1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This provides a generalized class for OpenMP runtime code generation
10 // specialized by GPU targets NVPTX and AMDGCN.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGOpenMPRuntimeGPU.h"
15 #include "CodeGenFunction.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclOpenMP.h"
18 #include "clang/AST/StmtOpenMP.h"
19 #include "clang/AST/StmtVisitor.h"
20 #include "clang/Basic/Cuda.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
23 #include "llvm/Support/MathExtras.h"
24 
25 using namespace clang;
26 using namespace CodeGen;
27 using namespace llvm::omp;
28 
29 namespace {
30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
31 class NVPTXActionTy final : public PrePostActionTy {
32   llvm::FunctionCallee EnterCallee = nullptr;
33   ArrayRef<llvm::Value *> EnterArgs;
34   llvm::FunctionCallee ExitCallee = nullptr;
35   ArrayRef<llvm::Value *> ExitArgs;
36   bool Conditional = false;
37   llvm::BasicBlock *ContBlock = nullptr;
38 
39 public:
40   NVPTXActionTy(llvm::FunctionCallee EnterCallee,
41                 ArrayRef<llvm::Value *> EnterArgs,
42                 llvm::FunctionCallee ExitCallee,
43                 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
44       : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
45         ExitArgs(ExitArgs), Conditional(Conditional) {}
46   void Enter(CodeGenFunction &CGF) override {
47     llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
48     if (Conditional) {
49       llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
50       auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
51       ContBlock = CGF.createBasicBlock("omp_if.end");
52       // Generate the branch (If-stmt)
53       CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
54       CGF.EmitBlock(ThenBlock);
55     }
56   }
57   void Done(CodeGenFunction &CGF) {
58     // Emit the rest of blocks/branches
59     CGF.EmitBranch(ContBlock);
60     CGF.EmitBlock(ContBlock, true);
61   }
62   void Exit(CodeGenFunction &CGF) override {
63     CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
64   }
65 };
66 
67 /// A class to track the execution mode when codegening directives within
68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
69 /// to the target region and used by containing directives such as 'parallel'
70 /// to emit optimized code.
71 class ExecutionRuntimeModesRAII {
72 private:
73   CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
74       CGOpenMPRuntimeGPU::EM_Unknown;
75   CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
76   bool SavedRuntimeMode = false;
77   bool *RuntimeMode = nullptr;
78 
79 public:
80   /// Constructor for Non-SPMD mode.
81   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
82       : ExecMode(ExecMode) {
83     SavedExecMode = ExecMode;
84     ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
85   }
86   /// Constructor for SPMD mode.
87   ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
88                             bool &RuntimeMode, bool FullRuntimeMode)
89       : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
90     SavedExecMode = ExecMode;
91     SavedRuntimeMode = RuntimeMode;
92     ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
93     RuntimeMode = FullRuntimeMode;
94   }
95   ~ExecutionRuntimeModesRAII() {
96     ExecMode = SavedExecMode;
97     if (RuntimeMode)
98       *RuntimeMode = SavedRuntimeMode;
99   }
100 };
101 
102 /// GPU Configuration:  This information can be derived from cuda registers,
103 /// however, providing compile time constants helps generate more efficient
104 /// code.  For all practical purposes this is fine because the configuration
105 /// is the same for all known NVPTX architectures.
106 enum MachineConfiguration : unsigned {
107   /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
108   /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
109 
110   /// Global memory alignment for performance.
111   GlobalMemoryAlignment = 128,
112 
113   /// Maximal size of the shared memory buffer.
114   SharedMemorySize = 128,
115 };
116 
117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
118   RefExpr = RefExpr->IgnoreParens();
119   if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
120     const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
121     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
122       Base = TempASE->getBase()->IgnoreParenImpCasts();
123     RefExpr = Base;
124   } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
125     const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
126     while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
127       Base = TempOASE->getBase()->IgnoreParenImpCasts();
128     while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
129       Base = TempASE->getBase()->IgnoreParenImpCasts();
130     RefExpr = Base;
131   }
132   RefExpr = RefExpr->IgnoreParenImpCasts();
133   if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
134     return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
135   const auto *ME = cast<MemberExpr>(RefExpr);
136   return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
137 }
138 
139 
140 static RecordDecl *buildRecordForGlobalizedVars(
141     ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
142     ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
143     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
144         &MappedDeclsFields, int BufSize) {
145   using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
146   if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
147     return nullptr;
148   SmallVector<VarsDataTy, 4> GlobalizedVars;
149   for (const ValueDecl *D : EscapedDecls)
150     GlobalizedVars.emplace_back(
151         CharUnits::fromQuantity(std::max(
152             C.getDeclAlign(D).getQuantity(),
153             static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
154         D);
155   for (const ValueDecl *D : EscapedDeclsForTeams)
156     GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
157   llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
158     return L.first > R.first;
159   });
160 
161   // Build struct _globalized_locals_ty {
162   //         /*  globalized vars  */[WarSize] align (max(decl_align,
163   //         GlobalMemoryAlignment))
164   //         /*  globalized vars  */ for EscapedDeclsForTeams
165   //       };
166   RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
167   GlobalizedRD->startDefinition();
168   llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
169       EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
170   for (const auto &Pair : GlobalizedVars) {
171     const ValueDecl *VD = Pair.second;
172     QualType Type = VD->getType();
173     if (Type->isLValueReferenceType())
174       Type = C.getPointerType(Type.getNonReferenceType());
175     else
176       Type = Type.getNonReferenceType();
177     SourceLocation Loc = VD->getLocation();
178     FieldDecl *Field;
179     if (SingleEscaped.count(VD)) {
180       Field = FieldDecl::Create(
181           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
182           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
183           /*BW=*/nullptr, /*Mutable=*/false,
184           /*InitStyle=*/ICIS_NoInit);
185       Field->setAccess(AS_public);
186       if (VD->hasAttrs()) {
187         for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
188              E(VD->getAttrs().end());
189              I != E; ++I)
190           Field->addAttr(*I);
191       }
192     } else {
193       llvm::APInt ArraySize(32, BufSize);
194       Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
195                                     0);
196       Field = FieldDecl::Create(
197           C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
198           C.getTrivialTypeSourceInfo(Type, SourceLocation()),
199           /*BW=*/nullptr, /*Mutable=*/false,
200           /*InitStyle=*/ICIS_NoInit);
201       Field->setAccess(AS_public);
202       llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
203                                      static_cast<CharUnits::QuantityType>(
204                                          GlobalMemoryAlignment)));
205       Field->addAttr(AlignedAttr::CreateImplicit(
206           C, /*IsAlignmentExpr=*/true,
207           IntegerLiteral::Create(C, Align,
208                                  C.getIntTypeForBitwidth(32, /*Signed=*/0),
209                                  SourceLocation()),
210           {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
211     }
212     GlobalizedRD->addDecl(Field);
213     MappedDeclsFields.try_emplace(VD, Field);
214   }
215   GlobalizedRD->completeDefinition();
216   return GlobalizedRD;
217 }
218 
219 /// Get the list of variables that can escape their declaration context.
220 class CheckVarsEscapingDeclContext final
221     : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
222   CodeGenFunction &CGF;
223   llvm::SetVector<const ValueDecl *> EscapedDecls;
224   llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
225   llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
226   RecordDecl *GlobalizedRD = nullptr;
227   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
228   bool AllEscaped = false;
229   bool IsForCombinedParallelRegion = false;
230 
231   void markAsEscaped(const ValueDecl *VD) {
232     // Do not globalize declare target variables.
233     if (!isa<VarDecl>(VD) ||
234         OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
235       return;
236     VD = cast<ValueDecl>(VD->getCanonicalDecl());
237     // Use user-specified allocation.
238     if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
239       return;
240     // Variables captured by value must be globalized.
241     if (auto *CSI = CGF.CapturedStmtInfo) {
242       if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
243         // Check if need to capture the variable that was already captured by
244         // value in the outer region.
245         if (!IsForCombinedParallelRegion) {
246           if (!FD->hasAttrs())
247             return;
248           const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
249           if (!Attr)
250             return;
251           if (((Attr->getCaptureKind() != OMPC_map) &&
252                !isOpenMPPrivate(Attr->getCaptureKind())) ||
253               ((Attr->getCaptureKind() == OMPC_map) &&
254                !FD->getType()->isAnyPointerType()))
255             return;
256         }
257         if (!FD->getType()->isReferenceType()) {
258           assert(!VD->getType()->isVariablyModifiedType() &&
259                  "Parameter captured by value with variably modified type");
260           EscapedParameters.insert(VD);
261         } else if (!IsForCombinedParallelRegion) {
262           return;
263         }
264       }
265     }
266     if ((!CGF.CapturedStmtInfo ||
267          (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
268         VD->getType()->isReferenceType())
269       // Do not globalize variables with reference type.
270       return;
271     if (VD->getType()->isVariablyModifiedType())
272       EscapedVariableLengthDecls.insert(VD);
273     else
274       EscapedDecls.insert(VD);
275   }
276 
277   void VisitValueDecl(const ValueDecl *VD) {
278     if (VD->getType()->isLValueReferenceType())
279       markAsEscaped(VD);
280     if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
281       if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
282         const bool SavedAllEscaped = AllEscaped;
283         AllEscaped = VD->getType()->isLValueReferenceType();
284         Visit(VarD->getInit());
285         AllEscaped = SavedAllEscaped;
286       }
287     }
288   }
289   void VisitOpenMPCapturedStmt(const CapturedStmt *S,
290                                ArrayRef<OMPClause *> Clauses,
291                                bool IsCombinedParallelRegion) {
292     if (!S)
293       return;
294     for (const CapturedStmt::Capture &C : S->captures()) {
295       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
296         const ValueDecl *VD = C.getCapturedVar();
297         bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
298         if (IsCombinedParallelRegion) {
299           // Check if the variable is privatized in the combined construct and
300           // those private copies must be shared in the inner parallel
301           // directive.
302           IsForCombinedParallelRegion = false;
303           for (const OMPClause *C : Clauses) {
304             if (!isOpenMPPrivate(C->getClauseKind()) ||
305                 C->getClauseKind() == OMPC_reduction ||
306                 C->getClauseKind() == OMPC_linear ||
307                 C->getClauseKind() == OMPC_private)
308               continue;
309             ArrayRef<const Expr *> Vars;
310             if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
311               Vars = PC->getVarRefs();
312             else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
313               Vars = PC->getVarRefs();
314             else
315               llvm_unreachable("Unexpected clause.");
316             for (const auto *E : Vars) {
317               const Decl *D =
318                   cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
319               if (D == VD->getCanonicalDecl()) {
320                 IsForCombinedParallelRegion = true;
321                 break;
322               }
323             }
324             if (IsForCombinedParallelRegion)
325               break;
326           }
327         }
328         markAsEscaped(VD);
329         if (isa<OMPCapturedExprDecl>(VD))
330           VisitValueDecl(VD);
331         IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
332       }
333     }
334   }
335 
336   void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
337     assert(!GlobalizedRD &&
338            "Record for globalized variables is built already.");
339     ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
340     unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
341     if (IsInTTDRegion)
342       EscapedDeclsForTeams = EscapedDecls.getArrayRef();
343     else
344       EscapedDeclsForParallel = EscapedDecls.getArrayRef();
345     GlobalizedRD = ::buildRecordForGlobalizedVars(
346         CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
347         MappedDeclsFields, WarpSize);
348   }
349 
350 public:
351   CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
352                                ArrayRef<const ValueDecl *> TeamsReductions)
353       : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
354   }
355   virtual ~CheckVarsEscapingDeclContext() = default;
356   void VisitDeclStmt(const DeclStmt *S) {
357     if (!S)
358       return;
359     for (const Decl *D : S->decls())
360       if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
361         VisitValueDecl(VD);
362   }
363   void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
364     if (!D)
365       return;
366     if (!D->hasAssociatedStmt())
367       return;
368     if (const auto *S =
369             dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
370       // Do not analyze directives that do not actually require capturing,
371       // like `omp for` or `omp simd` directives.
372       llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
373       getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
374       if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
375         VisitStmt(S->getCapturedStmt());
376         return;
377       }
378       VisitOpenMPCapturedStmt(
379           S, D->clauses(),
380           CaptureRegions.back() == OMPD_parallel &&
381               isOpenMPDistributeDirective(D->getDirectiveKind()));
382     }
383   }
384   void VisitCapturedStmt(const CapturedStmt *S) {
385     if (!S)
386       return;
387     for (const CapturedStmt::Capture &C : S->captures()) {
388       if (C.capturesVariable() && !C.capturesVariableByCopy()) {
389         const ValueDecl *VD = C.getCapturedVar();
390         markAsEscaped(VD);
391         if (isa<OMPCapturedExprDecl>(VD))
392           VisitValueDecl(VD);
393       }
394     }
395   }
396   void VisitLambdaExpr(const LambdaExpr *E) {
397     if (!E)
398       return;
399     for (const LambdaCapture &C : E->captures()) {
400       if (C.capturesVariable()) {
401         if (C.getCaptureKind() == LCK_ByRef) {
402           const ValueDecl *VD = C.getCapturedVar();
403           markAsEscaped(VD);
404           if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
405             VisitValueDecl(VD);
406         }
407       }
408     }
409   }
410   void VisitBlockExpr(const BlockExpr *E) {
411     if (!E)
412       return;
413     for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
414       if (C.isByRef()) {
415         const VarDecl *VD = C.getVariable();
416         markAsEscaped(VD);
417         if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
418           VisitValueDecl(VD);
419       }
420     }
421   }
422   void VisitCallExpr(const CallExpr *E) {
423     if (!E)
424       return;
425     for (const Expr *Arg : E->arguments()) {
426       if (!Arg)
427         continue;
428       if (Arg->isLValue()) {
429         const bool SavedAllEscaped = AllEscaped;
430         AllEscaped = true;
431         Visit(Arg);
432         AllEscaped = SavedAllEscaped;
433       } else {
434         Visit(Arg);
435       }
436     }
437     Visit(E->getCallee());
438   }
439   void VisitDeclRefExpr(const DeclRefExpr *E) {
440     if (!E)
441       return;
442     const ValueDecl *VD = E->getDecl();
443     if (AllEscaped)
444       markAsEscaped(VD);
445     if (isa<OMPCapturedExprDecl>(VD))
446       VisitValueDecl(VD);
447     else if (const auto *VarD = dyn_cast<VarDecl>(VD))
448       if (VarD->isInitCapture())
449         VisitValueDecl(VD);
450   }
451   void VisitUnaryOperator(const UnaryOperator *E) {
452     if (!E)
453       return;
454     if (E->getOpcode() == UO_AddrOf) {
455       const bool SavedAllEscaped = AllEscaped;
456       AllEscaped = true;
457       Visit(E->getSubExpr());
458       AllEscaped = SavedAllEscaped;
459     } else {
460       Visit(E->getSubExpr());
461     }
462   }
463   void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
464     if (!E)
465       return;
466     if (E->getCastKind() == CK_ArrayToPointerDecay) {
467       const bool SavedAllEscaped = AllEscaped;
468       AllEscaped = true;
469       Visit(E->getSubExpr());
470       AllEscaped = SavedAllEscaped;
471     } else {
472       Visit(E->getSubExpr());
473     }
474   }
475   void VisitExpr(const Expr *E) {
476     if (!E)
477       return;
478     bool SavedAllEscaped = AllEscaped;
479     if (!E->isLValue())
480       AllEscaped = false;
481     for (const Stmt *Child : E->children())
482       if (Child)
483         Visit(Child);
484     AllEscaped = SavedAllEscaped;
485   }
486   void VisitStmt(const Stmt *S) {
487     if (!S)
488       return;
489     for (const Stmt *Child : S->children())
490       if (Child)
491         Visit(Child);
492   }
493 
494   /// Returns the record that handles all the escaped local variables and used
495   /// instead of their original storage.
496   const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
497     if (!GlobalizedRD)
498       buildRecordForGlobalizedVars(IsInTTDRegion);
499     return GlobalizedRD;
500   }
501 
502   /// Returns the field in the globalized record for the escaped variable.
503   const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
504     assert(GlobalizedRD &&
505            "Record for globalized variables must be generated already.");
506     auto I = MappedDeclsFields.find(VD);
507     if (I == MappedDeclsFields.end())
508       return nullptr;
509     return I->getSecond();
510   }
511 
512   /// Returns the list of the escaped local variables/parameters.
513   ArrayRef<const ValueDecl *> getEscapedDecls() const {
514     return EscapedDecls.getArrayRef();
515   }
516 
517   /// Checks if the escaped local variable is actually a parameter passed by
518   /// value.
519   const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
520     return EscapedParameters;
521   }
522 
523   /// Returns the list of the escaped variables with the variably modified
524   /// types.
