1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CodeGenFunction.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/DeclOpenMP.h" 18 #include "clang/AST/StmtOpenMP.h" 19 #include "clang/AST/StmtVisitor.h" 20 #include "clang/Basic/Cuda.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 23 #include "llvm/Support/MathExtras.h" 24 25 using namespace clang; 26 using namespace CodeGen; 27 using namespace llvm::omp; 28 29 namespace { 30 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 31 class NVPTXActionTy final : public PrePostActionTy { 32 llvm::FunctionCallee EnterCallee = nullptr; 33 ArrayRef<llvm::Value *> EnterArgs; 34 llvm::FunctionCallee ExitCallee = nullptr; 35 ArrayRef<llvm::Value *> ExitArgs; 36 bool Conditional = false; 37 llvm::BasicBlock *ContBlock = nullptr; 38 39 public: 40 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 41 ArrayRef<llvm::Value *> EnterArgs, 42 llvm::FunctionCallee ExitCallee, 43 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 44 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 45 ExitArgs(ExitArgs), Conditional(Conditional) {} 46 void Enter(CodeGenFunction &CGF) override { 47 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 48 if (Conditional) { 49 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 50 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 51 ContBlock = CGF.createBasicBlock("omp_if.end"); 52 // Generate the branch (If-stmt) 53 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 54 CGF.EmitBlock(ThenBlock); 55 } 56 } 57 void Done(CodeGenFunction &CGF) { 58 // Emit the rest of blocks/branches 59 CGF.EmitBranch(ContBlock); 60 CGF.EmitBlock(ContBlock, true); 61 } 62 void Exit(CodeGenFunction &CGF) override { 63 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 64 } 65 }; 66 67 /// A class to track the execution mode when codegening directives within 68 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 69 /// to the target region and used by containing directives such as 'parallel' 70 /// to emit optimized code. 71 class ExecutionRuntimeModesRAII { 72 private: 73 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 74 CGOpenMPRuntimeGPU::EM_Unknown; 75 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 76 bool SavedRuntimeMode = false; 77 bool *RuntimeMode = nullptr; 78 79 public: 80 /// Constructor for Non-SPMD mode. 81 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 82 : ExecMode(ExecMode) { 83 SavedExecMode = ExecMode; 84 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 85 } 86 /// Constructor for SPMD mode. 87 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 88 bool &RuntimeMode, bool FullRuntimeMode) 89 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 90 SavedExecMode = ExecMode; 91 SavedRuntimeMode = RuntimeMode; 92 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 93 RuntimeMode = FullRuntimeMode; 94 } 95 ~ExecutionRuntimeModesRAII() { 96 ExecMode = SavedExecMode; 97 if (RuntimeMode) 98 *RuntimeMode = SavedRuntimeMode; 99 } 100 }; 101 102 /// GPU Configuration: This information can be derived from cuda registers, 103 /// however, providing compile time constants helps generate more efficient 104 /// code. For all practical purposes this is fine because the configuration 105 /// is the same for all known NVPTX architectures. 106 enum MachineConfiguration : unsigned { 107 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 108 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 109 110 /// Global memory alignment for performance. 111 GlobalMemoryAlignment = 128, 112 113 /// Maximal size of the shared memory buffer. 114 SharedMemorySize = 128, 115 }; 116 117 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 118 RefExpr = RefExpr->IgnoreParens(); 119 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 120 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 121 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 122 Base = TempASE->getBase()->IgnoreParenImpCasts(); 123 RefExpr = Base; 124 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 125 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 126 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 127 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 129 Base = TempASE->getBase()->IgnoreParenImpCasts(); 130 RefExpr = Base; 131 } 132 RefExpr = RefExpr->IgnoreParenImpCasts(); 133 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 134 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 135 const auto *ME = cast<MemberExpr>(RefExpr); 136 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 137 } 138 139 140 static RecordDecl *buildRecordForGlobalizedVars( 141 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 142 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 143 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 144 &MappedDeclsFields, int BufSize) { 145 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 146 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 147 return nullptr; 148 SmallVector<VarsDataTy, 4> GlobalizedVars; 149 for (const ValueDecl *D : EscapedDecls) 150 GlobalizedVars.emplace_back( 151 CharUnits::fromQuantity(std::max( 152 C.getDeclAlign(D).getQuantity(), 153 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 154 D); 155 for (const ValueDecl *D : EscapedDeclsForTeams) 156 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 157 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 158 return L.first > R.first; 159 }); 160 161 // Build struct _globalized_locals_ty { 162 // /* globalized vars */[WarSize] align (max(decl_align, 163 // GlobalMemoryAlignment)) 164 // /* globalized vars */ for EscapedDeclsForTeams 165 // }; 166 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 167 GlobalizedRD->startDefinition(); 168 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 169 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 170 for (const auto &Pair : GlobalizedVars) { 171 const ValueDecl *VD = Pair.second; 172 QualType Type = VD->getType(); 173 if (Type->isLValueReferenceType()) 174 Type = C.getPointerType(Type.getNonReferenceType()); 175 else 176 Type = Type.getNonReferenceType(); 177 SourceLocation Loc = VD->getLocation(); 178 FieldDecl *Field; 179 if (SingleEscaped.count(VD)) { 180 Field = FieldDecl::Create( 181 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 182 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 183 /*BW=*/nullptr, /*Mutable=*/false, 184 /*InitStyle=*/ICIS_NoInit); 185 Field->setAccess(AS_public); 186 if (VD->hasAttrs()) { 187 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 188 E(VD->getAttrs().end()); 189 I != E; ++I) 190 Field->addAttr(*I); 191 } 192 } else { 193 llvm::APInt ArraySize(32, BufSize); 194 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 195 0); 196 Field = FieldDecl::Create( 197 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 198 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 199 /*BW=*/nullptr, /*Mutable=*/false, 200 /*InitStyle=*/ICIS_NoInit); 201 Field->setAccess(AS_public); 202 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 203 static_cast<CharUnits::QuantityType>( 204 GlobalMemoryAlignment))); 205 Field->addAttr(AlignedAttr::CreateImplicit( 206 C, /*IsAlignmentExpr=*/true, 207 IntegerLiteral::Create(C, Align, 208 C.getIntTypeForBitwidth(32, /*Signed=*/0), 209 SourceLocation()), 210 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 211 } 212 GlobalizedRD->addDecl(Field); 213 MappedDeclsFields.try_emplace(VD, Field); 214 } 215 GlobalizedRD->completeDefinition(); 216 return GlobalizedRD; 217 } 218 219 /// Get the list of variables that can escape their declaration context. 220 class CheckVarsEscapingDeclContext final 221 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 222 CodeGenFunction &CGF; 223 llvm::SetVector<const ValueDecl *> EscapedDecls; 224 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 225 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 226 RecordDecl *GlobalizedRD = nullptr; 227 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 228 bool AllEscaped = false; 229 bool IsForCombinedParallelRegion = false; 230 231 void markAsEscaped(const ValueDecl *VD) { 232 // Do not globalize declare target variables. 233 if (!isa<VarDecl>(VD) || 234 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 235 return; 236 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 237 // Use user-specified allocation. 238 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 239 return; 240 // Variables captured by value must be globalized. 241 if (auto *CSI = CGF.CapturedStmtInfo) { 242 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 243 // Check if need to capture the variable that was already captured by 244 // value in the outer region. 245 if (!IsForCombinedParallelRegion) { 246 if (!FD->hasAttrs()) 247 return; 248 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 249 if (!Attr) 250 return; 251 if (((Attr->getCaptureKind() != OMPC_map) && 252 !isOpenMPPrivate(Attr->getCaptureKind())) || 253 ((Attr->getCaptureKind() == OMPC_map) && 254 !FD->getType()->isAnyPointerType())) 255 return; 256 } 257 if (!FD->getType()->isReferenceType()) { 258 assert(!VD->getType()->isVariablyModifiedType() && 259 "Parameter captured by value with variably modified type"); 260 EscapedParameters.insert(VD); 261 } else if (!IsForCombinedParallelRegion) { 262 return; 263 } 264 } 265 } 266 if ((!CGF.CapturedStmtInfo || 267 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 268 VD->getType()->isReferenceType()) 269 // Do not globalize variables with reference type. 270 return; 271 if (VD->getType()->isVariablyModifiedType()) 272 EscapedVariableLengthDecls.insert(VD); 273 else 274 EscapedDecls.insert(VD); 275 } 276 277 void VisitValueDecl(const ValueDecl *VD) { 278 if (VD->getType()->isLValueReferenceType()) 279 markAsEscaped(VD); 280 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 281 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 282 const bool SavedAllEscaped = AllEscaped; 283 AllEscaped = VD->getType()->isLValueReferenceType(); 284 Visit(VarD->getInit()); 285 AllEscaped = SavedAllEscaped; 286 } 287 } 288 } 289 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 290 ArrayRef<OMPClause *> Clauses, 291 bool IsCombinedParallelRegion) { 292 if (!S) 293 return; 294 for (const CapturedStmt::Capture &C : S->captures()) { 295 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 296 const ValueDecl *VD = C.getCapturedVar(); 297 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 298 if (IsCombinedParallelRegion) { 299 // Check if the variable is privatized in the combined construct and 300 // those private copies must be shared in the inner parallel 301 // directive. 302 IsForCombinedParallelRegion = false; 303 for (const OMPClause *C : Clauses) { 304 if (!isOpenMPPrivate(C->getClauseKind()) || 305 C->getClauseKind() == OMPC_reduction || 306 C->getClauseKind() == OMPC_linear || 307 C->getClauseKind() == OMPC_private) 308 continue; 309 ArrayRef<const Expr *> Vars; 310 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 311 Vars = PC->getVarRefs(); 312 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else 315 llvm_unreachable("Unexpected clause."); 316 for (const auto *E : Vars) { 317 const Decl *D = 318 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 319 if (D == VD->getCanonicalDecl()) { 320 IsForCombinedParallelRegion = true; 321 break; 322 } 323 } 324 if (IsForCombinedParallelRegion) 325 break; 326 } 327 } 328 markAsEscaped(VD); 329 if (isa<OMPCapturedExprDecl>(VD)) 330 VisitValueDecl(VD); 331 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 332 } 333 } 334 } 335 336 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 337 assert(!GlobalizedRD && 338 "Record for globalized variables is built already."); 339 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 340 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 341 if (IsInTTDRegion) 342 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 343 else 344 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 345 GlobalizedRD = ::buildRecordForGlobalizedVars( 346 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 347 MappedDeclsFields, WarpSize); 348 } 349 350 public: 351 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 352 ArrayRef<const ValueDecl *> TeamsReductions) 353 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 354 } 355 virtual ~CheckVarsEscapingDeclContext() = default; 356 void VisitDeclStmt(const DeclStmt *S) { 357 if (!S) 358 return; 359 for (const Decl *D : S->decls()) 360 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 361 VisitValueDecl(VD); 362 } 363 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 364 if (!D) 365 return; 366 if (!D->hasAssociatedStmt()) 367 return; 368 if (const auto *S = 369 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 370 // Do not analyze directives that do not actually require capturing, 371 // like `omp for` or `omp simd` directives. 372 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 373 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 374 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 375 VisitStmt(S->getCapturedStmt()); 376 return; 377 } 378 VisitOpenMPCapturedStmt( 379 S, D->clauses(), 380 CaptureRegions.back() == OMPD_parallel && 381 isOpenMPDistributeDirective(D->getDirectiveKind())); 382 } 383 } 384 void VisitCapturedStmt(const CapturedStmt *S) { 385 if (!S) 386 return; 387 for (const CapturedStmt::Capture &C : S->captures()) { 388 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 389 const ValueDecl *VD = C.getCapturedVar(); 390 markAsEscaped(VD); 391 if (isa<OMPCapturedExprDecl>(VD)) 392 VisitValueDecl(VD); 393 } 394 } 395 } 396 void VisitLambdaExpr(const LambdaExpr *E) { 397 if (!E) 398 return; 399 for (const LambdaCapture &C : E->captures()) { 400 if (C.capturesVariable()) { 401 if (C.getCaptureKind() == LCK_ByRef) { 402 const ValueDecl *VD = C.getCapturedVar(); 403 markAsEscaped(VD); 404 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 405 VisitValueDecl(VD); 406 } 407 } 408 } 409 } 410 void VisitBlockExpr(const BlockExpr *E) { 411 if (!E) 412 return; 413 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 414 if (C.isByRef()) { 415 const VarDecl *VD = C.getVariable(); 416 markAsEscaped(VD); 417 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 418 VisitValueDecl(VD); 419 } 420 } 421 } 422 void VisitCallExpr(const CallExpr *E) { 423 if (!E) 424 return; 425 for (const Expr *Arg : E->arguments()) { 426 if (!Arg) 427 continue; 428 if (Arg->isLValue()) { 429 const bool SavedAllEscaped = AllEscaped; 430 AllEscaped = true; 431 Visit(Arg); 432 AllEscaped = SavedAllEscaped; 433 } else { 434 Visit(Arg); 435 } 436 } 437 Visit(E->getCallee()); 438 } 439 void VisitDeclRefExpr(const DeclRefExpr *E) { 440 if (!E) 441 return; 442 const ValueDecl *VD = E->getDecl(); 443 if (AllEscaped) 444 markAsEscaped(VD); 445 if (isa<OMPCapturedExprDecl>(VD)) 446 VisitValueDecl(VD); 447 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 448 if (VarD->isInitCapture()) 449 VisitValueDecl(VD); 450 } 451 void VisitUnaryOperator(const UnaryOperator *E) { 452 if (!E) 453 return; 454 if (E->getOpcode() == UO_AddrOf) { 455 const bool SavedAllEscaped = AllEscaped; 456 AllEscaped = true; 457 Visit(E->getSubExpr()); 458 AllEscaped = SavedAllEscaped; 459 } else { 460 Visit(E->getSubExpr()); 461 } 462 } 463 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 464 if (!E) 465 return; 466 if (E->getCastKind() == CK_ArrayToPointerDecay) { 467 const bool SavedAllEscaped = AllEscaped; 468 AllEscaped = true; 469 Visit(E->getSubExpr()); 470 AllEscaped = SavedAllEscaped; 471 } else { 472 Visit(E->getSubExpr()); 473 } 474 } 475 void VisitExpr(const Expr *E) { 476 if (!E) 477 return; 478 bool SavedAllEscaped = AllEscaped; 479 if (!E->isLValue()) 480 AllEscaped = false; 481 for (const Stmt *Child : E->children()) 482 if (Child) 483 Visit(Child); 484 AllEscaped = SavedAllEscaped; 485 } 486 void VisitStmt(const Stmt *S) { 487 if (!S) 488 return; 489 for (const Stmt *Child : S->children()) 490 if (Child) 491 Visit(Child); 492 } 493 494 /// Returns the record that handles all the escaped local variables and used 495 /// instead of their original storage. 496 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 497 if (!GlobalizedRD) 498 buildRecordForGlobalizedVars(IsInTTDRegion); 499 return GlobalizedRD; 500 } 501 502 /// Returns the field in the globalized record for the escaped variable. 503 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 504 assert(GlobalizedRD && 505 "Record for globalized variables must be generated already."); 506 auto I = MappedDeclsFields.find(VD); 507 if (I == MappedDeclsFields.end()) 508 return nullptr; 509 return I->getSecond(); 510 } 511 512 /// Returns the list of the escaped local variables/parameters. 513 ArrayRef<const ValueDecl *> getEscapedDecls() const { 514 return EscapedDecls.getArrayRef(); 515 } 516 517 /// Checks if the escaped local variable is actually a parameter passed by 518 /// value. 519 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 520 return EscapedParameters; 521 } 522 523 /// Returns the list of the escaped variables with the variably modified 524 /// types. 525 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 526 return EscapedVariableLengthDecls.getArrayRef(); 527 } 528 }; 529 } // anonymous namespace 530 531 /// Get the id of the warp in the block. 