return true; 853 return isOpenMPWorksharingDirective(DKind) && 854 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 855 case OMPD_target_teams_distribute: 856 case OMPD_target_simd: 857 case OMPD_target_parallel_for: 858 case OMPD_target_parallel_for_simd: 859 case OMPD_target_teams_distribute_simd: 860 case OMPD_target_teams_distribute_parallel_for: 861 case OMPD_target_teams_distribute_parallel_for_simd: 862 case OMPD_parallel: 863 case OMPD_for: 864 case OMPD_parallel_for: 865 case OMPD_parallel_master: 866 case OMPD_parallel_sections: 867 case OMPD_for_simd: 868 case OMPD_parallel_for_simd: 869 case OMPD_cancel: 870 case OMPD_cancellation_point: 871 case OMPD_ordered: 872 case OMPD_threadprivate: 873 case OMPD_allocate: 874 case OMPD_task: 875 case OMPD_simd: 876 case OMPD_sections: 877 case OMPD_section: 878 case OMPD_single: 879 case OMPD_master: 880 case OMPD_critical: 881 case OMPD_taskyield: 882 case OMPD_barrier: 883 case OMPD_taskwait: 884 case OMPD_taskgroup: 885 case OMPD_atomic: 886 case OMPD_flush: 887 case OMPD_depobj: 888 case OMPD_scan: 889 case OMPD_teams: 890 case OMPD_target_data: 891 case OMPD_target_exit_data: 892 case OMPD_target_enter_data: 893 case OMPD_distribute: 894 case OMPD_distribute_simd: 895 case OMPD_distribute_parallel_for: 896 case OMPD_distribute_parallel_for_simd: 897 case OMPD_teams_distribute: 898 case OMPD_teams_distribute_simd: 899 case OMPD_teams_distribute_parallel_for: 900 case OMPD_teams_distribute_parallel_for_simd: 901 case OMPD_target_update: 902 case OMPD_declare_simd: 903 case OMPD_declare_variant: 904 case OMPD_begin_declare_variant: 905 case OMPD_end_declare_variant: 906 case OMPD_declare_target: 907 case OMPD_end_declare_target: 908 case OMPD_declare_reduction: 909 case OMPD_declare_mapper: 910 case OMPD_taskloop: 911 case OMPD_taskloop_simd: 912 case OMPD_master_taskloop: 913 case OMPD_master_taskloop_simd: 914 case OMPD_parallel_master_taskloop: 915 case OMPD_parallel_master_taskloop_simd: 916 case OMPD_requires: 917 case OMPD_unknown: 918 default: 919 llvm_unreachable("Unexpected directive."); 920 } 921 } 922 923 return false; 924 } 925 926 /// Checks if the construct supports lightweight runtime. It must be SPMD 927 /// construct + inner loop-based construct with static scheduling. 928 static bool supportsLightweightRuntime(ASTContext &Ctx, 929 const OMPExecutableDirective &D) { 930 if (!supportsSPMDExecutionMode(Ctx, D)) 931 return false; 932 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 933 switch (DirectiveKind) { 934 case OMPD_target: 935 case OMPD_target_teams: 936 case OMPD_target_parallel: 937 return hasNestedLightweightDirective(Ctx, D); 938 case OMPD_target_parallel_for: 939 case OMPD_target_parallel_for_simd: 940 case OMPD_target_teams_distribute_parallel_for: 941 case OMPD_target_teams_distribute_parallel_for_simd: 942 // (Last|First)-privates must be shared in parallel region. 943 return hasStaticScheduling(D); 944 case OMPD_target_simd: 945 case OMPD_target_teams_distribute_simd: 946 return true; 947 case OMPD_target_teams_distribute: 948 return false; 949 case OMPD_parallel: 950 case OMPD_for: 951 case OMPD_parallel_for: 952 case OMPD_parallel_master: 953 case OMPD_parallel_sections: 954 case OMPD_for_simd: 955 case OMPD_parallel_for_simd: 956 case OMPD_cancel: 957 case OMPD_cancellation_point: 958 case OMPD_ordered: 959 case OMPD_threadprivate: 960 case OMPD_allocate: 961 case OMPD_task: 962 case OMPD_simd: 963 case OMPD_sections: 964 case OMPD_section: 965 case OMPD_single: 966 case OMPD_master: 967 case OMPD_critical: 968 case OMPD_taskyield: 969 case OMPD_barrier: 970 case OMPD_taskwait: 971 case OMPD_taskgroup: 972 case OMPD_atomic: 973 case OMPD_flush: 974 case OMPD_depobj: 975 case OMPD_scan: 976 case OMPD_teams: 977 case OMPD_target_data: 978 case OMPD_target_exit_data: 979 case OMPD_target_enter_data: 980 case OMPD_distribute: 981 case OMPD_distribute_simd: 982 case OMPD_distribute_parallel_for: 983 case OMPD_distribute_parallel_for_simd: 984 case OMPD_teams_distribute: 985 case OMPD_teams_distribute_simd: 986 case OMPD_teams_distribute_parallel_for: 987 case OMPD_teams_distribute_parallel_for_simd: 988 case OMPD_target_update: 989 case OMPD_declare_simd: 990 case OMPD_declare_variant: 991 case OMPD_begin_declare_variant: 992 case OMPD_end_declare_variant: 993 case OMPD_declare_target: 994 case OMPD_end_declare_target: 995 case OMPD_declare_reduction: 996 case OMPD_declare_mapper: 997 case OMPD_taskloop: 998 case OMPD_taskloop_simd: 999 case OMPD_master_taskloop: 1000 case OMPD_master_taskloop_simd: 1001 case OMPD_parallel_master_taskloop: 1002 case OMPD_parallel_master_taskloop_simd: 1003 case OMPD_requires: 1004 case OMPD_unknown: 1005 default: 1006 break; 1007 } 1008 llvm_unreachable( 1009 "Unknown programming model for OpenMP directive on NVPTX target."); 1010 } 1011 1012 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1013 StringRef ParentName, 1014 llvm::Function *&OutlinedFn, 1015 llvm::Constant *&OutlinedFnID, 1016 bool IsOffloadEntry, 1017 const RegionCodeGenTy &CodeGen) { 1018 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1019 EntryFunctionState EST; 1020 WrapperFunctionsMap.clear(); 1021 1022 // Emit target region as a standalone region. 1023 class NVPTXPrePostActionTy : public PrePostActionTy { 1024 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1025 1026 public: 1027 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1028 : EST(EST) {} 1029 void Enter(CodeGenFunction &CGF) override { 1030 auto &RT = 1031 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1032 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1033 // Skip target region initialization. 1034 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1035 } 1036 void Exit(CodeGenFunction &CGF) override { 1037 auto &RT = 1038 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1039 RT.clearLocThreadIdInsertPt(CGF); 1040 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1041 } 1042 } Action(EST); 1043 CodeGen.setAction(Action); 1044 IsInTTDRegion = true; 1045 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1046 IsOffloadEntry, CodeGen); 1047 IsInTTDRegion = false; 1048 } 1049 1050 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1051 EntryFunctionState &EST, bool IsSPMD) { 1052 CGBuilderTy &Bld = CGF.Builder; 1053 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1054 IsInTargetMasterThreadRegion = IsSPMD; 1055 if (!IsSPMD) 1056 emitGenericVarsProlog(CGF, EST.Loc); 1057 } 1058 1059 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1060 EntryFunctionState &EST, 1061 bool IsSPMD) { 1062 if (!IsSPMD) 1063 emitGenericVarsEpilog(CGF); 1064 1065 CGBuilderTy &Bld = CGF.Builder; 1066 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1067 } 1068 1069 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1070 StringRef ParentName, 1071 llvm::Function *&OutlinedFn, 1072 llvm::Constant *&OutlinedFnID, 1073 bool IsOffloadEntry, 1074 const RegionCodeGenTy &CodeGen) { 1075 ExecutionRuntimeModesRAII ModeRAII( 1076 CurrentExecutionMode, RequiresFullRuntime, 1077 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1078 !supportsLightweightRuntime(CGM.getContext(), D)); 1079 EntryFunctionState EST; 1080 1081 // Emit target region as a standalone region. 1082 class NVPTXPrePostActionTy : public PrePostActionTy { 1083 CGOpenMPRuntimeGPU &RT; 1084 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1085 1086 public: 1087 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1088 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1089 : RT(RT), EST(EST) {} 1090 void Enter(CodeGenFunction &CGF) override { 1091 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1092 // Skip target region initialization. 1093 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1094 } 1095 void Exit(CodeGenFunction &CGF) override { 1096 RT.clearLocThreadIdInsertPt(CGF); 1097 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1098 } 1099 } Action(*this, EST); 1100 CodeGen.setAction(Action); 1101 IsInTTDRegion = true; 1102 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1103 IsOffloadEntry, CodeGen); 1104 IsInTTDRegion = false; 1105 } 1106 1107 // Create a unique global variable to indicate the execution mode of this target 1108 // region. The execution mode is either 'generic', or 'spmd' depending on the 1109 // target directive. This variable is picked up by the offload library to setup 1110 // the device appropriately before kernel launch. If the execution mode is 1111 // 'generic', the runtime reserves one warp for the master, otherwise, all 1112 // warps participate in parallel work. 1113 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1114 bool Mode) { 1115 auto *GVMode = new llvm::GlobalVariable( 1116 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1117 llvm::GlobalValue::WeakAnyLinkage, 1118 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1119 : OMP_TGT_EXEC_MODE_GENERIC), 1120 Twine(Name, "_exec_mode")); 1121 CGM.addCompilerUsedGlobal(GVMode); 1122 } 1123 1124 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1125 llvm::Constant *Addr, 1126 uint64_t Size, int32_t, 1127 llvm::GlobalValue::LinkageTypes) { 1128 // TODO: Add support for global variables on the device after declare target 1129 // support. 1130 if (!isa<llvm::Function>(Addr)) 1131 return; 1132 llvm::Module &M = CGM.getModule(); 1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1134 1135 // Get "nvvm.annotations" metadata node 1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1137 1138 llvm::Metadata *MDVals[] = { 1139 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1140 llvm::ConstantAsMetadata::get( 1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1142 // Append metadata to nvvm.annotations 1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1144 } 1145 1146 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1147 const OMPExecutableDirective &D, StringRef ParentName, 1148 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1149 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1150 if (!IsOffloadEntry) // Nothing to do. 1151 return; 1152 1153 assert(!ParentName.empty() && "Invalid target region parent name!"); 1154 1155 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1156 if (Mode) 1157 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1158 CodeGen); 1159 else 1160 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1161 CodeGen); 1162 1163 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1164 } 1165 1166 namespace { 1167 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1168 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1169 enum ModeFlagsTy : unsigned { 1170 /// Bit set to 1 when in SPMD mode. 1171 KMP_IDENT_SPMD_MODE = 0x01, 1172 /// Bit set to 1 when a simplified runtime is used. 1173 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1174 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1175 }; 1176 1177 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1178 static const ModeFlagsTy UndefinedMode = 1179 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1180 } // anonymous namespace 1181 1182 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1183 switch (getExecutionMode()) { 1184 case EM_SPMD: 1185 if (requiresFullRuntime()) 1186 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1187 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1188 case EM_NonSPMD: 1189 assert(requiresFullRuntime() && "Expected full runtime."); 1190 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1191 case EM_Unknown: 1192 return UndefinedMode; 1193 } 1194 llvm_unreachable("Unknown flags are requested."); 1195 } 1196 1197 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1198 : CGOpenMPRuntime(CGM, "_", "$") { 1199 if (!CGM.getLangOpts().OpenMPIsDevice) 1200 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1201 1202 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1203 if (CGM.getLangOpts().OpenMPTargetNewRuntime) { 1204 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1205 "__omp_rtl_debug_kind"); 1206 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1207 "__omp_rtl_assume_teams_oversubscription"); 1208 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1209 "__omp_rtl_assume_threads_oversubscription"); 1210 } 1211 } 1212 1213 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1214 ProcBindKind ProcBind, 1215 SourceLocation Loc) { 1216 // Do nothing in case of SPMD mode and L0 parallel. 1217 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1218 return; 1219 1220 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1221 } 1222 1223 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1224 llvm::Value *NumThreads, 1225 SourceLocation Loc) { 1226 // Do nothing in case of SPMD mode and L0 parallel. 1227 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1228 return; 1229 1230 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1231 } 1232 1233 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1234 const Expr *NumTeams, 1235 const Expr *ThreadLimit, 1236 SourceLocation Loc) {} 1237 1238 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1239 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1240 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1241 // Emit target region as a standalone region. 1242 class NVPTXPrePostActionTy : public PrePostActionTy { 1243 bool &IsInParallelRegion; 1244 bool PrevIsInParallelRegion; 1245 1246 public: 1247 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1248 : IsInParallelRegion(IsInParallelRegion) {} 1249 void Enter(CodeGenFunction &CGF) override { 1250 PrevIsInParallelRegion = IsInParallelRegion; 1251 IsInParallelRegion = true; 1252 } 1253 void Exit(CodeGenFunction &CGF) override { 1254 IsInParallelRegion = PrevIsInParallelRegion; 1255 } 1256 } Action(IsInParallelRegion); 1257 CodeGen.setAction(Action); 1258 bool PrevIsInTTDRegion = IsInTTDRegion; 1259 IsInTTDRegion = false; 1260 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1261 IsInTargetMasterThreadRegion = false; 1262 auto *OutlinedFun = 1263 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1264 D, ThreadIDVar, InnermostKind, CodeGen)); 1265 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1266 IsInTTDRegion = PrevIsInTTDRegion; 1267 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1268 !IsInParallelRegion) { 1269 llvm::Function *WrapperFun = 1270 createParallelDataSharingWrapper(OutlinedFun, D); 1271 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1272 } 1273 1274 return OutlinedFun; 1275 } 1276 1277 /// Get list of lastprivate variables from the teams distribute ... or 1278 /// teams {distribute ...} directives. 1279 static void 1280 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1281 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1282 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1283 "expected teams directive."); 1284 const OMPExecutableDirective *Dir = &D; 1285 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1286 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1287 Ctx, 1288 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1289 /*IgnoreCaptured=*/true))) { 1290 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1291 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1292 Dir = nullptr; 1293 } 1294 } 1295 if (!Dir) 1296 return; 1297 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1298 for (const Expr *E : C->getVarRefs()) 1299 Vars.push_back(getPrivateItem(E)); 1300 } 1301 } 1302 1303 /// Get list of reduction variables from the teams ... directives. 