525   ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
526     return EscapedVariableLengthDecls.getArrayRef();
527   }
528 };
529 } // anonymous namespace
530 
531 /// Get the id of the warp in the block.
532 /// We assume that the warp size is 32, which is always the case
533 /// on the NVPTX device, to generate more efficient code.
534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
535   CGBuilderTy &Bld = CGF.Builder;
536   unsigned LaneIDBits =
537       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
538   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
539   return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
540 }
541 
542 /// Get the id of the current lane in the Warp.
543 /// We assume that the warp size is 32, which is always the case
544 /// on the NVPTX device, to generate more efficient code.
545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
546   CGBuilderTy &Bld = CGF.Builder;
547   unsigned LaneIDBits =
548       llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
549   unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
550   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
551   return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
552                        "nvptx_lane_id");
553 }
554 
555 CGOpenMPRuntimeGPU::ExecutionMode
556 CGOpenMPRuntimeGPU::getExecutionMode() const {
557   return CurrentExecutionMode;
558 }
559 
560 static CGOpenMPRuntimeGPU::DataSharingMode
561 getDataSharingMode(CodeGenModule &CGM) {
562   return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
563                                           : CGOpenMPRuntimeGPU::Generic;
564 }
565 
566 /// Check for inner (nested) SPMD construct, if any
567 static bool hasNestedSPMDDirective(ASTContext &Ctx,
568                                    const OMPExecutableDirective &D) {
569   const auto *CS = D.getInnermostCapturedStmt();
570   const auto *Body =
571       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
572   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
573 
574   if (const auto *NestedDir =
575           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
576     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
577     switch (D.getDirectiveKind()) {
578     case OMPD_target:
579       if (isOpenMPParallelDirective(DKind))
580         return true;
581       if (DKind == OMPD_teams) {
582         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
583             /*IgnoreCaptured=*/true);
584         if (!Body)
585           return false;
586         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
587         if (const auto *NND =
588                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
589           DKind = NND->getDirectiveKind();
590           if (isOpenMPParallelDirective(DKind))
591             return true;
592         }
593       }
594       return false;
595     case OMPD_target_teams:
596       return isOpenMPParallelDirective(DKind);
597     case OMPD_target_simd:
598     case OMPD_target_parallel:
599     case OMPD_target_parallel_for:
600     case OMPD_target_parallel_for_simd:
601     case OMPD_target_teams_distribute:
602     case OMPD_target_teams_distribute_simd:
603     case OMPD_target_teams_distribute_parallel_for:
604     case OMPD_target_teams_distribute_parallel_for_simd:
605     case OMPD_parallel:
606     case OMPD_for:
607     case OMPD_parallel_for:
608     case OMPD_parallel_master:
609     case OMPD_parallel_sections:
610     case OMPD_for_simd:
611     case OMPD_parallel_for_simd:
612     case OMPD_cancel:
613     case OMPD_cancellation_point:
614     case OMPD_ordered:
615     case OMPD_threadprivate:
616     case OMPD_allocate:
617     case OMPD_task:
618     case OMPD_simd:
619     case OMPD_sections:
620     case OMPD_section:
621     case OMPD_single:
622     case OMPD_master:
623     case OMPD_critical:
624     case OMPD_taskyield:
625     case OMPD_barrier:
626     case OMPD_taskwait:
627     case OMPD_taskgroup:
628     case OMPD_atomic:
629     case OMPD_flush:
630     case OMPD_depobj:
631     case OMPD_scan:
632     case OMPD_teams:
633     case OMPD_target_data:
634     case OMPD_target_exit_data:
635     case OMPD_target_enter_data:
636     case OMPD_distribute:
637     case OMPD_distribute_simd:
638     case OMPD_distribute_parallel_for:
639     case OMPD_distribute_parallel_for_simd:
640     case OMPD_teams_distribute:
641     case OMPD_teams_distribute_simd:
642     case OMPD_teams_distribute_parallel_for:
643     case OMPD_teams_distribute_parallel_for_simd:
644     case OMPD_target_update:
645     case OMPD_declare_simd:
646     case OMPD_declare_variant:
647     case OMPD_begin_declare_variant:
648     case OMPD_end_declare_variant:
649     case OMPD_declare_target:
650     case OMPD_end_declare_target:
651     case OMPD_declare_reduction:
652     case OMPD_declare_mapper:
653     case OMPD_taskloop:
654     case OMPD_taskloop_simd:
655     case OMPD_master_taskloop:
656     case OMPD_master_taskloop_simd:
657     case OMPD_parallel_master_taskloop:
658     case OMPD_parallel_master_taskloop_simd:
659     case OMPD_requires:
660     case OMPD_unknown:
661     default:
662       llvm_unreachable("Unexpected directive.");
663     }
664   }
665 
666   return false;
667 }
668 
669 static bool supportsSPMDExecutionMode(ASTContext &Ctx,
670                                       const OMPExecutableDirective &D) {
671   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
672   switch (DirectiveKind) {
673   case OMPD_target:
674   case OMPD_target_teams:
675     return hasNestedSPMDDirective(Ctx, D);
676   case OMPD_target_parallel:
677   case OMPD_target_parallel_for:
678   case OMPD_target_parallel_for_simd:
679   case OMPD_target_teams_distribute_parallel_for:
680   case OMPD_target_teams_distribute_parallel_for_simd:
681   case OMPD_target_simd:
682   case OMPD_target_teams_distribute_simd:
683     return true;
684   case OMPD_target_teams_distribute:
685     return false;
686   case OMPD_parallel:
687   case OMPD_for:
688   case OMPD_parallel_for:
689   case OMPD_parallel_master:
690   case OMPD_parallel_sections:
691   case OMPD_for_simd:
692   case OMPD_parallel_for_simd:
693   case OMPD_cancel:
694   case OMPD_cancellation_point:
695   case OMPD_ordered:
696   case OMPD_threadprivate:
697   case OMPD_allocate:
698   case OMPD_task:
699   case OMPD_simd:
700   case OMPD_sections:
701   case OMPD_section:
702   case OMPD_single:
703   case OMPD_master:
704   case OMPD_critical:
705   case OMPD_taskyield:
706   case OMPD_barrier:
707   case OMPD_taskwait:
708   case OMPD_taskgroup:
709   case OMPD_atomic:
710   case OMPD_flush:
711   case OMPD_depobj:
712   case OMPD_scan:
713   case OMPD_teams:
714   case OMPD_target_data:
715   case OMPD_target_exit_data:
716   case OMPD_target_enter_data:
717   case OMPD_distribute:
718   case OMPD_distribute_simd:
719   case OMPD_distribute_parallel_for:
720   case OMPD_distribute_parallel_for_simd:
721   case OMPD_teams_distribute:
722   case OMPD_teams_distribute_simd:
723   case OMPD_teams_distribute_parallel_for:
724   case OMPD_teams_distribute_parallel_for_simd:
725   case OMPD_target_update:
726   case OMPD_declare_simd:
727   case OMPD_declare_variant:
728   case OMPD_begin_declare_variant:
729   case OMPD_end_declare_variant:
730   case OMPD_declare_target:
731   case OMPD_end_declare_target:
732   case OMPD_declare_reduction:
733   case OMPD_declare_mapper:
734   case OMPD_taskloop:
735   case OMPD_taskloop_simd:
736   case OMPD_master_taskloop:
737   case OMPD_master_taskloop_simd:
738   case OMPD_parallel_master_taskloop:
739   case OMPD_parallel_master_taskloop_simd:
740   case OMPD_requires:
741   case OMPD_unknown:
742   default:
743     break;
744   }
745   llvm_unreachable(
746       "Unknown programming model for OpenMP directive on NVPTX target.");
747 }
748 
749 /// Check if the directive is loops based and has schedule clause at all or has
750 /// static scheduling.
751 static bool hasStaticScheduling(const OMPExecutableDirective &D) {
752   assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
753          isOpenMPLoopDirective(D.getDirectiveKind()) &&
754          "Expected loop-based directive.");
755   return !D.hasClausesOfKind<OMPOrderedClause>() &&
756          (!D.hasClausesOfKind<OMPScheduleClause>() ||
757           llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
758                        [](const OMPScheduleClause *C) {
759                          return C->getScheduleKind() == OMPC_SCHEDULE_static;
760                        }));
761 }
762 
763 /// Check for inner (nested) lightweight runtime construct, if any
764 static bool hasNestedLightweightDirective(ASTContext &Ctx,
765                                           const OMPExecutableDirective &D) {
766   assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
767   const auto *CS = D.getInnermostCapturedStmt();
768   const auto *Body =
769       CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
770   const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
771 
772   if (const auto *NestedDir =
773           dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
774     OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
775     switch (D.getDirectiveKind()) {
776     case OMPD_target:
777       if (isOpenMPParallelDirective(DKind) &&
778           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
779           hasStaticScheduling(*NestedDir))
780         return true;
781       if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
782         return true;
783       if (DKind == OMPD_parallel) {
784         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
785             /*IgnoreCaptured=*/true);
786         if (!Body)
787           return false;
788         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
789         if (const auto *NND =
790                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
791           DKind = NND->getDirectiveKind();
792           if (isOpenMPWorksharingDirective(DKind) &&
793               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
794             return true;
795         }
796       } else if (DKind == OMPD_teams) {
797         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
798             /*IgnoreCaptured=*/true);
799         if (!Body)
800           return false;
801         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
802         if (const auto *NND =
803                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
804           DKind = NND->getDirectiveKind();
805           if (isOpenMPParallelDirective(DKind) &&
806               isOpenMPWorksharingDirective(DKind) &&
807               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
808             return true;
809           if (DKind == OMPD_parallel) {
810             Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
811                 /*IgnoreCaptured=*/true);
812             if (!Body)
813               return false;
814             ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
815             if (const auto *NND =
816                     dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
817               DKind = NND->getDirectiveKind();
818               if (isOpenMPWorksharingDirective(DKind) &&
819                   isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
820                 return true;
821             }
822           }
823         }
824       }
825       return false;
826     case OMPD_target_teams:
827       if (isOpenMPParallelDirective(DKind) &&
828           isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
829           hasStaticScheduling(*NestedDir))
830         return true;
831       if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
832         return true;
833       if (DKind == OMPD_parallel) {
834         Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
835             /*IgnoreCaptured=*/true);
836         if (!Body)
837           return false;
838         ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
839         if (const auto *NND =
840                 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
841           DKind = NND->getDirectiveKind();
842           if (isOpenMPWorksharingDirective(DKind) &&
843               isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
844             return true;
845         }
846       }
847       return false;
848     case OMPD_target_parallel:
849       if (DKind == OMPD_simd)
850         return true;
851       return isOpenMPWorksharingDirective(DKind) &&
852              isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
853     case OMPD_target_teams_distribute:
854     case OMPD_target_simd:
855     case OMPD_target_parallel_for:
856     case OMPD_target_parallel_for_simd:
857     case OMPD_target_teams_distribute_simd:
858     case OMPD_target_teams_distribute_parallel_for:
859     case OMPD_target_teams_distribute_parallel_for_simd:
860     case OMPD_parallel:
861     case OMPD_for:
862     case OMPD_parallel_for:
863     case OMPD_parallel_master:
864     case OMPD_parallel_sections:
865     case OMPD_for_simd:
866     case OMPD_parallel_for_simd:
867     case OMPD_cancel:
868     case OMPD_cancellation_point:
869     case OMPD_ordered:
870     case OMPD_threadprivate:
871     case OMPD_allocate:
872     case OMPD_task:
873     case OMPD_simd:
874     case OMPD_sections:
875     case OMPD_section:
876     case OMPD_single:
877     case OMPD_master:
878     case OMPD_critical:
879     case OMPD_taskyield:
880     case OMPD_barrier:
881     case OMPD_taskwait:
882     case OMPD_taskgroup:
883     case OMPD_atomic:
884     case OMPD_flush:
885     case OMPD_depobj:
886     case OMPD_scan:
887     case OMPD_teams:
888     case OMPD_target_data:
889     case OMPD_target_exit_data:
890     case OMPD_target_enter_data:
891     case OMPD_distribute:
892     case OMPD_distribute_simd:
893     case OMPD_distribute_parallel_for:
894     case OMPD_distribute_parallel_for_simd:
895     case OMPD_teams_distribute:
896     case OMPD_teams_distribute_simd:
897     case OMPD_teams_distribute_parallel_for:
898     case OMPD_teams_distribute_parallel_for_simd:
899     case OMPD_target_update:
900     case OMPD_declare_simd:
901     case OMPD_declare_variant:
902     case OMPD_begin_declare_variant:
903     case OMPD_end_declare_variant:
904     case OMPD_declare_target:
905     case OMPD_end_declare_target:
906     case OMPD_declare_reduction:
907     case OMPD_declare_mapper:
908     case OMPD_taskloop:
909     case OMPD_taskloop_simd:
910     case OMPD_master_taskloop:
911     case OMPD_master_taskloop_simd:
912     case OMPD_parallel_master_taskloop:
913     case OMPD_parallel_master_taskloop_simd:
914     case OMPD_requires:
915     case OMPD_unknown:
916     default:
917       llvm_unreachable("Unexpected directive.");
918     }
919   }
920 
921   return false;
922 }
923 
924 /// Checks if the construct supports lightweight runtime. It must be SPMD
925 /// construct + inner loop-based construct with static scheduling.
926 static bool supportsLightweightRuntime(ASTContext &Ctx,
927                                        const OMPExecutableDirective &D) {
928   if (!supportsSPMDExecutionMode(Ctx, D))
929     return false;
930   OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
931   switch (DirectiveKind) {
932   case OMPD_target:
933   case OMPD_target_teams:
934   case OMPD_target_parallel:
935     return hasNestedLightweightDirective(Ctx, D);
936   case OMPD_target_parallel_for:
937   case OMPD_target_parallel_for_simd:
938   case OMPD_target_teams_distribute_parallel_for:
939   case OMPD_target_teams_distribute_parallel_for_simd:
940     // (Last|First)-privates must be shared in parallel region.
941     return hasStaticScheduling(D);
942   case OMPD_target_simd:
943   case OMPD_target_teams_distribute_simd:
944     return true;
945   case OMPD_target_teams_distribute:
946     return false;
947   case OMPD_parallel:
948   case OMPD_for:
949   case OMPD_parallel_for:
950   case OMPD_parallel_master:
951   case OMPD_parallel_sections:
952   case OMPD_for_simd:
953   case OMPD_parallel_for_simd:
954   case OMPD_cancel:
955   case OMPD_cancellation_point:
956   case OMPD_ordered:
957   case OMPD_threadprivate:
958   case OMPD_allocate:
959   case OMPD_task:
960   case OMPD_simd:
961   case OMPD_sections:
962   case OMPD_section:
963   case OMPD_single:
964   case OMPD_master:
965   case OMPD_critical:
966   case OMPD_taskyield:
967   case OMPD_barrier:
968   case OMPD_taskwait:
969   case OMPD_taskgroup:
970   case OMPD_atomic:
971   case OMPD_flush:
972   case OMPD_depobj:
973   case OMPD_scan:
974   case OMPD_teams:
975   case OMPD_target_data:
976   case OMPD_target_exit_data:
977   case OMPD_target_enter_data:
978   case OMPD_distribute:
979   case OMPD_distribute_simd:
980   case OMPD_distribute_parallel_for:
981   case OMPD_distribute_parallel_for_simd:
982   case OMPD_teams_distribute:
983   case OMPD_teams_distribute_simd:
984   case OMPD_teams_distribute_parallel_for:
985   case OMPD_teams_distribute_parallel_for_simd:
986   case OMPD_target_update:
987   case OMPD_declare_simd:
988   case OMPD_declare_variant:
989   case OMPD_begin_declare_variant:
990   case OMPD_end_declare_variant:
991   case OMPD_declare_target:
992   case OMPD_end_declare_target:
993   case OMPD_declare_reduction:
994   case OMPD_declare_mapper:
995   case OMPD_taskloop:
996   case OMPD_taskloop_simd:
997   case OMPD_master_taskloop:
998   case OMPD_master_taskloop_simd:
999   case OMPD_parallel_master_taskloop:
1000   case OMPD_parallel_master_taskloop_simd:
1001   case OMPD_requires:
1002   case OMPD_unknown:
1003   default:
1004     break;
1005   }
1006   llvm_unreachable(
1007       "Unknown programming model for OpenMP directive on NVPTX target.");
1008 }
1009 
1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
1011                                              StringRef ParentName,
1012                                              llvm::Function *&OutlinedFn,
1013                                              llvm::Constant *&OutlinedFnID,
1014                                              bool IsOffloadEntry,
1015                                              const RegionCodeGenTy &CodeGen) {
1016   ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
1017   EntryFunctionState EST;
1018   WrapperFunctionsMap.clear();
1019 
1020   // Emit target region as a standalone region.
