1 //===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This provides a generalized class for OpenMP runtime code generation 10 // specialized by GPU targets NVPTX and AMDGCN. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGOpenMPRuntimeGPU.h" 15 #include "CGOpenMPRuntimeNVPTX.h" 16 #include "CodeGenFunction.h" 17 #include "clang/AST/Attr.h" 18 #include "clang/AST/DeclOpenMP.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/AST/StmtVisitor.h" 21 #include "clang/Basic/Cuda.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 24 #include "llvm/IR/IntrinsicsNVPTX.h" 25 #include "llvm/Support/MathExtras.h" 26 27 using namespace clang; 28 using namespace CodeGen; 29 using namespace llvm::omp; 30 31 namespace { 32 /// Pre(post)-action for different OpenMP constructs specialized for NVPTX. 33 class NVPTXActionTy final : public PrePostActionTy { 34 llvm::FunctionCallee EnterCallee = nullptr; 35 ArrayRef<llvm::Value *> EnterArgs; 36 llvm::FunctionCallee ExitCallee = nullptr; 37 ArrayRef<llvm::Value *> ExitArgs; 38 bool Conditional = false; 39 llvm::BasicBlock *ContBlock = nullptr; 40 41 public: 42 NVPTXActionTy(llvm::FunctionCallee EnterCallee, 43 ArrayRef<llvm::Value *> EnterArgs, 44 llvm::FunctionCallee ExitCallee, 45 ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) 46 : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), 47 ExitArgs(ExitArgs), Conditional(Conditional) {} 48 void Enter(CodeGenFunction &CGF) override { 49 llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); 50 if (Conditional) { 51 llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); 52 auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); 53 ContBlock = CGF.createBasicBlock("omp_if.end"); 54 // Generate the branch (If-stmt) 55 CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); 56 CGF.EmitBlock(ThenBlock); 57 } 58 } 59 void Done(CodeGenFunction &CGF) { 60 // Emit the rest of blocks/branches 61 CGF.EmitBranch(ContBlock); 62 CGF.EmitBlock(ContBlock, true); 63 } 64 void Exit(CodeGenFunction &CGF) override { 65 CGF.EmitRuntimeCall(ExitCallee, ExitArgs); 66 } 67 }; 68 69 /// A class to track the execution mode when codegening directives within 70 /// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry 71 /// to the target region and used by containing directives such as 'parallel' 72 /// to emit optimized code. 73 class ExecutionRuntimeModesRAII { 74 private: 75 CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode = 76 CGOpenMPRuntimeGPU::EM_Unknown; 77 CGOpenMPRuntimeGPU::ExecutionMode &ExecMode; 78 bool SavedRuntimeMode = false; 79 bool *RuntimeMode = nullptr; 80 81 public: 82 /// Constructor for Non-SPMD mode. 83 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode) 84 : ExecMode(ExecMode) { 85 SavedExecMode = ExecMode; 86 ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD; 87 } 88 /// Constructor for SPMD mode. 89 ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode, 90 bool &RuntimeMode, bool FullRuntimeMode) 91 : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) { 92 SavedExecMode = ExecMode; 93 SavedRuntimeMode = RuntimeMode; 94 ExecMode = CGOpenMPRuntimeGPU::EM_SPMD; 95 RuntimeMode = FullRuntimeMode; 96 } 97 ~ExecutionRuntimeModesRAII() { 98 ExecMode = SavedExecMode; 99 if (RuntimeMode) 100 *RuntimeMode = SavedRuntimeMode; 101 } 102 }; 103 104 /// GPU Configuration: This information can be derived from cuda registers, 105 /// however, providing compile time constants helps generate more efficient 106 /// code. For all practical purposes this is fine because the configuration 107 /// is the same for all known NVPTX architectures. 108 enum MachineConfiguration : unsigned { 109 /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target 110 /// specific Grid Values like GV_Warp_Size, GV_Slot_Size 111 112 /// Global memory alignment for performance. 113 GlobalMemoryAlignment = 128, 114 115 /// Maximal size of the shared memory buffer. 116 SharedMemorySize = 128, 117 }; 118 119 static const ValueDecl *getPrivateItem(const Expr *RefExpr) { 120 RefExpr = RefExpr->IgnoreParens(); 121 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) { 122 const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); 123 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 124 Base = TempASE->getBase()->IgnoreParenImpCasts(); 125 RefExpr = Base; 126 } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) { 127 const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); 128 while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) 129 Base = TempOASE->getBase()->IgnoreParenImpCasts(); 130 while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) 131 Base = TempASE->getBase()->IgnoreParenImpCasts(); 132 RefExpr = Base; 133 } 134 RefExpr = RefExpr->IgnoreParenImpCasts(); 135 if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr)) 136 return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl()); 137 const auto *ME = cast<MemberExpr>(RefExpr); 138 return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl()); 139 } 140 141 142 static RecordDecl *buildRecordForGlobalizedVars( 143 ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls, 144 ArrayRef<const ValueDecl *> EscapedDeclsForTeams, 145 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 146 &MappedDeclsFields, int BufSize) { 147 using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>; 148 if (EscapedDecls.empty() && EscapedDeclsForTeams.empty()) 149 return nullptr; 150 SmallVector<VarsDataTy, 4> GlobalizedVars; 151 for (const ValueDecl *D : EscapedDecls) 152 GlobalizedVars.emplace_back( 153 CharUnits::fromQuantity(std::max( 154 C.getDeclAlign(D).getQuantity(), 155 static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))), 156 D); 157 for (const ValueDecl *D : EscapedDeclsForTeams) 158 GlobalizedVars.emplace_back(C.getDeclAlign(D), D); 159 llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) { 160 return L.first > R.first; 161 }); 162 163 // Build struct _globalized_locals_ty { 164 // /* globalized vars */[WarSize] align (max(decl_align, 165 // GlobalMemoryAlignment)) 166 // /* globalized vars */ for EscapedDeclsForTeams 167 // }; 168 RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty"); 169 GlobalizedRD->startDefinition(); 170 llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped( 171 EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end()); 172 for (const auto &Pair : GlobalizedVars) { 173 const ValueDecl *VD = Pair.second; 174 QualType Type = VD->getType(); 175 if (Type->isLValueReferenceType()) 176 Type = C.getPointerType(Type.getNonReferenceType()); 177 else 178 Type = Type.getNonReferenceType(); 179 SourceLocation Loc = VD->getLocation(); 180 FieldDecl *Field; 181 if (SingleEscaped.count(VD)) { 182 Field = FieldDecl::Create( 183 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 184 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 185 /*BW=*/nullptr, /*Mutable=*/false, 186 /*InitStyle=*/ICIS_NoInit); 187 Field->setAccess(AS_public); 188 if (VD->hasAttrs()) { 189 for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), 190 E(VD->getAttrs().end()); 191 I != E; ++I) 192 Field->addAttr(*I); 193 } 194 } else { 195 llvm::APInt ArraySize(32, BufSize); 196 Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal, 197 0); 198 Field = FieldDecl::Create( 199 C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type, 200 C.getTrivialTypeSourceInfo(Type, SourceLocation()), 201 /*BW=*/nullptr, /*Mutable=*/false, 202 /*InitStyle=*/ICIS_NoInit); 203 Field->setAccess(AS_public); 204 llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(), 205 static_cast<CharUnits::QuantityType>( 206 GlobalMemoryAlignment))); 207 Field->addAttr(AlignedAttr::CreateImplicit( 208 C, /*IsAlignmentExpr=*/true, 209 IntegerLiteral::Create(C, Align, 210 C.getIntTypeForBitwidth(32, /*Signed=*/0), 211 SourceLocation()), 212 {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned)); 213 } 214 GlobalizedRD->addDecl(Field); 215 MappedDeclsFields.try_emplace(VD, Field); 216 } 217 GlobalizedRD->completeDefinition(); 218 return GlobalizedRD; 219 } 220 221 /// Get the list of variables that can escape their declaration context. 222 class CheckVarsEscapingDeclContext final 223 : public ConstStmtVisitor<CheckVarsEscapingDeclContext> { 224 CodeGenFunction &CGF; 225 llvm::SetVector<const ValueDecl *> EscapedDecls; 226 llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls; 227 llvm::SmallPtrSet<const Decl *, 4> EscapedParameters; 228 RecordDecl *GlobalizedRD = nullptr; 229 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 230 bool AllEscaped = false; 231 bool IsForCombinedParallelRegion = false; 232 233 void markAsEscaped(const ValueDecl *VD) { 234 // Do not globalize declare target variables. 235 if (!isa<VarDecl>(VD) || 236 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) 237 return; 238 VD = cast<ValueDecl>(VD->getCanonicalDecl()); 239 // Use user-specified allocation. 240 if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>()) 241 return; 242 // Variables captured by value must be globalized. 243 if (auto *CSI = CGF.CapturedStmtInfo) { 244 if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) { 245 // Check if need to capture the variable that was already captured by 246 // value in the outer region. 247 if (!IsForCombinedParallelRegion) { 248 if (!FD->hasAttrs()) 249 return; 250 const auto *Attr = FD->getAttr<OMPCaptureKindAttr>(); 251 if (!Attr) 252 return; 253 if (((Attr->getCaptureKind() != OMPC_map) && 254 !isOpenMPPrivate(Attr->getCaptureKind())) || 255 ((Attr->getCaptureKind() == OMPC_map) && 256 !FD->getType()->isAnyPointerType())) 257 return; 258 } 259 if (!FD->getType()->isReferenceType()) { 260 assert(!VD->getType()->isVariablyModifiedType() && 261 "Parameter captured by value with variably modified type"); 262 EscapedParameters.insert(VD); 263 } else if (!IsForCombinedParallelRegion) { 264 return; 265 } 266 } 267 } 268 if ((!CGF.CapturedStmtInfo || 269 (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) && 270 VD->getType()->isReferenceType()) 271 // Do not globalize variables with reference type. 272 return; 273 if (VD->getType()->isVariablyModifiedType()) 274 EscapedVariableLengthDecls.insert(VD); 275 else 276 EscapedDecls.insert(VD); 277 } 278 279 void VisitValueDecl(const ValueDecl *VD) { 280 if (VD->getType()->isLValueReferenceType()) 281 markAsEscaped(VD); 282 if (const auto *VarD = dyn_cast<VarDecl>(VD)) { 283 if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) { 284 const bool SavedAllEscaped = AllEscaped; 285 AllEscaped = VD->getType()->isLValueReferenceType(); 286 Visit(VarD->getInit()); 287 AllEscaped = SavedAllEscaped; 288 } 289 } 290 } 291 void VisitOpenMPCapturedStmt(const CapturedStmt *S, 292 ArrayRef<OMPClause *> Clauses, 293 bool IsCombinedParallelRegion) { 294 if (!S) 295 return; 296 for (const CapturedStmt::Capture &C : S->captures()) { 297 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 298 const ValueDecl *VD = C.getCapturedVar(); 299 bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion; 300 if (IsCombinedParallelRegion) { 301 // Check if the variable is privatized in the combined construct and 302 // those private copies must be shared in the inner parallel 303 // directive. 304 IsForCombinedParallelRegion = false; 305 for (const OMPClause *C : Clauses) { 306 if (!isOpenMPPrivate(C->getClauseKind()) || 307 C->getClauseKind() == OMPC_reduction || 308 C->getClauseKind() == OMPC_linear || 309 C->getClauseKind() == OMPC_private) 310 continue; 311 ArrayRef<const Expr *> Vars; 312 if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C)) 313 Vars = PC->getVarRefs(); 314 else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C)) 315 Vars = PC->getVarRefs(); 316 else 317 llvm_unreachable("Unexpected clause."); 318 for (const auto *E : Vars) { 319 const Decl *D = 320 cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl(); 321 if (D == VD->getCanonicalDecl()) { 322 IsForCombinedParallelRegion = true; 323 break; 324 } 325 } 326 if (IsForCombinedParallelRegion) 327 break; 328 } 329 } 330 markAsEscaped(VD); 331 if (isa<OMPCapturedExprDecl>(VD)) 332 VisitValueDecl(VD); 333 IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion; 334 } 335 } 336 } 337 338 void buildRecordForGlobalizedVars(bool IsInTTDRegion) { 339 assert(!GlobalizedRD && 340 "Record for globalized variables is built already."); 341 ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams; 342 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 343 if (IsInTTDRegion) 344 EscapedDeclsForTeams = EscapedDecls.getArrayRef(); 345 else 346 EscapedDeclsForParallel = EscapedDecls.getArrayRef(); 347 GlobalizedRD = ::buildRecordForGlobalizedVars( 348 CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams, 349 MappedDeclsFields, WarpSize); 350 } 351 352 public: 353 CheckVarsEscapingDeclContext(CodeGenFunction &CGF, 354 ArrayRef<const ValueDecl *> TeamsReductions) 355 : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) { 356 } 357 virtual ~CheckVarsEscapingDeclContext() = default; 358 void VisitDeclStmt(const DeclStmt *S) { 359 if (!S) 360 return; 361 for (const Decl *D : S->decls()) 362 if (const auto *VD = dyn_cast_or_null<ValueDecl>(D)) 363 VisitValueDecl(VD); 364 } 365 void VisitOMPExecutableDirective(const OMPExecutableDirective *D) { 366 if (!D) 367 return; 368 if (!D->hasAssociatedStmt()) 369 return; 370 if (const auto *S = 371 dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) { 372 // Do not analyze directives that do not actually require capturing, 373 // like `omp for` or `omp simd` directives. 374 llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; 375 getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind()); 376 if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) { 377 VisitStmt(S->getCapturedStmt()); 378 return; 379 } 380 VisitOpenMPCapturedStmt( 381 S, D->clauses(), 382 CaptureRegions.back() == OMPD_parallel && 383 isOpenMPDistributeDirective(D->getDirectiveKind())); 384 } 385 } 386 void VisitCapturedStmt(const CapturedStmt *S) { 387 if (!S) 388 return; 389 for (const CapturedStmt::Capture &C : S->captures()) { 390 if (C.capturesVariable() && !C.capturesVariableByCopy()) { 391 const ValueDecl *VD = C.getCapturedVar(); 392 markAsEscaped(VD); 393 if (isa<OMPCapturedExprDecl>(VD)) 394 VisitValueDecl(VD); 395 } 396 } 397 } 398 void VisitLambdaExpr(const LambdaExpr *E) { 399 if (!E) 400 return; 401 for (const LambdaCapture &C : E->captures()) { 402 if (C.capturesVariable()) { 403 if (C.getCaptureKind() == LCK_ByRef) { 404 const ValueDecl *VD = C.getCapturedVar(); 405 markAsEscaped(VD); 406 if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD)) 407 VisitValueDecl(VD); 408 } 409 } 410 } 411 } 412 void VisitBlockExpr(const BlockExpr *E) { 413 if (!E) 414 return; 415 for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) { 416 if (C.isByRef()) { 417 const VarDecl *VD = C.getVariable(); 418 markAsEscaped(VD); 419 if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture()) 420 VisitValueDecl(VD); 421 } 422 } 423 } 424 void VisitCallExpr(const CallExpr *E) { 425 if (!E) 426 return; 427 for (const Expr *Arg : E->arguments()) { 428 if (!Arg) 429 continue; 430 if (Arg->isLValue()) { 431 const bool SavedAllEscaped = AllEscaped; 432 AllEscaped = true; 433 Visit(Arg); 434 AllEscaped = SavedAllEscaped; 435 } else { 436 Visit(Arg); 437 } 438 } 439 Visit(E->getCallee()); 440 } 441 void VisitDeclRefExpr(const DeclRefExpr *E) { 442 if (!E) 443 return; 444 const ValueDecl *VD = E->getDecl(); 445 if (AllEscaped) 446 markAsEscaped(VD); 447 if (isa<OMPCapturedExprDecl>(VD)) 448 VisitValueDecl(VD); 449 else if (const auto *VarD = dyn_cast<VarDecl>(VD)) 450 if (VarD->isInitCapture()) 451 VisitValueDecl(VD); 452 } 453 void VisitUnaryOperator(const UnaryOperator *E) { 454 if (!E) 455 return; 456 if (E->getOpcode() == UO_AddrOf) { 457 const bool SavedAllEscaped = AllEscaped; 458 AllEscaped = true; 459 Visit(E->getSubExpr()); 460 AllEscaped = SavedAllEscaped; 461 } else { 462 Visit(E->getSubExpr()); 463 } 464 } 465 void VisitImplicitCastExpr(const ImplicitCastExpr *E) { 466 if (!E) 467 return; 468 if (E->getCastKind() == CK_ArrayToPointerDecay) { 469 const bool SavedAllEscaped = AllEscaped; 470 AllEscaped = true; 471 Visit(E->getSubExpr()); 472 AllEscaped = SavedAllEscaped; 473 } else { 474 Visit(E->getSubExpr()); 475 } 476 } 477 void VisitExpr(const Expr *E) { 478 if (!E) 479 return; 480 bool SavedAllEscaped = AllEscaped; 481 if (!E->isLValue()) 482 AllEscaped = false; 483 for (const Stmt *Child : E->children()) 484 if (Child) 485 Visit(Child); 486 AllEscaped = SavedAllEscaped; 487 } 488 void VisitStmt(const Stmt *S) { 489 if (!S) 490 return; 491 for (const Stmt *Child : S->children()) 492 if (Child) 493 Visit(Child); 494 } 495 496 /// Returns the record that handles all the escaped local variables and used 497 /// instead of their original storage. 498 const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) { 499 if (!GlobalizedRD) 500 buildRecordForGlobalizedVars(IsInTTDRegion); 501 return GlobalizedRD; 502 } 503 504 /// Returns the field in the globalized record for the escaped variable. 505 const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const { 506 assert(GlobalizedRD && 507 "Record for globalized variables must be generated already."); 508 auto I = MappedDeclsFields.find(VD); 509 if (I == MappedDeclsFields.end()) 510 return nullptr; 511 return I->getSecond(); 512 } 513 514 /// Returns the list of the escaped local variables/parameters. 515 ArrayRef<const ValueDecl *> getEscapedDecls() const { 516 return EscapedDecls.getArrayRef(); 517 } 518 519 /// Checks if the escaped local variable is actually a parameter passed by 520 /// value. 521 const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const { 522 return EscapedParameters; 523 } 524 525 /// Returns the list of the escaped variables with the variably modified 526 /// types. 527 ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const { 528 return EscapedVariableLengthDecls.getArrayRef(); 529 } 530 }; 531 } // anonymous namespace 532 533 /// Get the id of the warp in the block. 