532 /// We assume that the warp size is 32, which is always the case 533 /// on the NVPTX device, to generate more efficient code. 534 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 535 CGBuilderTy &Bld = CGF.Builder; 536 unsigned LaneIDBits = 537 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 538 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 539 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 540 } 541 542 /// Get the id of the current lane in the Warp. 543 /// We assume that the warp size is 32, which is always the case 544 /// on the NVPTX device, to generate more efficient code. 545 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 546 CGBuilderTy &Bld = CGF.Builder; 547 unsigned LaneIDBits = 548 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 549 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 550 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 551 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 552 "nvptx_lane_id"); 553 } 554 555 CGOpenMPRuntimeGPU::ExecutionMode 556 CGOpenMPRuntimeGPU::getExecutionMode() const { 557 return CurrentExecutionMode; 558 } 559 560 static CGOpenMPRuntimeGPU::DataSharingMode 561 getDataSharingMode(CodeGenModule &CGM) { 562 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 563 : CGOpenMPRuntimeGPU::Generic; 564 } 565 566 /// Check for inner (nested) SPMD construct, if any 567 static bool hasNestedSPMDDirective(ASTContext &Ctx, 568 const OMPExecutableDirective &D) { 569 const auto *CS = D.getInnermostCapturedStmt(); 570 const auto *Body = 571 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 572 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 573 574 if (const auto *NestedDir = 575 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 576 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 577 switch (D.getDirectiveKind()) { 578 case OMPD_target: 579 if (isOpenMPParallelDirective(DKind)) 580 return true; 581 if (DKind == OMPD_teams) { 582 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 583 /*IgnoreCaptured=*/true); 584 if (!Body) 585 return false; 586 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 587 if (const auto *NND = 588 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 589 DKind = NND->getDirectiveKind(); 590 if (isOpenMPParallelDirective(DKind)) 591 return true; 592 } 593 } 594 return false; 595 case OMPD_target_teams: 596 return isOpenMPParallelDirective(DKind); 597 case OMPD_target_simd: 598 case OMPD_target_parallel: 599 case OMPD_target_parallel_for: 600 case OMPD_target_parallel_for_simd: 601 case OMPD_target_teams_distribute: 602 case OMPD_target_teams_distribute_simd: 603 case OMPD_target_teams_distribute_parallel_for: 604 case OMPD_target_teams_distribute_parallel_for_simd: 605 case OMPD_parallel: 606 case OMPD_for: 607 case OMPD_parallel_for: 608 case OMPD_parallel_master: 609 case OMPD_parallel_sections: 610 case OMPD_for_simd: 611 case OMPD_parallel_for_simd: 612 case OMPD_cancel: 613 case OMPD_cancellation_point: 614 case OMPD_ordered: 615 case OMPD_threadprivate: 616 case OMPD_allocate: 617 case OMPD_task: 618 case OMPD_simd: 619 case OMPD_sections: 620 case OMPD_section: 621 case OMPD_single: 622 case OMPD_master: 623 case OMPD_critical: 624 case OMPD_taskyield: 625 case OMPD_barrier: 626 case OMPD_taskwait: 627 case OMPD_taskgroup: 628 case OMPD_atomic: 629 case OMPD_flush: 630 case OMPD_depobj: 631 case OMPD_scan: 632 case OMPD_teams: 633 case OMPD_target_data: 634 case OMPD_target_exit_data: 635 case OMPD_target_enter_data: 636 case OMPD_distribute: 637 case OMPD_distribute_simd: 638 case OMPD_distribute_parallel_for: 639 case OMPD_distribute_parallel_for_simd: 640 case OMPD_teams_distribute: 641 case OMPD_teams_distribute_simd: 642 case OMPD_teams_distribute_parallel_for: 643 case OMPD_teams_distribute_parallel_for_simd: 644 case OMPD_target_update: 645 case OMPD_declare_simd: 646 case OMPD_declare_variant: 647 case OMPD_begin_declare_variant: 648 case OMPD_end_declare_variant: 649 case OMPD_declare_target: 650 case OMPD_end_declare_target: 651 case OMPD_declare_reduction: 652 case OMPD_declare_mapper: 653 case OMPD_taskloop: 654 case OMPD_taskloop_simd: 655 case OMPD_master_taskloop: 656 case OMPD_master_taskloop_simd: 657 case OMPD_parallel_master_taskloop: 658 case OMPD_parallel_master_taskloop_simd: 659 case OMPD_requires: 660 case OMPD_unknown: 661 default: 662 llvm_unreachable("Unexpected directive."); 663 } 664 } 665 666 return false; 667 } 668 669 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 670 const OMPExecutableDirective &D) { 671 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 672 switch (DirectiveKind) { 673 case OMPD_target: 674 case OMPD_target_teams: 675 return hasNestedSPMDDirective(Ctx, D); 676 case OMPD_target_parallel: 677 case OMPD_target_parallel_for: 678 case OMPD_target_parallel_for_simd: 679 case OMPD_target_teams_distribute_parallel_for: 680 case OMPD_target_teams_distribute_parallel_for_simd: 681 case OMPD_target_simd: 682 case OMPD_target_teams_distribute_simd: 683 return true; 684 case OMPD_target_teams_distribute: 685 return false; 686 case OMPD_parallel: 687 case OMPD_for: 688 case OMPD_parallel_for: 689 case OMPD_parallel_master: 690 case OMPD_parallel_sections: 691 case OMPD_for_simd: 692 case OMPD_parallel_for_simd: 693 case OMPD_cancel: 694 case OMPD_cancellation_point: 695 case OMPD_ordered: 696 case OMPD_threadprivate: 697 case OMPD_allocate: 698 case OMPD_task: 699 case OMPD_simd: 700 case OMPD_sections: 701 case OMPD_section: 702 case OMPD_single: 703 case OMPD_master: 704 case OMPD_critical: 705 case OMPD_taskyield: 706 case OMPD_barrier: 707 case OMPD_taskwait: 708 case OMPD_taskgroup: 709 case OMPD_atomic: 710 case OMPD_flush: 711 case OMPD_depobj: 712 case OMPD_scan: 713 case OMPD_teams: 714 case OMPD_target_data: 715 case OMPD_target_exit_data: 716 case OMPD_target_enter_data: 717 case OMPD_distribute: 718 case OMPD_distribute_simd: 719 case OMPD_distribute_parallel_for: 720 case OMPD_distribute_parallel_for_simd: 721 case OMPD_teams_distribute: 722 case OMPD_teams_distribute_simd: 723 case OMPD_teams_distribute_parallel_for: 724 case OMPD_teams_distribute_parallel_for_simd: 725 case OMPD_target_update: 726 case OMPD_declare_simd: 727 case OMPD_declare_variant: 728 case OMPD_begin_declare_variant: 729 case OMPD_end_declare_variant: 730 case OMPD_declare_target: 731 case OMPD_end_declare_target: 732 case OMPD_declare_reduction: 733 case OMPD_declare_mapper: 734 case OMPD_taskloop: 735 case OMPD_taskloop_simd: 736 case OMPD_master_taskloop: 737 case OMPD_master_taskloop_simd: 738 case OMPD_parallel_master_taskloop: 739 case OMPD_parallel_master_taskloop_simd: 740 case OMPD_requires: 741 case OMPD_unknown: 742 default: 743 break; 744 } 745 llvm_unreachable( 746 "Unknown programming model for OpenMP directive on NVPTX target."); 747 } 748 749 /// Check if the directive is loops based and has schedule clause at all or has 750 /// static scheduling. 751 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 752 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 753 isOpenMPLoopDirective(D.getDirectiveKind()) && 754 "Expected loop-based directive."); 755 return !D.hasClausesOfKind<OMPOrderedClause>() && 756 (!D.hasClausesOfKind<OMPScheduleClause>() || 757 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 758 [](const OMPScheduleClause *C) { 759 return C->getScheduleKind() == OMPC_SCHEDULE_static; 760 })); 761 } 762 763 /// Check for inner (nested) lightweight runtime construct, if any 764 static bool hasNestedLightweightDirective(ASTContext &Ctx, 765 const OMPExecutableDirective &D) { 766 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 767 const auto *CS = D.getInnermostCapturedStmt(); 768 const auto *Body = 769 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 770 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 771 772 if (const auto *NestedDir = 773 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 774 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 775 switch (D.getDirectiveKind()) { 776 case OMPD_target: 777 if (isOpenMPParallelDirective(DKind) && 778 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 779 hasStaticScheduling(*NestedDir)) 780 return true; 781 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 782 return true; 783 if (DKind == OMPD_parallel) { 784 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 785 /*IgnoreCaptured=*/true); 786 if (!Body) 787 return false; 788 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 789 if (const auto *NND = 790 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 791 DKind = NND->getDirectiveKind(); 792 if (isOpenMPWorksharingDirective(DKind) && 793 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 794 return true; 795 } 796 } else if (DKind == OMPD_teams) { 797 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 798 /*IgnoreCaptured=*/true); 799 if (!Body) 800 return false; 801 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 802 if (const auto *NND = 803 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 804 DKind = NND->getDirectiveKind(); 805 if (isOpenMPParallelDirective(DKind) && 806 isOpenMPWorksharingDirective(DKind) && 807 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 808 return true; 809 if (DKind == OMPD_parallel) { 810 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 811 /*IgnoreCaptured=*/true); 812 if (!Body) 813 return false; 814 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 815 if (const auto *NND = 816 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 817 DKind = NND->getDirectiveKind(); 818 if (isOpenMPWorksharingDirective(DKind) && 819 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 820 return true; 821 } 822 } 823 } 824 } 825 return false; 826 case OMPD_target_teams: 827 if (isOpenMPParallelDirective(DKind) && 828 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 829 hasStaticScheduling(*NestedDir)) 830 return true; 831 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 832 return true; 833 if (DKind == OMPD_parallel) { 834 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 835 /*IgnoreCaptured=*/true); 836 if (!Body) 837 return false; 838 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 839 if (const auto *NND = 840 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 841 DKind = NND->getDirectiveKind(); 842 if (isOpenMPWorksharingDirective(DKind) && 843 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 844 return true; 845 } 846 } 847 return false; 848 case OMPD_target_parallel: 849 if (DKind == OMPD_simd) 850 return true; 851 return isOpenMPWorksharingDirective(DKind) && 852 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 853 case OMPD_target_teams_distribute: 854 case OMPD_target_simd: 855 case OMPD_target_parallel_for: 856 case OMPD_target_parallel_for_simd: 857 case OMPD_target_teams_distribute_simd: 858 case OMPD_target_teams_distribute_parallel_for: 859 case OMPD_target_teams_distribute_parallel_for_simd: 860 case OMPD_parallel: 861 case OMPD_for: 862 case OMPD_parallel_for: 863 case OMPD_parallel_master: 864 case OMPD_parallel_sections: 865 case OMPD_for_simd: 866 case OMPD_parallel_for_simd: 867 case OMPD_cancel: 868 case OMPD_cancellation_point: 869 case OMPD_ordered: 870 case OMPD_threadprivate: 871 case OMPD_allocate: 872 case OMPD_task: 873 case OMPD_simd: 874 case OMPD_sections: 875 case OMPD_section: 876 case OMPD_single: 877 case OMPD_master: 878 case OMPD_critical: 879 case OMPD_taskyield: 880 case OMPD_barrier: 881 case OMPD_taskwait: 882 case OMPD_taskgroup: 883 case OMPD_atomic: 884 case OMPD_flush: 885 case OMPD_depobj: 886 case OMPD_scan: 887 case OMPD_teams: 888 case OMPD_target_data: 889 case OMPD_target_exit_data: 890 case OMPD_target_enter_data: 891 case OMPD_distribute: 892 case OMPD_distribute_simd: 893 case OMPD_distribute_parallel_for: 894 case OMPD_distribute_parallel_for_simd: 895 case OMPD_teams_distribute: 896 case OMPD_teams_distribute_simd: 897 case OMPD_teams_distribute_parallel_for: 898 case OMPD_teams_distribute_parallel_for_simd: 899 case OMPD_target_update: 900 case OMPD_declare_simd: 901 case OMPD_declare_variant: 902 case OMPD_begin_declare_variant: 903 case OMPD_end_declare_variant: 904 case OMPD_declare_target: 905 case OMPD_end_declare_target: 906 case OMPD_declare_reduction: 907 case OMPD_declare_mapper: 908 case OMPD_taskloop: 909 case OMPD_taskloop_simd: 910 case OMPD_master_taskloop: 911 case OMPD_master_taskloop_simd: 912 case OMPD_parallel_master_taskloop: 913 case OMPD_parallel_master_taskloop_simd: 914 case OMPD_requires: 915 case OMPD_unknown: 916 default: 917 llvm_unreachable("Unexpected directive."); 918 } 919 } 920 921 return false; 922 } 923 924 /// Checks if the construct supports lightweight runtime. It must be SPMD 925 /// construct + inner loop-based construct with static scheduling. 926 static bool supportsLightweightRuntime(ASTContext &Ctx, 927 const OMPExecutableDirective &D) { 928 if (!supportsSPMDExecutionMode(Ctx, D)) 929 return false; 930 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 931 switch (DirectiveKind) { 932 case OMPD_target: 933 case OMPD_target_teams: 934 case OMPD_target_parallel: 935 return hasNestedLightweightDirective(Ctx, D); 936 case OMPD_target_parallel_for: 937 case OMPD_target_parallel_for_simd: 938 case OMPD_target_teams_distribute_parallel_for: 939 case OMPD_target_teams_distribute_parallel_for_simd: 940 // (Last|First)-privates must be shared in parallel region. 941 return hasStaticScheduling(D); 942 case OMPD_target_simd: 943 case OMPD_target_teams_distribute_simd: 944 return true; 945 case OMPD_target_teams_distribute: 946 return false; 947 case OMPD_parallel: 948 case OMPD_for: 949 case OMPD_parallel_for: 950 case OMPD_parallel_master: 951 case OMPD_parallel_sections: 952 case OMPD_for_simd: 953 case OMPD_parallel_for_simd: 954 case OMPD_cancel: 955 case OMPD_cancellation_point: 956 case OMPD_ordered: 957 case OMPD_threadprivate: 958 case OMPD_allocate: 959 case OMPD_task: 960 case OMPD_simd: 961 case OMPD_sections: 962 case OMPD_section: 963 case OMPD_single: 964 case OMPD_master: 965 case OMPD_critical: 966 case OMPD_taskyield: 967 case OMPD_barrier: 968 case OMPD_taskwait: 969 case OMPD_taskgroup: 970 case OMPD_atomic: 971 case OMPD_flush: 972 case OMPD_depobj: 973 case OMPD_scan: 974 case OMPD_teams: 975 case OMPD_target_data: 976 case OMPD_target_exit_data: 977 case OMPD_target_enter_data: 978 case OMPD_distribute: 979 case OMPD_distribute_simd: 980 case OMPD_distribute_parallel_for: 981 case OMPD_distribute_parallel_for_simd: 982 case OMPD_teams_distribute: 983 case OMPD_teams_distribute_simd: 984 case OMPD_teams_distribute_parallel_for: 985 case OMPD_teams_distribute_parallel_for_simd: 986 case OMPD_target_update: 987 case OMPD_declare_simd: 988 case OMPD_declare_variant: 989 case OMPD_begin_declare_variant: 990 case OMPD_end_declare_variant: 991 case OMPD_declare_target: 992 case OMPD_end_declare_target: 993 case OMPD_declare_reduction: 994 case OMPD_declare_mapper: 995 case OMPD_taskloop: 996 case OMPD_taskloop_simd: 997 case OMPD_master_taskloop: 998 case OMPD_master_taskloop_simd: 999 case OMPD_parallel_master_taskloop: 1000 case OMPD_parallel_master_taskloop_simd: 1001 case OMPD_requires: 1002 case OMPD_unknown: 1003 default: 1004 break; 1005 } 1006 llvm_unreachable( 1007 "Unknown programming model for OpenMP directive on NVPTX target."); 1008 } 1009 1010 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1011 StringRef ParentName, 1012 llvm::Function *&OutlinedFn, 1013 llvm::Constant *&OutlinedFnID, 1014 bool IsOffloadEntry, 1015 const RegionCodeGenTy &CodeGen) { 1016 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1017 EntryFunctionState EST; 1018 WrapperFunctionsMap.clear(); 1019 1020 // Emit target region as a standalone region. 1021 class NVPTXPrePostActionTy : public PrePostActionTy { 1022 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1023 1024 public: 1025 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1026 : EST(EST) {} 1027 void Enter(CodeGenFunction &CGF) override { 1028 auto &RT = 1029 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1030 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1031 // Skip target region initialization. 1032 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1033 } 1034 void Exit(CodeGenFunction &CGF) override { 1035 auto &RT = 1036 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1037 RT.clearLocThreadIdInsertPt(CGF); 1038 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1039 } 1040 } Action(EST); 1041 CodeGen.setAction(Action); 1042 IsInTTDRegion = true; 1043 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1044 IsOffloadEntry, CodeGen); 1045 IsInTTDRegion = false; 1046 } 1047 1048 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1049 EntryFunctionState &EST, bool IsSPMD) { 1050 CGBuilderTy &Bld = CGF.Builder; 1051 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1052 IsInTargetMasterThreadRegion = IsSPMD; 1053 if (!IsSPMD) 1054 emitGenericVarsProlog(CGF, EST.Loc); 1055 } 1056 1057 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1058 EntryFunctionState &EST, 1059 bool IsSPMD) { 1060 if (!IsSPMD) 1061 emitGenericVarsEpilog(CGF); 1062 1063 CGBuilderTy &Bld = CGF.Builder; 1064 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1065 } 1066 1067 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1068 StringRef ParentName, 1069 llvm::Function *&OutlinedFn, 1070 llvm::Constant *&OutlinedFnID, 1071 bool IsOffloadEntry, 1072 const RegionCodeGenTy &CodeGen) { 1073 ExecutionRuntimeModesRAII ModeRAII( 1074 CurrentExecutionMode, RequiresFullRuntime, 1075 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1076 !supportsLightweightRuntime(CGM.getContext(), D)); 1077 EntryFunctionState EST; 1078 1079 // Emit target region as a standalone region. 1080 class NVPTXPrePostActionTy : public PrePostActionTy { 1081 CGOpenMPRuntimeGPU &RT; 1082 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1083 1084 public: 1085 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1086 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1087 : RT(RT), EST(EST) {} 1088 void Enter(CodeGenFunction &CGF) override { 1089 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1090 // Skip target region initialization. 1091 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1092 } 1093 void Exit(CodeGenFunction &CGF) override { 1094 RT.clearLocThreadIdInsertPt(CGF); 1095 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1096 } 1097 } Action(*this, EST); 1098 CodeGen.setAction(Action); 1099 IsInTTDRegion = true; 1100 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1101 IsOffloadEntry, CodeGen); 1102 IsInTTDRegion = false; 1103 } 1104 1105 // Create a unique global variable to indicate the execution mode of this target 1106 // region. The execution mode is either 'generic', or 'spmd' depending on the 1107 // target directive. This variable is picked up by the offload library to setup 1108 // the device appropriately before kernel launch. If the execution mode is 1109 // 'generic', the runtime reserves one warp for the master, otherwise, all 1110 // warps participate in parallel work. 1111 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1112 bool Mode) { 1113 auto *GVMode = new llvm::GlobalVariable( 1114 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1115 llvm::GlobalValue::WeakAnyLinkage, 1116 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1117 : OMP_TGT_EXEC_MODE_GENERIC), 1118 Twine(Name, "_exec_mode")); 1119 CGM.addCompilerUsedGlobal(GVMode); 1120 } 1121 1122 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1123 llvm::Constant *Addr, 1124 uint64_t Size, int32_t, 1125 llvm::GlobalValue::LinkageTypes) { 1126 // TODO: Add support for global variables on the device after declare target 1127 // support. 1128 llvm::Function *Fn = dyn_cast<llvm::Function>(Addr); 1129 if (!Fn) 1130 return; 1131 1132 llvm::Module &M = CGM.getModule(); 1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1134 1135 // Get "nvvm.annotations" metadata node. 1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1137 1138 llvm::Metadata *MDVals[] = { 1139 llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"), 1140 llvm::ConstantAsMetadata::get( 1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1142 // Append metadata to nvvm.annotations. 1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1144 1145 // Add a function attribute for the kernel. 