1021   class NVPTXPrePostActionTy : public PrePostActionTy {
1022     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1023 
1024   public:
1025     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1026         : EST(EST) {}
1027     void Enter(CodeGenFunction &CGF) override {
1028       auto &RT =
1029           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1030       RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
1031       // Skip target region initialization.
1032       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1033     }
1034     void Exit(CodeGenFunction &CGF) override {
1035       auto &RT =
1036           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1037       RT.clearLocThreadIdInsertPt(CGF);
1038       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
1039     }
1040   } Action(EST);
1041   CodeGen.setAction(Action);
1042   IsInTTDRegion = true;
1043   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1044                                    IsOffloadEntry, CodeGen);
1045   IsInTTDRegion = false;
1046 }
1047 
1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
1049                                         EntryFunctionState &EST, bool IsSPMD) {
1050   CGBuilderTy &Bld = CGF.Builder;
1051   Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
1052   IsInTargetMasterThreadRegion = IsSPMD;
1053   if (!IsSPMD)
1054     emitGenericVarsProlog(CGF, EST.Loc);
1055 }
1056 
1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
1058                                           EntryFunctionState &EST,
1059                                           bool IsSPMD) {
1060   if (!IsSPMD)
1061     emitGenericVarsEpilog(CGF);
1062 
1063   CGBuilderTy &Bld = CGF.Builder;
1064   OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
1065 }
1066 
1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
1068                                           StringRef ParentName,
1069                                           llvm::Function *&OutlinedFn,
1070                                           llvm::Constant *&OutlinedFnID,
1071                                           bool IsOffloadEntry,
1072                                           const RegionCodeGenTy &CodeGen) {
1073   ExecutionRuntimeModesRAII ModeRAII(
1074       CurrentExecutionMode, RequiresFullRuntime,
1075       CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
1076           !supportsLightweightRuntime(CGM.getContext(), D));
1077   EntryFunctionState EST;
1078 
1079   // Emit target region as a standalone region.
1080   class NVPTXPrePostActionTy : public PrePostActionTy {
1081     CGOpenMPRuntimeGPU &RT;
1082     CGOpenMPRuntimeGPU::EntryFunctionState &EST;
1083 
1084   public:
1085     NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
1086                          CGOpenMPRuntimeGPU::EntryFunctionState &EST)
1087         : RT(RT), EST(EST) {}
1088     void Enter(CodeGenFunction &CGF) override {
1089       RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
1090       // Skip target region initialization.
1091       RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
1092     }
1093     void Exit(CodeGenFunction &CGF) override {
1094       RT.clearLocThreadIdInsertPt(CGF);
1095       RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
1096     }
1097   } Action(*this, EST);
1098   CodeGen.setAction(Action);
1099   IsInTTDRegion = true;
1100   emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
1101                                    IsOffloadEntry, CodeGen);
1102   IsInTTDRegion = false;
1103 }
1104 
1105 // Create a unique global variable to indicate the execution mode of this target
1106 // region. The execution mode is either 'generic', or 'spmd' depending on the
1107 // target directive. This variable is picked up by the offload library to setup
1108 // the device appropriately before kernel launch. If the execution mode is
1109 // 'generic', the runtime reserves one warp for the master, otherwise, all
1110 // warps participate in parallel work.
1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
1112                                      bool Mode) {
1113   auto *GVMode = new llvm::GlobalVariable(
1114       CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
1115       llvm::GlobalValue::WeakAnyLinkage,
1116       llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
1117                                               : OMP_TGT_EXEC_MODE_GENERIC),
1118       Twine(Name, "_exec_mode"));
1119   CGM.addCompilerUsedGlobal(GVMode);
1120 }
1121 
1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
1123                                               llvm::Constant *Addr,
1124                                               uint64_t Size, int32_t,
1125                                               llvm::GlobalValue::LinkageTypes) {
1126   // TODO: Add support for global variables on the device after declare target
1127   // support.
1128   llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
1129   if (!Fn)
1130     return;
1131 
1132   llvm::Module &M = CGM.getModule();
1133   llvm::LLVMContext &Ctx = CGM.getLLVMContext();
1134 
1135   // Get "nvvm.annotations" metadata node.
1136   llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
1137 
1138   llvm::Metadata *MDVals[] = {
1139       llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
1140       llvm::ConstantAsMetadata::get(
1141           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
1142   // Append metadata to nvvm.annotations.
1143   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
1144 
1145   // Add a function attribute for the kernel.
1146   Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
1147 }
1148 
1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
1150     const OMPExecutableDirective &D, StringRef ParentName,
1151     llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
1152     bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
1153   if (!IsOffloadEntry) // Nothing to do.
1154     return;
1155 
1156   assert(!ParentName.empty() && "Invalid target region parent name!");
1157 
1158   bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
1159   if (Mode)
1160     emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1161                    CodeGen);
1162   else
1163     emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
1164                       CodeGen);
1165 
1166   setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
1167 }
1168 
1169 namespace {
1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
1171 /// Enum for accesseing the reserved_2 field of the ident_t struct.
1172 enum ModeFlagsTy : unsigned {
1173   /// Bit set to 1 when in SPMD mode.
1174   KMP_IDENT_SPMD_MODE = 0x01,
1175   /// Bit set to 1 when a simplified runtime is used.
1176   KMP_IDENT_SIMPLE_RT_MODE = 0x02,
1177   LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
1178 };
1179 
1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
1181 static const ModeFlagsTy UndefinedMode =
1182     (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
1183 } // anonymous namespace
1184 
1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
1186   switch (getExecutionMode()) {
1187   case EM_SPMD:
1188     if (requiresFullRuntime())
1189       return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
1190     return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
1191   case EM_NonSPMD:
1192     assert(requiresFullRuntime() && "Expected full runtime.");
1193     return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
1194   case EM_Unknown:
1195     return UndefinedMode;
1196   }
1197   llvm_unreachable("Unknown flags are requested.");
1198 }
1199 
1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
1201     : CGOpenMPRuntime(CGM, "_", "$") {
1202   if (!CGM.getLangOpts().OpenMPIsDevice)
1203     llvm_unreachable("OpenMP can only handle device code.");
1204 
1205   llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
1206   if (!CGM.getLangOpts().OMPHostIRFile.empty()) {
1207     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
1208                                 "__omp_rtl_debug_kind");
1209     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
1210                                 "__omp_rtl_assume_teams_oversubscription");
1211     OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
1212                                 "__omp_rtl_assume_threads_oversubscription");
1213   }
1214 }
1215 
1216 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
1217                                               ProcBindKind ProcBind,
1218                                               SourceLocation Loc) {
1219   // Do nothing in case of SPMD mode and L0 parallel.
1220   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
1221     return;
1222 
1223   CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
1224 }
1225 
1226 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
1227                                                 llvm::Value *NumThreads,
1228                                                 SourceLocation Loc) {
1229   // Nothing to do.
1230 }
1231 
1232 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
1233                                               const Expr *NumTeams,
1234                                               const Expr *ThreadLimit,
1235                                               SourceLocation Loc) {}
1236 
1237 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
1238     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1239     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1240   // Emit target region as a standalone region.
1241   class NVPTXPrePostActionTy : public PrePostActionTy {
1242     bool &IsInParallelRegion;
1243     bool PrevIsInParallelRegion;
1244 
1245   public:
1246     NVPTXPrePostActionTy(bool &IsInParallelRegion)
1247         : IsInParallelRegion(IsInParallelRegion) {}
1248     void Enter(CodeGenFunction &CGF) override {
1249       PrevIsInParallelRegion = IsInParallelRegion;
1250       IsInParallelRegion = true;
1251     }
1252     void Exit(CodeGenFunction &CGF) override {
1253       IsInParallelRegion = PrevIsInParallelRegion;
1254     }
1255   } Action(IsInParallelRegion);
1256   CodeGen.setAction(Action);
1257   bool PrevIsInTTDRegion = IsInTTDRegion;
1258   IsInTTDRegion = false;
1259   bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
1260   IsInTargetMasterThreadRegion = false;
1261   auto *OutlinedFun =
1262       cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
1263           D, ThreadIDVar, InnermostKind, CodeGen));
1264   IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
1265   IsInTTDRegion = PrevIsInTTDRegion;
1266   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
1267       !IsInParallelRegion) {
1268     llvm::Function *WrapperFun =
1269         createParallelDataSharingWrapper(OutlinedFun, D);
1270     WrapperFunctionsMap[OutlinedFun] = WrapperFun;
1271   }
1272 
1273   return OutlinedFun;
1274 }
1275 
1276 /// Get list of lastprivate variables from the teams distribute ... or
1277 /// teams {distribute ...} directives.
1278 static void
1279 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1280                              llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1281   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1282          "expected teams directive.");
1283   const OMPExecutableDirective *Dir = &D;
1284   if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
1285     if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
1286             Ctx,
1287             D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
1288                 /*IgnoreCaptured=*/true))) {
1289       Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
1290       if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
1291         Dir = nullptr;
1292     }
1293   }
1294   if (!Dir)
1295     return;
1296   for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
1297     for (const Expr *E : C->getVarRefs())
1298       Vars.push_back(getPrivateItem(E));
1299   }
1300 }
1301 
1302 /// Get list of reduction variables from the teams ... directives.
1303 static void
1304 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
1305                       llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
1306   assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
1307          "expected teams directive.");
1308   for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
1309     for (const Expr *E : C->privates())
1310       Vars.push_back(getPrivateItem(E));
1311   }
1312 }
1313 
1314 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
1315     const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
1316     OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
1317   SourceLocation Loc = D.getBeginLoc();
1318 
1319   const RecordDecl *GlobalizedRD = nullptr;
1320   llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
1321   llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1322   unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1323   // Globalize team reductions variable unconditionally in all modes.
1324   if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1325     getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1326   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1327     getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1328     if (!LastPrivatesReductions.empty()) {
1329       GlobalizedRD = ::buildRecordForGlobalizedVars(
1330           CGM.getContext(), llvm::None, LastPrivatesReductions,
1331           MappedDeclsFields, WarpSize);
1332     }
1333   } else if (!LastPrivatesReductions.empty()) {
1334     assert(!TeamAndReductions.first &&
1335            "Previous team declaration is not expected.");
1336     TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1337     std::swap(TeamAndReductions.second, LastPrivatesReductions);
1338   }
1339 
1340   // Emit target region as a standalone region.
1341   class NVPTXPrePostActionTy : public PrePostActionTy {
1342     SourceLocation &Loc;
1343     const RecordDecl *GlobalizedRD;
1344     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1345         &MappedDeclsFields;
1346 
1347   public:
1348     NVPTXPrePostActionTy(
1349         SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1350         llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1351             &MappedDeclsFields)
1352         : Loc(Loc), GlobalizedRD(GlobalizedRD),
1353           MappedDeclsFields(MappedDeclsFields) {}
1354     void Enter(CodeGenFunction &CGF) override {
1355       auto &Rt =
1356           static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1357       if (GlobalizedRD) {
1358         auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1359         I->getSecond().MappedParams =
1360             std::make_unique<CodeGenFunction::OMPMapVars>();
1361         DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1362         for (const auto &Pair : MappedDeclsFields) {
1363           assert(Pair.getFirst()->isCanonicalDecl() &&
1364                  "Expected canonical declaration");
1365           Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1366         }
1367       }
1368       Rt.emitGenericVarsProlog(CGF, Loc);
1369     }
1370     void Exit(CodeGenFunction &CGF) override {
1371       static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1372           .emitGenericVarsEpilog(CGF);
1373     }
1374   } Action(Loc, GlobalizedRD, MappedDeclsFields);
1375   CodeGen.setAction(Action);
1376   llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1377       D, ThreadIDVar, InnermostKind, CodeGen);
1378 
1379   return OutlinedFun;
1380 }
1381 
1382 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1383                                                  SourceLocation Loc,
1384                                                  bool WithSPMDCheck) {
1385   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1386       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1387     return;
1388 
1389   CGBuilderTy &Bld = CGF.Builder;
1390 
1391   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1392   if (I == FunctionGlobalizedDecls.end())
1393     return;
1394 
1395   for (auto &Rec : I->getSecond().LocalVarData) {
1396     const auto *VD = cast<VarDecl>(Rec.first);
1397     bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1398     QualType VarTy = VD->getType();
1399 
1400     // Get the local allocation of a firstprivate variable before sharing
1401     llvm::Value *ParValue;
1402     if (EscapedParam) {
1403       LValue ParLVal =
1404           CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1405       ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1406     }
1407 
1408     // Allocate space for the variable to be globalized
1409     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1410     llvm::CallBase *VoidPtr =
1411         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1412                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1413                             AllocArgs, VD->getName());
1414     // FIXME: We should use the variables actual alignment as an argument.
1415     VoidPtr->addRetAttr(llvm::Attribute::get(
1416         CGM.getLLVMContext(), llvm::Attribute::Alignment,
1417         CGM.getContext().getTargetInfo().getNewAlign() / 8));
1418 
1419     // Cast the void pointer and get the address of the globalized variable.
1420     llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1421     llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1422         VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1423     LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1424     Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1425     Rec.second.GlobalizedVal = VoidPtr;
1426 
1427     // Assign the local allocation to the newly globalized location.
1428     if (EscapedParam) {
1429       CGF.EmitStoreOfScalar(ParValue, VarAddr);
1430       I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1431     }
1432     if (auto *DI = CGF.getDebugInfo())
1433       VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1434   }
1435   for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
1436     // Use actual memory size of the VLA object including the padding
1437     // for alignment purposes.
1438     llvm::Value *Size = CGF.getTypeSize(VD->getType());
1439     CharUnits Align = CGM.getContext().getDeclAlign(VD);
1440     Size = Bld.CreateNUWAdd(
1441         Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1442     llvm::Value *AlignVal =
1443         llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1444 
1445     Size = Bld.CreateUDiv(Size, AlignVal);
1446     Size = Bld.CreateNUWMul(Size, AlignVal);
1447 
1448     // Allocate space for this VLA object to be globalized.
1449     llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1450     llvm::CallBase *VoidPtr =
1451         CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1452                                 CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1453                             AllocArgs, VD->getName());
1454     VoidPtr->addRetAttr(
1455         llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
1456                              CGM.getContext().getTargetInfo().getNewAlign()));
1457 
1458     I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
1459         std::pair<llvm::Value *, llvm::Value *>(
1460             {VoidPtr, CGF.getTypeSize(VD->getType())}));
1461     LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
1462                                      CGM.getContext().getDeclAlign(VD),
1463                                      AlignmentSource::Decl);
1464     I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
1465                                             Base.getAddress(CGF));
1466   }
1467   I->getSecond().MappedParams->apply(CGF);
1468 }
1469 
1470 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
1471                                                  bool WithSPMDCheck) {
1472   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
1473       getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1474     return;
1475 
1476   const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1477   if (I != FunctionGlobalizedDecls.end()) {
1478     // Deallocate the memory for each globalized VLA object
1479     for (auto AddrSizePair :
1480          llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1481       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1482                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1483                           {AddrSizePair.first, AddrSizePair.second});
1484     }
1485     // Deallocate the memory for each globalized value
1486     for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1487       const auto *VD = cast<VarDecl>(Rec.first);
1488       I->getSecond().MappedParams->restore(CGF);
1489 
1490       llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1491                                  CGF.getTypeSize(VD->getType())};
1492       CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1493                               CGM.getModule(), OMPRTL___kmpc_free_shared),
1494                           FreeArgs);
1495     }
1496   }
1497 }
1498 
1499 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1500                                          const OMPExecutableDirective &D,
1501                                          SourceLocation Loc,
1502                                          llvm::Function *OutlinedFn,
1503                                          ArrayRef<llvm::Value *> CapturedVars) {
1504   if (!CGF.HaveInsertPoint())
1505     return;
1506 
1507   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1508                                                       /*Name=*/".zero.addr");
1509   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1510   llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1511   OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1512   OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1513   OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1514   emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1515 }
1516 
1517 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1518                                           SourceLocation Loc,
1519                                           llvm::Function *OutlinedFn,
1520                                           ArrayRef<llvm::Value *> CapturedVars,
1521                                           const Expr *IfCond,
1522                                           llvm::Value *NumThreads) {
1523   if (!CGF.HaveInsertPoint())
1524     return;
1525 
1526   auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1527                         NumThreads](CodeGenFunction &CGF,
1528                                     PrePostActionTy &Action) {
1529     CGBuilderTy &Bld = CGF.Builder;
1530     llvm::Value *NumThreadsVal = NumThreads;
1531     llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1532     llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1533     if (WFn)
1534       ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1535     llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1536 
1537     // Create a private scope that will globalize the arguments
1538     // passed from the outside of the target region.