1304 static void 1305 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1306 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1307 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1308 "expected teams directive."); 1309 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1310 for (const Expr *E : C->privates()) 1311 Vars.push_back(getPrivateItem(E)); 1312 } 1313 } 1314 1315 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1316 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1317 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1318 SourceLocation Loc = D.getBeginLoc(); 1319 1320 const RecordDecl *GlobalizedRD = nullptr; 1321 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1322 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1323 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1324 // Globalize team reductions variable unconditionally in all modes. 1325 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1326 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1327 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1328 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1329 if (!LastPrivatesReductions.empty()) { 1330 GlobalizedRD = ::buildRecordForGlobalizedVars( 1331 CGM.getContext(), llvm::None, LastPrivatesReductions, 1332 MappedDeclsFields, WarpSize); 1333 } 1334 } else if (!LastPrivatesReductions.empty()) { 1335 assert(!TeamAndReductions.first && 1336 "Previous team declaration is not expected."); 1337 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1338 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1339 } 1340 1341 // Emit target region as a standalone region. 1342 class NVPTXPrePostActionTy : public PrePostActionTy { 1343 SourceLocation &Loc; 1344 const RecordDecl *GlobalizedRD; 1345 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1346 &MappedDeclsFields; 1347 1348 public: 1349 NVPTXPrePostActionTy( 1350 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1351 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1352 &MappedDeclsFields) 1353 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1354 MappedDeclsFields(MappedDeclsFields) {} 1355 void Enter(CodeGenFunction &CGF) override { 1356 auto &Rt = 1357 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1358 if (GlobalizedRD) { 1359 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1360 I->getSecond().MappedParams = 1361 std::make_unique<CodeGenFunction::OMPMapVars>(); 1362 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1363 for (const auto &Pair : MappedDeclsFields) { 1364 assert(Pair.getFirst()->isCanonicalDecl() && 1365 "Expected canonical declaration"); 1366 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1367 } 1368 } 1369 Rt.emitGenericVarsProlog(CGF, Loc); 1370 } 1371 void Exit(CodeGenFunction &CGF) override { 1372 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1373 .emitGenericVarsEpilog(CGF); 1374 } 1375 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1376 CodeGen.setAction(Action); 1377 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1378 D, ThreadIDVar, InnermostKind, CodeGen); 1379 1380 return OutlinedFun; 1381 } 1382 1383 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1384 SourceLocation Loc, 1385 bool WithSPMDCheck) { 1386 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1387 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1388 return; 1389 1390 CGBuilderTy &Bld = CGF.Builder; 1391 1392 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1393 if (I == FunctionGlobalizedDecls.end()) 1394 return; 1395 1396 for (auto &Rec : I->getSecond().LocalVarData) { 1397 const auto *VD = cast<VarDecl>(Rec.first); 1398 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1399 QualType VarTy = VD->getType(); 1400 1401 // Get the local allocation of a firstprivate variable before sharing 1402 llvm::Value *ParValue; 1403 if (EscapedParam) { 1404 LValue ParLVal = 1405 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1406 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1407 } 1408 1409 // Allocate space for the variable to be globalized 1410 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1411 llvm::Instruction *VoidPtr = 1412 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1413 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1414 AllocArgs, VD->getName()); 1415 1416 // Cast the void pointer and get the address of the globalized variable. 1417 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1418 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1419 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1420 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1421 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1422 Rec.second.GlobalizedVal = VoidPtr; 1423 1424 // Assign the local allocation to the newly globalized location. 1425 if (EscapedParam) { 1426 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1427 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1428 } 1429 if (auto *DI = CGF.getDebugInfo()) 1430 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1431 } 1432 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1433 // Use actual memory size of the VLA object including the padding 1434 // for alignment purposes. 1435 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1436 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1437 Size = Bld.CreateNUWAdd( 1438 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1439 llvm::Value *AlignVal = 1440 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1441 1442 Size = Bld.CreateUDiv(Size, AlignVal); 1443 Size = Bld.CreateNUWMul(Size, AlignVal); 1444 1445 // Allocate space for this VLA object to be globalized. 1446 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1447 llvm::Instruction *VoidPtr = 1448 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1449 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1450 AllocArgs, VD->getName()); 1451 1452 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1453 std::pair<llvm::Value *, llvm::Value *>( 1454 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1455 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1456 CGM.getContext().getDeclAlign(VD), 1457 AlignmentSource::Decl); 1458 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1459 Base.getAddress(CGF)); 1460 } 1461 I->getSecond().MappedParams->apply(CGF); 1462 } 1463 1464 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1465 bool WithSPMDCheck) { 1466 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1467 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1468 return; 1469 1470 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1471 if (I != FunctionGlobalizedDecls.end()) { 1472 // Deallocate the memory for each globalized VLA object 1473 for (auto AddrSizePair : 1474 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1475 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1476 CGM.getModule(), OMPRTL___kmpc_free_shared), 1477 {AddrSizePair.first, AddrSizePair.second}); 1478 } 1479 // Deallocate the memory for each globalized value 1480 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1481 const auto *VD = cast<VarDecl>(Rec.first); 1482 I->getSecond().MappedParams->restore(CGF); 1483 1484 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1485 CGF.getTypeSize(VD->getType())}; 1486 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1487 CGM.getModule(), OMPRTL___kmpc_free_shared), 1488 FreeArgs); 1489 } 1490 } 1491 } 1492 1493 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1494 const OMPExecutableDirective &D, 1495 SourceLocation Loc, 1496 llvm::Function *OutlinedFn, 1497 ArrayRef<llvm::Value *> CapturedVars) { 1498 if (!CGF.HaveInsertPoint()) 1499 return; 1500 1501 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1502 /*Name=*/".zero.addr"); 1503 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1504 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1505 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1506 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1507 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1508 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1509 } 1510 1511 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1512 SourceLocation Loc, 1513 llvm::Function *OutlinedFn, 1514 ArrayRef<llvm::Value *> CapturedVars, 1515 const Expr *IfCond) { 1516 if (!CGF.HaveInsertPoint()) 1517 return; 1518 1519 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1520 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1521 CGBuilderTy &Bld = CGF.Builder; 1522 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1523 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1524 if (WFn) 1525 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1526 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1527 1528 // Create a private scope that will globalize the arguments 1529 // passed from the outside of the target region. 1530 // TODO: Is that needed? 1531 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1532 1533 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1534 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1535 "captured_vars_addrs"); 1536 // There's something to share. 1537 if (!CapturedVars.empty()) { 1538 // Prepare for parallel region. Indicate the outlined function. 1539 ASTContext &Ctx = CGF.getContext(); 1540 unsigned Idx = 0; 1541 for (llvm::Value *V : CapturedVars) { 1542 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1543 llvm::Value *PtrV; 1544 if (V->getType()->isIntegerTy()) 1545 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1546 else 1547 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1548 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1549 Ctx.getPointerType(Ctx.VoidPtrTy)); 1550 ++Idx; 1551 } 1552 } 1553 1554 llvm::Value *IfCondVal = nullptr; 1555 if (IfCond) 1556 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1557 /* isSigned */ false); 1558 else 1559 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1560 1561 assert(IfCondVal && "Expected a value"); 1562 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1563 llvm::Value *Args[] = { 1564 RTLoc, 1565 getThreadID(CGF, Loc), 1566 IfCondVal, 1567 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1568 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1569 FnPtr, 1570 ID, 1571 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1572 CGF.VoidPtrPtrTy), 1573 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1574 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1575 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1576 Args); 1577 }; 1578 1579 RegionCodeGenTy RCG(ParallelGen); 1580 RCG(CGF); 1581 } 1582 1583 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1584 // Always emit simple barriers! 1585 if (!CGF.HaveInsertPoint()) 1586 return; 1587 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1588 // This function does not use parameters, so we can emit just default values. 1589 llvm::Value *Args[] = { 1590 llvm::ConstantPointerNull::get( 1591 cast<llvm::PointerType>(getIdentTyPointerTy())), 1592 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1593 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1594 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1595 Args); 1596 } 1597 1598 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1599 SourceLocation Loc, 1600 OpenMPDirectiveKind Kind, bool, 1601 bool) { 1602 // Always emit simple barriers! 1603 if (!CGF.HaveInsertPoint()) 1604 return; 1605 // Build call __kmpc_cancel_barrier(loc, thread_id); 1606 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1607 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1608 getThreadID(CGF, Loc)}; 1609 1610 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1611 CGM.getModule(), OMPRTL___kmpc_barrier), 1612 Args); 1613 } 1614 1615 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1616 CodeGenFunction &CGF, StringRef CriticalName, 1617 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1618 const Expr *Hint) { 1619 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1620 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1621 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1622 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1623 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1624 1625 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1626 1627 // Get the mask of active threads in the warp. 1628 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1629 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1630 // Fetch team-local id of the thread. 1631 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1632 1633 // Get the width of the team. 1634 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1635 1636 // Initialize the counter variable for the loop. 1637 QualType Int32Ty = 1638 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1639 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1640 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1641 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1642 /*isInit=*/true); 1643 1644 // Block checks if loop counter exceeds upper bound. 1645 CGF.EmitBlock(LoopBB); 1646 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1647 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1648 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1649 1650 // Block tests which single thread should execute region, and which threads 1651 // should go straight to synchronisation point. 1652 CGF.EmitBlock(TestBB); 1653 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1654 llvm::Value *CmpThreadToCounter = 1655 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1656 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1657 1658 // Block emits the body of the critical region. 1659 CGF.EmitBlock(BodyBB); 1660 1661 // Output the critical statement. 1662 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1663 Hint); 1664 1665 // After the body surrounded by the critical region, the single executing 1666 // thread will jump to the synchronisation point. 1667 // Block waits for all threads in current team to finish then increments the 1668 // counter variable and returns to the loop. 1669 CGF.EmitBlock(SyncBB); 1670 // Reconverge active threads in the warp. 1671 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1672 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1673 Mask); 1674 1675 llvm::Value *IncCounterVal = 1676 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1677 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1678 CGF.EmitBranch(LoopBB); 1679 1680 // Block that is reached when all threads in the team complete the region. 