1146 Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel")); 1147 } 1148 1149 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1150 const OMPExecutableDirective &D, StringRef ParentName, 1151 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1152 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1153 if (!IsOffloadEntry) // Nothing to do. 1154 return; 1155 1156 assert(!ParentName.empty() && "Invalid target region parent name!"); 1157 1158 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1159 if (Mode) 1160 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1161 CodeGen); 1162 else 1163 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1164 CodeGen); 1165 1166 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1167 } 1168 1169 namespace { 1170 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1171 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1172 enum ModeFlagsTy : unsigned { 1173 /// Bit set to 1 when in SPMD mode. 1174 KMP_IDENT_SPMD_MODE = 0x01, 1175 /// Bit set to 1 when a simplified runtime is used. 1176 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1177 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1178 }; 1179 1180 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1181 static const ModeFlagsTy UndefinedMode = 1182 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1183 } // anonymous namespace 1184 1185 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1186 switch (getExecutionMode()) { 1187 case EM_SPMD: 1188 if (requiresFullRuntime()) 1189 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1190 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1191 case EM_NonSPMD: 1192 assert(requiresFullRuntime() && "Expected full runtime."); 1193 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1194 case EM_Unknown: 1195 return UndefinedMode; 1196 } 1197 llvm_unreachable("Unknown flags are requested."); 1198 } 1199 1200 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1201 : CGOpenMPRuntime(CGM, "_", "$") { 1202 if (!CGM.getLangOpts().OpenMPIsDevice) 1203 llvm_unreachable("OpenMP can only handle device code."); 1204 1205 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1206 if (!CGM.getLangOpts().OMPHostIRFile.empty()) { 1207 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug, 1208 "__omp_rtl_debug_kind"); 1209 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription, 1210 "__omp_rtl_assume_teams_oversubscription"); 1211 OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription, 1212 "__omp_rtl_assume_threads_oversubscription"); 1213 } 1214 } 1215 1216 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1217 ProcBindKind ProcBind, 1218 SourceLocation Loc) { 1219 // Do nothing in case of SPMD mode and L0 parallel. 1220 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1221 return; 1222 1223 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1224 } 1225 1226 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1227 llvm::Value *NumThreads, 1228 SourceLocation Loc) { 1229 // Nothing to do. 1230 } 1231 1232 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1233 const Expr *NumTeams, 1234 const Expr *ThreadLimit, 1235 SourceLocation Loc) {} 1236 1237 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1238 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1239 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1240 // Emit target region as a standalone region. 1241 class NVPTXPrePostActionTy : public PrePostActionTy { 1242 bool &IsInParallelRegion; 1243 bool PrevIsInParallelRegion; 1244 1245 public: 1246 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1247 : IsInParallelRegion(IsInParallelRegion) {} 1248 void Enter(CodeGenFunction &CGF) override { 1249 PrevIsInParallelRegion = IsInParallelRegion; 1250 IsInParallelRegion = true; 1251 } 1252 void Exit(CodeGenFunction &CGF) override { 1253 IsInParallelRegion = PrevIsInParallelRegion; 1254 } 1255 } Action(IsInParallelRegion); 1256 CodeGen.setAction(Action); 1257 bool PrevIsInTTDRegion = IsInTTDRegion; 1258 IsInTTDRegion = false; 1259 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1260 IsInTargetMasterThreadRegion = false; 1261 auto *OutlinedFun = 1262 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1263 D, ThreadIDVar, InnermostKind, CodeGen)); 1264 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1265 IsInTTDRegion = PrevIsInTTDRegion; 1266 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1267 !IsInParallelRegion) { 1268 llvm::Function *WrapperFun = 1269 createParallelDataSharingWrapper(OutlinedFun, D); 1270 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1271 } 1272 1273 return OutlinedFun; 1274 } 1275 1276 /// Get list of lastprivate variables from the teams distribute ... or 1277 /// teams {distribute ...} directives. 1278 static void 1279 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1280 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1281 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1282 "expected teams directive."); 1283 const OMPExecutableDirective *Dir = &D; 1284 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1285 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1286 Ctx, 1287 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1288 /*IgnoreCaptured=*/true))) { 1289 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1290 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1291 Dir = nullptr; 1292 } 1293 } 1294 if (!Dir) 1295 return; 1296 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1297 for (const Expr *E : C->getVarRefs()) 1298 Vars.push_back(getPrivateItem(E)); 1299 } 1300 } 1301 1302 /// Get list of reduction variables from the teams ... directives. 1303 static void 1304 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1305 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1306 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1307 "expected teams directive."); 1308 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1309 for (const Expr *E : C->privates()) 1310 Vars.push_back(getPrivateItem(E)); 1311 } 1312 } 1313 1314 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1315 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1316 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1317 SourceLocation Loc = D.getBeginLoc(); 1318 1319 const RecordDecl *GlobalizedRD = nullptr; 1320 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1321 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1322 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1323 // Globalize team reductions variable unconditionally in all modes. 1324 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1325 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1326 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1327 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1328 if (!LastPrivatesReductions.empty()) { 1329 GlobalizedRD = ::buildRecordForGlobalizedVars( 1330 CGM.getContext(), llvm::None, LastPrivatesReductions, 1331 MappedDeclsFields, WarpSize); 1332 } 1333 } else if (!LastPrivatesReductions.empty()) { 1334 assert(!TeamAndReductions.first && 1335 "Previous team declaration is not expected."); 1336 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1337 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1338 } 1339 1340 // Emit target region as a standalone region. 1341 class NVPTXPrePostActionTy : public PrePostActionTy { 1342 SourceLocation &Loc; 1343 const RecordDecl *GlobalizedRD; 1344 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1345 &MappedDeclsFields; 1346 1347 public: 1348 NVPTXPrePostActionTy( 1349 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1350 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1351 &MappedDeclsFields) 1352 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1353 MappedDeclsFields(MappedDeclsFields) {} 1354 void Enter(CodeGenFunction &CGF) override { 1355 auto &Rt = 1356 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1357 if (GlobalizedRD) { 1358 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1359 I->getSecond().MappedParams = 1360 std::make_unique<CodeGenFunction::OMPMapVars>(); 1361 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1362 for (const auto &Pair : MappedDeclsFields) { 1363 assert(Pair.getFirst()->isCanonicalDecl() && 1364 "Expected canonical declaration"); 1365 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1366 } 1367 } 1368 Rt.emitGenericVarsProlog(CGF, Loc); 1369 } 1370 void Exit(CodeGenFunction &CGF) override { 1371 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1372 .emitGenericVarsEpilog(CGF); 1373 } 1374 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1375 CodeGen.setAction(Action); 1376 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1377 D, ThreadIDVar, InnermostKind, CodeGen); 1378 1379 return OutlinedFun; 1380 } 1381 1382 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1383 SourceLocation Loc, 1384 bool WithSPMDCheck) { 1385 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1386 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1387 return; 1388 1389 CGBuilderTy &Bld = CGF.Builder; 1390 1391 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1392 if (I == FunctionGlobalizedDecls.end()) 1393 return; 1394 1395 for (auto &Rec : I->getSecond().LocalVarData) { 1396 const auto *VD = cast<VarDecl>(Rec.first); 1397 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1398 QualType VarTy = VD->getType(); 1399 1400 // Get the local allocation of a firstprivate variable before sharing 1401 llvm::Value *ParValue; 1402 if (EscapedParam) { 1403 LValue ParLVal = 1404 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1405 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1406 } 1407 1408 // Allocate space for the variable to be globalized 1409 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1410 llvm::CallBase *VoidPtr = 1411 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1412 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1413 AllocArgs, VD->getName()); 1414 // FIXME: We should use the variables actual alignment as an argument. 1415 VoidPtr->addRetAttr(llvm::Attribute::get( 1416 CGM.getLLVMContext(), llvm::Attribute::Alignment, 1417 CGM.getContext().getTargetInfo().getNewAlign() / 8)); 1418 1419 // Cast the void pointer and get the address of the globalized variable. 1420 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1421 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1422 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1423 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1424 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1425 Rec.second.GlobalizedVal = VoidPtr; 1426 1427 // Assign the local allocation to the newly globalized location. 1428 if (EscapedParam) { 1429 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1430 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1431 } 1432 if (auto *DI = CGF.getDebugInfo()) 1433 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1434 } 1435 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1436 // Use actual memory size of the VLA object including the padding 1437 // for alignment purposes. 1438 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1439 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1440 Size = Bld.CreateNUWAdd( 1441 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1442 llvm::Value *AlignVal = 1443 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1444 1445 Size = Bld.CreateUDiv(Size, AlignVal); 1446 Size = Bld.CreateNUWMul(Size, AlignVal); 1447 1448 // Allocate space for this VLA object to be globalized. 1449 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1450 llvm::CallBase *VoidPtr = 1451 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1452 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1453 AllocArgs, VD->getName()); 1454 VoidPtr->addRetAttr( 1455 llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment, 1456 CGM.getContext().getTargetInfo().getNewAlign())); 1457 1458 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1459 std::pair<llvm::Value *, llvm::Value *>( 1460 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1461 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1462 CGM.getContext().getDeclAlign(VD), 1463 AlignmentSource::Decl); 1464 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1465 Base.getAddress(CGF)); 1466 } 1467 I->getSecond().MappedParams->apply(CGF); 1468 } 1469 1470 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1471 bool WithSPMDCheck) { 1472 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1473 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1474 return; 1475 1476 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1477 if (I != FunctionGlobalizedDecls.end()) { 1478 // Deallocate the memory for each globalized VLA object 1479 for (auto AddrSizePair : 1480 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1481 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1482 CGM.getModule(), OMPRTL___kmpc_free_shared), 1483 {AddrSizePair.first, AddrSizePair.second}); 1484 } 1485 // Deallocate the memory for each globalized value 1486 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1487 const auto *VD = cast<VarDecl>(Rec.first); 1488 I->getSecond().MappedParams->restore(CGF); 1489 1490 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1491 CGF.getTypeSize(VD->getType())}; 1492 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1493 CGM.getModule(), OMPRTL___kmpc_free_shared), 1494 FreeArgs); 1495 } 1496 } 1497 } 1498 1499 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1500 const OMPExecutableDirective &D, 1501 SourceLocation Loc, 1502 llvm::Function *OutlinedFn, 1503 ArrayRef<llvm::Value *> CapturedVars) { 1504 if (!CGF.HaveInsertPoint()) 1505 return; 1506 1507 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1508 /*Name=*/".zero.addr"); 1509 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 1510 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1511 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1512 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1513 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1514 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1515 } 1516 1517 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1518 SourceLocation Loc, 1519 llvm::Function *OutlinedFn, 1520 ArrayRef<llvm::Value *> CapturedVars, 1521 const Expr *IfCond, 1522 llvm::Value *NumThreads) { 1523 if (!CGF.HaveInsertPoint()) 1524 return; 1525 1526 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond, 1527 NumThreads](CodeGenFunction &CGF, 1528 PrePostActionTy &Action) { 1529 CGBuilderTy &Bld = CGF.Builder; 1530 llvm::Value *NumThreadsVal = NumThreads; 1531 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1532 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1533 if (WFn) 1534 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1535 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1536 1537 // Create a private scope that will globalize the arguments 1538 // passed from the outside of the target region. 1539 // TODO: Is that needed? 1540 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1541 1542 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1543 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1544 "captured_vars_addrs"); 1545 // There's something to share. 1546 if (!CapturedVars.empty()) { 1547 // Prepare for parallel region. Indicate the outlined function. 1548 ASTContext &Ctx = CGF.getContext(); 1549 unsigned Idx = 0; 1550 for (llvm::Value *V : CapturedVars) { 1551 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1552 llvm::Value *PtrV; 1553 if (V->getType()->isIntegerTy()) 1554 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1555 else 1556 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1557 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1558 Ctx.getPointerType(Ctx.VoidPtrTy)); 1559 ++Idx; 1560 } 1561 } 1562 1563 llvm::Value *IfCondVal = nullptr; 1564 if (IfCond) 1565 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1566 /* isSigned */ false); 1567 else 1568 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1569 1570 if (!NumThreadsVal) 1571 NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1); 1572 else 1573 NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty), 1574 1575 assert(IfCondVal && "Expected a value"); 1576 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1577 llvm::Value *Args[] = { 1578 RTLoc, 1579 getThreadID(CGF, Loc), 1580 IfCondVal, 1581 NumThreadsVal, 1582 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1583 FnPtr, 1584 ID, 1585 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1586 CGF.VoidPtrPtrTy), 1587 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1588 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1589 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1590 Args); 1591 }; 1592 1593 RegionCodeGenTy RCG(ParallelGen); 1594 RCG(CGF); 1595 } 1596 1597 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1598 // Always emit simple barriers! 1599 if (!CGF.HaveInsertPoint()) 1600 return; 1601 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1602 // This function does not use parameters, so we can emit just default values. 1603 llvm::Value *Args[] = { 1604 llvm::ConstantPointerNull::get( 1605 cast<llvm::PointerType>(getIdentTyPointerTy())), 1606 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1607 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1608 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1609 Args); 1610 } 1611 1612 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1613 SourceLocation Loc, 1614 OpenMPDirectiveKind Kind, bool, 1615 bool) { 1616 // Always emit simple barriers! 1617 if (!CGF.HaveInsertPoint()) 1618 return; 1619 // Build call __kmpc_cancel_barrier(loc, thread_id); 1620 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1621 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1622 getThreadID(CGF, Loc)}; 1623 1624 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1625 CGM.getModule(), OMPRTL___kmpc_barrier), 1626 Args); 1627 } 1628 1629 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1630 CodeGenFunction &CGF, StringRef CriticalName, 1631 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1632 const Expr *Hint) { 1633 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1634 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1635 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1636 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1637 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1638 1639 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1640 1641 // Get the mask of active threads in the warp. 1642 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1643 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1644 // Fetch team-local id of the thread. 1645 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1646 1647 // Get the width of the team. 1648 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1649 1650 // Initialize the counter variable for the loop. 1651 QualType Int32Ty = 1652 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1653 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1654 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1655 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1656 /*isInit=*/true); 1657 1658 // Block checks if loop counter exceeds upper bound. 