1539     // TODO: Is that needed?
1540     CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1541 
1542     Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1543         llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1544         "captured_vars_addrs");
1545     // There's something to share.
1546     if (!CapturedVars.empty()) {
1547       // Prepare for parallel region. Indicate the outlined function.
1548       ASTContext &Ctx = CGF.getContext();
1549       unsigned Idx = 0;
1550       for (llvm::Value *V : CapturedVars) {
1551         Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1552         llvm::Value *PtrV;
1553         if (V->getType()->isIntegerTy())
1554           PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1555         else
1556           PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1557         CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1558                               Ctx.getPointerType(Ctx.VoidPtrTy));
1559         ++Idx;
1560       }
1561     }
1562 
1563     llvm::Value *IfCondVal = nullptr;
1564     if (IfCond)
1565       IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1566                                     /* isSigned */ false);
1567     else
1568       IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1569 
1570     if (!NumThreadsVal)
1571       NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1572     else
1573       NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1574 
1575       assert(IfCondVal && "Expected a value");
1576     llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1577     llvm::Value *Args[] = {
1578         RTLoc,
1579         getThreadID(CGF, Loc),
1580         IfCondVal,
1581         NumThreadsVal,
1582         llvm::ConstantInt::get(CGF.Int32Ty, -1),
1583         FnPtr,
1584         ID,
1585         Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1586                                    CGF.VoidPtrPtrTy),
1587         llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1588     CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1589                             CGM.getModule(), OMPRTL___kmpc_parallel_51),
1590                         Args);
1591   };
1592 
1593   RegionCodeGenTy RCG(ParallelGen);
1594   RCG(CGF);
1595 }
1596 
1597 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1598   // Always emit simple barriers!
1599   if (!CGF.HaveInsertPoint())
1600     return;
1601   // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1602   // This function does not use parameters, so we can emit just default values.
1603   llvm::Value *Args[] = {
1604       llvm::ConstantPointerNull::get(
1605           cast<llvm::PointerType>(getIdentTyPointerTy())),
1606       llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1607   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1608                           CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1609                       Args);
1610 }
1611 
1612 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1613                                            SourceLocation Loc,
1614                                            OpenMPDirectiveKind Kind, bool,
1615                                            bool) {
1616   // Always emit simple barriers!
1617   if (!CGF.HaveInsertPoint())
1618     return;
1619   // Build call __kmpc_cancel_barrier(loc, thread_id);
1620   unsigned Flags = getDefaultFlagsForBarriers(Kind);
1621   llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1622                          getThreadID(CGF, Loc)};
1623 
1624   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1625                           CGM.getModule(), OMPRTL___kmpc_barrier),
1626                       Args);
1627 }
1628 
1629 void CGOpenMPRuntimeGPU::emitCriticalRegion(
1630     CodeGenFunction &CGF, StringRef CriticalName,
1631     const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1632     const Expr *Hint) {
1633   llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1634   llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1635   llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1636   llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1637   llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1638 
1639   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1640 
1641   // Get the mask of active threads in the warp.
1642   llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1643       CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1644   // Fetch team-local id of the thread.
1645   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1646 
1647   // Get the width of the team.
1648   llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1649 
1650   // Initialize the counter variable for the loop.
1651   QualType Int32Ty =
1652       CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1653   Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1654   LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1655   CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1656                         /*isInit=*/true);
1657 
1658   // Block checks if loop counter exceeds upper bound.
1659   CGF.EmitBlock(LoopBB);
1660   llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1661   llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1662   CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1663 
1664   // Block tests which single thread should execute region, and which threads
1665   // should go straight to synchronisation point.
1666   CGF.EmitBlock(TestBB);
1667   CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1668   llvm::Value *CmpThreadToCounter =
1669       CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1670   CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1671 
1672   // Block emits the body of the critical region.
1673   CGF.EmitBlock(BodyBB);
1674 
1675   // Output the critical statement.
1676   CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1677                                       Hint);
1678 
1679   // After the body surrounded by the critical region, the single executing
1680   // thread will jump to the synchronisation point.
1681   // Block waits for all threads in current team to finish then increments the
1682   // counter variable and returns to the loop.
1683   CGF.EmitBlock(SyncBB);
1684   // Reconverge active threads in the warp.
1685   (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1686                                 CGM.getModule(), OMPRTL___kmpc_syncwarp),
1687                             Mask);
1688 
1689   llvm::Value *IncCounterVal =
1690       CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1691   CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1692   CGF.EmitBranch(LoopBB);
1693 
1694   // Block that is reached when  all threads in the team complete the region.
1695   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1696 }
1697 
1698 /// Cast value to the specified type.
1699 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1700                                     QualType ValTy, QualType CastTy,
1701                                     SourceLocation Loc) {
1702   assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1703          "Cast type must sized.");
1704   assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1705          "Val type must sized.");
1706   llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1707   if (ValTy == CastTy)
1708     return Val;
1709   if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1710       CGF.getContext().getTypeSizeInChars(CastTy))
1711     return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1712   if (CastTy->isIntegerType() && ValTy->isIntegerType())
1713     return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1714                                      CastTy->hasSignedIntegerRepresentation());
1715   Address CastItem = CGF.CreateMemTemp(CastTy);
1716   Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
1717       CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
1718   CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1719                         LValueBaseInfo(AlignmentSource::Type),
1720                         TBAAAccessInfo());
1721   return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1722                               LValueBaseInfo(AlignmentSource::Type),
1723                               TBAAAccessInfo());
1724 }
1725 
1726 /// This function creates calls to one of two shuffle functions to copy
1727 /// variables between lanes in a warp.
1728 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1729                                                  llvm::Value *Elem,
1730                                                  QualType ElemType,
1731                                                  llvm::Value *Offset,
1732                                                  SourceLocation Loc) {
1733   CodeGenModule &CGM = CGF.CGM;
1734   CGBuilderTy &Bld = CGF.Builder;
1735   CGOpenMPRuntimeGPU &RT =
1736       *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1737   llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1738 
1739   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1740   assert(Size.getQuantity() <= 8 &&
1741          "Unsupported bitwidth in shuffle instruction.");
1742 
1743   RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1744                                   ? OMPRTL___kmpc_shuffle_int32
1745                                   : OMPRTL___kmpc_shuffle_int64;
1746 
1747   // Cast all types to 32- or 64-bit values before calling shuffle routines.
1748   QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1749       Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1750   llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1751   llvm::Value *WarpSize =
1752       Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1753 
1754   llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1755       OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1756       {ElemCast, Offset, WarpSize});
1757 
1758   return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1759 }
1760 
1761 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1762                             Address DestAddr, QualType ElemType,
1763                             llvm::Value *Offset, SourceLocation Loc) {
1764   CGBuilderTy &Bld = CGF.Builder;
1765 
1766   CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1767   // Create the loop over the big sized data.
1768   // ptr = (void*)Elem;
1769   // ptrEnd = (void*) Elem + 1;
1770   // Step = 8;
1771   // while (ptr + Step < ptrEnd)
1772   //   shuffle((int64_t)*ptr);
1773   // Step = 4;
1774   // while (ptr + Step < ptrEnd)
1775   //   shuffle((int32_t)*ptr);
1776   // ...
1777   Address ElemPtr = DestAddr;
1778   Address Ptr = SrcAddr;
1779   Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1780       Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
1781   for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1782     if (Size < CharUnits::fromQuantity(IntSize))
1783       continue;
1784     QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1785         CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1786         /*Signed=*/1);
1787     llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1788     Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
1789     ElemPtr =
1790         Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
1791     if (Size.getQuantity() / IntSize > 1) {
1792       llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1793       llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1794       llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1795       llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1796       CGF.EmitBlock(PreCondBB);
1797       llvm::PHINode *PhiSrc =
1798           Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1799       PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1800       llvm::PHINode *PhiDest =
1801           Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1802       PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1803       Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1804       ElemPtr =
1805           Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1806       llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1807           CGF.Int8Ty, PtrEnd.getPointer(),
1808           Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1809                                                   CGF.VoidPtrTy));
1810       Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1811                        ThenBB, ExitBB);
1812       CGF.EmitBlock(ThenBB);
1813       llvm::Value *Res = createRuntimeShuffleFunction(
1814           CGF,
1815           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1816                                LValueBaseInfo(AlignmentSource::Type),
1817                                TBAAAccessInfo()),
1818           IntType, Offset, Loc);
1819       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1820                             LValueBaseInfo(AlignmentSource::Type),
1821                             TBAAAccessInfo());
1822       Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1823       Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1824       PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1825       PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1826       CGF.EmitBranch(PreCondBB);
1827       CGF.EmitBlock(ExitBB);
1828     } else {
1829       llvm::Value *Res = createRuntimeShuffleFunction(
1830           CGF,
1831           CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1832                                LValueBaseInfo(AlignmentSource::Type),
1833                                TBAAAccessInfo()),
1834           IntType, Offset, Loc);
1835       CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1836                             LValueBaseInfo(AlignmentSource::Type),
1837                             TBAAAccessInfo());
1838       Ptr = Bld.CreateConstGEP(Ptr, 1);
1839       ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1840     }
1841     Size = Size % IntSize;
1842   }
1843 }
1844 
1845 namespace {
1846 enum CopyAction : unsigned {
1847   // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1848   // the warp using shuffle instructions.
1849   RemoteLaneToThread,
1850   // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1851   ThreadCopy,
1852   // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
1853   ThreadToScratchpad,
1854   // ScratchpadToThread: Copy from a scratchpad array in global memory
1855   // containing team-reduced data to a thread's stack.
1856   ScratchpadToThread,
1857 };
1858 } // namespace
1859 
1860 struct CopyOptionsTy {
1861   llvm::Value *RemoteLaneOffset;
1862   llvm::Value *ScratchpadIndex;
1863   llvm::Value *ScratchpadWidth;
1864 };
1865 
1866 /// Emit instructions to copy a Reduce list, which contains partially
1867 /// aggregated values, in the specified direction.
1868 static void emitReductionListCopy(
1869     CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1870     ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1871     CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1872 
1873   CodeGenModule &CGM = CGF.CGM;
1874   ASTContext &C = CGM.getContext();
1875   CGBuilderTy &Bld = CGF.Builder;
1876 
1877   llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1878   llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
1879   llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
1880 
1881   // Iterates, element-by-element, through the source Reduce list and
1882   // make a copy.
1883   unsigned Idx = 0;
1884   unsigned Size = Privates.size();
1885   for (const Expr *Private : Privates) {
1886     Address SrcElementAddr = Address::invalid();
1887     Address DestElementAddr = Address::invalid();
1888     Address DestElementPtrAddr = Address::invalid();
1889     // Should we shuffle in an element from a remote lane?
1890     bool ShuffleInElement = false;
1891     // Set to true to update the pointer in the dest Reduce list to a
1892     // newly created element.
1893     bool UpdateDestListPtr = false;
1894     // Increment the src or dest pointer to the scratchpad, for each
1895     // new element.
1896     bool IncrScratchpadSrc = false;
1897     bool IncrScratchpadDest = false;
1898 
1899     switch (Action) {
1900     case RemoteLaneToThread: {
1901       // Step 1.1: Get the address for the src element in the Reduce list.
1902       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1903       SrcElementAddr = CGF.EmitLoadOfPointer(
1904           SrcElementPtrAddr,
1905           C.getPointerType(Private->getType())->castAs<PointerType>());
1906 
1907       // Step 1.2: Create a temporary to store the element in the destination
1908       // Reduce list.
1909       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1910       DestElementAddr =
1911           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1912       ShuffleInElement = true;
1913       UpdateDestListPtr = true;
1914       break;
1915     }
1916     case ThreadCopy: {
1917       // Step 1.1: Get the address for the src element in the Reduce list.
1918       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1919       SrcElementAddr = CGF.EmitLoadOfPointer(
1920           SrcElementPtrAddr,
1921           C.getPointerType(Private->getType())->castAs<PointerType>());
1922 
1923       // Step 1.2: Get the address for dest element.  The destination
1924       // element has already been created on the thread's stack.
1925       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1926       DestElementAddr = CGF.EmitLoadOfPointer(
1927           DestElementPtrAddr,
1928           C.getPointerType(Private->getType())->castAs<PointerType>());
1929       break;
1930     }
1931     case ThreadToScratchpad: {
1932       // Step 1.1: Get the address for the src element in the Reduce list.
1933       Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1934       SrcElementAddr = CGF.EmitLoadOfPointer(
1935           SrcElementPtrAddr,
1936           C.getPointerType(Private->getType())->castAs<PointerType>());
1937 
1938       // Step 1.2: Get the address for dest element:
1939       // address = base + index * ElementSizeInChars.
1940       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1941       llvm::Value *CurrentOffset =
1942           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1943       llvm::Value *ScratchPadElemAbsolutePtrVal =
1944           Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
1945       ScratchPadElemAbsolutePtrVal =
1946           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1947       DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1948                                 C.getTypeAlignInChars(Private->getType()));
1949       IncrScratchpadDest = true;
1950       break;
1951     }
1952     case ScratchpadToThread: {
1953       // Step 1.1: Get the address for the src element in the scratchpad.
1954       // address = base + index * ElementSizeInChars.
1955       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
1956       llvm::Value *CurrentOffset =
1957           Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
1958       llvm::Value *ScratchPadElemAbsolutePtrVal =
1959           Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
1960       ScratchPadElemAbsolutePtrVal =
1961           Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
1962       SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty,
1963                                C.getTypeAlignInChars(Private->getType()));
1964       IncrScratchpadSrc = true;
1965 
1966       // Step 1.2: Create a temporary to store the element in the destination
1967       // Reduce list.
1968       DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1969       DestElementAddr =
1970           CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1971       UpdateDestListPtr = true;
1972       break;
1973     }
1974     }
1975 
1976     // Regardless of src and dest of copy, we emit the load of src
1977     // element as this is required in all directions
1978     SrcElementAddr = Bld.CreateElementBitCast(
1979         SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
1980     DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
1981                                                SrcElementAddr.getElementType());
1982 
1983     // Now that all active lanes have read the element in the
1984     // Reduce list, shuffle over the value from the remote lane.
1985     if (ShuffleInElement) {
1986       shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1987                       RemoteLaneOffset, Private->getExprLoc());
1988     } else {
1989       switch (CGF.getEvaluationKind(Private->getType())) {
1990       case TEK_Scalar: {
1991         llvm::Value *Elem = CGF.EmitLoadOfScalar(
1992             SrcElementAddr, /*Volatile=*/false, Private->getType(),
1993             Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1994             TBAAAccessInfo());
1995         // Store the source element value to the dest element address.
1996         CGF.EmitStoreOfScalar(
1997             Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1998             LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1999         break;
2000       }
2001       case TEK_Complex: {
2002         CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
2003             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2004             Private->getExprLoc());
2005         CGF.EmitStoreOfComplex(
2006             Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2007             /*isInit=*/false);
2008         break;
2009       }
2010       case TEK_Aggregate:
2011         CGF.EmitAggregateCopy(
2012             CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
2013             CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
2014             Private->getType(), AggValueSlot::DoesNotOverlap);
2015         break;
2016       }
2017     }
2018 
2019     // Step 3.1: Modify reference in dest Reduce list as needed.
2020     // Modifying the reference in Reduce list to point to the newly
2021     // created element.  The element is live in the current function
2022     // scope and that of functions it invokes (i.e., reduce_function).
2023     // RemoteReduceData[i] = (void*)&RemoteElem
2024     if (UpdateDestListPtr) {
2025       CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
2026                                 DestElementAddr.getPointer(), CGF.VoidPtrTy),
2027                             DestElementPtrAddr, /*Volatile=*/false,
2028                             C.VoidPtrTy);
2029     }
2030 
2031     // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
2032     // address of the next element in scratchpad memory, unless we're currently
2033     // processing the last one.  Memory alignment is also taken care of here.
2034     if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
2035       llvm::Value *ScratchpadBasePtr =
2036           IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
2037       llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
2038       ScratchpadBasePtr = Bld.CreateNUWAdd(
2039           ScratchpadBasePtr,
2040           Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
2041 
2042       // Take care of global memory alignment for performance
2043       ScratchpadBasePtr = Bld.CreateNUWSub(
2044           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2045       ScratchpadBasePtr = Bld.CreateUDiv(
2046           ScratchpadBasePtr,
2047           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2048       ScratchpadBasePtr = Bld.CreateNUWAdd(
2049           ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
2050       ScratchpadBasePtr = Bld.CreateNUWMul(
2051           ScratchpadBasePtr,
2052           llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
2053 
2054       if (IncrScratchpadDest)
2055         DestBase =
2056             Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2057       else /* IncrScratchpadSrc = true */
2058         SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign());
2059     }
2060 
2061     ++Idx;
2062   }
2063 }
2064 
2065 /// This function emits a helper that gathers Reduce lists from the first
2066 /// lane of every active warp to lanes in the first warp.