534 /// We assume that the warp size is 32, which is always the case 535 /// on the NVPTX device, to generate more efficient code. 536 static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) { 537 CGBuilderTy &Bld = CGF.Builder; 538 unsigned LaneIDBits = 539 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 540 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 541 return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id"); 542 } 543 544 /// Get the id of the current lane in the Warp. 545 /// We assume that the warp size is 32, which is always the case 546 /// on the NVPTX device, to generate more efficient code. 547 static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) { 548 CGBuilderTy &Bld = CGF.Builder; 549 unsigned LaneIDBits = 550 llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size); 551 unsigned LaneIDMask = ~0u >> (32u - LaneIDBits); 552 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 553 return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask), 554 "nvptx_lane_id"); 555 } 556 557 CGOpenMPRuntimeGPU::ExecutionMode 558 CGOpenMPRuntimeGPU::getExecutionMode() const { 559 return CurrentExecutionMode; 560 } 561 562 static CGOpenMPRuntimeGPU::DataSharingMode 563 getDataSharingMode(CodeGenModule &CGM) { 564 return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA 565 : CGOpenMPRuntimeGPU::Generic; 566 } 567 568 /// Check for inner (nested) SPMD construct, if any 569 static bool hasNestedSPMDDirective(ASTContext &Ctx, 570 const OMPExecutableDirective &D) { 571 const auto *CS = D.getInnermostCapturedStmt(); 572 const auto *Body = 573 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 574 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 575 576 if (const auto *NestedDir = 577 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 578 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 579 switch (D.getDirectiveKind()) { 580 case OMPD_target: 581 if (isOpenMPParallelDirective(DKind)) 582 return true; 583 if (DKind == OMPD_teams) { 584 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 585 /*IgnoreCaptured=*/true); 586 if (!Body) 587 return false; 588 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 589 if (const auto *NND = 590 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 591 DKind = NND->getDirectiveKind(); 592 if (isOpenMPParallelDirective(DKind)) 593 return true; 594 } 595 } 596 return false; 597 case OMPD_target_teams: 598 return isOpenMPParallelDirective(DKind); 599 case OMPD_target_simd: 600 case OMPD_target_parallel: 601 case OMPD_target_parallel_for: 602 case OMPD_target_parallel_for_simd: 603 case OMPD_target_teams_distribute: 604 case OMPD_target_teams_distribute_simd: 605 case OMPD_target_teams_distribute_parallel_for: 606 case OMPD_target_teams_distribute_parallel_for_simd: 607 case OMPD_parallel: 608 case OMPD_for: 609 case OMPD_parallel_for: 610 case OMPD_parallel_master: 611 case OMPD_parallel_sections: 612 case OMPD_for_simd: 613 case OMPD_parallel_for_simd: 614 case OMPD_cancel: 615 case OMPD_cancellation_point: 616 case OMPD_ordered: 617 case OMPD_threadprivate: 618 case OMPD_allocate: 619 case OMPD_task: 620 case OMPD_simd: 621 case OMPD_sections: 622 case OMPD_section: 623 case OMPD_single: 624 case OMPD_master: 625 case OMPD_critical: 626 case OMPD_taskyield: 627 case OMPD_barrier: 628 case OMPD_taskwait: 629 case OMPD_taskgroup: 630 case OMPD_atomic: 631 case OMPD_flush: 632 case OMPD_depobj: 633 case OMPD_scan: 634 case OMPD_teams: 635 case OMPD_target_data: 636 case OMPD_target_exit_data: 637 case OMPD_target_enter_data: 638 case OMPD_distribute: 639 case OMPD_distribute_simd: 640 case OMPD_distribute_parallel_for: 641 case OMPD_distribute_parallel_for_simd: 642 case OMPD_teams_distribute: 643 case OMPD_teams_distribute_simd: 644 case OMPD_teams_distribute_parallel_for: 645 case OMPD_teams_distribute_parallel_for_simd: 646 case OMPD_target_update: 647 case OMPD_declare_simd: 648 case OMPD_declare_variant: 649 case OMPD_begin_declare_variant: 650 case OMPD_end_declare_variant: 651 case OMPD_declare_target: 652 case OMPD_end_declare_target: 653 case OMPD_declare_reduction: 654 case OMPD_declare_mapper: 655 case OMPD_taskloop: 656 case OMPD_taskloop_simd: 657 case OMPD_master_taskloop: 658 case OMPD_master_taskloop_simd: 659 case OMPD_parallel_master_taskloop: 660 case OMPD_parallel_master_taskloop_simd: 661 case OMPD_requires: 662 case OMPD_unknown: 663 default: 664 llvm_unreachable("Unexpected directive."); 665 } 666 } 667 668 return false; 669 } 670 671 static bool supportsSPMDExecutionMode(ASTContext &Ctx, 672 const OMPExecutableDirective &D) { 673 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 674 switch (DirectiveKind) { 675 case OMPD_target: 676 case OMPD_target_teams: 677 return hasNestedSPMDDirective(Ctx, D); 678 case OMPD_target_parallel: 679 case OMPD_target_parallel_for: 680 case OMPD_target_parallel_for_simd: 681 case OMPD_target_teams_distribute_parallel_for: 682 case OMPD_target_teams_distribute_parallel_for_simd: 683 case OMPD_target_simd: 684 case OMPD_target_teams_distribute_simd: 685 return true; 686 case OMPD_target_teams_distribute: 687 return false; 688 case OMPD_parallel: 689 case OMPD_for: 690 case OMPD_parallel_for: 691 case OMPD_parallel_master: 692 case OMPD_parallel_sections: 693 case OMPD_for_simd: 694 case OMPD_parallel_for_simd: 695 case OMPD_cancel: 696 case OMPD_cancellation_point: 697 case OMPD_ordered: 698 case OMPD_threadprivate: 699 case OMPD_allocate: 700 case OMPD_task: 701 case OMPD_simd: 702 case OMPD_sections: 703 case OMPD_section: 704 case OMPD_single: 705 case OMPD_master: 706 case OMPD_critical: 707 case OMPD_taskyield: 708 case OMPD_barrier: 709 case OMPD_taskwait: 710 case OMPD_taskgroup: 711 case OMPD_atomic: 712 case OMPD_flush: 713 case OMPD_depobj: 714 case OMPD_scan: 715 case OMPD_teams: 716 case OMPD_target_data: 717 case OMPD_target_exit_data: 718 case OMPD_target_enter_data: 719 case OMPD_distribute: 720 case OMPD_distribute_simd: 721 case OMPD_distribute_parallel_for: 722 case OMPD_distribute_parallel_for_simd: 723 case OMPD_teams_distribute: 724 case OMPD_teams_distribute_simd: 725 case OMPD_teams_distribute_parallel_for: 726 case OMPD_teams_distribute_parallel_for_simd: 727 case OMPD_target_update: 728 case OMPD_declare_simd: 729 case OMPD_declare_variant: 730 case OMPD_begin_declare_variant: 731 case OMPD_end_declare_variant: 732 case OMPD_declare_target: 733 case OMPD_end_declare_target: 734 case OMPD_declare_reduction: 735 case OMPD_declare_mapper: 736 case OMPD_taskloop: 737 case OMPD_taskloop_simd: 738 case OMPD_master_taskloop: 739 case OMPD_master_taskloop_simd: 740 case OMPD_parallel_master_taskloop: 741 case OMPD_parallel_master_taskloop_simd: 742 case OMPD_requires: 743 case OMPD_unknown: 744 default: 745 break; 746 } 747 llvm_unreachable( 748 "Unknown programming model for OpenMP directive on NVPTX target."); 749 } 750 751 /// Check if the directive is loops based and has schedule clause at all or has 752 /// static scheduling. 753 static bool hasStaticScheduling(const OMPExecutableDirective &D) { 754 assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) && 755 isOpenMPLoopDirective(D.getDirectiveKind()) && 756 "Expected loop-based directive."); 757 return !D.hasClausesOfKind<OMPOrderedClause>() && 758 (!D.hasClausesOfKind<OMPScheduleClause>() || 759 llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(), 760 [](const OMPScheduleClause *C) { 761 return C->getScheduleKind() == OMPC_SCHEDULE_static; 762 })); 763 } 764 765 /// Check for inner (nested) lightweight runtime construct, if any 766 static bool hasNestedLightweightDirective(ASTContext &Ctx, 767 const OMPExecutableDirective &D) { 768 assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive."); 769 const auto *CS = D.getInnermostCapturedStmt(); 770 const auto *Body = 771 CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); 772 const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 773 774 if (const auto *NestedDir = 775 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 776 OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); 777 switch (D.getDirectiveKind()) { 778 case OMPD_target: 779 if (isOpenMPParallelDirective(DKind) && 780 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 781 hasStaticScheduling(*NestedDir)) 782 return true; 783 if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd) 784 return true; 785 if (DKind == OMPD_parallel) { 786 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 787 /*IgnoreCaptured=*/true); 788 if (!Body) 789 return false; 790 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 791 if (const auto *NND = 792 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 793 DKind = NND->getDirectiveKind(); 794 if (isOpenMPWorksharingDirective(DKind) && 795 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 796 return true; 797 } 798 } else if (DKind == OMPD_teams) { 799 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 800 /*IgnoreCaptured=*/true); 801 if (!Body) 802 return false; 803 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 804 if (const auto *NND = 805 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 806 DKind = NND->getDirectiveKind(); 807 if (isOpenMPParallelDirective(DKind) && 808 isOpenMPWorksharingDirective(DKind) && 809 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 810 return true; 811 if (DKind == OMPD_parallel) { 812 Body = NND->getInnermostCapturedStmt()->IgnoreContainers( 813 /*IgnoreCaptured=*/true); 814 if (!Body) 815 return false; 816 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 817 if (const auto *NND = 818 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 819 DKind = NND->getDirectiveKind(); 820 if (isOpenMPWorksharingDirective(DKind) && 821 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 822 return true; 823 } 824 } 825 } 826 } 827 return false; 828 case OMPD_target_teams: 829 if (isOpenMPParallelDirective(DKind) && 830 isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) && 831 hasStaticScheduling(*NestedDir)) 832 return true; 833 if (DKind == OMPD_distribute_simd || DKind == OMPD_simd) 834 return true; 835 if (DKind == OMPD_parallel) { 836 Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( 837 /*IgnoreCaptured=*/true); 838 if (!Body) 839 return false; 840 ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body); 841 if (const auto *NND = 842 dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { 843 DKind = NND->getDirectiveKind(); 844 if (isOpenMPWorksharingDirective(DKind) && 845 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND)) 846 return true; 847 } 848 } 849 return false; 850 case OMPD_target_parallel: 851 if (DKind == OMPD_simd) 852 return true; 853 return isOpenMPWorksharingDirective(DKind) && 854 isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir); 855 case OMPD_target_teams_distribute: 856 case OMPD_target_simd: 857 case OMPD_target_parallel_for: 858 case OMPD_target_parallel_for_simd: 859 case OMPD_target_teams_distribute_simd: 860 case OMPD_target_teams_distribute_parallel_for: 861 case OMPD_target_teams_distribute_parallel_for_simd: 862 case OMPD_parallel: 863 case OMPD_for: 864 case OMPD_parallel_for: 865 case OMPD_parallel_master: 866 case OMPD_parallel_sections: 867 case OMPD_for_simd: 868 case OMPD_parallel_for_simd: 869 case OMPD_cancel: 870 case OMPD_cancellation_point: 871 case OMPD_ordered: 872 case OMPD_threadprivate: 873 case OMPD_allocate: 874 case OMPD_task: 875 case OMPD_simd: 876 case OMPD_sections: 877 case OMPD_section: 878 case OMPD_single: 879 case OMPD_master: 880 case OMPD_critical: 881 case OMPD_taskyield: 882 case OMPD_barrier: 883 case OMPD_taskwait: 884 case OMPD_taskgroup: 885 case OMPD_atomic: 886 case OMPD_flush: 887 case OMPD_depobj: 888 case OMPD_scan: 889 case OMPD_teams: 890 case OMPD_target_data: 891 case OMPD_target_exit_data: 892 case OMPD_target_enter_data: 893 case OMPD_distribute: 894 case OMPD_distribute_simd: 895 case OMPD_distribute_parallel_for: 896 case OMPD_distribute_parallel_for_simd: 897 case OMPD_teams_distribute: 898 case OMPD_teams_distribute_simd: 899 case OMPD_teams_distribute_parallel_for: 900 case OMPD_teams_distribute_parallel_for_simd: 901 case OMPD_target_update: 902 case OMPD_declare_simd: 903 case OMPD_declare_variant: 904 case OMPD_begin_declare_variant: 905 case OMPD_end_declare_variant: 906 case OMPD_declare_target: 907 case OMPD_end_declare_target: 908 case OMPD_declare_reduction: 909 case OMPD_declare_mapper: 910 case OMPD_taskloop: 911 case OMPD_taskloop_simd: 912 case OMPD_master_taskloop: 913 case OMPD_master_taskloop_simd: 914 case OMPD_parallel_master_taskloop: 915 case OMPD_parallel_master_taskloop_simd: 916 case OMPD_requires: 917 case OMPD_unknown: 918 default: 919 llvm_unreachable("Unexpected directive."); 920 } 921 } 922 923 return false; 924 } 925 926 /// Checks if the construct supports lightweight runtime. It must be SPMD 927 /// construct + inner loop-based construct with static scheduling. 928 static bool supportsLightweightRuntime(ASTContext &Ctx, 929 const OMPExecutableDirective &D) { 930 if (!supportsSPMDExecutionMode(Ctx, D)) 931 return false; 932 OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); 933 switch (DirectiveKind) { 934 case OMPD_target: 935 case OMPD_target_teams: 936 case OMPD_target_parallel: 937 return hasNestedLightweightDirective(Ctx, D); 938 case OMPD_target_parallel_for: 939 case OMPD_target_parallel_for_simd: 940 case OMPD_target_teams_distribute_parallel_for: 941 case OMPD_target_teams_distribute_parallel_for_simd: 942 // (Last|First)-privates must be shared in parallel region. 943 return hasStaticScheduling(D); 944 case OMPD_target_simd: 945 case OMPD_target_teams_distribute_simd: 946 return true; 947 case OMPD_target_teams_distribute: 948 return false; 949 case OMPD_parallel: 950 case OMPD_for: 951 case OMPD_parallel_for: 952 case OMPD_parallel_master: 953 case OMPD_parallel_sections: 954 case OMPD_for_simd: 955 case OMPD_parallel_for_simd: 956 case OMPD_cancel: 957 case OMPD_cancellation_point: 958 case OMPD_ordered: 959 case OMPD_threadprivate: 960 case OMPD_allocate: 961 case OMPD_task: 962 case OMPD_simd: 963 case OMPD_sections: 964 case OMPD_section: 965 case OMPD_single: 966 case OMPD_master: 967 case OMPD_critical: 968 case OMPD_taskyield: 969 case OMPD_barrier: 970 case OMPD_taskwait: 971 case OMPD_taskgroup: 972 case OMPD_atomic: 973 case OMPD_flush: 974 case OMPD_depobj: 975 case OMPD_scan: 976 case OMPD_teams: 977 case OMPD_target_data: 978 case OMPD_target_exit_data: 979 case OMPD_target_enter_data: 980 case OMPD_distribute: 981 case OMPD_distribute_simd: 982 case OMPD_distribute_parallel_for: 983 case OMPD_distribute_parallel_for_simd: 984 case OMPD_teams_distribute: 985 case OMPD_teams_distribute_simd: 986 case OMPD_teams_distribute_parallel_for: 987 case OMPD_teams_distribute_parallel_for_simd: 988 case OMPD_target_update: 989 case OMPD_declare_simd: 990 case OMPD_declare_variant: 991 case OMPD_begin_declare_variant: 992 case OMPD_end_declare_variant: 993 case OMPD_declare_target: 994 case OMPD_end_declare_target: 995 case OMPD_declare_reduction: 996 case OMPD_declare_mapper: 997 case OMPD_taskloop: 998 case OMPD_taskloop_simd: 999 case OMPD_master_taskloop: 1000 case OMPD_master_taskloop_simd: 1001 case OMPD_parallel_master_taskloop: 1002 case OMPD_parallel_master_taskloop_simd: 1003 case OMPD_requires: 1004 case OMPD_unknown: 1005 default: 1006 break; 1007 } 1008 llvm_unreachable( 1009 "Unknown programming model for OpenMP directive on NVPTX target."); 1010 } 1011 1012 void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D, 1013 StringRef ParentName, 1014 llvm::Function *&OutlinedFn, 1015 llvm::Constant *&OutlinedFnID, 1016 bool IsOffloadEntry, 1017 const RegionCodeGenTy &CodeGen) { 1018 ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode); 1019 EntryFunctionState EST; 1020 WrapperFunctionsMap.clear(); 1021 1022 // Emit target region as a standalone region. 1023 class NVPTXPrePostActionTy : public PrePostActionTy { 1024 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1025 1026 public: 1027 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1028 : EST(EST) {} 1029 void Enter(CodeGenFunction &CGF) override { 1030 auto &RT = 1031 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1032 RT.emitKernelInit(CGF, EST, /* IsSPMD */ false); 1033 // Skip target region initialization. 1034 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1035 } 1036 void Exit(CodeGenFunction &CGF) override { 1037 auto &RT = 1038 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1039 RT.clearLocThreadIdInsertPt(CGF); 1040 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false); 1041 } 1042 } Action(EST); 1043 CodeGen.setAction(Action); 1044 IsInTTDRegion = true; 1045 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1046 IsOffloadEntry, CodeGen); 1047 IsInTTDRegion = false; 1048 } 1049 1050 void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF, 1051 EntryFunctionState &EST, bool IsSPMD) { 1052 CGBuilderTy &Bld = CGF.Builder; 1053 Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime())); 1054 IsInTargetMasterThreadRegion = IsSPMD; 1055 if (!IsSPMD) 1056 emitGenericVarsProlog(CGF, EST.Loc); 1057 } 1058 1059 void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF, 1060 EntryFunctionState &EST, 1061 bool IsSPMD) { 1062 if (!IsSPMD) 1063 emitGenericVarsEpilog(CGF); 1064 1065 CGBuilderTy &Bld = CGF.Builder; 1066 OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime()); 1067 } 1068 1069 void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D, 1070 StringRef ParentName, 1071 llvm::Function *&OutlinedFn, 1072 llvm::Constant *&OutlinedFnID, 1073 bool IsOffloadEntry, 1074 const RegionCodeGenTy &CodeGen) { 1075 ExecutionRuntimeModesRAII ModeRAII( 1076 CurrentExecutionMode, RequiresFullRuntime, 1077 CGM.getLangOpts().OpenMPCUDAForceFullRuntime || 1078 !supportsLightweightRuntime(CGM.getContext(), D)); 1079 EntryFunctionState EST; 1080 1081 // Emit target region as a standalone region. 1082 class NVPTXPrePostActionTy : public PrePostActionTy { 1083 CGOpenMPRuntimeGPU &RT; 1084 CGOpenMPRuntimeGPU::EntryFunctionState &EST; 1085 1086 public: 1087 NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT, 1088 CGOpenMPRuntimeGPU::EntryFunctionState &EST) 1089 : RT(RT), EST(EST) {} 1090 void Enter(CodeGenFunction &CGF) override { 1091 RT.emitKernelInit(CGF, EST, /* IsSPMD */ true); 1092 // Skip target region initialization. 1093 RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true); 1094 } 1095 void Exit(CodeGenFunction &CGF) override { 1096 RT.clearLocThreadIdInsertPt(CGF); 1097 RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true); 1098 } 1099 } Action(*this, EST); 1100 CodeGen.setAction(Action); 1101 IsInTTDRegion = true; 1102 emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, 1103 IsOffloadEntry, CodeGen); 1104 IsInTTDRegion = false; 1105 } 1106 1107 // Create a unique global variable to indicate the execution mode of this target 1108 // region. The execution mode is either 'generic', or 'spmd' depending on the 1109 // target directive. This variable is picked up by the offload library to setup 1110 // the device appropriately before kernel launch. If the execution mode is 1111 // 'generic', the runtime reserves one warp for the master, otherwise, all 1112 // warps participate in parallel work. 1113 static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name, 1114 bool Mode) { 1115 auto *GVMode = new llvm::GlobalVariable( 1116 CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, 1117 llvm::GlobalValue::WeakAnyLinkage, 1118 llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD 1119 : OMP_TGT_EXEC_MODE_GENERIC), 1120 Twine(Name, "_exec_mode")); 1121 CGM.addCompilerUsedGlobal(GVMode); 1122 } 1123 1124 void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID, 1125 llvm::Constant *Addr, 1126 uint64_t Size, int32_t, 1127 llvm::GlobalValue::LinkageTypes) { 1128 // TODO: Add support for global variables on the device after declare target 1129 // support. 