1659 CGF.EmitBlock(LoopBB); 1660 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1661 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1662 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1663 1664 // Block tests which single thread should execute region, and which threads 1665 // should go straight to synchronisation point. 1666 CGF.EmitBlock(TestBB); 1667 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1668 llvm::Value *CmpThreadToCounter = 1669 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1670 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1671 1672 // Block emits the body of the critical region. 1673 CGF.EmitBlock(BodyBB); 1674 1675 // Output the critical statement. 1676 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1677 Hint); 1678 1679 // After the body surrounded by the critical region, the single executing 1680 // thread will jump to the synchronisation point. 1681 // Block waits for all threads in current team to finish then increments the 1682 // counter variable and returns to the loop. 1683 CGF.EmitBlock(SyncBB); 1684 // Reconverge active threads in the warp. 1685 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1686 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1687 Mask); 1688 1689 llvm::Value *IncCounterVal = 1690 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1691 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1692 CGF.EmitBranch(LoopBB); 1693 1694 // Block that is reached when all threads in the team complete the region. 1695 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1696 } 1697 1698 /// Cast value to the specified type. 1699 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1700 QualType ValTy, QualType CastTy, 1701 SourceLocation Loc) { 1702 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1703 "Cast type must sized."); 1704 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1705 "Val type must sized."); 1706 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1707 if (ValTy == CastTy) 1708 return Val; 1709 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1710 CGF.getContext().getTypeSizeInChars(CastTy)) 1711 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1712 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1713 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1714 CastTy->hasSignedIntegerRepresentation()); 1715 Address CastItem = CGF.CreateMemTemp(CastTy); 1716 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1717 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1718 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1719 LValueBaseInfo(AlignmentSource::Type), 1720 TBAAAccessInfo()); 1721 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1722 LValueBaseInfo(AlignmentSource::Type), 1723 TBAAAccessInfo()); 1724 } 1725 1726 /// This function creates calls to one of two shuffle functions to copy 1727 /// variables between lanes in a warp. 1728 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1729 llvm::Value *Elem, 1730 QualType ElemType, 1731 llvm::Value *Offset, 1732 SourceLocation Loc) { 1733 CodeGenModule &CGM = CGF.CGM; 1734 CGBuilderTy &Bld = CGF.Builder; 1735 CGOpenMPRuntimeGPU &RT = 1736 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1737 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1738 1739 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1740 assert(Size.getQuantity() <= 8 && 1741 "Unsupported bitwidth in shuffle instruction."); 1742 1743 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1744 ? OMPRTL___kmpc_shuffle_int32 1745 : OMPRTL___kmpc_shuffle_int64; 1746 1747 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1748 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1749 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1750 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1751 llvm::Value *WarpSize = 1752 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1753 1754 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1755 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1756 {ElemCast, Offset, WarpSize}); 1757 1758 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1759 } 1760 1761 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1762 Address DestAddr, QualType ElemType, 1763 llvm::Value *Offset, SourceLocation Loc) { 1764 CGBuilderTy &Bld = CGF.Builder; 1765 1766 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1767 // Create the loop over the big sized data. 1768 // ptr = (void*)Elem; 1769 // ptrEnd = (void*) Elem + 1; 1770 // Step = 8; 1771 // while (ptr + Step < ptrEnd) 1772 // shuffle((int64_t)*ptr); 1773 // Step = 4; 1774 // while (ptr + Step < ptrEnd) 1775 // shuffle((int32_t)*ptr); 1776 // ... 1777 Address ElemPtr = DestAddr; 1778 Address Ptr = SrcAddr; 1779 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1780 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1781 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1782 if (Size < CharUnits::fromQuantity(IntSize)) 1783 continue; 1784 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1785 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1786 /*Signed=*/1); 1787 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1788 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1789 ElemPtr = 1790 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1791 if (Size.getQuantity() / IntSize > 1) { 1792 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1793 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1794 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1795 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1796 CGF.EmitBlock(PreCondBB); 1797 llvm::PHINode *PhiSrc = 1798 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1799 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1800 llvm::PHINode *PhiDest = 1801 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1802 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1803 Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment()); 1804 ElemPtr = 1805 Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment()); 1806 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1807 CGF.Int8Ty, PtrEnd.getPointer(), 1808 Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(), 1809 CGF.VoidPtrTy)); 1810 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1811 ThenBB, ExitBB); 1812 CGF.EmitBlock(ThenBB); 1813 llvm::Value *Res = createRuntimeShuffleFunction( 1814 CGF, 1815 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1816 LValueBaseInfo(AlignmentSource::Type), 1817 TBAAAccessInfo()), 1818 IntType, Offset, Loc); 1819 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1820 LValueBaseInfo(AlignmentSource::Type), 1821 TBAAAccessInfo()); 1822 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1823 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1824 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1825 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1826 CGF.EmitBranch(PreCondBB); 1827 CGF.EmitBlock(ExitBB); 1828 } else { 1829 llvm::Value *Res = createRuntimeShuffleFunction( 1830 CGF, 1831 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1832 LValueBaseInfo(AlignmentSource::Type), 1833 TBAAAccessInfo()), 1834 IntType, Offset, Loc); 1835 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1836 LValueBaseInfo(AlignmentSource::Type), 1837 TBAAAccessInfo()); 1838 Ptr = Bld.CreateConstGEP(Ptr, 1); 1839 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1840 } 1841 Size = Size % IntSize; 1842 } 1843 } 1844 1845 namespace { 1846 enum CopyAction : unsigned { 1847 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1848 // the warp using shuffle instructions. 1849 RemoteLaneToThread, 1850 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1851 ThreadCopy, 1852 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1853 ThreadToScratchpad, 1854 // ScratchpadToThread: Copy from a scratchpad array in global memory 1855 // containing team-reduced data to a thread's stack. 1856 ScratchpadToThread, 1857 }; 1858 } // namespace 1859 1860 struct CopyOptionsTy { 1861 llvm::Value *RemoteLaneOffset; 1862 llvm::Value *ScratchpadIndex; 1863 llvm::Value *ScratchpadWidth; 1864 }; 1865 1866 /// Emit instructions to copy a Reduce list, which contains partially 1867 /// aggregated values, in the specified direction. 1868 static void emitReductionListCopy( 1869 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1870 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1871 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1872 1873 CodeGenModule &CGM = CGF.CGM; 1874 ASTContext &C = CGM.getContext(); 1875 CGBuilderTy &Bld = CGF.Builder; 1876 1877 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1878 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1879 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1880 1881 // Iterates, element-by-element, through the source Reduce list and 1882 // make a copy. 1883 unsigned Idx = 0; 1884 unsigned Size = Privates.size(); 1885 for (const Expr *Private : Privates) { 1886 Address SrcElementAddr = Address::invalid(); 1887 Address DestElementAddr = Address::invalid(); 1888 Address DestElementPtrAddr = Address::invalid(); 1889 // Should we shuffle in an element from a remote lane? 1890 bool ShuffleInElement = false; 1891 // Set to true to update the pointer in the dest Reduce list to a 1892 // newly created element. 1893 bool UpdateDestListPtr = false; 1894 // Increment the src or dest pointer to the scratchpad, for each 1895 // new element. 1896 bool IncrScratchpadSrc = false; 1897 bool IncrScratchpadDest = false; 1898 1899 switch (Action) { 1900 case RemoteLaneToThread: { 1901 // Step 1.1: Get the address for the src element in the Reduce list. 1902 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1903 SrcElementAddr = CGF.EmitLoadOfPointer( 1904 SrcElementPtrAddr, 1905 C.getPointerType(Private->getType())->castAs<PointerType>()); 1906 1907 // Step 1.2: Create a temporary to store the element in the destination 1908 // Reduce list. 1909 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1910 DestElementAddr = 1911 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1912 ShuffleInElement = true; 1913 UpdateDestListPtr = true; 1914 break; 1915 } 1916 case ThreadCopy: { 1917 // Step 1.1: Get the address for the src element in the Reduce list. 1918 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1919 SrcElementAddr = CGF.EmitLoadOfPointer( 1920 SrcElementPtrAddr, 1921 C.getPointerType(Private->getType())->castAs<PointerType>()); 1922 1923 // Step 1.2: Get the address for dest element. The destination 1924 // element has already been created on the thread's stack. 1925 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1926 DestElementAddr = CGF.EmitLoadOfPointer( 1927 DestElementPtrAddr, 1928 C.getPointerType(Private->getType())->castAs<PointerType>()); 1929 break; 1930 } 1931 case ThreadToScratchpad: { 1932 // Step 1.1: Get the address for the src element in the Reduce list. 1933 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1934 SrcElementAddr = CGF.EmitLoadOfPointer( 1935 SrcElementPtrAddr, 1936 C.getPointerType(Private->getType())->castAs<PointerType>()); 1937 1938 // Step 1.2: Get the address for dest element: 1939 // address = base + index * ElementSizeInChars. 1940 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1941 llvm::Value *CurrentOffset = 1942 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1943 llvm::Value *ScratchPadElemAbsolutePtrVal = 1944 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1945 ScratchPadElemAbsolutePtrVal = 1946 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1947 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1948 C.getTypeAlignInChars(Private->getType())); 1949 IncrScratchpadDest = true; 1950 break; 1951 } 1952 case ScratchpadToThread: { 1953 // Step 1.1: Get the address for the src element in the scratchpad. 1954 // address = base + index * ElementSizeInChars. 1955 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1956 llvm::Value *CurrentOffset = 1957 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1958 llvm::Value *ScratchPadElemAbsolutePtrVal = 1959 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1960 ScratchPadElemAbsolutePtrVal = 1961 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1962 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, CGF.Int8Ty, 1963 C.getTypeAlignInChars(Private->getType())); 1964 IncrScratchpadSrc = true; 1965 1966 // Step 1.2: Create a temporary to store the element in the destination 1967 // Reduce list. 1968 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1969 DestElementAddr = 1970 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1971 UpdateDestListPtr = true; 1972 break; 1973 } 1974 } 1975 1976 // Regardless of src and dest of copy, we emit the load of src 1977 // element as this is required in all directions 1978 SrcElementAddr = Bld.CreateElementBitCast( 1979 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1980 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1981 SrcElementAddr.getElementType()); 1982 1983 // Now that all active lanes have read the element in the 1984 // Reduce list, shuffle over the value from the remote lane. 1985 if (ShuffleInElement) { 1986 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1987 RemoteLaneOffset, Private->getExprLoc()); 1988 } else { 1989 switch (CGF.getEvaluationKind(Private->getType())) { 1990 case TEK_Scalar: { 1991 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1992 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1993 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1994 TBAAAccessInfo()); 1995 // Store the source element value to the dest element address. 1996 CGF.EmitStoreOfScalar( 1997 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1998 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1999 break; 2000 } 2001 case TEK_Complex: { 2002 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 2003 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2004 Private->getExprLoc()); 2005 CGF.EmitStoreOfComplex( 2006 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2007 /*isInit=*/false); 2008 break; 2009 } 2010 case TEK_Aggregate: 2011 CGF.EmitAggregateCopy( 2012 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 2013 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 2014 Private->getType(), AggValueSlot::DoesNotOverlap); 2015 break; 2016 } 2017 } 2018 2019 // Step 3.1: Modify reference in dest Reduce list as needed. 2020 // Modifying the reference in Reduce list to point to the newly 2021 // created element. The element is live in the current function 2022 // scope and that of functions it invokes (i.e., reduce_function). 2023 // RemoteReduceData[i] = (void*)&RemoteElem 2024 if (UpdateDestListPtr) { 2025 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2026 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2027 DestElementPtrAddr, /*Volatile=*/false, 2028 C.VoidPtrTy); 2029 } 2030 2031 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2032 // address of the next element in scratchpad memory, unless we're currently 2033 // processing the last one. Memory alignment is also taken care of here. 2034 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2035 llvm::Value *ScratchpadBasePtr = 2036 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2037 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2038 ScratchpadBasePtr = Bld.CreateNUWAdd( 2039 ScratchpadBasePtr, 2040 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2041 2042 // Take care of global memory alignment for performance 2043 ScratchpadBasePtr = Bld.CreateNUWSub( 2044 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2045 ScratchpadBasePtr = Bld.CreateUDiv( 2046 ScratchpadBasePtr, 2047 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2048 ScratchpadBasePtr = Bld.CreateNUWAdd( 2049 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2050 ScratchpadBasePtr = Bld.CreateNUWMul( 2051 ScratchpadBasePtr, 2052 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2053 2054 if (IncrScratchpadDest) 2055 DestBase = 2056 Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign()); 2057 else /* IncrScratchpadSrc = true */ 2058 SrcBase = Address::deprecated(ScratchpadBasePtr, CGF.getPointerAlign()); 2059 } 2060 2061 ++Idx; 2062 } 2063 } 2064 2065 /// This function emits a helper that gathers Reduce lists from the first 2066 /// lane of every active warp to lanes in the first warp. 2067 /// 2068 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2069 /// shared smem[warp_size]; 2070 /// For all data entries D in reduce_data: 2071 /// sync 2072 /// If (I am the first lane in each warp) 2073 /// Copy my local D to smem[warp_id] 2074 /// sync 2075 /// if (I am the first warp) 2076 /// Copy smem[thread_id] to my local D 2077 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2078 ArrayRef<const Expr *> Privates, 2079 QualType ReductionArrayTy, 2080 SourceLocation Loc) { 2081 ASTContext &C = CGM.getContext(); 2082 llvm::Module &M = CGM.getModule(); 2083 2084 // ReduceList: thread local Reduce list. 2085 // At the stage of the computation when this function is called, partially 2086 // aggregated values reside in the first lane of every active warp. 2087 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2088 C.VoidPtrTy, ImplicitParamDecl::Other); 2089 // NumWarps: number of warps active in the parallel region. This could 2090 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2091 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2092 C.getIntTypeForBitwidth(32, /* Signed */ true), 2093 ImplicitParamDecl::Other); 2094 FunctionArgList Args; 2095 Args.push_back(&ReduceListArg); 2096 Args.push_back(&NumWarpsArg); 2097 2098 const CGFunctionInfo &CGFI = 2099 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2100 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2101 llvm::GlobalValue::InternalLinkage, 2102 "_omp_reduction_inter_warp_copy_func", &M); 2103 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2104 Fn->setDoesNotRecurse(); 2105 CodeGenFunction CGF(CGM); 2106 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2107 2108 CGBuilderTy &Bld = CGF.Builder; 2109 2110 // This array is used as a medium to transfer, one reduce element at a time, 2111 // the data from the first lane of every warp to lanes in the first warp 2112 // in order to perform the final step of a reduction in a parallel region 2113 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2114 // for reduced latency, as well as to have a distinct copy for concurrently 2115 // executing target regions. The array is declared with common linkage so 2116 // as to be shared across compilation units. 