1681 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1682 } 1683 1684 /// Cast value to the specified type. 1685 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1686 QualType ValTy, QualType CastTy, 1687 SourceLocation Loc) { 1688 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1689 "Cast type must sized."); 1690 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1691 "Val type must sized."); 1692 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1693 if (ValTy == CastTy) 1694 return Val; 1695 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1696 CGF.getContext().getTypeSizeInChars(CastTy)) 1697 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1698 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1699 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1700 CastTy->hasSignedIntegerRepresentation()); 1701 Address CastItem = CGF.CreateMemTemp(CastTy); 1702 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1703 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1704 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1705 LValueBaseInfo(AlignmentSource::Type), 1706 TBAAAccessInfo()); 1707 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1708 LValueBaseInfo(AlignmentSource::Type), 1709 TBAAAccessInfo()); 1710 } 1711 1712 /// This function creates calls to one of two shuffle functions to copy 1713 /// variables between lanes in a warp. 1714 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1715 llvm::Value *Elem, 1716 QualType ElemType, 1717 llvm::Value *Offset, 1718 SourceLocation Loc) { 1719 CodeGenModule &CGM = CGF.CGM; 1720 CGBuilderTy &Bld = CGF.Builder; 1721 CGOpenMPRuntimeGPU &RT = 1722 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1723 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1724 1725 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1726 assert(Size.getQuantity() <= 8 && 1727 "Unsupported bitwidth in shuffle instruction."); 1728 1729 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1730 ? OMPRTL___kmpc_shuffle_int32 1731 : OMPRTL___kmpc_shuffle_int64; 1732 1733 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1734 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1735 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1736 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1737 llvm::Value *WarpSize = 1738 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1739 1740 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1741 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1742 {ElemCast, Offset, WarpSize}); 1743 1744 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1745 } 1746 1747 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1748 Address DestAddr, QualType ElemType, 1749 llvm::Value *Offset, SourceLocation Loc) { 1750 CGBuilderTy &Bld = CGF.Builder; 1751 1752 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1753 // Create the loop over the big sized data. 1754 // ptr = (void*)Elem; 1755 // ptrEnd = (void*) Elem + 1; 1756 // Step = 8; 1757 // while (ptr + Step < ptrEnd) 1758 // shuffle((int64_t)*ptr); 1759 // Step = 4; 1760 // while (ptr + Step < ptrEnd) 1761 // shuffle((int32_t)*ptr); 1762 // ... 1763 Address ElemPtr = DestAddr; 1764 Address Ptr = SrcAddr; 1765 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1766 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1767 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1768 if (Size < CharUnits::fromQuantity(IntSize)) 1769 continue; 1770 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1771 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1772 /*Signed=*/1); 1773 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1774 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1775 ElemPtr = 1776 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1777 if (Size.getQuantity() / IntSize > 1) { 1778 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1779 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1780 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1781 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1782 CGF.EmitBlock(PreCondBB); 1783 llvm::PHINode *PhiSrc = 1784 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1785 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1786 llvm::PHINode *PhiDest = 1787 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1788 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1789 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1790 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1791 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1792 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1793 Ptr.getPointer(), CGF.VoidPtrTy)); 1794 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1795 ThenBB, ExitBB); 1796 CGF.EmitBlock(ThenBB); 1797 llvm::Value *Res = createRuntimeShuffleFunction( 1798 CGF, 1799 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1800 LValueBaseInfo(AlignmentSource::Type), 1801 TBAAAccessInfo()), 1802 IntType, Offset, Loc); 1803 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1804 LValueBaseInfo(AlignmentSource::Type), 1805 TBAAAccessInfo()); 1806 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1807 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1808 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1809 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1810 CGF.EmitBranch(PreCondBB); 1811 CGF.EmitBlock(ExitBB); 1812 } else { 1813 llvm::Value *Res = createRuntimeShuffleFunction( 1814 CGF, 1815 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1816 LValueBaseInfo(AlignmentSource::Type), 1817 TBAAAccessInfo()), 1818 IntType, Offset, Loc); 1819 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1820 LValueBaseInfo(AlignmentSource::Type), 1821 TBAAAccessInfo()); 1822 Ptr = Bld.CreateConstGEP(Ptr, 1); 1823 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1824 } 1825 Size = Size % IntSize; 1826 } 1827 } 1828 1829 namespace { 1830 enum CopyAction : unsigned { 1831 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1832 // the warp using shuffle instructions. 1833 RemoteLaneToThread, 1834 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1835 ThreadCopy, 1836 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1837 ThreadToScratchpad, 1838 // ScratchpadToThread: Copy from a scratchpad array in global memory 1839 // containing team-reduced data to a thread's stack. 1840 ScratchpadToThread, 1841 }; 1842 } // namespace 1843 1844 struct CopyOptionsTy { 1845 llvm::Value *RemoteLaneOffset; 1846 llvm::Value *ScratchpadIndex; 1847 llvm::Value *ScratchpadWidth; 1848 }; 1849 1850 /// Emit instructions to copy a Reduce list, which contains partially 1851 /// aggregated values, in the specified direction. 1852 static void emitReductionListCopy( 1853 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1854 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1855 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1856 1857 CodeGenModule &CGM = CGF.CGM; 1858 ASTContext &C = CGM.getContext(); 1859 CGBuilderTy &Bld = CGF.Builder; 1860 1861 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1862 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1863 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1864 1865 // Iterates, element-by-element, through the source Reduce list and 1866 // make a copy. 1867 unsigned Idx = 0; 1868 unsigned Size = Privates.size(); 1869 for (const Expr *Private : Privates) { 1870 Address SrcElementAddr = Address::invalid(); 1871 Address DestElementAddr = Address::invalid(); 1872 Address DestElementPtrAddr = Address::invalid(); 1873 // Should we shuffle in an element from a remote lane? 1874 bool ShuffleInElement = false; 1875 // Set to true to update the pointer in the dest Reduce list to a 1876 // newly created element. 1877 bool UpdateDestListPtr = false; 1878 // Increment the src or dest pointer to the scratchpad, for each 1879 // new element. 1880 bool IncrScratchpadSrc = false; 1881 bool IncrScratchpadDest = false; 1882 1883 switch (Action) { 1884 case RemoteLaneToThread: { 1885 // Step 1.1: Get the address for the src element in the Reduce list. 1886 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1887 SrcElementAddr = CGF.EmitLoadOfPointer( 1888 SrcElementPtrAddr, 1889 C.getPointerType(Private->getType())->castAs<PointerType>()); 1890 1891 // Step 1.2: Create a temporary to store the element in the destination 1892 // Reduce list. 1893 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1894 DestElementAddr = 1895 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1896 ShuffleInElement = true; 1897 UpdateDestListPtr = true; 1898 break; 1899 } 1900 case ThreadCopy: { 1901 // Step 1.1: Get the address for the src element in the Reduce list. 1902 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1903 SrcElementAddr = CGF.EmitLoadOfPointer( 1904 SrcElementPtrAddr, 1905 C.getPointerType(Private->getType())->castAs<PointerType>()); 1906 1907 // Step 1.2: Get the address for dest element. The destination 1908 // element has already been created on the thread's stack. 1909 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1910 DestElementAddr = CGF.EmitLoadOfPointer( 1911 DestElementPtrAddr, 1912 C.getPointerType(Private->getType())->castAs<PointerType>()); 1913 break; 1914 } 1915 case ThreadToScratchpad: { 1916 // Step 1.1: Get the address for the src element in the Reduce list. 1917 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1918 SrcElementAddr = CGF.EmitLoadOfPointer( 1919 SrcElementPtrAddr, 1920 C.getPointerType(Private->getType())->castAs<PointerType>()); 1921 1922 // Step 1.2: Get the address for dest element: 1923 // address = base + index * ElementSizeInChars. 1924 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1925 llvm::Value *CurrentOffset = 1926 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1927 llvm::Value *ScratchPadElemAbsolutePtrVal = 1928 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1929 ScratchPadElemAbsolutePtrVal = 1930 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1931 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1932 C.getTypeAlignInChars(Private->getType())); 1933 IncrScratchpadDest = true; 1934 break; 1935 } 1936 case ScratchpadToThread: { 1937 // Step 1.1: Get the address for the src element in the scratchpad. 1938 // address = base + index * ElementSizeInChars. 1939 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1940 llvm::Value *CurrentOffset = 1941 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1942 llvm::Value *ScratchPadElemAbsolutePtrVal = 1943 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1944 ScratchPadElemAbsolutePtrVal = 1945 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1946 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1947 C.getTypeAlignInChars(Private->getType())); 1948 IncrScratchpadSrc = true; 1949 1950 // Step 1.2: Create a temporary to store the element in the destination 1951 // Reduce list. 1952 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1953 DestElementAddr = 1954 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1955 UpdateDestListPtr = true; 1956 break; 1957 } 1958 } 1959 1960 // Regardless of src and dest of copy, we emit the load of src 1961 // element as this is required in all directions 1962 SrcElementAddr = Bld.CreateElementBitCast( 1963 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1964 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1965 SrcElementAddr.getElementType()); 1966 1967 // Now that all active lanes have read the element in the 1968 // Reduce list, shuffle over the value from the remote lane. 1969 if (ShuffleInElement) { 1970 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1971 RemoteLaneOffset, Private->getExprLoc()); 1972 } else { 1973 switch (CGF.getEvaluationKind(Private->getType())) { 1974 case TEK_Scalar: { 1975 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1976 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1977 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1978 TBAAAccessInfo()); 1979 // Store the source element value to the dest element address. 1980 CGF.EmitStoreOfScalar( 1981 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1982 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1983 break; 1984 } 1985 case TEK_Complex: { 1986 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1987 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1988 Private->getExprLoc()); 1989 CGF.EmitStoreOfComplex( 1990 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1991 /*isInit=*/false); 1992 break; 1993 } 1994 case TEK_Aggregate: 1995 CGF.EmitAggregateCopy( 1996 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1997 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1998 Private->getType(), AggValueSlot::DoesNotOverlap); 1999 break; 2000 } 2001 } 2002 2003 // Step 3.1: Modify reference in dest Reduce list as needed. 2004 // Modifying the reference in Reduce list to point to the newly 2005 // created element. The element is live in the current function 2006 // scope and that of functions it invokes (i.e., reduce_function). 2007 // RemoteReduceData[i] = (void*)&RemoteElem 2008 if (UpdateDestListPtr) { 2009 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2010 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2011 DestElementPtrAddr, /*Volatile=*/false, 2012 C.VoidPtrTy); 2013 } 2014 2015 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2016 // address of the next element in scratchpad memory, unless we're currently 2017 // processing the last one. Memory alignment is also taken care of here. 2018 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2019 llvm::Value *ScratchpadBasePtr = 2020 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2021 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2022 ScratchpadBasePtr = Bld.CreateNUWAdd( 2023 ScratchpadBasePtr, 2024 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2025 2026 // Take care of global memory alignment for performance 2027 ScratchpadBasePtr = Bld.CreateNUWSub( 2028 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2029 ScratchpadBasePtr = Bld.CreateUDiv( 2030 ScratchpadBasePtr, 2031 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2032 ScratchpadBasePtr = Bld.CreateNUWAdd( 2033 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2034 ScratchpadBasePtr = Bld.CreateNUWMul( 2035 ScratchpadBasePtr, 2036 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2037 2038 if (IncrScratchpadDest) 2039 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2040 else /* IncrScratchpadSrc = true */ 2041 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2042 } 2043 2044 ++Idx; 2045 } 2046 } 2047 2048 /// This function emits a helper that gathers Reduce lists from the first 2049 /// lane of every active warp to lanes in the first warp. 2050 /// 2051 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2052 /// shared smem[warp_size]; 2053 /// For all data entries D in reduce_data: 2054 /// sync 2055 /// If (I am the first lane in each warp) 2056 /// Copy my local D to smem[warp_id] 2057 /// sync 2058 /// if (I am the first warp) 2059 /// Copy smem[thread_id] to my local D 2060 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2061 ArrayRef<const Expr *> Privates, 2062 QualType ReductionArrayTy, 2063 SourceLocation Loc) { 2064 ASTContext &C = CGM.getContext(); 2065 llvm::Module &M = CGM.getModule(); 2066 2067 // ReduceList: thread local Reduce list. 2068 // At the stage of the computation when this function is called, partially 2069 // aggregated values reside in the first lane of every active warp. 2070 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2071 C.VoidPtrTy, ImplicitParamDecl::Other); 2072 // NumWarps: number of warps active in the parallel region. This could 2073 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2074 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2075 C.getIntTypeForBitwidth(32, /* Signed */ true), 2076 ImplicitParamDecl::Other); 2077 FunctionArgList Args; 2078 Args.push_back(&ReduceListArg); 2079 Args.push_back(&NumWarpsArg); 2080 2081 const CGFunctionInfo &CGFI = 2082 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2083 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2084 llvm::GlobalValue::InternalLinkage, 2085 "_omp_reduction_inter_warp_copy_func", &M); 2086 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2087 Fn->setDoesNotRecurse(); 2088 CodeGenFunction CGF(CGM); 2089 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2090 2091 CGBuilderTy &Bld = CGF.Builder; 2092 2093 // This array is used as a medium to transfer, one reduce element at a time, 2094 // the data from the first lane of every warp to lanes in the first warp 2095 // in order to perform the final step of a reduction in a parallel region 2096 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2097 // for reduced latency, as well as to have a distinct copy for concurrently 2098 // executing target regions. The array is declared with common linkage so 2099 // as to be shared across compilation units. 