1130 if (!isa<llvm::Function>(Addr)) 1131 return; 1132 llvm::Module &M = CGM.getModule(); 1133 llvm::LLVMContext &Ctx = CGM.getLLVMContext(); 1134 1135 // Get "nvvm.annotations" metadata node 1136 llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations"); 1137 1138 llvm::Metadata *MDVals[] = { 1139 llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"), 1140 llvm::ConstantAsMetadata::get( 1141 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))}; 1142 // Append metadata to nvvm.annotations 1143 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 1144 } 1145 1146 void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction( 1147 const OMPExecutableDirective &D, StringRef ParentName, 1148 llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, 1149 bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { 1150 if (!IsOffloadEntry) // Nothing to do. 1151 return; 1152 1153 assert(!ParentName.empty() && "Invalid target region parent name!"); 1154 1155 bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D); 1156 if (Mode) 1157 emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1158 CodeGen); 1159 else 1160 emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry, 1161 CodeGen); 1162 1163 setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode); 1164 } 1165 1166 namespace { 1167 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); 1168 /// Enum for accesseing the reserved_2 field of the ident_t struct. 1169 enum ModeFlagsTy : unsigned { 1170 /// Bit set to 1 when in SPMD mode. 1171 KMP_IDENT_SPMD_MODE = 0x01, 1172 /// Bit set to 1 when a simplified runtime is used. 1173 KMP_IDENT_SIMPLE_RT_MODE = 0x02, 1174 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE) 1175 }; 1176 1177 /// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime. 1178 static const ModeFlagsTy UndefinedMode = 1179 (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE; 1180 } // anonymous namespace 1181 1182 unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const { 1183 switch (getExecutionMode()) { 1184 case EM_SPMD: 1185 if (requiresFullRuntime()) 1186 return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE); 1187 return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE; 1188 case EM_NonSPMD: 1189 assert(requiresFullRuntime() && "Expected full runtime."); 1190 return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE); 1191 case EM_Unknown: 1192 return UndefinedMode; 1193 } 1194 llvm_unreachable("Unknown flags are requested."); 1195 } 1196 1197 CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM) 1198 : CGOpenMPRuntime(CGM, "_", "$") { 1199 if (!CGM.getLangOpts().OpenMPIsDevice) 1200 llvm_unreachable("OpenMP NVPTX can only handle device code."); 1201 1202 llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder(); 1203 if (CGM.getLangOpts().OpenMPTargetNewRuntime) 1204 OMPBuilder.createDebugKind(CGM.getLangOpts().OpenMPTargetDebug); 1205 } 1206 1207 void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF, 1208 ProcBindKind ProcBind, 1209 SourceLocation Loc) { 1210 // Do nothing in case of SPMD mode and L0 parallel. 1211 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1212 return; 1213 1214 CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc); 1215 } 1216 1217 void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF, 1218 llvm::Value *NumThreads, 1219 SourceLocation Loc) { 1220 // Do nothing in case of SPMD mode and L0 parallel. 1221 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 1222 return; 1223 1224 CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc); 1225 } 1226 1227 void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF, 1228 const Expr *NumTeams, 1229 const Expr *ThreadLimit, 1230 SourceLocation Loc) {} 1231 1232 llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction( 1233 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1234 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1235 // Emit target region as a standalone region. 1236 class NVPTXPrePostActionTy : public PrePostActionTy { 1237 bool &IsInParallelRegion; 1238 bool PrevIsInParallelRegion; 1239 1240 public: 1241 NVPTXPrePostActionTy(bool &IsInParallelRegion) 1242 : IsInParallelRegion(IsInParallelRegion) {} 1243 void Enter(CodeGenFunction &CGF) override { 1244 PrevIsInParallelRegion = IsInParallelRegion; 1245 IsInParallelRegion = true; 1246 } 1247 void Exit(CodeGenFunction &CGF) override { 1248 IsInParallelRegion = PrevIsInParallelRegion; 1249 } 1250 } Action(IsInParallelRegion); 1251 CodeGen.setAction(Action); 1252 bool PrevIsInTTDRegion = IsInTTDRegion; 1253 IsInTTDRegion = false; 1254 bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion; 1255 IsInTargetMasterThreadRegion = false; 1256 auto *OutlinedFun = 1257 cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction( 1258 D, ThreadIDVar, InnermostKind, CodeGen)); 1259 IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion; 1260 IsInTTDRegion = PrevIsInTTDRegion; 1261 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD && 1262 !IsInParallelRegion) { 1263 llvm::Function *WrapperFun = 1264 createParallelDataSharingWrapper(OutlinedFun, D); 1265 WrapperFunctionsMap[OutlinedFun] = WrapperFun; 1266 } 1267 1268 return OutlinedFun; 1269 } 1270 1271 /// Get list of lastprivate variables from the teams distribute ... or 1272 /// teams {distribute ...} directives. 1273 static void 1274 getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1275 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1276 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1277 "expected teams directive."); 1278 const OMPExecutableDirective *Dir = &D; 1279 if (!isOpenMPDistributeDirective(D.getDirectiveKind())) { 1280 if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild( 1281 Ctx, 1282 D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers( 1283 /*IgnoreCaptured=*/true))) { 1284 Dir = dyn_cast_or_null<OMPExecutableDirective>(S); 1285 if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind())) 1286 Dir = nullptr; 1287 } 1288 } 1289 if (!Dir) 1290 return; 1291 for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) { 1292 for (const Expr *E : C->getVarRefs()) 1293 Vars.push_back(getPrivateItem(E)); 1294 } 1295 } 1296 1297 /// Get list of reduction variables from the teams ... directives. 1298 static void 1299 getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D, 1300 llvm::SmallVectorImpl<const ValueDecl *> &Vars) { 1301 assert(isOpenMPTeamsDirective(D.getDirectiveKind()) && 1302 "expected teams directive."); 1303 for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) { 1304 for (const Expr *E : C->privates()) 1305 Vars.push_back(getPrivateItem(E)); 1306 } 1307 } 1308 1309 llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction( 1310 const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, 1311 OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { 1312 SourceLocation Loc = D.getBeginLoc(); 1313 1314 const RecordDecl *GlobalizedRD = nullptr; 1315 llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions; 1316 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields; 1317 unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size; 1318 // Globalize team reductions variable unconditionally in all modes. 1319 if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1320 getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions); 1321 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 1322 getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions); 1323 if (!LastPrivatesReductions.empty()) { 1324 GlobalizedRD = ::buildRecordForGlobalizedVars( 1325 CGM.getContext(), llvm::None, LastPrivatesReductions, 1326 MappedDeclsFields, WarpSize); 1327 } 1328 } else if (!LastPrivatesReductions.empty()) { 1329 assert(!TeamAndReductions.first && 1330 "Previous team declaration is not expected."); 1331 TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl(); 1332 std::swap(TeamAndReductions.second, LastPrivatesReductions); 1333 } 1334 1335 // Emit target region as a standalone region. 1336 class NVPTXPrePostActionTy : public PrePostActionTy { 1337 SourceLocation &Loc; 1338 const RecordDecl *GlobalizedRD; 1339 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1340 &MappedDeclsFields; 1341 1342 public: 1343 NVPTXPrePostActionTy( 1344 SourceLocation &Loc, const RecordDecl *GlobalizedRD, 1345 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 1346 &MappedDeclsFields) 1347 : Loc(Loc), GlobalizedRD(GlobalizedRD), 1348 MappedDeclsFields(MappedDeclsFields) {} 1349 void Enter(CodeGenFunction &CGF) override { 1350 auto &Rt = 1351 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1352 if (GlobalizedRD) { 1353 auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 1354 I->getSecond().MappedParams = 1355 std::make_unique<CodeGenFunction::OMPMapVars>(); 1356 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 1357 for (const auto &Pair : MappedDeclsFields) { 1358 assert(Pair.getFirst()->isCanonicalDecl() && 1359 "Expected canonical declaration"); 1360 Data.insert(std::make_pair(Pair.getFirst(), MappedVarData())); 1361 } 1362 } 1363 Rt.emitGenericVarsProlog(CGF, Loc); 1364 } 1365 void Exit(CodeGenFunction &CGF) override { 1366 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 1367 .emitGenericVarsEpilog(CGF); 1368 } 1369 } Action(Loc, GlobalizedRD, MappedDeclsFields); 1370 CodeGen.setAction(Action); 1371 llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction( 1372 D, ThreadIDVar, InnermostKind, CodeGen); 1373 1374 return OutlinedFun; 1375 } 1376 1377 void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF, 1378 SourceLocation Loc, 1379 bool WithSPMDCheck) { 1380 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1381 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1382 return; 1383 1384 CGBuilderTy &Bld = CGF.Builder; 1385 1386 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1387 if (I == FunctionGlobalizedDecls.end()) 1388 return; 1389 1390 for (auto &Rec : I->getSecond().LocalVarData) { 1391 const auto *VD = cast<VarDecl>(Rec.first); 1392 bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first); 1393 QualType VarTy = VD->getType(); 1394 1395 // Get the local allocation of a firstprivate variable before sharing 1396 llvm::Value *ParValue; 1397 if (EscapedParam) { 1398 LValue ParLVal = 1399 CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); 1400 ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc); 1401 } 1402 1403 // Allocate space for the variable to be globalized 1404 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1405 llvm::Instruction *VoidPtr = 1406 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1407 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1408 AllocArgs, VD->getName()); 1409 1410 // Cast the void pointer and get the address of the globalized variable. 1411 llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo(); 1412 llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 1413 VoidPtr, VarPtrTy, VD->getName() + "_on_stack"); 1414 LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy); 1415 Rec.second.PrivateAddr = VarAddr.getAddress(CGF); 1416 Rec.second.GlobalizedVal = VoidPtr; 1417 1418 // Assign the local allocation to the newly globalized location. 1419 if (EscapedParam) { 1420 CGF.EmitStoreOfScalar(ParValue, VarAddr); 1421 I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF)); 1422 } 1423 if (auto *DI = CGF.getDebugInfo()) 1424 VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation())); 1425 } 1426 for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) { 1427 // Use actual memory size of the VLA object including the padding 1428 // for alignment purposes. 1429 llvm::Value *Size = CGF.getTypeSize(VD->getType()); 1430 CharUnits Align = CGM.getContext().getDeclAlign(VD); 1431 Size = Bld.CreateNUWAdd( 1432 Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1)); 1433 llvm::Value *AlignVal = 1434 llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity()); 1435 1436 Size = Bld.CreateUDiv(Size, AlignVal); 1437 Size = Bld.CreateNUWMul(Size, AlignVal); 1438 1439 // Allocate space for this VLA object to be globalized. 1440 llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())}; 1441 llvm::Instruction *VoidPtr = 1442 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1443 CGM.getModule(), OMPRTL___kmpc_alloc_shared), 1444 AllocArgs, VD->getName()); 1445 1446 I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back( 1447 std::pair<llvm::Value *, llvm::Value *>( 1448 {VoidPtr, CGF.getTypeSize(VD->getType())})); 1449 LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(), 1450 CGM.getContext().getDeclAlign(VD), 1451 AlignmentSource::Decl); 1452 I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD), 1453 Base.getAddress(CGF)); 1454 } 1455 I->getSecond().MappedParams->apply(CGF); 1456 } 1457 1458 void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF, 1459 bool WithSPMDCheck) { 1460 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic && 1461 getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) 1462 return; 1463 1464 const auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 1465 if (I != FunctionGlobalizedDecls.end()) { 1466 // Deallocate the memory for each globalized VLA object 1467 for (auto AddrSizePair : 1468 llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) { 1469 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1470 CGM.getModule(), OMPRTL___kmpc_free_shared), 1471 {AddrSizePair.first, AddrSizePair.second}); 1472 } 1473 // Deallocate the memory for each globalized value 1474 for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) { 1475 const auto *VD = cast<VarDecl>(Rec.first); 1476 I->getSecond().MappedParams->restore(CGF); 1477 1478 llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal, 1479 CGF.getTypeSize(VD->getType())}; 1480 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1481 CGM.getModule(), OMPRTL___kmpc_free_shared), 1482 FreeArgs); 1483 } 1484 } 1485 } 1486 1487 void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF, 1488 const OMPExecutableDirective &D, 1489 SourceLocation Loc, 1490 llvm::Function *OutlinedFn, 1491 ArrayRef<llvm::Value *> CapturedVars) { 1492 if (!CGF.HaveInsertPoint()) 1493 return; 1494 1495 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 1496 /*Name=*/".zero.addr"); 1497 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 1498 llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; 1499 OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer()); 1500 OutlinedFnArgs.push_back(ZeroAddr.getPointer()); 1501 OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); 1502 emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); 1503 } 1504 1505 void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF, 1506 SourceLocation Loc, 1507 llvm::Function *OutlinedFn, 1508 ArrayRef<llvm::Value *> CapturedVars, 1509 const Expr *IfCond) { 1510 if (!CGF.HaveInsertPoint()) 1511 return; 1512 1513 auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, 1514 IfCond](CodeGenFunction &CGF, PrePostActionTy &Action) { 1515 CGBuilderTy &Bld = CGF.Builder; 1516 llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn]; 1517 llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy); 1518 if (WFn) 1519 ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy); 1520 llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy); 1521 1522 // Create a private scope that will globalize the arguments 1523 // passed from the outside of the target region. 1524 // TODO: Is that needed? 1525 CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF); 1526 1527 Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca( 1528 llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()), 1529 "captured_vars_addrs"); 1530 // There's something to share. 1531 if (!CapturedVars.empty()) { 1532 // Prepare for parallel region. Indicate the outlined function. 1533 ASTContext &Ctx = CGF.getContext(); 1534 unsigned Idx = 0; 1535 for (llvm::Value *V : CapturedVars) { 1536 Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx); 1537 llvm::Value *PtrV; 1538 if (V->getType()->isIntegerTy()) 1539 PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy); 1540 else 1541 PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy); 1542 CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false, 1543 Ctx.getPointerType(Ctx.VoidPtrTy)); 1544 ++Idx; 1545 } 1546 } 1547 1548 llvm::Value *IfCondVal = nullptr; 1549 if (IfCond) 1550 IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty, 1551 /* isSigned */ false); 1552 else 1553 IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1); 1554 1555 assert(IfCondVal && "Expected a value"); 1556 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 1557 llvm::Value *Args[] = { 1558 RTLoc, 1559 getThreadID(CGF, Loc), 1560 IfCondVal, 1561 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1562 llvm::ConstantInt::get(CGF.Int32Ty, -1), 1563 FnPtr, 1564 ID, 1565 Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(), 1566 CGF.VoidPtrPtrTy), 1567 llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())}; 1568 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1569 CGM.getModule(), OMPRTL___kmpc_parallel_51), 1570 Args); 1571 }; 1572 1573 RegionCodeGenTy RCG(ParallelGen); 1574 RCG(CGF); 1575 } 1576 1577 void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) { 1578 // Always emit simple barriers! 1579 if (!CGF.HaveInsertPoint()) 1580 return; 1581 // Build call __kmpc_barrier_simple_spmd(nullptr, 0); 1582 // This function does not use parameters, so we can emit just default values. 1583 llvm::Value *Args[] = { 1584 llvm::ConstantPointerNull::get( 1585 cast<llvm::PointerType>(getIdentTyPointerTy())), 1586 llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)}; 1587 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1588 CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd), 1589 Args); 1590 } 1591 1592 void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF, 1593 SourceLocation Loc, 1594 OpenMPDirectiveKind Kind, bool, 1595 bool) { 1596 // Always emit simple barriers! 1597 if (!CGF.HaveInsertPoint()) 1598 return; 1599 // Build call __kmpc_cancel_barrier(loc, thread_id); 1600 unsigned Flags = getDefaultFlagsForBarriers(Kind); 1601 llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), 1602 getThreadID(CGF, Loc)}; 1603 1604 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1605 CGM.getModule(), OMPRTL___kmpc_barrier), 1606 Args); 1607 } 1608 1609 void CGOpenMPRuntimeGPU::emitCriticalRegion( 1610 CodeGenFunction &CGF, StringRef CriticalName, 1611 const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, 1612 const Expr *Hint) { 1613 llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop"); 1614 llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test"); 1615 llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync"); 1616 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body"); 1617 llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit"); 1618 1619 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 1620 1621 // Get the mask of active threads in the warp. 1622 llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1623 CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask)); 1624 // Fetch team-local id of the thread. 