2117 StringRef TransferMediumName = 2118 "__openmp_nvptx_data_transfer_temporary_storage"; 2119 llvm::GlobalVariable *TransferMedium = 2120 M.getGlobalVariable(TransferMediumName); 2121 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2122 if (!TransferMedium) { 2123 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2124 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2125 TransferMedium = new llvm::GlobalVariable( 2126 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2127 llvm::UndefValue::get(Ty), TransferMediumName, 2128 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2129 SharedAddressSpace); 2130 CGM.addCompilerUsedGlobal(TransferMedium); 2131 } 2132 2133 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2134 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2135 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2136 // nvptx_lane_id = nvptx_id % warpsize 2137 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2138 // nvptx_warp_id = nvptx_id / warpsize 2139 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2140 2141 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2142 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2143 Address LocalReduceList( 2144 Bld.CreatePointerBitCastOrAddrSpaceCast( 2145 CGF.EmitLoadOfScalar( 2146 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2147 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2148 ElemTy->getPointerTo()), 2149 ElemTy, CGF.getPointerAlign()); 2150 2151 unsigned Idx = 0; 2152 for (const Expr *Private : Privates) { 2153 // 2154 // Warp master copies reduce element to transfer medium in __shared__ 2155 // memory. 2156 // 2157 unsigned RealTySize = 2158 C.getTypeSizeInChars(Private->getType()) 2159 .alignTo(C.getTypeAlignInChars(Private->getType())) 2160 .getQuantity(); 2161 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2162 unsigned NumIters = RealTySize / TySize; 2163 if (NumIters == 0) 2164 continue; 2165 QualType CType = C.getIntTypeForBitwidth( 2166 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2167 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2168 CharUnits Align = CharUnits::fromQuantity(TySize); 2169 llvm::Value *Cnt = nullptr; 2170 Address CntAddr = Address::invalid(); 2171 llvm::BasicBlock *PrecondBB = nullptr; 2172 llvm::BasicBlock *ExitBB = nullptr; 2173 if (NumIters > 1) { 2174 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2175 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2176 /*Volatile=*/false, C.IntTy); 2177 PrecondBB = CGF.createBasicBlock("precond"); 2178 ExitBB = CGF.createBasicBlock("exit"); 2179 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2180 // There is no need to emit line number for unconditional branch. 2181 (void)ApplyDebugLocation::CreateEmpty(CGF); 2182 CGF.EmitBlock(PrecondBB); 2183 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2184 llvm::Value *Cmp = 2185 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2186 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2187 CGF.EmitBlock(BodyBB); 2188 } 2189 // kmpc_barrier. 2190 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2191 /*EmitChecks=*/false, 2192 /*ForceSimpleCall=*/true); 2193 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2194 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2195 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2196 2197 // if (lane_id == 0) 2198 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2199 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2200 CGF.EmitBlock(ThenBB); 2201 2202 // Reduce element = LocalReduceList[i] 2203 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2204 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2205 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2206 // elemptr = ((CopyType*)(elemptrptr)) + I 2207 Address ElemPtr = Address::deprecated(ElemPtrPtr, Align); 2208 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2209 if (NumIters > 1) 2210 ElemPtr = Bld.CreateGEP(ElemPtr, Cnt); 2211 2212 // Get pointer to location in transfer medium. 2213 // MediumPtr = &medium[warp_id] 2214 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2215 TransferMedium->getValueType(), TransferMedium, 2216 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2217 Address MediumPtr = Address::deprecated(MediumPtrVal, Align); 2218 // Casting to actual data type. 2219 // MediumPtr = (CopyType*)MediumPtrAddr; 2220 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2221 2222 // elem = *elemptr 2223 //*MediumPtr = elem 2224 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2225 ElemPtr, /*Volatile=*/false, CType, Loc, 2226 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2227 // Store the source element value to the dest element address. 2228 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2229 LValueBaseInfo(AlignmentSource::Type), 2230 TBAAAccessInfo()); 2231 2232 Bld.CreateBr(MergeBB); 2233 2234 CGF.EmitBlock(ElseBB); 2235 Bld.CreateBr(MergeBB); 2236 2237 CGF.EmitBlock(MergeBB); 2238 2239 // kmpc_barrier. 2240 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2241 /*EmitChecks=*/false, 2242 /*ForceSimpleCall=*/true); 2243 2244 // 2245 // Warp 0 copies reduce element from transfer medium. 2246 // 2247 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2248 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2249 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2250 2251 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2252 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2253 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2254 2255 // Up to 32 threads in warp 0 are active. 2256 llvm::Value *IsActiveThread = 2257 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2258 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2259 2260 CGF.EmitBlock(W0ThenBB); 2261 2262 // SrcMediumPtr = &medium[tid] 2263 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2264 TransferMedium->getValueType(), TransferMedium, 2265 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2266 Address SrcMediumPtr = Address::deprecated(SrcMediumPtrVal, Align); 2267 // SrcMediumVal = *SrcMediumPtr; 2268 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2269 2270 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2271 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2272 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2273 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2274 Address TargetElemPtr = Address::deprecated(TargetElemPtrVal, Align); 2275 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2276 if (NumIters > 1) 2277 TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt); 2278 2279 // *TargetElemPtr = SrcMediumVal; 2280 llvm::Value *SrcMediumValue = 2281 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2282 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2283 CType); 2284 Bld.CreateBr(W0MergeBB); 2285 2286 CGF.EmitBlock(W0ElseBB); 2287 Bld.CreateBr(W0MergeBB); 2288 2289 CGF.EmitBlock(W0MergeBB); 2290 2291 if (NumIters > 1) { 2292 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2293 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2294 CGF.EmitBranch(PrecondBB); 2295 (void)ApplyDebugLocation::CreateEmpty(CGF); 2296 CGF.EmitBlock(ExitBB); 2297 } 2298 RealTySize %= TySize; 2299 } 2300 ++Idx; 2301 } 2302 2303 CGF.FinishFunction(); 2304 return Fn; 2305 } 2306 2307 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2308 /// in the same warp. It uses shuffle instructions to copy over data from 2309 /// a remote lane's stack. The reduction algorithm performed is specified 2310 /// by the fourth parameter. 2311 /// 2312 /// Algorithm Versions. 2313 /// Full Warp Reduce (argument value 0): 2314 /// This algorithm assumes that all 32 lanes are active and gathers 2315 /// data from these 32 lanes, producing a single resultant value. 2316 /// Contiguous Partial Warp Reduce (argument value 1): 2317 /// This algorithm assumes that only a *contiguous* subset of lanes 2318 /// are active. This happens for the last warp in a parallel region 2319 /// when the user specified num_threads is not an integer multiple of 2320 /// 32. This contiguous subset always starts with the zeroth lane. 2321 /// Partial Warp Reduce (argument value 2): 2322 /// This algorithm gathers data from any number of lanes at any position. 2323 /// All reduced values are stored in the lowest possible lane. The set 2324 /// of problems every algorithm addresses is a super set of those 2325 /// addressable by algorithms with a lower version number. Overhead 2326 /// increases as algorithm version increases. 2327 /// 2328 /// Terminology 2329 /// Reduce element: 2330 /// Reduce element refers to the individual data field with primitive 2331 /// data types to be combined and reduced across threads. 2332 /// Reduce list: 2333 /// Reduce list refers to a collection of local, thread-private 2334 /// reduce elements. 2335 /// Remote Reduce list: 2336 /// Remote Reduce list refers to a collection of remote (relative to 2337 /// the current thread) reduce elements. 2338 /// 2339 /// We distinguish between three states of threads that are important to 2340 /// the implementation of this function. 2341 /// Alive threads: 2342 /// Threads in a warp executing the SIMT instruction, as distinguished from 2343 /// threads that are inactive due to divergent control flow. 2344 /// Active threads: 2345 /// The minimal set of threads that has to be alive upon entry to this 2346 /// function. The computation is correct iff active threads are alive. 2347 /// Some threads are alive but they are not active because they do not 2348 /// contribute to the computation in any useful manner. Turning them off 2349 /// may introduce control flow overheads without any tangible benefits. 2350 /// Effective threads: 2351 /// In order to comply with the argument requirements of the shuffle 2352 /// function, we must keep all lanes holding data alive. But at most 2353 /// half of them perform value aggregation; we refer to this half of 2354 /// threads as effective. The other half is simply handing off their 2355 /// data. 2356 /// 2357 /// Procedure 2358 /// Value shuffle: 2359 /// In this step active threads transfer data from higher lane positions 2360 /// in the warp to lower lane positions, creating Remote Reduce list. 2361 /// Value aggregation: 2362 /// In this step, effective threads combine their thread local Reduce list 2363 /// with Remote Reduce list and store the result in the thread local 2364 /// Reduce list. 2365 /// Value copy: 2366 /// In this step, we deal with the assumption made by algorithm 2 2367 /// (i.e. contiguity assumption). When we have an odd number of lanes 2368 /// active, say 2k+1, only k threads will be effective and therefore k 2369 /// new values will be produced. However, the Reduce list owned by the 2370 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2371 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2372 /// that the contiguity assumption still holds. 2373 static llvm::Function *emitShuffleAndReduceFunction( 2374 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2375 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2376 ASTContext &C = CGM.getContext(); 2377 2378 // Thread local Reduce list used to host the values of data to be reduced. 2379 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2380 C.VoidPtrTy, ImplicitParamDecl::Other); 2381 // Current lane id; could be logical. 2382 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2383 ImplicitParamDecl::Other); 2384 // Offset of the remote source lane relative to the current lane. 2385 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2386 C.ShortTy, ImplicitParamDecl::Other); 2387 // Algorithm version. This is expected to be known at compile time. 2388 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2389 C.ShortTy, ImplicitParamDecl::Other); 2390 FunctionArgList Args; 2391 Args.push_back(&ReduceListArg); 2392 Args.push_back(&LaneIDArg); 2393 Args.push_back(&RemoteLaneOffsetArg); 2394 Args.push_back(&AlgoVerArg); 2395 2396 const CGFunctionInfo &CGFI = 2397 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2398 auto *Fn = llvm::Function::Create( 2399 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2400 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2401 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2402 Fn->setDoesNotRecurse(); 2403 2404 CodeGenFunction CGF(CGM); 2405 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2406 2407 CGBuilderTy &Bld = CGF.Builder; 2408 2409 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2410 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2411 Address LocalReduceList( 2412 Bld.CreatePointerBitCastOrAddrSpaceCast( 2413 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2414 C.VoidPtrTy, SourceLocation()), 2415 ElemTy->getPointerTo()), 2416 ElemTy, CGF.getPointerAlign()); 2417 2418 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2419 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2420 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2421 2422 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2423 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2424 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2425 2426 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2427 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2428 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2429 2430 // Create a local thread-private variable to host the Reduce list 2431 // from a remote lane. 2432 Address RemoteReduceList = 2433 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2434 2435 // This loop iterates through the list of reduce elements and copies, 2436 // element by element, from a remote lane in the warp to RemoteReduceList, 2437 // hosted on the thread's stack. 2438 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2439 LocalReduceList, RemoteReduceList, 2440 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2441 /*ScratchpadIndex=*/nullptr, 2442 /*ScratchpadWidth=*/nullptr}); 2443 2444 // The actions to be performed on the Remote Reduce list is dependent 2445 // on the algorithm version. 2446 // 2447 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2448 // LaneId % 2 == 0 && Offset > 0): 2449 // do the reduction value aggregation 2450 // 2451 // The thread local variable Reduce list is mutated in place to host the 2452 // reduced data, which is the aggregated value produced from local and 2453 // remote lanes. 2454 // 2455 // Note that AlgoVer is expected to be a constant integer known at compile 2456 // time. 2457 // When AlgoVer==0, the first conjunction evaluates to true, making 2458 // the entire predicate true during compile time. 2459 // When AlgoVer==1, the second conjunction has only the second part to be 2460 // evaluated during runtime. Other conjunctions evaluates to false 2461 // during compile time. 2462 // When AlgoVer==2, the third conjunction has only the second part to be 2463 // evaluated during runtime. Other conjunctions evaluates to false 2464 // during compile time. 2465 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2466 2467 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2468 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2469 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2470 2471 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2472 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2473 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2474 CondAlgo2 = Bld.CreateAnd( 2475 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2476 2477 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2478 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2479 2480 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2481 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2482 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2483 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2484 2485 CGF.EmitBlock(ThenBB); 2486 // reduce_function(LocalReduceList, RemoteReduceList) 2487 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2488 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2489 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2490 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2491 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2492 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2493 Bld.CreateBr(MergeBB); 2494 2495 CGF.EmitBlock(ElseBB); 2496 Bld.CreateBr(MergeBB); 2497 2498 CGF.EmitBlock(MergeBB); 2499 2500 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2501 // Reduce list. 2502 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2503 llvm::Value *CondCopy = Bld.CreateAnd( 2504 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2505 2506 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2507 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2508 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2509 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2510 2511 CGF.EmitBlock(CpyThenBB); 2512 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2513 RemoteReduceList, LocalReduceList); 2514 Bld.CreateBr(CpyMergeBB); 2515 2516 CGF.EmitBlock(CpyElseBB); 2517 Bld.CreateBr(CpyMergeBB); 2518 2519 CGF.EmitBlock(CpyMergeBB); 2520 2521 CGF.FinishFunction(); 2522 return Fn; 2523 } 2524 2525 /// This function emits a helper that copies all the reduction variables from 2526 /// the team into the provided global buffer for the reduction variables. 2527 /// 2528 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2529 /// For all data entries D in reduce_data: 2530 /// Copy local D to buffer.D[Idx] 2531 static llvm::Value *emitListToGlobalCopyFunction( 2532 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2533 QualType ReductionArrayTy, SourceLocation Loc, 2534 const RecordDecl *TeamReductionRec, 2535 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2536 &VarFieldMap) { 2537 ASTContext &C = CGM.getContext(); 2538 2539 // Buffer: global reduction buffer. 2540 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2541 C.VoidPtrTy, ImplicitParamDecl::Other); 2542 // Idx: index of the buffer. 