2100 StringRef TransferMediumName = 2101 "__openmp_nvptx_data_transfer_temporary_storage"; 2102 llvm::GlobalVariable *TransferMedium = 2103 M.getGlobalVariable(TransferMediumName); 2104 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2105 if (!TransferMedium) { 2106 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2107 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2108 TransferMedium = new llvm::GlobalVariable( 2109 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2110 llvm::UndefValue::get(Ty), TransferMediumName, 2111 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2112 SharedAddressSpace); 2113 CGM.addCompilerUsedGlobal(TransferMedium); 2114 } 2115 2116 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2117 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2118 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2119 // nvptx_lane_id = nvptx_id % warpsize 2120 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2121 // nvptx_warp_id = nvptx_id / warpsize 2122 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2123 2124 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2125 Address LocalReduceList( 2126 Bld.CreatePointerBitCastOrAddrSpaceCast( 2127 CGF.EmitLoadOfScalar( 2128 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2129 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2130 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2131 CGF.getPointerAlign()); 2132 2133 unsigned Idx = 0; 2134 for (const Expr *Private : Privates) { 2135 // 2136 // Warp master copies reduce element to transfer medium in __shared__ 2137 // memory. 2138 // 2139 unsigned RealTySize = 2140 C.getTypeSizeInChars(Private->getType()) 2141 .alignTo(C.getTypeAlignInChars(Private->getType())) 2142 .getQuantity(); 2143 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2144 unsigned NumIters = RealTySize / TySize; 2145 if (NumIters == 0) 2146 continue; 2147 QualType CType = C.getIntTypeForBitwidth( 2148 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2149 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2150 CharUnits Align = CharUnits::fromQuantity(TySize); 2151 llvm::Value *Cnt = nullptr; 2152 Address CntAddr = Address::invalid(); 2153 llvm::BasicBlock *PrecondBB = nullptr; 2154 llvm::BasicBlock *ExitBB = nullptr; 2155 if (NumIters > 1) { 2156 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2157 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2158 /*Volatile=*/false, C.IntTy); 2159 PrecondBB = CGF.createBasicBlock("precond"); 2160 ExitBB = CGF.createBasicBlock("exit"); 2161 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2162 // There is no need to emit line number for unconditional branch. 2163 (void)ApplyDebugLocation::CreateEmpty(CGF); 2164 CGF.EmitBlock(PrecondBB); 2165 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2166 llvm::Value *Cmp = 2167 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2168 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2169 CGF.EmitBlock(BodyBB); 2170 } 2171 // kmpc_barrier. 2172 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2173 /*EmitChecks=*/false, 2174 /*ForceSimpleCall=*/true); 2175 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2176 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2177 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2178 2179 // if (lane_id == 0) 2180 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2181 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2182 CGF.EmitBlock(ThenBB); 2183 2184 // Reduce element = LocalReduceList[i] 2185 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2186 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2187 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2188 // elemptr = ((CopyType*)(elemptrptr)) + I 2189 Address ElemPtr = Address(ElemPtrPtr, Align); 2190 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2191 if (NumIters > 1) { 2192 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2193 ElemPtr.getPointer(), Cnt), 2194 ElemPtr.getAlignment()); 2195 } 2196 2197 // Get pointer to location in transfer medium. 2198 // MediumPtr = &medium[warp_id] 2199 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2200 TransferMedium->getValueType(), TransferMedium, 2201 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2202 Address MediumPtr(MediumPtrVal, Align); 2203 // Casting to actual data type. 2204 // MediumPtr = (CopyType*)MediumPtrAddr; 2205 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2206 2207 // elem = *elemptr 2208 //*MediumPtr = elem 2209 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2210 ElemPtr, /*Volatile=*/false, CType, Loc, 2211 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2212 // Store the source element value to the dest element address. 2213 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2214 LValueBaseInfo(AlignmentSource::Type), 2215 TBAAAccessInfo()); 2216 2217 Bld.CreateBr(MergeBB); 2218 2219 CGF.EmitBlock(ElseBB); 2220 Bld.CreateBr(MergeBB); 2221 2222 CGF.EmitBlock(MergeBB); 2223 2224 // kmpc_barrier. 2225 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2226 /*EmitChecks=*/false, 2227 /*ForceSimpleCall=*/true); 2228 2229 // 2230 // Warp 0 copies reduce element from transfer medium. 2231 // 2232 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2233 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2234 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2235 2236 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2237 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2238 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2239 2240 // Up to 32 threads in warp 0 are active. 2241 llvm::Value *IsActiveThread = 2242 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2243 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2244 2245 CGF.EmitBlock(W0ThenBB); 2246 2247 // SrcMediumPtr = &medium[tid] 2248 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2249 TransferMedium->getValueType(), TransferMedium, 2250 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2251 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2252 // SrcMediumVal = *SrcMediumPtr; 2253 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2254 2255 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2256 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2257 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2258 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2259 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2260 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2261 if (NumIters > 1) { 2262 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2263 TargetElemPtr.getPointer(), Cnt), 2264 TargetElemPtr.getAlignment()); 2265 } 2266 2267 // *TargetElemPtr = SrcMediumVal; 2268 llvm::Value *SrcMediumValue = 2269 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2270 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2271 CType); 2272 Bld.CreateBr(W0MergeBB); 2273 2274 CGF.EmitBlock(W0ElseBB); 2275 Bld.CreateBr(W0MergeBB); 2276 2277 CGF.EmitBlock(W0MergeBB); 2278 2279 if (NumIters > 1) { 2280 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2281 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2282 CGF.EmitBranch(PrecondBB); 2283 (void)ApplyDebugLocation::CreateEmpty(CGF); 2284 CGF.EmitBlock(ExitBB); 2285 } 2286 RealTySize %= TySize; 2287 } 2288 ++Idx; 2289 } 2290 2291 CGF.FinishFunction(); 2292 return Fn; 2293 } 2294 2295 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2296 /// in the same warp. It uses shuffle instructions to copy over data from 2297 /// a remote lane's stack. The reduction algorithm performed is specified 2298 /// by the fourth parameter. 2299 /// 2300 /// Algorithm Versions. 2301 /// Full Warp Reduce (argument value 0): 2302 /// This algorithm assumes that all 32 lanes are active and gathers 2303 /// data from these 32 lanes, producing a single resultant value. 2304 /// Contiguous Partial Warp Reduce (argument value 1): 2305 /// This algorithm assumes that only a *contiguous* subset of lanes 2306 /// are active. This happens for the last warp in a parallel region 2307 /// when the user specified num_threads is not an integer multiple of 2308 /// 32. This contiguous subset always starts with the zeroth lane. 2309 /// Partial Warp Reduce (argument value 2): 2310 /// This algorithm gathers data from any number of lanes at any position. 2311 /// All reduced values are stored in the lowest possible lane. The set 2312 /// of problems every algorithm addresses is a super set of those 2313 /// addressable by algorithms with a lower version number. Overhead 2314 /// increases as algorithm version increases. 2315 /// 2316 /// Terminology 2317 /// Reduce element: 2318 /// Reduce element refers to the individual data field with primitive 2319 /// data types to be combined and reduced across threads. 2320 /// Reduce list: 2321 /// Reduce list refers to a collection of local, thread-private 2322 /// reduce elements. 2323 /// Remote Reduce list: 2324 /// Remote Reduce list refers to a collection of remote (relative to 2325 /// the current thread) reduce elements. 2326 /// 2327 /// We distinguish between three states of threads that are important to 2328 /// the implementation of this function. 2329 /// Alive threads: 2330 /// Threads in a warp executing the SIMT instruction, as distinguished from 2331 /// threads that are inactive due to divergent control flow. 2332 /// Active threads: 2333 /// The minimal set of threads that has to be alive upon entry to this 2334 /// function. The computation is correct iff active threads are alive. 2335 /// Some threads are alive but they are not active because they do not 2336 /// contribute to the computation in any useful manner. Turning them off 2337 /// may introduce control flow overheads without any tangible benefits. 2338 /// Effective threads: 2339 /// In order to comply with the argument requirements of the shuffle 2340 /// function, we must keep all lanes holding data alive. But at most 2341 /// half of them perform value aggregation; we refer to this half of 2342 /// threads as effective. The other half is simply handing off their 2343 /// data. 2344 /// 2345 /// Procedure 2346 /// Value shuffle: 2347 /// In this step active threads transfer data from higher lane positions 2348 /// in the warp to lower lane positions, creating Remote Reduce list. 2349 /// Value aggregation: 2350 /// In this step, effective threads combine their thread local Reduce list 2351 /// with Remote Reduce list and store the result in the thread local 2352 /// Reduce list. 2353 /// Value copy: 2354 /// In this step, we deal with the assumption made by algorithm 2 2355 /// (i.e. contiguity assumption). When we have an odd number of lanes 2356 /// active, say 2k+1, only k threads will be effective and therefore k 2357 /// new values will be produced. However, the Reduce list owned by the 2358 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2359 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2360 /// that the contiguity assumption still holds. 2361 static llvm::Function *emitShuffleAndReduceFunction( 2362 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2363 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2364 ASTContext &C = CGM.getContext(); 2365 2366 // Thread local Reduce list used to host the values of data to be reduced. 2367 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2368 C.VoidPtrTy, ImplicitParamDecl::Other); 2369 // Current lane id; could be logical. 2370 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2371 ImplicitParamDecl::Other); 2372 // Offset of the remote source lane relative to the current lane. 2373 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2374 C.ShortTy, ImplicitParamDecl::Other); 2375 // Algorithm version. This is expected to be known at compile time. 2376 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2377 C.ShortTy, ImplicitParamDecl::Other); 2378 FunctionArgList Args; 2379 Args.push_back(&ReduceListArg); 2380 Args.push_back(&LaneIDArg); 2381 Args.push_back(&RemoteLaneOffsetArg); 2382 Args.push_back(&AlgoVerArg); 2383 2384 const CGFunctionInfo &CGFI = 2385 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2386 auto *Fn = llvm::Function::Create( 2387 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2388 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2389 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2390 Fn->setDoesNotRecurse(); 2391 2392 CodeGenFunction CGF(CGM); 2393 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2394 2395 CGBuilderTy &Bld = CGF.Builder; 2396 2397 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2398 Address LocalReduceList( 2399 Bld.CreatePointerBitCastOrAddrSpaceCast( 2400 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2401 C.VoidPtrTy, SourceLocation()), 2402 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2403 CGF.getPointerAlign()); 2404 2405 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2406 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2407 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2408 2409 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2410 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2411 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2412 2413 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2414 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2415 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2416 2417 // Create a local thread-private variable to host the Reduce list 2418 // from a remote lane. 2419 Address RemoteReduceList = 2420 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2421 2422 // This loop iterates through the list of reduce elements and copies, 2423 // element by element, from a remote lane in the warp to RemoteReduceList, 2424 // hosted on the thread's stack. 