1625 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 1626 1627 // Get the width of the team. 1628 llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF); 1629 1630 // Initialize the counter variable for the loop. 1631 QualType Int32Ty = 1632 CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0); 1633 Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter"); 1634 LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty); 1635 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal, 1636 /*isInit=*/true); 1637 1638 // Block checks if loop counter exceeds upper bound. 1639 CGF.EmitBlock(LoopBB); 1640 llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1641 llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth); 1642 CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB); 1643 1644 // Block tests which single thread should execute region, and which threads 1645 // should go straight to synchronisation point. 1646 CGF.EmitBlock(TestBB); 1647 CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc); 1648 llvm::Value *CmpThreadToCounter = 1649 CGF.Builder.CreateICmpEQ(ThreadID, CounterVal); 1650 CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB); 1651 1652 // Block emits the body of the critical region. 1653 CGF.EmitBlock(BodyBB); 1654 1655 // Output the critical statement. 1656 CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc, 1657 Hint); 1658 1659 // After the body surrounded by the critical region, the single executing 1660 // thread will jump to the synchronisation point. 1661 // Block waits for all threads in current team to finish then increments the 1662 // counter variable and returns to the loop. 1663 CGF.EmitBlock(SyncBB); 1664 // Reconverge active threads in the warp. 1665 (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 1666 CGM.getModule(), OMPRTL___kmpc_syncwarp), 1667 Mask); 1668 1669 llvm::Value *IncCounterVal = 1670 CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1)); 1671 CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal); 1672 CGF.EmitBranch(LoopBB); 1673 1674 // Block that is reached when all threads in the team complete the region. 1675 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 1676 } 1677 1678 /// Cast value to the specified type. 1679 static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val, 1680 QualType ValTy, QualType CastTy, 1681 SourceLocation Loc) { 1682 assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() && 1683 "Cast type must sized."); 1684 assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() && 1685 "Val type must sized."); 1686 llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy); 1687 if (ValTy == CastTy) 1688 return Val; 1689 if (CGF.getContext().getTypeSizeInChars(ValTy) == 1690 CGF.getContext().getTypeSizeInChars(CastTy)) 1691 return CGF.Builder.CreateBitCast(Val, LLVMCastTy); 1692 if (CastTy->isIntegerType() && ValTy->isIntegerType()) 1693 return CGF.Builder.CreateIntCast(Val, LLVMCastTy, 1694 CastTy->hasSignedIntegerRepresentation()); 1695 Address CastItem = CGF.CreateMemTemp(CastTy); 1696 Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 1697 CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace())); 1698 CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy, 1699 LValueBaseInfo(AlignmentSource::Type), 1700 TBAAAccessInfo()); 1701 return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc, 1702 LValueBaseInfo(AlignmentSource::Type), 1703 TBAAAccessInfo()); 1704 } 1705 1706 /// This function creates calls to one of two shuffle functions to copy 1707 /// variables between lanes in a warp. 1708 static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF, 1709 llvm::Value *Elem, 1710 QualType ElemType, 1711 llvm::Value *Offset, 1712 SourceLocation Loc) { 1713 CodeGenModule &CGM = CGF.CGM; 1714 CGBuilderTy &Bld = CGF.Builder; 1715 CGOpenMPRuntimeGPU &RT = 1716 *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime())); 1717 llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder(); 1718 1719 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1720 assert(Size.getQuantity() <= 8 && 1721 "Unsupported bitwidth in shuffle instruction."); 1722 1723 RuntimeFunction ShuffleFn = Size.getQuantity() <= 4 1724 ? OMPRTL___kmpc_shuffle_int32 1725 : OMPRTL___kmpc_shuffle_int64; 1726 1727 // Cast all types to 32- or 64-bit values before calling shuffle routines. 1728 QualType CastTy = CGF.getContext().getIntTypeForBitwidth( 1729 Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1); 1730 llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc); 1731 llvm::Value *WarpSize = 1732 Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true); 1733 1734 llvm::Value *ShuffledVal = CGF.EmitRuntimeCall( 1735 OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn), 1736 {ElemCast, Offset, WarpSize}); 1737 1738 return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc); 1739 } 1740 1741 static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr, 1742 Address DestAddr, QualType ElemType, 1743 llvm::Value *Offset, SourceLocation Loc) { 1744 CGBuilderTy &Bld = CGF.Builder; 1745 1746 CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType); 1747 // Create the loop over the big sized data. 1748 // ptr = (void*)Elem; 1749 // ptrEnd = (void*) Elem + 1; 1750 // Step = 8; 1751 // while (ptr + Step < ptrEnd) 1752 // shuffle((int64_t)*ptr); 1753 // Step = 4; 1754 // while (ptr + Step < ptrEnd) 1755 // shuffle((int32_t)*ptr); 1756 // ... 1757 Address ElemPtr = DestAddr; 1758 Address Ptr = SrcAddr; 1759 Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast( 1760 Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy); 1761 for (int IntSize = 8; IntSize >= 1; IntSize /= 2) { 1762 if (Size < CharUnits::fromQuantity(IntSize)) 1763 continue; 1764 QualType IntType = CGF.getContext().getIntTypeForBitwidth( 1765 CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)), 1766 /*Signed=*/1); 1767 llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType); 1768 Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo()); 1769 ElemPtr = 1770 Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo()); 1771 if (Size.getQuantity() / IntSize > 1) { 1772 llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond"); 1773 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then"); 1774 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit"); 1775 llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock(); 1776 CGF.EmitBlock(PreCondBB); 1777 llvm::PHINode *PhiSrc = 1778 Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2); 1779 PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB); 1780 llvm::PHINode *PhiDest = 1781 Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2); 1782 PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB); 1783 Ptr = Address(PhiSrc, Ptr.getAlignment()); 1784 ElemPtr = Address(PhiDest, ElemPtr.getAlignment()); 1785 llvm::Value *PtrDiff = Bld.CreatePtrDiff( 1786 PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast( 1787 Ptr.getPointer(), CGF.VoidPtrTy)); 1788 Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)), 1789 ThenBB, ExitBB); 1790 CGF.EmitBlock(ThenBB); 1791 llvm::Value *Res = createRuntimeShuffleFunction( 1792 CGF, 1793 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1794 LValueBaseInfo(AlignmentSource::Type), 1795 TBAAAccessInfo()), 1796 IntType, Offset, Loc); 1797 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1798 LValueBaseInfo(AlignmentSource::Type), 1799 TBAAAccessInfo()); 1800 Address LocalPtr = Bld.CreateConstGEP(Ptr, 1); 1801 Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1802 PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB); 1803 PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB); 1804 CGF.EmitBranch(PreCondBB); 1805 CGF.EmitBlock(ExitBB); 1806 } else { 1807 llvm::Value *Res = createRuntimeShuffleFunction( 1808 CGF, 1809 CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc, 1810 LValueBaseInfo(AlignmentSource::Type), 1811 TBAAAccessInfo()), 1812 IntType, Offset, Loc); 1813 CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType, 1814 LValueBaseInfo(AlignmentSource::Type), 1815 TBAAAccessInfo()); 1816 Ptr = Bld.CreateConstGEP(Ptr, 1); 1817 ElemPtr = Bld.CreateConstGEP(ElemPtr, 1); 1818 } 1819 Size = Size % IntSize; 1820 } 1821 } 1822 1823 namespace { 1824 enum CopyAction : unsigned { 1825 // RemoteLaneToThread: Copy over a Reduce list from a remote lane in 1826 // the warp using shuffle instructions. 1827 RemoteLaneToThread, 1828 // ThreadCopy: Make a copy of a Reduce list on the thread's stack. 1829 ThreadCopy, 1830 // ThreadToScratchpad: Copy a team-reduced array to the scratchpad. 1831 ThreadToScratchpad, 1832 // ScratchpadToThread: Copy from a scratchpad array in global memory 1833 // containing team-reduced data to a thread's stack. 1834 ScratchpadToThread, 1835 }; 1836 } // namespace 1837 1838 struct CopyOptionsTy { 1839 llvm::Value *RemoteLaneOffset; 1840 llvm::Value *ScratchpadIndex; 1841 llvm::Value *ScratchpadWidth; 1842 }; 1843 1844 /// Emit instructions to copy a Reduce list, which contains partially 1845 /// aggregated values, in the specified direction. 1846 static void emitReductionListCopy( 1847 CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy, 1848 ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase, 1849 CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) { 1850 1851 CodeGenModule &CGM = CGF.CGM; 1852 ASTContext &C = CGM.getContext(); 1853 CGBuilderTy &Bld = CGF.Builder; 1854 1855 llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset; 1856 llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex; 1857 llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth; 1858 1859 // Iterates, element-by-element, through the source Reduce list and 1860 // make a copy. 1861 unsigned Idx = 0; 1862 unsigned Size = Privates.size(); 1863 for (const Expr *Private : Privates) { 1864 Address SrcElementAddr = Address::invalid(); 1865 Address DestElementAddr = Address::invalid(); 1866 Address DestElementPtrAddr = Address::invalid(); 1867 // Should we shuffle in an element from a remote lane? 1868 bool ShuffleInElement = false; 1869 // Set to true to update the pointer in the dest Reduce list to a 1870 // newly created element. 1871 bool UpdateDestListPtr = false; 1872 // Increment the src or dest pointer to the scratchpad, for each 1873 // new element. 1874 bool IncrScratchpadSrc = false; 1875 bool IncrScratchpadDest = false; 1876 1877 switch (Action) { 1878 case RemoteLaneToThread: { 1879 // Step 1.1: Get the address for the src element in the Reduce list. 1880 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1881 SrcElementAddr = CGF.EmitLoadOfPointer( 1882 SrcElementPtrAddr, 1883 C.getPointerType(Private->getType())->castAs<PointerType>()); 1884 1885 // Step 1.2: Create a temporary to store the element in the destination 1886 // Reduce list. 1887 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1888 DestElementAddr = 1889 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1890 ShuffleInElement = true; 1891 UpdateDestListPtr = true; 1892 break; 1893 } 1894 case ThreadCopy: { 1895 // Step 1.1: Get the address for the src element in the Reduce list. 1896 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1897 SrcElementAddr = CGF.EmitLoadOfPointer( 1898 SrcElementPtrAddr, 1899 C.getPointerType(Private->getType())->castAs<PointerType>()); 1900 1901 // Step 1.2: Get the address for dest element. The destination 1902 // element has already been created on the thread's stack. 1903 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1904 DestElementAddr = CGF.EmitLoadOfPointer( 1905 DestElementPtrAddr, 1906 C.getPointerType(Private->getType())->castAs<PointerType>()); 1907 break; 1908 } 1909 case ThreadToScratchpad: { 1910 // Step 1.1: Get the address for the src element in the Reduce list. 1911 Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx); 1912 SrcElementAddr = CGF.EmitLoadOfPointer( 1913 SrcElementPtrAddr, 1914 C.getPointerType(Private->getType())->castAs<PointerType>()); 1915 1916 // Step 1.2: Get the address for dest element: 1917 // address = base + index * ElementSizeInChars. 1918 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1919 llvm::Value *CurrentOffset = 1920 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1921 llvm::Value *ScratchPadElemAbsolutePtrVal = 1922 Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset); 1923 ScratchPadElemAbsolutePtrVal = 1924 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1925 DestElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1926 C.getTypeAlignInChars(Private->getType())); 1927 IncrScratchpadDest = true; 1928 break; 1929 } 1930 case ScratchpadToThread: { 1931 // Step 1.1: Get the address for the src element in the scratchpad. 1932 // address = base + index * ElementSizeInChars. 1933 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 1934 llvm::Value *CurrentOffset = 1935 Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex); 1936 llvm::Value *ScratchPadElemAbsolutePtrVal = 1937 Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset); 1938 ScratchPadElemAbsolutePtrVal = 1939 Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy); 1940 SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal, 1941 C.getTypeAlignInChars(Private->getType())); 1942 IncrScratchpadSrc = true; 1943 1944 // Step 1.2: Create a temporary to store the element in the destination 1945 // Reduce list. 1946 DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx); 1947 DestElementAddr = 1948 CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element"); 1949 UpdateDestListPtr = true; 1950 break; 1951 } 1952 } 1953 1954 // Regardless of src and dest of copy, we emit the load of src 1955 // element as this is required in all directions 1956 SrcElementAddr = Bld.CreateElementBitCast( 1957 SrcElementAddr, CGF.ConvertTypeForMem(Private->getType())); 1958 DestElementAddr = Bld.CreateElementBitCast(DestElementAddr, 1959 SrcElementAddr.getElementType()); 1960 1961 // Now that all active lanes have read the element in the 1962 // Reduce list, shuffle over the value from the remote lane. 1963 if (ShuffleInElement) { 1964 shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(), 1965 RemoteLaneOffset, Private->getExprLoc()); 1966 } else { 1967 switch (CGF.getEvaluationKind(Private->getType())) { 1968 case TEK_Scalar: { 1969 llvm::Value *Elem = CGF.EmitLoadOfScalar( 1970 SrcElementAddr, /*Volatile=*/false, Private->getType(), 1971 Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type), 1972 TBAAAccessInfo()); 1973 // Store the source element value to the dest element address. 1974 CGF.EmitStoreOfScalar( 1975 Elem, DestElementAddr, /*Volatile=*/false, Private->getType(), 1976 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 1977 break; 1978 } 1979 case TEK_Complex: { 1980 CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex( 1981 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1982 Private->getExprLoc()); 1983 CGF.EmitStoreOfComplex( 1984 Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1985 /*isInit=*/false); 1986 break; 1987 } 1988 case TEK_Aggregate: 1989 CGF.EmitAggregateCopy( 1990 CGF.MakeAddrLValue(DestElementAddr, Private->getType()), 1991 CGF.MakeAddrLValue(SrcElementAddr, Private->getType()), 1992 Private->getType(), AggValueSlot::DoesNotOverlap); 1993 break; 1994 } 1995 } 1996 1997 // Step 3.1: Modify reference in dest Reduce list as needed. 1998 // Modifying the reference in Reduce list to point to the newly 1999 // created element. The element is live in the current function 2000 // scope and that of functions it invokes (i.e., reduce_function). 2001 // RemoteReduceData[i] = (void*)&RemoteElem 2002 if (UpdateDestListPtr) { 2003 CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast( 2004 DestElementAddr.getPointer(), CGF.VoidPtrTy), 2005 DestElementPtrAddr, /*Volatile=*/false, 2006 C.VoidPtrTy); 2007 } 2008 2009 // Step 4.1: Increment SrcBase/DestBase so that it points to the starting 2010 // address of the next element in scratchpad memory, unless we're currently 2011 // processing the last one. Memory alignment is also taken care of here. 2012 if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) { 2013 llvm::Value *ScratchpadBasePtr = 2014 IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer(); 2015 llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType()); 2016 ScratchpadBasePtr = Bld.CreateNUWAdd( 2017 ScratchpadBasePtr, 2018 Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars)); 2019 2020 // Take care of global memory alignment for performance 2021 ScratchpadBasePtr = Bld.CreateNUWSub( 2022 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2023 ScratchpadBasePtr = Bld.CreateUDiv( 2024 ScratchpadBasePtr, 2025 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2026 ScratchpadBasePtr = Bld.CreateNUWAdd( 2027 ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1)); 2028 ScratchpadBasePtr = Bld.CreateNUWMul( 2029 ScratchpadBasePtr, 2030 llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment)); 2031 2032 if (IncrScratchpadDest) 2033 DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2034 else /* IncrScratchpadSrc = true */ 2035 SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign()); 2036 } 2037 2038 ++Idx; 2039 } 2040 } 2041 2042 /// This function emits a helper that gathers Reduce lists from the first 2043 /// lane of every active warp to lanes in the first warp. 2044 /// 2045 /// void inter_warp_copy_func(void* reduce_data, num_warps) 2046 /// shared smem[warp_size]; 2047 /// For all data entries D in reduce_data: 2048 /// sync 2049 /// If (I am the first lane in each warp) 2050 /// Copy my local D to smem[warp_id] 2051 /// sync 2052 /// if (I am the first warp) 2053 /// Copy smem[thread_id] to my local D 2054 static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM, 2055 ArrayRef<const Expr *> Privates, 2056 QualType ReductionArrayTy, 2057 SourceLocation Loc) { 2058 ASTContext &C = CGM.getContext(); 2059 llvm::Module &M = CGM.getModule(); 2060 2061 // ReduceList: thread local Reduce list. 2062 // At the stage of the computation when this function is called, partially 2063 // aggregated values reside in the first lane of every active warp. 2064 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2065 C.VoidPtrTy, ImplicitParamDecl::Other); 2066 // NumWarps: number of warps active in the parallel region. This could 2067 // be smaller than 32 (max warps in a CTA) for partial block reduction. 2068 ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2069 C.getIntTypeForBitwidth(32, /* Signed */ true), 2070 ImplicitParamDecl::Other); 2071 FunctionArgList Args; 2072 Args.push_back(&ReduceListArg); 2073 Args.push_back(&NumWarpsArg); 2074 2075 const CGFunctionInfo &CGFI = 2076 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2077 auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), 2078 llvm::GlobalValue::InternalLinkage, 2079 "_omp_reduction_inter_warp_copy_func", &M); 2080 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2081 Fn->setDoesNotRecurse(); 2082 CodeGenFunction CGF(CGM); 2083 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2084 2085 CGBuilderTy &Bld = CGF.Builder; 2086 2087 // This array is used as a medium to transfer, one reduce element at a time, 2088 // the data from the first lane of every warp to lanes in the first warp 2089 // in order to perform the final step of a reduction in a parallel region 2090 // (reduction across warps). The array is placed in NVPTX __shared__ memory 2091 // for reduced latency, as well as to have a distinct copy for concurrently 2092 // executing target regions. The array is declared with common linkage so 2093 // as to be shared across compilation units. 