2543 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2544 ImplicitParamDecl::Other); 2545 // ReduceList: thread local Reduce list. 2546 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2547 C.VoidPtrTy, ImplicitParamDecl::Other); 2548 FunctionArgList Args; 2549 Args.push_back(&BufferArg); 2550 Args.push_back(&IdxArg); 2551 Args.push_back(&ReduceListArg); 2552 2553 const CGFunctionInfo &CGFI = 2554 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2555 auto *Fn = llvm::Function::Create( 2556 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2557 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2558 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2559 Fn->setDoesNotRecurse(); 2560 CodeGenFunction CGF(CGM); 2561 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2562 2563 CGBuilderTy &Bld = CGF.Builder; 2564 2565 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2566 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2567 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2568 Address LocalReduceList( 2569 Bld.CreatePointerBitCastOrAddrSpaceCast( 2570 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2571 C.VoidPtrTy, Loc), 2572 ElemTy->getPointerTo()), 2573 ElemTy, CGF.getPointerAlign()); 2574 QualType StaticTy = C.getRecordType(TeamReductionRec); 2575 llvm::Type *LLVMReductionsBufferTy = 2576 CGM.getTypes().ConvertTypeForMem(StaticTy); 2577 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2578 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2579 LLVMReductionsBufferTy->getPointerTo()); 2580 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2581 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2582 /*Volatile=*/false, C.IntTy, 2583 Loc)}; 2584 unsigned Idx = 0; 2585 for (const Expr *Private : Privates) { 2586 // Reduce element = LocalReduceList[i] 2587 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2588 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2589 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2590 // elemptr = ((CopyType*)(elemptrptr)) + I 2591 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2592 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2593 ElemPtrPtr, ElemTy->getPointerTo()); 2594 Address ElemPtr = 2595 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2596 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2597 // Global = Buffer.VD[Idx]; 2598 const FieldDecl *FD = VarFieldMap.lookup(VD); 2599 LValue GlobLVal = CGF.EmitLValueForField( 2600 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2601 Address GlobAddr = GlobLVal.getAddress(CGF); 2602 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2603 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2604 GlobLVal.setAddress( 2605 Address::deprecated(BufferPtr, GlobAddr.getAlignment())); 2606 switch (CGF.getEvaluationKind(Private->getType())) { 2607 case TEK_Scalar: { 2608 llvm::Value *V = CGF.EmitLoadOfScalar( 2609 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2610 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2611 CGF.EmitStoreOfScalar(V, GlobLVal); 2612 break; 2613 } 2614 case TEK_Complex: { 2615 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2616 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2617 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2618 break; 2619 } 2620 case TEK_Aggregate: 2621 CGF.EmitAggregateCopy(GlobLVal, 2622 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2623 Private->getType(), AggValueSlot::DoesNotOverlap); 2624 break; 2625 } 2626 ++Idx; 2627 } 2628 2629 CGF.FinishFunction(); 2630 return Fn; 2631 } 2632 2633 /// This function emits a helper that reduces all the reduction variables from 2634 /// the team into the provided global buffer for the reduction variables. 2635 /// 2636 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2637 /// void *GlobPtrs[]; 2638 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2639 /// ... 2640 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2641 /// reduce_function(GlobPtrs, reduce_data); 2642 static llvm::Value *emitListToGlobalReduceFunction( 2643 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2644 QualType ReductionArrayTy, SourceLocation Loc, 2645 const RecordDecl *TeamReductionRec, 2646 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2647 &VarFieldMap, 2648 llvm::Function *ReduceFn) { 2649 ASTContext &C = CGM.getContext(); 2650 2651 // Buffer: global reduction buffer. 2652 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2653 C.VoidPtrTy, ImplicitParamDecl::Other); 2654 // Idx: index of the buffer. 2655 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2656 ImplicitParamDecl::Other); 2657 // ReduceList: thread local Reduce list. 2658 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2659 C.VoidPtrTy, ImplicitParamDecl::Other); 2660 FunctionArgList Args; 2661 Args.push_back(&BufferArg); 2662 Args.push_back(&IdxArg); 2663 Args.push_back(&ReduceListArg); 2664 2665 const CGFunctionInfo &CGFI = 2666 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2667 auto *Fn = llvm::Function::Create( 2668 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2669 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2670 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2671 Fn->setDoesNotRecurse(); 2672 CodeGenFunction CGF(CGM); 2673 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2674 2675 CGBuilderTy &Bld = CGF.Builder; 2676 2677 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2678 QualType StaticTy = C.getRecordType(TeamReductionRec); 2679 llvm::Type *LLVMReductionsBufferTy = 2680 CGM.getTypes().ConvertTypeForMem(StaticTy); 2681 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2682 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2683 LLVMReductionsBufferTy->getPointerTo()); 2684 2685 // 1. Build a list of reduction variables. 2686 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2687 Address ReductionList = 2688 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2689 auto IPriv = Privates.begin(); 2690 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2691 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2692 /*Volatile=*/false, C.IntTy, 2693 Loc)}; 2694 unsigned Idx = 0; 2695 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2696 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2697 // Global = Buffer.VD[Idx]; 2698 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2699 const FieldDecl *FD = VarFieldMap.lookup(VD); 2700 LValue GlobLVal = CGF.EmitLValueForField( 2701 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2702 Address GlobAddr = GlobLVal.getAddress(CGF); 2703 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2704 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2705 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2706 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2707 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2708 // Store array size. 2709 ++Idx; 2710 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2711 llvm::Value *Size = CGF.Builder.CreateIntCast( 2712 CGF.getVLASize( 2713 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2714 .NumElts, 2715 CGF.SizeTy, /*isSigned=*/false); 2716 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2717 Elem); 2718 } 2719 } 2720 2721 // Call reduce_function(GlobalReduceList, ReduceList) 2722 llvm::Value *GlobalReduceList = 2723 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2724 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2725 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2726 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2727 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2728 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2729 CGF.FinishFunction(); 2730 return Fn; 2731 } 2732 2733 /// This function emits a helper that copies all the reduction variables from 2734 /// the team into the provided global buffer for the reduction variables. 2735 /// 2736 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2737 /// For all data entries D in reduce_data: 2738 /// Copy buffer.D[Idx] to local D; 2739 static llvm::Value *emitGlobalToListCopyFunction( 2740 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2741 QualType ReductionArrayTy, SourceLocation Loc, 2742 const RecordDecl *TeamReductionRec, 2743 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2744 &VarFieldMap) { 2745 ASTContext &C = CGM.getContext(); 2746 2747 // Buffer: global reduction buffer. 2748 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2749 C.VoidPtrTy, ImplicitParamDecl::Other); 2750 // Idx: index of the buffer. 2751 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2752 ImplicitParamDecl::Other); 2753 // ReduceList: thread local Reduce list. 2754 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2755 C.VoidPtrTy, ImplicitParamDecl::Other); 2756 FunctionArgList Args; 2757 Args.push_back(&BufferArg); 2758 Args.push_back(&IdxArg); 2759 Args.push_back(&ReduceListArg); 2760 2761 const CGFunctionInfo &CGFI = 2762 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2763 auto *Fn = llvm::Function::Create( 2764 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2765 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2766 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2767 Fn->setDoesNotRecurse(); 2768 CodeGenFunction CGF(CGM); 2769 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2770 2771 CGBuilderTy &Bld = CGF.Builder; 2772 2773 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2774 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2775 llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy); 2776 Address LocalReduceList( 2777 Bld.CreatePointerBitCastOrAddrSpaceCast( 2778 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2779 C.VoidPtrTy, Loc), 2780 ElemTy->getPointerTo()), 2781 ElemTy, CGF.getPointerAlign()); 2782 QualType StaticTy = C.getRecordType(TeamReductionRec); 2783 llvm::Type *LLVMReductionsBufferTy = 2784 CGM.getTypes().ConvertTypeForMem(StaticTy); 2785 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2786 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2787 LLVMReductionsBufferTy->getPointerTo()); 2788 2789 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2790 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2791 /*Volatile=*/false, C.IntTy, 2792 Loc)}; 2793 unsigned Idx = 0; 2794 for (const Expr *Private : Privates) { 2795 // Reduce element = LocalReduceList[i] 2796 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2797 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2798 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2799 // elemptr = ((CopyType*)(elemptrptr)) + I 2800 ElemTy = CGF.ConvertTypeForMem(Private->getType()); 2801 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2802 ElemPtrPtr, ElemTy->getPointerTo()); 2803 Address ElemPtr = 2804 Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType())); 2805 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2806 // Global = Buffer.VD[Idx]; 2807 const FieldDecl *FD = VarFieldMap.lookup(VD); 2808 LValue GlobLVal = CGF.EmitLValueForField( 2809 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2810 Address GlobAddr = GlobLVal.getAddress(CGF); 2811 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2812 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2813 GlobLVal.setAddress( 2814 Address::deprecated(BufferPtr, GlobAddr.getAlignment())); 2815 switch (CGF.getEvaluationKind(Private->getType())) { 2816 case TEK_Scalar: { 2817 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2818 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2819 LValueBaseInfo(AlignmentSource::Type), 2820 TBAAAccessInfo()); 2821 break; 2822 } 2823 case TEK_Complex: { 2824 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2825 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2826 /*isInit=*/false); 2827 break; 2828 } 2829 case TEK_Aggregate: 2830 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2831 GlobLVal, Private->getType(), 2832 AggValueSlot::DoesNotOverlap); 2833 break; 2834 } 2835 ++Idx; 2836 } 2837 2838 CGF.FinishFunction(); 2839 return Fn; 2840 } 2841 2842 /// This function emits a helper that reduces all the reduction variables from 2843 /// the team into the provided global buffer for the reduction variables. 2844 /// 2845 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2846 /// void *GlobPtrs[]; 2847 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2848 /// ... 2849 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2850 /// reduce_function(reduce_data, GlobPtrs); 2851 static llvm::Value *emitGlobalToListReduceFunction( 2852 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2853 QualType ReductionArrayTy, SourceLocation Loc, 2854 const RecordDecl *TeamReductionRec, 2855 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2856 &VarFieldMap, 2857 llvm::Function *ReduceFn) { 2858 ASTContext &C = CGM.getContext(); 2859 2860 // Buffer: global reduction buffer. 2861 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2862 C.VoidPtrTy, ImplicitParamDecl::Other); 2863 // Idx: index of the buffer. 2864 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2865 ImplicitParamDecl::Other); 2866 // ReduceList: thread local Reduce list. 2867 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2868 C.VoidPtrTy, ImplicitParamDecl::Other); 2869 FunctionArgList Args; 2870 Args.push_back(&BufferArg); 2871 Args.push_back(&IdxArg); 2872 Args.push_back(&ReduceListArg); 2873 2874 const CGFunctionInfo &CGFI = 2875 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2876 auto *Fn = llvm::Function::Create( 2877 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2878 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2879 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2880 Fn->setDoesNotRecurse(); 2881 CodeGenFunction CGF(CGM); 2882 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2883 2884 CGBuilderTy &Bld = CGF.Builder; 2885 2886 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2887 QualType StaticTy = C.getRecordType(TeamReductionRec); 2888 llvm::Type *LLVMReductionsBufferTy = 2889 CGM.getTypes().ConvertTypeForMem(StaticTy); 2890 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2891 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2892 LLVMReductionsBufferTy->getPointerTo()); 2893 2894 // 1. Build a list of reduction variables. 2895 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2896 Address ReductionList = 2897 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2898 auto IPriv = Privates.begin(); 2899 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2900 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2901 /*Volatile=*/false, C.IntTy, 2902 Loc)}; 2903 unsigned Idx = 0; 2904 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2905 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2906 // Global = Buffer.VD[Idx]; 2907 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2908 const FieldDecl *FD = VarFieldMap.lookup(VD); 2909 LValue GlobLVal = CGF.EmitLValueForField( 2910 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2911 Address GlobAddr = GlobLVal.getAddress(CGF); 2912 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2913 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2914 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2915 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2916 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2917 // Store array size. 2918 ++Idx; 2919 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2920 llvm::Value *Size = CGF.Builder.CreateIntCast( 2921 CGF.getVLASize( 2922 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2923 .NumElts, 2924 CGF.SizeTy, /*isSigned=*/false); 2925 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2926 Elem); 2927 } 2928 } 2929 2930 // Call reduce_function(ReduceList, GlobalReduceList) 2931 llvm::Value *GlobalReduceList = 2932 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2933 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2934 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2935 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2936 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2937 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2938 CGF.FinishFunction(); 2939 return Fn; 2940 } 2941 2942 /// 2943 /// Design of OpenMP reductions on the GPU 2944 /// 2945 /// Consider a typical OpenMP program with one or more reduction 2946 /// clauses: 2947 /// 2948 /// float foo; 2949 /// double bar; 2950 /// #pragma omp target teams distribute parallel for \ 2951 /// reduction(+:foo) reduction(*:bar) 2952 /// for (int i = 0; i < N; i++) { 2953 /// foo += A[i]; bar *= B[i]; 2954 /// } 2955 /// 2956 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2957 /// all teams. In our OpenMP implementation on the NVPTX device an 2958 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2959 /// within a team are mapped to CUDA threads within a threadblock. 2960 /// Our goal is to efficiently aggregate values across all OpenMP 2961 /// threads such that: 2962 /// 2963 /// - the compiler and runtime are logically concise, and 2964 /// - the reduction is performed efficiently in a hierarchical 2965 /// manner as follows: within OpenMP threads in the same warp, 2966 /// across warps in a threadblock, and finally across teams on 2967 /// the NVPTX device. 2968 /// 2969 /// Introduction to Decoupling 2970 /// 2971 /// We would like to decouple the compiler and the runtime so that the 2972 /// latter is ignorant of the reduction variables (number, data types) 2973 /// and the reduction operators. This allows a simpler interface 2974 /// and implementation while still attaining good performance. 2975 /// 2976 /// Pseudocode for the aforementioned OpenMP program generated by the 2977 /// compiler is as follows: 2978 /// 2979 /// 1. Create private copies of reduction variables on each OpenMP 2980 /// thread: 'foo_private', 'bar_private' 2981 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2982 /// to it and writes the result in 'foo_private' and 'bar_private' 2983 /// respectively. 2984 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2985 /// and store the result on the team master: 2986 /// 2987 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2988 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2989 /// 2990 /// where: 2991 /// struct ReduceData { 2992 /// double *foo; 2993 /// double *bar; 2994 /// } reduceData 2995 /// reduceData.foo = &foo_private 2996 /// reduceData.bar = &bar_private 2997 /// 2998 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2999 /// auxiliary functions generated by the compiler that operate on 3000 /// variables of type 'ReduceData'. They aid the runtime perform 3001 /// algorithmic steps in a data agnostic manner. 3002 /// 3003 /// 'shuffleReduceFn' is a pointer to a function that reduces data 3004 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 3005 /// same warp. It takes the following arguments as input: 3006 /// 3007 /// a. variable of type 'ReduceData' on the calling lane, 3008 /// b. its lane_id, 3009 /// c. an offset relative to the current lane_id to generate a 3010 /// remote_lane_id. The remote lane contains the second 3011 /// variable of type 'ReduceData' that is to be reduced. 3012 /// d. an algorithm version parameter determining which reduction 3013 /// algorithm to use. 3014 /// 3015 /// 'shuffleReduceFn' retrieves data from the remote lane using 3016 /// efficient GPU shuffle intrinsics and reduces, using the 3017 /// algorithm specified by the 4th parameter, the two operands 3018 /// element-wise. The result is written to the first operand. 3019 /// 3020 /// Different reduction algorithms are implemented in different 3021 /// runtime functions, all calling 'shuffleReduceFn' to perform 3022 /// the essential reduction step. Therefore, based on the 4th 3023 /// parameter, this function behaves slightly differently to 3024 /// cooperate with the runtime to ensure correctness under 3025 /// different circumstances. 