2425 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2426 LocalReduceList, RemoteReduceList, 2427 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2428 /*ScratchpadIndex=*/nullptr, 2429 /*ScratchpadWidth=*/nullptr}); 2430 2431 // The actions to be performed on the Remote Reduce list is dependent 2432 // on the algorithm version. 2433 // 2434 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2435 // LaneId % 2 == 0 && Offset > 0): 2436 // do the reduction value aggregation 2437 // 2438 // The thread local variable Reduce list is mutated in place to host the 2439 // reduced data, which is the aggregated value produced from local and 2440 // remote lanes. 2441 // 2442 // Note that AlgoVer is expected to be a constant integer known at compile 2443 // time. 2444 // When AlgoVer==0, the first conjunction evaluates to true, making 2445 // the entire predicate true during compile time. 2446 // When AlgoVer==1, the second conjunction has only the second part to be 2447 // evaluated during runtime. Other conjunctions evaluates to false 2448 // during compile time. 2449 // When AlgoVer==2, the third conjunction has only the second part to be 2450 // evaluated during runtime. Other conjunctions evaluates to false 2451 // during compile time. 2452 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2453 2454 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2455 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2456 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2457 2458 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2459 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2460 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2461 CondAlgo2 = Bld.CreateAnd( 2462 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2463 2464 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2465 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2466 2467 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2468 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2469 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2470 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2471 2472 CGF.EmitBlock(ThenBB); 2473 // reduce_function(LocalReduceList, RemoteReduceList) 2474 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2475 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2476 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2477 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2478 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2479 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2480 Bld.CreateBr(MergeBB); 2481 2482 CGF.EmitBlock(ElseBB); 2483 Bld.CreateBr(MergeBB); 2484 2485 CGF.EmitBlock(MergeBB); 2486 2487 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2488 // Reduce list. 2489 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2490 llvm::Value *CondCopy = Bld.CreateAnd( 2491 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2492 2493 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2494 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2495 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2496 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2497 2498 CGF.EmitBlock(CpyThenBB); 2499 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2500 RemoteReduceList, LocalReduceList); 2501 Bld.CreateBr(CpyMergeBB); 2502 2503 CGF.EmitBlock(CpyElseBB); 2504 Bld.CreateBr(CpyMergeBB); 2505 2506 CGF.EmitBlock(CpyMergeBB); 2507 2508 CGF.FinishFunction(); 2509 return Fn; 2510 } 2511 2512 /// This function emits a helper that copies all the reduction variables from 2513 /// the team into the provided global buffer for the reduction variables. 2514 /// 2515 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2516 /// For all data entries D in reduce_data: 2517 /// Copy local D to buffer.D[Idx] 2518 static llvm::Value *emitListToGlobalCopyFunction( 2519 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2520 QualType ReductionArrayTy, SourceLocation Loc, 2521 const RecordDecl *TeamReductionRec, 2522 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2523 &VarFieldMap) { 2524 ASTContext &C = CGM.getContext(); 2525 2526 // Buffer: global reduction buffer. 2527 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2528 C.VoidPtrTy, ImplicitParamDecl::Other); 2529 // Idx: index of the buffer. 2530 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2531 ImplicitParamDecl::Other); 2532 // ReduceList: thread local Reduce list. 2533 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2534 C.VoidPtrTy, ImplicitParamDecl::Other); 2535 FunctionArgList Args; 2536 Args.push_back(&BufferArg); 2537 Args.push_back(&IdxArg); 2538 Args.push_back(&ReduceListArg); 2539 2540 const CGFunctionInfo &CGFI = 2541 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2542 auto *Fn = llvm::Function::Create( 2543 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2544 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2545 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2546 Fn->setDoesNotRecurse(); 2547 CodeGenFunction CGF(CGM); 2548 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2549 2550 CGBuilderTy &Bld = CGF.Builder; 2551 2552 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2553 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2554 Address LocalReduceList( 2555 Bld.CreatePointerBitCastOrAddrSpaceCast( 2556 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2557 C.VoidPtrTy, Loc), 2558 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2559 CGF.getPointerAlign()); 2560 QualType StaticTy = C.getRecordType(TeamReductionRec); 2561 llvm::Type *LLVMReductionsBufferTy = 2562 CGM.getTypes().ConvertTypeForMem(StaticTy); 2563 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2564 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2565 LLVMReductionsBufferTy->getPointerTo()); 2566 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2567 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2568 /*Volatile=*/false, C.IntTy, 2569 Loc)}; 2570 unsigned Idx = 0; 2571 for (const Expr *Private : Privates) { 2572 // Reduce element = LocalReduceList[i] 2573 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2574 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2575 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2576 // elemptr = ((CopyType*)(elemptrptr)) + I 2577 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2578 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2579 Address ElemPtr = 2580 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2581 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2582 // Global = Buffer.VD[Idx]; 2583 const FieldDecl *FD = VarFieldMap.lookup(VD); 2584 LValue GlobLVal = CGF.EmitLValueForField( 2585 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2586 Address GlobAddr = GlobLVal.getAddress(CGF); 2587 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2588 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2589 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2590 switch (CGF.getEvaluationKind(Private->getType())) { 2591 case TEK_Scalar: { 2592 llvm::Value *V = CGF.EmitLoadOfScalar( 2593 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2594 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2595 CGF.EmitStoreOfScalar(V, GlobLVal); 2596 break; 2597 } 2598 case TEK_Complex: { 2599 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2600 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2601 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2602 break; 2603 } 2604 case TEK_Aggregate: 2605 CGF.EmitAggregateCopy(GlobLVal, 2606 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2607 Private->getType(), AggValueSlot::DoesNotOverlap); 2608 break; 2609 } 2610 ++Idx; 2611 } 2612 2613 CGF.FinishFunction(); 2614 return Fn; 2615 } 2616 2617 /// This function emits a helper that reduces all the reduction variables from 2618 /// the team into the provided global buffer for the reduction variables. 2619 /// 2620 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2621 /// void *GlobPtrs[]; 2622 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2623 /// ... 2624 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2625 /// reduce_function(GlobPtrs, reduce_data); 2626 static llvm::Value *emitListToGlobalReduceFunction( 2627 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2628 QualType ReductionArrayTy, SourceLocation Loc, 2629 const RecordDecl *TeamReductionRec, 2630 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2631 &VarFieldMap, 2632 llvm::Function *ReduceFn) { 2633 ASTContext &C = CGM.getContext(); 2634 2635 // Buffer: global reduction buffer. 2636 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2637 C.VoidPtrTy, ImplicitParamDecl::Other); 2638 // Idx: index of the buffer. 2639 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2640 ImplicitParamDecl::Other); 2641 // ReduceList: thread local Reduce list. 2642 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2643 C.VoidPtrTy, ImplicitParamDecl::Other); 2644 FunctionArgList Args; 2645 Args.push_back(&BufferArg); 2646 Args.push_back(&IdxArg); 2647 Args.push_back(&ReduceListArg); 2648 2649 const CGFunctionInfo &CGFI = 2650 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2651 auto *Fn = llvm::Function::Create( 2652 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2653 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2654 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2655 Fn->setDoesNotRecurse(); 2656 CodeGenFunction CGF(CGM); 2657 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2658 2659 CGBuilderTy &Bld = CGF.Builder; 2660 2661 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2662 QualType StaticTy = C.getRecordType(TeamReductionRec); 2663 llvm::Type *LLVMReductionsBufferTy = 2664 CGM.getTypes().ConvertTypeForMem(StaticTy); 2665 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2666 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2667 LLVMReductionsBufferTy->getPointerTo()); 2668 2669 // 1. Build a list of reduction variables. 2670 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2671 Address ReductionList = 2672 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2673 auto IPriv = Privates.begin(); 2674 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2675 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2676 /*Volatile=*/false, C.IntTy, 2677 Loc)}; 2678 unsigned Idx = 0; 2679 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2680 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2681 // Global = Buffer.VD[Idx]; 2682 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2683 const FieldDecl *FD = VarFieldMap.lookup(VD); 2684 LValue GlobLVal = CGF.EmitLValueForField( 2685 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2686 Address GlobAddr = GlobLVal.getAddress(CGF); 2687 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2688 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2689 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2690 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2691 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2692 // Store array size. 2693 ++Idx; 2694 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2695 llvm::Value *Size = CGF.Builder.CreateIntCast( 2696 CGF.getVLASize( 2697 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2698 .NumElts, 2699 CGF.SizeTy, /*isSigned=*/false); 2700 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2701 Elem); 2702 } 2703 } 2704 2705 // Call reduce_function(GlobalReduceList, ReduceList) 2706 llvm::Value *GlobalReduceList = 2707 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2708 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2709 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2710 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2711 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2712 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2713 CGF.FinishFunction(); 2714 return Fn; 2715 } 2716 2717 /// This function emits a helper that copies all the reduction variables from 2718 /// the team into the provided global buffer for the reduction variables. 2719 /// 2720 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2721 /// For all data entries D in reduce_data: 2722 /// Copy buffer.D[Idx] to local D; 2723 static llvm::Value *emitGlobalToListCopyFunction( 2724 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2725 QualType ReductionArrayTy, SourceLocation Loc, 2726 const RecordDecl *TeamReductionRec, 2727 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2728 &VarFieldMap) { 2729 ASTContext &C = CGM.getContext(); 2730 2731 // Buffer: global reduction buffer. 2732 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2733 C.VoidPtrTy, ImplicitParamDecl::Other); 2734 // Idx: index of the buffer. 2735 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2736 ImplicitParamDecl::Other); 2737 // ReduceList: thread local Reduce list. 2738 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2739 C.VoidPtrTy, ImplicitParamDecl::Other); 2740 FunctionArgList Args; 2741 Args.push_back(&BufferArg); 2742 Args.push_back(&IdxArg); 2743 Args.push_back(&ReduceListArg); 2744 2745 const CGFunctionInfo &CGFI = 2746 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2747 auto *Fn = llvm::Function::Create( 2748 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2749 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2750 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2751 Fn->setDoesNotRecurse(); 2752 CodeGenFunction CGF(CGM); 2753 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2754 2755 CGBuilderTy &Bld = CGF.Builder; 2756 2757 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2758 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2759 Address LocalReduceList( 2760 Bld.CreatePointerBitCastOrAddrSpaceCast( 2761 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2762 C.VoidPtrTy, Loc), 2763 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2764 CGF.getPointerAlign()); 2765 QualType StaticTy = C.getRecordType(TeamReductionRec); 2766 llvm::Type *LLVMReductionsBufferTy = 2767 CGM.getTypes().ConvertTypeForMem(StaticTy); 2768 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2769 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2770 LLVMReductionsBufferTy->getPointerTo()); 2771 2772 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2773 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2774 /*Volatile=*/false, C.IntTy, 2775 Loc)}; 2776 unsigned Idx = 0; 2777 for (const Expr *Private : Privates) { 2778 // Reduce element = LocalReduceList[i] 2779 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2780 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2781 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2782 // elemptr = ((CopyType*)(elemptrptr)) + I 2783 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2784 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2785 Address ElemPtr = 2786 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2787 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2788 // Global = Buffer.VD[Idx]; 2789 const FieldDecl *FD = VarFieldMap.lookup(VD); 2790 LValue GlobLVal = CGF.EmitLValueForField( 2791 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2792 Address GlobAddr = GlobLVal.getAddress(CGF); 2793 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2794 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2795 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2796 switch (CGF.getEvaluationKind(Private->getType())) { 2797 case TEK_Scalar: { 2798 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2799 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2800 LValueBaseInfo(AlignmentSource::Type), 2801 TBAAAccessInfo()); 2802 break; 2803 } 2804 case TEK_Complex: { 2805 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2806 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2807 /*isInit=*/false); 2808 break; 2809 } 2810 case TEK_Aggregate: 2811 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2812 GlobLVal, Private->getType(), 2813 AggValueSlot::DoesNotOverlap); 2814 break; 2815 } 2816 ++Idx; 2817 } 2818 2819 CGF.FinishFunction(); 2820 return Fn; 2821 } 2822 2823 /// This function emits a helper that reduces all the reduction variables from 2824 /// the team into the provided global buffer for the reduction variables. 