2067 ///
2068 /// void inter_warp_copy_func(void* reduce_data, num_warps)
2069 ///   shared smem[warp_size];
2070 ///   For all data entries D in reduce_data:
2071 ///     sync
2072 ///     If (I am the first lane in each warp)
2073 ///       Copy my local D to smem[warp_id]
2074 ///     sync
2075 ///     if (I am the first warp)
2076 ///       Copy smem[thread_id] to my local D
2077 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
2078                                               ArrayRef<const Expr *> Privates,
2079                                               QualType ReductionArrayTy,
2080                                               SourceLocation Loc) {
2081   ASTContext &C = CGM.getContext();
2082   llvm::Module &M = CGM.getModule();
2083 
2084   // ReduceList: thread local Reduce list.
2085   // At the stage of the computation when this function is called, partially
2086   // aggregated values reside in the first lane of every active warp.
2087   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2088                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2089   // NumWarps: number of warps active in the parallel region.  This could
2090   // be smaller than 32 (max warps in a CTA) for partial block reduction.
2091   ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2092                                 C.getIntTypeForBitwidth(32, /* Signed */ true),
2093                                 ImplicitParamDecl::Other);
2094   FunctionArgList Args;
2095   Args.push_back(&ReduceListArg);
2096   Args.push_back(&NumWarpsArg);
2097 
2098   const CGFunctionInfo &CGFI =
2099       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2100   auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
2101                                     llvm::GlobalValue::InternalLinkage,
2102                                     "_omp_reduction_inter_warp_copy_func", &M);
2103   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2104   Fn->setDoesNotRecurse();
2105   CodeGenFunction CGF(CGM);
2106   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2107 
2108   CGBuilderTy &Bld = CGF.Builder;
2109 
2110   // This array is used as a medium to transfer, one reduce element at a time,
2111   // the data from the first lane of every warp to lanes in the first warp
2112   // in order to perform the final step of a reduction in a parallel region
2113   // (reduction across warps).  The array is placed in NVPTX __shared__ memory
2114   // for reduced latency, as well as to have a distinct copy for concurrently
2115   // executing target regions.  The array is declared with common linkage so
2116   // as to be shared across compilation units.
2117   StringRef TransferMediumName =
2118       "__openmp_nvptx_data_transfer_temporary_storage";
2119   llvm::GlobalVariable *TransferMedium =
2120       M.getGlobalVariable(TransferMediumName);
2121   unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
2122   if (!TransferMedium) {
2123     auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
2124     unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
2125     TransferMedium = new llvm::GlobalVariable(
2126         M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
2127         llvm::UndefValue::get(Ty), TransferMediumName,
2128         /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
2129         SharedAddressSpace);
2130     CGM.addCompilerUsedGlobal(TransferMedium);
2131   }
2132 
2133   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
2134   // Get the CUDA thread id of the current OpenMP thread on the GPU.
2135   llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
2136   // nvptx_lane_id = nvptx_id % warpsize
2137   llvm::Value *LaneID = getNVPTXLaneID(CGF);
2138   // nvptx_warp_id = nvptx_id / warpsize
2139   llvm::Value *WarpID = getNVPTXWarpID(CGF);
2140 
2141   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2142   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2143   Address LocalReduceList(
2144       Bld.CreatePointerBitCastOrAddrSpaceCast(
2145           CGF.EmitLoadOfScalar(
2146               AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
2147               LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
2148           ElemTy->getPointerTo()),
2149       ElemTy, CGF.getPointerAlign());
2150 
2151   unsigned Idx = 0;
2152   for (const Expr *Private : Privates) {
2153     //
2154     // Warp master copies reduce element to transfer medium in __shared__
2155     // memory.
2156     //
2157     unsigned RealTySize =
2158         C.getTypeSizeInChars(Private->getType())
2159             .alignTo(C.getTypeAlignInChars(Private->getType()))
2160             .getQuantity();
2161     for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
2162       unsigned NumIters = RealTySize / TySize;
2163       if (NumIters == 0)
2164         continue;
2165       QualType CType = C.getIntTypeForBitwidth(
2166           C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
2167       llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
2168       CharUnits Align = CharUnits::fromQuantity(TySize);
2169       llvm::Value *Cnt = nullptr;
2170       Address CntAddr = Address::invalid();
2171       llvm::BasicBlock *PrecondBB = nullptr;
2172       llvm::BasicBlock *ExitBB = nullptr;
2173       if (NumIters > 1) {
2174         CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
2175         CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
2176                               /*Volatile=*/false, C.IntTy);
2177         PrecondBB = CGF.createBasicBlock("precond");
2178         ExitBB = CGF.createBasicBlock("exit");
2179         llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
2180         // There is no need to emit line number for unconditional branch.
2181         (void)ApplyDebugLocation::CreateEmpty(CGF);
2182         CGF.EmitBlock(PrecondBB);
2183         Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
2184         llvm::Value *Cmp =
2185             Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
2186         Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
2187         CGF.EmitBlock(BodyBB);
2188       }
2189       // kmpc_barrier.
2190       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2191                                              /*EmitChecks=*/false,
2192                                              /*ForceSimpleCall=*/true);
2193       llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2194       llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2195       llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2196 
2197       // if (lane_id == 0)
2198       llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
2199       Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
2200       CGF.EmitBlock(ThenBB);
2201 
2202       // Reduce element = LocalReduceList[i]
2203       Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2204       llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2205           ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2206       // elemptr = ((CopyType*)(elemptrptr)) + I
2207       Address ElemPtr = Address::deprecated(ElemPtrPtr, Align);
2208       ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
2209       if (NumIters > 1)
2210         ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
2211 
2212       // Get pointer to location in transfer medium.
2213       // MediumPtr = &medium[warp_id]
2214       llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
2215           TransferMedium->getValueType(), TransferMedium,
2216           {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
2217       Address MediumPtr = Address::deprecated(MediumPtrVal, Align);
2218       // Casting to actual data type.
2219       // MediumPtr = (CopyType*)MediumPtrAddr;
2220       MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
2221 
2222       // elem = *elemptr
2223       //*MediumPtr = elem
2224       llvm::Value *Elem = CGF.EmitLoadOfScalar(
2225           ElemPtr, /*Volatile=*/false, CType, Loc,
2226           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2227       // Store the source element value to the dest element address.
2228       CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
2229                             LValueBaseInfo(AlignmentSource::Type),
2230                             TBAAAccessInfo());
2231 
2232       Bld.CreateBr(MergeBB);
2233 
2234       CGF.EmitBlock(ElseBB);
2235       Bld.CreateBr(MergeBB);
2236 
2237       CGF.EmitBlock(MergeBB);
2238 
2239       // kmpc_barrier.
2240       CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
2241                                              /*EmitChecks=*/false,
2242                                              /*ForceSimpleCall=*/true);
2243 
2244       //
2245       // Warp 0 copies reduce element from transfer medium.
2246       //
2247       llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
2248       llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
2249       llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
2250 
2251       Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
2252       llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
2253           AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
2254 
2255       // Up to 32 threads in warp 0 are active.
2256       llvm::Value *IsActiveThread =
2257           Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
2258       Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
2259 
2260       CGF.EmitBlock(W0ThenBB);
2261 
2262       // SrcMediumPtr = &medium[tid]
2263       llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
2264           TransferMedium->getValueType(), TransferMedium,
2265           {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
2266       Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align);
2267       // SrcMediumVal = *SrcMediumPtr;
2268       SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
2269 
2270       // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
2271       Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2272       llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
2273           TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
2274       Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align);
2275       TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
2276       if (NumIters > 1)
2277         TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
2278 
2279       // *TargetElemPtr = SrcMediumVal;
2280       llvm::Value *SrcMediumValue =
2281           CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
2282       CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
2283                             CType);
2284       Bld.CreateBr(W0MergeBB);
2285 
2286       CGF.EmitBlock(W0ElseBB);
2287       Bld.CreateBr(W0MergeBB);
2288 
2289       CGF.EmitBlock(W0MergeBB);
2290 
2291       if (NumIters > 1) {
2292         Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
2293         CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
2294         CGF.EmitBranch(PrecondBB);
2295         (void)ApplyDebugLocation::CreateEmpty(CGF);
2296         CGF.EmitBlock(ExitBB);
2297       }
2298       RealTySize %= TySize;
2299     }
2300     ++Idx;
2301   }
2302 
2303   CGF.FinishFunction();
2304   return Fn;
2305 }
2306 
2307 /// Emit a helper that reduces data across two OpenMP threads (lanes)
2308 /// in the same warp.  It uses shuffle instructions to copy over data from
2309 /// a remote lane's stack.  The reduction algorithm performed is specified
2310 /// by the fourth parameter.
2311 ///
2312 /// Algorithm Versions.
2313 /// Full Warp Reduce (argument value 0):
2314 ///   This algorithm assumes that all 32 lanes are active and gathers
2315 ///   data from these 32 lanes, producing a single resultant value.
2316 /// Contiguous Partial Warp Reduce (argument value 1):
2317 ///   This algorithm assumes that only a *contiguous* subset of lanes
2318 ///   are active.  This happens for the last warp in a parallel region
2319 ///   when the user specified num_threads is not an integer multiple of
2320 ///   32.  This contiguous subset always starts with the zeroth lane.
2321 /// Partial Warp Reduce (argument value 2):
2322 ///   This algorithm gathers data from any number of lanes at any position.
2323 /// All reduced values are stored in the lowest possible lane.  The set
2324 /// of problems every algorithm addresses is a super set of those
2325 /// addressable by algorithms with a lower version number.  Overhead
2326 /// increases as algorithm version increases.
2327 ///
2328 /// Terminology
2329 /// Reduce element:
2330 ///   Reduce element refers to the individual data field with primitive
2331 ///   data types to be combined and reduced across threads.
2332 /// Reduce list:
2333 ///   Reduce list refers to a collection of local, thread-private
2334 ///   reduce elements.
2335 /// Remote Reduce list:
2336 ///   Remote Reduce list refers to a collection of remote (relative to
2337 ///   the current thread) reduce elements.
2338 ///
2339 /// We distinguish between three states of threads that are important to
2340 /// the implementation of this function.
2341 /// Alive threads:
2342 ///   Threads in a warp executing the SIMT instruction, as distinguished from
2343 ///   threads that are inactive due to divergent control flow.
2344 /// Active threads:
2345 ///   The minimal set of threads that has to be alive upon entry to this
2346 ///   function.  The computation is correct iff active threads are alive.
2347 ///   Some threads are alive but they are not active because they do not
2348 ///   contribute to the computation in any useful manner.  Turning them off
2349 ///   may introduce control flow overheads without any tangible benefits.
2350 /// Effective threads:
2351 ///   In order to comply with the argument requirements of the shuffle
2352 ///   function, we must keep all lanes holding data alive.  But at most
2353 ///   half of them perform value aggregation; we refer to this half of
2354 ///   threads as effective. The other half is simply handing off their
2355 ///   data.
2356 ///
2357 /// Procedure
2358 /// Value shuffle:
2359 ///   In this step active threads transfer data from higher lane positions
2360 ///   in the warp to lower lane positions, creating Remote Reduce list.
2361 /// Value aggregation:
2362 ///   In this step, effective threads combine their thread local Reduce list
2363 ///   with Remote Reduce list and store the result in the thread local
2364 ///   Reduce list.
2365 /// Value copy:
2366 ///   In this step, we deal with the assumption made by algorithm 2
2367 ///   (i.e. contiguity assumption).  When we have an odd number of lanes
2368 ///   active, say 2k+1, only k threads will be effective and therefore k
2369 ///   new values will be produced.  However, the Reduce list owned by the
2370 ///   (2k+1)th thread is ignored in the value aggregation.  Therefore
2371 ///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
2372 ///   that the contiguity assumption still holds.
2373 static llvm::Function *emitShuffleAndReduceFunction(
2374     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2375     QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
2376   ASTContext &C = CGM.getContext();
2377 
2378   // Thread local Reduce list used to host the values of data to be reduced.
2379   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2380                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2381   // Current lane id; could be logical.
2382   ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2383                               ImplicitParamDecl::Other);
2384   // Offset of the remote source lane relative to the current lane.
2385   ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2386                                         C.ShortTy, ImplicitParamDecl::Other);
2387   // Algorithm version.  This is expected to be known at compile time.
2388   ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2389                                C.ShortTy, ImplicitParamDecl::Other);
2390   FunctionArgList Args;
2391   Args.push_back(&ReduceListArg);
2392   Args.push_back(&LaneIDArg);
2393   Args.push_back(&RemoteLaneOffsetArg);
2394   Args.push_back(&AlgoVerArg);
2395 
2396   const CGFunctionInfo &CGFI =
2397       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2398   auto *Fn = llvm::Function::Create(
2399       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2400       "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2401   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2402   Fn->setDoesNotRecurse();
2403 
2404   CodeGenFunction CGF(CGM);
2405   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2406 
2407   CGBuilderTy &Bld = CGF.Builder;
2408 
2409   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2410   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2411   Address LocalReduceList(
2412       Bld.CreatePointerBitCastOrAddrSpaceCast(
2413           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2414                                C.VoidPtrTy, SourceLocation()),
2415           ElemTy->getPointerTo()),
2416       ElemTy, CGF.getPointerAlign());
2417 
2418   Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2419   llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2420       AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2421 
2422   Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2423   llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2424       AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2425 
2426   Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2427   llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2428       AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2429 
2430   // Create a local thread-private variable to host the Reduce list
2431   // from a remote lane.
2432   Address RemoteReduceList =
2433       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2434 
2435   // This loop iterates through the list of reduce elements and copies,
2436   // element by element, from a remote lane in the warp to RemoteReduceList,
2437   // hosted on the thread's stack.
2438   emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2439                         LocalReduceList, RemoteReduceList,
2440                         {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2441                          /*ScratchpadIndex=*/nullptr,
2442                          /*ScratchpadWidth=*/nullptr});
2443 
2444   // The actions to be performed on the Remote Reduce list is dependent
2445   // on the algorithm version.
2446   //
2447   //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2448   //  LaneId % 2 == 0 && Offset > 0):
2449   //    do the reduction value aggregation
2450   //
2451   //  The thread local variable Reduce list is mutated in place to host the
2452   //  reduced data, which is the aggregated value produced from local and
2453   //  remote lanes.
2454   //
2455   //  Note that AlgoVer is expected to be a constant integer known at compile
2456   //  time.
2457   //  When AlgoVer==0, the first conjunction evaluates to true, making
2458   //    the entire predicate true during compile time.
2459   //  When AlgoVer==1, the second conjunction has only the second part to be
2460   //    evaluated during runtime.  Other conjunctions evaluates to false
2461   //    during compile time.
2462   //  When AlgoVer==2, the third conjunction has only the second part to be
2463   //    evaluated during runtime.  Other conjunctions evaluates to false
2464   //    during compile time.
2465   llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2466 
2467   llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2468   llvm::Value *CondAlgo1 = Bld.CreateAnd(
2469       Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2470 
2471   llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2472   llvm::Value *CondAlgo2 = Bld.CreateAnd(
2473       Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2474   CondAlgo2 = Bld.CreateAnd(
2475       CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2476 
2477   llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2478   CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2479 
2480   llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2481   llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2482   llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2483   Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2484 
2485   CGF.EmitBlock(ThenBB);
2486   // reduce_function(LocalReduceList, RemoteReduceList)
2487   llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2488       LocalReduceList.getPointer(), CGF.VoidPtrTy);
2489   llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2490       RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2491   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2492       CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2493   Bld.CreateBr(MergeBB);
2494 
2495   CGF.EmitBlock(ElseBB);
2496   Bld.CreateBr(MergeBB);
2497 
2498   CGF.EmitBlock(MergeBB);
2499 
2500   // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2501   // Reduce list.
2502   Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2503   llvm::Value *CondCopy = Bld.CreateAnd(
2504       Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2505 
2506   llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2507   llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2508   llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2509   Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2510 
2511   CGF.EmitBlock(CpyThenBB);
2512   emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2513                         RemoteReduceList, LocalReduceList);
2514   Bld.CreateBr(CpyMergeBB);
2515 
2516   CGF.EmitBlock(CpyElseBB);
2517   Bld.CreateBr(CpyMergeBB);
2518 
2519   CGF.EmitBlock(CpyMergeBB);
2520 
2521   CGF.FinishFunction();
2522   return Fn;
2523 }
2524 
2525 /// This function emits a helper that copies all the reduction variables from
2526 /// the team into the provided global buffer for the reduction variables.