3026 /// 3027 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3028 /// reduced variables across warps. It tunnels, through CUDA 3029 /// shared memory, the thread-private data of type 'ReduceData' 3030 /// from lane 0 of each warp to a lane in the first warp. 3031 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3032 /// The last team writes the global reduced value to memory. 3033 /// 3034 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3035 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3036 /// scratchpadCopyFn, loadAndReduceFn) 3037 /// 3038 /// 'scratchpadCopyFn' is a helper that stores reduced 3039 /// data from the team master to a scratchpad array in 3040 /// global memory. 3041 /// 3042 /// 'loadAndReduceFn' is a helper that loads data from 3043 /// the scratchpad array and reduces it with the input 3044 /// operand. 3045 /// 3046 /// These compiler generated functions hide address 3047 /// calculation and alignment information from the runtime. 3048 /// 5. if ret == 1: 3049 /// The team master of the last team stores the reduced 3050 /// result to the globals in memory. 3051 /// foo += reduceData.foo; bar *= reduceData.bar 3052 /// 3053 /// 3054 /// Warp Reduction Algorithms 3055 /// 3056 /// On the warp level, we have three algorithms implemented in the 3057 /// OpenMP runtime depending on the number of active lanes: 3058 /// 3059 /// Full Warp Reduction 3060 /// 3061 /// The reduce algorithm within a warp where all lanes are active 3062 /// is implemented in the runtime as follows: 3063 /// 3064 /// full_warp_reduce(void *reduce_data, 3065 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3066 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3067 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3068 /// } 3069 /// 3070 /// The algorithm completes in log(2, WARPSIZE) steps. 3071 /// 3072 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3073 /// not used therefore we save instructions by not retrieving lane_id 3074 /// from the corresponding special registers. The 4th parameter, which 3075 /// represents the version of the algorithm being used, is set to 0 to 3076 /// signify full warp reduction. 3077 /// 3078 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3079 /// 3080 /// #reduce_elem refers to an element in the local lane's data structure 3081 /// #remote_elem is retrieved from a remote lane 3082 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3083 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3084 /// 3085 /// Contiguous Partial Warp Reduction 3086 /// 3087 /// This reduce algorithm is used within a warp where only the first 3088 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3089 /// number of OpenMP threads in a parallel region is not a multiple of 3090 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3091 /// 3092 /// void 3093 /// contiguous_partial_reduce(void *reduce_data, 3094 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3095 /// int size, int lane_id) { 3096 /// int curr_size; 3097 /// int offset; 3098 /// curr_size = size; 3099 /// mask = curr_size/2; 3100 /// while (offset>0) { 3101 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3102 /// curr_size = (curr_size+1)/2; 3103 /// offset = curr_size/2; 3104 /// } 3105 /// } 3106 /// 3107 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3108 /// 3109 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3110 /// if (lane_id < offset) 3111 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3112 /// else 3113 /// reduce_elem = remote_elem 3114 /// 3115 /// This algorithm assumes that the data to be reduced are located in a 3116 /// contiguous subset of lanes starting from the first. When there is 3117 /// an odd number of active lanes, the data in the last lane is not 3118 /// aggregated with any other lane's dat but is instead copied over. 3119 /// 3120 /// Dispersed Partial Warp Reduction 3121 /// 3122 /// This algorithm is used within a warp when any discontiguous subset of 3123 /// lanes are active. It is used to implement the reduction operation 3124 /// across lanes in an OpenMP simd region or in a nested parallel region. 3125 /// 3126 /// void 3127 /// dispersed_partial_reduce(void *reduce_data, 3128 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3129 /// int size, remote_id; 3130 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3131 /// do { 3132 /// remote_id = next_active_lane_id_right_after_me(); 3133 /// # the above function returns 0 of no active lane 3134 /// # is present right after the current lane. 3135 /// size = number_of_active_lanes_in_this_warp(); 3136 /// logical_lane_id /= 2; 3137 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3138 /// remote_id-1-threadIdx.x, 2); 3139 /// } while (logical_lane_id % 2 == 0 && size > 1); 3140 /// } 3141 /// 3142 /// There is no assumption made about the initial state of the reduction. 3143 /// Any number of lanes (>=1) could be active at any position. The reduction 3144 /// result is returned in the first active lane. 3145 /// 3146 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3147 /// 3148 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3149 /// if (lane_id % 2 == 0 && offset > 0) 3150 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3151 /// else 3152 /// reduce_elem = remote_elem 3153 /// 3154 /// 3155 /// Intra-Team Reduction 3156 /// 3157 /// This function, as implemented in the runtime call 3158 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3159 /// threads in a team. It first reduces within a warp using the 3160 /// aforementioned algorithms. We then proceed to gather all such 3161 /// reduced values at the first warp. 3162 /// 3163 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3164 /// data from each of the "warp master" (zeroth lane of each warp, where 3165 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3166 /// a mathematical sense) the problem of reduction across warp masters in 3167 /// a block to the problem of warp reduction. 3168 /// 3169 /// 3170 /// Inter-Team Reduction 3171 /// 3172 /// Once a team has reduced its data to a single value, it is stored in 3173 /// a global scratchpad array. Since each team has a distinct slot, this 3174 /// can be done without locking. 3175 /// 3176 /// The last team to write to the scratchpad array proceeds to reduce the 3177 /// scratchpad array. One or more workers in the last team use the helper 3178 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3179 /// the k'th worker reduces every k'th element. 3180 /// 3181 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3182 /// reduce across workers and compute a globally reduced value. 3183 /// 3184 void CGOpenMPRuntimeGPU::emitReduction( 3185 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3186 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3187 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3188 if (!CGF.HaveInsertPoint()) 3189 return; 3190 3191 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3192 #ifndef NDEBUG 3193 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3194 #endif 3195 3196 if (Options.SimpleReduction) { 3197 assert(!TeamsReduction && !ParallelReduction && 3198 "Invalid reduction selection in emitReduction."); 3199 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3200 ReductionOps, Options); 3201 return; 3202 } 3203 3204 assert((TeamsReduction || ParallelReduction) && 3205 "Invalid reduction selection in emitReduction."); 3206 3207 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3208 // RedList, shuffle_reduce_func, interwarp_copy_func); 3209 // or 3210 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3211 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3212 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3213 3214 llvm::Value *Res; 3215 ASTContext &C = CGM.getContext(); 3216 // 1. Build a list of reduction variables. 3217 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3218 auto Size = RHSExprs.size(); 3219 for (const Expr *E : Privates) { 3220 if (E->getType()->isVariablyModifiedType()) 3221 // Reserve place for array size. 3222 ++Size; 3223 } 3224 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3225 QualType ReductionArrayTy = 3226 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3227 /*IndexTypeQuals=*/0); 3228 Address ReductionList = 3229 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3230 auto IPriv = Privates.begin(); 3231 unsigned Idx = 0; 3232 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3233 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3234 CGF.Builder.CreateStore( 3235 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3236 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3237 Elem); 3238 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3239 // Store array size. 3240 ++Idx; 3241 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3242 llvm::Value *Size = CGF.Builder.CreateIntCast( 3243 CGF.getVLASize( 3244 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3245 .NumElts, 3246 CGF.SizeTy, /*isSigned=*/false); 3247 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3248 Elem); 3249 } 3250 } 3251 3252 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3253 ReductionList.getPointer(), CGF.VoidPtrTy); 3254 llvm::Function *ReductionFn = emitReductionFunction( 3255 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3256 LHSExprs, RHSExprs, ReductionOps); 3257 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3258 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3259 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3260 llvm::Value *InterWarpCopyFn = 3261 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3262 3263 if (ParallelReduction) { 3264 llvm::Value *Args[] = {RTLoc, 3265 ThreadId, 3266 CGF.Builder.getInt32(RHSExprs.size()), 3267 ReductionArrayTySize, 3268 RL, 3269 ShuffleAndReduceFn, 3270 InterWarpCopyFn}; 3271 3272 Res = CGF.EmitRuntimeCall( 3273 OMPBuilder.getOrCreateRuntimeFunction( 3274 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3275 Args); 3276 } else { 3277 assert(TeamsReduction && "expected teams reduction."); 3278 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3279 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3280 int Cnt = 0; 3281 for (const Expr *DRE : Privates) { 3282 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3283 ++Cnt; 3284 } 3285 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3286 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3287 C.getLangOpts().OpenMPCUDAReductionBufNum); 3288 TeamsReductions.push_back(TeamReductionRec); 3289 if (!KernelTeamsReductionPtr) { 3290 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3291 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3292 llvm::GlobalValue::InternalLinkage, nullptr, 3293 "_openmp_teams_reductions_buffer_$_$ptr"); 3294 } 3295 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3296 Address::deprecated(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3297 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3298 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3299 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3300 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3301 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3302 ReductionFn); 3303 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3304 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3305 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3306 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3307 ReductionFn); 3308 3309 llvm::Value *Args[] = { 3310 RTLoc, 3311 ThreadId, 3312 GlobalBufferPtr, 3313 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3314 RL, 3315 ShuffleAndReduceFn, 3316 InterWarpCopyFn, 3317 GlobalToBufferCpyFn, 3318 GlobalToBufferRedFn, 3319 BufferToGlobalCpyFn, 3320 BufferToGlobalRedFn}; 3321 3322 Res = CGF.EmitRuntimeCall( 3323 OMPBuilder.getOrCreateRuntimeFunction( 3324 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3325 Args); 3326 } 3327 3328 // 5. Build if (res == 1) 3329 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3330 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3331 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3332 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3333 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3334 3335 // 6. Build then branch: where we have reduced values in the master 3336 // thread in each team. 3337 // __kmpc_end_reduce{_nowait}(<gtid>); 3338 // break; 3339 CGF.EmitBlock(ThenBB); 3340 3341 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3342 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3343 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3344 auto IPriv = Privates.begin(); 3345 auto ILHS = LHSExprs.begin(); 3346 auto IRHS = RHSExprs.begin(); 3347 for (const Expr *E : ReductionOps) { 3348 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3349 cast<DeclRefExpr>(*IRHS)); 3350 ++IPriv; 3351 ++ILHS; 3352 ++IRHS; 3353 } 3354 }; 3355 llvm::Value *EndArgs[] = {ThreadId}; 3356 RegionCodeGenTy RCG(CodeGen); 3357 NVPTXActionTy Action( 3358 nullptr, llvm::None, 3359 OMPBuilder.getOrCreateRuntimeFunction( 3360 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3361 EndArgs); 3362 RCG.setAction(Action); 3363 RCG(CGF); 3364 // There is no need to emit line number for unconditional branch. 3365 (void)ApplyDebugLocation::CreateEmpty(CGF); 3366 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3367 } 3368 3369 const VarDecl * 3370 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3371 const VarDecl *NativeParam) const { 3372 if (!NativeParam->getType()->isReferenceType()) 3373 return NativeParam; 3374 QualType ArgType = NativeParam->getType(); 3375 QualifierCollector QC; 3376 const Type *NonQualTy = QC.strip(ArgType); 3377 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3378 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3379 if (Attr->getCaptureKind() == OMPC_map) { 3380 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3381 LangAS::opencl_global); 3382 } 3383 } 3384 ArgType = CGM.getContext().getPointerType(PointeeTy); 3385 QC.addRestrict(); 3386 enum { NVPTX_local_addr = 5 }; 3387 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3388 ArgType = QC.apply(CGM.getContext(), ArgType); 3389 if (isa<ImplicitParamDecl>(NativeParam)) 3390 return ImplicitParamDecl::Create( 3391 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3392 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3393 return ParmVarDecl::Create( 3394 CGM.getContext(), 3395 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3396 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3397 NativeParam->getIdentifier(), ArgType, 3398 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3399 } 3400 3401 Address 3402 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3403 const VarDecl *NativeParam, 3404 const VarDecl *TargetParam) const { 3405 assert(NativeParam != TargetParam && 3406 NativeParam->getType()->isReferenceType() && 3407 "Native arg must not be the same as target arg."); 3408 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3409 QualType NativeParamType = NativeParam->getType(); 3410 QualifierCollector QC; 3411 const Type *NonQualTy = QC.strip(NativeParamType); 3412 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3413 unsigned NativePointeeAddrSpace = 3414 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3415 QualType TargetTy = TargetParam->getType(); 3416 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3417 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3418 // First cast to generic. 3419 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3420 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3421 cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0)); 3422 // Cast from generic to native address space. 3423 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3424 TargetAddr, llvm::PointerType::getWithSamePointeeType( 3425 cast<llvm::PointerType>(TargetAddr->getType()), 3426 NativePointeeAddrSpace)); 3427 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3428 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3429 NativeParamType); 3430 return NativeParamAddr; 3431 } 3432 3433 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3434 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3435 ArrayRef<llvm::Value *> Args) const { 3436 SmallVector<llvm::Value *, 4> TargetArgs; 3437 TargetArgs.reserve(Args.size()); 3438 auto *FnType = OutlinedFn.getFunctionType(); 3439 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3440 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3441 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3442 break; 3443 } 3444 llvm::Type *TargetType = FnType->getParamType(I); 3445 llvm::Value *NativeArg = Args[I]; 3446 if (!TargetType->isPointerTy()) { 3447 TargetArgs.emplace_back(NativeArg); 3448 continue; 3449 } 3450 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3451 NativeArg, llvm::PointerType::getWithSamePointeeType( 3452 cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0)); 3453 TargetArgs.emplace_back( 3454 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3455 } 3456 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3457 } 3458 3459 /// Emit function which wraps the outline parallel region 3460 /// and controls the arguments which are passed to this function. 3461 /// The wrapper ensures that the outlined function is called 3462 /// with the correct arguments when data is shared. 3463 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3464 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3465 ASTContext &Ctx = CGM.getContext(); 3466 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3467 3468 // Create a function that takes as argument the source thread. 3469 FunctionArgList WrapperArgs; 3470 QualType Int16QTy = 3471 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3472 QualType Int32QTy = 3473 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3474 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3475 /*Id=*/nullptr, Int16QTy, 3476 ImplicitParamDecl::Other); 3477 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3478 /*Id=*/nullptr, Int32QTy, 3479 ImplicitParamDecl::Other); 3480 WrapperArgs.emplace_back(&ParallelLevelArg); 3481 WrapperArgs.emplace_back(&WrapperArg); 3482 3483 const CGFunctionInfo &CGFI = 3484 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3485 3486 auto *Fn = llvm::Function::Create( 3487 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3488 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3489 3490 // Ensure we do not inline the function. This is trivially true for the ones 3491 // passed to __kmpc_fork_call but the ones calles in serialized regions 3492 // could be inlined. This is not a perfect but it is closer to the invariant 3493 // we want, namely, every data environment starts with a new function. 