2094 StringRef TransferMediumName = 2095 "__openmp_nvptx_data_transfer_temporary_storage"; 2096 llvm::GlobalVariable *TransferMedium = 2097 M.getGlobalVariable(TransferMediumName); 2098 unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size; 2099 if (!TransferMedium) { 2100 auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize); 2101 unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared); 2102 TransferMedium = new llvm::GlobalVariable( 2103 M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage, 2104 llvm::UndefValue::get(Ty), TransferMediumName, 2105 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, 2106 SharedAddressSpace); 2107 CGM.addCompilerUsedGlobal(TransferMedium); 2108 } 2109 2110 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 2111 // Get the CUDA thread id of the current OpenMP thread on the GPU. 2112 llvm::Value *ThreadID = RT.getGPUThreadID(CGF); 2113 // nvptx_lane_id = nvptx_id % warpsize 2114 llvm::Value *LaneID = getNVPTXLaneID(CGF); 2115 // nvptx_warp_id = nvptx_id / warpsize 2116 llvm::Value *WarpID = getNVPTXWarpID(CGF); 2117 2118 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2119 Address LocalReduceList( 2120 Bld.CreatePointerBitCastOrAddrSpaceCast( 2121 CGF.EmitLoadOfScalar( 2122 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc, 2123 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()), 2124 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2125 CGF.getPointerAlign()); 2126 2127 unsigned Idx = 0; 2128 for (const Expr *Private : Privates) { 2129 // 2130 // Warp master copies reduce element to transfer medium in __shared__ 2131 // memory. 2132 // 2133 unsigned RealTySize = 2134 C.getTypeSizeInChars(Private->getType()) 2135 .alignTo(C.getTypeAlignInChars(Private->getType())) 2136 .getQuantity(); 2137 for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) { 2138 unsigned NumIters = RealTySize / TySize; 2139 if (NumIters == 0) 2140 continue; 2141 QualType CType = C.getIntTypeForBitwidth( 2142 C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1); 2143 llvm::Type *CopyType = CGF.ConvertTypeForMem(CType); 2144 CharUnits Align = CharUnits::fromQuantity(TySize); 2145 llvm::Value *Cnt = nullptr; 2146 Address CntAddr = Address::invalid(); 2147 llvm::BasicBlock *PrecondBB = nullptr; 2148 llvm::BasicBlock *ExitBB = nullptr; 2149 if (NumIters > 1) { 2150 CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr"); 2151 CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr, 2152 /*Volatile=*/false, C.IntTy); 2153 PrecondBB = CGF.createBasicBlock("precond"); 2154 ExitBB = CGF.createBasicBlock("exit"); 2155 llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body"); 2156 // There is no need to emit line number for unconditional branch. 2157 (void)ApplyDebugLocation::CreateEmpty(CGF); 2158 CGF.EmitBlock(PrecondBB); 2159 Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc); 2160 llvm::Value *Cmp = 2161 Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters)); 2162 Bld.CreateCondBr(Cmp, BodyBB, ExitBB); 2163 CGF.EmitBlock(BodyBB); 2164 } 2165 // kmpc_barrier. 2166 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2167 /*EmitChecks=*/false, 2168 /*ForceSimpleCall=*/true); 2169 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2170 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2171 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2172 2173 // if (lane_id == 0) 2174 llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master"); 2175 Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB); 2176 CGF.EmitBlock(ThenBB); 2177 2178 // Reduce element = LocalReduceList[i] 2179 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2180 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2181 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2182 // elemptr = ((CopyType*)(elemptrptr)) + I 2183 Address ElemPtr = Address(ElemPtrPtr, Align); 2184 ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType); 2185 if (NumIters > 1) { 2186 ElemPtr = Address(Bld.CreateGEP(ElemPtr.getElementType(), 2187 ElemPtr.getPointer(), Cnt), 2188 ElemPtr.getAlignment()); 2189 } 2190 2191 // Get pointer to location in transfer medium. 2192 // MediumPtr = &medium[warp_id] 2193 llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP( 2194 TransferMedium->getValueType(), TransferMedium, 2195 {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID}); 2196 Address MediumPtr(MediumPtrVal, Align); 2197 // Casting to actual data type. 2198 // MediumPtr = (CopyType*)MediumPtrAddr; 2199 MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType); 2200 2201 // elem = *elemptr 2202 //*MediumPtr = elem 2203 llvm::Value *Elem = CGF.EmitLoadOfScalar( 2204 ElemPtr, /*Volatile=*/false, CType, Loc, 2205 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2206 // Store the source element value to the dest element address. 2207 CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType, 2208 LValueBaseInfo(AlignmentSource::Type), 2209 TBAAAccessInfo()); 2210 2211 Bld.CreateBr(MergeBB); 2212 2213 CGF.EmitBlock(ElseBB); 2214 Bld.CreateBr(MergeBB); 2215 2216 CGF.EmitBlock(MergeBB); 2217 2218 // kmpc_barrier. 2219 CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown, 2220 /*EmitChecks=*/false, 2221 /*ForceSimpleCall=*/true); 2222 2223 // 2224 // Warp 0 copies reduce element from transfer medium. 2225 // 2226 llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then"); 2227 llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else"); 2228 llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont"); 2229 2230 Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg); 2231 llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar( 2232 AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc); 2233 2234 // Up to 32 threads in warp 0 are active. 2235 llvm::Value *IsActiveThread = 2236 Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread"); 2237 Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB); 2238 2239 CGF.EmitBlock(W0ThenBB); 2240 2241 // SrcMediumPtr = &medium[tid] 2242 llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP( 2243 TransferMedium->getValueType(), TransferMedium, 2244 {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID}); 2245 Address SrcMediumPtr(SrcMediumPtrVal, Align); 2246 // SrcMediumVal = *SrcMediumPtr; 2247 SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType); 2248 2249 // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I 2250 Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2251 llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar( 2252 TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc); 2253 Address TargetElemPtr = Address(TargetElemPtrVal, Align); 2254 TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType); 2255 if (NumIters > 1) { 2256 TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getElementType(), 2257 TargetElemPtr.getPointer(), Cnt), 2258 TargetElemPtr.getAlignment()); 2259 } 2260 2261 // *TargetElemPtr = SrcMediumVal; 2262 llvm::Value *SrcMediumValue = 2263 CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc); 2264 CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false, 2265 CType); 2266 Bld.CreateBr(W0MergeBB); 2267 2268 CGF.EmitBlock(W0ElseBB); 2269 Bld.CreateBr(W0MergeBB); 2270 2271 CGF.EmitBlock(W0MergeBB); 2272 2273 if (NumIters > 1) { 2274 Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1)); 2275 CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy); 2276 CGF.EmitBranch(PrecondBB); 2277 (void)ApplyDebugLocation::CreateEmpty(CGF); 2278 CGF.EmitBlock(ExitBB); 2279 } 2280 RealTySize %= TySize; 2281 } 2282 ++Idx; 2283 } 2284 2285 CGF.FinishFunction(); 2286 return Fn; 2287 } 2288 2289 /// Emit a helper that reduces data across two OpenMP threads (lanes) 2290 /// in the same warp. It uses shuffle instructions to copy over data from 2291 /// a remote lane's stack. The reduction algorithm performed is specified 2292 /// by the fourth parameter. 2293 /// 2294 /// Algorithm Versions. 2295 /// Full Warp Reduce (argument value 0): 2296 /// This algorithm assumes that all 32 lanes are active and gathers 2297 /// data from these 32 lanes, producing a single resultant value. 2298 /// Contiguous Partial Warp Reduce (argument value 1): 2299 /// This algorithm assumes that only a *contiguous* subset of lanes 2300 /// are active. This happens for the last warp in a parallel region 2301 /// when the user specified num_threads is not an integer multiple of 2302 /// 32. This contiguous subset always starts with the zeroth lane. 2303 /// Partial Warp Reduce (argument value 2): 2304 /// This algorithm gathers data from any number of lanes at any position. 2305 /// All reduced values are stored in the lowest possible lane. The set 2306 /// of problems every algorithm addresses is a super set of those 2307 /// addressable by algorithms with a lower version number. Overhead 2308 /// increases as algorithm version increases. 2309 /// 2310 /// Terminology 2311 /// Reduce element: 2312 /// Reduce element refers to the individual data field with primitive 2313 /// data types to be combined and reduced across threads. 2314 /// Reduce list: 2315 /// Reduce list refers to a collection of local, thread-private 2316 /// reduce elements. 2317 /// Remote Reduce list: 2318 /// Remote Reduce list refers to a collection of remote (relative to 2319 /// the current thread) reduce elements. 2320 /// 2321 /// We distinguish between three states of threads that are important to 2322 /// the implementation of this function. 2323 /// Alive threads: 2324 /// Threads in a warp executing the SIMT instruction, as distinguished from 2325 /// threads that are inactive due to divergent control flow. 2326 /// Active threads: 2327 /// The minimal set of threads that has to be alive upon entry to this 2328 /// function. The computation is correct iff active threads are alive. 2329 /// Some threads are alive but they are not active because they do not 2330 /// contribute to the computation in any useful manner. Turning them off 2331 /// may introduce control flow overheads without any tangible benefits. 2332 /// Effective threads: 2333 /// In order to comply with the argument requirements of the shuffle 2334 /// function, we must keep all lanes holding data alive. But at most 2335 /// half of them perform value aggregation; we refer to this half of 2336 /// threads as effective. The other half is simply handing off their 2337 /// data. 2338 /// 2339 /// Procedure 2340 /// Value shuffle: 2341 /// In this step active threads transfer data from higher lane positions 2342 /// in the warp to lower lane positions, creating Remote Reduce list. 2343 /// Value aggregation: 2344 /// In this step, effective threads combine their thread local Reduce list 2345 /// with Remote Reduce list and store the result in the thread local 2346 /// Reduce list. 2347 /// Value copy: 2348 /// In this step, we deal with the assumption made by algorithm 2 2349 /// (i.e. contiguity assumption). When we have an odd number of lanes 2350 /// active, say 2k+1, only k threads will be effective and therefore k 2351 /// new values will be produced. However, the Reduce list owned by the 2352 /// (2k+1)th thread is ignored in the value aggregation. Therefore 2353 /// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so 2354 /// that the contiguity assumption still holds. 2355 static llvm::Function *emitShuffleAndReduceFunction( 2356 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2357 QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) { 2358 ASTContext &C = CGM.getContext(); 2359 2360 // Thread local Reduce list used to host the values of data to be reduced. 2361 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2362 C.VoidPtrTy, ImplicitParamDecl::Other); 2363 // Current lane id; could be logical. 2364 ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy, 2365 ImplicitParamDecl::Other); 2366 // Offset of the remote source lane relative to the current lane. 2367 ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2368 C.ShortTy, ImplicitParamDecl::Other); 2369 // Algorithm version. This is expected to be known at compile time. 2370 ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2371 C.ShortTy, ImplicitParamDecl::Other); 2372 FunctionArgList Args; 2373 Args.push_back(&ReduceListArg); 2374 Args.push_back(&LaneIDArg); 2375 Args.push_back(&RemoteLaneOffsetArg); 2376 Args.push_back(&AlgoVerArg); 2377 2378 const CGFunctionInfo &CGFI = 2379 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2380 auto *Fn = llvm::Function::Create( 2381 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2382 "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule()); 2383 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2384 Fn->setDoesNotRecurse(); 2385 2386 CodeGenFunction CGF(CGM); 2387 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2388 2389 CGBuilderTy &Bld = CGF.Builder; 2390 2391 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2392 Address LocalReduceList( 2393 Bld.CreatePointerBitCastOrAddrSpaceCast( 2394 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2395 C.VoidPtrTy, SourceLocation()), 2396 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2397 CGF.getPointerAlign()); 2398 2399 Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg); 2400 llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar( 2401 AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2402 2403 Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg); 2404 llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar( 2405 AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2406 2407 Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg); 2408 llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar( 2409 AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation()); 2410 2411 // Create a local thread-private variable to host the Reduce list 2412 // from a remote lane. 2413 Address RemoteReduceList = 2414 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list"); 2415 2416 // This loop iterates through the list of reduce elements and copies, 2417 // element by element, from a remote lane in the warp to RemoteReduceList, 2418 // hosted on the thread's stack. 2419 emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates, 2420 LocalReduceList, RemoteReduceList, 2421 {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal, 2422 /*ScratchpadIndex=*/nullptr, 2423 /*ScratchpadWidth=*/nullptr}); 2424 2425 // The actions to be performed on the Remote Reduce list is dependent 2426 // on the algorithm version. 2427 // 2428 // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 && 2429 // LaneId % 2 == 0 && Offset > 0): 2430 // do the reduction value aggregation 2431 // 2432 // The thread local variable Reduce list is mutated in place to host the 2433 // reduced data, which is the aggregated value produced from local and 2434 // remote lanes. 2435 // 2436 // Note that AlgoVer is expected to be a constant integer known at compile 2437 // time. 2438 // When AlgoVer==0, the first conjunction evaluates to true, making 2439 // the entire predicate true during compile time. 2440 // When AlgoVer==1, the second conjunction has only the second part to be 2441 // evaluated during runtime. Other conjunctions evaluates to false 2442 // during compile time. 2443 // When AlgoVer==2, the third conjunction has only the second part to be 2444 // evaluated during runtime. Other conjunctions evaluates to false 2445 // during compile time. 2446 llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal); 2447 2448 llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2449 llvm::Value *CondAlgo1 = Bld.CreateAnd( 2450 Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2451 2452 llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2)); 2453 llvm::Value *CondAlgo2 = Bld.CreateAnd( 2454 Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1)))); 2455 CondAlgo2 = Bld.CreateAnd( 2456 CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0))); 2457 2458 llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1); 2459 CondReduce = Bld.CreateOr(CondReduce, CondAlgo2); 2460 2461 llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then"); 2462 llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else"); 2463 llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont"); 2464 Bld.CreateCondBr(CondReduce, ThenBB, ElseBB); 2465 2466 CGF.EmitBlock(ThenBB); 2467 // reduce_function(LocalReduceList, RemoteReduceList) 2468 llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2469 LocalReduceList.getPointer(), CGF.VoidPtrTy); 2470 llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2471 RemoteReduceList.getPointer(), CGF.VoidPtrTy); 2472 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2473 CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr}); 2474 Bld.CreateBr(MergeBB); 2475 2476 CGF.EmitBlock(ElseBB); 2477 Bld.CreateBr(MergeBB); 2478 2479 CGF.EmitBlock(MergeBB); 2480 2481 // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local 2482 // Reduce list. 2483 Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1)); 2484 llvm::Value *CondCopy = Bld.CreateAnd( 2485 Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal)); 2486 2487 llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then"); 2488 llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else"); 2489 llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont"); 2490 Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB); 2491 2492 CGF.EmitBlock(CpyThenBB); 2493 emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates, 2494 RemoteReduceList, LocalReduceList); 2495 Bld.CreateBr(CpyMergeBB); 2496 2497 CGF.EmitBlock(CpyElseBB); 2498 Bld.CreateBr(CpyMergeBB); 2499 2500 CGF.EmitBlock(CpyMergeBB); 2501 2502 CGF.FinishFunction(); 2503 return Fn; 2504 } 2505 2506 /// This function emits a helper that copies all the reduction variables from 2507 /// the team into the provided global buffer for the reduction variables. 2508 /// 2509 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2510 /// For all data entries D in reduce_data: 2511 /// Copy local D to buffer.D[Idx] 2512 static llvm::Value *emitListToGlobalCopyFunction( 2513 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2514 QualType ReductionArrayTy, SourceLocation Loc, 2515 const RecordDecl *TeamReductionRec, 2516 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2517 &VarFieldMap) { 2518 ASTContext &C = CGM.getContext(); 2519 2520 // Buffer: global reduction buffer. 2521 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2522 C.VoidPtrTy, ImplicitParamDecl::Other); 2523 // Idx: index of the buffer. 