2527 ///
2528 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2529 ///   For all data entries D in reduce_data:
2530 ///     Copy local D to buffer.D[Idx]
2531 static llvm::Value *emitListToGlobalCopyFunction(
2532     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2533     QualType ReductionArrayTy, SourceLocation Loc,
2534     const RecordDecl *TeamReductionRec,
2535     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2536         &VarFieldMap) {
2537   ASTContext &C = CGM.getContext();
2538 
2539   // Buffer: global reduction buffer.
2540   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2541                               C.VoidPtrTy, ImplicitParamDecl::Other);
2542   // Idx: index of the buffer.
2543   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2544                            ImplicitParamDecl::Other);
2545   // ReduceList: thread local Reduce list.
2546   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2547                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2548   FunctionArgList Args;
2549   Args.push_back(&BufferArg);
2550   Args.push_back(&IdxArg);
2551   Args.push_back(&ReduceListArg);
2552 
2553   const CGFunctionInfo &CGFI =
2554       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2555   auto *Fn = llvm::Function::Create(
2556       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2557       "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2558   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2559   Fn->setDoesNotRecurse();
2560   CodeGenFunction CGF(CGM);
2561   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2562 
2563   CGBuilderTy &Bld = CGF.Builder;
2564 
2565   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2566   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2567   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2568   Address LocalReduceList(
2569       Bld.CreatePointerBitCastOrAddrSpaceCast(
2570           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2571                                C.VoidPtrTy, Loc),
2572           ElemTy->getPointerTo()),
2573       ElemTy, CGF.getPointerAlign());
2574   QualType StaticTy = C.getRecordType(TeamReductionRec);
2575   llvm::Type *LLVMReductionsBufferTy =
2576       CGM.getTypes().ConvertTypeForMem(StaticTy);
2577   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2578       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2579       LLVMReductionsBufferTy->getPointerTo());
2580   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2581                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2582                                               /*Volatile=*/false, C.IntTy,
2583                                               Loc)};
2584   unsigned Idx = 0;
2585   for (const Expr *Private : Privates) {
2586     // Reduce element = LocalReduceList[i]
2587     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2588     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2589         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2590     // elemptr = ((CopyType*)(elemptrptr)) + I
2591     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2592     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2593         ElemPtrPtr, ElemTy->getPointerTo());
2594     Address ElemPtr =
2595         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2596     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2597     // Global = Buffer.VD[Idx];
2598     const FieldDecl *FD = VarFieldMap.lookup(VD);
2599     LValue GlobLVal = CGF.EmitLValueForField(
2600         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2601     Address GlobAddr = GlobLVal.getAddress(CGF);
2602     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2603         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2604     GlobLVal.setAddress(
2605         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2606     switch (CGF.getEvaluationKind(Private->getType())) {
2607     case TEK_Scalar: {
2608       llvm::Value *V = CGF.EmitLoadOfScalar(
2609           ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2610           LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2611       CGF.EmitStoreOfScalar(V, GlobLVal);
2612       break;
2613     }
2614     case TEK_Complex: {
2615       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2616           CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2617       CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2618       break;
2619     }
2620     case TEK_Aggregate:
2621       CGF.EmitAggregateCopy(GlobLVal,
2622                             CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2623                             Private->getType(), AggValueSlot::DoesNotOverlap);
2624       break;
2625     }
2626     ++Idx;
2627   }
2628 
2629   CGF.FinishFunction();
2630   return Fn;
2631 }
2632 
2633 /// This function emits a helper that reduces all the reduction variables from
2634 /// the team into the provided global buffer for the reduction variables.
2635 ///
2636 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2637 ///  void *GlobPtrs[];
2638 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2639 ///  ...
2640 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2641 ///  reduce_function(GlobPtrs, reduce_data);
2642 static llvm::Value *emitListToGlobalReduceFunction(
2643     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2644     QualType ReductionArrayTy, SourceLocation Loc,
2645     const RecordDecl *TeamReductionRec,
2646     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2647         &VarFieldMap,
2648     llvm::Function *ReduceFn) {
2649   ASTContext &C = CGM.getContext();
2650 
2651   // Buffer: global reduction buffer.
2652   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2653                               C.VoidPtrTy, ImplicitParamDecl::Other);
2654   // Idx: index of the buffer.
2655   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2656                            ImplicitParamDecl::Other);
2657   // ReduceList: thread local Reduce list.
2658   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2659                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2660   FunctionArgList Args;
2661   Args.push_back(&BufferArg);
2662   Args.push_back(&IdxArg);
2663   Args.push_back(&ReduceListArg);
2664 
2665   const CGFunctionInfo &CGFI =
2666       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2667   auto *Fn = llvm::Function::Create(
2668       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2669       "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2670   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2671   Fn->setDoesNotRecurse();
2672   CodeGenFunction CGF(CGM);
2673   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2674 
2675   CGBuilderTy &Bld = CGF.Builder;
2676 
2677   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2678   QualType StaticTy = C.getRecordType(TeamReductionRec);
2679   llvm::Type *LLVMReductionsBufferTy =
2680       CGM.getTypes().ConvertTypeForMem(StaticTy);
2681   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2682       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2683       LLVMReductionsBufferTy->getPointerTo());
2684 
2685   // 1. Build a list of reduction variables.
2686   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2687   Address ReductionList =
2688       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2689   auto IPriv = Privates.begin();
2690   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2691                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2692                                               /*Volatile=*/false, C.IntTy,
2693                                               Loc)};
2694   unsigned Idx = 0;
2695   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2696     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2697     // Global = Buffer.VD[Idx];
2698     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2699     const FieldDecl *FD = VarFieldMap.lookup(VD);
2700     LValue GlobLVal = CGF.EmitLValueForField(
2701         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2702     Address GlobAddr = GlobLVal.getAddress(CGF);
2703     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2704         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2705     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2706     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2707     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2708       // Store array size.
2709       ++Idx;
2710       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2711       llvm::Value *Size = CGF.Builder.CreateIntCast(
2712           CGF.getVLASize(
2713                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2714               .NumElts,
2715           CGF.SizeTy, /*isSigned=*/false);
2716       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2717                               Elem);
2718     }
2719   }
2720 
2721   // Call reduce_function(GlobalReduceList, ReduceList)
2722   llvm::Value *GlobalReduceList =
2723       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2724   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2725   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2726       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2727   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2728       CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2729   CGF.FinishFunction();
2730   return Fn;
2731 }
2732 
2733 /// This function emits a helper that copies all the reduction variables from
2734 /// the team into the provided global buffer for the reduction variables.
2735 ///
2736 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2737 ///   For all data entries D in reduce_data:
2738 ///     Copy buffer.D[Idx] to local D;
2739 static llvm::Value *emitGlobalToListCopyFunction(
2740     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2741     QualType ReductionArrayTy, SourceLocation Loc,
2742     const RecordDecl *TeamReductionRec,
2743     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2744         &VarFieldMap) {
2745   ASTContext &C = CGM.getContext();
2746 
2747   // Buffer: global reduction buffer.
2748   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2749                               C.VoidPtrTy, ImplicitParamDecl::Other);
2750   // Idx: index of the buffer.
2751   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2752                            ImplicitParamDecl::Other);
2753   // ReduceList: thread local Reduce list.
2754   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2755                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2756   FunctionArgList Args;
2757   Args.push_back(&BufferArg);
2758   Args.push_back(&IdxArg);
2759   Args.push_back(&ReduceListArg);
2760 
2761   const CGFunctionInfo &CGFI =
2762       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2763   auto *Fn = llvm::Function::Create(
2764       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2765       "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2766   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2767   Fn->setDoesNotRecurse();
2768   CodeGenFunction CGF(CGM);
2769   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2770 
2771   CGBuilderTy &Bld = CGF.Builder;
2772 
2773   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2774   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2775   llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2776   Address LocalReduceList(
2777       Bld.CreatePointerBitCastOrAddrSpaceCast(
2778           CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2779                                C.VoidPtrTy, Loc),
2780           ElemTy->getPointerTo()),
2781       ElemTy, CGF.getPointerAlign());
2782   QualType StaticTy = C.getRecordType(TeamReductionRec);
2783   llvm::Type *LLVMReductionsBufferTy =
2784       CGM.getTypes().ConvertTypeForMem(StaticTy);
2785   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2786       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2787       LLVMReductionsBufferTy->getPointerTo());
2788 
2789   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2790                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2791                                               /*Volatile=*/false, C.IntTy,
2792                                               Loc)};
2793   unsigned Idx = 0;
2794   for (const Expr *Private : Privates) {
2795     // Reduce element = LocalReduceList[i]
2796     Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2797     llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2798         ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2799     // elemptr = ((CopyType*)(elemptrptr)) + I
2800     ElemTy = CGF.ConvertTypeForMem(Private->getType());
2801     ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2802         ElemPtrPtr, ElemTy->getPointerTo());
2803     Address ElemPtr =
2804         Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2805     const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2806     // Global = Buffer.VD[Idx];
2807     const FieldDecl *FD = VarFieldMap.lookup(VD);
2808     LValue GlobLVal = CGF.EmitLValueForField(
2809         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2810     Address GlobAddr = GlobLVal.getAddress(CGF);
2811     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2812         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2813     GlobLVal.setAddress(
2814         Address::deprecated(BufferPtr, GlobAddr.getAlignment()));
2815     switch (CGF.getEvaluationKind(Private->getType())) {
2816     case TEK_Scalar: {
2817       llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2818       CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2819                             LValueBaseInfo(AlignmentSource::Type),
2820                             TBAAAccessInfo());
2821       break;
2822     }
2823     case TEK_Complex: {
2824       CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2825       CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2826                              /*isInit=*/false);
2827       break;
2828     }
2829     case TEK_Aggregate:
2830       CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2831                             GlobLVal, Private->getType(),
2832                             AggValueSlot::DoesNotOverlap);
2833       break;
2834     }
2835     ++Idx;
2836   }
2837 
2838   CGF.FinishFunction();
2839   return Fn;
2840 }
2841 
2842 /// This function emits a helper that reduces all the reduction variables from
2843 /// the team into the provided global buffer for the reduction variables.
2844 ///
2845 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2846 ///  void *GlobPtrs[];
2847 ///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2848 ///  ...
2849 ///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2850 ///  reduce_function(reduce_data, GlobPtrs);
2851 static llvm::Value *emitGlobalToListReduceFunction(
2852     CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2853     QualType ReductionArrayTy, SourceLocation Loc,
2854     const RecordDecl *TeamReductionRec,
2855     const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2856         &VarFieldMap,
2857     llvm::Function *ReduceFn) {
2858   ASTContext &C = CGM.getContext();
2859 
2860   // Buffer: global reduction buffer.
2861   ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2862                               C.VoidPtrTy, ImplicitParamDecl::Other);
2863   // Idx: index of the buffer.
2864   ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2865                            ImplicitParamDecl::Other);
2866   // ReduceList: thread local Reduce list.
2867   ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2868                                   C.VoidPtrTy, ImplicitParamDecl::Other);
2869   FunctionArgList Args;
2870   Args.push_back(&BufferArg);
2871   Args.push_back(&IdxArg);
2872   Args.push_back(&ReduceListArg);
2873 
2874   const CGFunctionInfo &CGFI =
2875       CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2876   auto *Fn = llvm::Function::Create(
2877       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2878       "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2879   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2880   Fn->setDoesNotRecurse();
2881   CodeGenFunction CGF(CGM);
2882   CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2883 
2884   CGBuilderTy &Bld = CGF.Builder;
2885 
2886   Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2887   QualType StaticTy = C.getRecordType(TeamReductionRec);
2888   llvm::Type *LLVMReductionsBufferTy =
2889       CGM.getTypes().ConvertTypeForMem(StaticTy);
2890   llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2891       CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2892       LLVMReductionsBufferTy->getPointerTo());
2893 
2894   // 1. Build a list of reduction variables.
2895   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2896   Address ReductionList =
2897       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2898   auto IPriv = Privates.begin();
2899   llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
2900                          CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2901                                               /*Volatile=*/false, C.IntTy,
2902                                               Loc)};
2903   unsigned Idx = 0;
2904   for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2905     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2906     // Global = Buffer.VD[Idx];
2907     const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2908     const FieldDecl *FD = VarFieldMap.lookup(VD);
2909     LValue GlobLVal = CGF.EmitLValueForField(
2910         CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
2911     Address GlobAddr = GlobLVal.getAddress(CGF);
2912     llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
2913         GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
2914     llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
2915     CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
2916     if ((*IPriv)->getType()->isVariablyModifiedType()) {
2917       // Store array size.
2918       ++Idx;
2919       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2920       llvm::Value *Size = CGF.Builder.CreateIntCast(
2921           CGF.getVLASize(
2922                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2923               .NumElts,
2924           CGF.SizeTy, /*isSigned=*/false);
2925       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2926                               Elem);
2927     }
2928   }
2929 
2930   // Call reduce_function(ReduceList, GlobalReduceList)
2931   llvm::Value *GlobalReduceList =
2932       CGF.EmitCastToVoidPtr(ReductionList.getPointer());
2933   Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2934   llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2935       AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2936   CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2937       CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2938   CGF.FinishFunction();
2939   return Fn;
2940 }
2941 
2942 ///
2943 /// Design of OpenMP reductions on the GPU
2944 ///
2945 /// Consider a typical OpenMP program with one or more reduction
2946 /// clauses:
2947 ///
2948 /// float foo;
2949 /// double bar;
2950 /// #pragma omp target teams distribute parallel for \
2951 ///             reduction(+:foo) reduction(*:bar)
2952 /// for (int i = 0; i < N; i++) {
2953 ///   foo += A[i]; bar *= B[i];
2954 /// }
2955 ///
2956 /// where 'foo' and 'bar' are reduced across all OpenMP threads in
2957 /// all teams.  In our OpenMP implementation on the NVPTX device an
2958 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2959 /// within a team are mapped to CUDA threads within a threadblock.
2960 /// Our goal is to efficiently aggregate values across all OpenMP
2961 /// threads such that:
2962 ///
2963 ///   - the compiler and runtime are logically concise, and
2964 ///   - the reduction is performed efficiently in a hierarchical
2965 ///     manner as follows: within OpenMP threads in the same warp,
2966 ///     across warps in a threadblock, and finally across teams on
2967 ///     the NVPTX device.
2968 ///
2969 /// Introduction to Decoupling
2970 ///
2971 /// We would like to decouple the compiler and the runtime so that the
2972 /// latter is ignorant of the reduction variables (number, data types)
2973 /// and the reduction operators.  This allows a simpler interface
2974 /// and implementation while still attaining good performance.
2975 ///
2976 /// Pseudocode for the aforementioned OpenMP program generated by the
2977 /// compiler is as follows:
2978 ///
2979 /// 1. Create private copies of reduction variables on each OpenMP
2980 ///    thread: 'foo_private', 'bar_private'
2981 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2982 ///    to it and writes the result in 'foo_private' and 'bar_private'
2983 ///    respectively.
2984 /// 3. Call the OpenMP runtime on the GPU to reduce within a team
2985 ///    and store the result on the team master:
2986 ///
2987 ///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2988 ///        reduceData, shuffleReduceFn, interWarpCpyFn)
2989 ///
2990 ///     where:
2991 ///       struct ReduceData {
2992 ///         double *foo;
2993 ///         double *bar;
2994 ///       } reduceData
2995 ///       reduceData.foo = &foo_private
2996 ///       reduceData.bar = &bar_private
2997 ///
2998 ///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2999 ///     auxiliary functions generated by the compiler that operate on
3000 ///     variables of type 'ReduceData'.  They aid the runtime perform
3001 ///     algorithmic steps in a data agnostic manner.
3002 ///
3003 ///     'shuffleReduceFn' is a pointer to a function that reduces data
3004 ///     of type 'ReduceData' across two OpenMP threads (lanes) in the
3005 ///     same warp.  It takes the following arguments as input:
3006 ///
3007 ///     a. variable of type 'ReduceData' on the calling lane,
3008 ///     b. its lane_id,
3009 ///     c. an offset relative to the current lane_id to generate a
3010 ///        remote_lane_id.  The remote lane contains the second
3011 ///        variable of type 'ReduceData' that is to be reduced.
3012 ///     d. an algorithm version parameter determining which reduction
3013 ///        algorithm to use.
3014 ///
3015 ///     'shuffleReduceFn' retrieves data from the remote lane using
3016 ///     efficient GPU shuffle intrinsics and reduces, using the
3017 ///     algorithm specified by the 4th parameter, the two operands
3018 ///     element-wise.  The result is written to the first operand.