2825 /// 2826 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2827 /// void *GlobPtrs[]; 2828 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2829 /// ... 2830 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2831 /// reduce_function(reduce_data, GlobPtrs); 2832 static llvm::Value *emitGlobalToListReduceFunction( 2833 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2834 QualType ReductionArrayTy, SourceLocation Loc, 2835 const RecordDecl *TeamReductionRec, 2836 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2837 &VarFieldMap, 2838 llvm::Function *ReduceFn) { 2839 ASTContext &C = CGM.getContext(); 2840 2841 // Buffer: global reduction buffer. 2842 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2843 C.VoidPtrTy, ImplicitParamDecl::Other); 2844 // Idx: index of the buffer. 2845 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2846 ImplicitParamDecl::Other); 2847 // ReduceList: thread local Reduce list. 2848 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2849 C.VoidPtrTy, ImplicitParamDecl::Other); 2850 FunctionArgList Args; 2851 Args.push_back(&BufferArg); 2852 Args.push_back(&IdxArg); 2853 Args.push_back(&ReduceListArg); 2854 2855 const CGFunctionInfo &CGFI = 2856 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2857 auto *Fn = llvm::Function::Create( 2858 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2859 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2860 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2861 Fn->setDoesNotRecurse(); 2862 CodeGenFunction CGF(CGM); 2863 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2864 2865 CGBuilderTy &Bld = CGF.Builder; 2866 2867 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2868 QualType StaticTy = C.getRecordType(TeamReductionRec); 2869 llvm::Type *LLVMReductionsBufferTy = 2870 CGM.getTypes().ConvertTypeForMem(StaticTy); 2871 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2872 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2873 LLVMReductionsBufferTy->getPointerTo()); 2874 2875 // 1. Build a list of reduction variables. 2876 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2877 Address ReductionList = 2878 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2879 auto IPriv = Privates.begin(); 2880 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2881 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2882 /*Volatile=*/false, C.IntTy, 2883 Loc)}; 2884 unsigned Idx = 0; 2885 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2886 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2887 // Global = Buffer.VD[Idx]; 2888 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2889 const FieldDecl *FD = VarFieldMap.lookup(VD); 2890 LValue GlobLVal = CGF.EmitLValueForField( 2891 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2892 Address GlobAddr = GlobLVal.getAddress(CGF); 2893 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2894 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2895 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2896 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2897 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2898 // Store array size. 2899 ++Idx; 2900 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2901 llvm::Value *Size = CGF.Builder.CreateIntCast( 2902 CGF.getVLASize( 2903 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2904 .NumElts, 2905 CGF.SizeTy, /*isSigned=*/false); 2906 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2907 Elem); 2908 } 2909 } 2910 2911 // Call reduce_function(ReduceList, GlobalReduceList) 2912 llvm::Value *GlobalReduceList = 2913 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2914 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2915 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2916 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2917 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2918 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2919 CGF.FinishFunction(); 2920 return Fn; 2921 } 2922 2923 /// 2924 /// Design of OpenMP reductions on the GPU 2925 /// 2926 /// Consider a typical OpenMP program with one or more reduction 2927 /// clauses: 2928 /// 2929 /// float foo; 2930 /// double bar; 2931 /// #pragma omp target teams distribute parallel for \ 2932 /// reduction(+:foo) reduction(*:bar) 2933 /// for (int i = 0; i < N; i++) { 2934 /// foo += A[i]; bar *= B[i]; 2935 /// } 2936 /// 2937 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2938 /// all teams. In our OpenMP implementation on the NVPTX device an 2939 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2940 /// within a team are mapped to CUDA threads within a threadblock. 2941 /// Our goal is to efficiently aggregate values across all OpenMP 2942 /// threads such that: 2943 /// 2944 /// - the compiler and runtime are logically concise, and 2945 /// - the reduction is performed efficiently in a hierarchical 2946 /// manner as follows: within OpenMP threads in the same warp, 2947 /// across warps in a threadblock, and finally across teams on 2948 /// the NVPTX device. 2949 /// 2950 /// Introduction to Decoupling 2951 /// 2952 /// We would like to decouple the compiler and the runtime so that the 2953 /// latter is ignorant of the reduction variables (number, data types) 2954 /// and the reduction operators. This allows a simpler interface 2955 /// and implementation while still attaining good performance. 2956 /// 2957 /// Pseudocode for the aforementioned OpenMP program generated by the 2958 /// compiler is as follows: 2959 /// 2960 /// 1. Create private copies of reduction variables on each OpenMP 2961 /// thread: 'foo_private', 'bar_private' 2962 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2963 /// to it and writes the result in 'foo_private' and 'bar_private' 2964 /// respectively. 2965 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2966 /// and store the result on the team master: 2967 /// 2968 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2969 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2970 /// 2971 /// where: 2972 /// struct ReduceData { 2973 /// double *foo; 2974 /// double *bar; 2975 /// } reduceData 2976 /// reduceData.foo = &foo_private 2977 /// reduceData.bar = &bar_private 2978 /// 2979 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2980 /// auxiliary functions generated by the compiler that operate on 2981 /// variables of type 'ReduceData'. They aid the runtime perform 2982 /// algorithmic steps in a data agnostic manner. 2983 /// 2984 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2985 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2986 /// same warp. It takes the following arguments as input: 2987 /// 2988 /// a. variable of type 'ReduceData' on the calling lane, 2989 /// b. its lane_id, 2990 /// c. an offset relative to the current lane_id to generate a 2991 /// remote_lane_id. The remote lane contains the second 2992 /// variable of type 'ReduceData' that is to be reduced. 2993 /// d. an algorithm version parameter determining which reduction 2994 /// algorithm to use. 2995 /// 2996 /// 'shuffleReduceFn' retrieves data from the remote lane using 2997 /// efficient GPU shuffle intrinsics and reduces, using the 2998 /// algorithm specified by the 4th parameter, the two operands 2999 /// element-wise. The result is written to the first operand. 3000 /// 3001 /// Different reduction algorithms are implemented in different 3002 /// runtime functions, all calling 'shuffleReduceFn' to perform 3003 /// the essential reduction step. Therefore, based on the 4th 3004 /// parameter, this function behaves slightly differently to 3005 /// cooperate with the runtime to ensure correctness under 3006 /// different circumstances. 3007 /// 3008 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3009 /// reduced variables across warps. It tunnels, through CUDA 3010 /// shared memory, the thread-private data of type 'ReduceData' 3011 /// from lane 0 of each warp to a lane in the first warp. 3012 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3013 /// The last team writes the global reduced value to memory. 3014 /// 3015 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3016 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3017 /// scratchpadCopyFn, loadAndReduceFn) 3018 /// 3019 /// 'scratchpadCopyFn' is a helper that stores reduced 3020 /// data from the team master to a scratchpad array in 3021 /// global memory. 3022 /// 3023 /// 'loadAndReduceFn' is a helper that loads data from 3024 /// the scratchpad array and reduces it with the input 3025 /// operand. 3026 /// 3027 /// These compiler generated functions hide address 3028 /// calculation and alignment information from the runtime. 3029 /// 5. if ret == 1: 3030 /// The team master of the last team stores the reduced 3031 /// result to the globals in memory. 3032 /// foo += reduceData.foo; bar *= reduceData.bar 3033 /// 3034 /// 3035 /// Warp Reduction Algorithms 3036 /// 3037 /// On the warp level, we have three algorithms implemented in the 3038 /// OpenMP runtime depending on the number of active lanes: 3039 /// 3040 /// Full Warp Reduction 3041 /// 3042 /// The reduce algorithm within a warp where all lanes are active 3043 /// is implemented in the runtime as follows: 3044 /// 3045 /// full_warp_reduce(void *reduce_data, 3046 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3047 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3048 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3049 /// } 3050 /// 3051 /// The algorithm completes in log(2, WARPSIZE) steps. 3052 /// 3053 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3054 /// not used therefore we save instructions by not retrieving lane_id 3055 /// from the corresponding special registers. The 4th parameter, which 3056 /// represents the version of the algorithm being used, is set to 0 to 3057 /// signify full warp reduction. 3058 /// 3059 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3060 /// 3061 /// #reduce_elem refers to an element in the local lane's data structure 3062 /// #remote_elem is retrieved from a remote lane 3063 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3064 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3065 /// 3066 /// Contiguous Partial Warp Reduction 3067 /// 3068 /// This reduce algorithm is used within a warp where only the first 3069 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3070 /// number of OpenMP threads in a parallel region is not a multiple of 3071 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3072 /// 3073 /// void 3074 /// contiguous_partial_reduce(void *reduce_data, 3075 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3076 /// int size, int lane_id) { 3077 /// int curr_size; 3078 /// int offset; 3079 /// curr_size = size; 3080 /// mask = curr_size/2; 3081 /// while (offset>0) { 3082 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3083 /// curr_size = (curr_size+1)/2; 3084 /// offset = curr_size/2; 3085 /// } 3086 /// } 3087 /// 3088 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3089 /// 3090 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3091 /// if (lane_id < offset) 3092 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3093 /// else 3094 /// reduce_elem = remote_elem 3095 /// 3096 /// This algorithm assumes that the data to be reduced are located in a 3097 /// contiguous subset of lanes starting from the first. When there is 3098 /// an odd number of active lanes, the data in the last lane is not 3099 /// aggregated with any other lane's dat but is instead copied over. 3100 /// 3101 /// Dispersed Partial Warp Reduction 3102 /// 3103 /// This algorithm is used within a warp when any discontiguous subset of 3104 /// lanes are active. It is used to implement the reduction operation 3105 /// across lanes in an OpenMP simd region or in a nested parallel region. 3106 /// 3107 /// void 3108 /// dispersed_partial_reduce(void *reduce_data, 3109 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3110 /// int size, remote_id; 3111 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3112 /// do { 3113 /// remote_id = next_active_lane_id_right_after_me(); 3114 /// # the above function returns 0 of no active lane 3115 /// # is present right after the current lane. 3116 /// size = number_of_active_lanes_in_this_warp(); 3117 /// logical_lane_id /= 2; 3118 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3119 /// remote_id-1-threadIdx.x, 2); 3120 /// } while (logical_lane_id % 2 == 0 && size > 1); 3121 /// } 3122 /// 3123 /// There is no assumption made about the initial state of the reduction. 3124 /// Any number of lanes (>=1) could be active at any position. The reduction 3125 /// result is returned in the first active lane. 3126 /// 3127 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3128 /// 3129 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3130 /// if (lane_id % 2 == 0 && offset > 0) 3131 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3132 /// else 3133 /// reduce_elem = remote_elem 3134 /// 3135 /// 3136 /// Intra-Team Reduction 3137 /// 3138 /// This function, as implemented in the runtime call 3139 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3140 /// threads in a team. It first reduces within a warp using the 3141 /// aforementioned algorithms. We then proceed to gather all such 3142 /// reduced values at the first warp. 3143 /// 3144 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3145 /// data from each of the "warp master" (zeroth lane of each warp, where 3146 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3147 /// a mathematical sense) the problem of reduction across warp masters in 3148 /// a block to the problem of warp reduction. 3149 /// 3150 /// 3151 /// Inter-Team Reduction 3152 /// 3153 /// Once a team has reduced its data to a single value, it is stored in 3154 /// a global scratchpad array. Since each team has a distinct slot, this 3155 /// can be done without locking. 3156 /// 3157 /// The last team to write to the scratchpad array proceeds to reduce the 3158 /// scratchpad array. One or more workers in the last team use the helper 3159 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3160 /// the k'th worker reduces every k'th element. 3161 /// 3162 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3163 /// reduce across workers and compute a globally reduced value. 