2524 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2525 ImplicitParamDecl::Other); 2526 // ReduceList: thread local Reduce list. 2527 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2528 C.VoidPtrTy, ImplicitParamDecl::Other); 2529 FunctionArgList Args; 2530 Args.push_back(&BufferArg); 2531 Args.push_back(&IdxArg); 2532 Args.push_back(&ReduceListArg); 2533 2534 const CGFunctionInfo &CGFI = 2535 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2536 auto *Fn = llvm::Function::Create( 2537 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2538 "_omp_reduction_list_to_global_copy_func", &CGM.getModule()); 2539 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2540 Fn->setDoesNotRecurse(); 2541 CodeGenFunction CGF(CGM); 2542 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2543 2544 CGBuilderTy &Bld = CGF.Builder; 2545 2546 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2547 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2548 Address LocalReduceList( 2549 Bld.CreatePointerBitCastOrAddrSpaceCast( 2550 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2551 C.VoidPtrTy, Loc), 2552 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2553 CGF.getPointerAlign()); 2554 QualType StaticTy = C.getRecordType(TeamReductionRec); 2555 llvm::Type *LLVMReductionsBufferTy = 2556 CGM.getTypes().ConvertTypeForMem(StaticTy); 2557 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2558 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2559 LLVMReductionsBufferTy->getPointerTo()); 2560 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2561 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2562 /*Volatile=*/false, C.IntTy, 2563 Loc)}; 2564 unsigned Idx = 0; 2565 for (const Expr *Private : Privates) { 2566 // Reduce element = LocalReduceList[i] 2567 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2568 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2569 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2570 // elemptr = ((CopyType*)(elemptrptr)) + I 2571 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2572 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2573 Address ElemPtr = 2574 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2575 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2576 // Global = Buffer.VD[Idx]; 2577 const FieldDecl *FD = VarFieldMap.lookup(VD); 2578 LValue GlobLVal = CGF.EmitLValueForField( 2579 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2580 Address GlobAddr = GlobLVal.getAddress(CGF); 2581 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2582 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2583 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2584 switch (CGF.getEvaluationKind(Private->getType())) { 2585 case TEK_Scalar: { 2586 llvm::Value *V = CGF.EmitLoadOfScalar( 2587 ElemPtr, /*Volatile=*/false, Private->getType(), Loc, 2588 LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()); 2589 CGF.EmitStoreOfScalar(V, GlobLVal); 2590 break; 2591 } 2592 case TEK_Complex: { 2593 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex( 2594 CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc); 2595 CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false); 2596 break; 2597 } 2598 case TEK_Aggregate: 2599 CGF.EmitAggregateCopy(GlobLVal, 2600 CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2601 Private->getType(), AggValueSlot::DoesNotOverlap); 2602 break; 2603 } 2604 ++Idx; 2605 } 2606 2607 CGF.FinishFunction(); 2608 return Fn; 2609 } 2610 2611 /// This function emits a helper that reduces all the reduction variables from 2612 /// the team into the provided global buffer for the reduction variables. 2613 /// 2614 /// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data) 2615 /// void *GlobPtrs[]; 2616 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2617 /// ... 2618 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2619 /// reduce_function(GlobPtrs, reduce_data); 2620 static llvm::Value *emitListToGlobalReduceFunction( 2621 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2622 QualType ReductionArrayTy, SourceLocation Loc, 2623 const RecordDecl *TeamReductionRec, 2624 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2625 &VarFieldMap, 2626 llvm::Function *ReduceFn) { 2627 ASTContext &C = CGM.getContext(); 2628 2629 // Buffer: global reduction buffer. 2630 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2631 C.VoidPtrTy, ImplicitParamDecl::Other); 2632 // Idx: index of the buffer. 2633 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2634 ImplicitParamDecl::Other); 2635 // ReduceList: thread local Reduce list. 2636 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2637 C.VoidPtrTy, ImplicitParamDecl::Other); 2638 FunctionArgList Args; 2639 Args.push_back(&BufferArg); 2640 Args.push_back(&IdxArg); 2641 Args.push_back(&ReduceListArg); 2642 2643 const CGFunctionInfo &CGFI = 2644 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2645 auto *Fn = llvm::Function::Create( 2646 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2647 "_omp_reduction_list_to_global_reduce_func", &CGM.getModule()); 2648 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2649 Fn->setDoesNotRecurse(); 2650 CodeGenFunction CGF(CGM); 2651 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2652 2653 CGBuilderTy &Bld = CGF.Builder; 2654 2655 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2656 QualType StaticTy = C.getRecordType(TeamReductionRec); 2657 llvm::Type *LLVMReductionsBufferTy = 2658 CGM.getTypes().ConvertTypeForMem(StaticTy); 2659 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2660 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2661 LLVMReductionsBufferTy->getPointerTo()); 2662 2663 // 1. Build a list of reduction variables. 2664 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2665 Address ReductionList = 2666 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2667 auto IPriv = Privates.begin(); 2668 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2669 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2670 /*Volatile=*/false, C.IntTy, 2671 Loc)}; 2672 unsigned Idx = 0; 2673 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2674 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2675 // Global = Buffer.VD[Idx]; 2676 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2677 const FieldDecl *FD = VarFieldMap.lookup(VD); 2678 LValue GlobLVal = CGF.EmitLValueForField( 2679 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2680 Address GlobAddr = GlobLVal.getAddress(CGF); 2681 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2682 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2683 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2684 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2685 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2686 // Store array size. 2687 ++Idx; 2688 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2689 llvm::Value *Size = CGF.Builder.CreateIntCast( 2690 CGF.getVLASize( 2691 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2692 .NumElts, 2693 CGF.SizeTy, /*isSigned=*/false); 2694 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2695 Elem); 2696 } 2697 } 2698 2699 // Call reduce_function(GlobalReduceList, ReduceList) 2700 llvm::Value *GlobalReduceList = 2701 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2702 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2703 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2704 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2705 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2706 CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr}); 2707 CGF.FinishFunction(); 2708 return Fn; 2709 } 2710 2711 /// This function emits a helper that copies all the reduction variables from 2712 /// the team into the provided global buffer for the reduction variables. 2713 /// 2714 /// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data) 2715 /// For all data entries D in reduce_data: 2716 /// Copy buffer.D[Idx] to local D; 2717 static llvm::Value *emitGlobalToListCopyFunction( 2718 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2719 QualType ReductionArrayTy, SourceLocation Loc, 2720 const RecordDecl *TeamReductionRec, 2721 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2722 &VarFieldMap) { 2723 ASTContext &C = CGM.getContext(); 2724 2725 // Buffer: global reduction buffer. 2726 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2727 C.VoidPtrTy, ImplicitParamDecl::Other); 2728 // Idx: index of the buffer. 2729 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2730 ImplicitParamDecl::Other); 2731 // ReduceList: thread local Reduce list. 2732 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2733 C.VoidPtrTy, ImplicitParamDecl::Other); 2734 FunctionArgList Args; 2735 Args.push_back(&BufferArg); 2736 Args.push_back(&IdxArg); 2737 Args.push_back(&ReduceListArg); 2738 2739 const CGFunctionInfo &CGFI = 2740 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2741 auto *Fn = llvm::Function::Create( 2742 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2743 "_omp_reduction_global_to_list_copy_func", &CGM.getModule()); 2744 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2745 Fn->setDoesNotRecurse(); 2746 CodeGenFunction CGF(CGM); 2747 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2748 2749 CGBuilderTy &Bld = CGF.Builder; 2750 2751 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2752 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2753 Address LocalReduceList( 2754 Bld.CreatePointerBitCastOrAddrSpaceCast( 2755 CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false, 2756 C.VoidPtrTy, Loc), 2757 CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()), 2758 CGF.getPointerAlign()); 2759 QualType StaticTy = C.getRecordType(TeamReductionRec); 2760 llvm::Type *LLVMReductionsBufferTy = 2761 CGM.getTypes().ConvertTypeForMem(StaticTy); 2762 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2763 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2764 LLVMReductionsBufferTy->getPointerTo()); 2765 2766 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2767 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2768 /*Volatile=*/false, C.IntTy, 2769 Loc)}; 2770 unsigned Idx = 0; 2771 for (const Expr *Private : Privates) { 2772 // Reduce element = LocalReduceList[i] 2773 Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx); 2774 llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar( 2775 ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation()); 2776 // elemptr = ((CopyType*)(elemptrptr)) + I 2777 ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2778 ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo()); 2779 Address ElemPtr = 2780 Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType())); 2781 const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl(); 2782 // Global = Buffer.VD[Idx]; 2783 const FieldDecl *FD = VarFieldMap.lookup(VD); 2784 LValue GlobLVal = CGF.EmitLValueForField( 2785 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2786 Address GlobAddr = GlobLVal.getAddress(CGF); 2787 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2788 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2789 GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment())); 2790 switch (CGF.getEvaluationKind(Private->getType())) { 2791 case TEK_Scalar: { 2792 llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc); 2793 CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(), 2794 LValueBaseInfo(AlignmentSource::Type), 2795 TBAAAccessInfo()); 2796 break; 2797 } 2798 case TEK_Complex: { 2799 CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc); 2800 CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2801 /*isInit=*/false); 2802 break; 2803 } 2804 case TEK_Aggregate: 2805 CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()), 2806 GlobLVal, Private->getType(), 2807 AggValueSlot::DoesNotOverlap); 2808 break; 2809 } 2810 ++Idx; 2811 } 2812 2813 CGF.FinishFunction(); 2814 return Fn; 2815 } 2816 2817 /// This function emits a helper that reduces all the reduction variables from 2818 /// the team into the provided global buffer for the reduction variables. 2819 /// 2820 /// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data) 2821 /// void *GlobPtrs[]; 2822 /// GlobPtrs[0] = (void*)&buffer.D0[Idx]; 2823 /// ... 2824 /// GlobPtrs[N] = (void*)&buffer.DN[Idx]; 2825 /// reduce_function(reduce_data, GlobPtrs); 2826 static llvm::Value *emitGlobalToListReduceFunction( 2827 CodeGenModule &CGM, ArrayRef<const Expr *> Privates, 2828 QualType ReductionArrayTy, SourceLocation Loc, 2829 const RecordDecl *TeamReductionRec, 2830 const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> 2831 &VarFieldMap, 2832 llvm::Function *ReduceFn) { 2833 ASTContext &C = CGM.getContext(); 2834 2835 // Buffer: global reduction buffer. 2836 ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2837 C.VoidPtrTy, ImplicitParamDecl::Other); 2838 // Idx: index of the buffer. 2839 ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, 2840 ImplicitParamDecl::Other); 2841 // ReduceList: thread local Reduce list. 2842 ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, 2843 C.VoidPtrTy, ImplicitParamDecl::Other); 2844 FunctionArgList Args; 2845 Args.push_back(&BufferArg); 2846 Args.push_back(&IdxArg); 2847 Args.push_back(&ReduceListArg); 2848 2849 const CGFunctionInfo &CGFI = 2850 CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); 2851 auto *Fn = llvm::Function::Create( 2852 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 2853 "_omp_reduction_global_to_list_reduce_func", &CGM.getModule()); 2854 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 2855 Fn->setDoesNotRecurse(); 2856 CodeGenFunction CGF(CGM); 2857 CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); 2858 2859 CGBuilderTy &Bld = CGF.Builder; 2860 2861 Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg); 2862 QualType StaticTy = C.getRecordType(TeamReductionRec); 2863 llvm::Type *LLVMReductionsBufferTy = 2864 CGM.getTypes().ConvertTypeForMem(StaticTy); 2865 llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast( 2866 CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc), 2867 LLVMReductionsBufferTy->getPointerTo()); 2868 2869 // 1. Build a list of reduction variables. 2870 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 2871 Address ReductionList = 2872 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 2873 auto IPriv = Privates.begin(); 2874 llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty), 2875 CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg), 2876 /*Volatile=*/false, C.IntTy, 2877 Loc)}; 2878 unsigned Idx = 0; 2879 for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) { 2880 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2881 // Global = Buffer.VD[Idx]; 2882 const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl(); 2883 const FieldDecl *FD = VarFieldMap.lookup(VD); 2884 LValue GlobLVal = CGF.EmitLValueForField( 2885 CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD); 2886 Address GlobAddr = GlobLVal.getAddress(CGF); 2887 llvm::Value *BufferPtr = Bld.CreateInBoundsGEP( 2888 GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs); 2889 llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr); 2890 CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy); 2891 if ((*IPriv)->getType()->isVariablyModifiedType()) { 2892 // Store array size. 2893 ++Idx; 2894 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 2895 llvm::Value *Size = CGF.Builder.CreateIntCast( 2896 CGF.getVLASize( 2897 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 2898 .NumElts, 2899 CGF.SizeTy, /*isSigned=*/false); 2900 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 2901 Elem); 2902 } 2903 } 2904 2905 // Call reduce_function(ReduceList, GlobalReduceList) 2906 llvm::Value *GlobalReduceList = 2907 CGF.EmitCastToVoidPtr(ReductionList.getPointer()); 2908 Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg); 2909 llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar( 2910 AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc); 2911 CGM.getOpenMPRuntime().emitOutlinedFunctionCall( 2912 CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList}); 2913 CGF.FinishFunction(); 2914 return Fn; 2915 } 2916 2917 /// 2918 /// Design of OpenMP reductions on the GPU 2919 /// 2920 /// Consider a typical OpenMP program with one or more reduction 2921 /// clauses: 2922 /// 2923 /// float foo; 2924 /// double bar; 2925 /// #pragma omp target teams distribute parallel for \ 2926 /// reduction(+:foo) reduction(*:bar) 2927 /// for (int i = 0; i < N; i++) { 2928 /// foo += A[i]; bar *= B[i]; 2929 /// } 2930 /// 2931 /// where 'foo' and 'bar' are reduced across all OpenMP threads in 2932 /// all teams. In our OpenMP implementation on the NVPTX device an 2933 /// OpenMP team is mapped to a CUDA threadblock and OpenMP threads 2934 /// within a team are mapped to CUDA threads within a threadblock. 2935 /// Our goal is to efficiently aggregate values across all OpenMP 2936 /// threads such that: 2937 /// 2938 /// - the compiler and runtime are logically concise, and 2939 /// - the reduction is performed efficiently in a hierarchical 2940 /// manner as follows: within OpenMP threads in the same warp, 2941 /// across warps in a threadblock, and finally across teams on 2942 /// the NVPTX device. 2943 /// 2944 /// Introduction to Decoupling 2945 /// 2946 /// We would like to decouple the compiler and the runtime so that the 2947 /// latter is ignorant of the reduction variables (number, data types) 2948 /// and the reduction operators. This allows a simpler interface 2949 /// and implementation while still attaining good performance. 2950 /// 2951 /// Pseudocode for the aforementioned OpenMP program generated by the 2952 /// compiler is as follows: 2953 /// 2954 /// 1. Create private copies of reduction variables on each OpenMP 2955 /// thread: 'foo_private', 'bar_private' 2956 /// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned 2957 /// to it and writes the result in 'foo_private' and 'bar_private' 2958 /// respectively. 2959 /// 3. Call the OpenMP runtime on the GPU to reduce within a team 2960 /// and store the result on the team master: 2961 /// 2962 /// __kmpc_nvptx_parallel_reduce_nowait_v2(..., 2963 /// reduceData, shuffleReduceFn, interWarpCpyFn) 2964 /// 2965 /// where: 2966 /// struct ReduceData { 2967 /// double *foo; 2968 /// double *bar; 2969 /// } reduceData 2970 /// reduceData.foo = &foo_private 2971 /// reduceData.bar = &bar_private 2972 /// 2973 /// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two 2974 /// auxiliary functions generated by the compiler that operate on 2975 /// variables of type 'ReduceData'. They aid the runtime perform 2976 /// algorithmic steps in a data agnostic manner. 2977 /// 2978 /// 'shuffleReduceFn' is a pointer to a function that reduces data 2979 /// of type 'ReduceData' across two OpenMP threads (lanes) in the 2980 /// same warp. It takes the following arguments as input: 2981 /// 2982 /// a. variable of type 'ReduceData' on the calling lane, 2983 /// b. its lane_id, 2984 /// c. an offset relative to the current lane_id to generate a 2985 /// remote_lane_id. The remote lane contains the second 2986 /// variable of type 'ReduceData' that is to be reduced. 