3019 ///
3020 ///     Different reduction algorithms are implemented in different
3021 ///     runtime functions, all calling 'shuffleReduceFn' to perform
3022 ///     the essential reduction step.  Therefore, based on the 4th
3023 ///     parameter, this function behaves slightly differently to
3024 ///     cooperate with the runtime to ensure correctness under
3025 ///     different circumstances.
3026 ///
3027 ///     'InterWarpCpyFn' is a pointer to a function that transfers
3028 ///     reduced variables across warps.  It tunnels, through CUDA
3029 ///     shared memory, the thread-private data of type 'ReduceData'
3030 ///     from lane 0 of each warp to a lane in the first warp.
3031 /// 4. Call the OpenMP runtime on the GPU to reduce across teams.
3032 ///    The last team writes the global reduced value to memory.
3033 ///
3034 ///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
3035 ///             reduceData, shuffleReduceFn, interWarpCpyFn,
3036 ///             scratchpadCopyFn, loadAndReduceFn)
3037 ///
3038 ///     'scratchpadCopyFn' is a helper that stores reduced
3039 ///     data from the team master to a scratchpad array in
3040 ///     global memory.
3041 ///
3042 ///     'loadAndReduceFn' is a helper that loads data from
3043 ///     the scratchpad array and reduces it with the input
3044 ///     operand.
3045 ///
3046 ///     These compiler generated functions hide address
3047 ///     calculation and alignment information from the runtime.
3048 /// 5. if ret == 1:
3049 ///     The team master of the last team stores the reduced
3050 ///     result to the globals in memory.
3051 ///     foo += reduceData.foo; bar *= reduceData.bar
3052 ///
3053 ///
3054 /// Warp Reduction Algorithms
3055 ///
3056 /// On the warp level, we have three algorithms implemented in the
3057 /// OpenMP runtime depending on the number of active lanes:
3058 ///
3059 /// Full Warp Reduction
3060 ///
3061 /// The reduce algorithm within a warp where all lanes are active
3062 /// is implemented in the runtime as follows:
3063 ///
3064 /// full_warp_reduce(void *reduce_data,
3065 ///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3066 ///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
3067 ///     ShuffleReduceFn(reduce_data, 0, offset, 0);
3068 /// }
3069 ///
3070 /// The algorithm completes in log(2, WARPSIZE) steps.
3071 ///
3072 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
3073 /// not used therefore we save instructions by not retrieving lane_id
3074 /// from the corresponding special registers.  The 4th parameter, which
3075 /// represents the version of the algorithm being used, is set to 0 to
3076 /// signify full warp reduction.
3077 ///
3078 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3079 ///
3080 /// #reduce_elem refers to an element in the local lane's data structure
3081 /// #remote_elem is retrieved from a remote lane
3082 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3083 /// reduce_elem = reduce_elem REDUCE_OP remote_elem;
3084 ///
3085 /// Contiguous Partial Warp Reduction
3086 ///
3087 /// This reduce algorithm is used within a warp where only the first
3088 /// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
3089 /// number of OpenMP threads in a parallel region is not a multiple of
3090 /// WARPSIZE.  The algorithm is implemented in the runtime as follows:
3091 ///
3092 /// void
3093 /// contiguous_partial_reduce(void *reduce_data,
3094 ///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
3095 ///                           int size, int lane_id) {
3096 ///   int curr_size;
3097 ///   int offset;
3098 ///   curr_size = size;
3099 ///   mask = curr_size/2;
3100 ///   while (offset>0) {
3101 ///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
3102 ///     curr_size = (curr_size+1)/2;
3103 ///     offset = curr_size/2;
3104 ///   }
3105 /// }
3106 ///
3107 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3108 ///
3109 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3110 /// if (lane_id < offset)
3111 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3112 /// else
3113 ///     reduce_elem = remote_elem
3114 ///
3115 /// This algorithm assumes that the data to be reduced are located in a
3116 /// contiguous subset of lanes starting from the first.  When there is
3117 /// an odd number of active lanes, the data in the last lane is not
3118 /// aggregated with any other lane's dat but is instead copied over.
3119 ///
3120 /// Dispersed Partial Warp Reduction
3121 ///
3122 /// This algorithm is used within a warp when any discontiguous subset of
3123 /// lanes are active.  It is used to implement the reduction operation
3124 /// across lanes in an OpenMP simd region or in a nested parallel region.
3125 ///
3126 /// void
3127 /// dispersed_partial_reduce(void *reduce_data,
3128 ///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
3129 ///   int size, remote_id;
3130 ///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
3131 ///   do {
3132 ///       remote_id = next_active_lane_id_right_after_me();
3133 ///       # the above function returns 0 of no active lane
3134 ///       # is present right after the current lane.
3135 ///       size = number_of_active_lanes_in_this_warp();
3136 ///       logical_lane_id /= 2;
3137 ///       ShuffleReduceFn(reduce_data, logical_lane_id,
3138 ///                       remote_id-1-threadIdx.x, 2);
3139 ///   } while (logical_lane_id % 2 == 0 && size > 1);
3140 /// }
3141 ///
3142 /// There is no assumption made about the initial state of the reduction.
3143 /// Any number of lanes (>=1) could be active at any position.  The reduction
3144 /// result is returned in the first active lane.
3145 ///
3146 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
3147 ///
3148 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
3149 /// if (lane_id % 2 == 0 && offset > 0)
3150 ///     reduce_elem = reduce_elem REDUCE_OP remote_elem
3151 /// else
3152 ///     reduce_elem = remote_elem
3153 ///
3154 ///
3155 /// Intra-Team Reduction
3156 ///
3157 /// This function, as implemented in the runtime call
3158 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
3159 /// threads in a team.  It first reduces within a warp using the
3160 /// aforementioned algorithms.  We then proceed to gather all such
3161 /// reduced values at the first warp.
3162 ///
3163 /// The runtime makes use of the function 'InterWarpCpyFn', which copies
3164 /// data from each of the "warp master" (zeroth lane of each warp, where
3165 /// warp-reduced data is held) to the zeroth warp.  This step reduces (in
3166 /// a mathematical sense) the problem of reduction across warp masters in
3167 /// a block to the problem of warp reduction.
3168 ///
3169 ///
3170 /// Inter-Team Reduction
3171 ///
3172 /// Once a team has reduced its data to a single value, it is stored in
3173 /// a global scratchpad array.  Since each team has a distinct slot, this
3174 /// can be done without locking.
3175 ///
3176 /// The last team to write to the scratchpad array proceeds to reduce the
3177 /// scratchpad array.  One or more workers in the last team use the helper
3178 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
3179 /// the k'th worker reduces every k'th element.
3180 ///
3181 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
3182 /// reduce across workers and compute a globally reduced value.
3183 ///
3184 void CGOpenMPRuntimeGPU::emitReduction(
3185     CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
3186     ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
3187     ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
3188   if (!CGF.HaveInsertPoint())
3189     return;
3190 
3191   bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
3192 #ifndef NDEBUG
3193   bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
3194 #endif
3195 
3196   if (Options.SimpleReduction) {
3197     assert(!TeamsReduction && !ParallelReduction &&
3198            "Invalid reduction selection in emitReduction.");
3199     CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
3200                                    ReductionOps, Options);
3201     return;
3202   }
3203 
3204   assert((TeamsReduction || ParallelReduction) &&
3205          "Invalid reduction selection in emitReduction.");
3206 
3207   // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
3208   // RedList, shuffle_reduce_func, interwarp_copy_func);
3209   // or
3210   // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
3211   llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
3212   llvm::Value *ThreadId = getThreadID(CGF, Loc);
3213 
3214   llvm::Value *Res;
3215   ASTContext &C = CGM.getContext();
3216   // 1. Build a list of reduction variables.
3217   // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
3218   auto Size = RHSExprs.size();
3219   for (const Expr *E : Privates) {
3220     if (E->getType()->isVariablyModifiedType())
3221       // Reserve place for array size.
3222       ++Size;
3223   }
3224   llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
3225   QualType ReductionArrayTy =
3226       C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
3227                              /*IndexTypeQuals=*/0);
3228   Address ReductionList =
3229       CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
3230   auto IPriv = Privates.begin();
3231   unsigned Idx = 0;
3232   for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
3233     Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3234     CGF.Builder.CreateStore(
3235         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3236             CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
3237         Elem);
3238     if ((*IPriv)->getType()->isVariablyModifiedType()) {
3239       // Store array size.
3240       ++Idx;
3241       Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
3242       llvm::Value *Size = CGF.Builder.CreateIntCast(
3243           CGF.getVLASize(
3244                  CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
3245               .NumElts,
3246           CGF.SizeTy, /*isSigned=*/false);
3247       CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
3248                               Elem);
3249     }
3250   }
3251 
3252   llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3253       ReductionList.getPointer(), CGF.VoidPtrTy);
3254   llvm::Function *ReductionFn = emitReductionFunction(
3255       Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
3256       LHSExprs, RHSExprs, ReductionOps);
3257   llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
3258   llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
3259       CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
3260   llvm::Value *InterWarpCopyFn =
3261       emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
3262 
3263   if (ParallelReduction) {
3264     llvm::Value *Args[] = {RTLoc,
3265                            ThreadId,
3266                            CGF.Builder.getInt32(RHSExprs.size()),
3267                            ReductionArrayTySize,
3268                            RL,
3269                            ShuffleAndReduceFn,
3270                            InterWarpCopyFn};
3271 
3272     Res = CGF.EmitRuntimeCall(
3273         OMPBuilder.getOrCreateRuntimeFunction(
3274             CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
3275         Args);
3276   } else {
3277     assert(TeamsReduction && "expected teams reduction.");
3278     llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
3279     llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
3280     int Cnt = 0;
3281     for (const Expr *DRE : Privates) {
3282       PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
3283       ++Cnt;
3284     }
3285     const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
3286         CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
3287         C.getLangOpts().OpenMPCUDAReductionBufNum);
3288     TeamsReductions.push_back(TeamReductionRec);
3289     if (!KernelTeamsReductionPtr) {
3290       KernelTeamsReductionPtr = new llvm::GlobalVariable(
3291           CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
3292           llvm::GlobalValue::InternalLinkage, nullptr,
3293           "_openmp_teams_reductions_buffer_$_$ptr");
3294     }
3295     llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
3296         Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()),
3297         /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
3298     llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
3299         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3300     llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
3301         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3302         ReductionFn);
3303     llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
3304         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
3305     llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
3306         CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
3307         ReductionFn);
3308 
3309     llvm::Value *Args[] = {
3310         RTLoc,
3311         ThreadId,
3312         GlobalBufferPtr,
3313         CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
3314         RL,
3315         ShuffleAndReduceFn,
3316         InterWarpCopyFn,
3317         GlobalToBufferCpyFn,
3318         GlobalToBufferRedFn,
3319         BufferToGlobalCpyFn,
3320         BufferToGlobalRedFn};
3321 
3322     Res = CGF.EmitRuntimeCall(
3323         OMPBuilder.getOrCreateRuntimeFunction(
3324             CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
3325         Args);
3326   }
3327 
3328   // 5. Build if (res == 1)
3329   llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
3330   llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
3331   llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
3332       Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
3333   CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
3334 
3335   // 6. Build then branch: where we have reduced values in the master
3336   //    thread in each team.
3337   //    __kmpc_end_reduce{_nowait}(<gtid>);
3338   //    break;
3339   CGF.EmitBlock(ThenBB);
3340 
3341   // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
3342   auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
3343                     this](CodeGenFunction &CGF, PrePostActionTy &Action) {
3344     auto IPriv = Privates.begin();
3345     auto ILHS = LHSExprs.begin();
3346     auto IRHS = RHSExprs.begin();
3347     for (const Expr *E : ReductionOps) {
3348       emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
3349                                   cast<DeclRefExpr>(*IRHS));
3350       ++IPriv;
3351       ++ILHS;
3352       ++IRHS;
3353     }
3354   };
3355   llvm::Value *EndArgs[] = {ThreadId};
3356   RegionCodeGenTy RCG(CodeGen);
3357   NVPTXActionTy Action(
3358       nullptr, llvm::None,
3359       OMPBuilder.getOrCreateRuntimeFunction(
3360           CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
3361       EndArgs);
3362   RCG.setAction(Action);
3363   RCG(CGF);
3364   // There is no need to emit line number for unconditional branch.
3365   (void)ApplyDebugLocation::CreateEmpty(CGF);
3366   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
3367 }
3368 
3369 const VarDecl *
3370 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
3371                                        const VarDecl *NativeParam) const {
3372   if (!NativeParam->getType()->isReferenceType())
3373     return NativeParam;
3374   QualType ArgType = NativeParam->getType();
3375   QualifierCollector QC;
3376   const Type *NonQualTy = QC.strip(ArgType);
3377   QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3378   if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
3379     if (Attr->getCaptureKind() == OMPC_map) {
3380       PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
3381                                                         LangAS::opencl_global);
3382     }
3383   }
3384   ArgType = CGM.getContext().getPointerType(PointeeTy);
3385   QC.addRestrict();
3386   enum { NVPTX_local_addr = 5 };
3387   QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
3388   ArgType = QC.apply(CGM.getContext(), ArgType);
3389   if (isa<ImplicitParamDecl>(NativeParam))
3390     return ImplicitParamDecl::Create(
3391         CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
3392         NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
3393   return ParmVarDecl::Create(
3394       CGM.getContext(),
3395       const_cast<DeclContext *>(NativeParam->getDeclContext()),
3396       NativeParam->getBeginLoc(), NativeParam->getLocation(),
3397       NativeParam->getIdentifier(), ArgType,
3398       /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3399 }
3400 
3401 Address
3402 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3403                                           const VarDecl *NativeParam,
3404                                           const VarDecl *TargetParam) const {
3405   assert(NativeParam != TargetParam &&
3406          NativeParam->getType()->isReferenceType() &&
3407          "Native arg must not be the same as target arg.");
3408   Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3409   QualType NativeParamType = NativeParam->getType();
3410   QualifierCollector QC;
3411   const Type *NonQualTy = QC.strip(NativeParamType);
3412   QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3413   unsigned NativePointeeAddrSpace =
3414       CGF.getContext().getTargetAddressSpace(NativePointeeTy);
3415   QualType TargetTy = TargetParam->getType();
3416   llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
3417       LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
3418   // First cast to generic.
3419   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3420       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3421           cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
3422   // Cast from generic to native address space.
3423   TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3424       TargetAddr, llvm::PointerType::getWithSamePointeeType(
3425           cast<llvm::PointerType>(TargetAddr->getType()),
3426                                   NativePointeeAddrSpace));
3427   Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3428   CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3429                         NativeParamType);
3430   return NativeParamAddr;
3431 }
3432 
3433 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3434     CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3435     ArrayRef<llvm::Value *> Args) const {
3436   SmallVector<llvm::Value *, 4> TargetArgs;
3437   TargetArgs.reserve(Args.size());
3438   auto *FnType = OutlinedFn.getFunctionType();
3439   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3440     if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3441       TargetArgs.append(std::next(Args.begin(), I), Args.end());
3442       break;
3443     }
3444     llvm::Type *TargetType = FnType->getParamType(I);
3445     llvm::Value *NativeArg = Args[I];
3446     if (!TargetType->isPointerTy()) {
3447       TargetArgs.emplace_back(NativeArg);
3448       continue;
3449     }
3450     llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3451         NativeArg, llvm::PointerType::getWithSamePointeeType(
3452             cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
3453     TargetArgs.emplace_back(
3454         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
3455   }
3456   CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3457 }
3458 
3459 /// Emit function which wraps the outline parallel region
3460 /// and controls the arguments which are passed to this function.
3461 /// The wrapper ensures that the outlined function is called
3462 /// with the correct arguments when data is shared.
3463 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3464     llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3465   ASTContext &Ctx = CGM.getContext();
3466   const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3467 
3468   // Create a function that takes as argument the source thread.
3469   FunctionArgList WrapperArgs;
3470   QualType Int16QTy =
3471       Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3472   QualType Int32QTy =
3473       Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3474   ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3475                                      /*Id=*/nullptr, Int16QTy,
3476                                      ImplicitParamDecl::Other);
3477   ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3478                                /*Id=*/nullptr, Int32QTy,
3479                                ImplicitParamDecl::Other);
3480   WrapperArgs.emplace_back(&ParallelLevelArg);
3481   WrapperArgs.emplace_back(&WrapperArg);
3482 
3483   const CGFunctionInfo &CGFI =
3484       CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3485 
3486   auto *Fn = llvm::Function::Create(
3487       CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3488       Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3489 
3490   // Ensure we do not inline the function. This is trivially true for the ones
3491   // passed to __kmpc_fork_call but the ones calles in serialized regions
3492   // could be inlined. This is not a perfect but it is closer to the invariant
3493   // we want, namely, every data environment starts with a new function.
3494   // TODO: We should pass the if condition to the runtime function and do the
3495   //       handling there. Much cleaner code.