3164 /// 3165 void CGOpenMPRuntimeGPU::emitReduction( 3166 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3167 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3168 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3169 if (!CGF.HaveInsertPoint()) 3170 return; 3171 3172 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3173 #ifndef NDEBUG 3174 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3175 #endif 3176 3177 if (Options.SimpleReduction) { 3178 assert(!TeamsReduction && !ParallelReduction && 3179 "Invalid reduction selection in emitReduction."); 3180 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3181 ReductionOps, Options); 3182 return; 3183 } 3184 3185 assert((TeamsReduction || ParallelReduction) && 3186 "Invalid reduction selection in emitReduction."); 3187 3188 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3189 // RedList, shuffle_reduce_func, interwarp_copy_func); 3190 // or 3191 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3192 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3193 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3194 3195 llvm::Value *Res; 3196 ASTContext &C = CGM.getContext(); 3197 // 1. Build a list of reduction variables. 3198 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3199 auto Size = RHSExprs.size(); 3200 for (const Expr *E : Privates) { 3201 if (E->getType()->isVariablyModifiedType()) 3202 // Reserve place for array size. 3203 ++Size; 3204 } 3205 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3206 QualType ReductionArrayTy = 3207 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3208 /*IndexTypeQuals=*/0); 3209 Address ReductionList = 3210 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3211 auto IPriv = Privates.begin(); 3212 unsigned Idx = 0; 3213 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3214 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3215 CGF.Builder.CreateStore( 3216 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3217 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3218 Elem); 3219 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3220 // Store array size. 3221 ++Idx; 3222 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3223 llvm::Value *Size = CGF.Builder.CreateIntCast( 3224 CGF.getVLASize( 3225 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3226 .NumElts, 3227 CGF.SizeTy, /*isSigned=*/false); 3228 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3229 Elem); 3230 } 3231 } 3232 3233 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3234 ReductionList.getPointer(), CGF.VoidPtrTy); 3235 llvm::Function *ReductionFn = emitReductionFunction( 3236 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3237 LHSExprs, RHSExprs, ReductionOps); 3238 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3239 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3240 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3241 llvm::Value *InterWarpCopyFn = 3242 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3243 3244 if (ParallelReduction) { 3245 llvm::Value *Args[] = {RTLoc, 3246 ThreadId, 3247 CGF.Builder.getInt32(RHSExprs.size()), 3248 ReductionArrayTySize, 3249 RL, 3250 ShuffleAndReduceFn, 3251 InterWarpCopyFn}; 3252 3253 Res = CGF.EmitRuntimeCall( 3254 OMPBuilder.getOrCreateRuntimeFunction( 3255 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3256 Args); 3257 } else { 3258 assert(TeamsReduction && "expected teams reduction."); 3259 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3260 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3261 int Cnt = 0; 3262 for (const Expr *DRE : Privates) { 3263 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3264 ++Cnt; 3265 } 3266 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3267 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3268 C.getLangOpts().OpenMPCUDAReductionBufNum); 3269 TeamsReductions.push_back(TeamReductionRec); 3270 if (!KernelTeamsReductionPtr) { 3271 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3272 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3273 llvm::GlobalValue::InternalLinkage, nullptr, 3274 "_openmp_teams_reductions_buffer_$_$ptr"); 3275 } 3276 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3277 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3278 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3279 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3280 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3281 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3282 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3283 ReductionFn); 3284 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3285 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3286 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3287 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3288 ReductionFn); 3289 3290 llvm::Value *Args[] = { 3291 RTLoc, 3292 ThreadId, 3293 GlobalBufferPtr, 3294 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3295 RL, 3296 ShuffleAndReduceFn, 3297 InterWarpCopyFn, 3298 GlobalToBufferCpyFn, 3299 GlobalToBufferRedFn, 3300 BufferToGlobalCpyFn, 3301 BufferToGlobalRedFn}; 3302 3303 Res = CGF.EmitRuntimeCall( 3304 OMPBuilder.getOrCreateRuntimeFunction( 3305 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3306 Args); 3307 } 3308 3309 // 5. Build if (res == 1) 3310 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3311 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3312 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3313 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3314 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3315 3316 // 6. Build then branch: where we have reduced values in the master 3317 // thread in each team. 3318 // __kmpc_end_reduce{_nowait}(<gtid>); 3319 // break; 3320 CGF.EmitBlock(ThenBB); 3321 3322 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3323 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3324 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3325 auto IPriv = Privates.begin(); 3326 auto ILHS = LHSExprs.begin(); 3327 auto IRHS = RHSExprs.begin(); 3328 for (const Expr *E : ReductionOps) { 3329 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3330 cast<DeclRefExpr>(*IRHS)); 3331 ++IPriv; 3332 ++ILHS; 3333 ++IRHS; 3334 } 3335 }; 3336 llvm::Value *EndArgs[] = {ThreadId}; 3337 RegionCodeGenTy RCG(CodeGen); 3338 NVPTXActionTy Action( 3339 nullptr, llvm::None, 3340 OMPBuilder.getOrCreateRuntimeFunction( 3341 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3342 EndArgs); 3343 RCG.setAction(Action); 3344 RCG(CGF); 3345 // There is no need to emit line number for unconditional branch. 3346 (void)ApplyDebugLocation::CreateEmpty(CGF); 3347 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3348 } 3349 3350 const VarDecl * 3351 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3352 const VarDecl *NativeParam) const { 3353 if (!NativeParam->getType()->isReferenceType()) 3354 return NativeParam; 3355 QualType ArgType = NativeParam->getType(); 3356 QualifierCollector QC; 3357 const Type *NonQualTy = QC.strip(ArgType); 3358 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3359 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3360 if (Attr->getCaptureKind() == OMPC_map) { 3361 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3362 LangAS::opencl_global); 3363 } 3364 } 3365 ArgType = CGM.getContext().getPointerType(PointeeTy); 3366 QC.addRestrict(); 3367 enum { NVPTX_local_addr = 5 }; 3368 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3369 ArgType = QC.apply(CGM.getContext(), ArgType); 3370 if (isa<ImplicitParamDecl>(NativeParam)) 3371 return ImplicitParamDecl::Create( 3372 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3373 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3374 return ParmVarDecl::Create( 3375 CGM.getContext(), 3376 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3377 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3378 NativeParam->getIdentifier(), ArgType, 3379 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3380 } 3381 3382 Address 3383 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3384 const VarDecl *NativeParam, 3385 const VarDecl *TargetParam) const { 3386 assert(NativeParam != TargetParam && 3387 NativeParam->getType()->isReferenceType() && 3388 "Native arg must not be the same as target arg."); 3389 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3390 QualType NativeParamType = NativeParam->getType(); 3391 QualifierCollector QC; 3392 const Type *NonQualTy = QC.strip(NativeParamType); 3393 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3394 unsigned NativePointeeAddrSpace = 3395 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3396 QualType TargetTy = TargetParam->getType(); 3397 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3398 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3399 // First cast to generic. 3400 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3401 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3402 /*AddrSpace=*/0)); 3403 // Cast from generic to native address space. 3404 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3405 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3406 NativePointeeAddrSpace)); 3407 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3408 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3409 NativeParamType); 3410 return NativeParamAddr; 3411 } 3412 3413 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3414 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3415 ArrayRef<llvm::Value *> Args) const { 3416 SmallVector<llvm::Value *, 4> TargetArgs; 3417 TargetArgs.reserve(Args.size()); 3418 auto *FnType = OutlinedFn.getFunctionType(); 3419 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3420 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3421 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3422 break; 3423 } 3424 llvm::Type *TargetType = FnType->getParamType(I); 3425 llvm::Value *NativeArg = Args[I]; 3426 if (!TargetType->isPointerTy()) { 3427 TargetArgs.emplace_back(NativeArg); 3428 continue; 3429 } 3430 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3431 NativeArg, 3432 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3433 TargetArgs.emplace_back( 3434 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3435 } 3436 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3437 } 3438 3439 /// Emit function which wraps the outline parallel region 3440 /// and controls the arguments which are passed to this function. 3441 /// The wrapper ensures that the outlined function is called 3442 /// with the correct arguments when data is shared. 3443 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3444 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3445 ASTContext &Ctx = CGM.getContext(); 3446 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3447 3448 // Create a function that takes as argument the source thread. 3449 FunctionArgList WrapperArgs; 3450 QualType Int16QTy = 3451 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3452 QualType Int32QTy = 3453 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3454 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3455 /*Id=*/nullptr, Int16QTy, 3456 ImplicitParamDecl::Other); 3457 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3458 /*Id=*/nullptr, Int32QTy, 3459 ImplicitParamDecl::Other); 3460 WrapperArgs.emplace_back(&ParallelLevelArg); 3461 WrapperArgs.emplace_back(&WrapperArg); 3462 3463 const CGFunctionInfo &CGFI = 3464 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3465 3466 auto *Fn = llvm::Function::Create( 3467 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3468 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3469 3470 // Ensure we do not inline the function. This is trivially true for the ones 3471 // passed to __kmpc_fork_call but the ones calles in serialized regions 3472 // could be inlined. This is not a perfect but it is closer to the invariant 3473 // we want, namely, every data environment starts with a new function. 3474 // TODO: We should pass the if condition to the runtime function and do the 3475 // handling there. Much cleaner code. 3476 Fn->addFnAttr(llvm::Attribute::NoInline); 3477 3478 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3479 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3480 Fn->setDoesNotRecurse(); 3481 3482 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3483 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3484 D.getBeginLoc(), D.getBeginLoc()); 3485 3486 const auto *RD = CS.getCapturedRecordDecl(); 3487 auto CurField = RD->field_begin(); 3488 3489 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3490 /*Name=*/".zero.addr"); 3491 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3492 // Get the array of arguments. 3493 SmallVector<llvm::Value *, 8> Args; 3494 3495 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3496 Args.emplace_back(ZeroAddr.getPointer()); 3497 3498 CGBuilderTy &Bld = CGF.Builder; 3499 auto CI = CS.capture_begin(); 3500 3501 // Use global memory for data sharing. 3502 // Handle passing of global args to workers. 3503 Address GlobalArgs = 3504 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3505 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3506 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3507 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3508 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3509 DataSharingArgs); 3510 3511 // Retrieve the shared variables from the list of references returned 3512 // by the runtime. Pass the variables to the outlined function. 