2987 /// d. an algorithm version parameter determining which reduction 2988 /// algorithm to use. 2989 /// 2990 /// 'shuffleReduceFn' retrieves data from the remote lane using 2991 /// efficient GPU shuffle intrinsics and reduces, using the 2992 /// algorithm specified by the 4th parameter, the two operands 2993 /// element-wise. The result is written to the first operand. 2994 /// 2995 /// Different reduction algorithms are implemented in different 2996 /// runtime functions, all calling 'shuffleReduceFn' to perform 2997 /// the essential reduction step. Therefore, based on the 4th 2998 /// parameter, this function behaves slightly differently to 2999 /// cooperate with the runtime to ensure correctness under 3000 /// different circumstances. 3001 /// 3002 /// 'InterWarpCpyFn' is a pointer to a function that transfers 3003 /// reduced variables across warps. It tunnels, through CUDA 3004 /// shared memory, the thread-private data of type 'ReduceData' 3005 /// from lane 0 of each warp to a lane in the first warp. 3006 /// 4. Call the OpenMP runtime on the GPU to reduce across teams. 3007 /// The last team writes the global reduced value to memory. 3008 /// 3009 /// ret = __kmpc_nvptx_teams_reduce_nowait(..., 3010 /// reduceData, shuffleReduceFn, interWarpCpyFn, 3011 /// scratchpadCopyFn, loadAndReduceFn) 3012 /// 3013 /// 'scratchpadCopyFn' is a helper that stores reduced 3014 /// data from the team master to a scratchpad array in 3015 /// global memory. 3016 /// 3017 /// 'loadAndReduceFn' is a helper that loads data from 3018 /// the scratchpad array and reduces it with the input 3019 /// operand. 3020 /// 3021 /// These compiler generated functions hide address 3022 /// calculation and alignment information from the runtime. 3023 /// 5. if ret == 1: 3024 /// The team master of the last team stores the reduced 3025 /// result to the globals in memory. 3026 /// foo += reduceData.foo; bar *= reduceData.bar 3027 /// 3028 /// 3029 /// Warp Reduction Algorithms 3030 /// 3031 /// On the warp level, we have three algorithms implemented in the 3032 /// OpenMP runtime depending on the number of active lanes: 3033 /// 3034 /// Full Warp Reduction 3035 /// 3036 /// The reduce algorithm within a warp where all lanes are active 3037 /// is implemented in the runtime as follows: 3038 /// 3039 /// full_warp_reduce(void *reduce_data, 3040 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3041 /// for (int offset = WARPSIZE/2; offset > 0; offset /= 2) 3042 /// ShuffleReduceFn(reduce_data, 0, offset, 0); 3043 /// } 3044 /// 3045 /// The algorithm completes in log(2, WARPSIZE) steps. 3046 /// 3047 /// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is 3048 /// not used therefore we save instructions by not retrieving lane_id 3049 /// from the corresponding special registers. The 4th parameter, which 3050 /// represents the version of the algorithm being used, is set to 0 to 3051 /// signify full warp reduction. 3052 /// 3053 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3054 /// 3055 /// #reduce_elem refers to an element in the local lane's data structure 3056 /// #remote_elem is retrieved from a remote lane 3057 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3058 /// reduce_elem = reduce_elem REDUCE_OP remote_elem; 3059 /// 3060 /// Contiguous Partial Warp Reduction 3061 /// 3062 /// This reduce algorithm is used within a warp where only the first 3063 /// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the 3064 /// number of OpenMP threads in a parallel region is not a multiple of 3065 /// WARPSIZE. The algorithm is implemented in the runtime as follows: 3066 /// 3067 /// void 3068 /// contiguous_partial_reduce(void *reduce_data, 3069 /// kmp_ShuffleReductFctPtr ShuffleReduceFn, 3070 /// int size, int lane_id) { 3071 /// int curr_size; 3072 /// int offset; 3073 /// curr_size = size; 3074 /// mask = curr_size/2; 3075 /// while (offset>0) { 3076 /// ShuffleReduceFn(reduce_data, lane_id, offset, 1); 3077 /// curr_size = (curr_size+1)/2; 3078 /// offset = curr_size/2; 3079 /// } 3080 /// } 3081 /// 3082 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3083 /// 3084 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3085 /// if (lane_id < offset) 3086 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3087 /// else 3088 /// reduce_elem = remote_elem 3089 /// 3090 /// This algorithm assumes that the data to be reduced are located in a 3091 /// contiguous subset of lanes starting from the first. When there is 3092 /// an odd number of active lanes, the data in the last lane is not 3093 /// aggregated with any other lane's dat but is instead copied over. 3094 /// 3095 /// Dispersed Partial Warp Reduction 3096 /// 3097 /// This algorithm is used within a warp when any discontiguous subset of 3098 /// lanes are active. It is used to implement the reduction operation 3099 /// across lanes in an OpenMP simd region or in a nested parallel region. 3100 /// 3101 /// void 3102 /// dispersed_partial_reduce(void *reduce_data, 3103 /// kmp_ShuffleReductFctPtr ShuffleReduceFn) { 3104 /// int size, remote_id; 3105 /// int logical_lane_id = number_of_active_lanes_before_me() * 2; 3106 /// do { 3107 /// remote_id = next_active_lane_id_right_after_me(); 3108 /// # the above function returns 0 of no active lane 3109 /// # is present right after the current lane. 3110 /// size = number_of_active_lanes_in_this_warp(); 3111 /// logical_lane_id /= 2; 3112 /// ShuffleReduceFn(reduce_data, logical_lane_id, 3113 /// remote_id-1-threadIdx.x, 2); 3114 /// } while (logical_lane_id % 2 == 0 && size > 1); 3115 /// } 3116 /// 3117 /// There is no assumption made about the initial state of the reduction. 3118 /// Any number of lanes (>=1) could be active at any position. The reduction 3119 /// result is returned in the first active lane. 3120 /// 3121 /// In this version, 'ShuffleReduceFn' behaves, per element, as follows: 3122 /// 3123 /// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE); 3124 /// if (lane_id % 2 == 0 && offset > 0) 3125 /// reduce_elem = reduce_elem REDUCE_OP remote_elem 3126 /// else 3127 /// reduce_elem = remote_elem 3128 /// 3129 /// 3130 /// Intra-Team Reduction 3131 /// 3132 /// This function, as implemented in the runtime call 3133 /// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP 3134 /// threads in a team. It first reduces within a warp using the 3135 /// aforementioned algorithms. We then proceed to gather all such 3136 /// reduced values at the first warp. 3137 /// 3138 /// The runtime makes use of the function 'InterWarpCpyFn', which copies 3139 /// data from each of the "warp master" (zeroth lane of each warp, where 3140 /// warp-reduced data is held) to the zeroth warp. This step reduces (in 3141 /// a mathematical sense) the problem of reduction across warp masters in 3142 /// a block to the problem of warp reduction. 3143 /// 3144 /// 3145 /// Inter-Team Reduction 3146 /// 3147 /// Once a team has reduced its data to a single value, it is stored in 3148 /// a global scratchpad array. Since each team has a distinct slot, this 3149 /// can be done without locking. 3150 /// 3151 /// The last team to write to the scratchpad array proceeds to reduce the 3152 /// scratchpad array. One or more workers in the last team use the helper 3153 /// 'loadAndReduceDataFn' to load and reduce values from the array, i.e., 3154 /// the k'th worker reduces every k'th element. 3155 /// 3156 /// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to 3157 /// reduce across workers and compute a globally reduced value. 3158 /// 3159 void CGOpenMPRuntimeGPU::emitReduction( 3160 CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, 3161 ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, 3162 ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { 3163 if (!CGF.HaveInsertPoint()) 3164 return; 3165 3166 bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind); 3167 #ifndef NDEBUG 3168 bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind); 3169 #endif 3170 3171 if (Options.SimpleReduction) { 3172 assert(!TeamsReduction && !ParallelReduction && 3173 "Invalid reduction selection in emitReduction."); 3174 CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, 3175 ReductionOps, Options); 3176 return; 3177 } 3178 3179 assert((TeamsReduction || ParallelReduction) && 3180 "Invalid reduction selection in emitReduction."); 3181 3182 // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList), 3183 // RedList, shuffle_reduce_func, interwarp_copy_func); 3184 // or 3185 // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>); 3186 llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); 3187 llvm::Value *ThreadId = getThreadID(CGF, Loc); 3188 3189 llvm::Value *Res; 3190 ASTContext &C = CGM.getContext(); 3191 // 1. Build a list of reduction variables. 3192 // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; 3193 auto Size = RHSExprs.size(); 3194 for (const Expr *E : Privates) { 3195 if (E->getType()->isVariablyModifiedType()) 3196 // Reserve place for array size. 3197 ++Size; 3198 } 3199 llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); 3200 QualType ReductionArrayTy = 3201 C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal, 3202 /*IndexTypeQuals=*/0); 3203 Address ReductionList = 3204 CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); 3205 auto IPriv = Privates.begin(); 3206 unsigned Idx = 0; 3207 for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { 3208 Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3209 CGF.Builder.CreateStore( 3210 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3211 CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy), 3212 Elem); 3213 if ((*IPriv)->getType()->isVariablyModifiedType()) { 3214 // Store array size. 3215 ++Idx; 3216 Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); 3217 llvm::Value *Size = CGF.Builder.CreateIntCast( 3218 CGF.getVLASize( 3219 CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) 3220 .NumElts, 3221 CGF.SizeTy, /*isSigned=*/false); 3222 CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), 3223 Elem); 3224 } 3225 } 3226 3227 llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3228 ReductionList.getPointer(), CGF.VoidPtrTy); 3229 llvm::Function *ReductionFn = emitReductionFunction( 3230 Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, 3231 LHSExprs, RHSExprs, ReductionOps); 3232 llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); 3233 llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction( 3234 CGM, Privates, ReductionArrayTy, ReductionFn, Loc); 3235 llvm::Value *InterWarpCopyFn = 3236 emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc); 3237 3238 if (ParallelReduction) { 3239 llvm::Value *Args[] = {RTLoc, 3240 ThreadId, 3241 CGF.Builder.getInt32(RHSExprs.size()), 3242 ReductionArrayTySize, 3243 RL, 3244 ShuffleAndReduceFn, 3245 InterWarpCopyFn}; 3246 3247 Res = CGF.EmitRuntimeCall( 3248 OMPBuilder.getOrCreateRuntimeFunction( 3249 CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2), 3250 Args); 3251 } else { 3252 assert(TeamsReduction && "expected teams reduction."); 3253 llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap; 3254 llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size()); 3255 int Cnt = 0; 3256 for (const Expr *DRE : Privates) { 3257 PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl(); 3258 ++Cnt; 3259 } 3260 const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars( 3261 CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap, 3262 C.getLangOpts().OpenMPCUDAReductionBufNum); 3263 TeamsReductions.push_back(TeamReductionRec); 3264 if (!KernelTeamsReductionPtr) { 3265 KernelTeamsReductionPtr = new llvm::GlobalVariable( 3266 CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true, 3267 llvm::GlobalValue::InternalLinkage, nullptr, 3268 "_openmp_teams_reductions_buffer_$_$ptr"); 3269 } 3270 llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar( 3271 Address(KernelTeamsReductionPtr, CGM.getPointerAlign()), 3272 /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc); 3273 llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction( 3274 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3275 llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction( 3276 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3277 ReductionFn); 3278 llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction( 3279 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap); 3280 llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction( 3281 CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap, 3282 ReductionFn); 3283 3284 llvm::Value *Args[] = { 3285 RTLoc, 3286 ThreadId, 3287 GlobalBufferPtr, 3288 CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum), 3289 RL, 3290 ShuffleAndReduceFn, 3291 InterWarpCopyFn, 3292 GlobalToBufferCpyFn, 3293 GlobalToBufferRedFn, 3294 BufferToGlobalCpyFn, 3295 BufferToGlobalRedFn}; 3296 3297 Res = CGF.EmitRuntimeCall( 3298 OMPBuilder.getOrCreateRuntimeFunction( 3299 CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2), 3300 Args); 3301 } 3302 3303 // 5. Build if (res == 1) 3304 llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done"); 3305 llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then"); 3306 llvm::Value *Cond = CGF.Builder.CreateICmpEQ( 3307 Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1)); 3308 CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB); 3309 3310 // 6. Build then branch: where we have reduced values in the master 3311 // thread in each team. 3312 // __kmpc_end_reduce{_nowait}(<gtid>); 3313 // break; 3314 CGF.EmitBlock(ThenBB); 3315 3316 // Add emission of __kmpc_end_reduce{_nowait}(<gtid>); 3317 auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps, 3318 this](CodeGenFunction &CGF, PrePostActionTy &Action) { 3319 auto IPriv = Privates.begin(); 3320 auto ILHS = LHSExprs.begin(); 3321 auto IRHS = RHSExprs.begin(); 3322 for (const Expr *E : ReductionOps) { 3323 emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), 3324 cast<DeclRefExpr>(*IRHS)); 3325 ++IPriv; 3326 ++ILHS; 3327 ++IRHS; 3328 } 3329 }; 3330 llvm::Value *EndArgs[] = {ThreadId}; 3331 RegionCodeGenTy RCG(CodeGen); 3332 NVPTXActionTy Action( 3333 nullptr, llvm::None, 3334 OMPBuilder.getOrCreateRuntimeFunction( 3335 CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait), 3336 EndArgs); 3337 RCG.setAction(Action); 3338 RCG(CGF); 3339 // There is no need to emit line number for unconditional branch. 3340 (void)ApplyDebugLocation::CreateEmpty(CGF); 3341 CGF.EmitBlock(ExitBB, /*IsFinished=*/true); 3342 } 3343 3344 const VarDecl * 3345 CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD, 3346 const VarDecl *NativeParam) const { 3347 if (!NativeParam->getType()->isReferenceType()) 3348 return NativeParam; 3349 QualType ArgType = NativeParam->getType(); 3350 QualifierCollector QC; 3351 const Type *NonQualTy = QC.strip(ArgType); 3352 QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3353 if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) { 3354 if (Attr->getCaptureKind() == OMPC_map) { 3355 PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy, 3356 LangAS::opencl_global); 3357 } 3358 } 3359 ArgType = CGM.getContext().getPointerType(PointeeTy); 3360 QC.addRestrict(); 3361 enum { NVPTX_local_addr = 5 }; 3362 QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr)); 3363 ArgType = QC.apply(CGM.getContext(), ArgType); 3364 if (isa<ImplicitParamDecl>(NativeParam)) 3365 return ImplicitParamDecl::Create( 3366 CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(), 3367 NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other); 3368 return ParmVarDecl::Create( 3369 CGM.getContext(), 3370 const_cast<DeclContext *>(NativeParam->getDeclContext()), 3371 NativeParam->getBeginLoc(), NativeParam->getLocation(), 3372 NativeParam->getIdentifier(), ArgType, 3373 /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr); 3374 } 3375 3376 Address 3377 CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF, 3378 const VarDecl *NativeParam, 3379 const VarDecl *TargetParam) const { 3380 assert(NativeParam != TargetParam && 3381 NativeParam->getType()->isReferenceType() && 3382 "Native arg must not be the same as target arg."); 3383 Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam); 3384 QualType NativeParamType = NativeParam->getType(); 3385 QualifierCollector QC; 3386 const Type *NonQualTy = QC.strip(NativeParamType); 3387 QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType(); 3388 unsigned NativePointeeAddrSpace = 3389 CGF.getContext().getTargetAddressSpace(NativePointeeTy); 3390 QualType TargetTy = TargetParam->getType(); 3391 llvm::Value *TargetAddr = CGF.EmitLoadOfScalar( 3392 LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation()); 3393 // First cast to generic. 3394 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3395 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3396 /*AddrSpace=*/0)); 3397 // Cast from generic to native address space. 3398 TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3399 TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo( 3400 NativePointeeAddrSpace)); 3401 Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType); 3402 CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false, 3403 NativeParamType); 3404 return NativeParamAddr; 3405 } 3406 3407 void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall( 3408 CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, 3409 ArrayRef<llvm::Value *> Args) const { 3410 SmallVector<llvm::Value *, 4> TargetArgs; 3411 TargetArgs.reserve(Args.size()); 3412 auto *FnType = OutlinedFn.getFunctionType(); 3413 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 3414 if (FnType->isVarArg() && FnType->getNumParams() <= I) { 3415 TargetArgs.append(std::next(Args.begin(), I), Args.end()); 3416 break; 3417 } 3418 llvm::Type *TargetType = FnType->getParamType(I); 3419 llvm::Value *NativeArg = Args[I]; 3420 if (!TargetType->isPointerTy()) { 3421 TargetArgs.emplace_back(NativeArg); 3422 continue; 3423 } 3424 llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3425 NativeArg, 3426 NativeArg->getType()->getPointerElementType()->getPointerTo()); 3427 TargetArgs.emplace_back( 3428 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType)); 3429 } 3430 CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs); 3431 } 3432 3433 /// Emit function which wraps the outline parallel region 3434 /// and controls the arguments which are passed to this function. 3435 /// The wrapper ensures that the outlined function is called 3436 /// with the correct arguments when data is shared. 3437 llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper( 3438 llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) { 3439 ASTContext &Ctx = CGM.getContext(); 3440 const auto &CS = *D.getCapturedStmt(OMPD_parallel); 3441 3442 // Create a function that takes as argument the source thread. 