3496   Fn->addFnAttr(llvm::Attribute::NoInline);
3497 
3498   CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3499   Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3500   Fn->setDoesNotRecurse();
3501 
3502   CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3503   CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3504                     D.getBeginLoc(), D.getBeginLoc());
3505 
3506   const auto *RD = CS.getCapturedRecordDecl();
3507   auto CurField = RD->field_begin();
3508 
3509   Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3510                                                       /*Name=*/".zero.addr");
3511   CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3512   // Get the array of arguments.
3513   SmallVector<llvm::Value *, 8> Args;
3514 
3515   Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3516   Args.emplace_back(ZeroAddr.getPointer());
3517 
3518   CGBuilderTy &Bld = CGF.Builder;
3519   auto CI = CS.capture_begin();
3520 
3521   // Use global memory for data sharing.
3522   // Handle passing of global args to workers.
3523   Address GlobalArgs =
3524       CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3525   llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3526   llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3527   CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3528                           CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3529                       DataSharingArgs);
3530 
3531   // Retrieve the shared variables from the list of references returned
3532   // by the runtime. Pass the variables to the outlined function.
3533   Address SharedArgListAddress = Address::invalid();
3534   if (CS.capture_size() > 0 ||
3535       isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3536     SharedArgListAddress = CGF.EmitLoadOfPointer(
3537         GlobalArgs, CGF.getContext()
3538                         .getPointerType(CGF.getContext().getPointerType(
3539                             CGF.getContext().VoidPtrTy))
3540                         .castAs<PointerType>());
3541   }
3542   unsigned Idx = 0;
3543   if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3544     Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3545     Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3546         Src, CGF.SizeTy->getPointerTo());
3547     llvm::Value *LB = CGF.EmitLoadOfScalar(
3548         TypedAddress,
3549         /*Volatile=*/false,
3550         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3551         cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3552     Args.emplace_back(LB);
3553     ++Idx;
3554     Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3555     TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3556         Src, CGF.SizeTy->getPointerTo());
3557     llvm::Value *UB = CGF.EmitLoadOfScalar(
3558         TypedAddress,
3559         /*Volatile=*/false,
3560         CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3561         cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3562     Args.emplace_back(UB);
3563     ++Idx;
3564   }
3565   if (CS.capture_size() > 0) {
3566     ASTContext &CGFContext = CGF.getContext();
3567     for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3568       QualType ElemTy = CurField->getType();
3569       Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3570       Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3571           Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
3572       llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3573                                               /*Volatile=*/false,
3574                                               CGFContext.getPointerType(ElemTy),
3575                                               CI->getLocation());
3576       if (CI->capturesVariableByCopy() &&
3577           !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3578         Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3579                               CI->getLocation());
3580       }
3581       Args.emplace_back(Arg);
3582     }
3583   }
3584 
3585   emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3586   CGF.FinishFunction();
3587   return Fn;
3588 }
3589 
3590 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3591                                               const Decl *D) {
3592   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3593     return;
3594 
3595   assert(D && "Expected function or captured|block decl.");
3596   assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3597          "Function is registered already.");
3598   assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3599          "Team is set but not processed.");
3600   const Stmt *Body = nullptr;
3601   bool NeedToDelayGlobalization = false;
3602   if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3603     Body = FD->getBody();
3604   } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3605     Body = BD->getBody();
3606   } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3607     Body = CD->getBody();
3608     NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3609     if (NeedToDelayGlobalization &&
3610         getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3611       return;
3612   }
3613   if (!Body)
3614     return;
3615   CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3616   VarChecker.Visit(Body);
3617   const RecordDecl *GlobalizedVarsRecord =
3618       VarChecker.getGlobalizedRecord(IsInTTDRegion);
3619   TeamAndReductions.first = nullptr;
3620   TeamAndReductions.second.clear();
3621   ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3622       VarChecker.getEscapedVariableLengthDecls();
3623   if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
3624     return;
3625   auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3626   I->getSecond().MappedParams =
3627       std::make_unique<CodeGenFunction::OMPMapVars>();
3628   I->getSecond().EscapedParameters.insert(
3629       VarChecker.getEscapedParameters().begin(),
3630       VarChecker.getEscapedParameters().end());
3631   I->getSecond().EscapedVariableLengthDecls.append(
3632       EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3633   DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3634   for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3635     assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3636     Data.insert(std::make_pair(VD, MappedVarData()));
3637   }
3638   if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
3639     CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
3640     VarChecker.Visit(Body);
3641     I->getSecond().SecondaryLocalVarData.emplace();
3642     DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
3643     for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3644       assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3645       Data.insert(std::make_pair(VD, MappedVarData()));
3646     }
3647   }
3648   if (!NeedToDelayGlobalization) {
3649     emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
3650     struct GlobalizationScope final : EHScopeStack::Cleanup {
3651       GlobalizationScope() = default;
3652 
3653       void Emit(CodeGenFunction &CGF, Flags flags) override {
3654         static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3655             .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
3656       }
3657     };
3658     CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3659   }
3660 }
3661 
3662 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3663                                                         const VarDecl *VD) {
3664   if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3665     const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3666     auto AS = LangAS::Default;
3667     switch (A->getAllocatorType()) {
3668       // Use the default allocator here as by default local vars are
3669       // threadlocal.
3670     case OMPAllocateDeclAttr::OMPNullMemAlloc:
3671     case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3672     case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3673     case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3674     case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3675       // Follow the user decision - use default allocation.
3676       return Address::invalid();
3677     case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3678       // TODO: implement aupport for user-defined allocators.
3679       return Address::invalid();
3680     case OMPAllocateDeclAttr::OMPConstMemAlloc:
3681       AS = LangAS::cuda_constant;
3682       break;
3683     case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3684       AS = LangAS::cuda_shared;
3685       break;
3686     case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3687     case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3688       break;
3689     }
3690     llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3691     auto *GV = new llvm::GlobalVariable(
3692         CGM.getModule(), VarTy, /*isConstant=*/false,
3693         llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
3694         VD->getName(),
3695         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3696         CGM.getContext().getTargetAddressSpace(AS));
3697     CharUnits Align = CGM.getContext().getDeclAlign(VD);
3698     GV->setAlignment(Align.getAsAlign());
3699     return Address(
3700         CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3701             GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3702                     VD->getType().getAddressSpace()))),
3703         VarTy, Align);
3704   }
3705 
3706   if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
3707     return Address::invalid();
3708 
3709   VD = VD->getCanonicalDecl();
3710   auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3711   if (I == FunctionGlobalizedDecls.end())
3712     return Address::invalid();
3713   auto VDI = I->getSecond().LocalVarData.find(VD);
3714   if (VDI != I->getSecond().LocalVarData.end())
3715     return VDI->second.PrivateAddr;
3716   if (VD->hasAttrs()) {
3717     for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3718          E(VD->attr_end());
3719          IT != E; ++IT) {
3720       auto VDI = I->getSecond().LocalVarData.find(
3721           cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3722               ->getCanonicalDecl());
3723       if (VDI != I->getSecond().LocalVarData.end())
3724         return VDI->second.PrivateAddr;
3725     }
3726   }
3727 
3728   return Address::invalid();
3729 }
3730 
3731 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3732   FunctionGlobalizedDecls.erase(CGF.CurFn);
3733   CGOpenMPRuntime::functionFinished(CGF);
3734 }
3735 
3736 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3737     CodeGenFunction &CGF, const OMPLoopDirective &S,
3738     OpenMPDistScheduleClauseKind &ScheduleKind,
3739     llvm::Value *&Chunk) const {
3740   auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3741   if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3742     ScheduleKind = OMPC_DIST_SCHEDULE_static;
3743     Chunk = CGF.EmitScalarConversion(
3744         RT.getGPUNumThreads(CGF),
3745         CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3746         S.getIterationVariable()->getType(), S.getBeginLoc());
3747     return;
3748   }
3749   CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3750       CGF, S, ScheduleKind, Chunk);
3751 }
3752 
3753 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3754     CodeGenFunction &CGF, const OMPLoopDirective &S,
3755     OpenMPScheduleClauseKind &ScheduleKind,
3756     const Expr *&ChunkExpr) const {
3757   ScheduleKind = OMPC_SCHEDULE_static;
3758   // Chunk size is 1 in this case.
3759   llvm::APInt ChunkSize(32, 1);
3760   ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3761       CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3762       SourceLocation());
3763 }
3764 
3765 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3766     CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3767   assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3768          " Expected target-based directive.");
3769   const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3770   for (const CapturedStmt::Capture &C : CS->captures()) {
3771     // Capture variables captured by reference in lambdas for target-based
3772     // directives.
3773     if (!C.capturesVariable())
3774       continue;
3775     const VarDecl *VD = C.getCapturedVar();
3776     const auto *RD = VD->getType()
3777                          .getCanonicalType()
3778                          .getNonReferenceType()
3779                          ->getAsCXXRecordDecl();
3780     if (!RD || !RD->isLambda())
3781       continue;
3782     Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3783     LValue VDLVal;
3784     if (VD->getType().getCanonicalType()->isReferenceType())
3785       VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3786     else
3787       VDLVal = CGF.MakeAddrLValue(
3788           VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3789     llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
3790     FieldDecl *ThisCapture = nullptr;
3791     RD->getCaptureFields(Captures, ThisCapture);
3792     if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3793       LValue ThisLVal =
3794           CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3795       llvm::Value *CXXThis = CGF.LoadCXXThis();
3796       CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3797     }
3798     for (const LambdaCapture &LC : RD->captures()) {
3799       if (LC.getCaptureKind() != LCK_ByRef)
3800         continue;
3801       const VarDecl *VD = LC.getCapturedVar();
3802       if (!CS->capturesVariable(VD))
3803         continue;
3804       auto It = Captures.find(VD);
3805       assert(It != Captures.end() && "Found lambda capture without field.");
3806       LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3807       Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3808       if (VD->getType().getCanonicalType()->isReferenceType())
3809         VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3810                                                VD->getType().getCanonicalType())
3811                      .getAddress(CGF);
3812       CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3813     }
3814   }
3815 }
3816 
3817 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3818                                                             LangAS &AS) {
3819   if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3820     return false;
3821   const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3822   switch(A->getAllocatorType()) {
3823   case OMPAllocateDeclAttr::OMPNullMemAlloc:
3824   case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3825   // Not supported, fallback to the default mem space.
3826   case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3827   case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3828   case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3829   case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3830   case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3831     AS = LangAS::Default;
3832     return true;
3833   case OMPAllocateDeclAttr::OMPConstMemAlloc:
3834     AS = LangAS::cuda_constant;
3835     return true;
3836   case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3837     AS = LangAS::cuda_shared;
3838     return true;
3839   case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3840     llvm_unreachable("Expected predefined allocator for the variables with the "
3841                      "static storage.");
3842   }
3843   return false;
3844 }
3845 
3846 // Get current CudaArch and ignore any unknown values
3847 static CudaArch getCudaArch(CodeGenModule &CGM) {
3848   if (!CGM.getTarget().hasFeature("ptx"))
3849     return CudaArch::UNKNOWN;
3850   for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3851     if (Feature.getValue()) {
3852       CudaArch Arch = StringToCudaArch(Feature.getKey());
3853       if (Arch != CudaArch::UNKNOWN)
3854         return Arch;
3855     }
3856   }
3857   return CudaArch::UNKNOWN;
3858 }
3859 
3860 /// Check to see if target architecture supports unified addressing which is
3861 /// a restriction for OpenMP requires clause "unified_shared_memory".
3862 void CGOpenMPRuntimeGPU::processRequiresDirective(
3863     const OMPRequiresDecl *D) {
3864   for (const OMPClause *Clause : D->clauselists()) {
3865     if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3866       CudaArch Arch = getCudaArch(CGM);
3867       switch (Arch) {
3868       case CudaArch::SM_20:
3869       case CudaArch::SM_21:
3870       case CudaArch::SM_30:
3871       case CudaArch::SM_32:
3872       case CudaArch::SM_35:
3873       case CudaArch::SM_37:
3874       case CudaArch::SM_50:
3875       case CudaArch::SM_52:
3876       case CudaArch::SM_53: {
3877         SmallString<256> Buffer;
3878         llvm::raw_svector_ostream Out(Buffer);
3879         Out << "Target architecture " << CudaArchToString(Arch)
3880             << " does not support unified addressing";
3881         CGM.Error(Clause->getBeginLoc(), Out.str());
3882         return;
3883       }
3884       case CudaArch::SM_60:
3885       case CudaArch::SM_61:
3886       case CudaArch::SM_62:
3887       case CudaArch::SM_70:
3888       case CudaArch::SM_72:
3889       case CudaArch::SM_75:
3890       case CudaArch::SM_80:
3891       case CudaArch::SM_86:
3892       case CudaArch::GFX600:
3893       case CudaArch::GFX601:
3894       case CudaArch::GFX602:
3895       case CudaArch::GFX700:
3896       case CudaArch::GFX701:
3897       case CudaArch::GFX702:
3898       case CudaArch::GFX703:
3899       case CudaArch::GFX704:
3900       case CudaArch::GFX705:
3901       case CudaArch::GFX801:
3902       case CudaArch::GFX802:
3903       case CudaArch::GFX803:
3904       case CudaArch::GFX805:
3905       case CudaArch::GFX810:
3906       case CudaArch::GFX900:
3907       case CudaArch::GFX902:
3908       case CudaArch::GFX904:
3909       case CudaArch::GFX906:
3910       case CudaArch::GFX908:
3911       case CudaArch::GFX909:
3912       case CudaArch::GFX90a:
3913       case CudaArch::GFX90c:
3914       case CudaArch::GFX1010:
3915       case CudaArch::GFX1011:
3916       case CudaArch::GFX1012:
3917       case CudaArch::GFX1013:
3918       case CudaArch::GFX1030:
3919       case CudaArch::GFX1031:
3920       case CudaArch::GFX1032:
3921       case CudaArch::GFX1033:
3922       case CudaArch::GFX1034:
3923       case CudaArch::GFX1035:
3924       case CudaArch::Generic:
3925       case CudaArch::UNUSED:
3926       case CudaArch::UNKNOWN:
3927         break;
3928       case CudaArch::LAST:
3929         llvm_unreachable("Unexpected Cuda arch.");
3930       }
3931     }
3932   }
3933   CGOpenMPRuntime::processRequiresDirective(D);
3934 }
3935 
3936 void CGOpenMPRuntimeGPU::clear() {
3937 
3938   if (!TeamsReductions.empty()) {
3939     ASTContext &C = CGM.getContext();
3940     RecordDecl *StaticRD = C.buildImplicitRecord(
3941         "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
3942     StaticRD->startDefinition();
3943     for (const RecordDecl *TeamReductionRec : TeamsReductions) {
3944       QualType RecTy = C.getRecordType(TeamReductionRec);
3945       auto *Field = FieldDecl::Create(
3946           C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
3947           C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
3948           /*BW=*/nullptr, /*Mutable=*/false,
3949           /*InitStyle=*/ICIS_NoInit);
3950       Field->setAccess(AS_public);
3951       StaticRD->addDecl(Field);
3952     }
3953     StaticRD->completeDefinition();
3954     QualType StaticTy = C.getRecordType(StaticRD);
3955     llvm::Type *LLVMReductionsBufferTy =
3956         CGM.getTypes().ConvertTypeForMem(StaticTy);
3957     // FIXME: nvlink does not handle weak linkage correctly (object with the
3958     // different size are reported as erroneous).
3959     // Restore CommonLinkage as soon as nvlink is fixed.
3960     auto *GV = new llvm::GlobalVariable(
3961         CGM.getModule(), LLVMReductionsBufferTy,
3962         /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
3963         llvm::Constant::getNullValue(LLVMReductionsBufferTy),
3964         "_openmp_teams_reductions_buffer_$_");
3965     KernelTeamsReductionPtr->setInitializer(
3966         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
3967                                                              CGM.VoidPtrTy));
3968   }
3969   CGOpenMPRuntime::clear();
3970 }
3971 
3972 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3973   CGBuilderTy &Bld = CGF.Builder;
3974   llvm::Module *M = &CGF.CGM.getModule();
3975   const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3976   llvm::Function *F = M->getFunction(LocSize);
3977   if (!F) {
3978     F = llvm::Function::Create(
3979         llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
3980         llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3981   }
3982   return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
3983 }
3984 
3985 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3986   ArrayRef<llvm::Value *> Args{};
3987   return CGF.EmitRuntimeCall(
3988       OMPBuilder.getOrCreateRuntimeFunction(
3989           CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3990       Args);
3991 }
3992 
3993 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3994   ArrayRef<llvm::Value *> Args{};
3995   return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3996                                  CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3997                              Args);
3998 }
3999