3513 Address SharedArgListAddress = Address::invalid(); 3514 if (CS.capture_size() > 0 || 3515 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3516 SharedArgListAddress = CGF.EmitLoadOfPointer( 3517 GlobalArgs, CGF.getContext() 3518 .getPointerType(CGF.getContext().getPointerType( 3519 CGF.getContext().VoidPtrTy)) 3520 .castAs<PointerType>()); 3521 } 3522 unsigned Idx = 0; 3523 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3524 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3525 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3526 Src, CGF.SizeTy->getPointerTo()); 3527 llvm::Value *LB = CGF.EmitLoadOfScalar( 3528 TypedAddress, 3529 /*Volatile=*/false, 3530 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3531 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3532 Args.emplace_back(LB); 3533 ++Idx; 3534 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3535 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3536 Src, CGF.SizeTy->getPointerTo()); 3537 llvm::Value *UB = CGF.EmitLoadOfScalar( 3538 TypedAddress, 3539 /*Volatile=*/false, 3540 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3541 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3542 Args.emplace_back(UB); 3543 ++Idx; 3544 } 3545 if (CS.capture_size() > 0) { 3546 ASTContext &CGFContext = CGF.getContext(); 3547 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3548 QualType ElemTy = CurField->getType(); 3549 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3550 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3551 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3552 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3553 /*Volatile=*/false, 3554 CGFContext.getPointerType(ElemTy), 3555 CI->getLocation()); 3556 if (CI->capturesVariableByCopy() && 3557 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3558 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3559 CI->getLocation()); 3560 } 3561 Args.emplace_back(Arg); 3562 } 3563 } 3564 3565 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3566 CGF.FinishFunction(); 3567 return Fn; 3568 } 3569 3570 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3571 const Decl *D) { 3572 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3573 return; 3574 3575 assert(D && "Expected function or captured|block decl."); 3576 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3577 "Function is registered already."); 3578 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3579 "Team is set but not processed."); 3580 const Stmt *Body = nullptr; 3581 bool NeedToDelayGlobalization = false; 3582 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3583 Body = FD->getBody(); 3584 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3585 Body = BD->getBody(); 3586 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3587 Body = CD->getBody(); 3588 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3589 if (NeedToDelayGlobalization && 3590 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3591 return; 3592 } 3593 if (!Body) 3594 return; 3595 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3596 VarChecker.Visit(Body); 3597 const RecordDecl *GlobalizedVarsRecord = 3598 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3599 TeamAndReductions.first = nullptr; 3600 TeamAndReductions.second.clear(); 3601 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3602 VarChecker.getEscapedVariableLengthDecls(); 3603 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3604 return; 3605 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3606 I->getSecond().MappedParams = 3607 std::make_unique<CodeGenFunction::OMPMapVars>(); 3608 I->getSecond().EscapedParameters.insert( 3609 VarChecker.getEscapedParameters().begin(), 3610 VarChecker.getEscapedParameters().end()); 3611 I->getSecond().EscapedVariableLengthDecls.append( 3612 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3613 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3614 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3615 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3616 Data.insert(std::make_pair(VD, MappedVarData())); 3617 } 3618 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3619 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3620 VarChecker.Visit(Body); 3621 I->getSecond().SecondaryLocalVarData.emplace(); 3622 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3623 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3624 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3625 Data.insert(std::make_pair(VD, MappedVarData())); 3626 } 3627 } 3628 if (!NeedToDelayGlobalization) { 3629 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3630 struct GlobalizationScope final : EHScopeStack::Cleanup { 3631 GlobalizationScope() = default; 3632 3633 void Emit(CodeGenFunction &CGF, Flags flags) override { 3634 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3635 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3636 } 3637 }; 3638 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3639 } 3640 } 3641 3642 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3643 const VarDecl *VD) { 3644 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3645 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3646 auto AS = LangAS::Default; 3647 switch (A->getAllocatorType()) { 3648 // Use the default allocator here as by default local vars are 3649 // threadlocal. 3650 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3651 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3652 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3653 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3654 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3655 // Follow the user decision - use default allocation. 3656 return Address::invalid(); 3657 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3658 // TODO: implement aupport for user-defined allocators. 3659 return Address::invalid(); 3660 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3661 AS = LangAS::cuda_constant; 3662 break; 3663 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3664 AS = LangAS::cuda_shared; 3665 break; 3666 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3667 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3668 break; 3669 } 3670 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3671 auto *GV = new llvm::GlobalVariable( 3672 CGM.getModule(), VarTy, /*isConstant=*/false, 3673 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3674 VD->getName(), 3675 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3676 CGM.getContext().getTargetAddressSpace(AS)); 3677 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3678 GV->setAlignment(Align.getAsAlign()); 3679 return Address( 3680 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3681 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3682 VD->getType().getAddressSpace()))), 3683 Align); 3684 } 3685 3686 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3687 return Address::invalid(); 3688 3689 VD = VD->getCanonicalDecl(); 3690 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3691 if (I == FunctionGlobalizedDecls.end()) 3692 return Address::invalid(); 3693 auto VDI = I->getSecond().LocalVarData.find(VD); 3694 if (VDI != I->getSecond().LocalVarData.end()) 3695 return VDI->second.PrivateAddr; 3696 if (VD->hasAttrs()) { 3697 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3698 E(VD->attr_end()); 3699 IT != E; ++IT) { 3700 auto VDI = I->getSecond().LocalVarData.find( 3701 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3702 ->getCanonicalDecl()); 3703 if (VDI != I->getSecond().LocalVarData.end()) 3704 return VDI->second.PrivateAddr; 3705 } 3706 } 3707 3708 return Address::invalid(); 3709 } 3710 3711 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3712 FunctionGlobalizedDecls.erase(CGF.CurFn); 3713 CGOpenMPRuntime::functionFinished(CGF); 3714 } 3715 3716 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3717 CodeGenFunction &CGF, const OMPLoopDirective &S, 3718 OpenMPDistScheduleClauseKind &ScheduleKind, 3719 llvm::Value *&Chunk) const { 3720 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3721 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3722 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3723 Chunk = CGF.EmitScalarConversion( 3724 RT.getGPUNumThreads(CGF), 3725 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3726 S.getIterationVariable()->getType(), S.getBeginLoc()); 3727 return; 3728 } 3729 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3730 CGF, S, ScheduleKind, Chunk); 3731 } 3732 3733 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3734 CodeGenFunction &CGF, const OMPLoopDirective &S, 3735 OpenMPScheduleClauseKind &ScheduleKind, 3736 const Expr *&ChunkExpr) const { 3737 ScheduleKind = OMPC_SCHEDULE_static; 3738 // Chunk size is 1 in this case. 3739 llvm::APInt ChunkSize(32, 1); 3740 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3741 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3742 SourceLocation()); 3743 } 3744 3745 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3746 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3747 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3748 " Expected target-based directive."); 3749 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3750 for (const CapturedStmt::Capture &C : CS->captures()) { 3751 // Capture variables captured by reference in lambdas for target-based 3752 // directives. 3753 if (!C.capturesVariable()) 3754 continue; 3755 const VarDecl *VD = C.getCapturedVar(); 3756 const auto *RD = VD->getType() 3757 .getCanonicalType() 3758 .getNonReferenceType() 3759 ->getAsCXXRecordDecl(); 3760 if (!RD || !RD->isLambda()) 3761 continue; 3762 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3763 LValue VDLVal; 3764 if (VD->getType().getCanonicalType()->isReferenceType()) 3765 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3766 else 3767 VDLVal = CGF.MakeAddrLValue( 3768 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3769 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3770 FieldDecl *ThisCapture = nullptr; 3771 RD->getCaptureFields(Captures, ThisCapture); 3772 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3773 LValue ThisLVal = 3774 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3775 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3776 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3777 } 3778 for (const LambdaCapture &LC : RD->captures()) { 3779 if (LC.getCaptureKind() != LCK_ByRef) 3780 continue; 3781 const VarDecl *VD = LC.getCapturedVar(); 3782 if (!CS->capturesVariable(VD)) 3783 continue; 3784 auto It = Captures.find(VD); 3785 assert(It != Captures.end() && "Found lambda capture without field."); 3786 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3787 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3788 if (VD->getType().getCanonicalType()->isReferenceType()) 3789 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3790 VD->getType().getCanonicalType()) 3791 .getAddress(CGF); 3792 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3793 } 3794 } 3795 } 3796 3797 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3798 LangAS &AS) { 3799 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3800 return false; 3801 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3802 switch(A->getAllocatorType()) { 3803 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3804 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3805 // Not supported, fallback to the default mem space. 3806 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3807 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3808 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3809 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3810 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3811 AS = LangAS::Default; 3812 return true; 3813 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3814 AS = LangAS::cuda_constant; 3815 return true; 3816 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3817 AS = LangAS::cuda_shared; 3818 return true; 3819 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3820 llvm_unreachable("Expected predefined allocator for the variables with the " 3821 "static storage."); 3822 } 3823 return false; 3824 } 3825 3826 // Get current CudaArch and ignore any unknown values 3827 static CudaArch getCudaArch(CodeGenModule &CGM) { 3828 if (!CGM.getTarget().hasFeature("ptx")) 3829 return CudaArch::UNKNOWN; 3830 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3831 if (Feature.getValue()) { 3832 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3833 if (Arch != CudaArch::UNKNOWN) 3834 return Arch; 3835 } 3836 } 3837 return CudaArch::UNKNOWN; 3838 } 3839 3840 /// Check to see if target architecture supports unified addressing which is 3841 /// a restriction for OpenMP requires clause "unified_shared_memory". 3842 void CGOpenMPRuntimeGPU::processRequiresDirective( 3843 const OMPRequiresDecl *D) { 3844 for (const OMPClause *Clause : D->clauselists()) { 3845 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3846 CudaArch Arch = getCudaArch(CGM); 3847 switch (Arch) { 3848 case CudaArch::SM_20: 3849 case CudaArch::SM_21: 3850 case CudaArch::SM_30: 3851 case CudaArch::SM_32: 3852 case CudaArch::SM_35: 3853 case CudaArch::SM_37: 3854 case CudaArch::SM_50: 3855 case CudaArch::SM_52: 3856 case CudaArch::SM_53: { 3857 SmallString<256> Buffer; 3858 llvm::raw_svector_ostream Out(Buffer); 3859 Out << "Target architecture " << CudaArchToString(Arch) 3860 << " does not support unified addressing"; 3861 CGM.Error(Clause->getBeginLoc(), Out.str()); 3862 return; 3863 } 3864 case CudaArch::SM_60: 3865 case CudaArch::SM_61: 3866 case CudaArch::SM_62: 3867 case CudaArch::SM_70: 3868 case CudaArch::SM_72: 3869 case CudaArch::SM_75: 3870 case CudaArch::SM_80: 3871 case CudaArch::SM_86: 3872 case CudaArch::GFX600: 3873 case CudaArch::GFX601: 3874 case CudaArch::GFX602: 3875 case CudaArch::GFX700: 3876 case CudaArch::GFX701: 3877 case CudaArch::GFX702: 3878 case CudaArch::GFX703: 3879 case CudaArch::GFX704: 3880 case CudaArch::GFX705: 3881 case CudaArch::GFX801: 3882 case CudaArch::GFX802: 3883 case CudaArch::GFX803: 3884 case CudaArch::GFX805: 3885 case CudaArch::GFX810: 3886 case CudaArch::GFX900: 3887 case CudaArch::GFX902: 3888 case CudaArch::GFX904: 3889 case CudaArch::GFX906: 3890 case CudaArch::GFX908: 3891 case CudaArch::GFX909: 3892 case CudaArch::GFX90a: 3893 case CudaArch::GFX90c: 3894 case CudaArch::GFX1010: 3895 case CudaArch::GFX1011: 3896 case CudaArch::GFX1012: 3897 case CudaArch::GFX1013: 3898 case CudaArch::GFX1030: 3899 case CudaArch::GFX1031: 3900 case CudaArch::GFX1032: 3901 case CudaArch::GFX1033: 3902 case CudaArch::GFX1034: 3903 case CudaArch::GFX1035: 3904 case CudaArch::UNUSED: 3905 case CudaArch::UNKNOWN: 3906 break; 3907 case CudaArch::LAST: 3908 llvm_unreachable("Unexpected Cuda arch."); 3909 } 3910 } 3911 } 3912 CGOpenMPRuntime::processRequiresDirective(D); 3913 } 3914 3915 void CGOpenMPRuntimeGPU::clear() { 3916 3917 if (!TeamsReductions.empty()) { 3918 ASTContext &C = CGM.getContext(); 3919 RecordDecl *StaticRD = C.buildImplicitRecord( 3920 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3921 StaticRD->startDefinition(); 3922 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3923 QualType RecTy = C.getRecordType(TeamReductionRec); 3924 auto *Field = FieldDecl::Create( 3925 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3926 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3927 /*BW=*/nullptr, /*Mutable=*/false, 3928 /*InitStyle=*/ICIS_NoInit); 3929 Field->setAccess(AS_public); 3930 StaticRD->addDecl(Field); 3931 } 3932 StaticRD->completeDefinition(); 3933 QualType StaticTy = C.getRecordType(StaticRD); 3934 llvm::Type *LLVMReductionsBufferTy = 3935 CGM.getTypes().ConvertTypeForMem(StaticTy); 3936 // FIXME: nvlink does not handle weak linkage correctly (object with the 3937 // different size are reported as erroneous). 3938 // Restore CommonLinkage as soon as nvlink is fixed. 3939 auto *GV = new llvm::GlobalVariable( 3940 CGM.getModule(), LLVMReductionsBufferTy, 3941 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3942 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3943 "_openmp_teams_reductions_buffer_$_"); 3944 KernelTeamsReductionPtr->setInitializer( 3945 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3946 CGM.VoidPtrTy)); 3947 } 3948 CGOpenMPRuntime::clear(); 3949 } 3950 3951 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3952 CGBuilderTy &Bld = CGF.Builder; 3953 llvm::Module *M = &CGF.CGM.getModule(); 3954 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3955 llvm::Function *F = M->getFunction(LocSize); 3956 if (!F) { 3957 F = llvm::Function::Create( 3958 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3959 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3960 } 3961 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3962 } 3963