3494 // TODO: We should pass the if condition to the runtime function and do the 3495 // handling there. Much cleaner code. 3496 Fn->addFnAttr(llvm::Attribute::NoInline); 3497 3498 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3499 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3500 Fn->setDoesNotRecurse(); 3501 3502 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3503 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3504 D.getBeginLoc(), D.getBeginLoc()); 3505 3506 const auto *RD = CS.getCapturedRecordDecl(); 3507 auto CurField = RD->field_begin(); 3508 3509 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3510 /*Name=*/".zero.addr"); 3511 CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr); 3512 // Get the array of arguments. 3513 SmallVector<llvm::Value *, 8> Args; 3514 3515 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3516 Args.emplace_back(ZeroAddr.getPointer()); 3517 3518 CGBuilderTy &Bld = CGF.Builder; 3519 auto CI = CS.capture_begin(); 3520 3521 // Use global memory for data sharing. 3522 // Handle passing of global args to workers. 3523 Address GlobalArgs = 3524 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3525 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3526 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3527 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3528 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3529 DataSharingArgs); 3530 3531 // Retrieve the shared variables from the list of references returned 3532 // by the runtime. Pass the variables to the outlined function. 3533 Address SharedArgListAddress = Address::invalid(); 3534 if (CS.capture_size() > 0 || 3535 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3536 SharedArgListAddress = CGF.EmitLoadOfPointer( 3537 GlobalArgs, CGF.getContext() 3538 .getPointerType(CGF.getContext().getPointerType( 3539 CGF.getContext().VoidPtrTy)) 3540 .castAs<PointerType>()); 3541 } 3542 unsigned Idx = 0; 3543 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3544 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3545 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3546 Src, CGF.SizeTy->getPointerTo()); 3547 llvm::Value *LB = CGF.EmitLoadOfScalar( 3548 TypedAddress, 3549 /*Volatile=*/false, 3550 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3551 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3552 Args.emplace_back(LB); 3553 ++Idx; 3554 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3555 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3556 Src, CGF.SizeTy->getPointerTo()); 3557 llvm::Value *UB = CGF.EmitLoadOfScalar( 3558 TypedAddress, 3559 /*Volatile=*/false, 3560 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3561 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3562 Args.emplace_back(UB); 3563 ++Idx; 3564 } 3565 if (CS.capture_size() > 0) { 3566 ASTContext &CGFContext = CGF.getContext(); 3567 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3568 QualType ElemTy = CurField->getType(); 3569 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3570 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3571 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3572 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3573 /*Volatile=*/false, 3574 CGFContext.getPointerType(ElemTy), 3575 CI->getLocation()); 3576 if (CI->capturesVariableByCopy() && 3577 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3578 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3579 CI->getLocation()); 3580 } 3581 Args.emplace_back(Arg); 3582 } 3583 } 3584 3585 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3586 CGF.FinishFunction(); 3587 return Fn; 3588 } 3589 3590 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3591 const Decl *D) { 3592 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3593 return; 3594 3595 assert(D && "Expected function or captured|block decl."); 3596 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3597 "Function is registered already."); 3598 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3599 "Team is set but not processed."); 3600 const Stmt *Body = nullptr; 3601 bool NeedToDelayGlobalization = false; 3602 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3603 Body = FD->getBody(); 3604 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3605 Body = BD->getBody(); 3606 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3607 Body = CD->getBody(); 3608 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3609 if (NeedToDelayGlobalization && 3610 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3611 return; 3612 } 3613 if (!Body) 3614 return; 3615 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3616 VarChecker.Visit(Body); 3617 const RecordDecl *GlobalizedVarsRecord = 3618 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3619 TeamAndReductions.first = nullptr; 3620 TeamAndReductions.second.clear(); 3621 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3622 VarChecker.getEscapedVariableLengthDecls(); 3623 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3624 return; 3625 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3626 I->getSecond().MappedParams = 3627 std::make_unique<CodeGenFunction::OMPMapVars>(); 3628 I->getSecond().EscapedParameters.insert( 3629 VarChecker.getEscapedParameters().begin(), 3630 VarChecker.getEscapedParameters().end()); 3631 I->getSecond().EscapedVariableLengthDecls.append( 3632 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3633 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3634 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3635 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3636 Data.insert(std::make_pair(VD, MappedVarData())); 3637 } 3638 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3639 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3640 VarChecker.Visit(Body); 3641 I->getSecond().SecondaryLocalVarData.emplace(); 3642 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3643 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3644 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3645 Data.insert(std::make_pair(VD, MappedVarData())); 3646 } 3647 } 3648 if (!NeedToDelayGlobalization) { 3649 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3650 struct GlobalizationScope final : EHScopeStack::Cleanup { 3651 GlobalizationScope() = default; 3652 3653 void Emit(CodeGenFunction &CGF, Flags flags) override { 3654 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3655 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3656 } 3657 }; 3658 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3659 } 3660 } 3661 3662 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3663 const VarDecl *VD) { 3664 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3665 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3666 auto AS = LangAS::Default; 3667 switch (A->getAllocatorType()) { 3668 // Use the default allocator here as by default local vars are 3669 // threadlocal. 3670 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3671 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3672 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3673 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3674 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3675 // Follow the user decision - use default allocation. 3676 return Address::invalid(); 3677 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3678 // TODO: implement aupport for user-defined allocators. 3679 return Address::invalid(); 3680 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3681 AS = LangAS::cuda_constant; 3682 break; 3683 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3684 AS = LangAS::cuda_shared; 3685 break; 3686 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3687 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3688 break; 3689 } 3690 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3691 auto *GV = new llvm::GlobalVariable( 3692 CGM.getModule(), VarTy, /*isConstant=*/false, 3693 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3694 VD->getName(), 3695 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3696 CGM.getContext().getTargetAddressSpace(AS)); 3697 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3698 GV->setAlignment(Align.getAsAlign()); 3699 return Address( 3700 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3701 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3702 VD->getType().getAddressSpace()))), 3703 VarTy, Align); 3704 } 3705 3706 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3707 return Address::invalid(); 3708 3709 VD = VD->getCanonicalDecl(); 3710 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3711 if (I == FunctionGlobalizedDecls.end()) 3712 return Address::invalid(); 3713 auto VDI = I->getSecond().LocalVarData.find(VD); 3714 if (VDI != I->getSecond().LocalVarData.end()) 3715 return VDI->second.PrivateAddr; 3716 if (VD->hasAttrs()) { 3717 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3718 E(VD->attr_end()); 3719 IT != E; ++IT) { 3720 auto VDI = I->getSecond().LocalVarData.find( 3721 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3722 ->getCanonicalDecl()); 3723 if (VDI != I->getSecond().LocalVarData.end()) 3724 return VDI->second.PrivateAddr; 3725 } 3726 } 3727 3728 return Address::invalid(); 3729 } 3730 3731 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3732 FunctionGlobalizedDecls.erase(CGF.CurFn); 3733 CGOpenMPRuntime::functionFinished(CGF); 3734 } 3735 3736 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3737 CodeGenFunction &CGF, const OMPLoopDirective &S, 3738 OpenMPDistScheduleClauseKind &ScheduleKind, 3739 llvm::Value *&Chunk) const { 3740 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3741 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3742 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3743 Chunk = CGF.EmitScalarConversion( 3744 RT.getGPUNumThreads(CGF), 3745 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3746 S.getIterationVariable()->getType(), S.getBeginLoc()); 3747 return; 3748 } 3749 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3750 CGF, S, ScheduleKind, Chunk); 3751 } 3752 3753 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3754 CodeGenFunction &CGF, const OMPLoopDirective &S, 3755 OpenMPScheduleClauseKind &ScheduleKind, 3756 const Expr *&ChunkExpr) const { 3757 ScheduleKind = OMPC_SCHEDULE_static; 3758 // Chunk size is 1 in this case. 3759 llvm::APInt ChunkSize(32, 1); 3760 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3761 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3762 SourceLocation()); 3763 } 3764 3765 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3766 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3767 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3768 " Expected target-based directive."); 3769 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3770 for (const CapturedStmt::Capture &C : CS->captures()) { 3771 // Capture variables captured by reference in lambdas for target-based 3772 // directives. 3773 if (!C.capturesVariable()) 3774 continue; 3775 const VarDecl *VD = C.getCapturedVar(); 3776 const auto *RD = VD->getType() 3777 .getCanonicalType() 3778 .getNonReferenceType() 3779 ->getAsCXXRecordDecl(); 3780 if (!RD || !RD->isLambda()) 3781 continue; 3782 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3783 LValue VDLVal; 3784 if (VD->getType().getCanonicalType()->isReferenceType()) 3785 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3786 else 3787 VDLVal = CGF.MakeAddrLValue( 3788 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3789 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3790 FieldDecl *ThisCapture = nullptr; 3791 RD->getCaptureFields(Captures, ThisCapture); 3792 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3793 LValue ThisLVal = 3794 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3795 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3796 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3797 } 3798 for (const LambdaCapture &LC : RD->captures()) { 3799 if (LC.getCaptureKind() != LCK_ByRef) 3800 continue; 3801 const VarDecl *VD = LC.getCapturedVar(); 3802 if (!CS->capturesVariable(VD)) 3803 continue; 3804 auto It = Captures.find(VD); 3805 assert(It != Captures.end() && "Found lambda capture without field."); 3806 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3807 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3808 if (VD->getType().getCanonicalType()->isReferenceType()) 3809 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3810 VD->getType().getCanonicalType()) 3811 .getAddress(CGF); 3812 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3813 } 3814 } 3815 } 3816 3817 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3818 LangAS &AS) { 3819 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3820 return false; 3821 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3822 switch(A->getAllocatorType()) { 3823 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3824 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3825 // Not supported, fallback to the default mem space. 3826 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3827 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3828 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3829 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3830 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3831 AS = LangAS::Default; 3832 return true; 3833 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3834 AS = LangAS::cuda_constant; 3835 return true; 3836 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3837 AS = LangAS::cuda_shared; 3838 return true; 3839 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3840 llvm_unreachable("Expected predefined allocator for the variables with the " 3841 "static storage."); 3842 } 3843 return false; 3844 } 3845 3846 // Get current CudaArch and ignore any unknown values 3847 static CudaArch getCudaArch(CodeGenModule &CGM) { 3848 if (!CGM.getTarget().hasFeature("ptx")) 3849 return CudaArch::UNKNOWN; 3850 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3851 if (Feature.getValue()) { 3852 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3853 if (Arch != CudaArch::UNKNOWN) 3854 return Arch; 3855 } 3856 } 3857 return CudaArch::UNKNOWN; 3858 } 3859 3860 /// Check to see if target architecture supports unified addressing which is 3861 /// a restriction for OpenMP requires clause "unified_shared_memory". 3862 void CGOpenMPRuntimeGPU::processRequiresDirective( 3863 const OMPRequiresDecl *D) { 3864 for (const OMPClause *Clause : D->clauselists()) { 3865 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3866 CudaArch Arch = getCudaArch(CGM); 3867 switch (Arch) { 3868 case CudaArch::SM_20: 3869 case CudaArch::SM_21: 3870 case CudaArch::SM_30: 3871 case CudaArch::SM_32: 3872 case CudaArch::SM_35: 3873 case CudaArch::SM_37: 3874 case CudaArch::SM_50: 3875 case CudaArch::SM_52: 3876 case CudaArch::SM_53: { 3877 SmallString<256> Buffer; 3878 llvm::raw_svector_ostream Out(Buffer); 3879 Out << "Target architecture " << CudaArchToString(Arch) 3880 << " does not support unified addressing"; 3881 CGM.Error(Clause->getBeginLoc(), Out.str()); 3882 return; 3883 } 3884 case CudaArch::SM_60: 3885 case CudaArch::SM_61: 3886 case CudaArch::SM_62: 3887 case CudaArch::SM_70: 3888 case CudaArch::SM_72: 3889 case CudaArch::SM_75: 3890 case CudaArch::SM_80: 3891 case CudaArch::SM_86: 3892 case CudaArch::GFX600: 3893 case CudaArch::GFX601: 3894 case CudaArch::GFX602: 3895 case CudaArch::GFX700: 3896 case CudaArch::GFX701: 3897 case CudaArch::GFX702: 3898 case CudaArch::GFX703: 3899 case CudaArch::GFX704: 3900 case CudaArch::GFX705: 3901 case CudaArch::GFX801: 3902 case CudaArch::GFX802: 3903 case CudaArch::GFX803: 3904 case CudaArch::GFX805: 3905 case CudaArch::GFX810: 3906 case CudaArch::GFX900: 3907 case CudaArch::GFX902: 3908 case CudaArch::GFX904: 3909 case CudaArch::GFX906: 3910 case CudaArch::GFX908: 3911 case CudaArch::GFX909: 3912 case CudaArch::GFX90a: 3913 case CudaArch::GFX90c: 3914 case CudaArch::GFX1010: 3915 case CudaArch::GFX1011: 3916 case CudaArch::GFX1012: 3917 case CudaArch::GFX1013: 3918 case CudaArch::GFX1030: 3919 case CudaArch::GFX1031: 3920 case CudaArch::GFX1032: 3921 case CudaArch::GFX1033: 3922 case CudaArch::GFX1034: 3923 case CudaArch::GFX1035: 3924 case CudaArch::Generic: 3925 case CudaArch::UNUSED: 3926 case CudaArch::UNKNOWN: 3927 break; 3928 case CudaArch::LAST: 3929 llvm_unreachable("Unexpected Cuda arch."); 3930 } 3931 } 3932 } 3933 CGOpenMPRuntime::processRequiresDirective(D); 3934 } 3935 3936 void CGOpenMPRuntimeGPU::clear() { 3937 3938 if (!TeamsReductions.empty()) { 3939 ASTContext &C = CGM.getContext(); 3940 RecordDecl *StaticRD = C.buildImplicitRecord( 3941 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3942 StaticRD->startDefinition(); 3943 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3944 QualType RecTy = C.getRecordType(TeamReductionRec); 3945 auto *Field = FieldDecl::Create( 3946 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3947 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3948 /*BW=*/nullptr, /*Mutable=*/false, 3949 /*InitStyle=*/ICIS_NoInit); 3950 Field->setAccess(AS_public); 3951 StaticRD->addDecl(Field); 3952 } 3953 StaticRD->completeDefinition(); 3954 QualType StaticTy = C.getRecordType(StaticRD); 3955 llvm::Type *LLVMReductionsBufferTy = 3956 CGM.getTypes().ConvertTypeForMem(StaticTy); 3957 // FIXME: nvlink does not handle weak linkage correctly (object with the 3958 // different size are reported as erroneous). 3959 // Restore CommonLinkage as soon as nvlink is fixed. 3960 auto *GV = new llvm::GlobalVariable( 3961 CGM.getModule(), LLVMReductionsBufferTy, 3962 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3963 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3964 "_openmp_teams_reductions_buffer_$_"); 3965 KernelTeamsReductionPtr->setInitializer( 3966 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3967 CGM.VoidPtrTy)); 3968 } 3969 CGOpenMPRuntime::clear(); 3970 } 3971 3972 llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) { 3973 CGBuilderTy &Bld = CGF.Builder; 3974 llvm::Module *M = &CGF.CGM.getModule(); 3975 const char *LocSize = "__kmpc_get_hardware_num_threads_in_block"; 3976 llvm::Function *F = M->getFunction(LocSize); 3977 if (!F) { 3978 F = llvm::Function::Create( 3979 llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false), 3980 llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule()); 3981 } 3982 return Bld.CreateCall(F, llvm::None, "nvptx_num_threads"); 3983 } 3984 3985 llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) { 3986 ArrayRef<llvm::Value *> Args{}; 3987 return CGF.EmitRuntimeCall( 3988 OMPBuilder.getOrCreateRuntimeFunction( 3989 CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block), 3990 Args); 3991 } 3992 3993 llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) { 3994 ArrayRef<llvm::Value *> Args{}; 3995 return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3996 CGM.getModule(), OMPRTL___kmpc_get_warp_size), 3997 Args); 3998 } 3999