3443 FunctionArgList WrapperArgs; 3444 QualType Int16QTy = 3445 Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false); 3446 QualType Int32QTy = 3447 Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false); 3448 ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3449 /*Id=*/nullptr, Int16QTy, 3450 ImplicitParamDecl::Other); 3451 ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(), 3452 /*Id=*/nullptr, Int32QTy, 3453 ImplicitParamDecl::Other); 3454 WrapperArgs.emplace_back(&ParallelLevelArg); 3455 WrapperArgs.emplace_back(&WrapperArg); 3456 3457 const CGFunctionInfo &CGFI = 3458 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs); 3459 3460 auto *Fn = llvm::Function::Create( 3461 CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage, 3462 Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule()); 3463 3464 // Ensure we do not inline the function. This is trivially true for the ones 3465 // passed to __kmpc_fork_call but the ones calles in serialized regions 3466 // could be inlined. This is not a perfect but it is closer to the invariant 3467 // we want, namely, every data environment starts with a new function. 3468 // TODO: We should pass the if condition to the runtime function and do the 3469 // handling there. Much cleaner code. 3470 Fn->addFnAttr(llvm::Attribute::NoInline); 3471 3472 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); 3473 Fn->setLinkage(llvm::GlobalValue::InternalLinkage); 3474 Fn->setDoesNotRecurse(); 3475 3476 CodeGenFunction CGF(CGM, /*suppressNewContext=*/true); 3477 CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs, 3478 D.getBeginLoc(), D.getBeginLoc()); 3479 3480 const auto *RD = CS.getCapturedRecordDecl(); 3481 auto CurField = RD->field_begin(); 3482 3483 Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, 3484 /*Name=*/".zero.addr"); 3485 CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); 3486 // Get the array of arguments. 3487 SmallVector<llvm::Value *, 8> Args; 3488 3489 Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer()); 3490 Args.emplace_back(ZeroAddr.getPointer()); 3491 3492 CGBuilderTy &Bld = CGF.Builder; 3493 auto CI = CS.capture_begin(); 3494 3495 // Use global memory for data sharing. 3496 // Handle passing of global args to workers. 3497 Address GlobalArgs = 3498 CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args"); 3499 llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer(); 3500 llvm::Value *DataSharingArgs[] = {GlobalArgsPtr}; 3501 CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction( 3502 CGM.getModule(), OMPRTL___kmpc_get_shared_variables), 3503 DataSharingArgs); 3504 3505 // Retrieve the shared variables from the list of references returned 3506 // by the runtime. Pass the variables to the outlined function. 3507 Address SharedArgListAddress = Address::invalid(); 3508 if (CS.capture_size() > 0 || 3509 isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3510 SharedArgListAddress = CGF.EmitLoadOfPointer( 3511 GlobalArgs, CGF.getContext() 3512 .getPointerType(CGF.getContext().getPointerType( 3513 CGF.getContext().VoidPtrTy)) 3514 .castAs<PointerType>()); 3515 } 3516 unsigned Idx = 0; 3517 if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) { 3518 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3519 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3520 Src, CGF.SizeTy->getPointerTo()); 3521 llvm::Value *LB = CGF.EmitLoadOfScalar( 3522 TypedAddress, 3523 /*Volatile=*/false, 3524 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3525 cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc()); 3526 Args.emplace_back(LB); 3527 ++Idx; 3528 Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx); 3529 TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3530 Src, CGF.SizeTy->getPointerTo()); 3531 llvm::Value *UB = CGF.EmitLoadOfScalar( 3532 TypedAddress, 3533 /*Volatile=*/false, 3534 CGF.getContext().getPointerType(CGF.getContext().getSizeType()), 3535 cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc()); 3536 Args.emplace_back(UB); 3537 ++Idx; 3538 } 3539 if (CS.capture_size() > 0) { 3540 ASTContext &CGFContext = CGF.getContext(); 3541 for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) { 3542 QualType ElemTy = CurField->getType(); 3543 Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx); 3544 Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast( 3545 Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy))); 3546 llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress, 3547 /*Volatile=*/false, 3548 CGFContext.getPointerType(ElemTy), 3549 CI->getLocation()); 3550 if (CI->capturesVariableByCopy() && 3551 !CI->getCapturedVar()->getType()->isAnyPointerType()) { 3552 Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(), 3553 CI->getLocation()); 3554 } 3555 Args.emplace_back(Arg); 3556 } 3557 } 3558 3559 emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args); 3560 CGF.FinishFunction(); 3561 return Fn; 3562 } 3563 3564 void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF, 3565 const Decl *D) { 3566 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3567 return; 3568 3569 assert(D && "Expected function or captured|block decl."); 3570 assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 && 3571 "Function is registered already."); 3572 assert((!TeamAndReductions.first || TeamAndReductions.first == D) && 3573 "Team is set but not processed."); 3574 const Stmt *Body = nullptr; 3575 bool NeedToDelayGlobalization = false; 3576 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 3577 Body = FD->getBody(); 3578 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { 3579 Body = BD->getBody(); 3580 } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) { 3581 Body = CD->getBody(); 3582 NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP; 3583 if (NeedToDelayGlobalization && 3584 getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) 3585 return; 3586 } 3587 if (!Body) 3588 return; 3589 CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second); 3590 VarChecker.Visit(Body); 3591 const RecordDecl *GlobalizedVarsRecord = 3592 VarChecker.getGlobalizedRecord(IsInTTDRegion); 3593 TeamAndReductions.first = nullptr; 3594 TeamAndReductions.second.clear(); 3595 ArrayRef<const ValueDecl *> EscapedVariableLengthDecls = 3596 VarChecker.getEscapedVariableLengthDecls(); 3597 if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty()) 3598 return; 3599 auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first; 3600 I->getSecond().MappedParams = 3601 std::make_unique<CodeGenFunction::OMPMapVars>(); 3602 I->getSecond().EscapedParameters.insert( 3603 VarChecker.getEscapedParameters().begin(), 3604 VarChecker.getEscapedParameters().end()); 3605 I->getSecond().EscapedVariableLengthDecls.append( 3606 EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end()); 3607 DeclToAddrMapTy &Data = I->getSecond().LocalVarData; 3608 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3609 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3610 Data.insert(std::make_pair(VD, MappedVarData())); 3611 } 3612 if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) { 3613 CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None); 3614 VarChecker.Visit(Body); 3615 I->getSecond().SecondaryLocalVarData.emplace(); 3616 DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue(); 3617 for (const ValueDecl *VD : VarChecker.getEscapedDecls()) { 3618 assert(VD->isCanonicalDecl() && "Expected canonical declaration"); 3619 Data.insert(std::make_pair(VD, MappedVarData())); 3620 } 3621 } 3622 if (!NeedToDelayGlobalization) { 3623 emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true); 3624 struct GlobalizationScope final : EHScopeStack::Cleanup { 3625 GlobalizationScope() = default; 3626 3627 void Emit(CodeGenFunction &CGF, Flags flags) override { 3628 static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()) 3629 .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true); 3630 } 3631 }; 3632 CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup); 3633 } 3634 } 3635 3636 Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF, 3637 const VarDecl *VD) { 3638 if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) { 3639 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3640 auto AS = LangAS::Default; 3641 switch (A->getAllocatorType()) { 3642 // Use the default allocator here as by default local vars are 3643 // threadlocal. 3644 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3645 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3646 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3647 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3648 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3649 // Follow the user decision - use default allocation. 3650 return Address::invalid(); 3651 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3652 // TODO: implement aupport for user-defined allocators. 3653 return Address::invalid(); 3654 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3655 AS = LangAS::cuda_constant; 3656 break; 3657 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3658 AS = LangAS::cuda_shared; 3659 break; 3660 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3661 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3662 break; 3663 } 3664 llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType()); 3665 auto *GV = new llvm::GlobalVariable( 3666 CGM.getModule(), VarTy, /*isConstant=*/false, 3667 llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy), 3668 VD->getName(), 3669 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, 3670 CGM.getContext().getTargetAddressSpace(AS)); 3671 CharUnits Align = CGM.getContext().getDeclAlign(VD); 3672 GV->setAlignment(Align.getAsAlign()); 3673 return Address( 3674 CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 3675 GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace( 3676 VD->getType().getAddressSpace()))), 3677 Align); 3678 } 3679 3680 if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic) 3681 return Address::invalid(); 3682 3683 VD = VD->getCanonicalDecl(); 3684 auto I = FunctionGlobalizedDecls.find(CGF.CurFn); 3685 if (I == FunctionGlobalizedDecls.end()) 3686 return Address::invalid(); 3687 auto VDI = I->getSecond().LocalVarData.find(VD); 3688 if (VDI != I->getSecond().LocalVarData.end()) 3689 return VDI->second.PrivateAddr; 3690 if (VD->hasAttrs()) { 3691 for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()), 3692 E(VD->attr_end()); 3693 IT != E; ++IT) { 3694 auto VDI = I->getSecond().LocalVarData.find( 3695 cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl()) 3696 ->getCanonicalDecl()); 3697 if (VDI != I->getSecond().LocalVarData.end()) 3698 return VDI->second.PrivateAddr; 3699 } 3700 } 3701 3702 return Address::invalid(); 3703 } 3704 3705 void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) { 3706 FunctionGlobalizedDecls.erase(CGF.CurFn); 3707 CGOpenMPRuntime::functionFinished(CGF); 3708 } 3709 3710 void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk( 3711 CodeGenFunction &CGF, const OMPLoopDirective &S, 3712 OpenMPDistScheduleClauseKind &ScheduleKind, 3713 llvm::Value *&Chunk) const { 3714 auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime()); 3715 if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) { 3716 ScheduleKind = OMPC_DIST_SCHEDULE_static; 3717 Chunk = CGF.EmitScalarConversion( 3718 RT.getGPUNumThreads(CGF), 3719 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3720 S.getIterationVariable()->getType(), S.getBeginLoc()); 3721 return; 3722 } 3723 CGOpenMPRuntime::getDefaultDistScheduleAndChunk( 3724 CGF, S, ScheduleKind, Chunk); 3725 } 3726 3727 void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk( 3728 CodeGenFunction &CGF, const OMPLoopDirective &S, 3729 OpenMPScheduleClauseKind &ScheduleKind, 3730 const Expr *&ChunkExpr) const { 3731 ScheduleKind = OMPC_SCHEDULE_static; 3732 // Chunk size is 1 in this case. 3733 llvm::APInt ChunkSize(32, 1); 3734 ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize, 3735 CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), 3736 SourceLocation()); 3737 } 3738 3739 void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas( 3740 CodeGenFunction &CGF, const OMPExecutableDirective &D) const { 3741 assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && 3742 " Expected target-based directive."); 3743 const CapturedStmt *CS = D.getCapturedStmt(OMPD_target); 3744 for (const CapturedStmt::Capture &C : CS->captures()) { 3745 // Capture variables captured by reference in lambdas for target-based 3746 // directives. 3747 if (!C.capturesVariable()) 3748 continue; 3749 const VarDecl *VD = C.getCapturedVar(); 3750 const auto *RD = VD->getType() 3751 .getCanonicalType() 3752 .getNonReferenceType() 3753 ->getAsCXXRecordDecl(); 3754 if (!RD || !RD->isLambda()) 3755 continue; 3756 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3757 LValue VDLVal; 3758 if (VD->getType().getCanonicalType()->isReferenceType()) 3759 VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType()); 3760 else 3761 VDLVal = CGF.MakeAddrLValue( 3762 VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); 3763 llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; 3764 FieldDecl *ThisCapture = nullptr; 3765 RD->getCaptureFields(Captures, ThisCapture); 3766 if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) { 3767 LValue ThisLVal = 3768 CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); 3769 llvm::Value *CXXThis = CGF.LoadCXXThis(); 3770 CGF.EmitStoreOfScalar(CXXThis, ThisLVal); 3771 } 3772 for (const LambdaCapture &LC : RD->captures()) { 3773 if (LC.getCaptureKind() != LCK_ByRef) 3774 continue; 3775 const VarDecl *VD = LC.getCapturedVar(); 3776 if (!CS->capturesVariable(VD)) 3777 continue; 3778 auto It = Captures.find(VD); 3779 assert(It != Captures.end() && "Found lambda capture without field."); 3780 LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); 3781 Address VDAddr = CGF.GetAddrOfLocalVar(VD); 3782 if (VD->getType().getCanonicalType()->isReferenceType()) 3783 VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr, 3784 VD->getType().getCanonicalType()) 3785 .getAddress(CGF); 3786 CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal); 3787 } 3788 } 3789 } 3790 3791 bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD, 3792 LangAS &AS) { 3793 if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) 3794 return false; 3795 const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); 3796 switch(A->getAllocatorType()) { 3797 case OMPAllocateDeclAttr::OMPNullMemAlloc: 3798 case OMPAllocateDeclAttr::OMPDefaultMemAlloc: 3799 // Not supported, fallback to the default mem space. 3800 case OMPAllocateDeclAttr::OMPThreadMemAlloc: 3801 case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: 3802 case OMPAllocateDeclAttr::OMPCGroupMemAlloc: 3803 case OMPAllocateDeclAttr::OMPHighBWMemAlloc: 3804 case OMPAllocateDeclAttr::OMPLowLatMemAlloc: 3805 AS = LangAS::Default; 3806 return true; 3807 case OMPAllocateDeclAttr::OMPConstMemAlloc: 3808 AS = LangAS::cuda_constant; 3809 return true; 3810 case OMPAllocateDeclAttr::OMPPTeamMemAlloc: 3811 AS = LangAS::cuda_shared; 3812 return true; 3813 case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: 3814 llvm_unreachable("Expected predefined allocator for the variables with the " 3815 "static storage."); 3816 } 3817 return false; 3818 } 3819 3820 // Get current CudaArch and ignore any unknown values 3821 static CudaArch getCudaArch(CodeGenModule &CGM) { 3822 if (!CGM.getTarget().hasFeature("ptx")) 3823 return CudaArch::UNKNOWN; 3824 for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) { 3825 if (Feature.getValue()) { 3826 CudaArch Arch = StringToCudaArch(Feature.getKey()); 3827 if (Arch != CudaArch::UNKNOWN) 3828 return Arch; 3829 } 3830 } 3831 return CudaArch::UNKNOWN; 3832 } 3833 3834 /// Check to see if target architecture supports unified addressing which is 3835 /// a restriction for OpenMP requires clause "unified_shared_memory". 3836 void CGOpenMPRuntimeGPU::processRequiresDirective( 3837 const OMPRequiresDecl *D) { 3838 for (const OMPClause *Clause : D->clauselists()) { 3839 if (Clause->getClauseKind() == OMPC_unified_shared_memory) { 3840 CudaArch Arch = getCudaArch(CGM); 3841 switch (Arch) { 3842 case CudaArch::SM_20: 3843 case CudaArch::SM_21: 3844 case CudaArch::SM_30: 3845 case CudaArch::SM_32: 3846 case CudaArch::SM_35: 3847 case CudaArch::SM_37: 3848 case CudaArch::SM_50: 3849 case CudaArch::SM_52: 3850 case CudaArch::SM_53: { 3851 SmallString<256> Buffer; 3852 llvm::raw_svector_ostream Out(Buffer); 3853 Out << "Target architecture " << CudaArchToString(Arch) 3854 << " does not support unified addressing"; 3855 CGM.Error(Clause->getBeginLoc(), Out.str()); 3856 return; 3857 } 3858 case CudaArch::SM_60: 3859 case CudaArch::SM_61: 3860 case CudaArch::SM_62: 3861 case CudaArch::SM_70: 3862 case CudaArch::SM_72: 3863 case CudaArch::SM_75: 3864 case CudaArch::SM_80: 3865 case CudaArch::SM_86: 3866 case CudaArch::GFX600: 3867 case CudaArch::GFX601: 3868 case CudaArch::GFX602: 3869 case CudaArch::GFX700: 3870 case CudaArch::GFX701: 3871 case CudaArch::GFX702: 3872 case CudaArch::GFX703: 3873 case CudaArch::GFX704: 3874 case CudaArch::GFX705: 3875 case CudaArch::GFX801: 3876 case CudaArch::GFX802: 3877 case CudaArch::GFX803: 3878 case CudaArch::GFX805: 3879 case CudaArch::GFX810: 3880 case CudaArch::GFX900: 3881 case CudaArch::GFX902: 3882 case CudaArch::GFX904: 3883 case CudaArch::GFX906: 3884 case CudaArch::GFX908: 3885 case CudaArch::GFX909: 3886 case CudaArch::GFX90a: 3887 case CudaArch::GFX90c: 3888 case CudaArch::GFX1010: 3889 case CudaArch::GFX1011: 3890 case CudaArch::GFX1012: 3891 case CudaArch::GFX1013: 3892 case CudaArch::GFX1030: 3893 case CudaArch::GFX1031: 3894 case CudaArch::GFX1032: 3895 case CudaArch::GFX1033: 3896 case CudaArch::GFX1034: 3897 case CudaArch::GFX1035: 3898 case CudaArch::UNUSED: 3899 case CudaArch::UNKNOWN: 3900 break; 3901 case CudaArch::LAST: 3902 llvm_unreachable("Unexpected Cuda arch."); 3903 } 3904 } 3905 } 3906 CGOpenMPRuntime::processRequiresDirective(D); 3907 } 3908 3909 void CGOpenMPRuntimeGPU::clear() { 3910 3911 if (!TeamsReductions.empty()) { 3912 ASTContext &C = CGM.getContext(); 3913 RecordDecl *StaticRD = C.buildImplicitRecord( 3914 "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union); 3915 StaticRD->startDefinition(); 3916 for (const RecordDecl *TeamReductionRec : TeamsReductions) { 3917 QualType RecTy = C.getRecordType(TeamReductionRec); 3918 auto *Field = FieldDecl::Create( 3919 C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy, 3920 C.getTrivialTypeSourceInfo(RecTy, SourceLocation()), 3921 /*BW=*/nullptr, /*Mutable=*/false, 3922 /*InitStyle=*/ICIS_NoInit); 3923 Field->setAccess(AS_public); 3924 StaticRD->addDecl(Field); 3925 } 3926 StaticRD->completeDefinition(); 3927 QualType StaticTy = C.getRecordType(StaticRD); 3928 llvm::Type *LLVMReductionsBufferTy = 3929 CGM.getTypes().ConvertTypeForMem(StaticTy); 3930 // FIXME: nvlink does not handle weak linkage correctly (object with the 3931 // different size are reported as erroneous). 3932 // Restore CommonLinkage as soon as nvlink is fixed. 3933 auto *GV = new llvm::GlobalVariable( 3934 CGM.getModule(), LLVMReductionsBufferTy, 3935 /*isConstant=*/false, llvm::GlobalValue::InternalLinkage, 3936 llvm::Constant::getNullValue(LLVMReductionsBufferTy), 3937 "_openmp_teams_reductions_buffer_$_"); 3938 KernelTeamsReductionPtr->setInitializer( 3939 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, 3940 CGM.VoidPtrTy)); 3941 } 3942 CGOpenMPRuntime::clear(); 3943 } 3944